xref: /freebsd/sys/cam/cam_xpt.c (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/stdarg.h>	/* for xpt_print below */
75 
76 #include "opt_cam.h"
77 
78 /* Wild guess based on not wanting to grow the stack too much */
79 #define XPT_PRINT_MAXLEN	512
80 #ifdef PRINTF_BUFR_SIZE
81 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
82 #else
83 #define XPT_PRINT_LEN	128
84 #endif
85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
86 
87 /*
88  * This is the maximum number of high powered commands (e.g. start unit)
89  * that can be outstanding at a particular time.
90  */
91 #ifndef CAM_MAX_HIGHPOWER
92 #define CAM_MAX_HIGHPOWER  4
93 #endif
94 
95 /* Datastructures internal to the xpt layer */
96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
100 
101 struct xpt_softc {
102 	uint32_t		xpt_generation;
103 
104 	/* number of high powered commands that can go through right now */
105 	struct mtx		xpt_highpower_lock;
106 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
107 	int			num_highpower;
108 
109 	/* queue for handling async rescan requests. */
110 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
111 	int buses_to_config;
112 	int buses_config_done;
113 	int announce_nosbuf;
114 
115 	/*
116 	 * Registered buses
117 	 *
118 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
119 	 * "buses" is preferred.
120 	 */
121 	TAILQ_HEAD(,cam_eb)	xpt_busses;
122 	u_int			bus_generation;
123 
124 	int			boot_delay;
125 	struct callout 		boot_callout;
126 	struct task		boot_task;
127 	struct root_hold_token	xpt_rootmount;
128 
129 	struct mtx		xpt_topo_lock;
130 	struct taskqueue	*xpt_taskq;
131 };
132 
133 typedef enum {
134 	DM_RET_COPY		= 0x01,
135 	DM_RET_FLAG_MASK	= 0x0f,
136 	DM_RET_NONE		= 0x00,
137 	DM_RET_STOP		= 0x10,
138 	DM_RET_DESCEND		= 0x20,
139 	DM_RET_ERROR		= 0x30,
140 	DM_RET_ACTION_MASK	= 0xf0
141 } dev_match_ret;
142 
143 typedef enum {
144 	XPT_DEPTH_BUS,
145 	XPT_DEPTH_TARGET,
146 	XPT_DEPTH_DEVICE,
147 	XPT_DEPTH_PERIPH
148 } xpt_traverse_depth;
149 
150 struct xpt_traverse_config {
151 	xpt_traverse_depth	depth;
152 	void			*tr_func;
153 	void			*tr_arg;
154 };
155 
156 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
157 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
158 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
159 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
160 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
161 
162 /* Transport layer configuration information */
163 static struct xpt_softc xsoftc;
164 
165 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
166 
167 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
168            &xsoftc.boot_delay, 0, "Bus registration wait time");
169 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
170 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
171 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
172 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
173 
174 struct cam_doneq {
175 	struct mtx_padalign	cam_doneq_mtx;
176 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
177 	int			cam_doneq_sleep;
178 };
179 
180 static struct cam_doneq cam_doneqs[MAXCPU];
181 static u_int __read_mostly cam_num_doneqs;
182 static struct proc *cam_proc;
183 static struct cam_doneq cam_async;
184 
185 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
186            &cam_num_doneqs, 0, "Number of completion queues/threads");
187 
188 struct cam_periph *xpt_periph;
189 
190 static periph_init_t xpt_periph_init;
191 
192 static struct periph_driver xpt_driver =
193 {
194 	xpt_periph_init, "xpt",
195 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
196 	CAM_PERIPH_DRV_EARLY
197 };
198 
199 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
200 
201 static d_open_t xptopen;
202 static d_close_t xptclose;
203 static d_ioctl_t xptioctl;
204 static d_ioctl_t xptdoioctl;
205 
206 static struct cdevsw xpt_cdevsw = {
207 	.d_version =	D_VERSION,
208 	.d_flags =	0,
209 	.d_open =	xptopen,
210 	.d_close =	xptclose,
211 	.d_ioctl =	xptioctl,
212 	.d_name =	"xpt",
213 };
214 
215 /* Storage for debugging datastructures */
216 struct cam_path *cam_dpath;
217 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
218 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
219 	&cam_dflags, 0, "Enabled debug flags");
220 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
221 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
222 	&cam_debug_delay, 0, "Delay in us after each debug message");
223 
224 /* Our boot-time initialization hook */
225 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
226 
227 static moduledata_t cam_moduledata = {
228 	"cam",
229 	cam_module_event_handler,
230 	NULL
231 };
232 
233 static int	xpt_init(void *);
234 
235 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
236 MODULE_VERSION(cam, 1);
237 
238 static void		xpt_async_bcast(struct async_list *async_head,
239 					u_int32_t async_code,
240 					struct cam_path *path,
241 					void *async_arg);
242 static path_id_t xptnextfreepathid(void);
243 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
244 static union ccb *xpt_get_ccb(struct cam_periph *periph);
245 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
246 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
247 static void	 xpt_run_allocq_task(void *context, int pending);
248 static void	 xpt_run_devq(struct cam_devq *devq);
249 static callout_func_t xpt_release_devq_timeout;
250 static void	 xpt_acquire_bus(struct cam_eb *bus);
251 static void	 xpt_release_bus(struct cam_eb *bus);
252 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
253 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
254 		    int run_queue);
255 static struct cam_et*
256 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
257 static void	 xpt_acquire_target(struct cam_et *target);
258 static void	 xpt_release_target(struct cam_et *target);
259 static struct cam_eb*
260 		 xpt_find_bus(path_id_t path_id);
261 static struct cam_et*
262 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
263 static struct cam_ed*
264 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
265 static void	 xpt_config(void *arg);
266 static void	 xpt_hold_boot_locked(void);
267 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
268 				 u_int32_t new_priority);
269 static xpt_devicefunc_t xptpassannouncefunc;
270 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
271 static void	 xptpoll(struct cam_sim *sim);
272 static void	 camisr_runqueue(void);
273 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
274 static void	 xpt_done_td(void *);
275 static void	 xpt_async_td(void *);
276 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
277 				    u_int num_patterns, struct cam_eb *bus);
278 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
279 				       u_int num_patterns,
280 				       struct cam_ed *device);
281 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
282 				       u_int num_patterns,
283 				       struct cam_periph *periph);
284 static xpt_busfunc_t	xptedtbusfunc;
285 static xpt_targetfunc_t	xptedttargetfunc;
286 static xpt_devicefunc_t	xptedtdevicefunc;
287 static xpt_periphfunc_t	xptedtperiphfunc;
288 static xpt_pdrvfunc_t	xptplistpdrvfunc;
289 static xpt_periphfunc_t	xptplistperiphfunc;
290 static int		xptedtmatch(struct ccb_dev_match *cdm);
291 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
292 static int		xptbustraverse(struct cam_eb *start_bus,
293 				       xpt_busfunc_t *tr_func, void *arg);
294 static int		xpttargettraverse(struct cam_eb *bus,
295 					  struct cam_et *start_target,
296 					  xpt_targetfunc_t *tr_func, void *arg);
297 static int		xptdevicetraverse(struct cam_et *target,
298 					  struct cam_ed *start_device,
299 					  xpt_devicefunc_t *tr_func, void *arg);
300 static int		xptperiphtraverse(struct cam_ed *device,
301 					  struct cam_periph *start_periph,
302 					  xpt_periphfunc_t *tr_func, void *arg);
303 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
304 					xpt_pdrvfunc_t *tr_func, void *arg);
305 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
306 					    struct cam_periph *start_periph,
307 					    xpt_periphfunc_t *tr_func,
308 					    void *arg);
309 static xpt_busfunc_t	xptdefbusfunc;
310 static xpt_targetfunc_t	xptdeftargetfunc;
311 static xpt_devicefunc_t	xptdefdevicefunc;
312 static xpt_periphfunc_t	xptdefperiphfunc;
313 static void		xpt_finishconfig_task(void *context, int pending);
314 static void		xpt_dev_async_default(u_int32_t async_code,
315 					      struct cam_eb *bus,
316 					      struct cam_et *target,
317 					      struct cam_ed *device,
318 					      void *async_arg);
319 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
320 						 struct cam_et *target,
321 						 lun_id_t lun_id);
322 static xpt_devicefunc_t	xptsetasyncfunc;
323 static xpt_busfunc_t	xptsetasyncbusfunc;
324 static cam_status	xptregister(struct cam_periph *periph,
325 				    void *arg);
326 
327 static __inline int
328 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
329 {
330 	int	retval;
331 
332 	mtx_assert(&devq->send_mtx, MA_OWNED);
333 	if ((dev->ccbq.queue.entries > 0) &&
334 	    (dev->ccbq.dev_openings > 0) &&
335 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
336 		/*
337 		 * The priority of a device waiting for controller
338 		 * resources is that of the highest priority CCB
339 		 * enqueued.
340 		 */
341 		retval =
342 		    xpt_schedule_dev(&devq->send_queue,
343 				     &dev->devq_entry,
344 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
345 	} else {
346 		retval = 0;
347 	}
348 	return (retval);
349 }
350 
351 static __inline int
352 device_is_queued(struct cam_ed *device)
353 {
354 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
355 }
356 
357 static void
358 xpt_periph_init(void)
359 {
360 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
361 }
362 
363 static int
364 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
365 {
366 
367 	/*
368 	 * Only allow read-write access.
369 	 */
370 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
371 		return(EPERM);
372 
373 	/*
374 	 * We don't allow nonblocking access.
375 	 */
376 	if ((flags & O_NONBLOCK) != 0) {
377 		printf("%s: can't do nonblocking access\n", devtoname(dev));
378 		return(ENODEV);
379 	}
380 
381 	return(0);
382 }
383 
384 static int
385 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
386 {
387 
388 	return(0);
389 }
390 
391 /*
392  * Don't automatically grab the xpt softc lock here even though this is going
393  * through the xpt device.  The xpt device is really just a back door for
394  * accessing other devices and SIMs, so the right thing to do is to grab
395  * the appropriate SIM lock once the bus/SIM is located.
396  */
397 static int
398 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
399 {
400 	int error;
401 
402 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
403 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
404 	}
405 	return (error);
406 }
407 
408 static int
409 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
410 {
411 	int error;
412 
413 	error = 0;
414 
415 	switch(cmd) {
416 	/*
417 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
418 	 * to accept CCB types that don't quite make sense to send through a
419 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
420 	 * in the CAM spec.
