xref: /freebsd/sys/cam/cam_xpt.c (revision 53071ed1c96db7f89defc99c95b0ad1031d48f45)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/md_var.h>	/* geometry translation */
75 #include <machine/stdarg.h>	/* for xpt_print below */
76 
77 #include "opt_cam.h"
78 
79 /* Wild guess based on not wanting to grow the stack too much */
80 #define XPT_PRINT_MAXLEN	512
81 #ifdef PRINTF_BUFR_SIZE
82 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
83 #else
84 #define XPT_PRINT_LEN	128
85 #endif
86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
87 
88 /*
89  * This is the maximum number of high powered commands (e.g. start unit)
90  * that can be outstanding at a particular time.
91  */
92 #ifndef CAM_MAX_HIGHPOWER
93 #define CAM_MAX_HIGHPOWER  4
94 #endif
95 
96 /* Datastructures internal to the xpt layer */
97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
101 
102 struct xpt_softc {
103 	uint32_t		xpt_generation;
104 
105 	/* number of high powered commands that can go through right now */
106 	struct mtx		xpt_highpower_lock;
107 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
108 	int			num_highpower;
109 
110 	/* queue for handling async rescan requests. */
111 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
112 	int buses_to_config;
113 	int buses_config_done;
114 	int announce_nosbuf;
115 
116 	/*
117 	 * Registered buses
118 	 *
119 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
120 	 * "buses" is preferred.
121 	 */
122 	TAILQ_HEAD(,cam_eb)	xpt_busses;
123 	u_int			bus_generation;
124 
125 	int			boot_delay;
126 	struct callout 		boot_callout;
127 	struct task		boot_task;
128 	struct root_hold_token	xpt_rootmount;
129 
130 	struct mtx		xpt_topo_lock;
131 	struct taskqueue	*xpt_taskq;
132 };
133 
134 typedef enum {
135 	DM_RET_COPY		= 0x01,
136 	DM_RET_FLAG_MASK	= 0x0f,
137 	DM_RET_NONE		= 0x00,
138 	DM_RET_STOP		= 0x10,
139 	DM_RET_DESCEND		= 0x20,
140 	DM_RET_ERROR		= 0x30,
141 	DM_RET_ACTION_MASK	= 0xf0
142 } dev_match_ret;
143 
144 typedef enum {
145 	XPT_DEPTH_BUS,
146 	XPT_DEPTH_TARGET,
147 	XPT_DEPTH_DEVICE,
148 	XPT_DEPTH_PERIPH
149 } xpt_traverse_depth;
150 
151 struct xpt_traverse_config {
152 	xpt_traverse_depth	depth;
153 	void			*tr_func;
154 	void			*tr_arg;
155 };
156 
157 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
158 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
159 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
160 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
161 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
162 
163 /* Transport layer configuration information */
164 static struct xpt_softc xsoftc;
165 
166 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
167 
168 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
169            &xsoftc.boot_delay, 0, "Bus registration wait time");
170 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
171 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
172 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
173 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
174 
175 struct cam_doneq {
176 	struct mtx_padalign	cam_doneq_mtx;
177 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
178 	int			cam_doneq_sleep;
179 };
180 
181 static struct cam_doneq cam_doneqs[MAXCPU];
182 static int cam_num_doneqs;
183 static struct proc *cam_proc;
184 
185 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
186            &cam_num_doneqs, 0, "Number of completion queues/threads");
187 
188 struct cam_periph *xpt_periph;
189 
190 static periph_init_t xpt_periph_init;
191 
192 static struct periph_driver xpt_driver =
193 {
194 	xpt_periph_init, "xpt",
195 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
196 	CAM_PERIPH_DRV_EARLY
197 };
198 
199 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
200 
201 static d_open_t xptopen;
202 static d_close_t xptclose;
203 static d_ioctl_t xptioctl;
204 static d_ioctl_t xptdoioctl;
205 
206 static struct cdevsw xpt_cdevsw = {
207 	.d_version =	D_VERSION,
208 	.d_flags =	0,
209 	.d_open =	xptopen,
210 	.d_close =	xptclose,
211 	.d_ioctl =	xptioctl,
212 	.d_name =	"xpt",
213 };
214 
215 /* Storage for debugging datastructures */
216 struct cam_path *cam_dpath;
217 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
218 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
219 	&cam_dflags, 0, "Enabled debug flags");
220 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
221 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
222 	&cam_debug_delay, 0, "Delay in us after each debug message");
223 
224 /* Our boot-time initialization hook */
225 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
226 
227 static moduledata_t cam_moduledata = {
228 	"cam",
229 	cam_module_event_handler,
230 	NULL
231 };
232 
233 static int	xpt_init(void *);
234 
235 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
236 MODULE_VERSION(cam, 1);
237 
238 
239 static void		xpt_async_bcast(struct async_list *async_head,
240 					u_int32_t async_code,
241 					struct cam_path *path,
242 					void *async_arg);
243 static path_id_t xptnextfreepathid(void);
244 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
245 static union ccb *xpt_get_ccb(struct cam_periph *periph);
246 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
247 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
248 static void	 xpt_run_allocq_task(void *context, int pending);
249 static void	 xpt_run_devq(struct cam_devq *devq);
250 static callout_func_t xpt_release_devq_timeout;
251 static void	 xpt_release_simq_timeout(void *arg) __unused;
252 static void	 xpt_acquire_bus(struct cam_eb *bus);
253 static void	 xpt_release_bus(struct cam_eb *bus);
254 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
255 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
256 		    int run_queue);
257 static struct cam_et*
258 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
259 static void	 xpt_acquire_target(struct cam_et *target);
260 static void	 xpt_release_target(struct cam_et *target);
261 static struct cam_eb*
262 		 xpt_find_bus(path_id_t path_id);
263 static struct cam_et*
264 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
265 static struct cam_ed*
266 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
267 static void	 xpt_config(void *arg);
268 static void	 xpt_hold_boot_locked(void);
269 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
270 				 u_int32_t new_priority);
271 static xpt_devicefunc_t xptpassannouncefunc;
272 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
273 static void	 xptpoll(struct cam_sim *sim);
274 static void	 camisr_runqueue(void);
275 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
276 static void	 xpt_done_td(void *);
277 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
278 				    u_int num_patterns, struct cam_eb *bus);
279 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
280 				       u_int num_patterns,
281 				       struct cam_ed *device);
282 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
283 				       u_int num_patterns,
284 				       struct cam_periph *periph);
285 static xpt_busfunc_t	xptedtbusfunc;
286 static xpt_targetfunc_t	xptedttargetfunc;
287 static xpt_devicefunc_t	xptedtdevicefunc;
288 static xpt_periphfunc_t	xptedtperiphfunc;
289 static xpt_pdrvfunc_t	xptplistpdrvfunc;
290 static xpt_periphfunc_t	xptplistperiphfunc;
291 static int		xptedtmatch(struct ccb_dev_match *cdm);
292 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
293 static int		xptbustraverse(struct cam_eb *start_bus,
294 				       xpt_busfunc_t *tr_func, void *arg);
295 static int		xpttargettraverse(struct cam_eb *bus,
296 					  struct cam_et *start_target,
297 					  xpt_targetfunc_t *tr_func, void *arg);
298 static int		xptdevicetraverse(struct cam_et *target,
299 					  struct cam_ed *start_device,
300 					  xpt_devicefunc_t *tr_func, void *arg);
301 static int		xptperiphtraverse(struct cam_ed *device,
302 					  struct cam_periph *start_periph,
303 					  xpt_periphfunc_t *tr_func, void *arg);
304 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
305 					xpt_pdrvfunc_t *tr_func, void *arg);
306 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
307 					    struct cam_periph *start_periph,
308 					    xpt_periphfunc_t *tr_func,
309 					    void *arg);
310 static xpt_busfunc_t	xptdefbusfunc;
311 static xpt_targetfunc_t	xptdeftargetfunc;
312 static xpt_devicefunc_t	xptdefdevicefunc;
313 static xpt_periphfunc_t	xptdefperiphfunc;
314 static void		xpt_finishconfig_task(void *context, int pending);
315 static void		xpt_dev_async_default(u_int32_t async_code,
316 					      struct cam_eb *bus,
317 					      struct cam_et *target,
318 					      struct cam_ed *device,
319 					      void *async_arg);
320 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
321 						 struct cam_et *target,
322 						 lun_id_t lun_id);
323 static xpt_devicefunc_t	xptsetasyncfunc;
324 static xpt_busfunc_t	xptsetasyncbusfunc;
325 static cam_status	xptregister(struct cam_periph *periph,
326 				    void *arg);
327 static __inline int device_is_queued(struct cam_ed *device);
328 
329 static __inline int
330 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
331 {
332 	int	retval;
333 
334 	mtx_assert(&devq->send_mtx, MA_OWNED);
335 	if ((dev->ccbq.queue.entries > 0) &&
336 	    (dev->ccbq.dev_openings > 0) &&
337 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
338 		/*
339 		 * The priority of a device waiting for controller
340 		 * resources is that of the highest priority CCB
341 		 * enqueued.
342 		 */
343 		retval =
344 		    xpt_schedule_dev(&devq->send_queue,
345 				     &dev->devq_entry,
346 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
347 	} else {
348 		retval = 0;
349 	}
350 	return (retval);
351 }
352 
353 static __inline int
354 device_is_queued(struct cam_ed *device)
355 {
356 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
357 }
358 
359 static void
360 xpt_periph_init()
361 {
362 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
363 }
364 
365 static int
366 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
367 {
368 
369 	/*
370 	 * Only allow read-write access.
371 	 */
372 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
373 		return(EPERM);
374 
375 	/*
376 	 * We don't allow nonblocking access.
377 	 */
378 	if ((flags & O_NONBLOCK) != 0) {
379 		printf("%s: can't do nonblocking access\n", devtoname(dev));
380 		return(ENODEV);
381 	}
382 
383 	return(0);
384 }
385 
386 static int
387 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
388 {
389 
390 	return(0);
391 }
392 
393 /*
394  * Don't automatically grab the xpt softc lock here even though this is going
395  * through the xpt device.  The xpt device is really just a back door for
396  * accessing other devices and SIMs, so the right thing to do is to grab
397  * the appropriate SIM lock once the bus/SIM is located.
398  */
399 static int
400 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
401 {
402 	int error;
403 
404 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
405 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
406 	}
407 	return (error);
408 }
409 
410 static int
411 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
412 {
413 	int error;
414 
415 	error = 0;
416 
417 	switch(cmd) {
418 	/*
419 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
420 	 * to accept CCB types that don't quite make sense to send through a
421 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
422 	 * in the CAM spec.
423 	 */
424 	case CAMIOCOMMAND: {
425 		union ccb *ccb;
426 		union ccb *inccb;
427 		struct cam_eb *bus;
428 
429 		inccb = (union ccb *)addr;
430 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
431 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
432 			inccb->csio.bio = NULL;
433 #endif
434 
435 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
436 			return (EINVAL);
437 
438 		bus = xpt_find_bus(inccb->ccb_h.path_id);
439 		if (bus == NULL)
440 			return (EINVAL);
441 
442 		switch (inccb->ccb_h.func_code) {
443 		case XPT_SCAN_BUS:
444 		case XPT_RESET_BUS:
445 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
446 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
447 				xpt_release_bus(bus);
448 				return (EINVAL);
449 			}
450 			break;
451 		case XPT_SCAN_TGT:
452 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
453 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
454 				xpt_release_bus(bus);
455 				return (EINVAL);
456 			}
457 			break;
458 		default:
459 			break;
460 		}
461 
462 		switch(inccb->ccb_h.func_code) {
463 		case XPT_SCAN_BUS:
464 		case XPT_RESET_BUS:
465 		case XPT_PATH_INQ:
466 		case XPT_ENG_INQ:
467 		case XPT_SCAN_LUN:
468 		case XPT_SCAN_TGT:
469 
470 			ccb = xpt_alloc_ccb();
471 
472 			/*
473 			 * Create a path using the bus, target, and lun the
474 			 * user passed in.
475 			 */
476 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
477 					    inccb->ccb_h.path_id,
478 					    inccb->ccb_h.target_id,
479 					    inccb->ccb_h.target_lun) !=
480 					    CAM_REQ_CMP){
481 				error = EINVAL;
482 				xpt_free_ccb(ccb);
483 				break;
484 			}
485 			/* Ensure all of our fields are correct */
486 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
487 				      inccb->ccb_h.pinfo.priority);
488 			xpt_merge_ccb(ccb, inccb);
489 			xpt_path_lock(ccb->ccb_h.path);
490 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
491 			xpt_path_unlock(ccb->ccb_h.path);
492 			bcopy(ccb, inccb, sizeof(union ccb));
493 			xpt_free_path(ccb->ccb_h.path);
494 			xpt_free_ccb(ccb);
495 			break;
496 
497 		case XPT_DEBUG: {
498 			union ccb ccb;
499 
500 			/*
501 			 * This is an immediate CCB, so it's okay to
502 			 * allocate it on the stack.
503 			 */
504 
505 			/*
506 			 * Create a path using the bus, target, and lun the
507 			 * user passed in.
508 			 */
509 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
510 					    inccb->ccb_h.path_id,
511 					    inccb->ccb_h.target_id,
512 					    inccb->ccb_h.target_lun) !=
513 					    CAM_REQ_CMP){
514 				error = EINVAL;
515 				break;
516 			}
517 			/* Ensure all of our fields are correct */
518 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
519 				      inccb->ccb_h.pinfo.priority);
520 			xpt_merge_ccb(&ccb, inccb);
521 			xpt_action(&ccb);
522 			bcopy(&ccb, inccb, sizeof(union ccb));
523 			xpt_free_path(ccb.ccb_h.path);
524 			break;
525 
526 		}
527 		case XPT_DEV_MATCH: {
528 			struct cam_periph_map_info mapinfo;
529 			struct cam_path *old_path;
530 
531 			/*
532 			 * We can't deal with physical addresses for this
533 			 * type of transaction.
534 			 */
535 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
536 			    CAM_DATA_VADDR) {
537 				error = EINVAL;
538 				break;
539 			}
540 
541 			/*
542 			 * Save this in case the caller had it set to
543 			 * something in particular.
544 			 */
545 			old_path = inccb->ccb_h.path;
546 
547 			/*
548 			 * We really don't need a path for the matching
549 			 * code.  The path is needed because of the
550 			 * debugging statements in xpt_action().  They
551 			 * assume that the CCB has a valid path.
552 			 */
553 			inccb->ccb_h.path = xpt_periph->path;
554 
555 			bzero(&mapinfo, sizeof(mapinfo));
556 
557 			/*
558 			 * Map the pattern and match buffers into kernel
559 			 * virtual address space.
560 			 */
561 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
562 
563 			if (error) {
564 				inccb->ccb_h.path = old_path;
565 				break;
566 			}
567 
568 			/*
569 			 * This is an immediate CCB, we can send it on directly.
570 			 */
571 			xpt_action(inccb);
572 
573 			/*
574 			 * Map the buffers back into user space.
575 			 */
576 			cam_periph_unmapmem(inccb, &mapinfo);
577 
578 			inccb->ccb_h.path = old_path;
579 
580 			error = 0;
581 			break;
582 		}
583 		default:
584 			error = ENOTSUP;
585 			break;
586 		}
587 		xpt_release_bus(bus);
588 		break;
589 	}
590 	/*
591 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
592 	 * with the periphal driver name and unit name filled in.  The other
593 	 * fields don't really matter as input.  The passthrough driver name
594 	 * ("pass"), and unit number are passed back in the ccb.  The current
595 	 * device generation number, and the index into the device peripheral
596 	 * driver list, and the status are also passed back.  Note that
597 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
598 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
599 	 * (or rather should be) impossible for the device peripheral driver
600 	 * list to change since we look at the whole thing in one pass, and
601 	 * we do it with lock protection.
602 	 *
603 	 */
604 	case CAMGETPASSTHRU: {
605 		union ccb *ccb;
606 		struct cam_periph *periph;
607 		struct periph_driver **p_drv;
608 		char   *name;
609 		u_int unit;
610 		int base_periph_found;
611 
612 		ccb = (union ccb *)addr;
613 		unit = ccb->cgdl.unit_number;
614 		name = ccb->cgdl.periph_name;
615 		base_periph_found = 0;
616 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
617 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
618 			ccb->csio.bio = NULL;
619 #endif
620 
621 		/*
622 		 * Sanity check -- make sure we don't get a null peripheral
623 		 * driver name.
624 		 */
625 		if (*ccb->cgdl.periph_name == '\0') {
626 			error = EINVAL;
627 			break;
628 		}
629 
630 		/* Keep the list from changing while we traverse it */
631 		xpt_lock_buses();
632 
633 		/* first find our driver in the list of drivers */
634 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
635 			if (strcmp((*p_drv)->driver_name, name) == 0)
636 				break;
637 
638 		if (*p_drv == NULL) {
639 			xpt_unlock_buses();
640 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
641 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
642 			*ccb->cgdl.periph_name = '\0';
643 			ccb->cgdl.unit_number = 0;
644 			error = ENOENT;
645 			break;
646 		}
647 
648 		/*
649 		 * Run through every peripheral instance of this driver
650 		 * and check to see whether it matches the unit passed
651 		 * in by the user.  If it does, get out of the loops and
652 		 * find the passthrough driver associated with that
653 		 * peripheral driver.
654 		 */
655 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
656 		     periph = TAILQ_NEXT(periph, unit_links)) {
657 
658 			if (periph->unit_number == unit)
659 				break;
660 		}
661 		/*
662 		 * If we found the peripheral driver that the user passed
663 		 * in, go through all of the peripheral drivers for that
664 		 * particular device and look for a passthrough driver.
665 		 */
666 		if (periph != NULL) {
667 			struct cam_ed *device;
668 			int i;
669 
670 			base_periph_found = 1;
671 			device = periph->path->device;
672 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
673 			     periph != NULL;
674 			     periph = SLIST_NEXT(periph, periph_links), i++) {
675 				/*
676 				 * Check to see whether we have a
677 				 * passthrough device or not.
678 				 */
679 				if (strcmp(periph->periph_name, "pass") == 0) {
680 					/*
681 					 * Fill in the getdevlist fields.
682 					 */
683 					strlcpy(ccb->cgdl.periph_name,
684 					       periph->periph_name,
685 					       sizeof(ccb->cgdl.periph_name));
686 					ccb->cgdl.unit_number =
687 						periph->unit_number;
688 					if (SLIST_NEXT(periph, periph_links))
689 						ccb->cgdl.status =
690 							CAM_GDEVLIST_MORE_DEVS;
691 					else
692 						ccb->cgdl.status =
693 						       CAM_GDEVLIST_LAST_DEVICE;
694 					ccb->cgdl.generation =
695 						device->generation;
696 					ccb->cgdl.index = i;
697 					/*
698 					 * Fill in some CCB header fields
699 					 * that the user may want.
700 					 */
701 					ccb->ccb_h.path_id =
702 						periph->path->bus->path_id;
703 					ccb->ccb_h.target_id =
704 						periph->path->target->target_id;
705 					ccb->ccb_h.target_lun =
706 						periph->path->device->lun_id;
707 					ccb->ccb_h.status = CAM_REQ_CMP;
708 					break;
709 				}
710 			}
711 		}
712 
713 		/*
714 		 * If the periph is null here, one of two things has
715 		 * happened.  The first possibility is that we couldn't
716 		 * find the unit number of the particular peripheral driver
717 		 * that the user is asking about.  e.g. the user asks for
718 		 * the passthrough driver for "da11".  We find the list of
719 		 * "da" peripherals all right, but there is no unit 11.
720 		 * The other possibility is that we went through the list
721 		 * of peripheral drivers attached to the device structure,
722 		 * but didn't find one with the name "pass".  Either way,
723 		 * we return ENOENT, since we couldn't find something.
724 		 */
725 		if (periph == NULL) {
726 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
727 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
728 			*ccb->cgdl.periph_name = '\0';
729 			ccb->cgdl.unit_number = 0;
730 			error = ENOENT;
731 			/*
732 			 * It is unfortunate that this is even necessary,
733 			 * but there are many, many clueless users out there.
734 			 * If this is true, the user is looking for the
735 			 * passthrough driver, but doesn't have one in his
736 			 * kernel.
737 			 */
738 			if (base_periph_found == 1) {
739 				printf("xptioctl: pass driver is not in the "
740 				       "kernel\n");
741 				printf("xptioctl: put \"device pass\" in "
742 				       "your kernel config file\n");
743 			}
744 		}
745 		xpt_unlock_buses();
746 		break;
747 		}
748 	default:
749 		error = ENOTTY;
750 		break;
751 	}
752 
753 	return(error);
754 }
755 
756 static int
757 cam_module_event_handler(module_t mod, int what, void *arg)
758 {
759 	int error;
760 
761 	switch (what) {
762 	case MOD_LOAD:
763 		if ((error = xpt_init(NULL)) != 0)
764 			return (error);
765 		break;
766 	case MOD_UNLOAD:
767 		return EBUSY;
768 	default:
769 		return EOPNOTSUPP;
770 	}
771 
772 	return 0;
773 }
774 
775 static struct xpt_proto *
776 xpt_proto_find(cam_proto proto)
777 {
778 	struct xpt_proto **pp;
779 
780 	SET_FOREACH(pp, cam_xpt_proto_set) {
781 		if ((*pp)->proto == proto)
782 			return *pp;
783 	}
784 
785 	return NULL;
786 }
787 
788 static void
789 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
790 {
791 
792 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
793 		xpt_free_path(done_ccb->ccb_h.path);
794 		xpt_free_ccb(done_ccb);
795 	} else {
796 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
797 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
798 	}
799 	xpt_release_boot();
800 }
801 
802 /* thread to handle bus rescans */
803 static void
804 xpt_scanner_thread(void *dummy)
805 {
806 	union ccb	*ccb;
807 	struct cam_path	 path;
808 
809 	xpt_lock_buses();
810 	for (;;) {
811 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
812 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
813 			       "-", 0);
814 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
815 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
816 			xpt_unlock_buses();
817 
818 			/*
819 			 * Since lock can be dropped inside and path freed
820 			 * by completion callback even before return here,
821 			 * take our own path copy for reference.
822 			 */
823 			xpt_copy_path(&path, ccb->ccb_h.path);
824 			xpt_path_lock(&path);
825 			xpt_action(ccb);
826 			xpt_path_unlock(&path);
827 			xpt_release_path(&path);
828 
829 			xpt_lock_buses();
830 		}
831 	}
832 }
833 
834 void
835 xpt_rescan(union ccb *ccb)
836 {
837 	struct ccb_hdr *hdr;
838 
839 	/* Prepare request */
840 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
841 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
842 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
843 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
844 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
845 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
846 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
847 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
848 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
849 	else {
850 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
851 		xpt_free_path(ccb->ccb_h.path);
852 		xpt_free_ccb(ccb);
853 		return;
854 	}
855 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
856 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
857  		xpt_action_name(ccb->ccb_h.func_code)));
858 
859 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
860 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
861 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
862 	/* Don't make duplicate entries for the same paths. */
863 	xpt_lock_buses();
864 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
865 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
866 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
867 				wakeup(&xsoftc.ccb_scanq);
868 				xpt_unlock_buses();
869 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
870 				xpt_free_path(ccb->ccb_h.path);
871 				xpt_free_ccb(ccb);
872 				return;
873 			}
874 		}
875 	}
876 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
877 	xpt_hold_boot_locked();
878 	wakeup(&xsoftc.ccb_scanq);
879 	xpt_unlock_buses();
880 }
881 
882 /* Functions accessed by the peripheral drivers */
883 static int
884 xpt_init(void *dummy)
885 {
886 	struct cam_sim *xpt_sim;
887 	struct cam_path *path;
888 	struct cam_devq *devq;
889 	cam_status status;
890 	int error, i;
891 
892 	TAILQ_INIT(&xsoftc.xpt_busses);
893 	TAILQ_INIT(&xsoftc.ccb_scanq);
894 	STAILQ_INIT(&xsoftc.highpowerq);
895 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
896 
897 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
898 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
899 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
900 
901 #ifdef CAM_BOOT_DELAY
902 	/*
903 	 * Override this value at compile time to assist our users
904 	 * who don't use loader to boot a kernel.
905 	 */
906 	xsoftc.boot_delay = CAM_BOOT_DELAY;
907 #endif
908 
909 	/*
910 	 * The xpt layer is, itself, the equivalent of a SIM.
911 	 * Allow 16 ccbs in the ccb pool for it.  This should
912 	 * give decent parallelism when we probe buses and
913 	 * perform other XPT functions.
914 	 */
915 	devq = cam_simq_alloc(16);
916 	xpt_sim = cam_sim_alloc(xptaction,
917 				xptpoll,
918 				"xpt",
919 				/*softc*/NULL,
920 				/*unit*/0,
921 				/*mtx*/NULL,
922 				/*max_dev_transactions*/0,
923 				/*max_tagged_dev_transactions*/0,
924 				devq);
925 	if (xpt_sim == NULL)
926 		return (ENOMEM);
927 
928 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
929 		printf("xpt_init: xpt_bus_register failed with status %#x,"
930 		       " failing attach\n", status);
931 		return (EINVAL);
932 	}
933 
934 	/*
935 	 * Looking at the XPT from the SIM layer, the XPT is
936 	 * the equivalent of a peripheral driver.  Allocate
937 	 * a peripheral driver entry for us.
938 	 */
939 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
940 				      CAM_TARGET_WILDCARD,
941 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
942 		printf("xpt_init: xpt_create_path failed with status %#x,"
943 		       " failing attach\n", status);
944 		return (EINVAL);
945 	}
946 	xpt_path_lock(path);
947 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
948 			 path, NULL, 0, xpt_sim);
949 	xpt_path_unlock(path);
950 	xpt_free_path(path);
951 
952 	if (cam_num_doneqs < 1)
953 		cam_num_doneqs = 1 + mp_ncpus / 6;
954 	else if (cam_num_doneqs > MAXCPU)
955 		cam_num_doneqs = MAXCPU;
956 	for (i = 0; i < cam_num_doneqs; i++) {
957 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
958 		    MTX_DEF);
959 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
960 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
961 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
962 		if (error != 0) {
963 			cam_num_doneqs = i;
964 			break;
965 		}
966 	}
967 	if (cam_num_doneqs < 1) {
968 		printf("xpt_init: Cannot init completion queues "
969 		       "- failing attach\n");
970 		return (ENOMEM);
971 	}
972 
973 	/*
974 	 * Register a callback for when interrupts are enabled.
975 	 */
976 	config_intrhook_oneshot(xpt_config, NULL);
977 
978 	return (0);
979 }
980 
981 static cam_status
982 xptregister(struct cam_periph *periph, void *arg)
983 {
984 	struct cam_sim *xpt_sim;
985 
986 	if (periph == NULL) {
987 		printf("xptregister: periph was NULL!!\n");
988 		return(CAM_REQ_CMP_ERR);
989 	}
990 
991 	xpt_sim = (struct cam_sim *)arg;
992 	xpt_sim->softc = periph;
993 	xpt_periph = periph;
994 	periph->softc = NULL;
995 
996 	return(CAM_REQ_CMP);
997 }
998 
999 int32_t
1000 xpt_add_periph(struct cam_periph *periph)
1001 {
1002 	struct cam_ed *device;
1003 	int32_t	 status;
1004 
1005 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1006 	device = periph->path->device;
1007 	status = CAM_REQ_CMP;
1008 	if (device != NULL) {
1009 		mtx_lock(&device->target->bus->eb_mtx);
1010 		device->generation++;
1011 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1012 		mtx_unlock(&device->target->bus->eb_mtx);
1013 		atomic_add_32(&xsoftc.xpt_generation, 1);
1014 	}
1015 
1016 	return (status);
1017 }
1018 
1019 void
1020 xpt_remove_periph(struct cam_periph *periph)
1021 {
1022 	struct cam_ed *device;
1023 
1024 	device = periph->path->device;
1025 	if (device != NULL) {
1026 		mtx_lock(&device->target->bus->eb_mtx);
1027 		device->generation++;
1028 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1029 		mtx_unlock(&device->target->bus->eb_mtx);
1030 		atomic_add_32(&xsoftc.xpt_generation, 1);
1031 	}
1032 }
1033 
1034 
1035 void
1036 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1037 {
1038 	struct	cam_path *path = periph->path;
1039 	struct  xpt_proto *proto;
1040 
1041 	cam_periph_assert(periph, MA_OWNED);
1042 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1043 
1044 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1045 	       periph->periph_name, periph->unit_number,
1046 	       path->bus->sim->sim_name,
1047 	       path->bus->sim->unit_number,
1048 	       path->bus->sim->bus_id,
1049 	       path->bus->path_id,
1050 	       path->target->target_id,
1051 	       (uintmax_t)path->device->lun_id);
1052 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1053 	proto = xpt_proto_find(path->device->protocol);
1054 	if (proto)
1055 		proto->ops->announce(path->device);
1056 	else
1057 		printf("%s%d: Unknown protocol device %d\n",
1058 		    periph->periph_name, periph->unit_number,
1059 		    path->device->protocol);
1060 	if (path->device->serial_num_len > 0) {
1061 		/* Don't wrap the screen  - print only the first 60 chars */
1062 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1063 		       periph->unit_number, path->device->serial_num);
1064 	}
1065 	/* Announce transport details. */
1066 	path->bus->xport->ops->announce(periph);
1067 	/* Announce command queueing. */
1068 	if (path->device->inq_flags & SID_CmdQue
1069 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1070 		printf("%s%d: Command Queueing enabled\n",
1071 		       periph->periph_name, periph->unit_number);
1072 	}
1073 	/* Announce caller's details if they've passed in. */
1074 	if (announce_string != NULL)
1075 		printf("%s%d: %s\n", periph->periph_name,
1076 		       periph->unit_number, announce_string);
1077 }
1078 
1079 void
1080 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1081     char *announce_string)
1082 {
1083 	struct	cam_path *path = periph->path;
1084 	struct  xpt_proto *proto;
1085 
1086 	cam_periph_assert(periph, MA_OWNED);
1087 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1088 
1089 	/* Fall back to the non-sbuf method if necessary */
1090 	if (xsoftc.announce_nosbuf != 0) {
1091 		xpt_announce_periph(periph, announce_string);
1092 		return;
1093 	}
1094 	proto = xpt_proto_find(path->device->protocol);
1095 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1096 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1097 		xpt_announce_periph(periph, announce_string);
1098 		return;
1099 	}
1100 
1101 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1102 	    periph->periph_name, periph->unit_number,
1103 	    path->bus->sim->sim_name,
1104 	    path->bus->sim->unit_number,
1105 	    path->bus->sim->bus_id,
1106 	    path->bus->path_id,
1107 	    path->target->target_id,
1108 	    (uintmax_t)path->device->lun_id);
1109 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1110 
1111 	if (proto)
1112 		proto->ops->announce_sbuf(path->device, sb);
1113 	else
1114 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1115 		    periph->periph_name, periph->unit_number,
1116 		    path->device->protocol);
1117 	if (path->device->serial_num_len > 0) {
1118 		/* Don't wrap the screen  - print only the first 60 chars */
1119 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1120 		    periph->periph_name, periph->unit_number,
1121 		    path->device->serial_num);
1122 	}
1123 	/* Announce transport details. */
1124 	path->bus->xport->ops->announce_sbuf(periph, sb);
1125 	/* Announce command queueing. */
1126 	if (path->device->inq_flags & SID_CmdQue
1127 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1128 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1129 		    periph->periph_name, periph->unit_number);
1130 	}
1131 	/* Announce caller's details if they've passed in. */
1132 	if (announce_string != NULL)
1133 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1134 		    periph->unit_number, announce_string);
1135 }
1136 
1137 void
1138 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1139 {
1140 	if (quirks != 0) {
1141 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1142 		    periph->unit_number, quirks, bit_string);
1143 	}
1144 }
1145 
1146 void
1147 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1148 			 int quirks, char *bit_string)
1149 {
1150 	if (xsoftc.announce_nosbuf != 0) {
1151 		xpt_announce_quirks(periph, quirks, bit_string);
1152 		return;
1153 	}
1154 
1155 	if (quirks != 0) {
1156 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1157 		    periph->unit_number, quirks, bit_string);
1158 	}
1159 }
1160 
1161 void
1162 xpt_denounce_periph(struct cam_periph *periph)
1163 {
1164 	struct	cam_path *path = periph->path;
1165 	struct  xpt_proto *proto;
1166 
1167 	cam_periph_assert(periph, MA_OWNED);
1168 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1169 	       periph->periph_name, periph->unit_number,
1170 	       path->bus->sim->sim_name,
1171 	       path->bus->sim->unit_number,
1172 	       path->bus->sim->bus_id,
1173 	       path->bus->path_id,
1174 	       path->target->target_id,
1175 	       (uintmax_t)path->device->lun_id);
1176 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1177 	proto = xpt_proto_find(path->device->protocol);
1178 	if (proto)
1179 		proto->ops->denounce(path->device);
1180 	else
1181 		printf("%s%d: Unknown protocol device %d\n",
1182 		    periph->periph_name, periph->unit_number,
1183 		    path->device->protocol);
1184 	if (path->device->serial_num_len > 0)
1185 		printf(" s/n %.60s", path->device->serial_num);
1186 	printf(" detached\n");
1187 }
1188 
1189 void
1190 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1191 {
1192 	struct cam_path *path = periph->path;
1193 	struct xpt_proto *proto;
1194 
1195 	cam_periph_assert(periph, MA_OWNED);
1196 
1197 	/* Fall back to the non-sbuf method if necessary */
1198 	if (xsoftc.announce_nosbuf != 0) {
1199 		xpt_denounce_periph(periph);
1200 		return;
1201 	}
1202 	proto = xpt_proto_find(path->device->protocol);
1203 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1204 		xpt_denounce_periph(periph);
1205 		return;
1206 	}
1207 
1208 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1209 	    periph->periph_name, periph->unit_number,
1210 	    path->bus->sim->sim_name,
1211 	    path->bus->sim->unit_number,
1212 	    path->bus->sim->bus_id,
1213 	    path->bus->path_id,
1214 	    path->target->target_id,
1215 	    (uintmax_t)path->device->lun_id);
1216 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1217 
1218 	if (proto)
1219 		proto->ops->denounce_sbuf(path->device, sb);
1220 	else
1221 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1222 		    periph->periph_name, periph->unit_number,
1223 		    path->device->protocol);
1224 	if (path->device->serial_num_len > 0)
1225 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1226 	sbuf_printf(sb, " detached\n");
1227 }
1228 
1229 int
1230 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1231 {
1232 	int ret = -1, l, o;
1233 	struct ccb_dev_advinfo cdai;
1234 	struct scsi_vpd_device_id *did;
1235 	struct scsi_vpd_id_descriptor *idd;
1236 
1237 	xpt_path_assert(path, MA_OWNED);
1238 
1239 	memset(&cdai, 0, sizeof(cdai));
1240 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1241 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1242 	cdai.flags = CDAI_FLAG_NONE;
1243 	cdai.bufsiz = len;
1244 	cdai.buf = buf;
1245 
1246 	if (!strcmp(attr, "GEOM::ident"))
1247 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1248 	else if (!strcmp(attr, "GEOM::physpath"))
1249 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1250 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1251 		 strcmp(attr, "GEOM::lunname") == 0) {
1252 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1253 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1254 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1255 		if (cdai.buf == NULL) {
1256 			ret = ENOMEM;
1257 			goto out;
1258 		}
1259 	} else
1260 		goto out;
1261 
1262 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1263 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1264 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1265 	if (cdai.provsiz == 0)
1266 		goto out;
1267 	switch(cdai.buftype) {
1268 	case CDAI_TYPE_SCSI_DEVID:
1269 		did = (struct scsi_vpd_device_id *)cdai.buf;
1270 		if (strcmp(attr, "GEOM::lunid") == 0) {
1271 			idd = scsi_get_devid(did, cdai.provsiz,
1272 			    scsi_devid_is_lun_naa);
1273 			if (idd == NULL)
1274 				idd = scsi_get_devid(did, cdai.provsiz,
1275 				    scsi_devid_is_lun_eui64);
1276 			if (idd == NULL)
1277 				idd = scsi_get_devid(did, cdai.provsiz,
1278 				    scsi_devid_is_lun_uuid);
1279 			if (idd == NULL)
1280 				idd = scsi_get_devid(did, cdai.provsiz,
1281 				    scsi_devid_is_lun_md5);
1282 		} else
1283 			idd = NULL;
1284 
1285 		if (idd == NULL)
1286 			idd = scsi_get_devid(did, cdai.provsiz,
1287 			    scsi_devid_is_lun_t10);
1288 		if (idd == NULL)
1289 			idd = scsi_get_devid(did, cdai.provsiz,
1290 			    scsi_devid_is_lun_name);
1291 		if (idd == NULL)
1292 			break;
1293 
1294 		ret = 0;
1295 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1296 		    SVPD_ID_CODESET_ASCII) {
1297 			if (idd->length < len) {
1298 				for (l = 0; l < idd->length; l++)
1299 					buf[l] = idd->identifier[l] ?
1300 					    idd->identifier[l] : ' ';
1301 				buf[l] = 0;
1302 			} else
1303 				ret = EFAULT;
1304 			break;
1305 		}
1306 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1307 		    SVPD_ID_CODESET_UTF8) {
1308 			l = strnlen(idd->identifier, idd->length);
1309 			if (l < len) {
1310 				bcopy(idd->identifier, buf, l);
1311 				buf[l] = 0;
1312 			} else
1313 				ret = EFAULT;
1314 			break;
1315 		}
1316 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1317 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1318 			if ((idd->length - 2) * 2 + 4 >= len) {
1319 				ret = EFAULT;
1320 				break;
1321 			}
1322 			for (l = 2, o = 0; l < idd->length; l++) {
1323 				if (l == 6 || l == 8 || l == 10 || l == 12)
1324 				    o += sprintf(buf + o, "-");
1325 				o += sprintf(buf + o, "%02x",
1326 				    idd->identifier[l]);
1327 			}
1328 			break;
1329 		}
1330 		if (idd->length * 2 < len) {
1331 			for (l = 0; l < idd->length; l++)
1332 				sprintf(buf + l * 2, "%02x",
1333 				    idd->identifier[l]);
1334 		} else
1335 				ret = EFAULT;
1336 		break;
1337 	default:
1338 		if (cdai.provsiz < len) {
1339 			cdai.buf[cdai.provsiz] = 0;
1340 			ret = 0;
1341 		} else
1342 			ret = EFAULT;
1343 		break;
1344 	}
1345 
1346 out:
1347 	if ((char *)cdai.buf != buf)
1348 		free(cdai.buf, M_CAMXPT);
1349 	return ret;
1350 }
1351 
1352 static dev_match_ret
1353 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1354 	    struct cam_eb *bus)
1355 {
1356 	dev_match_ret retval;
1357 	u_int i;
1358 
1359 	retval = DM_RET_NONE;
1360 
1361 	/*
1362 	 * If we aren't given something to match against, that's an error.
1363 	 */
1364 	if (bus == NULL)
1365 		return(DM_RET_ERROR);
1366 
1367 	/*
1368 	 * If there are no match entries, then this bus matches no
1369 	 * matter what.
1370 	 */
1371 	if ((patterns == NULL) || (num_patterns == 0))
1372 		return(DM_RET_DESCEND | DM_RET_COPY);
1373 
1374 	for (i = 0; i < num_patterns; i++) {
1375 		struct bus_match_pattern *cur_pattern;
1376 
1377 		/*
1378 		 * If the pattern in question isn't for a bus node, we
1379 		 * aren't interested.  However, we do indicate to the
1380 		 * calling routine that we should continue descending the
1381 		 * tree, since the user wants to match against lower-level
1382 		 * EDT elements.
1383 		 */
1384 		if (patterns[i].type != DEV_MATCH_BUS) {
1385 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1386 				retval |= DM_RET_DESCEND;
1387 			continue;
1388 		}
1389 
1390 		cur_pattern = &patterns[i].pattern.bus_pattern;
1391 
1392 		/*
1393 		 * If they want to match any bus node, we give them any
1394 		 * device node.
1395 		 */
1396 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1397 			/* set the copy flag */
1398 			retval |= DM_RET_COPY;
1399 
1400 			/*
1401 			 * If we've already decided on an action, go ahead
1402 			 * and return.
1403 			 */
1404 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1405 				return(retval);
1406 		}
1407 
1408 		/*
1409 		 * Not sure why someone would do this...
1410 		 */
1411 		if (cur_pattern->flags == BUS_MATCH_NONE)
1412 			continue;
1413 
1414 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1415 		 && (cur_pattern->path_id != bus->path_id))
1416 			continue;
1417 
1418 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1419 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1420 			continue;
1421 
1422 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1423 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1424 			continue;
1425 
1426 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1427 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1428 			     DEV_IDLEN) != 0))
1429 			continue;
1430 
1431 		/*
1432 		 * If we get to this point, the user definitely wants
1433 		 * information on this bus.  So tell the caller to copy the
1434 		 * data out.
1435 		 */
1436 		retval |= DM_RET_COPY;
1437 
1438 		/*
1439 		 * If the return action has been set to descend, then we
1440 		 * know that we've already seen a non-bus matching
1441 		 * expression, therefore we need to further descend the tree.
1442 		 * This won't change by continuing around the loop, so we
1443 		 * go ahead and return.  If we haven't seen a non-bus
1444 		 * matching expression, we keep going around the loop until
1445 		 * we exhaust the matching expressions.  We'll set the stop
1446 		 * flag once we fall out of the loop.