421 	 */
422 	case CAMIOCOMMAND: {
423 		union ccb *ccb;
424 		union ccb *inccb;
425 		struct cam_eb *bus;
426 
427 		inccb = (union ccb *)addr;
428 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
429 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
430 			inccb->csio.bio = NULL;
431 #endif
432 
433 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
434 			return (EINVAL);
435 
436 		bus = xpt_find_bus(inccb->ccb_h.path_id);
437 		if (bus == NULL)
438 			return (EINVAL);
439 
440 		switch (inccb->ccb_h.func_code) {
441 		case XPT_SCAN_BUS:
442 		case XPT_RESET_BUS:
443 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
444 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
445 				xpt_release_bus(bus);
446 				return (EINVAL);
447 			}
448 			break;
449 		case XPT_SCAN_TGT:
450 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
451 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
452 				xpt_release_bus(bus);
453 				return (EINVAL);
454 			}
455 			break;
456 		default:
457 			break;
458 		}
459 
460 		switch(inccb->ccb_h.func_code) {
461 		case XPT_SCAN_BUS:
462 		case XPT_RESET_BUS:
463 		case XPT_PATH_INQ:
464 		case XPT_ENG_INQ:
465 		case XPT_SCAN_LUN:
466 		case XPT_SCAN_TGT:
467 
468 			ccb = xpt_alloc_ccb();
469 
470 			/*
471 			 * Create a path using the bus, target, and lun the
472 			 * user passed in.
473 			 */
474 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
475 					    inccb->ccb_h.path_id,
476 					    inccb->ccb_h.target_id,
477 					    inccb->ccb_h.target_lun) !=
478 					    CAM_REQ_CMP){
479 				error = EINVAL;
480 				xpt_free_ccb(ccb);
481 				break;
482 			}
483 			/* Ensure all of our fields are correct */
484 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
485 				      inccb->ccb_h.pinfo.priority);
486 			xpt_merge_ccb(ccb, inccb);
487 			xpt_path_lock(ccb->ccb_h.path);
488 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
489 			xpt_path_unlock(ccb->ccb_h.path);
490 			bcopy(ccb, inccb, sizeof(union ccb));
491 			xpt_free_path(ccb->ccb_h.path);
492 			xpt_free_ccb(ccb);
493 			break;
494 
495 		case XPT_DEBUG: {
496 			union ccb ccb;
497 
498 			/*
499 			 * This is an immediate CCB, so it's okay to
500 			 * allocate it on the stack.
501 			 */
502 			memset(&ccb, 0, sizeof(ccb));
503 
504 			/*
505 			 * Create a path using the bus, target, and lun the
506 			 * user passed in.
507 			 */
508 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
509 					    inccb->ccb_h.path_id,
510 					    inccb->ccb_h.target_id,
511 					    inccb->ccb_h.target_lun) !=
512 					    CAM_REQ_CMP){
513 				error = EINVAL;
514 				break;
515 			}
516 			/* Ensure all of our fields are correct */
517 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
518 				      inccb->ccb_h.pinfo.priority);
519 			xpt_merge_ccb(&ccb, inccb);
520 			xpt_action(&ccb);
521 			bcopy(&ccb, inccb, sizeof(union ccb));
522 			xpt_free_path(ccb.ccb_h.path);
523 			break;
524 		}
525 		case XPT_DEV_MATCH: {
526 			struct cam_periph_map_info mapinfo;
527 			struct cam_path *old_path;
528 
529 			/*
530 			 * We can't deal with physical addresses for this
531 			 * type of transaction.
532 			 */
533 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
534 			    CAM_DATA_VADDR) {
535 				error = EINVAL;
536 				break;
537 			}
538 
539 			/*
540 			 * Save this in case the caller had it set to
541 			 * something in particular.
542 			 */
543 			old_path = inccb->ccb_h.path;
544 
545 			/*
546 			 * We really don't need a path for the matching
547 			 * code.  The path is needed because of the
548 			 * debugging statements in xpt_action().  They
549 			 * assume that the CCB has a valid path.
550 			 */
551 			inccb->ccb_h.path = xpt_periph->path;
552 
553 			bzero(&mapinfo, sizeof(mapinfo));
554 
555 			/*
556 			 * Map the pattern and match buffers into kernel
557 			 * virtual address space.
558 			 */
559 			error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
560 
561 			if (error) {
562 				inccb->ccb_h.path = old_path;
563 				break;
564 			}
565 
566 			/*
567 			 * This is an immediate CCB, we can send it on directly.
568 			 */
569 			xpt_action(inccb);
570 
571 			/*
572 			 * Map the buffers back into user space.
573 			 */
574 			cam_periph_unmapmem(inccb, &mapinfo);
575 
576 			inccb->ccb_h.path = old_path;
577 
578 			error = 0;
579 			break;
580 		}
581 		default:
582 			error = ENOTSUP;
583 			break;
584 		}
585 		xpt_release_bus(bus);
586 		break;
587 	}
588 	/*
589 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
590 	 * with the periphal driver name and unit name filled in.  The other
591 	 * fields don't really matter as input.  The passthrough driver name
592 	 * ("pass"), and unit number are passed back in the ccb.  The current
593 	 * device generation number, and the index into the device peripheral
594 	 * driver list, and the status are also passed back.  Note that
595 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
596 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
597 	 * (or rather should be) impossible for the device peripheral driver
598 	 * list to change since we look at the whole thing in one pass, and
599 	 * we do it with lock protection.
600 	 *
601 	 */
602 	case CAMGETPASSTHRU: {
603 		union ccb *ccb;
604 		struct cam_periph *periph;
605 		struct periph_driver **p_drv;
606 		char   *name;
607 		u_int unit;
608 		bool base_periph_found;
609 
610 		ccb = (union ccb *)addr;
611 		unit = ccb->cgdl.unit_number;
612 		name = ccb->cgdl.periph_name;
613 		base_periph_found = false;
614 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
615 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
616 			ccb->csio.bio = NULL;
617 #endif
618 
619 		/*
620 		 * Sanity check -- make sure we don't get a null peripheral
621 		 * driver name.
622 		 */
623 		if (*ccb->cgdl.periph_name == '\0') {
624 			error = EINVAL;
625 			break;
626 		}
627 
628 		/* Keep the list from changing while we traverse it */
629 		xpt_lock_buses();
630 
631 		/* first find our driver in the list of drivers */
632 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
633 			if (strcmp((*p_drv)->driver_name, name) == 0)
634 				break;
635 
636 		if (*p_drv == NULL) {
637 			xpt_unlock_buses();
638 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
639 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
640 			*ccb->cgdl.periph_name = '\0';
641 			ccb->cgdl.unit_number = 0;
642 			error = ENOENT;
643 			break;
644 		}
645 
646 		/*
647 		 * Run through every peripheral instance of this driver
648 		 * and check to see whether it matches the unit passed
649 		 * in by the user.  If it does, get out of the loops and
650 		 * find the passthrough driver associated with that
651 		 * peripheral driver.
652 		 */
653 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
654 		     periph = TAILQ_NEXT(periph, unit_links)) {
655 			if (periph->unit_number == unit)
656 				break;
657 		}
658 		/*
659 		 * If we found the peripheral driver that the user passed
660 		 * in, go through all of the peripheral drivers for that
661 		 * particular device and look for a passthrough driver.
662 		 */
663 		if (periph != NULL) {
664 			struct cam_ed *device;
665 			int i;
666 
667 			base_periph_found = true;
668 			device = periph->path->device;
669 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
670 			     periph != NULL;
671 			     periph = SLIST_NEXT(periph, periph_links), i++) {
672 				/*
673 				 * Check to see whether we have a
674 				 * passthrough device or not.
675 				 */
676 				if (strcmp(periph->periph_name, "pass") == 0) {
677 					/*
678 					 * Fill in the getdevlist fields.
679 					 */
680 					strlcpy(ccb->cgdl.periph_name,
681 					       periph->periph_name,
682 					       sizeof(ccb->cgdl.periph_name));
683 					ccb->cgdl.unit_number =
684 						periph->unit_number;
685 					if (SLIST_NEXT(periph, periph_links))
686 						ccb->cgdl.status =
687 							CAM_GDEVLIST_MORE_DEVS;
688 					else
689 						ccb->cgdl.status =
690 						       CAM_GDEVLIST_LAST_DEVICE;
691 					ccb->cgdl.generation =
692 						device->generation;
693 					ccb->cgdl.index = i;
694 					/*
695 					 * Fill in some CCB header fields
696 					 * that the user may want.
697 					 */
698 					ccb->ccb_h.path_id =
699 						periph->path->bus->path_id;
700 					ccb->ccb_h.target_id =
701 						periph->path->target->target_id;
702 					ccb->ccb_h.target_lun =
703 						periph->path->device->lun_id;
704 					ccb->ccb_h.status = CAM_REQ_CMP;
705 					break;
706 				}
707 			}
708 		}
709 
710 		/*
711 		 * If the periph is null here, one of two things has
712 		 * happened.  The first possibility is that we couldn't
713 		 * find the unit number of the particular peripheral driver
714 		 * that the user is asking about.  e.g. the user asks for
715 		 * the passthrough driver for "da11".  We find the list of
716 		 * "da" peripherals all right, but there is no unit 11.
717 		 * The other possibility is that we went through the list
718 		 * of peripheral drivers attached to the device structure,
719 		 * but didn't find one with the name "pass".  Either way,
720 		 * we return ENOENT, since we couldn't find something.
721 		 */
722 		if (periph == NULL) {
723 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
724 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
725 			*ccb->cgdl.periph_name = '\0';
726 			ccb->cgdl.unit_number = 0;
727 			error = ENOENT;
728 			/*
729 			 * It is unfortunate that this is even necessary,
730 			 * but there are many, many clueless users out there.
731 			 * If this is true, the user is looking for the
732 			 * passthrough driver, but doesn't have one in his
733 			 * kernel.
734 			 */
735 			if (base_periph_found) {
736 				printf("xptioctl: pass driver is not in the "
737 				       "kernel\n");
738 				printf("xptioctl: put \"device pass\" in "
739 				       "your kernel config file\n");
740 			}
741 		}
742 		xpt_unlock_buses();
743 		break;
744 		}
745 	default:
746 		error = ENOTTY;
747 		break;
748 	}
749 
750 	return(error);
751 }
752 
753 static int
754 cam_module_event_handler(module_t mod, int what, void *arg)
755 {
756 	int error;
757 
758 	switch (what) {
759 	case MOD_LOAD:
760 		if ((error = xpt_init(NULL)) != 0)
761 			return (error);
762 		break;
763 	case MOD_UNLOAD:
764 		return EBUSY;
765 	default:
766 		return EOPNOTSUPP;
767 	}
768 
769 	return 0;
770 }
771 
772 static struct xpt_proto *
773 xpt_proto_find(cam_proto proto)
774 {
775 	struct xpt_proto **pp;
776 
777 	SET_FOREACH(pp, cam_xpt_proto_set) {
778 		if ((*pp)->proto == proto)
779 			return *pp;
780 	}
781 
782 	return NULL;
783 }
784 
785 static void
786 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
787 {
788 
789 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
790 		xpt_free_path(done_ccb->ccb_h.path);
791 		xpt_free_ccb(done_ccb);
792 	} else {
793 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
794 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
795 	}
796 	xpt_release_boot();
797 }
798 
799 /* thread to handle bus rescans */
800 static void
801 xpt_scanner_thread(void *dummy)
802 {
803 	union ccb	*ccb;
804 	struct mtx	*mtx;
805 	struct cam_ed	*device;
806 
807 	xpt_lock_buses();
808 	for (;;) {
809 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
810 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
811 			       "-", 0);
812 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
813 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
814 			xpt_unlock_buses();
815 
816 			/*
817 			 * We need to lock the device's mutex which we use as
818 			 * the path mutex. We can't do it directly because the
819 			 * cam_path in the ccb may wind up going away because
820 			 * the path lock may be dropped and the path retired in
821 			 * the completion callback. We do this directly to keep
822 			 * the reference counts in cam_path sane. We also have
823 			 * to copy the device pointer because ccb_h.path may
824 			 * be freed in the callback.