1447 		 */
1448 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1449 			return(retval);
1450 	}
1451 
1452 	/*
1453 	 * If the return action hasn't been set to descend yet, that means
1454 	 * we haven't seen anything other than bus matching patterns.  So
1455 	 * tell the caller to stop descending the tree -- the user doesn't
1456 	 * want to match against lower level tree elements.
1457 	 */
1458 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1459 		retval |= DM_RET_STOP;
1460 
1461 	return(retval);
1462 }
1463 
1464 static dev_match_ret
1465 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1466 	       struct cam_ed *device)
1467 {
1468 	dev_match_ret retval;
1469 	u_int i;
1470 
1471 	retval = DM_RET_NONE;
1472 
1473 	/*
1474 	 * If we aren't given something to match against, that's an error.
1475 	 */
1476 	if (device == NULL)
1477 		return(DM_RET_ERROR);
1478 
1479 	/*
1480 	 * If there are no match entries, then this device matches no
1481 	 * matter what.
1482 	 */
1483 	if ((patterns == NULL) || (num_patterns == 0))
1484 		return(DM_RET_DESCEND | DM_RET_COPY);
1485 
1486 	for (i = 0; i < num_patterns; i++) {
1487 		struct device_match_pattern *cur_pattern;
1488 		struct scsi_vpd_device_id *device_id_page;
1489 
1490 		/*
1491 		 * If the pattern in question isn't for a device node, we
1492 		 * aren't interested.
1493 		 */
1494 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1495 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1496 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1497 				retval |= DM_RET_DESCEND;
1498 			continue;
1499 		}
1500 
1501 		cur_pattern = &patterns[i].pattern.device_pattern;
1502 
1503 		/* Error out if mutually exclusive options are specified. */
1504 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1505 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1506 			return(DM_RET_ERROR);
1507 
1508 		/*
1509 		 * If they want to match any device node, we give them any
1510 		 * device node.
1511 		 */
1512 		if (cur_pattern->flags == DEV_MATCH_ANY)
1513 			goto copy_dev_node;
1514 
1515 		/*
1516 		 * Not sure why someone would do this...
1517 		 */
1518 		if (cur_pattern->flags == DEV_MATCH_NONE)
1519 			continue;
1520 
1521 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1522 		 && (cur_pattern->path_id != device->target->bus->path_id))
1523 			continue;
1524 
1525 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1526 		 && (cur_pattern->target_id != device->target->target_id))
1527 			continue;
1528 
1529 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1530 		 && (cur_pattern->target_lun != device->lun_id))
1531 			continue;
1532 
1533 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1534 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1535 				    (caddr_t)&cur_pattern->data.inq_pat,
1536 				    1, sizeof(cur_pattern->data.inq_pat),
1537 				    scsi_static_inquiry_match) == NULL))
1538 			continue;
1539 
1540 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1541 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1542 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1543 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1544 				      device->device_id_len
1545 				    - SVPD_DEVICE_ID_HDR_LEN,
1546 				      cur_pattern->data.devid_pat.id,
1547 				      cur_pattern->data.devid_pat.id_len) != 0))
1548 			continue;
1549 
1550 copy_dev_node:
1551 		/*
1552 		 * If we get to this point, the user definitely wants
1553 		 * information on this device.  So tell the caller to copy
1554 		 * the data out.
1555 		 */
1556 		retval |= DM_RET_COPY;
1557 
1558 		/*
1559 		 * If the return action has been set to descend, then we
1560 		 * know that we've already seen a peripheral matching
1561 		 * expression, therefore we need to further descend the tree.
1562 		 * This won't change by continuing around the loop, so we
1563 		 * go ahead and return.  If we haven't seen a peripheral
1564 		 * matching expression, we keep going around the loop until
1565 		 * we exhaust the matching expressions.  We'll set the stop
1566 		 * flag once we fall out of the loop.
1567 		 */
1568 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1569 			return(retval);
1570 	}
1571 
1572 	/*
1573 	 * If the return action hasn't been set to descend yet, that means
1574 	 * we haven't seen any peripheral matching patterns.  So tell the
1575 	 * caller to stop descending the tree -- the user doesn't want to
1576 	 * match against lower level tree elements.
1577 	 */
1578 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1579 		retval |= DM_RET_STOP;
1580 
1581 	return(retval);
1582 }
1583 
1584 /*
1585  * Match a single peripheral against any number of match patterns.
1586  */
1587 static dev_match_ret
1588 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1589 	       struct cam_periph *periph)
1590 {
1591 	dev_match_ret retval;
1592 	u_int i;
1593 
1594 	/*
1595 	 * If we aren't given something to match against, that's an error.
1596 	 */
1597 	if (periph == NULL)
1598 		return(DM_RET_ERROR);
1599 
1600 	/*
1601 	 * If there are no match entries, then this peripheral matches no
1602 	 * matter what.
1603 	 */
1604 	if ((patterns == NULL) || (num_patterns == 0))
1605 		return(DM_RET_STOP | DM_RET_COPY);
1606 
1607 	/*
1608 	 * There aren't any nodes below a peripheral node, so there's no
1609 	 * reason to descend the tree any further.
1610 	 */
1611 	retval = DM_RET_STOP;
1612 
1613 	for (i = 0; i < num_patterns; i++) {
1614 		struct periph_match_pattern *cur_pattern;
1615 
1616 		/*
1617 		 * If the pattern in question isn't for a peripheral, we
1618 		 * aren't interested.
1619 		 */
1620 		if (patterns[i].type != DEV_MATCH_PERIPH)
1621 			continue;
1622 
1623 		cur_pattern = &patterns[i].pattern.periph_pattern;
1624 
1625 		/*
1626 		 * If they want to match on anything, then we will do so.
1627 		 */
1628 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1629 			/* set the copy flag */
1630 			retval |= DM_RET_COPY;
1631 
1632 			/*
1633 			 * We've already set the return action to stop,
1634 			 * since there are no nodes below peripherals in
1635 			 * the tree.
1636 			 */
1637 			return(retval);
1638 		}
1639 
1640 		/*
1641 		 * Not sure why someone would do this...
1642 		 */
1643 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1644 			continue;
1645 
1646 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1647 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1648 			continue;
1649 
1650 		/*
1651 		 * For the target and lun id's, we have to make sure the
1652 		 * target and lun pointers aren't NULL.  The xpt peripheral
1653 		 * has a wildcard target and device.
1654 		 */
1655 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1656 		 && ((periph->path->target == NULL)
1657 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1658 			continue;
1659 
1660 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1661 		 && ((periph->path->device == NULL)
1662 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1663 			continue;
1664 
1665 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1666 		 && (cur_pattern->unit_number != periph->unit_number))
1667 			continue;
1668 
1669 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1670 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1671 			     DEV_IDLEN) != 0))
1672 			continue;
1673 
1674 		/*
1675 		 * If we get to this point, the user definitely wants
1676 		 * information on this peripheral.  So tell the caller to
1677 		 * copy the data out.
1678 		 */
1679 		retval |= DM_RET_COPY;
1680 
1681 		/*
1682 		 * The return action has already been set to stop, since
1683 		 * peripherals don't have any nodes below them in the EDT.
1684 		 */
1685 		return(retval);
1686 	}
1687 
1688 	/*
1689 	 * If we get to this point, the peripheral that was passed in
1690 	 * doesn't match any of the patterns.
1691 	 */
1692 	return(retval);
1693 }
1694 
1695 static int
1696 xptedtbusfunc(struct cam_eb *bus, void *arg)
1697 {
1698 	struct ccb_dev_match *cdm;
1699 	struct cam_et *target;
1700 	dev_match_ret retval;
1701 
1702 	cdm = (struct ccb_dev_match *)arg;
1703 
1704 	/*
1705 	 * If our position is for something deeper in the tree, that means
1706 	 * that we've already seen this node.  So, we keep going down.
1707 	 */
1708 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1709 	 && (cdm->pos.cookie.bus == bus)
1710 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1711 	 && (cdm->pos.cookie.target != NULL))
1712 		retval = DM_RET_DESCEND;
1713 	else
1714 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1715 
1716 	/*
1717 	 * If we got an error, bail out of the search.
1718 	 */
1719 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1720 		cdm->status = CAM_DEV_MATCH_ERROR;
1721 		return(0);
1722 	}
1723 
1724 	/*
1725 	 * If the copy flag is set, copy this bus out.
1726 	 */
1727 	if (retval & DM_RET_COPY) {
1728 		int spaceleft, j;
1729 
1730 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1731 			sizeof(struct dev_match_result));
1732 
1733 		/*
1734 		 * If we don't have enough space to put in another
1735 		 * match result, save our position and tell the
1736 		 * user there are more devices to check.
1737 		 */
1738 		if (spaceleft < sizeof(struct dev_match_result)) {
1739 			bzero(&cdm->pos, sizeof(cdm->pos));
1740 			cdm->pos.position_type =
1741 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1742 
1743 			cdm->pos.cookie.bus = bus;
1744 			cdm->pos.generations[CAM_BUS_GENERATION]=
1745 				xsoftc.bus_generation;
1746 			cdm->status = CAM_DEV_MATCH_MORE;
1747 			return(0);
1748 		}
1749 		j = cdm->num_matches;
1750 		cdm->num_matches++;
1751 		cdm->matches[j].type = DEV_MATCH_BUS;
1752 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1753 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1754 		cdm->matches[j].result.bus_result.unit_number =
1755 			bus->sim->unit_number;
1756 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1757 			bus->sim->sim_name,
1758 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1759 	}
1760 
1761 	/*
1762 	 * If the user is only interested in buses, there's no
1763 	 * reason to descend to the next level in the tree.
1764 	 */
1765 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1766 		return(1);
1767 
1768 	/*
1769 	 * If there is a target generation recorded, check it to
1770 	 * make sure the target list hasn't changed.
1771 	 */
1772 	mtx_lock(&bus->eb_mtx);
1773 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1774 	 && (cdm->pos.cookie.bus == bus)
1775 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1776 	 && (cdm->pos.cookie.target != NULL)) {
1777 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1778 		    bus->generation)) {
1779 			mtx_unlock(&bus->eb_mtx);
1780 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1781 			return (0);
1782 		}
1783 		target = (struct cam_et *)cdm->pos.cookie.target;
1784 		target->refcount++;
1785 	} else
1786 		target = NULL;
1787 	mtx_unlock(&bus->eb_mtx);
1788 
1789 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1790 }
1791 
1792 static int
1793 xptedttargetfunc(struct cam_et *target, void *arg)
1794 {
1795 	struct ccb_dev_match *cdm;
1796 	struct cam_eb *bus;
1797 	struct cam_ed *device;
1798 
1799 	cdm = (struct ccb_dev_match *)arg;
1800 	bus = target->bus;
1801 
1802 	/*
1803 	 * If there is a device list generation recorded, check it to
1804 	 * make sure the device list hasn't changed.
1805 	 */
1806 	mtx_lock(&bus->eb_mtx);
1807 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1808 	 && (cdm->pos.cookie.bus == bus)
1809 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1810 	 && (cdm->pos.cookie.target == target)
1811 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1812 	 && (cdm->pos.cookie.device != NULL)) {
1813 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1814 		    target->generation) {
1815 			mtx_unlock(&bus->eb_mtx);
1816 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1817 			return(0);
1818 		}
1819 		device = (struct cam_ed *)cdm->pos.cookie.device;
1820 		device->refcount++;
1821 	} else
1822 		device = NULL;
1823 	mtx_unlock(&bus->eb_mtx);
1824 
1825 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1826 }
1827 
1828 static int
1829 xptedtdevicefunc(struct cam_ed *device, void *arg)
1830 {
1831 	struct cam_eb *bus;
1832 	struct cam_periph *periph;
1833 	struct ccb_dev_match *cdm;
1834 	dev_match_ret retval;
1835 
1836 	cdm = (struct ccb_dev_match *)arg;
1837 	bus = device->target->bus;
1838 
1839 	/*
1840 	 * If our position is for something deeper in the tree, that means
1841 	 * that we've already seen this node.  So, we keep going down.
1842 	 */
1843 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1844 	 && (cdm->pos.cookie.device == device)
1845 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1846 	 && (cdm->pos.cookie.periph != NULL))
1847 		retval = DM_RET_DESCEND;
1848 	else
1849 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1850 					device);
1851 
1852 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1853 		cdm->status = CAM_DEV_MATCH_ERROR;
1854 		return(0);
1855 	}
1856 
1857 	/*
1858 	 * If the copy flag is set, copy this device out.
1859 	 */
1860 	if (retval & DM_RET_COPY) {
1861 		int spaceleft, j;
1862 
1863 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1864 			sizeof(struct dev_match_result));
1865 
1866 		/*
1867 		 * If we don't have enough space to put in another
1868 		 * match result, save our position and tell the
1869 		 * user there are more devices to check.
1870 		 */
1871 		if (spaceleft < sizeof(struct dev_match_result)) {
1872 			bzero(&cdm->pos, sizeof(cdm->pos));
1873 			cdm->pos.position_type =
1874 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1875 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1876 
1877 			cdm->pos.cookie.bus = device->target->bus;
1878 			cdm->pos.generations[CAM_BUS_GENERATION]=
1879 				xsoftc.bus_generation;
1880 			cdm->pos.cookie.target = device->target;
1881 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1882 				device->target->bus->generation;
1883 			cdm->pos.cookie.device = device;
1884 			cdm->pos.generations[CAM_DEV_GENERATION] =
1885 				device->target->generation;
1886 			cdm->status = CAM_DEV_MATCH_MORE;
1887 			return(0);
1888 		}
1889 		j = cdm->num_matches;
1890 		cdm->num_matches++;
1891 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1892 		cdm->matches[j].result.device_result.path_id =
1893 			device->target->bus->path_id;
1894 		cdm->matches[j].result.device_result.target_id =
1895 			device->target->target_id;
1896 		cdm->matches[j].result.device_result.target_lun =
1897 			device->lun_id;
1898 		cdm->matches[j].result.device_result.protocol =
1899 			device->protocol;
1900 		bcopy(&device->inq_data,
1901 		      &cdm->matches[j].result.device_result.inq_data,
1902 		      sizeof(struct scsi_inquiry_data));
1903 		bcopy(&device->ident_data,
1904 		      &cdm->matches[j].result.device_result.ident_data,
1905 		      sizeof(struct ata_params));
1906 
1907 		/* Let the user know whether this device is unconfigured */
1908 		if (device->flags & CAM_DEV_UNCONFIGURED)
1909 			cdm->matches[j].result.device_result.flags =
1910 				DEV_RESULT_UNCONFIGURED;
1911 		else
1912 			cdm->matches[j].result.device_result.flags =
1913 				DEV_RESULT_NOFLAG;
1914 	}
1915 
1916 	/*
1917 	 * If the user isn't interested in peripherals, don't descend
1918 	 * the tree any further.
1919 	 */
1920 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1921 		return(1);
1922 
1923 	/*
1924 	 * If there is a peripheral list generation recorded, make sure
1925 	 * it hasn't changed.
1926 	 */
1927 	xpt_lock_buses();
1928 	mtx_lock(&bus->eb_mtx);
1929 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1930 	 && (cdm->pos.cookie.bus == bus)
1931 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1932 	 && (cdm->pos.cookie.target == device->target)
1933 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1934 	 && (cdm->pos.cookie.device == device)
1935 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1936 	 && (cdm->pos.cookie.periph != NULL)) {
1937 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1938 		    device->generation) {
1939 			mtx_unlock(&bus->eb_mtx);
1940 			xpt_unlock_buses();
1941 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1942 			return(0);
1943 		}
1944 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1945 		periph->refcount++;
1946 	} else
1947 		periph = NULL;
1948 	mtx_unlock(&bus->eb_mtx);
1949 	xpt_unlock_buses();
1950 
1951 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1952 }
1953 
1954 static int
1955 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1956 {
1957 	struct ccb_dev_match *cdm;
1958 	dev_match_ret retval;
1959 
1960 	cdm = (struct ccb_dev_match *)arg;
1961 
1962 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1963 
1964 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1965 		cdm->status = CAM_DEV_MATCH_ERROR;
1966 		return(0);
1967 	}
1968 
1969 	/*
1970 	 * If the copy flag is set, copy this peripheral out.
1971 	 */
1972 	if (retval & DM_RET_COPY) {
1973 		int spaceleft, j;
1974 		size_t l;
1975 
1976 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1977 			sizeof(struct dev_match_result));
1978 
1979 		/*
1980 		 * If we don't have enough space to put in another
1981 		 * match result, save our position and tell the
1982 		 * user there are more devices to check.
1983 		 */
1984 		if (spaceleft < sizeof(struct dev_match_result)) {
1985 			bzero(&cdm->pos, sizeof(cdm->pos));
1986 			cdm->pos.position_type =
1987 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1988 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1989 				CAM_DEV_POS_PERIPH;
1990 
1991 			cdm->pos.cookie.bus = periph->path->bus;
1992 			cdm->pos.generations[CAM_BUS_GENERATION]=
1993 				xsoftc.bus_generation;
1994 			cdm->pos.cookie.target = periph->path->target;
1995 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1996 				periph->path->bus->generation;
1997 			cdm->pos.cookie.device = periph->path->device;
1998 			cdm->pos.generations[CAM_DEV_GENERATION] =
1999 				periph->path->target->generation;
2000 			cdm->pos.cookie.periph = periph;
2001 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2002 				periph->path->device->generation;
2003 			cdm->status = CAM_DEV_MATCH_MORE;
2004 			return(0);
2005 		}
2006 
2007 		j = cdm->num_matches;
2008 		cdm->num_matches++;
2009 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2010 		cdm->matches[j].result.periph_result.path_id =
2011 			periph->path->bus->path_id;
2012 		cdm->matches[j].result.periph_result.target_id =
2013 			periph->path->target->target_id;
2014 		cdm->matches[j].result.periph_result.target_lun =
2015 			periph->path->device->lun_id;
2016 		cdm->matches[j].result.periph_result.unit_number =
2017 			periph->unit_number;
2018 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2019 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2020 			periph->periph_name, l);
2021 	}
2022 
2023 	return(1);
2024 }
2025 
2026 static int
2027 xptedtmatch(struct ccb_dev_match *cdm)
2028 {
2029 	struct cam_eb *bus;
2030 	int ret;
2031 
2032 	cdm->num_matches = 0;
2033 
2034 	/*
2035 	 * Check the bus list generation.  If it has changed, the user
2036 	 * needs to reset everything and start over.
2037 	 */
2038 	xpt_lock_buses();
2039 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2040 	 && (cdm->pos.cookie.bus != NULL)) {
2041 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2042 		    xsoftc.bus_generation) {
2043 			xpt_unlock_buses();
2044 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2045 			return(0);
2046 		}
2047 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2048 		bus->refcount++;
2049 	} else
2050 		bus = NULL;
2051 	xpt_unlock_buses();
2052 
2053 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2054 
2055 	/*
2056 	 * If we get back 0, that means that we had to stop before fully
2057 	 * traversing the EDT.  It also means that one of the subroutines
2058 	 * has set the status field to the proper value.  If we get back 1,
2059 	 * we've fully traversed the EDT and copied out any matching entries.
2060 	 */
2061 	if (ret == 1)
2062 		cdm->status = CAM_DEV_MATCH_LAST;
2063 
2064 	return(ret);
2065 }
2066 
2067 static int
2068 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2069 {
2070 	struct cam_periph *periph;
2071 	struct ccb_dev_match *cdm;
2072 
2073 	cdm = (struct ccb_dev_match *)arg;
2074 
2075 	xpt_lock_buses();
2076 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2077 	 && (cdm->pos.cookie.pdrv == pdrv)
2078 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2079 	 && (cdm->pos.cookie.periph != NULL)) {
2080 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2081 		    (*pdrv)->generation) {
2082 			xpt_unlock_buses();
2083 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2084 			return(0);
2085 		}
2086 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2087 		periph->refcount++;
2088 	} else
2089 		periph = NULL;
2090 	xpt_unlock_buses();
2091 
2092 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2093 }
2094 
2095 static int
2096 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2097 {
2098 	struct ccb_dev_match *cdm;
2099 	dev_match_ret retval;
2100 
2101 	cdm = (struct ccb_dev_match *)arg;
2102 
2103 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2104 
2105 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2106 		cdm->status = CAM_DEV_MATCH_ERROR;
2107 		return(0);
2108 	}
2109 
2110 	/*
2111 	 * If the copy flag is set, copy this peripheral out.
2112 	 */
2113 	if (retval & DM_RET_COPY) {
2114 		int spaceleft, j;
2115 		size_t l;
2116 
2117 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2118 			sizeof(struct dev_match_result));
2119 
2120 		/*
2121 		 * If we don't have enough space to put in another
2122 		 * match result, save our position and tell the
2123 		 * user there are more devices to check.