825 			 */
826 			mtx = xpt_path_mtx(ccb->ccb_h.path);
827 			device = ccb->ccb_h.path->device;
828 			xpt_acquire_device(device);
829 			mtx_lock(mtx);
830 			xpt_action(ccb);
831 			mtx_unlock(mtx);
832 			xpt_release_device(device);
833 
834 			xpt_lock_buses();
835 		}
836 	}
837 }
838 
839 void
840 xpt_rescan(union ccb *ccb)
841 {
842 	struct ccb_hdr *hdr;
843 
844 	/* Prepare request */
845 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
846 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
847 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
848 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
849 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
850 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
851 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
852 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
853 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
854 	else {
855 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
856 		xpt_free_path(ccb->ccb_h.path);
857 		xpt_free_ccb(ccb);
858 		return;
859 	}
860 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
861 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
862  		xpt_action_name(ccb->ccb_h.func_code)));
863 
864 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
865 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
866 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
867 	/* Don't make duplicate entries for the same paths. */
868 	xpt_lock_buses();
869 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
870 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
871 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
872 				wakeup(&xsoftc.ccb_scanq);
873 				xpt_unlock_buses();
874 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
875 				xpt_free_path(ccb->ccb_h.path);
876 				xpt_free_ccb(ccb);
877 				return;
878 			}
879 		}
880 	}
881 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
882 	xpt_hold_boot_locked();
883 	wakeup(&xsoftc.ccb_scanq);
884 	xpt_unlock_buses();
885 }
886 
887 /* Functions accessed by the peripheral drivers */
888 static int
889 xpt_init(void *dummy)
890 {
891 	struct cam_sim *xpt_sim;
892 	struct cam_path *path;
893 	struct cam_devq *devq;
894 	cam_status status;
895 	int error, i;
896 
897 	TAILQ_INIT(&xsoftc.xpt_busses);
898 	TAILQ_INIT(&xsoftc.ccb_scanq);
899 	STAILQ_INIT(&xsoftc.highpowerq);
900 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
901 
902 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
903 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
904 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
905 
906 #ifdef CAM_BOOT_DELAY
907 	/*
908 	 * Override this value at compile time to assist our users
909 	 * who don't use loader to boot a kernel.
910 	 */
911 	xsoftc.boot_delay = CAM_BOOT_DELAY;
912 #endif
913 
914 	/*
915 	 * The xpt layer is, itself, the equivalent of a SIM.
916 	 * Allow 16 ccbs in the ccb pool for it.  This should
917 	 * give decent parallelism when we probe buses and
918 	 * perform other XPT functions.
919 	 */
920 	devq = cam_simq_alloc(16);
921 	xpt_sim = cam_sim_alloc(xptaction,
922 				xptpoll,
923 				"xpt",
924 				/*softc*/NULL,
925 				/*unit*/0,
926 				/*mtx*/NULL,
927 				/*max_dev_transactions*/0,
928 				/*max_tagged_dev_transactions*/0,
929 				devq);
930 	if (xpt_sim == NULL)
931 		return (ENOMEM);
932 
933 	if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
934 		printf("xpt_init: xpt_bus_register failed with errno %d,"
935 		       " failing attach\n", error);
936 		return (EINVAL);
937 	}
938 
939 	/*
940 	 * Looking at the XPT from the SIM layer, the XPT is
941 	 * the equivalent of a peripheral driver.  Allocate
942 	 * a peripheral driver entry for us.
943 	 */
944 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
945 				      CAM_TARGET_WILDCARD,
946 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
947 		printf("xpt_init: xpt_create_path failed with status %#x,"
948 		       " failing attach\n", status);
949 		return (EINVAL);
950 	}
951 	xpt_path_lock(path);
952 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
953 			 path, NULL, 0, xpt_sim);
954 	xpt_path_unlock(path);
955 	xpt_free_path(path);
956 
957 	if (cam_num_doneqs < 1)
958 		cam_num_doneqs = 1 + mp_ncpus / 6;
959 	else if (cam_num_doneqs > MAXCPU)
960 		cam_num_doneqs = MAXCPU;
961 	for (i = 0; i < cam_num_doneqs; i++) {
962 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
963 		    MTX_DEF);
964 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
965 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
966 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
967 		if (error != 0) {
968 			cam_num_doneqs = i;
969 			break;
970 		}
971 	}
972 	if (cam_num_doneqs < 1) {
973 		printf("xpt_init: Cannot init completion queues "
974 		       "- failing attach\n");
975 		return (ENOMEM);
976 	}
977 
978 	mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
979 	STAILQ_INIT(&cam_async.cam_doneq);
980 	if (kproc_kthread_add(xpt_async_td, &cam_async,
981 		&cam_proc, NULL, 0, 0, "cam", "async") != 0) {
982 		printf("xpt_init: Cannot init async thread "
983 		       "- failing attach\n");
984 		return (ENOMEM);
985 	}
986 
987 	/*
988 	 * Register a callback for when interrupts are enabled.
989 	 */
990 	config_intrhook_oneshot(xpt_config, NULL);
991 
992 	return (0);
993 }
994 
995 static cam_status
996 xptregister(struct cam_periph *periph, void *arg)
997 {
998 	struct cam_sim *xpt_sim;
999 
1000 	if (periph == NULL) {
1001 		printf("xptregister: periph was NULL!!\n");
1002 		return(CAM_REQ_CMP_ERR);
1003 	}
1004 
1005 	xpt_sim = (struct cam_sim *)arg;
1006 	xpt_sim->softc = periph;
1007 	xpt_periph = periph;
1008 	periph->softc = NULL;
1009 
1010 	return(CAM_REQ_CMP);
1011 }
1012 
1013 int32_t
1014 xpt_add_periph(struct cam_periph *periph)
1015 {
1016 	struct cam_ed *device;
1017 	int32_t	 status;
1018 
1019 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1020 	device = periph->path->device;
1021 	status = CAM_REQ_CMP;
1022 	if (device != NULL) {
1023 		mtx_lock(&device->target->bus->eb_mtx);
1024 		device->generation++;
1025 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1026 		mtx_unlock(&device->target->bus->eb_mtx);
1027 		atomic_add_32(&xsoftc.xpt_generation, 1);
1028 	}
1029 
1030 	return (status);
1031 }
1032 
1033 void
1034 xpt_remove_periph(struct cam_periph *periph)
1035 {
1036 	struct cam_ed *device;
1037 
1038 	device = periph->path->device;
1039 	if (device != NULL) {
1040 		mtx_lock(&device->target->bus->eb_mtx);
1041 		device->generation++;
1042 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1043 		mtx_unlock(&device->target->bus->eb_mtx);
1044 		atomic_add_32(&xsoftc.xpt_generation, 1);
1045 	}
1046 }
1047 
1048 void
1049 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1050 {
1051 	struct	cam_path *path = periph->path;
1052 	struct  xpt_proto *proto;
1053 
1054 	cam_periph_assert(periph, MA_OWNED);
1055 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1056 
1057 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1058 	       periph->periph_name, periph->unit_number,
1059 	       path->bus->sim->sim_name,
1060 	       path->bus->sim->unit_number,
1061 	       path->bus->sim->bus_id,
1062 	       path->bus->path_id,
1063 	       path->target->target_id,
1064 	       (uintmax_t)path->device->lun_id);
1065 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1066 	proto = xpt_proto_find(path->device->protocol);
1067 	if (proto)
1068 		proto->ops->announce(path->device);
1069 	else
1070 		printf("%s%d: Unknown protocol device %d\n",
1071 		    periph->periph_name, periph->unit_number,
1072 		    path->device->protocol);
1073 	if (path->device->serial_num_len > 0) {
1074 		/* Don't wrap the screen  - print only the first 60 chars */
1075 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1076 		       periph->unit_number, path->device->serial_num);
1077 	}
1078 	/* Announce transport details. */
1079 	path->bus->xport->ops->announce(periph);
1080 	/* Announce command queueing. */
1081 	if (path->device->inq_flags & SID_CmdQue
1082 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1083 		printf("%s%d: Command Queueing enabled\n",
1084 		       periph->periph_name, periph->unit_number);
1085 	}
1086 	/* Announce caller's details if they've passed in. */
1087 	if (announce_string != NULL)
1088 		printf("%s%d: %s\n", periph->periph_name,
1089 		       periph->unit_number, announce_string);
1090 }
1091 
1092 void
1093 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1094     char *announce_string)
1095 {
1096 	struct	cam_path *path = periph->path;
1097 	struct  xpt_proto *proto;
1098 
1099 	cam_periph_assert(periph, MA_OWNED);
1100 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1101 
1102 	/* Fall back to the non-sbuf method if necessary */
1103 	if (xsoftc.announce_nosbuf != 0) {
1104 		xpt_announce_periph(periph, announce_string);
1105 		return;
1106 	}
1107 	proto = xpt_proto_find(path->device->protocol);
1108 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1109 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1110 		xpt_announce_periph(periph, announce_string);
1111 		return;
1112 	}
1113 
1114 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1115 	    periph->periph_name, periph->unit_number,
1116 	    path->bus->sim->sim_name,
1117 	    path->bus->sim->unit_number,
1118 	    path->bus->sim->bus_id,
1119 	    path->bus->path_id,
1120 	    path->target->target_id,
1121 	    (uintmax_t)path->device->lun_id);
1122 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1123 
1124 	if (proto)
1125 		proto->ops->announce_sbuf(path->device, sb);
1126 	else
1127 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1128 		    periph->periph_name, periph->unit_number,
1129 		    path->device->protocol);
1130 	if (path->device->serial_num_len > 0) {
1131 		/* Don't wrap the screen  - print only the first 60 chars */
1132 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1133 		    periph->periph_name, periph->unit_number,
1134 		    path->device->serial_num);
1135 	}
1136 	/* Announce transport details. */
1137 	path->bus->xport->ops->announce_sbuf(periph, sb);
1138 	/* Announce command queueing. */
1139 	if (path->device->inq_flags & SID_CmdQue
1140 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1141 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1142 		    periph->periph_name, periph->unit_number);
1143 	}
1144 	/* Announce caller's details if they've passed in. */
1145 	if (announce_string != NULL)
1146 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1147 		    periph->unit_number, announce_string);
1148 }
1149 
1150 void
1151 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1152 {
1153 	if (quirks != 0) {
1154 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1155 		    periph->unit_number, quirks, bit_string);
1156 	}
1157 }
1158 
1159 void
1160 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1161 			 int quirks, char *bit_string)
1162 {
1163 	if (xsoftc.announce_nosbuf != 0) {
1164 		xpt_announce_quirks(periph, quirks, bit_string);
1165 		return;
1166 	}
1167 
1168 	if (quirks != 0) {
1169 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1170 		    periph->unit_number, quirks, bit_string);
1171 	}
1172 }
1173 
1174 void
1175 xpt_denounce_periph(struct cam_periph *periph)
1176 {
1177 	struct	cam_path *path = periph->path;
1178 	struct  xpt_proto *proto;
1179 
1180 	cam_periph_assert(periph, MA_OWNED);
1181 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1182 	       periph->periph_name, periph->unit_number,
1183 	       path->bus->sim->sim_name,
1184 	       path->bus->sim->unit_number,
1185 	       path->bus->sim->bus_id,
1186 	       path->bus->path_id,
1187 	       path->target->target_id,
1188 	       (uintmax_t)path->device->lun_id);
1189 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1190 	proto = xpt_proto_find(path->device->protocol);
1191 	if (proto)
1192 		proto->ops->denounce(path->device);
1193 	else
1194 		printf("%s%d: Unknown protocol device %d\n",
1195 		    periph->periph_name, periph->unit_number,
1196 		    path->device->protocol);
1197 	if (path->device->serial_num_len > 0)
1198 		printf(" s/n %.60s", path->device->serial_num);
1199 	printf(" detached\n");
1200 }
1201 
1202 void
1203 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1204 {
1205 	struct cam_path *path = periph->path;
1206 	struct xpt_proto *proto;
1207 
1208 	cam_periph_assert(periph, MA_OWNED);
1209 
1210 	/* Fall back to the non-sbuf method if necessary */
1211 	if (xsoftc.announce_nosbuf != 0) {
1212 		xpt_denounce_periph(periph);
1213 		return;
1214 	}
1215 	proto = xpt_proto_find(path->device->protocol);
1216 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1217 		xpt_denounce_periph(periph);
1218 		return;
1219 	}
1220 
1221 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1222 	    periph->periph_name, periph->unit_number,
1223 	    path->bus->sim->sim_name,
1224 	    path->bus->sim->unit_number,
1225 	    path->bus->sim->bus_id,
1226 	    path->bus->path_id,
1227 	    path->target->target_id,
1228 	    (uintmax_t)path->device->lun_id);
1229 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1230 
1231 	if (proto)
1232 		proto->ops->denounce_sbuf(path->device, sb);
1233 	else
1234 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1235 		    periph->periph_name, periph->unit_number,
1236 		    path->device->protocol);
1237 	if (path->device->serial_num_len > 0)
1238 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1239 	sbuf_printf(sb, " detached\n");
1240 }
1241 
1242 int
1243 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1244 {
1245 	int ret = -1, l, o;
1246 	struct ccb_dev_advinfo cdai;
1247 	struct scsi_vpd_device_id *did;
1248 	struct scsi_vpd_id_descriptor *idd;
1249 
1250 	xpt_path_assert(path, MA_OWNED);
1251 
1252 	memset(&cdai, 0, sizeof(cdai));
1253 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1254 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1255 	cdai.flags = CDAI_FLAG_NONE;
1256 	cdai.bufsiz = len;
1257 	cdai.buf = buf;
1258 
1259 	if (!strcmp(attr, "GEOM::ident"))
1260 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1261 	else if (!strcmp(attr, "GEOM::physpath"))
1262 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1263 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1264 		 strcmp(attr, "GEOM::lunname") == 0) {
1265 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1266 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1267 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1268 		if (cdai.buf == NULL) {
1269 			ret = ENOMEM;
1270 			goto out;
1271 		}
1272 	} else
1273 		goto out;
1274 
1275 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1276 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1277 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1278 	if (cdai.provsiz == 0)
1279 		goto out;
1280 	switch(cdai.buftype) {
1281 	case CDAI_TYPE_SCSI_DEVID:
1282 		did = (struct scsi_vpd_device_id *)cdai.buf;
1283 		if (strcmp(attr, "GEOM::lunid") == 0) {
1284 			idd = scsi_get_devid(did, cdai.provsiz,
1285 			    scsi_devid_is_lun_naa);
1286 			if (idd == NULL)
1287 				idd = scsi_get_devid(did, cdai.provsiz,
1288 				    scsi_devid_is_lun_eui64);
1289 			if (idd == NULL)
1290 				idd = scsi_get_devid(did, cdai.provsiz,
1291 				    scsi_devid_is_lun_uuid);
1292 			if (idd == NULL)
1293 				idd = scsi_get_devid(did, cdai.provsiz,
1294 				    scsi_devid_is_lun_md5);
1295 		} else
1296 			idd = NULL;
1297 
1298 		if (idd == NULL)
1299 			idd = scsi_get_devid(did, cdai.provsiz,
1300 			    scsi_devid_is_lun_t10);
1301 		if (idd == NULL)
1302 			idd = scsi_get_devid(did, cdai.provsiz,
1303 			    scsi_devid_is_lun_name);
1304 		if (idd == NULL)
1305 			break;
1306 
1307 		ret = 0;
1308 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1309 		    SVPD_ID_CODESET_ASCII) {
1310 			if (idd->length < len) {
1311 				for (l = 0; l < idd->length; l++)
1312 					buf[l] = idd->identifier[l] ?
1313 					    idd->identifier[l] : ' ';
1314 				buf[l] = 0;
1315 			} else
1316 				ret = EFAULT;
1317 			break;
1318 		}
1319 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1320 		    SVPD_ID_CODESET_UTF8) {
1321 			l = strnlen(idd->identifier, idd->length);
1322 			if (l < len) {
1323 				bcopy(idd->identifier, buf, l);
1324 				buf[l] = 0;
1325 			} else
1326 				ret = EFAULT;
1327 			break;
1328 		}
1329 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1330 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1331 			if ((idd->length - 2) * 2 + 4 >= len) {
1332 				ret = EFAULT;
1333 				break;
1334 			}
1335 			for (l = 2, o = 0; l < idd->length; l++) {
1336 				if (l == 6 || l == 8 || l == 10 || l == 12)
1337 				    o += sprintf(buf + o, "-");
1338 				o += sprintf(buf + o, "%02x",
1339 				    idd->identifier[l]);
1340 			}
1341 			break;
1342 		}
1343 		if (idd->length * 2 < len) {
1344 			for (l = 0; l < idd->length; l++)
1345 				sprintf(buf + l * 2, "%02x",
1346 				    idd->identifier[l]);
1347 		} else
1348 				ret = EFAULT;
1349 		break;
1350 	default:
1351 		if (cdai.provsiz < len) {
1352 			cdai.buf[cdai.provsiz] = 0;
1353 			ret = 0;
1354 		} else
1355 			ret = EFAULT;
1356 		break;
1357 	}
1358 
1359 out:
1360 	if ((char *)cdai.buf != buf)
1361 		free(cdai.buf, M_CAMXPT);
1362 	return ret;
1363 }
1364 
1365 static dev_match_ret
1366 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1367 	    struct cam_eb *bus)
1368 {
1369 	dev_match_ret retval;
1370 	u_int i;
1371 
1372 	retval = DM_RET_NONE;
1373 
1374 	/*
1375 	 * If we aren't given something to match against, that's an error.
1376 	 */
1377 	if (bus == NULL)
1378 		return(DM_RET_ERROR);
1379 
1380 	/*
1381 	 * If there are no match entries, then this bus matches no
1382 	 * matter what.
1383 	 */
1384 	if ((patterns == NULL) || (num_patterns == 0))
1385 		return(DM_RET_DESCEND | DM_RET_COPY);
1386 
1387 	for (i = 0; i < num_patterns; i++) {
1388 		struct bus_match_pattern *cur_pattern;
1389 		struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1390 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1391 
1392 		/*
1393 		 * If the pattern in question isn't for a bus node, we
1394 		 * aren't interested.  However, we do indicate to the
1395 		 * calling routine that we should continue descending the
1396 		 * tree, since the user wants to match against lower-level
1397 		 * EDT elements.
1398 		 */
1399 		if (patterns[i].type == DEV_MATCH_DEVICE &&
1400 		    (dp->flags & DEV_MATCH_PATH) != 0 &&
1401 		    dp->path_id != bus->path_id)
1402 			continue;
1403 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1404 		    (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1405 		    pp->path_id != bus->path_id)
1406 			continue;
1407 		if (patterns[i].type != DEV_MATCH_BUS) {
1408 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1409 				retval |= DM_RET_DESCEND;
1410 			continue;
1411 		}
1412 
1413 		cur_pattern = &patterns[i].pattern.bus_pattern;
1414 
1415 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1416 		 && (cur_pattern->path_id != bus->path_id))
1417 			continue;
1418 
1419 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1420 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1421 			continue;
1422 
1423 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1424 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1425 			continue;
1426 
1427 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1428 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1429 			     DEV_IDLEN) != 0))
1430 			continue;
1431 
1432 		/*
1433 		 * If we get to this point, the user definitely wants
1434 		 * information on this bus.  So tell the caller to copy the
1435 		 * data out.
1436 		 */
1437 		retval |= DM_RET_COPY;
1438 
1439 		/*
1440 		 * If the return action has been set to descend, then we
1441 		 * know that we've already seen a non-bus matching
1442 		 * expression, therefore we need to further descend the tree.
1443 		 * This won't change by continuing around the loop, so we
1444 		 * go ahead and return.  If we haven't seen a non-bus
1445 		 * matching expression, we keep going around the loop until
1446 		 * we exhaust the matching expressions.  We'll set the stop
1447 		 * flag once we fall out of the loop.
1448 		 */
1449 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1450 			return(retval);
1451 	}
1452 
1453 	/*
1454 	 * If the return action hasn't been set to descend yet, that means
1455 	 * we haven't seen anything other than bus matching patterns.  So
1456 	 * tell the caller to stop descending the tree -- the user doesn't
1457 	 * want to match against lower level tree elements.
1458 	 */
1459 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1460 		retval |= DM_RET_STOP;
1461 
1462 	return(retval);
1463 }
1464 
1465 static dev_match_ret
1466 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1467 	       struct cam_ed *device)
1468 {
1469 	dev_match_ret retval;
1470 	u_int i;
1471 
1472 	retval = DM_RET_NONE;
1473 
1474 	/*
1475 	 * If we aren't given something to match against, that's an error.
1476 	 */
1477 	if (device == NULL)
1478 		return(DM_RET_ERROR);
1479 
1480 	/*
1481 	 * If there are no match entries, then this device matches no
1482 	 * matter what.
1483 	 */
1484 	if ((patterns == NULL) || (num_patterns == 0))
1485 		return(DM_RET_DESCEND | DM_RET_COPY);
1486 
1487 	for (i = 0; i < num_patterns; i++) {
1488 		struct device_match_pattern *cur_pattern;
1489 		struct scsi_vpd_device_id *device_id_page;
1490 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1491 
1492 		/*
1493 		 * If the pattern in question isn't for a device node, we
1494 		 * aren't interested.