2124 		 */
2125 		if (spaceleft < sizeof(struct dev_match_result)) {
2126 			struct periph_driver **pdrv;
2127 
2128 			pdrv = NULL;
2129 			bzero(&cdm->pos, sizeof(cdm->pos));
2130 			cdm->pos.position_type =
2131 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2132 				CAM_DEV_POS_PERIPH;
2133 
2134 			/*
2135 			 * This may look a bit non-sensical, but it is
2136 			 * actually quite logical.  There are very few
2137 			 * peripheral drivers, and bloating every peripheral
2138 			 * structure with a pointer back to its parent
2139 			 * peripheral driver linker set entry would cost
2140 			 * more in the long run than doing this quick lookup.
2141 			 */
2142 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2143 				if (strcmp((*pdrv)->driver_name,
2144 				    periph->periph_name) == 0)
2145 					break;
2146 			}
2147 
2148 			if (*pdrv == NULL) {
2149 				cdm->status = CAM_DEV_MATCH_ERROR;
2150 				return(0);
2151 			}
2152 
2153 			cdm->pos.cookie.pdrv = pdrv;
2154 			/*
2155 			 * The periph generation slot does double duty, as
2156 			 * does the periph pointer slot.  They are used for
2157 			 * both edt and pdrv lookups and positioning.
2158 			 */
2159 			cdm->pos.cookie.periph = periph;
2160 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2161 				(*pdrv)->generation;
2162 			cdm->status = CAM_DEV_MATCH_MORE;
2163 			return(0);
2164 		}
2165 
2166 		j = cdm->num_matches;
2167 		cdm->num_matches++;
2168 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2169 		cdm->matches[j].result.periph_result.path_id =
2170 			periph->path->bus->path_id;
2171 
2172 		/*
2173 		 * The transport layer peripheral doesn't have a target or
2174 		 * lun.
2175 		 */
2176 		if (periph->path->target)
2177 			cdm->matches[j].result.periph_result.target_id =
2178 				periph->path->target->target_id;
2179 		else
2180 			cdm->matches[j].result.periph_result.target_id =
2181 				CAM_TARGET_WILDCARD;
2182 
2183 		if (periph->path->device)
2184 			cdm->matches[j].result.periph_result.target_lun =
2185 				periph->path->device->lun_id;
2186 		else
2187 			cdm->matches[j].result.periph_result.target_lun =
2188 				CAM_LUN_WILDCARD;
2189 
2190 		cdm->matches[j].result.periph_result.unit_number =
2191 			periph->unit_number;
2192 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2193 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2194 			periph->periph_name, l);
2195 	}
2196 
2197 	return(1);
2198 }
2199 
2200 static int
2201 xptperiphlistmatch(struct ccb_dev_match *cdm)
2202 {
2203 	int ret;
2204 
2205 	cdm->num_matches = 0;
2206 
2207 	/*
2208 	 * At this point in the edt traversal function, we check the bus
2209 	 * list generation to make sure that no buses have been added or
2210 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2211 	 * For the peripheral driver list traversal function, however, we
2212 	 * don't have to worry about new peripheral driver types coming or
2213 	 * going; they're in a linker set, and therefore can't change
2214 	 * without a recompile.
2215 	 */
2216 
2217 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2218 	 && (cdm->pos.cookie.pdrv != NULL))
2219 		ret = xptpdrvtraverse(
2220 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2221 				xptplistpdrvfunc, cdm);
2222 	else
2223 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2224 
2225 	/*
2226 	 * If we get back 0, that means that we had to stop before fully
2227 	 * traversing the peripheral driver tree.  It also means that one of
2228 	 * the subroutines has set the status field to the proper value.  If
2229 	 * we get back 1, we've fully traversed the EDT and copied out any
2230 	 * matching entries.
2231 	 */
2232 	if (ret == 1)
2233 		cdm->status = CAM_DEV_MATCH_LAST;
2234 
2235 	return(ret);
2236 }
2237 
2238 static int
2239 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2240 {
2241 	struct cam_eb *bus, *next_bus;
2242 	int retval;
2243 
2244 	retval = 1;
2245 	if (start_bus)
2246 		bus = start_bus;
2247 	else {
2248 		xpt_lock_buses();
2249 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2250 		if (bus == NULL) {
2251 			xpt_unlock_buses();
2252 			return (retval);
2253 		}
2254 		bus->refcount++;
2255 		xpt_unlock_buses();
2256 	}
2257 	for (; bus != NULL; bus = next_bus) {
2258 		retval = tr_func(bus, arg);
2259 		if (retval == 0) {
2260 			xpt_release_bus(bus);
2261 			break;
2262 		}
2263 		xpt_lock_buses();
2264 		next_bus = TAILQ_NEXT(bus, links);
2265 		if (next_bus)
2266 			next_bus->refcount++;
2267 		xpt_unlock_buses();
2268 		xpt_release_bus(bus);
2269 	}
2270 	return(retval);
2271 }
2272 
2273 static int
2274 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2275 		  xpt_targetfunc_t *tr_func, void *arg)
2276 {
2277 	struct cam_et *target, *next_target;
2278 	int retval;
2279 
2280 	retval = 1;
2281 	if (start_target)
2282 		target = start_target;
2283 	else {
2284 		mtx_lock(&bus->eb_mtx);
2285 		target = TAILQ_FIRST(&bus->et_entries);
2286 		if (target == NULL) {
2287 			mtx_unlock(&bus->eb_mtx);
2288 			return (retval);
2289 		}
2290 		target->refcount++;
2291 		mtx_unlock(&bus->eb_mtx);
2292 	}
2293 	for (; target != NULL; target = next_target) {
2294 		retval = tr_func(target, arg);
2295 		if (retval == 0) {
2296 			xpt_release_target(target);
2297 			break;
2298 		}
2299 		mtx_lock(&bus->eb_mtx);
2300 		next_target = TAILQ_NEXT(target, links);
2301 		if (next_target)
2302 			next_target->refcount++;
2303 		mtx_unlock(&bus->eb_mtx);
2304 		xpt_release_target(target);
2305 	}
2306 	return(retval);
2307 }
2308 
2309 static int
2310 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2311 		  xpt_devicefunc_t *tr_func, void *arg)
2312 {
2313 	struct cam_eb *bus;
2314 	struct cam_ed *device, *next_device;
2315 	int retval;
2316 
2317 	retval = 1;
2318 	bus = target->bus;
2319 	if (start_device)
2320 		device = start_device;
2321 	else {
2322 		mtx_lock(&bus->eb_mtx);
2323 		device = TAILQ_FIRST(&target->ed_entries);
2324 		if (device == NULL) {
2325 			mtx_unlock(&bus->eb_mtx);
2326 			return (retval);
2327 		}
2328 		device->refcount++;
2329 		mtx_unlock(&bus->eb_mtx);
2330 	}
2331 	for (; device != NULL; device = next_device) {
2332 		mtx_lock(&device->device_mtx);
2333 		retval = tr_func(device, arg);
2334 		mtx_unlock(&device->device_mtx);
2335 		if (retval == 0) {
2336 			xpt_release_device(device);
2337 			break;
2338 		}
2339 		mtx_lock(&bus->eb_mtx);
2340 		next_device = TAILQ_NEXT(device, links);
2341 		if (next_device)
2342 			next_device->refcount++;
2343 		mtx_unlock(&bus->eb_mtx);
2344 		xpt_release_device(device);
2345 	}
2346 	return(retval);
2347 }
2348 
2349 static int
2350 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2351 		  xpt_periphfunc_t *tr_func, void *arg)
2352 {
2353 	struct cam_eb *bus;
2354 	struct cam_periph *periph, *next_periph;
2355 	int retval;
2356 
2357 	retval = 1;
2358 
2359 	bus = device->target->bus;
2360 	if (start_periph)
2361 		periph = start_periph;
2362 	else {
2363 		xpt_lock_buses();
2364 		mtx_lock(&bus->eb_mtx);
2365 		periph = SLIST_FIRST(&device->periphs);
2366 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2367 			periph = SLIST_NEXT(periph, periph_links);
2368 		if (periph == NULL) {
2369 			mtx_unlock(&bus->eb_mtx);
2370 			xpt_unlock_buses();
2371 			return (retval);
2372 		}
2373 		periph->refcount++;
2374 		mtx_unlock(&bus->eb_mtx);
2375 		xpt_unlock_buses();
2376 	}
2377 	for (; periph != NULL; periph = next_periph) {
2378 		retval = tr_func(periph, arg);
2379 		if (retval == 0) {
2380 			cam_periph_release_locked(periph);
2381 			break;
2382 		}
2383 		xpt_lock_buses();
2384 		mtx_lock(&bus->eb_mtx);
2385 		next_periph = SLIST_NEXT(periph, periph_links);
2386 		while (next_periph != NULL &&
2387 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2388 			next_periph = SLIST_NEXT(next_periph, periph_links);
2389 		if (next_periph)
2390 			next_periph->refcount++;
2391 		mtx_unlock(&bus->eb_mtx);
2392 		xpt_unlock_buses();
2393 		cam_periph_release_locked(periph);
2394 	}
2395 	return(retval);
2396 }
2397 
2398 static int
2399 xptpdrvtraverse(struct periph_driver **start_pdrv,
2400 		xpt_pdrvfunc_t *tr_func, void *arg)
2401 {
2402 	struct periph_driver **pdrv;
2403 	int retval;
2404 
2405 	retval = 1;
2406 
2407 	/*
2408 	 * We don't traverse the peripheral driver list like we do the
2409 	 * other lists, because it is a linker set, and therefore cannot be
2410 	 * changed during runtime.  If the peripheral driver list is ever
2411 	 * re-done to be something other than a linker set (i.e. it can
2412 	 * change while the system is running), the list traversal should
2413 	 * be modified to work like the other traversal functions.
2414 	 */
2415 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2416 	     *pdrv != NULL; pdrv++) {
2417 		retval = tr_func(pdrv, arg);
2418 
2419 		if (retval == 0)
2420 			return(retval);
2421 	}
2422 
2423 	return(retval);
2424 }
2425 
2426 static int
2427 xptpdperiphtraverse(struct periph_driver **pdrv,
2428 		    struct cam_periph *start_periph,
2429 		    xpt_periphfunc_t *tr_func, void *arg)
2430 {
2431 	struct cam_periph *periph, *next_periph;
2432 	int retval;
2433 
2434 	retval = 1;
2435 
2436 	if (start_periph)
2437 		periph = start_periph;
2438 	else {
2439 		xpt_lock_buses();
2440 		periph = TAILQ_FIRST(&(*pdrv)->units);
2441 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2442 			periph = TAILQ_NEXT(periph, unit_links);
2443 		if (periph == NULL) {
2444 			xpt_unlock_buses();
2445 			return (retval);
2446 		}
2447 		periph->refcount++;
2448 		xpt_unlock_buses();
2449 	}
2450 	for (; periph != NULL; periph = next_periph) {
2451 		cam_periph_lock(periph);
2452 		retval = tr_func(periph, arg);
2453 		cam_periph_unlock(periph);
2454 		if (retval == 0) {
2455 			cam_periph_release(periph);
2456 			break;
2457 		}
2458 		xpt_lock_buses();
2459 		next_periph = TAILQ_NEXT(periph, unit_links);
2460 		while (next_periph != NULL &&
2461 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2462 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2463 		if (next_periph)
2464 			next_periph->refcount++;
2465 		xpt_unlock_buses();
2466 		cam_periph_release(periph);
2467 	}
2468 	return(retval);
2469 }
2470 
2471 static int
2472 xptdefbusfunc(struct cam_eb *bus, void *arg)
2473 {
2474 	struct xpt_traverse_config *tr_config;
2475 
2476 	tr_config = (struct xpt_traverse_config *)arg;
2477 
2478 	if (tr_config->depth == XPT_DEPTH_BUS) {
2479 		xpt_busfunc_t *tr_func;
2480 
2481 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2482 
2483 		return(tr_func(bus, tr_config->tr_arg));
2484 	} else
2485 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2486 }
2487 
2488 static int
2489 xptdeftargetfunc(struct cam_et *target, void *arg)
2490 {
2491 	struct xpt_traverse_config *tr_config;
2492 
2493 	tr_config = (struct xpt_traverse_config *)arg;
2494 
2495 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2496 		xpt_targetfunc_t *tr_func;
2497 
2498 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2499 
2500 		return(tr_func(target, tr_config->tr_arg));
2501 	} else
2502 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2503 }
2504 
2505 static int
2506 xptdefdevicefunc(struct cam_ed *device, void *arg)
2507 {
2508 	struct xpt_traverse_config *tr_config;
2509 
2510 	tr_config = (struct xpt_traverse_config *)arg;
2511 
2512 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2513 		xpt_devicefunc_t *tr_func;
2514 
2515 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2516 
2517 		return(tr_func(device, tr_config->tr_arg));
2518 	} else
2519 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2520 }
2521 
2522 static int
2523 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2524 {
2525 	struct xpt_traverse_config *tr_config;
2526 	xpt_periphfunc_t *tr_func;
2527 
2528 	tr_config = (struct xpt_traverse_config *)arg;
2529 
2530 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2531 
2532 	/*
2533 	 * Unlike the other default functions, we don't check for depth
2534 	 * here.  The peripheral driver level is the last level in the EDT,
2535 	 * so if we're here, we should execute the function in question.
2536 	 */
2537 	return(tr_func(periph, tr_config->tr_arg));
2538 }
2539 
2540 /*
2541  * Execute the given function for every bus in the EDT.
2542  */
2543 static int
2544 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2545 {
2546 	struct xpt_traverse_config tr_config;
2547 
2548 	tr_config.depth = XPT_DEPTH_BUS;
2549 	tr_config.tr_func = tr_func;
2550 	tr_config.tr_arg = arg;
2551 
2552 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2553 }
2554 
2555 /*
2556  * Execute the given function for every device in the EDT.
2557  */
2558 static int
2559 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2560 {
2561 	struct xpt_traverse_config tr_config;
2562 
2563 	tr_config.depth = XPT_DEPTH_DEVICE;
2564 	tr_config.tr_func = tr_func;
2565 	tr_config.tr_arg = arg;
2566 
2567 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2568 }
2569 
2570 static int
2571 xptsetasyncfunc(struct cam_ed *device, void *arg)
2572 {
2573 	struct cam_path path;
2574 	struct ccb_getdev cgd;
2575 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2576 
2577 	/*
2578 	 * Don't report unconfigured devices (Wildcard devs,
2579 	 * devices only for target mode, device instances
2580 	 * that have been invalidated but are waiting for
2581 	 * their last reference count to be released).
2582 	 */
2583 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2584 		return (1);
2585 
2586 	xpt_compile_path(&path,
2587 			 NULL,
2588 			 device->target->bus->path_id,
2589 			 device->target->target_id,
2590 			 device->lun_id);
2591 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2592 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2593 	xpt_action((union ccb *)&cgd);
2594 	csa->callback(csa->callback_arg,
2595 			    AC_FOUND_DEVICE,
2596 			    &path, &cgd);
2597 	xpt_release_path(&path);
2598 
2599 	return(1);
2600 }
2601 
2602 static int
2603 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2604 {
2605 	struct cam_path path;
2606 	struct ccb_pathinq cpi;
2607 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2608 
2609 	xpt_compile_path(&path, /*periph*/NULL,
2610 			 bus->path_id,
2611 			 CAM_TARGET_WILDCARD,
2612 			 CAM_LUN_WILDCARD);
2613 	xpt_path_lock(&path);
2614 	xpt_path_inq(&cpi, &path);
2615 	csa->callback(csa->callback_arg,
2616 			    AC_PATH_REGISTERED,
2617 			    &path, &cpi);
2618 	xpt_path_unlock(&path);
2619 	xpt_release_path(&path);
2620 
2621 	return(1);
2622 }
2623 
2624 void
2625 xpt_action(union ccb *start_ccb)
2626 {
2627 
2628 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2629 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2630 		xpt_action_name(start_ccb->ccb_h.func_code)));
2631 
2632 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2633 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2634 }
2635 
2636 void
2637 xpt_action_default(union ccb *start_ccb)
2638 {
2639 	struct cam_path *path;
2640 	struct cam_sim *sim;
2641 	struct mtx *mtx;
2642 
2643 	path = start_ccb->ccb_h.path;
2644 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2645 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2646 		xpt_action_name(start_ccb->ccb_h.func_code)));
2647 
2648 	switch (start_ccb->ccb_h.func_code) {
2649 	case XPT_SCSI_IO:
2650 	{
2651 		struct cam_ed *device;
2652 
2653 		/*
2654 		 * For the sake of compatibility with SCSI-1
2655 		 * devices that may not understand the identify
2656 		 * message, we include lun information in the
2657 		 * second byte of all commands.  SCSI-1 specifies
2658 		 * that luns are a 3 bit value and reserves only 3
2659 		 * bits for lun information in the CDB.  Later
2660 		 * revisions of the SCSI spec allow for more than 8
2661 		 * luns, but have deprecated lun information in the
2662 		 * CDB.  So, if the lun won't fit, we must omit.
2663 		 *
2664 		 * Also be aware that during initial probing for devices,
2665 		 * the inquiry information is unknown but initialized to 0.
2666 		 * This means that this code will be exercised while probing
2667 		 * devices with an ANSI revision greater than 2.
2668 		 */
2669 		device = path->device;
2670 		if (device->protocol_version <= SCSI_REV_2
2671 		 && start_ccb->ccb_h.target_lun < 8
2672 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2673 
2674 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2675 			    start_ccb->ccb_h.target_lun << 5;
2676 		}
2677 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2678 	}
2679 	/* FALLTHROUGH */
2680 	case XPT_TARGET_IO:
2681 	case XPT_CONT_TARGET_IO:
2682 		start_ccb->csio.sense_resid = 0;
2683 		start_ccb->csio.resid = 0;
2684 		/* FALLTHROUGH */
2685 	case XPT_ATA_IO:
2686 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2687 			start_ccb->ataio.resid = 0;
2688 		/* FALLTHROUGH */
2689 	case XPT_NVME_IO:
2690 		/* FALLTHROUGH */
2691 	case XPT_NVME_ADMIN:
2692 		/* FALLTHROUGH */
2693 	case XPT_MMC_IO:
2694 		/* XXX just like nmve_io? */
2695 	case XPT_RESET_DEV:
2696 	case XPT_ENG_EXEC:
2697 	case XPT_SMP_IO:
2698 	{
2699 		struct cam_devq *devq;
2700 
2701 		devq = path->bus->sim->devq;
2702 		mtx_lock(&devq->send_mtx);
2703 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2704 		if (xpt_schedule_devq(devq, path->device) != 0)
2705 			xpt_run_devq(devq);
2706 		mtx_unlock(&devq->send_mtx);
2707 		break;
2708 	}
2709 	case XPT_CALC_GEOMETRY:
2710 		/* Filter out garbage */
2711 		if (start_ccb->ccg.block_size == 0
2712 		 || start_ccb->ccg.volume_size == 0) {
2713 			start_ccb->ccg.cylinders = 0;
2714 			start_ccb->ccg.heads = 0;
2715 			start_ccb->ccg.secs_per_track = 0;
2716 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2717 			break;
2718 		}
2719 		goto call_sim;
2720 	case XPT_ABORT:
2721 	{
2722 		union ccb* abort_ccb;
2723 
2724 		abort_ccb = start_ccb->cab.abort_ccb;
2725 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2726 			struct cam_ed *device;
2727 			struct cam_devq *devq;
2728 
2729 			device = abort_ccb->ccb_h.path->device;
2730 			devq = device->sim->devq;
2731 
2732 			mtx_lock(&devq->send_mtx);
2733 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2734 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2735 				abort_ccb->ccb_h.status =
2736 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2737 				xpt_freeze_devq_device(device, 1);
2738 				mtx_unlock(&devq->send_mtx);
2739 				xpt_done(abort_ccb);
2740 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2741 				break;
2742 			}
2743 			mtx_unlock(&devq->send_mtx);
2744 
2745 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2746 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2747 				/*
2748 				 * We've caught this ccb en route to
2749 				 * the SIM.  Flag it for abort and the
2750 				 * SIM will do so just before starting
2751 				 * real work on the CCB.
2752 				 */
2753 				abort_ccb->ccb_h.status =
2754 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2755 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2756 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2757 				break;
2758 			}
2759 		}
2760 		if (XPT_FC_IS_QUEUED(abort_ccb)
2761 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2762 			/*
2763 			 * It's already completed but waiting
2764 			 * for our SWI to get to it.
2765 			 */
2766 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2767 			break;
2768 		}
2769 		/*
2770 		 * If we weren't able to take care of the abort request
2771 		 * in the XPT, pass the request down to the SIM for processing.