1495 		 */
1496 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1497 		    (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1498 		    pp->target_id != device->target->target_id)
1499 			continue;
1500 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1501 		    (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1502 		    pp->target_lun != device->lun_id)
1503 			continue;
1504 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1505 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1506 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1507 				retval |= DM_RET_DESCEND;
1508 			continue;
1509 		}
1510 
1511 		cur_pattern = &patterns[i].pattern.device_pattern;
1512 
1513 		/* Error out if mutually exclusive options are specified. */
1514 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1515 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1516 			return(DM_RET_ERROR);
1517 
1518 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1519 		 && (cur_pattern->path_id != device->target->bus->path_id))
1520 			continue;
1521 
1522 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1523 		 && (cur_pattern->target_id != device->target->target_id))
1524 			continue;
1525 
1526 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1527 		 && (cur_pattern->target_lun != device->lun_id))
1528 			continue;
1529 
1530 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1531 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1532 				    (caddr_t)&cur_pattern->data.inq_pat,
1533 				    1, sizeof(cur_pattern->data.inq_pat),
1534 				    scsi_static_inquiry_match) == NULL))
1535 			continue;
1536 
1537 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1538 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1539 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1540 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1541 				      device->device_id_len
1542 				    - SVPD_DEVICE_ID_HDR_LEN,
1543 				      cur_pattern->data.devid_pat.id,
1544 				      cur_pattern->data.devid_pat.id_len) != 0))
1545 			continue;
1546 
1547 		/*
1548 		 * If we get to this point, the user definitely wants
1549 		 * information on this device.  So tell the caller to copy
1550 		 * the data out.
1551 		 */
1552 		retval |= DM_RET_COPY;
1553 
1554 		/*
1555 		 * If the return action has been set to descend, then we
1556 		 * know that we've already seen a peripheral matching
1557 		 * expression, therefore we need to further descend the tree.
1558 		 * This won't change by continuing around the loop, so we
1559 		 * go ahead and return.  If we haven't seen a peripheral
1560 		 * matching expression, we keep going around the loop until
1561 		 * we exhaust the matching expressions.  We'll set the stop
1562 		 * flag once we fall out of the loop.
1563 		 */
1564 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1565 			return(retval);
1566 	}
1567 
1568 	/*
1569 	 * If the return action hasn't been set to descend yet, that means
1570 	 * we haven't seen any peripheral matching patterns.  So tell the
1571 	 * caller to stop descending the tree -- the user doesn't want to
1572 	 * match against lower level tree elements.
1573 	 */
1574 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1575 		retval |= DM_RET_STOP;
1576 
1577 	return(retval);
1578 }
1579 
1580 /*
1581  * Match a single peripheral against any number of match patterns.
1582  */
1583 static dev_match_ret
1584 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1585 	       struct cam_periph *periph)
1586 {
1587 	dev_match_ret retval;
1588 	u_int i;
1589 
1590 	/*
1591 	 * If we aren't given something to match against, that's an error.
1592 	 */
1593 	if (periph == NULL)
1594 		return(DM_RET_ERROR);
1595 
1596 	/*
1597 	 * If there are no match entries, then this peripheral matches no
1598 	 * matter what.
1599 	 */
1600 	if ((patterns == NULL) || (num_patterns == 0))
1601 		return(DM_RET_STOP | DM_RET_COPY);
1602 
1603 	/*
1604 	 * There aren't any nodes below a peripheral node, so there's no
1605 	 * reason to descend the tree any further.
1606 	 */
1607 	retval = DM_RET_STOP;
1608 
1609 	for (i = 0; i < num_patterns; i++) {
1610 		struct periph_match_pattern *cur_pattern;
1611 
1612 		/*
1613 		 * If the pattern in question isn't for a peripheral, we
1614 		 * aren't interested.
1615 		 */
1616 		if (patterns[i].type != DEV_MATCH_PERIPH)
1617 			continue;
1618 
1619 		cur_pattern = &patterns[i].pattern.periph_pattern;
1620 
1621 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1622 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1623 			continue;
1624 
1625 		/*
1626 		 * For the target and lun id's, we have to make sure the
1627 		 * target and lun pointers aren't NULL.  The xpt peripheral
1628 		 * has a wildcard target and device.
1629 		 */
1630 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1631 		 && ((periph->path->target == NULL)
1632 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1633 			continue;
1634 
1635 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1636 		 && ((periph->path->device == NULL)
1637 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1638 			continue;
1639 
1640 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1641 		 && (cur_pattern->unit_number != periph->unit_number))
1642 			continue;
1643 
1644 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1645 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1646 			     DEV_IDLEN) != 0))
1647 			continue;
1648 
1649 		/*
1650 		 * If we get to this point, the user definitely wants
1651 		 * information on this peripheral.  So tell the caller to
1652 		 * copy the data out.
1653 		 */
1654 		retval |= DM_RET_COPY;
1655 
1656 		/*
1657 		 * The return action has already been set to stop, since
1658 		 * peripherals don't have any nodes below them in the EDT.
1659 		 */
1660 		return(retval);
1661 	}
1662 
1663 	/*
1664 	 * If we get to this point, the peripheral that was passed in
1665 	 * doesn't match any of the patterns.
1666 	 */
1667 	return(retval);
1668 }
1669 
1670 static int
1671 xptedtbusfunc(struct cam_eb *bus, void *arg)
1672 {
1673 	struct ccb_dev_match *cdm;
1674 	struct cam_et *target;
1675 	dev_match_ret retval;
1676 
1677 	cdm = (struct ccb_dev_match *)arg;
1678 
1679 	/*
1680 	 * If our position is for something deeper in the tree, that means
1681 	 * that we've already seen this node.  So, we keep going down.
1682 	 */
1683 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1684 	 && (cdm->pos.cookie.bus == bus)
1685 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1686 	 && (cdm->pos.cookie.target != NULL))
1687 		retval = DM_RET_DESCEND;
1688 	else
1689 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1690 
1691 	/*
1692 	 * If we got an error, bail out of the search.
1693 	 */
1694 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1695 		cdm->status = CAM_DEV_MATCH_ERROR;
1696 		return(0);
1697 	}
1698 
1699 	/*
1700 	 * If the copy flag is set, copy this bus out.
1701 	 */
1702 	if (retval & DM_RET_COPY) {
1703 		int spaceleft, j;
1704 
1705 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1706 			sizeof(struct dev_match_result));
1707 
1708 		/*
1709 		 * If we don't have enough space to put in another
1710 		 * match result, save our position and tell the
1711 		 * user there are more devices to check.
1712 		 */
1713 		if (spaceleft < sizeof(struct dev_match_result)) {
1714 			bzero(&cdm->pos, sizeof(cdm->pos));
1715 			cdm->pos.position_type =
1716 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1717 
1718 			cdm->pos.cookie.bus = bus;
1719 			cdm->pos.generations[CAM_BUS_GENERATION]=
1720 				xsoftc.bus_generation;
1721 			cdm->status = CAM_DEV_MATCH_MORE;
1722 			return(0);
1723 		}
1724 		j = cdm->num_matches;
1725 		cdm->num_matches++;
1726 		cdm->matches[j].type = DEV_MATCH_BUS;
1727 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1728 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1729 		cdm->matches[j].result.bus_result.unit_number =
1730 			bus->sim->unit_number;
1731 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1732 			bus->sim->sim_name,
1733 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1734 	}
1735 
1736 	/*
1737 	 * If the user is only interested in buses, there's no
1738 	 * reason to descend to the next level in the tree.
1739 	 */
1740 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1741 		return(1);
1742 
1743 	/*
1744 	 * If there is a target generation recorded, check it to
1745 	 * make sure the target list hasn't changed.
1746 	 */
1747 	mtx_lock(&bus->eb_mtx);
1748 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1749 	 && (cdm->pos.cookie.bus == bus)
1750 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1751 	 && (cdm->pos.cookie.target != NULL)) {
1752 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1753 		    bus->generation)) {
1754 			mtx_unlock(&bus->eb_mtx);
1755 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1756 			return (0);
1757 		}
1758 		target = (struct cam_et *)cdm->pos.cookie.target;
1759 		target->refcount++;
1760 	} else
1761 		target = NULL;
1762 	mtx_unlock(&bus->eb_mtx);
1763 
1764 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1765 }
1766 
1767 static int
1768 xptedttargetfunc(struct cam_et *target, void *arg)
1769 {
1770 	struct ccb_dev_match *cdm;
1771 	struct cam_eb *bus;
1772 	struct cam_ed *device;
1773 
1774 	cdm = (struct ccb_dev_match *)arg;
1775 	bus = target->bus;
1776 
1777 	/*
1778 	 * If there is a device list generation recorded, check it to
1779 	 * make sure the device list hasn't changed.
1780 	 */
1781 	mtx_lock(&bus->eb_mtx);
1782 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1783 	 && (cdm->pos.cookie.bus == bus)
1784 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1785 	 && (cdm->pos.cookie.target == target)
1786 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1787 	 && (cdm->pos.cookie.device != NULL)) {
1788 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1789 		    target->generation) {
1790 			mtx_unlock(&bus->eb_mtx);
1791 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1792 			return(0);
1793 		}
1794 		device = (struct cam_ed *)cdm->pos.cookie.device;
1795 		device->refcount++;
1796 	} else
1797 		device = NULL;
1798 	mtx_unlock(&bus->eb_mtx);
1799 
1800 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1801 }
1802 
1803 static int
1804 xptedtdevicefunc(struct cam_ed *device, void *arg)
1805 {
1806 	struct cam_eb *bus;
1807 	struct cam_periph *periph;
1808 	struct ccb_dev_match *cdm;
1809 	dev_match_ret retval;
1810 
1811 	cdm = (struct ccb_dev_match *)arg;
1812 	bus = device->target->bus;
1813 
1814 	/*
1815 	 * If our position is for something deeper in the tree, that means
1816 	 * that we've already seen this node.  So, we keep going down.
1817 	 */
1818 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1819 	 && (cdm->pos.cookie.device == device)
1820 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1821 	 && (cdm->pos.cookie.periph != NULL))
1822 		retval = DM_RET_DESCEND;
1823 	else
1824 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1825 					device);
1826 
1827 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1828 		cdm->status = CAM_DEV_MATCH_ERROR;
1829 		return(0);
1830 	}
1831 
1832 	/*
1833 	 * If the copy flag is set, copy this device out.
1834 	 */
1835 	if (retval & DM_RET_COPY) {
1836 		int spaceleft, j;
1837 
1838 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1839 			sizeof(struct dev_match_result));
1840 
1841 		/*
1842 		 * If we don't have enough space to put in another
1843 		 * match result, save our position and tell the
1844 		 * user there are more devices to check.