2772 		 */
2773 	}
2774 	/* FALLTHROUGH */
2775 	case XPT_ACCEPT_TARGET_IO:
2776 	case XPT_EN_LUN:
2777 	case XPT_IMMED_NOTIFY:
2778 	case XPT_NOTIFY_ACK:
2779 	case XPT_RESET_BUS:
2780 	case XPT_IMMEDIATE_NOTIFY:
2781 	case XPT_NOTIFY_ACKNOWLEDGE:
2782 	case XPT_GET_SIM_KNOB_OLD:
2783 	case XPT_GET_SIM_KNOB:
2784 	case XPT_SET_SIM_KNOB:
2785 	case XPT_GET_TRAN_SETTINGS:
2786 	case XPT_SET_TRAN_SETTINGS:
2787 	case XPT_PATH_INQ:
2788 call_sim:
2789 		sim = path->bus->sim;
2790 		mtx = sim->mtx;
2791 		if (mtx && !mtx_owned(mtx))
2792 			mtx_lock(mtx);
2793 		else
2794 			mtx = NULL;
2795 
2796 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2797 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2798 		(*(sim->sim_action))(sim, start_ccb);
2799 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2800 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2801 		if (mtx)
2802 			mtx_unlock(mtx);
2803 		break;
2804 	case XPT_PATH_STATS:
2805 		start_ccb->cpis.last_reset = path->bus->last_reset;
2806 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2807 		break;
2808 	case XPT_GDEV_TYPE:
2809 	{
2810 		struct cam_ed *dev;
2811 
2812 		dev = path->device;
2813 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2814 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2815 		} else {
2816 			struct ccb_getdev *cgd;
2817 
2818 			cgd = &start_ccb->cgd;
2819 			cgd->protocol = dev->protocol;
2820 			cgd->inq_data = dev->inq_data;
2821 			cgd->ident_data = dev->ident_data;
2822 			cgd->inq_flags = dev->inq_flags;
2823 			cgd->ccb_h.status = CAM_REQ_CMP;
2824 			cgd->serial_num_len = dev->serial_num_len;
2825 			if ((dev->serial_num_len > 0)
2826 			 && (dev->serial_num != NULL))
2827 				bcopy(dev->serial_num, cgd->serial_num,
2828 				      dev->serial_num_len);
2829 		}
2830 		break;
2831 	}
2832 	case XPT_GDEV_STATS:
2833 	{
2834 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2835 		struct cam_ed *dev = path->device;
2836 		struct cam_eb *bus = path->bus;
2837 		struct cam_et *tar = path->target;
2838 		struct cam_devq *devq = bus->sim->devq;
2839 
2840 		mtx_lock(&devq->send_mtx);
2841 		cgds->dev_openings = dev->ccbq.dev_openings;
2842 		cgds->dev_active = dev->ccbq.dev_active;
2843 		cgds->allocated = dev->ccbq.allocated;
2844 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2845 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2846 		cgds->last_reset = tar->last_reset;
2847 		cgds->maxtags = dev->maxtags;
2848 		cgds->mintags = dev->mintags;
2849 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2850 			cgds->last_reset = bus->last_reset;
2851 		mtx_unlock(&devq->send_mtx);
2852 		cgds->ccb_h.status = CAM_REQ_CMP;
2853 		break;
2854 	}
2855 	case XPT_GDEVLIST:
2856 	{
2857 		struct cam_periph	*nperiph;
2858 		struct periph_list	*periph_head;
2859 		struct ccb_getdevlist	*cgdl;
2860 		u_int			i;
2861 		struct cam_ed		*device;
2862 		int			found;
2863 
2864 
2865 		found = 0;
2866 
2867 		/*
2868 		 * Don't want anyone mucking with our data.
2869 		 */
2870 		device = path->device;
2871 		periph_head = &device->periphs;
2872 		cgdl = &start_ccb->cgdl;
2873 
2874 		/*
2875 		 * Check and see if the list has changed since the user
2876 		 * last requested a list member.  If so, tell them that the
2877 		 * list has changed, and therefore they need to start over
2878 		 * from the beginning.
2879 		 */
2880 		if ((cgdl->index != 0) &&
2881 		    (cgdl->generation != device->generation)) {
2882 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2883 			break;
2884 		}
2885 
2886 		/*
2887 		 * Traverse the list of peripherals and attempt to find
2888 		 * the requested peripheral.
2889 		 */
2890 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2891 		     (nperiph != NULL) && (i <= cgdl->index);
2892 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2893 			if (i == cgdl->index) {
2894 				strlcpy(cgdl->periph_name,
2895 					nperiph->periph_name,
2896 					sizeof(cgdl->periph_name));
2897 				cgdl->unit_number = nperiph->unit_number;
2898 				found = 1;
2899 			}
2900 		}
2901 		if (found == 0) {
2902 			cgdl->status = CAM_GDEVLIST_ERROR;
2903 			break;
2904 		}
2905 
2906 		if (nperiph == NULL)
2907 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2908 		else
2909 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2910 
2911 		cgdl->index++;
2912 		cgdl->generation = device->generation;
2913 
2914 		cgdl->ccb_h.status = CAM_REQ_CMP;
2915 		break;
2916 	}
2917 	case XPT_DEV_MATCH:
2918 	{
2919 		dev_pos_type position_type;
2920 		struct ccb_dev_match *cdm;
2921 
2922 		cdm = &start_ccb->cdm;
2923 
2924 		/*
2925 		 * There are two ways of getting at information in the EDT.
2926 		 * The first way is via the primary EDT tree.  It starts
2927 		 * with a list of buses, then a list of targets on a bus,
2928 		 * then devices/luns on a target, and then peripherals on a
2929 		 * device/lun.  The "other" way is by the peripheral driver
2930 		 * lists.  The peripheral driver lists are organized by
2931 		 * peripheral driver.  (obviously)  So it makes sense to
2932 		 * use the peripheral driver list if the user is looking
2933 		 * for something like "da1", or all "da" devices.  If the
2934 		 * user is looking for something on a particular bus/target
2935 		 * or lun, it's generally better to go through the EDT tree.
2936 		 */
2937 
2938 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2939 			position_type = cdm->pos.position_type;
2940 		else {
2941 			u_int i;
2942 
2943 			position_type = CAM_DEV_POS_NONE;
2944 
2945 			for (i = 0; i < cdm->num_patterns; i++) {
2946 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2947 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2948 					position_type = CAM_DEV_POS_EDT;
2949 					break;
2950 				}
2951 			}
2952 
2953 			if (cdm->num_patterns == 0)
2954 				position_type = CAM_DEV_POS_EDT;
2955 			else if (position_type == CAM_DEV_POS_NONE)
2956 				position_type = CAM_DEV_POS_PDRV;
2957 		}
2958 
2959 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2960 		case CAM_DEV_POS_EDT:
2961 			xptedtmatch(cdm);
2962 			break;
2963 		case CAM_DEV_POS_PDRV:
2964 			xptperiphlistmatch(cdm);
2965 			break;
2966 		default:
2967 			cdm->status = CAM_DEV_MATCH_ERROR;
2968 			break;
2969 		}
2970 
2971 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2972 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2973 		else
2974 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2975 
2976 		break;
2977 	}
2978 	case XPT_SASYNC_CB:
2979 	{
2980 		struct ccb_setasync *csa;
2981 		struct async_node *cur_entry;
2982 		struct async_list *async_head;
2983 		u_int32_t added;
2984 
2985 		csa = &start_ccb->csa;
2986 		added = csa->event_enable;
2987 		async_head = &path->device->asyncs;
2988 
2989 		/*
2990 		 * If there is already an entry for us, simply
2991 		 * update it.
2992 		 */
2993 		cur_entry = SLIST_FIRST(async_head);
2994 		while (cur_entry != NULL) {
2995 			if ((cur_entry->callback_arg == csa->callback_arg)
2996 			 && (cur_entry->callback == csa->callback))
2997 				break;
2998 			cur_entry = SLIST_NEXT(cur_entry, links);
2999 		}
3000 
3001 		if (cur_entry != NULL) {
3002 		 	/*
3003 			 * If the request has no flags set,
3004 			 * remove the entry.
3005 			 */
3006 			added &= ~cur_entry->event_enable;
3007 			if (csa->event_enable == 0) {
3008 				SLIST_REMOVE(async_head, cur_entry,
3009 					     async_node, links);
3010 				xpt_release_device(path->device);
3011 				free(cur_entry, M_CAMXPT);
3012 			} else {
3013 				cur_entry->event_enable = csa->event_enable;
3014 			}
3015 			csa->event_enable = added;
3016 		} else {
3017 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3018 					   M_NOWAIT);
3019 			if (cur_entry == NULL) {
3020 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3021 				break;
3022 			}
3023 			cur_entry->event_enable = csa->event_enable;
3024 			cur_entry->event_lock = (path->bus->sim->mtx &&
3025 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3026 			cur_entry->callback_arg = csa->callback_arg;
3027 			cur_entry->callback = csa->callback;
3028 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3029 			xpt_acquire_device(path->device);
3030 		}
3031 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3032 		break;
3033 	}
3034 	case XPT_REL_SIMQ:
3035 	{
3036 		struct ccb_relsim *crs;
3037 		struct cam_ed *dev;
3038 
3039 		crs = &start_ccb->crs;
3040 		dev = path->device;
3041 		if (dev == NULL) {
3042 
3043 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3044 			break;
3045 		}
3046 
3047 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3048 
3049 			/* Don't ever go below one opening */
3050 			if (crs->openings > 0) {
3051 				xpt_dev_ccbq_resize(path, crs->openings);
3052 				if (bootverbose) {
3053 					xpt_print(path,
3054 					    "number of openings is now %d\n",
3055 					    crs->openings);
3056 				}
3057 			}
3058 		}
3059 
3060 		mtx_lock(&dev->sim->devq->send_mtx);
3061 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3062 
3063 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3064 
3065 				/*
3066 				 * Just extend the old timeout and decrement
3067 				 * the freeze count so that a single timeout
3068 				 * is sufficient for releasing the queue.
3069 				 */
3070 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3071 				callout_stop(&dev->callout);
3072 			} else {
3073 
3074 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3075 			}
3076 
3077 			callout_reset_sbt(&dev->callout,
3078 			    SBT_1MS * crs->release_timeout, 0,
3079 			    xpt_release_devq_timeout, dev, 0);
3080 
3081 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3082 
3083 		}
3084 
3085 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3086 
3087 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3088 				/*
3089 				 * Decrement the freeze count so that a single
3090 				 * completion is still sufficient to unfreeze
3091 				 * the queue.
3092 				 */
3093 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3094 			} else {
3095 
3096 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3097 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3098 			}
3099 		}
3100 
3101 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3102 
3103 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3104 			 || (dev->ccbq.dev_active == 0)) {
3105 
3106 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3107 			} else {
3108 
3109 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3110 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3111 			}
3112 		}
3113 		mtx_unlock(&dev->sim->devq->send_mtx);
3114 
3115 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3116 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3117 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3118 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3119 		break;
3120 	}
3121 	case XPT_DEBUG: {
3122 		struct cam_path *oldpath;
3123 
3124 		/* Check that all request bits are supported. */
3125 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3126 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3127 			break;
3128 		}
3129 
3130 		cam_dflags = CAM_DEBUG_NONE;
3131 		if (cam_dpath != NULL) {
3132 			oldpath = cam_dpath;
3133 			cam_dpath = NULL;
3134 			xpt_free_path(oldpath);
3135 		}
3136 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3137 			if (xpt_create_path(&cam_dpath, NULL,
3138 					    start_ccb->ccb_h.path_id,
3139 					    start_ccb->ccb_h.target_id,
3140 					    start_ccb->ccb_h.target_lun) !=
3141 					    CAM_REQ_CMP) {
3142 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3143 			} else {
3144 				cam_dflags = start_ccb->cdbg.flags;
3145 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3146 				xpt_print(cam_dpath, "debugging flags now %x\n",
3147 				    cam_dflags);
3148 			}
3149 		} else
3150 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3151 		break;
3152 	}
3153 	case XPT_NOOP:
3154 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3155 			xpt_freeze_devq(path, 1);
3156 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3157 		break;
3158 	case XPT_REPROBE_LUN:
3159 		xpt_async(AC_INQ_CHANGED, path, NULL);
3160 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3161 		xpt_done(start_ccb);
3162 		break;
3163 	default:
3164 	case XPT_SDEV_TYPE:
3165 	case XPT_TERM_IO:
3166 	case XPT_ENG_INQ:
3167 		/* XXX Implement */
3168 		xpt_print(start_ccb->ccb_h.path,
3169 		    "%s: CCB type %#x %s not supported\n", __func__,
3170 		    start_ccb->ccb_h.func_code,
3171 		    xpt_action_name(start_ccb->ccb_h.func_code));
3172 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3173 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3174 			xpt_done(start_ccb);
3175 		}
3176 		break;
3177 	}
3178 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3179 	    ("xpt_action_default: func= %#x %s status %#x\n",
3180 		start_ccb->ccb_h.func_code,
3181  		xpt_action_name(start_ccb->ccb_h.func_code),
3182 		start_ccb->ccb_h.status));
3183 }
3184 
3185 /*
3186  * Call the sim poll routine to allow the sim to complete
3187  * any inflight requests, then call camisr_runqueue to
3188  * complete any CCB that the polling completed.
3189  */
3190 void
3191 xpt_sim_poll(struct cam_sim *sim)
3192 {
3193 	struct mtx *mtx;
3194 
3195 	mtx = sim->mtx;
3196 	if (mtx)
3197 		mtx_lock(mtx);
3198 	(*(sim->sim_poll))(sim);
3199 	if (mtx)
3200 		mtx_unlock(mtx);
3201 	camisr_runqueue();
3202 }
3203 
3204 uint32_t
3205 xpt_poll_setup(union ccb *start_ccb)
3206 {
3207 	u_int32_t timeout;
3208 	struct	  cam_sim *sim;
3209 	struct	  cam_devq *devq;
3210 	struct	  cam_ed *dev;
3211 
3212 	timeout = start_ccb->ccb_h.timeout * 10;
3213 	sim = start_ccb->ccb_h.path->bus->sim;
3214 	devq = sim->devq;
3215 	dev = start_ccb->ccb_h.path->device;
3216 
3217 	/*
3218 	 * Steal an opening so that no other queued requests
3219 	 * can get it before us while we simulate interrupts.
3220 	 */
3221 	mtx_lock(&devq->send_mtx);
3222 	dev->ccbq.dev_openings--;
3223 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3224 	    (--timeout > 0)) {
3225 		mtx_unlock(&devq->send_mtx);
3226 		DELAY(100);
3227 		xpt_sim_poll(sim);
3228 		mtx_lock(&devq->send_mtx);
3229 	}
3230 	dev->ccbq.dev_openings++;
3231 	mtx_unlock(&devq->send_mtx);
3232 
3233 	return (timeout);
3234 }
3235 
3236 void
3237 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3238 {
3239 
3240 	while (--timeout > 0) {
3241 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3242 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3243 		    != CAM_REQ_INPROG)
3244 			break;
3245 		DELAY(100);
3246 	}
3247 
3248 	if (timeout == 0) {
3249 		/*
3250 		 * XXX Is it worth adding a sim_timeout entry
3251 		 * point so we can attempt recovery?  If
3252 		 * this is only used for dumps, I don't think
3253 		 * it is.
3254 		 */
3255 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3256 	}
3257 }
3258 
3259 void
3260 xpt_polled_action(union ccb *start_ccb)
3261 {
3262 	uint32_t	timeout;
3263 	struct cam_ed	*dev;
3264 
3265 	timeout = start_ccb->ccb_h.timeout * 10;
3266 	dev = start_ccb->ccb_h.path->device;
3267 
3268 	mtx_unlock(&dev->device_mtx);
3269 
3270 	timeout = xpt_poll_setup(start_ccb);
3271 	if (timeout > 0) {
3272 		xpt_action(start_ccb);
3273 		xpt_pollwait(start_ccb, timeout);
3274 	} else {
3275 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3276 	}
3277 
3278 	mtx_lock(&dev->device_mtx);
3279 }
3280 
3281 /*
3282  * Schedule a peripheral driver to receive a ccb when its
3283  * target device has space for more transactions.
3284  */
3285 void
3286 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3287 {
3288 
3289 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3290 	cam_periph_assert(periph, MA_OWNED);
3291 	if (new_priority < periph->scheduled_priority) {
3292 		periph->scheduled_priority = new_priority;
3293 		xpt_run_allocq(periph, 0);
3294 	}
3295 }
3296 
3297 
3298 /*
3299  * Schedule a device to run on a given queue.
3300  * If the device was inserted as a new entry on the queue,
3301  * return 1 meaning the device queue should be run. If we
3302  * were already queued, implying someone else has already
3303  * started the queue, return 0 so the caller doesn't attempt
3304  * to run the queue.
3305  */
3306 static int
3307 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3308 		 u_int32_t new_priority)
3309 {
3310 	int retval;
3311 	u_int32_t old_priority;
3312 
3313 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3314 
3315 
3316 	old_priority = pinfo->priority;
3317 
3318 	/*
3319 	 * Are we already queued?
3320 	 */
3321 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3322 		/* Simply reorder based on new priority */
3323 		if (new_priority < old_priority) {
3324 			camq_change_priority(queue, pinfo->index,
3325 					     new_priority);
3326 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3327 					("changed priority to %d\n",
3328 					 new_priority));
3329 			retval = 1;
3330 		} else
3331 			retval = 0;
3332 	} else {
3333 		/* New entry on the queue */
3334 		if (new_priority < old_priority)
3335 			pinfo->priority = new_priority;
3336 
3337 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3338 				("Inserting onto queue\n"));
3339 		pinfo->generation = ++queue->generation;
3340 		camq_insert(queue, pinfo);
3341 		retval = 1;
3342 	}
3343 	return (retval);
3344 }
3345 
3346 static void
3347 xpt_run_allocq_task(void *context, int pending)
3348 {
3349 	struct cam_periph *periph = context;
3350 
3351 	cam_periph_lock(periph);
3352 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3353 	xpt_run_allocq(periph, 1);
3354 	cam_periph_unlock(periph);
3355 	cam_periph_release(periph);
3356 }
3357 
3358 static void
3359 xpt_run_allocq(struct cam_periph *periph, int sleep)
3360 {
3361 	struct cam_ed	*device;
3362 	union ccb	*ccb;
3363 	uint32_t	 prio;
3364 
3365 	cam_periph_assert(periph, MA_OWNED);
3366 	if (periph->periph_allocating)
3367 		return;
3368 	cam_periph_doacquire(periph);
3369 	periph->periph_allocating = 1;
3370 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3371 	device = periph->path->device;
3372 	ccb = NULL;
3373 restart:
3374 	while ((prio = min(periph->scheduled_priority,
3375 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3376 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3377 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3378 
3379 		if (ccb == NULL &&
3380 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3381 			if (sleep) {
3382 				ccb = xpt_get_ccb(periph);
3383 				goto restart;
3384 			}
3385 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3386 				break;
3387 			cam_periph_doacquire(periph);
3388 			periph->flags |= CAM_PERIPH_RUN_TASK;
3389 			taskqueue_enqueue(xsoftc.xpt_taskq,
3390 			    &periph->periph_run_task);
3391 			break;
3392 		}
3393 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3394 		if (prio == periph->immediate_priority) {
3395 			periph->immediate_priority = CAM_PRIORITY_NONE;
3396 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3397 					("waking cam_periph_getccb()\n"));
3398 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3399 					  periph_links.sle);
3400 			wakeup(&periph->ccb_list);
3401 		} else {
3402 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3403 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3404 					("calling periph_start()\n"));
3405 			periph->periph_start(periph, ccb);
3406 		}
3407 		ccb = NULL;
3408 	}
3409 	if (ccb != NULL)
3410 		xpt_release_ccb(ccb);
3411 	periph->periph_allocating = 0;
3412 	cam_periph_release_locked(periph);
3413 }
3414 
3415 static void
3416 xpt_run_devq(struct cam_devq *devq)
3417 {
3418 	struct mtx *mtx;
3419 
3420 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3421 
3422 	devq->send_queue.qfrozen_cnt++;
3423 	while ((devq->send_queue.entries > 0)
3424 	    && (devq->send_openings > 0)
3425 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3426 		struct	cam_ed *device;
3427 		union ccb *work_ccb;
3428 		struct	cam_sim *sim;
3429 		struct xpt_proto *proto;
3430 
3431 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3432 							   CAMQ_HEAD);
3433 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3434 				("running device %p\n", device));
3435 
3436 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3437 		if (work_ccb == NULL) {
3438 			printf("device on run queue with no ccbs???\n");
3439 			continue;
3440 		}
3441 
3442 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3443 
3444 			mtx_lock(&xsoftc.xpt_highpower_lock);
3445 		 	if (xsoftc.num_highpower <= 0) {
3446 				/*
3447 				 * We got a high power command, but we
3448 				 * don't have any available slots.  Freeze
3449 				 * the device queue until we have a slot
3450 				 * available.
3451 				 */
3452 				xpt_freeze_devq_device(device, 1);
3453 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3454 						   highpowerq_entry);
3455 
3456 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3457 				continue;
3458 			} else {
3459 				/*
3460 				 * Consume a high power slot while
3461 				 * this ccb runs.