1845 		 */
1846 		if (spaceleft < sizeof(struct dev_match_result)) {
1847 			bzero(&cdm->pos, sizeof(cdm->pos));
1848 			cdm->pos.position_type =
1849 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1850 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1851 
1852 			cdm->pos.cookie.bus = device->target->bus;
1853 			cdm->pos.generations[CAM_BUS_GENERATION]=
1854 				xsoftc.bus_generation;
1855 			cdm->pos.cookie.target = device->target;
1856 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1857 				device->target->bus->generation;
1858 			cdm->pos.cookie.device = device;
1859 			cdm->pos.generations[CAM_DEV_GENERATION] =
1860 				device->target->generation;
1861 			cdm->status = CAM_DEV_MATCH_MORE;
1862 			return(0);
1863 		}
1864 		j = cdm->num_matches;
1865 		cdm->num_matches++;
1866 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1867 		cdm->matches[j].result.device_result.path_id =
1868 			device->target->bus->path_id;
1869 		cdm->matches[j].result.device_result.target_id =
1870 			device->target->target_id;
1871 		cdm->matches[j].result.device_result.target_lun =
1872 			device->lun_id;
1873 		cdm->matches[j].result.device_result.protocol =
1874 			device->protocol;
1875 		bcopy(&device->inq_data,
1876 		      &cdm->matches[j].result.device_result.inq_data,
1877 		      sizeof(struct scsi_inquiry_data));
1878 		bcopy(&device->ident_data,
1879 		      &cdm->matches[j].result.device_result.ident_data,
1880 		      sizeof(struct ata_params));
1881 
1882 		/* Let the user know whether this device is unconfigured */
1883 		if (device->flags & CAM_DEV_UNCONFIGURED)
1884 			cdm->matches[j].result.device_result.flags =
1885 				DEV_RESULT_UNCONFIGURED;
1886 		else
1887 			cdm->matches[j].result.device_result.flags =
1888 				DEV_RESULT_NOFLAG;
1889 	}
1890 
1891 	/*
1892 	 * If the user isn't interested in peripherals, don't descend
1893 	 * the tree any further.
1894 	 */
1895 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1896 		return(1);
1897 
1898 	/*
1899 	 * If there is a peripheral list generation recorded, make sure
1900 	 * it hasn't changed.
1901 	 */
1902 	xpt_lock_buses();
1903 	mtx_lock(&bus->eb_mtx);
1904 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1905 	 && (cdm->pos.cookie.bus == bus)
1906 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1907 	 && (cdm->pos.cookie.target == device->target)
1908 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1909 	 && (cdm->pos.cookie.device == device)
1910 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1911 	 && (cdm->pos.cookie.periph != NULL)) {
1912 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1913 		    device->generation) {
1914 			mtx_unlock(&bus->eb_mtx);
1915 			xpt_unlock_buses();
1916 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1917 			return(0);
1918 		}
1919 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1920 		periph->refcount++;
1921 	} else
1922 		periph = NULL;
1923 	mtx_unlock(&bus->eb_mtx);
1924 	xpt_unlock_buses();
1925 
1926 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1927 }
1928 
1929 static int
1930 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1931 {
1932 	struct ccb_dev_match *cdm;
1933 	dev_match_ret retval;
1934 
1935 	cdm = (struct ccb_dev_match *)arg;
1936 
1937 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1938 
1939 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1940 		cdm->status = CAM_DEV_MATCH_ERROR;
1941 		return(0);
1942 	}
1943 
1944 	/*
1945 	 * If the copy flag is set, copy this peripheral out.
1946 	 */
1947 	if (retval & DM_RET_COPY) {
1948 		int spaceleft, j;
1949 		size_t l;
1950 
1951 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1952 			sizeof(struct dev_match_result));
1953 
1954 		/*
1955 		 * If we don't have enough space to put in another
1956 		 * match result, save our position and tell the
1957 		 * user there are more devices to check.
1958 		 */
1959 		if (spaceleft < sizeof(struct dev_match_result)) {
1960 			bzero(&cdm->pos, sizeof(cdm->pos));
1961 			cdm->pos.position_type =
1962 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1963 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1964 				CAM_DEV_POS_PERIPH;
1965 
1966 			cdm->pos.cookie.bus = periph->path->bus;
1967 			cdm->pos.generations[CAM_BUS_GENERATION]=
1968 				xsoftc.bus_generation;
1969 			cdm->pos.cookie.target = periph->path->target;
1970 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1971 				periph->path->bus->generation;
1972 			cdm->pos.cookie.device = periph->path->device;
1973 			cdm->pos.generations[CAM_DEV_GENERATION] =
1974 				periph->path->target->generation;
1975 			cdm->pos.cookie.periph = periph;
1976 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1977 				periph->path->device->generation;
1978 			cdm->status = CAM_DEV_MATCH_MORE;
1979 			return(0);
1980 		}
1981 
1982 		j = cdm->num_matches;
1983 		cdm->num_matches++;
1984 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1985 		cdm->matches[j].result.periph_result.path_id =
1986 			periph->path->bus->path_id;
1987 		cdm->matches[j].result.periph_result.target_id =
1988 			periph->path->target->target_id;
1989 		cdm->matches[j].result.periph_result.target_lun =
1990 			periph->path->device->lun_id;
1991 		cdm->matches[j].result.periph_result.unit_number =
1992 			periph->unit_number;
1993 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1994 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
1995 			periph->periph_name, l);
1996 	}
1997 
1998 	return(1);
1999 }
2000 
2001 static int
2002 xptedtmatch(struct ccb_dev_match *cdm)
2003 {
2004 	struct cam_eb *bus;
2005 	int ret;
2006 
2007 	cdm->num_matches = 0;
2008 
2009 	/*
2010 	 * Check the bus list generation.  If it has changed, the user
2011 	 * needs to reset everything and start over.
2012 	 */
2013 	xpt_lock_buses();
2014 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2015 	 && (cdm->pos.cookie.bus != NULL)) {
2016 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2017 		    xsoftc.bus_generation) {
2018 			xpt_unlock_buses();
2019 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2020 			return(0);
2021 		}
2022 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2023 		bus->refcount++;
2024 	} else
2025 		bus = NULL;
2026 	xpt_unlock_buses();
2027 
2028 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2029 
2030 	/*
2031 	 * If we get back 0, that means that we had to stop before fully
2032 	 * traversing the EDT.  It also means that one of the subroutines
2033 	 * has set the status field to the proper value.  If we get back 1,
2034 	 * we've fully traversed the EDT and copied out any matching entries.
2035 	 */
2036 	if (ret == 1)
2037 		cdm->status = CAM_DEV_MATCH_LAST;
2038 
2039 	return(ret);
2040 }
2041 
2042 static int
2043 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2044 {
2045 	struct cam_periph *periph;
2046 	struct ccb_dev_match *cdm;
2047 
2048 	cdm = (struct ccb_dev_match *)arg;
2049 
2050 	xpt_lock_buses();
2051 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2052 	 && (cdm->pos.cookie.pdrv == pdrv)
2053 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2054 	 && (cdm->pos.cookie.periph != NULL)) {
2055 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2056 		    (*pdrv)->generation) {
2057 			xpt_unlock_buses();
2058 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2059 			return(0);
2060 		}
2061 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2062 		periph->refcount++;
2063 	} else
2064 		periph = NULL;
2065 	xpt_unlock_buses();
2066 
2067 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2068 }
2069 
2070 static int
2071 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2072 {
2073 	struct ccb_dev_match *cdm;
2074 	dev_match_ret retval;
2075 
2076 	cdm = (struct ccb_dev_match *)arg;
2077 
2078 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2079 
2080 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2081 		cdm->status = CAM_DEV_MATCH_ERROR;
2082 		return(0);
2083 	}
2084 
2085 	/*
2086 	 * If the copy flag is set, copy this peripheral out.
2087 	 */
2088 	if (retval & DM_RET_COPY) {
2089 		int spaceleft, j;
2090 		size_t l;
2091 
2092 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2093 			sizeof(struct dev_match_result));
2094 
2095 		/*
2096 		 * If we don't have enough space to put in another
2097 		 * match result, save our position and tell the
2098 		 * user there are more devices to check.
2099 		 */
2100 		if (spaceleft < sizeof(struct dev_match_result)) {
2101 			struct periph_driver **pdrv;
2102 
2103 			pdrv = NULL;
2104 			bzero(&cdm->pos, sizeof(cdm->pos));
2105 			cdm->pos.position_type =
2106 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2107 				CAM_DEV_POS_PERIPH;
2108 
2109 			/*
2110 			 * This may look a bit non-sensical, but it is
2111 			 * actually quite logical.  There are very few
2112 			 * peripheral drivers, and bloating every peripheral
2113 			 * structure with a pointer back to its parent
2114 			 * peripheral driver linker set entry would cost
2115 			 * more in the long run than doing this quick lookup.
2116 			 */
2117 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2118 				if (strcmp((*pdrv)->driver_name,
2119 				    periph->periph_name) == 0)
2120 					break;
2121 			}
2122 
2123 			if (*pdrv == NULL) {
2124 				cdm->status = CAM_DEV_MATCH_ERROR;
2125 				return(0);
2126 			}
2127 
2128 			cdm->pos.cookie.pdrv = pdrv;
2129 			/*
2130 			 * The periph generation slot does double duty, as
2131 			 * does the periph pointer slot.  They are used for
2132 			 * both edt and pdrv lookups and positioning.
2133 			 */
2134 			cdm->pos.cookie.periph = periph;
2135 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2136 				(*pdrv)->generation;
2137 			cdm->status = CAM_DEV_MATCH_MORE;
2138 			return(0);
2139 		}
2140 
2141 		j = cdm->num_matches;
2142 		cdm->num_matches++;
2143 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2144 		cdm->matches[j].result.periph_result.path_id =
2145 			periph->path->bus->path_id;
2146 
2147 		/*
2148 		 * The transport layer peripheral doesn't have a target or
2149 		 * lun.
2150 		 */
2151 		if (periph->path->target)
2152 			cdm->matches[j].result.periph_result.target_id =
2153 				periph->path->target->target_id;
2154 		else
2155 			cdm->matches[j].result.periph_result.target_id =
2156 				CAM_TARGET_WILDCARD;
2157 
2158 		if (periph->path->device)
2159 			cdm->matches[j].result.periph_result.target_lun =
2160 				periph->path->device->lun_id;
2161 		else
2162 			cdm->matches[j].result.periph_result.target_lun =
2163 				CAM_LUN_WILDCARD;
2164 
2165 		cdm->matches[j].result.periph_result.unit_number =
2166 			periph->unit_number;
2167 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2168 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2169 			periph->periph_name, l);
2170 	}
2171 
2172 	return(1);
2173 }
2174 
2175 static int
2176 xptperiphlistmatch(struct ccb_dev_match *cdm)
2177 {
2178 	int ret;
2179 
2180 	cdm->num_matches = 0;
2181 
2182 	/*
2183 	 * At this point in the edt traversal function, we check the bus
2184 	 * list generation to make sure that no buses have been added or
2185 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2186 	 * For the peripheral driver list traversal function, however, we
2187 	 * don't have to worry about new peripheral driver types coming or
2188 	 * going; they're in a linker set, and therefore can't change
2189 	 * without a recompile.
2190 	 */
2191 
2192 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2193 	 && (cdm->pos.cookie.pdrv != NULL))
2194 		ret = xptpdrvtraverse(
2195 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2196 				xptplistpdrvfunc, cdm);
2197 	else
2198 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2199 
2200 	/*
2201 	 * If we get back 0, that means that we had to stop before fully
2202 	 * traversing the peripheral driver tree.  It also means that one of
2203 	 * the subroutines has set the status field to the proper value.  If
2204 	 * we get back 1, we've fully traversed the EDT and copied out any
2205 	 * matching entries.
2206 	 */
2207 	if (ret == 1)
2208 		cdm->status = CAM_DEV_MATCH_LAST;
2209 
2210 	return(ret);
2211 }
2212 
2213 static int
2214 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2215 {
2216 	struct cam_eb *bus, *next_bus;
2217 	int retval;
2218 
2219 	retval = 1;
2220 	if (start_bus)
2221 		bus = start_bus;
2222 	else {
2223 		xpt_lock_buses();
2224 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2225 		if (bus == NULL) {
2226 			xpt_unlock_buses();
2227 			return (retval);
2228 		}
2229 		bus->refcount++;
2230 		xpt_unlock_buses();
2231 	}
2232 	for (; bus != NULL; bus = next_bus) {
2233 		retval = tr_func(bus, arg);
2234 		if (retval == 0) {
2235 			xpt_release_bus(bus);
2236 			break;
2237 		}
2238 		xpt_lock_buses();
2239 		next_bus = TAILQ_NEXT(bus, links);
2240 		if (next_bus)
2241 			next_bus->refcount++;
2242 		xpt_unlock_buses();
2243 		xpt_release_bus(bus);
2244 	}
2245 	return(retval);
2246 }
2247 
2248 static int
2249 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2250 		  xpt_targetfunc_t *tr_func, void *arg)
2251 {
2252 	struct cam_et *target, *next_target;
2253 	int retval;
2254 
2255 	retval = 1;
2256 	if (start_target)
2257 		target = start_target;
2258 	else {
2259 		mtx_lock(&bus->eb_mtx);
2260 		target = TAILQ_FIRST(&bus->et_entries);
2261 		if (target == NULL) {
2262 			mtx_unlock(&bus->eb_mtx);
2263 			return (retval);
2264 		}
2265 		target->refcount++;
2266 		mtx_unlock(&bus->eb_mtx);
2267 	}
2268 	for (; target != NULL; target = next_target) {
2269 		retval = tr_func(target, arg);
2270 		if (retval == 0) {
2271 			xpt_release_target(target);
2272 			break;
2273 		}
2274 		mtx_lock(&bus->eb_mtx);
2275 		next_target = TAILQ_NEXT(target, links);
2276 		if (next_target)
2277 			next_target->refcount++;
2278 		mtx_unlock(&bus->eb_mtx);
2279 		xpt_release_target(target);
2280 	}
2281 	return(retval);
2282 }
2283 
2284 static int
2285 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2286 		  xpt_devicefunc_t *tr_func, void *arg)
2287 {
2288 	struct cam_eb *bus;
2289 	struct cam_ed *device, *next_device;
2290 	int retval;
2291 
2292 	retval = 1;
2293 	bus = target->bus;
2294 	if (start_device)
2295 		device = start_device;
2296 	else {
2297 		mtx_lock(&bus->eb_mtx);
2298 		device = TAILQ_FIRST(&target->ed_entries);
2299 		if (device == NULL) {
2300 			mtx_unlock(&bus->eb_mtx);
2301 			return (retval);
2302 		}
2303 		device->refcount++;
2304 		mtx_unlock(&bus->eb_mtx);
2305 	}
2306 	for (; device != NULL; device = next_device) {
2307 		mtx_lock(&device->device_mtx);
2308 		retval = tr_func(device, arg);
2309 		mtx_unlock(&device->device_mtx);
2310 		if (retval == 0) {
2311 			xpt_release_device(device);
2312 			break;
2313 		}
2314 		mtx_lock(&bus->eb_mtx);
2315 		next_device = TAILQ_NEXT(device, links);
2316 		if (next_device)
2317 			next_device->refcount++;
2318 		mtx_unlock(&bus->eb_mtx);
2319 		xpt_release_device(device);
2320 	}
2321 	return(retval);
2322 }
2323 
2324 static int
2325 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2326 		  xpt_periphfunc_t *tr_func, void *arg)
2327 {
2328 	struct cam_eb *bus;
2329 	struct cam_periph *periph, *next_periph;
2330 	int retval;
2331 
2332 	retval = 1;
2333 
2334 	bus = device->target->bus;
2335 	if (start_periph)
2336 		periph = start_periph;
2337 	else {
2338 		xpt_lock_buses();
2339 		mtx_lock(&bus->eb_mtx);
2340 		periph = SLIST_FIRST(&device->periphs);
2341 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2342 			periph = SLIST_NEXT(periph, periph_links);
2343 		if (periph == NULL) {
2344 			mtx_unlock(&bus->eb_mtx);
2345 			xpt_unlock_buses();
2346 			return (retval);
2347 		}
2348 		periph->refcount++;
2349 		mtx_unlock(&bus->eb_mtx);
2350 		xpt_unlock_buses();
2351 	}
2352 	for (; periph != NULL; periph = next_periph) {
2353 		retval = tr_func(periph, arg);
2354 		if (retval == 0) {
2355 			cam_periph_release_locked(periph);
2356 			break;
2357 		}
2358 		xpt_lock_buses();
2359 		mtx_lock(&bus->eb_mtx);
2360 		next_periph = SLIST_NEXT(periph, periph_links);
2361 		while (next_periph != NULL &&
2362 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2363 			next_periph = SLIST_NEXT(next_periph, periph_links);
2364 		if (next_periph)
2365 			next_periph->refcount++;
2366 		mtx_unlock(&bus->eb_mtx);
2367 		xpt_unlock_buses();
2368 		cam_periph_release_locked(periph);
2369 	}
2370 	return(retval);
2371 }
2372 
2373 static int
2374 xptpdrvtraverse(struct periph_driver **start_pdrv,
2375 		xpt_pdrvfunc_t *tr_func, void *arg)
2376 {
2377 	struct periph_driver **pdrv;
2378 	int retval;
2379 
2380 	retval = 1;
2381 
2382 	/*
2383 	 * We don't traverse the peripheral driver list like we do the
2384 	 * other lists, because it is a linker set, and therefore cannot be
2385 	 * changed during runtime.  If the peripheral driver list is ever
2386 	 * re-done to be something other than a linker set (i.e. it can
2387 	 * change while the system is running), the list traversal should
2388 	 * be modified to work like the other traversal functions.
2389 	 */
2390 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2391 	     *pdrv != NULL; pdrv++) {
2392 		retval = tr_func(pdrv, arg);
2393 
2394 		if (retval == 0)
2395 			return(retval);
2396 	}
2397 
2398 	return(retval);
2399 }
2400 
2401 static int
2402 xptpdperiphtraverse(struct periph_driver **pdrv,
2403 		    struct cam_periph *start_periph,
2404 		    xpt_periphfunc_t *tr_func, void *arg)
2405 {
2406 	struct cam_periph *periph, *next_periph;
2407 	int retval;
2408 
2409 	retval = 1;
2410 
2411 	if (start_periph)
2412 		periph = start_periph;
2413 	else {
2414 		xpt_lock_buses();
2415 		periph = TAILQ_FIRST(&(*pdrv)->units);
2416 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2417 			periph = TAILQ_NEXT(periph, unit_links);
2418 		if (periph == NULL) {
2419 			xpt_unlock_buses();
2420 			return (retval);
2421 		}
2422 		periph->refcount++;
2423 		xpt_unlock_buses();
2424 	}
2425 	for (; periph != NULL; periph = next_periph) {
2426 		cam_periph_lock(periph);
2427 		retval = tr_func(periph, arg);
2428 		cam_periph_unlock(periph);
2429 		if (retval == 0) {
2430 			cam_periph_release(periph);
2431 			break;
2432 		}
2433 		xpt_lock_buses();
2434 		next_periph = TAILQ_NEXT(periph, unit_links);
2435 		while (next_periph != NULL &&
2436 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2437 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2438 		if (next_periph)
2439 			next_periph->refcount++;
2440 		xpt_unlock_buses();
2441 		cam_periph_release(periph);
2442 	}
2443 	return(retval);
2444 }
2445 
2446 static int
2447 xptdefbusfunc(struct cam_eb *bus, void *arg)
2448 {
2449 	struct xpt_traverse_config *tr_config;
2450 
2451 	tr_config = (struct xpt_traverse_config *)arg;
2452 
2453 	if (tr_config->depth == XPT_DEPTH_BUS) {
2454 		xpt_busfunc_t *tr_func;
2455 
2456 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2457 
2458 		return(tr_func(bus, tr_config->tr_arg));
2459 	} else
2460 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2461 }
2462 
2463 static int
2464 xptdeftargetfunc(struct cam_et *target, void *arg)
2465 {
2466 	struct xpt_traverse_config *tr_config;
2467 
2468 	tr_config = (struct xpt_traverse_config *)arg;
2469 
2470 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2471 		xpt_targetfunc_t *tr_func;
2472 
2473 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2474 
2475 		return(tr_func(target, tr_config->tr_arg));
2476 	} else
2477 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2478 }
2479 
2480 static int
2481 xptdefdevicefunc(struct cam_ed *device, void *arg)
2482 {
2483 	struct xpt_traverse_config *tr_config;
2484 
2485 	tr_config = (struct xpt_traverse_config *)arg;
2486 
2487 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2488 		xpt_devicefunc_t *tr_func;
2489 
2490 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2491 
2492 		return(tr_func(device, tr_config->tr_arg));
2493 	} else
2494 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2495 }
2496 
2497 static int
2498 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2499 {
2500 	struct xpt_traverse_config *tr_config;
2501 	xpt_periphfunc_t *tr_func;
2502 
2503 	tr_config = (struct xpt_traverse_config *)arg;
2504 
2505 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2506 
2507 	/*
2508 	 * Unlike the other default functions, we don't check for depth
2509 	 * here.  The peripheral driver level is the last level in the EDT,
2510 	 * so if we're here, we should execute the function in question.
2511 	 */
2512 	return(tr_func(periph, tr_config->tr_arg));
2513 }
2514 
2515 /*
2516  * Execute the given function for every bus in the EDT.
2517  */
2518 static int
2519 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2520 {
2521 	struct xpt_traverse_config tr_config;
2522 
2523 	tr_config.depth = XPT_DEPTH_BUS;
2524 	tr_config.tr_func = tr_func;
2525 	tr_config.tr_arg = arg;
2526 
2527 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2528 }
2529 
2530 /*
2531  * Execute the given function for every device in the EDT.
2532  */
2533 static int
2534 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2535 {
2536 	struct xpt_traverse_config tr_config;
2537 
2538 	tr_config.depth = XPT_DEPTH_DEVICE;
2539 	tr_config.tr_func = tr_func;
2540 	tr_config.tr_arg = arg;
2541 
2542 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2543 }
2544 
2545 static int
2546 xptsetasyncfunc(struct cam_ed *device, void *arg)
2547 {
2548 	struct cam_path path;
2549 	struct ccb_getdev cgd;
2550 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2551 
2552 	/*
2553 	 * Don't report unconfigured devices (Wildcard devs,
2554 	 * devices only for target mode, device instances
2555 	 * that have been invalidated but are waiting for
2556 	 * their last reference count to be released).