3462 				 */
3463 				xsoftc.num_highpower--;
3464 			}
3465 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3466 		}
3467 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3468 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3469 		devq->send_openings--;
3470 		devq->send_active++;
3471 		xpt_schedule_devq(devq, device);
3472 		mtx_unlock(&devq->send_mtx);
3473 
3474 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3475 			/*
3476 			 * The client wants to freeze the queue
3477 			 * after this CCB is sent.
3478 			 */
3479 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3480 		}
3481 
3482 		/* In Target mode, the peripheral driver knows best... */
3483 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3484 			if ((device->inq_flags & SID_CmdQue) != 0
3485 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3486 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3487 			else
3488 				/*
3489 				 * Clear this in case of a retried CCB that
3490 				 * failed due to a rejected tag.
3491 				 */
3492 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3493 		}
3494 
3495 		KASSERT(device == work_ccb->ccb_h.path->device,
3496 		    ("device (%p) / path->device (%p) mismatch",
3497 			device, work_ccb->ccb_h.path->device));
3498 		proto = xpt_proto_find(device->protocol);
3499 		if (proto && proto->ops->debug_out)
3500 			proto->ops->debug_out(work_ccb);
3501 
3502 		/*
3503 		 * Device queues can be shared among multiple SIM instances
3504 		 * that reside on different buses.  Use the SIM from the
3505 		 * queued device, rather than the one from the calling bus.
3506 		 */
3507 		sim = device->sim;
3508 		mtx = sim->mtx;
3509 		if (mtx && !mtx_owned(mtx))
3510 			mtx_lock(mtx);
3511 		else
3512 			mtx = NULL;
3513 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3514 		(*(sim->sim_action))(sim, work_ccb);
3515 		if (mtx)
3516 			mtx_unlock(mtx);
3517 		mtx_lock(&devq->send_mtx);
3518 	}
3519 	devq->send_queue.qfrozen_cnt--;
3520 }
3521 
3522 /*
3523  * This function merges stuff from the slave ccb into the master ccb, while
3524  * keeping important fields in the master ccb constant.
3525  */
3526 void
3527 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3528 {
3529 
3530 	/*
3531 	 * Pull fields that are valid for peripheral drivers to set
3532 	 * into the master CCB along with the CCB "payload".
3533 	 */
3534 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3535 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3536 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3537 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3538 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3539 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3540 }
3541 
3542 void
3543 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3544 		    u_int32_t priority, u_int32_t flags)
3545 {
3546 
3547 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3548 	ccb_h->pinfo.priority = priority;
3549 	ccb_h->path = path;
3550 	ccb_h->path_id = path->bus->path_id;
3551 	if (path->target)
3552 		ccb_h->target_id = path->target->target_id;
3553 	else
3554 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3555 	if (path->device) {
3556 		ccb_h->target_lun = path->device->lun_id;
3557 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3558 	} else {
3559 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3560 	}
3561 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3562 	ccb_h->flags = flags;
3563 	ccb_h->xflags = 0;
3564 }
3565 
3566 void
3567 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3568 {
3569 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3570 }
3571 
3572 /* Path manipulation functions */
3573 cam_status
3574 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3575 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3576 {
3577 	struct	   cam_path *path;
3578 	cam_status status;
3579 
3580 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3581 
3582 	if (path == NULL) {
3583 		status = CAM_RESRC_UNAVAIL;
3584 		return(status);
3585 	}
3586 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3587 	if (status != CAM_REQ_CMP) {
3588 		free(path, M_CAMPATH);
3589 		path = NULL;
3590 	}
3591 	*new_path_ptr = path;
3592 	return (status);
3593 }
3594 
3595 cam_status
3596 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3597 			 struct cam_periph *periph, path_id_t path_id,
3598 			 target_id_t target_id, lun_id_t lun_id)
3599 {
3600 
3601 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3602 	    lun_id));
3603 }
3604 
3605 cam_status
3606 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3607 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3608 {
3609 	struct	     cam_eb *bus;
3610 	struct	     cam_et *target;
3611 	struct	     cam_ed *device;
3612 	cam_status   status;
3613 
3614 	status = CAM_REQ_CMP;	/* Completed without error */
3615 	target = NULL;		/* Wildcarded */
3616 	device = NULL;		/* Wildcarded */
3617 
3618 	/*
3619 	 * We will potentially modify the EDT, so block interrupts
3620 	 * that may attempt to create cam paths.
3621 	 */
3622 	bus = xpt_find_bus(path_id);
3623 	if (bus == NULL) {
3624 		status = CAM_PATH_INVALID;
3625 	} else {
3626 		xpt_lock_buses();
3627 		mtx_lock(&bus->eb_mtx);
3628 		target = xpt_find_target(bus, target_id);
3629 		if (target == NULL) {
3630 			/* Create one */
3631 			struct cam_et *new_target;
3632 
3633 			new_target = xpt_alloc_target(bus, target_id);
3634 			if (new_target == NULL) {
3635 				status = CAM_RESRC_UNAVAIL;
3636 			} else {
3637 				target = new_target;
3638 			}
3639 		}
3640 		xpt_unlock_buses();
3641 		if (target != NULL) {
3642 			device = xpt_find_device(target, lun_id);
3643 			if (device == NULL) {
3644 				/* Create one */
3645 				struct cam_ed *new_device;
3646 
3647 				new_device =
3648 				    (*(bus->xport->ops->alloc_device))(bus,
3649 								       target,
3650 								       lun_id);
3651 				if (new_device == NULL) {
3652 					status = CAM_RESRC_UNAVAIL;
3653 				} else {
3654 					device = new_device;
3655 				}
3656 			}
3657 		}
3658 		mtx_unlock(&bus->eb_mtx);
3659 	}
3660 
3661 	/*
3662 	 * Only touch the user's data if we are successful.
3663 	 */
3664 	if (status == CAM_REQ_CMP) {
3665 		new_path->periph = perph;
3666 		new_path->bus = bus;
3667 		new_path->target = target;
3668 		new_path->device = device;
3669 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3670 	} else {
3671 		if (device != NULL)
3672 			xpt_release_device(device);
3673 		if (target != NULL)
3674 			xpt_release_target(target);
3675 		if (bus != NULL)
3676 			xpt_release_bus(bus);
3677 	}
3678 	return (status);
3679 }
3680 
3681 cam_status
3682 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3683 {
3684 	struct	   cam_path *new_path;
3685 
3686 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3687 	if (new_path == NULL)
3688 		return(CAM_RESRC_UNAVAIL);
3689 	xpt_copy_path(new_path, path);
3690 	*new_path_ptr = new_path;
3691 	return (CAM_REQ_CMP);
3692 }
3693 
3694 void
3695 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3696 {
3697 
3698 	*new_path = *path;
3699 	if (path->bus != NULL)
3700 		xpt_acquire_bus(path->bus);
3701 	if (path->target != NULL)
3702 		xpt_acquire_target(path->target);
3703 	if (path->device != NULL)
3704 		xpt_acquire_device(path->device);
3705 }
3706 
3707 void
3708 xpt_release_path(struct cam_path *path)
3709 {
3710 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3711 	if (path->device != NULL) {
3712 		xpt_release_device(path->device);
3713 		path->device = NULL;
3714 	}
3715 	if (path->target != NULL) {
3716 		xpt_release_target(path->target);
3717 		path->target = NULL;
3718 	}
3719 	if (path->bus != NULL) {
3720 		xpt_release_bus(path->bus);
3721 		path->bus = NULL;
3722 	}
3723 }
3724 
3725 void
3726 xpt_free_path(struct cam_path *path)
3727 {
3728 
3729 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3730 	xpt_release_path(path);
3731 	free(path, M_CAMPATH);
3732 }
3733 
3734 void
3735 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3736     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3737 {
3738 
3739 	xpt_lock_buses();
3740 	if (bus_ref) {
3741 		if (path->bus)
3742 			*bus_ref = path->bus->refcount;
3743 		else
3744 			*bus_ref = 0;
3745 	}
3746 	if (periph_ref) {
3747 		if (path->periph)
3748 			*periph_ref = path->periph->refcount;
3749 		else
3750 			*periph_ref = 0;
3751 	}
3752 	xpt_unlock_buses();
3753 	if (target_ref) {
3754 		if (path->target)
3755 			*target_ref = path->target->refcount;
3756 		else
3757 			*target_ref = 0;
3758 	}
3759 	if (device_ref) {
3760 		if (path->device)
3761 			*device_ref = path->device->refcount;
3762 		else
3763 			*device_ref = 0;
3764 	}
3765 }
3766 
3767 /*
3768  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3769  * in path1, 2 for match with wildcards in path2.
3770  */
3771 int
3772 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3773 {
3774 	int retval = 0;
3775 
3776 	if (path1->bus != path2->bus) {
3777 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3778 			retval = 1;
3779 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3780 			retval = 2;
3781 		else
3782 			return (-1);
3783 	}
3784 	if (path1->target != path2->target) {
3785 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3786 			if (retval == 0)
3787 				retval = 1;
3788 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3789 			retval = 2;
3790 		else
3791 			return (-1);
3792 	}
3793 	if (path1->device != path2->device) {
3794 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3795 			if (retval == 0)
3796 				retval = 1;
3797 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3798 			retval = 2;
3799 		else
3800 			return (-1);
3801 	}
3802 	return (retval);
3803 }
3804 
3805 int
3806 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3807 {
3808 	int retval = 0;
3809 
3810 	if (path->bus != dev->target->bus) {
3811 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3812 			retval = 1;
3813 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3814 			retval = 2;
3815 		else
3816 			return (-1);
3817 	}
3818 	if (path->target != dev->target) {
3819 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3820 			if (retval == 0)
3821 				retval = 1;
3822 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3823 			retval = 2;
3824 		else
3825 			return (-1);
3826 	}
3827 	if (path->device != dev) {
3828 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3829 			if (retval == 0)
3830 				retval = 1;
3831 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3832 			retval = 2;
3833 		else
3834 			return (-1);
3835 	}
3836 	return (retval);
3837 }
3838 
3839 void
3840 xpt_print_path(struct cam_path *path)
3841 {
3842 	struct sbuf sb;
3843 	char buffer[XPT_PRINT_LEN];
3844 
3845 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3846 	xpt_path_sbuf(path, &sb);
3847 	sbuf_finish(&sb);
3848 	printf("%s", sbuf_data(&sb));
3849 	sbuf_delete(&sb);
3850 }
3851 
3852 void
3853 xpt_print_device(struct cam_ed *device)
3854 {
3855 
3856 	if (device == NULL)
3857 		printf("(nopath): ");
3858 	else {
3859 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3860 		       device->sim->unit_number,
3861 		       device->sim->bus_id,
3862 		       device->target->target_id,
3863 		       (uintmax_t)device->lun_id);
3864 	}
3865 }
3866 
3867 void
3868 xpt_print(struct cam_path *path, const char *fmt, ...)
3869 {
3870 	va_list ap;
3871 	struct sbuf sb;
3872 	char buffer[XPT_PRINT_LEN];
3873 
3874 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3875 
3876 	xpt_path_sbuf(path, &sb);
3877 	va_start(ap, fmt);
3878 	sbuf_vprintf(&sb, fmt, ap);
3879 	va_end(ap);
3880 
3881 	sbuf_finish(&sb);
3882 	printf("%s", sbuf_data(&sb));
3883 	sbuf_delete(&sb);
3884 }
3885 
3886 int
3887 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3888 {
3889 	struct sbuf sb;
3890 	int len;
3891 
3892 	sbuf_new(&sb, str, str_len, 0);
3893 	len = xpt_path_sbuf(path, &sb);
3894 	sbuf_finish(&sb);
3895 	return (len);
3896 }
3897 
3898 int
3899 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3900 {
3901 
3902 	if (path == NULL)
3903 		sbuf_printf(sb, "(nopath): ");
3904 	else {
3905 		if (path->periph != NULL)
3906 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3907 				    path->periph->unit_number);
3908 		else
3909 			sbuf_printf(sb, "(noperiph:");
3910 
3911 		if (path->bus != NULL)
3912 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3913 				    path->bus->sim->unit_number,
3914 				    path->bus->sim->bus_id);
3915 		else
3916 			sbuf_printf(sb, "nobus:");
3917 
3918 		if (path->target != NULL)
3919 			sbuf_printf(sb, "%d:", path->target->target_id);
3920 		else
3921 			sbuf_printf(sb, "X:");
3922 
3923 		if (path->device != NULL)
3924 			sbuf_printf(sb, "%jx): ",
3925 			    (uintmax_t)path->device->lun_id);
3926 		else
3927 			sbuf_printf(sb, "X): ");
3928 	}
3929 
3930 	return(sbuf_len(sb));
3931 }
3932 
3933 path_id_t
3934 xpt_path_path_id(struct cam_path *path)
3935 {
3936 	return(path->bus->path_id);
3937 }
3938 
3939 target_id_t
3940 xpt_path_target_id(struct cam_path *path)
3941 {
3942 	if (path->target != NULL)
3943 		return (path->target->target_id);
3944 	else
3945 		return (CAM_TARGET_WILDCARD);
3946 }
3947 
3948 lun_id_t
3949 xpt_path_lun_id(struct cam_path *path)
3950 {
3951 	if (path->device != NULL)
3952 		return (path->device->lun_id);
3953 	else
3954 		return (CAM_LUN_WILDCARD);
3955 }
3956 
3957 struct cam_sim *
3958 xpt_path_sim(struct cam_path *path)
3959 {
3960 
3961 	return (path->bus->sim);
3962 }
3963 
3964 struct cam_periph*
3965 xpt_path_periph(struct cam_path *path)
3966 {
3967 
3968 	return (path->periph);
3969 }
3970 
3971 /*
3972  * Release a CAM control block for the caller.  Remit the cost of the structure
3973  * to the device referenced by the path.  If the this device had no 'credits'
3974  * and peripheral drivers have registered async callbacks for this notification
3975  * call them now.
3976  */
3977 void
3978 xpt_release_ccb(union ccb *free_ccb)
3979 {
3980 	struct	 cam_ed *device;
3981 	struct	 cam_periph *periph;
3982 
3983 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3984 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3985 	device = free_ccb->ccb_h.path->device;
3986 	periph = free_ccb->ccb_h.path->periph;
3987 
3988 	xpt_free_ccb(free_ccb);
3989 	periph->periph_allocated--;
3990 	cam_ccbq_release_opening(&device->ccbq);
3991 	xpt_run_allocq(periph, 0);
3992 }
3993 
3994 /* Functions accessed by SIM drivers */
3995 
3996 static struct xpt_xport_ops xport_default_ops = {
3997 	.alloc_device = xpt_alloc_device_default,
3998 	.action = xpt_action_default,
3999 	.async = xpt_dev_async_default,
4000 };
4001 static struct xpt_xport xport_default = {
4002 	.xport = XPORT_UNKNOWN,
4003 	.name = "unknown",
4004 	.ops = &xport_default_ops,
4005 };
4006 
4007 CAM_XPT_XPORT(xport_default);
4008 
4009 /*
4010  * A sim structure, listing the SIM entry points and instance
4011  * identification info is passed to xpt_bus_register to hook the SIM
4012  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4013  * for this new bus and places it in the array of buses and assigns
4014  * it a path_id.  The path_id may be influenced by "hard wiring"
4015  * information specified by the user.  Once interrupt services are
4016  * available, the bus will be probed.
4017  */
4018 int32_t
4019 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4020 {
4021 	struct cam_eb *new_bus;
4022 	struct cam_eb *old_bus;
4023 	struct ccb_pathinq cpi;
4024 	struct cam_path *path;
4025 	cam_status status;
4026 
4027 	sim->bus_id = bus;
4028 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4029 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4030 	if (new_bus == NULL) {
4031 		/* Couldn't satisfy request */
4032 		return (CAM_RESRC_UNAVAIL);
4033 	}
4034 
4035 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4036 	TAILQ_INIT(&new_bus->et_entries);
4037 	cam_sim_hold(sim);
4038 	new_bus->sim = sim;
4039 	timevalclear(&new_bus->last_reset);
4040 	new_bus->flags = 0;
4041 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4042 	new_bus->generation = 0;
4043 
4044 	xpt_lock_buses();
4045 	sim->path_id = new_bus->path_id =
4046 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4047 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4048 	while (old_bus != NULL
4049 	    && old_bus->path_id < new_bus->path_id)
4050 		old_bus = TAILQ_NEXT(old_bus, links);
4051 	if (old_bus != NULL)
4052 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4053 	else
4054 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4055 	xsoftc.bus_generation++;
4056 	xpt_unlock_buses();
4057 
4058 	/*
4059 	 * Set a default transport so that a PATH_INQ can be issued to
4060 	 * the SIM.  This will then allow for probing and attaching of
4061 	 * a more appropriate transport.
4062 	 */
4063 	new_bus->xport = &xport_default;
4064 
4065 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4066 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4067 	if (status != CAM_REQ_CMP) {
4068 		xpt_release_bus(new_bus);
4069 		return (CAM_RESRC_UNAVAIL);
4070 	}
4071 
4072 	xpt_path_inq(&cpi, path);
4073 
4074 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4075 		struct xpt_xport **xpt;
4076 
4077 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4078 			if ((*xpt)->xport == cpi.transport) {
4079 				new_bus->xport = *xpt;
4080 				break;
4081 			}
4082 		}
4083 		if (new_bus->xport == NULL) {
4084 			xpt_print(path,
4085 			    "No transport found for %d\n", cpi.transport);
4086 			xpt_release_bus(new_bus);
4087 			free(path, M_CAMXPT);
4088 			return (CAM_RESRC_UNAVAIL);
4089 		}
4090 	}
4091 
4092 	/* Notify interested parties */
4093 	if (sim->path_id != CAM_XPT_PATH_ID) {
4094 
4095 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4096 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4097 			union	ccb *scan_ccb;
4098 
4099 			/* Initiate bus rescan. */
4100 			scan_ccb = xpt_alloc_ccb_nowait();
4101 			if (scan_ccb != NULL) {
4102 				scan_ccb->ccb_h.path = path;
4103 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4104 				scan_ccb->crcn.flags = 0;
4105 				xpt_rescan(scan_ccb);
4106 			} else {
4107 				xpt_print(path,
4108 					  "Can't allocate CCB to scan bus\n");
4109 				xpt_free_path(path);
4110 			}
4111 		} else
4112 			xpt_free_path(path);
4113 	} else
4114 		xpt_free_path(path);
4115 	return (CAM_SUCCESS);
4116 }
4117 
4118 int32_t
4119 xpt_bus_deregister(path_id_t pathid)
4120 {
4121 	struct cam_path bus_path;
4122 	cam_status status;
4123 
4124 	status = xpt_compile_path(&bus_path, NULL, pathid,
4125 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4126 	if (status != CAM_REQ_CMP)
4127 		return (status);
4128 
4129 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4130 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4131 
4132 	/* Release the reference count held while registered. */
4133 	xpt_release_bus(bus_path.bus);
4134 	xpt_release_path(&bus_path);
4135 
4136 	return (CAM_REQ_CMP);
4137 }
4138 
4139 static path_id_t
4140 xptnextfreepathid(void)
4141 {
4142 	struct cam_eb *bus;
4143 	path_id_t pathid;
4144 	const char *strval;
4145 
4146 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4147 	pathid = 0;
4148 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4149 retry:
4150 	/* Find an unoccupied pathid */
4151 	while (bus != NULL && bus->path_id <= pathid) {
4152 		if (bus->path_id == pathid)
4153 			pathid++;
4154 		bus = TAILQ_NEXT(bus, links);
4155 	}
4156 
4157 	/*
4158 	 * Ensure that this pathid is not reserved for
4159 	 * a bus that may be registered in the future.
4160 	 */
4161 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4162 		++pathid;
4163 		/* Start the search over */
4164 		goto retry;
4165 	}
4166 	return (pathid);
4167 }
4168 
4169 static path_id_t
4170 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4171 {
4172 	path_id_t pathid;
4173 	int i, dunit, val;
4174 	char buf[32];
4175 	const char *dname;
4176 
4177 	pathid = CAM_XPT_PATH_ID;
4178 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4179 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4180 		return (pathid);
4181 	i = 0;
4182 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4183 		if (strcmp(dname, "scbus")) {
4184 			/* Avoid a bit of foot shooting. */
4185 			continue;
4186 		}
4187 		if (dunit < 0)		/* unwired?! */
4188 			continue;
4189 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4190 			if (sim_bus == val) {
4191 				pathid = dunit;
4192 				break;
4193 			}
4194 		} else if (sim_bus == 0) {
4195 			/* Unspecified matches bus 0 */
4196 			pathid = dunit;
4197 			break;
4198 		} else {
4199 			printf("Ambiguous scbus configuration for %s%d "
4200 			       "bus %d, cannot wire down.  The kernel "
4201 			       "config entry for scbus%d should "
4202 			       "specify a controller bus.\n"
4203 			       "Scbus will be assigned dynamically.\n",
4204 			       sim_name, sim_unit, sim_bus, dunit);
4205 			break;
4206 		}
4207 	}
4208 
4209 	if (pathid == CAM_XPT_PATH_ID)
4210 		pathid = xptnextfreepathid();
4211 	return (pathid);
4212 }
4213 
4214 static const char *
4215 xpt_async_string(u_int32_t async_code)
4216 {
4217 
4218 	switch (async_code) {
4219 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4220 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4221 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4222 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4223 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4224 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4225 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4226 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4227 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4228 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4229 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4230 	case AC_CONTRACT: return ("AC_CONTRACT");
4231 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4232 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4233 	}
4234 	return ("AC_UNKNOWN");
4235 }
4236 
4237 static int
4238 xpt_async_size(u_int32_t async_code)
4239 {
4240 
4241 	switch (async_code) {
4242 	case AC_BUS_RESET: return (0);
4243 	case AC_UNSOL_RESEL: return (0);
4244 	case AC_SCSI_AEN: return (0);
4245 	case AC_SENT_BDR: return (0);
4246 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4247 	case AC_PATH_DEREGISTERED: return (0);
4248 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4249 	case AC_LOST_DEVICE: return (0);
4250 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4251 	case AC_INQ_CHANGED: return (0);
4252 	case AC_GETDEV_CHANGED: return (0);
4253 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4254 	case AC_ADVINFO_CHANGED: return (-1);
4255 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4256 	}
4257 	return (0);
4258 }
4259 
4260 static int
4261 xpt_async_process_dev(struct cam_ed *device, void *arg)
4262 {
4263 	union ccb *ccb = arg;
4264 	struct cam_path *path = ccb->ccb_h.path;
4265 	void *async_arg = ccb->casync.async_arg_ptr;
4266 	u_int32_t async_code = ccb->casync.async_code;
4267 	int relock;
4268 
4269 	if (path->device != device
4270 	 && path->device->lun_id != CAM_LUN_WILDCARD
4271 	 && device->lun_id != CAM_LUN_WILDCARD)
4272 		return (1);
4273 
4274 	/*
4275 	 * The async callback could free the device.
4276 	 * If it is a broadcast async, it doesn't hold
4277 	 * device reference, so take our own reference.
4278 	 */
4279 	xpt_acquire_device(device);
4280 
4281 	/*
4282 	 * If async for specific device is to be delivered to
4283 	 * the wildcard client, take the specific device lock.
4284 	 * XXX: We may need a way for client to specify it.
4285 	 */
4286 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4287 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4288 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4289 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4290 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4291 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4292 		mtx_unlock(&device->device_mtx);
4293 		xpt_path_lock(path);
4294 		relock = 1;
4295 	} else
4296 		relock = 0;
4297 
4298 	(*(device->target->bus->xport->ops->async))(async_code,
4299 	    device->target->bus, device->target, device, async_arg);
4300 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4301 
4302 	if (relock) {
4303 		xpt_path_unlock(path);
4304 		mtx_lock(&device->device_mtx);
4305 	}
4306 	xpt_release_device(device);
4307 	return (1);
4308 }
4309 
4310 static int
4311 xpt_async_process_tgt(struct cam_et *target, void *arg)
4312 {
4313 	union ccb *ccb = arg;
4314 	struct cam_path *path = ccb->ccb_h.path;
4315 
4316 	if (path->target != target
4317 	 && path->target->target_id != CAM_TARGET_WILDCARD
4318 	 && target->target_id != CAM_TARGET_WILDCARD)
4319 		return (1);
4320 
4321 	if (ccb->casync.async_code == AC_SENT_BDR) {
4322 		/* Update our notion of when the last reset occurred */
4323 		microtime(&target->last_reset);
4324 	}
4325 
4326 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4327 }
4328 
4329 static void
4330 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4331 {
4332 	struct cam_eb *bus;
4333 	struct cam_path *path;
4334 	void *async_arg;
4335 	u_int32_t async_code;
4336 
4337 	path = ccb->ccb_h.path;
4338 	async_code = ccb->casync.async_code;
4339 	async_arg = ccb->casync.async_arg_ptr;
4340 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4341 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4342 	bus = path->bus;
4343 
4344 	if (async_code == AC_BUS_RESET) {
4345 		/* Update our notion of when the last reset occurred */
4346 		microtime(&bus->last_reset);
4347 	}
4348 
4349 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4350 
4351 	/*
4352 	 * If this wasn't a fully wildcarded async, tell all
4353 	 * clients that want all async events.
4354 	 */
4355 	if (bus != xpt_periph->path->bus) {
4356 		xpt_path_lock(xpt_periph->path);
4357 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4358 		xpt_path_unlock(xpt_periph->path);
4359 	}
4360 
4361 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4362 		xpt_release_devq(path, 1, TRUE);
4363 	else
4364 		xpt_release_simq(path->bus->sim, TRUE);
4365 	if (ccb->casync.async_arg_size > 0)
4366 		free(async_arg, M_CAMXPT);
4367 	xpt_free_path(path);
4368 	xpt_free_ccb(ccb);
4369 }
4370 
4371 static void
4372 xpt_async_bcast(struct async_list *async_head,
4373 		u_int32_t async_code,
4374 		struct cam_path *path, void *async_arg)
4375 {
4376 	struct async_node *cur_entry;
4377 	struct mtx *mtx;
4378 
4379 	cur_entry = SLIST_FIRST(async_head);
4380 	while (cur_entry != NULL) {
4381 		struct async_node *next_entry;
4382 		/*
4383 		 * Grab the next list entry before we call the current
4384 		 * entry's callback.  This is because the callback function
4385 		 * can delete its async callback entry.
4386 		 */
4387 		next_entry = SLIST_NEXT(cur_entry, links);
4388 		if ((cur_entry->event_enable & async_code) != 0) {
4389 			mtx = cur_entry->event_lock ?
4390 			    path->device->sim->mtx : NULL;
4391 			if (mtx)
4392 				mtx_lock(mtx);
4393 			cur_entry->callback(cur_entry->callback_arg,
4394 					    async_code, path,
4395 					    async_arg);
4396 			if (mtx)
4397 				mtx_unlock(mtx);
4398 		}
4399 		cur_entry = next_entry;
4400 	}
4401 }
4402 
4403 void
4404 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4405 {
4406 	union ccb *ccb;
4407 	int size;
4408 
4409 	ccb = xpt_alloc_ccb_nowait();
4410 	if (ccb == NULL) {
4411 		xpt_print(path, "Can't allocate CCB to send %s\n",
4412 		    xpt_async_string(async_code));
4413 		return;
4414 	}
4415 
4416 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4417 		xpt_print(path, "Can't allocate path to send %s\n",
4418 		    xpt_async_string(async_code));
4419 		xpt_free_ccb(ccb);
4420 		return;
4421 	}
4422 	ccb->ccb_h.path->periph = NULL;
4423 	ccb->ccb_h.func_code = XPT_ASYNC;
4424 	ccb->ccb_h.cbfcnp = xpt_async_process;
4425 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4426 	ccb->casync.async_code = async_code;
4427 	ccb->casync.async_arg_size = 0;
4428 	size = xpt_async_size(async_code);
4429 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4430 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4431 		ccb->ccb_h.func_code,
4432 		xpt_action_name(ccb->ccb_h.func_code),
4433 		async_code,
4434 		xpt_async_string(async_code)));
4435 	if (size > 0 && async_arg != NULL) {
4436 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4437 		if (ccb->casync.async_arg_ptr == NULL) {
4438 			xpt_print(path, "Can't allocate argument to send %s\n",
4439 			    xpt_async_string(async_code));
4440 			xpt_free_path(ccb->ccb_h.path);
4441 			xpt_free_ccb(ccb);
4442 			return;
4443 		}
4444 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4445 		ccb->casync.async_arg_size = size;
4446 	} else if (size < 0) {
4447 		ccb->casync.async_arg_ptr = async_arg;
4448 		ccb->casync.async_arg_size = size;
4449 	}
4450 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4451 		xpt_freeze_devq(path, 1);
4452 	else
4453 		xpt_freeze_simq(path->bus->sim, 1);
4454 	xpt_done(ccb);
4455 }
4456 
4457 static void
4458 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4459 		      struct cam_et *target, struct cam_ed *device,
4460 		      void *async_arg)
4461 {
4462 
4463 	/*
4464 	 * We only need to handle events for real devices.
4465 	 */
4466 	if (target->target_id == CAM_TARGET_WILDCARD
4467 	 || device->lun_id == CAM_LUN_WILDCARD)
4468 		return;
4469 
4470 	printf("%s called\n", __func__);
4471 }
4472 
4473 static uint32_t
4474 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4475 {
4476 	struct cam_devq	*devq;
4477 	uint32_t freeze;
4478 
4479 	devq = dev->sim->devq;
4480 	mtx_assert(&devq->send_mtx, MA_OWNED);
4481 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4482 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4483 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4484 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4485 	/* Remove frozen device from sendq. */
4486 	if (device_is_queued(dev))
4487 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4488 	return (freeze);
4489 }
4490 
4491 u_int32_t
4492 xpt_freeze_devq(struct cam_path *path, u_int count)
4493 {
4494 	struct cam_ed	*dev = path->device;
4495 	struct cam_devq	*devq;
4496 	uint32_t	 freeze;
4497 
4498 	devq = dev->sim->devq;
4499 	mtx_lock(&devq->send_mtx);
4500 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4501 	freeze = xpt_freeze_devq_device(dev, count);
4502 	mtx_unlock(&devq->send_mtx);
4503 	return (freeze);
4504 }
4505 
4506 u_int32_t
4507 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4508 {
4509 	struct cam_devq	*devq;
4510 	uint32_t	 freeze;
4511 
4512 	devq = sim->devq;
4513 	mtx_lock(&devq->send_mtx);
4514 	freeze = (devq->send_queue.qfrozen_cnt += count);
4515 	mtx_unlock(&devq->send_mtx);
4516 	return (freeze);
4517 }
4518 
4519 static void
4520 xpt_release_devq_timeout(void *arg)
4521 {
4522 	struct cam_ed *dev;
4523 	struct cam_devq *devq;
4524 
4525 	dev = (struct cam_ed *)arg;
4526 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4527 	devq = dev->sim->devq;
4528 	mtx_assert(&devq->send_mtx, MA_OWNED);
4529 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4530 		xpt_run_devq(devq);
4531 }
4532 
4533 void
4534 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4535 {
4536 	struct cam_ed *dev;
4537 	struct cam_devq *devq;
4538 
4539 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4540 	    count, run_queue));
4541 	dev = path->device;
4542 	devq = dev->sim->devq;
4543 	mtx_lock(&devq->send_mtx);
4544 	if (xpt_release_devq_device(dev, count, run_queue))
4545 		xpt_run_devq(dev->sim->devq);
4546 	mtx_unlock(&devq->send_mtx);
4547 }
4548 
4549 static int
4550 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4551 {
4552 
4553 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4554 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4555 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4556 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4557 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4558 #ifdef INVARIANTS
4559 		printf("xpt_release_devq(): requested %u > present %u\n",
4560 		    count, dev->ccbq.queue.qfrozen_cnt);
4561 #endif
4562 		count = dev->ccbq.queue.qfrozen_cnt;
4563 	}
4564 	dev->ccbq.queue.qfrozen_cnt -= count;
4565 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4566 		/*
4567 		 * No longer need to wait for a successful
4568 		 * command completion.
4569 		 */
4570 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4571 		/*
4572 		 * Remove any timeouts that might be scheduled
4573 		 * to release this queue.
4574 		 */
4575 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4576 			callout_stop(&dev->callout);
4577 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4578 		}
4579 		/*
4580 		 * Now that we are unfrozen schedule the
4581 		 * device so any pending transactions are
4582 		 * run.
4583 		 */
4584 		xpt_schedule_devq(dev->sim->devq, dev);
4585 	} else
4586 		run_queue = 0;
4587 	return (run_queue);
4588 }
4589 
4590 void
4591 xpt_release_simq(struct cam_sim *sim, int run_queue)
4592 {
4593 	struct cam_devq	*devq;
4594 
4595 	devq = sim->devq;
4596 	mtx_lock(&devq->send_mtx);
4597 	if (devq->send_queue.qfrozen_cnt <= 0) {
4598 #ifdef INVARIANTS
4599 		printf("xpt_release_simq: requested 1 > present %u\n",
4600 		    devq->send_queue.qfrozen_cnt);
4601 #endif
4602 	} else
4603 		devq->send_queue.qfrozen_cnt--;
4604 	if (devq->send_queue.qfrozen_cnt == 0) {
4605 		/*
4606 		 * If there is a timeout scheduled to release this
4607 		 * sim queue, remove it.  The queue frozen count is
4608 		 * already at 0.
4609 		 */
4610 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4611 			callout_stop(&sim->callout);
4612 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4613 		}
4614 		if (run_queue) {
4615 			/*
4616 			 * Now that we are unfrozen run the send queue.
4617 			 */
4618 			xpt_run_devq(sim->devq);
4619 		}
4620 	}
4621 	mtx_unlock(&devq->send_mtx);
4622 }
4623 
4624 /*
4625  * XXX Appears to be unused.
4626  */
4627 static void
4628 xpt_release_simq_timeout(void *arg)
4629 {
4630 	struct cam_sim *sim;
4631 
4632 	sim = (struct cam_sim *)arg;
4633 	xpt_release_simq(sim, /* run_queue */ TRUE);
4634 }
4635 
4636 void
4637 xpt_done(union ccb *done_ccb)
4638 {
4639 	struct cam_doneq *queue;
4640 	int	run, hash;
4641 
4642 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4643 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4644 	    done_ccb->csio.bio != NULL)
4645 		biotrack(done_ccb->csio.bio, __func__);
4646 #endif
4647 
4648 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4649 	    ("xpt_done: func= %#x %s status %#x\n",
4650 		done_ccb->ccb_h.func_code,
4651 		xpt_action_name(done_ccb->ccb_h.func_code),
4652 		done_ccb->ccb_h.status));
4653 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4654 		return;
4655 
4656 	/* Store the time the ccb was in the sim */
4657 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4658 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4659 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4660 	queue = &cam_doneqs[hash];
4661 	mtx_lock(&queue->cam_doneq_mtx);
4662 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4663 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4664 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4665 	mtx_unlock(&queue->cam_doneq_mtx);
4666 	if (run)
4667 		wakeup(&queue->cam_doneq);
4668 }
4669 
4670 void
4671 xpt_done_direct(union ccb *done_ccb)
4672 {
4673 
4674 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4675 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4676 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4677 		return;
4678 
4679 	/* Store the time the ccb was in the sim */
4680 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4681 	xpt_done_process(&done_ccb->ccb_h);
4682 }
4683 
4684 union ccb *
4685 xpt_alloc_ccb()
4686 {
4687 	union ccb *new_ccb;
4688 
4689 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4690 	return (new_ccb);
4691 }
4692 
4693 union ccb *
4694 xpt_alloc_ccb_nowait()
4695 {
4696 	union ccb *new_ccb;
4697 
4698 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4699 	return (new_ccb);
4700 }
4701 
4702 void
4703 xpt_free_ccb(union ccb *free_ccb)
4704 {
4705 	free(free_ccb, M_CAMCCB);
4706 }
4707 
4708 
4709 
4710 /* Private XPT functions */
4711 
4712 /*
4713  * Get a CAM control block for the caller. Charge the structure to the device
4714  * referenced by the path.  If we don't have sufficient resources to allocate
4715  * more ccbs, we return NULL.
4716  */
4717 static union ccb *
4718 xpt_get_ccb_nowait(struct cam_periph *periph)
4719 {
4720 	union ccb *new_ccb;
4721 
4722 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4723 	if (new_ccb == NULL)
4724 		return (NULL);
4725 	periph->periph_allocated++;
4726 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4727 	return (new_ccb);
4728 }
4729 
4730 static union ccb *
4731 xpt_get_ccb(struct cam_periph *periph)
4732 {
4733 	union ccb *new_ccb;
4734 
4735 	cam_periph_unlock(periph);
4736 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4737 	cam_periph_lock(periph);
4738 	periph->periph_allocated++;
4739 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4740 	return (new_ccb);
4741 }
4742 
4743 union ccb *
4744 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4745 {
4746 	struct ccb_hdr *ccb_h;
4747 
4748 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4749 	cam_periph_assert(periph, MA_OWNED);
4750 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4751 	    ccb_h->pinfo.priority != priority) {
4752 		if (priority < periph->immediate_priority) {
4753 			periph->immediate_priority = priority;
4754 			xpt_run_allocq(periph, 0);
4755 		} else
4756 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4757 			    "cgticb", 0);
4758 	}
4759 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4760 	return ((union ccb *)ccb_h);
4761 }
4762 
4763 static void
4764 xpt_acquire_bus(struct cam_eb *bus)
4765 {
4766 
4767 	xpt_lock_buses();
4768 	bus->refcount++;
4769 	xpt_unlock_buses();
4770 }
4771 
4772 static void
4773 xpt_release_bus(struct cam_eb *bus)
4774 {
4775 
4776 	xpt_lock_buses();
4777 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4778 	if (--bus->refcount > 0) {
4779 		xpt_unlock_buses();
4780 		return;
4781 	}
4782 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4783 	xsoftc.bus_generation++;
4784 	xpt_unlock_buses();
4785 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4786 	    ("destroying bus, but target list is not empty"));
4787 	cam_sim_release(bus->sim);
4788 	mtx_destroy(&bus->eb_mtx);
4789 	free(bus, M_CAMXPT);
4790 }
4791 
4792 static struct cam_et *
4793 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4794 {
4795 	struct cam_et *cur_target, *target;
4796 
4797 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4798 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4799 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4800 					 M_NOWAIT|M_ZERO);
4801 	if (target == NULL)
4802 		return (NULL);
4803 
4804 	TAILQ_INIT(&target->ed_entries);
4805 	target->bus = bus;
4806 	target->target_id = target_id;
4807 	target->refcount = 1;
4808 	target->generation = 0;
4809 	target->luns = NULL;
4810 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4811 	timevalclear(&target->last_reset);
4812 	/*
4813 	 * Hold a reference to our parent bus so it
4814 	 * will not go away before we do.
4815 	 */
4816 	bus->refcount++;
4817 
4818 	/* Insertion sort into our bus's target list */
4819 	cur_target = TAILQ_FIRST(&bus->et_entries);
4820 	while (cur_target != NULL && cur_target->target_id < target_id)
4821 		cur_target = TAILQ_NEXT(cur_target, links);
4822 	if (cur_target != NULL) {
4823 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4824 	} else {
4825 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4826 	}
4827 	bus->generation++;
4828 	return (target);
4829 }
4830 
4831 static void
4832 xpt_acquire_target(struct cam_et *target)
4833 {
4834 	struct cam_eb *bus = target->bus;
4835 
4836 	mtx_lock(&bus->eb_mtx);
4837 	target->refcount++;
4838 	mtx_unlock(&bus->eb_mtx);
4839 }
4840 
4841 static void
4842 xpt_release_target(struct cam_et *target)
4843 {
4844 	struct cam_eb *bus = target->bus;
4845 
4846 	mtx_lock(&bus->eb_mtx);
4847 	if (--target->refcount > 0) {
4848 		mtx_unlock(&bus->eb_mtx);
4849 		return;
4850 	}
4851 	TAILQ_REMOVE(&bus->et_entries, target, links);
4852 	bus->generation++;
4853 	mtx_unlock(&bus->eb_mtx);
4854 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4855 	    ("destroying target, but device list is not empty"));
4856 	xpt_release_bus(bus);
4857 	mtx_destroy(&target->luns_mtx);
4858 	if (target->luns)
4859 		free(target->luns, M_CAMXPT);
4860 	free(target, M_CAMXPT);
4861 }
4862 
4863 static struct cam_ed *
4864 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4865 			 lun_id_t lun_id)
4866 {
4867 	struct cam_ed *device;
4868 
4869 	device = xpt_alloc_device(bus, target, lun_id);
4870 	if (device == NULL)
4871 		return (NULL);
4872 
4873 	device->mintags = 1;
4874 	device->maxtags = 1;
4875 	return (device);
4876 }
4877 
4878 static void
4879 xpt_destroy_device(void *context, int pending)
4880 {
4881 	struct cam_ed	*device = context;
4882 
4883 	mtx_lock(&device->device_mtx);
4884 	mtx_destroy(&device->device_mtx);
4885 	free(device, M_CAMDEV);
4886 }
4887 
4888 struct cam_ed *
4889 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4890 {
4891 	struct cam_ed	*cur_device, *device;
4892 	struct cam_devq	*devq;
4893 	cam_status status;
4894 
4895 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4896 	/* Make space for us in the device queue on our bus */
4897 	devq = bus->sim->devq;
4898 	mtx_lock(&devq->send_mtx);
4899 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4900 	mtx_unlock(&devq->send_mtx);
4901 	if (status != CAM_REQ_CMP)
4902 		return (NULL);
4903 
4904 	device = (struct cam_ed *)malloc(sizeof(*device),
4905 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4906 	if (device == NULL)
4907 		return (NULL);
4908 
4909 	cam_init_pinfo(&device->devq_entry);
4910 	device->target = target;
4911 	device->lun_id = lun_id;
4912 	device->sim = bus->sim;
4913 	if (cam_ccbq_init(&device->ccbq,
4914 			  bus->sim->max_dev_openings) != 0) {
4915 		free(device, M_CAMDEV);
4916 		return (NULL);
4917 	}
4918 	SLIST_INIT(&device->asyncs);
4919 	SLIST_INIT(&device->periphs);
4920 	device->generation = 0;
4921 	device->flags = CAM_DEV_UNCONFIGURED;
4922 	device->tag_delay_count = 0;
4923 	device->tag_saved_openings = 0;
4924 	device->refcount = 1;
4925 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4926 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4927 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4928 	/*
4929 	 * Hold a reference to our parent bus so it
4930 	 * will not go away before we do.
4931 	 */
4932 	target->refcount++;
4933 
4934 	cur_device = TAILQ_FIRST(&target->ed_entries);
4935 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4936 		cur_device = TAILQ_NEXT(cur_device, links);
4937 	if (cur_device != NULL)
4938 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4939 	else
4940 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4941 	target->generation++;
4942 	return (device);
4943 }
4944 
4945 void
4946 xpt_acquire_device(struct cam_ed *device)
4947 {
4948 	struct cam_eb *bus = device->target->bus;
4949 
4950 	mtx_lock(&bus->eb_mtx);
4951 	device->refcount++;
4952 	mtx_unlock(&bus->eb_mtx);
4953 }
4954 
4955 void
4956 xpt_release_device(struct cam_ed *device)
4957 {
4958 	struct cam_eb *bus = device->target->bus;
4959 	struct cam_devq *devq;
4960 
4961 	mtx_lock(&bus->eb_mtx);
4962 	if (--device->refcount > 0) {
4963 		mtx_unlock(&bus->eb_mtx);
4964 		return;
4965 	}
4966 
4967 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4968 	device->target->generation++;
4969 	mtx_unlock(&bus->eb_mtx);
4970 
4971 	/* Release our slot in the devq */
4972 	devq = bus->sim->devq;
4973 	mtx_lock(&devq->send_mtx);
4974 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4975 	mtx_unlock(&devq->send_mtx);
4976 
4977 	KASSERT(SLIST_EMPTY(&device->periphs),
4978 	    ("destroying device, but periphs list is not empty"));
4979 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4980 	    ("destroying device while still queued for ccbs"));
4981 
4982 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4983 		callout_stop(&device->callout);
4984 
4985 	xpt_release_target(device->target);
4986 
4987 	cam_ccbq_fini(&device->ccbq);
4988 	/*
4989 	 * Free allocated memory.  free(9) does nothing if the
4990 	 * supplied pointer is NULL, so it is safe to call without
4991 	 * checking.
4992 	 */
4993 	free(device->supported_vpds, M_CAMXPT);
4994 	free(device->device_id, M_CAMXPT);
4995 	free(device->ext_inq, M_CAMXPT);
4996 	free(device->physpath, M_CAMXPT);
4997 	free(device->rcap_buf, M_CAMXPT);
4998 	free(device->serial_num, M_CAMXPT);
4999 	free(device->nvme_data, M_CAMXPT);
5000 	free(device->nvme_cdata, M_CAMXPT);
5001 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
5002 }
5003 
5004 u_int32_t
5005 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5006 {
5007 	int	result;
5008 	struct	cam_ed *dev;
5009 
5010 	dev = path->device;
5011 	mtx_lock(&dev->sim->devq->send_mtx);
5012 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5013 	mtx_unlock(&dev->sim->devq->send_mtx);
5014 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5015 	 || (dev->inq_flags & SID_CmdQue) != 0)
5016 		dev->tag_saved_openings = newopenings;
5017 	return (result);
5018 }
5019 
5020 static struct cam_eb *
5021 xpt_find_bus(path_id_t path_id)
5022 {
5023 	struct cam_eb *bus;
5024 
5025 	xpt_lock_buses();
5026 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5027 	     bus != NULL;
5028 	     bus = TAILQ_NEXT(bus, links)) {
5029 		if (bus->path_id == path_id) {
5030 			bus->refcount++;
5031 			break;
5032 		}
5033 	}
5034 	xpt_unlock_buses();
5035 	return (bus);
5036 }
5037 
5038 static struct cam_et *
5039 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5040 {
5041 	struct cam_et *target;
5042 
5043 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5044 	for (target = TAILQ_FIRST(&bus->et_entries);
5045 	     target != NULL;
5046 	     target = TAILQ_NEXT(target, links)) {
5047 		if (target->target_id == target_id) {
5048 			target->refcount++;
5049 			break;
5050 		}
5051 	}
5052 	return (target);
5053 }
5054 
5055 static struct cam_ed *
5056 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5057 {
5058 	struct cam_ed *device;
5059 
5060 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5061 	for (device = TAILQ_FIRST(&target->ed_entries);
5062 	     device != NULL;
5063 	     device = TAILQ_NEXT(device, links)) {
5064 		if (device->lun_id == lun_id) {
5065 			device->refcount++;
5066 			break;
5067 		}
5068 	}
5069 	return (device);
5070 }
5071 
5072 void
5073 xpt_start_tags(struct cam_path *path)
5074 {
5075 	struct ccb_relsim crs;
5076 	struct cam_ed *device;
5077 	struct cam_sim *sim;
5078 	int    newopenings;
5079 
5080 	device = path->device;
5081 	sim = path->bus->sim;
5082 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5083 	xpt_freeze_devq(path, /*count*/1);
5084 	device->inq_flags |= SID_CmdQue;
5085 	if (device->tag_saved_openings != 0)
5086 		newopenings = device->tag_saved_openings;
5087 	else
5088 		newopenings = min(device->maxtags,
5089 				  sim->max_tagged_dev_openings);
5090 	xpt_dev_ccbq_resize(path, newopenings);
5091 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5092 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5093 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5094 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5095 	crs.openings
5096 	    = crs.release_timeout
5097 	    = crs.qfrozen_cnt
5098 	    = 0;
5099 	xpt_action((union ccb *)&crs);
5100 }
5101 
5102 void
5103 xpt_stop_tags(struct cam_path *path)
5104 {
5105 	struct ccb_relsim crs;
5106 	struct cam_ed *device;
5107 	struct cam_sim *sim;
5108 
5109 	device = path->device;
5110 	sim = path->bus->sim;
5111 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5112 	device->tag_delay_count = 0;
5113 	xpt_freeze_devq(path, /*count*/1);
5114 	device->inq_flags &= ~SID_CmdQue;
5115 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5116 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5117 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5118 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5119 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5120 	crs.openings
5121 	    = crs.release_timeout
5122 	    = crs.qfrozen_cnt
5123 	    = 0;
5124 	xpt_action((union ccb *)&crs);
5125 }
5126 
5127 /*
5128  * Assume all possible buses are detected by this time, so allow boot
5129  * as soon as they all are scanned.
5130  */
5131 static void
5132 xpt_boot_delay(void *arg)
5133 {
5134 
5135 	xpt_release_boot();
5136 }
5137 
5138 /*
5139  * Now that all config hooks have completed, start boot_delay timer,
5140  * waiting for possibly still undetected buses (USB) to appear.
5141  */
5142 static void
5143 xpt_ch_done(void *arg)
5144 {
5145 
5146 	callout_init(&xsoftc.boot_callout, 1);
5147 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5148 	    xpt_boot_delay, NULL, 0);
5149 }
5150 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5151 
5152 /*
5153  * Now that interrupts are enabled, go find our devices
5154  */
5155 static void
5156 xpt_config(void *arg)
5157 {
5158 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5159 		printf("xpt_config: failed to create taskqueue thread.\n");
5160 
5161 	/* Setup debugging path */
5162 	if (cam_dflags != CAM_DEBUG_NONE) {
5163 		if (xpt_create_path(&cam_dpath, NULL,
5164 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5165 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5166 			printf("xpt_config: xpt_create_path() failed for debug"
5167 			       " target %d:%d:%d, debugging disabled\n",
5168 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5169 			cam_dflags = CAM_DEBUG_NONE;
5170 		}
5171 	} else
5172 		cam_dpath = NULL;
5173 
5174 	periphdriver_init(1);
5175 	xpt_hold_boot();
5176 
5177 	/* Fire up rescan thread. */
5178 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5179 	    "cam", "scanner")) {
5180 		printf("xpt_config: failed to create rescan thread.\n");
5181 	}
5182 }
5183 
5184 void
5185 xpt_hold_boot_locked(void)
5186 {
5187 
5188 	if (xsoftc.buses_to_config++ == 0)
5189 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5190 }
5191 
5192 void
5193 xpt_hold_boot(void)
5194 {
5195 
5196 	xpt_lock_buses();
5197 	xpt_hold_boot_locked();
5198 	xpt_unlock_buses();
5199 }
5200 
5201 void
5202 xpt_release_boot(void)
5203 {
5204 
5205 	xpt_lock_buses();
5206 	if (--xsoftc.buses_to_config == 0) {
5207 		if (xsoftc.buses_config_done == 0) {
5208 			xsoftc.buses_config_done = 1;
5209 			xsoftc.buses_to_config++;
5210 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5211 			    NULL);
5212 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5213 		} else
5214 			root_mount_rel(&xsoftc.xpt_rootmount);
5215 	}
5216 	xpt_unlock_buses();
5217 }
5218 
5219 /*
5220  * If the given device only has one peripheral attached to it, and if that
5221  * peripheral is the passthrough driver, announce it.  This insures that the
5222  * user sees some sort of announcement for every peripheral in their system.
5223  */
5224 static int
5225 xptpassannouncefunc(struct cam_ed *device, void *arg)
5226 {
5227 	struct cam_periph *periph;
5228 	int i;
5229 
5230 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5231 	     periph = SLIST_NEXT(periph, periph_links), i++);
5232 
5233 	periph = SLIST_FIRST(&device->periphs);
5234 	if ((i == 1)
5235 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5236 		xpt_announce_periph(periph, NULL);
5237 
5238 	return(1);
5239 }
5240 
5241 static void
5242 xpt_finishconfig_task(void *context, int pending)
5243 {
5244 
5245 	periphdriver_init(2);
5246 	/*
5247 	 * Check for devices with no "standard" peripheral driver
5248 	 * attached.  For any devices like that, announce the
5249 	 * passthrough driver so the user will see something.
5250 	 */
5251 	if (!bootverbose)
5252 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5253 
5254 	xpt_release_boot();
5255 }
5256 
5257 cam_status
5258 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5259 		   struct cam_path *path)
5260 {
5261 	struct ccb_setasync csa;
5262 	cam_status status;
5263 	int xptpath = 0;
5264 
5265 	if (path == NULL) {
5266 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5267 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5268 		if (status != CAM_REQ_CMP)
5269 			return (status);
5270 		xpt_path_lock(path);
5271 		xptpath = 1;
5272 	}
5273 
5274 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5275 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5276 	csa.event_enable = event;
5277 	csa.callback = cbfunc;
5278 	csa.callback_arg = cbarg;
5279 	xpt_action((union ccb *)&csa);
5280 	status = csa.ccb_h.status;
5281 
5282 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5283 	    ("xpt_register_async: func %p\n", cbfunc));
5284 
5285 	if (xptpath) {
5286 		xpt_path_unlock(path);
5287 		xpt_free_path(path);
5288 	}
5289 
5290 	if ((status == CAM_REQ_CMP) &&
5291 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5292 		/*
5293 		 * Get this peripheral up to date with all
5294 		 * the currently existing devices.
5295 		 */
5296 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5297 	}
5298 	if ((status == CAM_REQ_CMP) &&
5299 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5300 		/*
5301 		 * Get this peripheral up to date with all
5302 		 * the currently existing buses.
5303 		 */
5304 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5305 	}
5306 
5307 	return (status);
5308 }
5309 
5310 static void
5311 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5312 {
5313 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5314 
5315 	switch (work_ccb->ccb_h.func_code) {
5316 	/* Common cases first */
5317 	case XPT_PATH_INQ:		/* Path routing inquiry */
5318 	{
5319 		struct ccb_pathinq *cpi;
5320 
5321 		cpi = &work_ccb->cpi;
5322 		cpi->version_num = 1; /* XXX??? */
5323 		cpi->hba_inquiry = 0;
5324 		cpi->target_sprt = 0;
5325 		cpi->hba_misc = 0;
5326 		cpi->hba_eng_cnt = 0;
5327 		cpi->max_target = 0;
5328 		cpi->max_lun = 0;
5329 		cpi->initiator_id = 0;
5330 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5331 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5332 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5333 		cpi->unit_number = sim->unit_number;
5334 		cpi->bus_id = sim->bus_id;
5335 		cpi->base_transfer_speed = 0;
5336 		cpi->protocol = PROTO_UNSPECIFIED;
5337 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5338 		cpi->transport = XPORT_UNSPECIFIED;
5339 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5340 		cpi->ccb_h.status = CAM_REQ_CMP;
5341 		xpt_done(work_ccb);
5342 		break;
5343 	}
5344 	default:
5345 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5346 		xpt_done(work_ccb);
5347 		break;
5348 	}
5349 }
5350 
5351 /*
5352  * The xpt as a "controller" has no interrupt sources, so polling
5353  * is a no-op.
5354  */
5355 static void
5356 xptpoll(struct cam_sim *sim)
5357 {
5358 }
5359 
5360 void
5361 xpt_lock_buses(void)
5362 {
5363 	mtx_lock(&xsoftc.xpt_topo_lock);
5364 }
5365 
5366 void
5367 xpt_unlock_buses(void)
5368 {
5369 	mtx_unlock(&xsoftc.xpt_topo_lock);
5370 }
5371 
5372 struct mtx *
5373 xpt_path_mtx(struct cam_path *path)
5374 {
5375 
5376 	return (&path->device->device_mtx);
5377 }
5378 
5379 static void
5380 xpt_done_process(struct ccb_hdr *ccb_h)
5381 {
5382 	struct cam_sim *sim = NULL;
5383 	struct cam_devq *devq = NULL;
5384 	struct mtx *mtx = NULL;
5385 
5386 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5387 	struct ccb_scsiio *csio;
5388 
5389 	if (ccb_h->func_code == XPT_SCSI_IO) {
5390 		csio = &((union ccb *)ccb_h)->csio;
5391 		if (csio->bio != NULL)
5392 			biotrack(csio->bio, __func__);
5393 	}
5394 #endif
5395 
5396 	if (ccb_h->flags & CAM_HIGH_POWER) {
5397 		struct highpowerlist	*hphead;
5398 		struct cam_ed		*device;
5399 
5400 		mtx_lock(&xsoftc.xpt_highpower_lock);
5401 		hphead = &xsoftc.highpowerq;
5402 
5403 		device = STAILQ_FIRST(hphead);
5404 
5405 		/*
5406 		 * Increment the count since this command is done.
5407 		 */
5408 		xsoftc.num_highpower++;
5409 
5410 		/*
5411 		 * Any high powered commands queued up?
5412 		 */
5413 		if (device != NULL) {
5414 
5415 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5416 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5417 
5418 			mtx_lock(&device->sim->devq->send_mtx);
5419 			xpt_release_devq_device(device,
5420 					 /*count*/1, /*runqueue*/TRUE);
5421 			mtx_unlock(&device->sim->devq->send_mtx);
5422 		} else
5423 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5424 	}
5425 
5426 	/*
5427 	 * Insulate against a race where the periph is destroyed but CCBs are
5428 	 * still not all processed. This shouldn't happen, but allows us better
5429 	 * bug diagnostic when it does.
5430 	 */
5431 	if (ccb_h->path->bus)
5432 		sim = ccb_h->path->bus->sim;
5433 
5434 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5435 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5436 		xpt_release_simq(sim, /*run_queue*/FALSE);
5437 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5438 	}
5439 
5440 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5441 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5442 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5443 		ccb_h->status &= ~CAM_DEV_QFRZN;
5444 	}
5445 
5446 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5447 		struct cam_ed *dev = ccb_h->path->device;
5448 
5449 		if (sim)
5450 			devq = sim->devq;
5451 		KASSERT(devq, ("Periph disappeared with request pending."));
5452 
5453 		mtx_lock(&devq->send_mtx);
5454 		devq->send_active--;
5455 		devq->send_openings++;
5456 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5457 
5458 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5459 		  && (dev->ccbq.dev_active == 0))) {
5460 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5461 			xpt_release_devq_device(dev, /*count*/1,
5462 					 /*run_queue*/FALSE);
5463 		}
5464 
5465 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5466 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5467 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5468 			xpt_release_devq_device(dev, /*count*/1,
5469 					 /*run_queue*/FALSE);
5470 		}
5471 
5472 		if (!device_is_queued(dev))
5473 			(void)xpt_schedule_devq(devq, dev);
5474 		xpt_run_devq(devq);
5475 		mtx_unlock(&devq->send_mtx);
5476 
5477 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5478 			mtx = xpt_path_mtx(ccb_h->path);
5479 			mtx_lock(mtx);
5480 
5481 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5482 			 && (--dev->tag_delay_count == 0))
5483 				xpt_start_tags(ccb_h->path);
5484 		}
5485 	}
5486 
5487 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5488 		if (mtx == NULL) {
5489 			mtx = xpt_path_mtx(ccb_h->path);
5490 			mtx_lock(mtx);
5491 		}
5492 	} else {
5493 		if (mtx != NULL) {
5494 			mtx_unlock(mtx);
5495 			mtx = NULL;
5496 		}
5497 	}
5498 
5499 	/* Call the peripheral driver's callback */
5500 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5501 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5502 	if (mtx != NULL)
5503 		mtx_unlock(mtx);
5504 }
5505 
5506 void
5507 xpt_done_td(void *arg)
5508 {
5509 	struct cam_doneq *queue = arg;
5510 	struct ccb_hdr *ccb_h;
5511 	STAILQ_HEAD(, ccb_hdr)	doneq;
5512 
5513 	STAILQ_INIT(&doneq);
5514 	mtx_lock(&queue->cam_doneq_mtx);
5515 	while (1) {
5516 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5517 			queue->cam_doneq_sleep = 1;
5518 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5519 			    PRIBIO, "-", 0);
5520 			queue->cam_doneq_sleep = 0;
5521 		}
5522 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5523 		mtx_unlock(&queue->cam_doneq_mtx);
5524 
5525 		THREAD_NO_SLEEPING();
5526 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5527 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5528 			xpt_done_process(ccb_h);
5529 		}
5530 		THREAD_SLEEPING_OK();
5531 
5532 		mtx_lock(&queue->cam_doneq_mtx);
5533 	}
5534 }
5535 
5536 static void
5537 camisr_runqueue(void)
5538 {
5539 	struct	ccb_hdr *ccb_h;
5540 	struct cam_doneq *queue;
5541 	int i;
5542 
5543 	/* Process global queues. */
5544 	for (i = 0; i < cam_num_doneqs; i++) {
5545 		queue = &cam_doneqs[i];
5546 		mtx_lock(&queue->cam_doneq_mtx);
5547 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5548 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5549 			mtx_unlock(&queue->cam_doneq_mtx);
5550 			xpt_done_process(ccb_h);
5551 			mtx_lock(&queue->cam_doneq_mtx);
5552 		}
5553 		mtx_unlock(&queue->cam_doneq_mtx);
5554 	}
5555 }
5556 
5557 struct kv
5558 {
5559 	uint32_t v;
5560 	const char *name;
5561 };
5562 
5563 static struct kv map[] = {
5564 	{ XPT_NOOP, "XPT_NOOP" },
5565 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5566 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5567 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5568 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5569 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5570 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5571 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5572 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5573 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5574 	{ XPT_DEBUG, "XPT_DEBUG" },
5575 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5576 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5577 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5578 	{ XPT_ASYNC, "XPT_ASYNC" },
5579 	{ XPT_ABORT, "XPT_ABORT" },
5580 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5581 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5582 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5583 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5584 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5585 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5586 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5587 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5588 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5589 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5590 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5591 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5592 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5593 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5594 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5595 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5596 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5597 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5598 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5599 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5600 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5601 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5602 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5603 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5604 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5605 	{ 0, 0 }
5606 };
5607 
5608 const char *
5609 xpt_action_name(uint32_t action)
5610 {
5611 	static char buffer[32];	/* Only for unknown messages -- racy */
5612 	struct kv *walker = map;
5613 
5614 	while (walker->name != NULL) {
5615 		if (walker->v == action)
5616 			return (walker->name);
5617 		walker++;
5618 	}
5619 
5620 	snprintf(buffer, sizeof(buffer), "%#x", action);
5621 	return (buffer);
5622 }
5623