2557 	 */
2558 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2559 		return (1);
2560 
2561 	memset(&cgd, 0, sizeof(cgd));
2562 	xpt_compile_path(&path,
2563 			 NULL,
2564 			 device->target->bus->path_id,
2565 			 device->target->target_id,
2566 			 device->lun_id);
2567 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2568 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2569 	xpt_action((union ccb *)&cgd);
2570 	csa->callback(csa->callback_arg,
2571 			    AC_FOUND_DEVICE,
2572 			    &path, &cgd);
2573 	xpt_release_path(&path);
2574 
2575 	return(1);
2576 }
2577 
2578 static int
2579 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2580 {
2581 	struct cam_path path;
2582 	struct ccb_pathinq cpi;
2583 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2584 
2585 	xpt_compile_path(&path, /*periph*/NULL,
2586 			 bus->path_id,
2587 			 CAM_TARGET_WILDCARD,
2588 			 CAM_LUN_WILDCARD);
2589 	xpt_path_lock(&path);
2590 	xpt_path_inq(&cpi, &path);
2591 	csa->callback(csa->callback_arg,
2592 			    AC_PATH_REGISTERED,
2593 			    &path, &cpi);
2594 	xpt_path_unlock(&path);
2595 	xpt_release_path(&path);
2596 
2597 	return(1);
2598 }
2599 
2600 void
2601 xpt_action(union ccb *start_ccb)
2602 {
2603 
2604 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2605 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2606 		xpt_action_name(start_ccb->ccb_h.func_code)));
2607 
2608 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2609 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2610 }
2611 
2612 void
2613 xpt_action_default(union ccb *start_ccb)
2614 {
2615 	struct cam_path *path;
2616 	struct cam_sim *sim;
2617 	struct mtx *mtx;
2618 
2619 	path = start_ccb->ccb_h.path;
2620 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2621 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2622 		xpt_action_name(start_ccb->ccb_h.func_code)));
2623 
2624 	switch (start_ccb->ccb_h.func_code) {
2625 	case XPT_SCSI_IO:
2626 	{
2627 		struct cam_ed *device;
2628 
2629 		/*
2630 		 * For the sake of compatibility with SCSI-1
2631 		 * devices that may not understand the identify
2632 		 * message, we include lun information in the
2633 		 * second byte of all commands.  SCSI-1 specifies
2634 		 * that luns are a 3 bit value and reserves only 3
2635 		 * bits for lun information in the CDB.  Later
2636 		 * revisions of the SCSI spec allow for more than 8
2637 		 * luns, but have deprecated lun information in the
2638 		 * CDB.  So, if the lun won't fit, we must omit.
2639 		 *
2640 		 * Also be aware that during initial probing for devices,
2641 		 * the inquiry information is unknown but initialized to 0.
2642 		 * This means that this code will be exercised while probing
2643 		 * devices with an ANSI revision greater than 2.
2644 		 */
2645 		device = path->device;
2646 		if (device->protocol_version <= SCSI_REV_2
2647 		 && start_ccb->ccb_h.target_lun < 8
2648 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2649 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2650 			    start_ccb->ccb_h.target_lun << 5;
2651 		}
2652 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2653 	}
2654 	/* FALLTHROUGH */
2655 	case XPT_TARGET_IO:
2656 	case XPT_CONT_TARGET_IO:
2657 		start_ccb->csio.sense_resid = 0;
2658 		start_ccb->csio.resid = 0;
2659 		/* FALLTHROUGH */
2660 	case XPT_ATA_IO:
2661 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2662 			start_ccb->ataio.resid = 0;
2663 		/* FALLTHROUGH */
2664 	case XPT_NVME_IO:
2665 	case XPT_NVME_ADMIN:
2666 	case XPT_MMC_IO:
2667 	case XPT_MMC_GET_TRAN_SETTINGS:
2668 	case XPT_MMC_SET_TRAN_SETTINGS:
2669 	case XPT_RESET_DEV:
2670 	case XPT_ENG_EXEC:
2671 	case XPT_SMP_IO:
2672 	{
2673 		struct cam_devq *devq;
2674 
2675 		devq = path->bus->sim->devq;
2676 		mtx_lock(&devq->send_mtx);
2677 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2678 		if (xpt_schedule_devq(devq, path->device) != 0)
2679 			xpt_run_devq(devq);
2680 		mtx_unlock(&devq->send_mtx);
2681 		break;
2682 	}
2683 	case XPT_CALC_GEOMETRY:
2684 		/* Filter out garbage */
2685 		if (start_ccb->ccg.block_size == 0
2686 		 || start_ccb->ccg.volume_size == 0) {
2687 			start_ccb->ccg.cylinders = 0;
2688 			start_ccb->ccg.heads = 0;
2689 			start_ccb->ccg.secs_per_track = 0;
2690 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2691 			break;
2692 		}
2693 		goto call_sim;
2694 	case XPT_ABORT:
2695 	{
2696 		union ccb* abort_ccb;
2697 
2698 		abort_ccb = start_ccb->cab.abort_ccb;
2699 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2700 			struct cam_ed *device;
2701 			struct cam_devq *devq;
2702 
2703 			device = abort_ccb->ccb_h.path->device;
2704 			devq = device->sim->devq;
2705 
2706 			mtx_lock(&devq->send_mtx);
2707 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2708 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2709 				abort_ccb->ccb_h.status =
2710 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2711 				xpt_freeze_devq_device(device, 1);
2712 				mtx_unlock(&devq->send_mtx);
2713 				xpt_done(abort_ccb);
2714 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2715 				break;
2716 			}
2717 			mtx_unlock(&devq->send_mtx);
2718 
2719 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2720 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2721 				/*
2722 				 * We've caught this ccb en route to
2723 				 * the SIM.  Flag it for abort and the
2724 				 * SIM will do so just before starting
2725 				 * real work on the CCB.
2726 				 */
2727 				abort_ccb->ccb_h.status =
2728 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2729 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2730 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2731 				break;
2732 			}
2733 		}
2734 		if (XPT_FC_IS_QUEUED(abort_ccb)
2735 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2736 			/*
2737 			 * It's already completed but waiting
2738 			 * for our SWI to get to it.
2739 			 */
2740 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2741 			break;
2742 		}
2743 		/*
2744 		 * If we weren't able to take care of the abort request
2745 		 * in the XPT, pass the request down to the SIM for processing.
2746 		 */
2747 	}
2748 	/* FALLTHROUGH */
2749 	case XPT_ACCEPT_TARGET_IO:
2750 	case XPT_EN_LUN:
2751 	case XPT_IMMED_NOTIFY:
2752 	case XPT_NOTIFY_ACK:
2753 	case XPT_RESET_BUS:
2754 	case XPT_IMMEDIATE_NOTIFY:
2755 	case XPT_NOTIFY_ACKNOWLEDGE:
2756 	case XPT_GET_SIM_KNOB_OLD:
2757 	case XPT_GET_SIM_KNOB:
2758 	case XPT_SET_SIM_KNOB:
2759 	case XPT_GET_TRAN_SETTINGS:
2760 	case XPT_SET_TRAN_SETTINGS:
2761 	case XPT_PATH_INQ:
2762 call_sim:
2763 		sim = path->bus->sim;
2764 		mtx = sim->mtx;
2765 		if (mtx && !mtx_owned(mtx))
2766 			mtx_lock(mtx);
2767 		else
2768 			mtx = NULL;
2769 
2770 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2771 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2772 		(*(sim->sim_action))(sim, start_ccb);
2773 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2774 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2775 		if (mtx)
2776 			mtx_unlock(mtx);
2777 		break;
2778 	case XPT_PATH_STATS:
2779 		start_ccb->cpis.last_reset = path->bus->last_reset;
2780 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2781 		break;
2782 	case XPT_GDEV_TYPE:
2783 	{
2784 		struct cam_ed *dev;
2785 
2786 		dev = path->device;
2787 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2788 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2789 		} else {
2790 			struct ccb_getdev *cgd;
2791 
2792 			cgd = &start_ccb->cgd;
2793 			cgd->protocol = dev->protocol;
2794 			cgd->inq_data = dev->inq_data;
2795 			cgd->ident_data = dev->ident_data;
2796 			cgd->inq_flags = dev->inq_flags;
2797 			cgd->ccb_h.status = CAM_REQ_CMP;
2798 			cgd->serial_num_len = dev->serial_num_len;
2799 			if ((dev->serial_num_len > 0)
2800 			 && (dev->serial_num != NULL))
2801 				bcopy(dev->serial_num, cgd->serial_num,
2802 				      dev->serial_num_len);
2803 		}
2804 		break;
2805 	}
2806 	case XPT_GDEV_STATS:
2807 	{
2808 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2809 		struct cam_ed *dev = path->device;
2810 		struct cam_eb *bus = path->bus;
2811 		struct cam_et *tar = path->target;
2812 		struct cam_devq *devq = bus->sim->devq;
2813 
2814 		mtx_lock(&devq->send_mtx);
2815 		cgds->dev_openings = dev->ccbq.dev_openings;
2816 		cgds->dev_active = dev->ccbq.dev_active;
2817 		cgds->allocated = dev->ccbq.allocated;
2818 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2819 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2820 		cgds->last_reset = tar->last_reset;
2821 		cgds->maxtags = dev->maxtags;
2822 		cgds->mintags = dev->mintags;
2823 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2824 			cgds->last_reset = bus->last_reset;
2825 		mtx_unlock(&devq->send_mtx);
2826 		cgds->ccb_h.status = CAM_REQ_CMP;
2827 		break;
2828 	}
2829 	case XPT_GDEVLIST:
2830 	{
2831 		struct cam_periph	*nperiph;
2832 		struct periph_list	*periph_head;
2833 		struct ccb_getdevlist	*cgdl;
2834 		u_int			i;
2835 		struct cam_ed		*device;
2836 		bool			found;
2837 
2838 		found = false;
2839 
2840 		/*
2841 		 * Don't want anyone mucking with our data.
2842 		 */
2843 		device = path->device;
2844 		periph_head = &device->periphs;
2845 		cgdl = &start_ccb->cgdl;
2846 
2847 		/*
2848 		 * Check and see if the list has changed since the user
2849 		 * last requested a list member.  If so, tell them that the
2850 		 * list has changed, and therefore they need to start over
2851 		 * from the beginning.
2852 		 */
2853 		if ((cgdl->index != 0) &&
2854 		    (cgdl->generation != device->generation)) {
2855 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2856 			break;
2857 		}
2858 
2859 		/*
2860 		 * Traverse the list of peripherals and attempt to find
2861 		 * the requested peripheral.
2862 		 */
2863 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2864 		     (nperiph != NULL) && (i <= cgdl->index);
2865 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2866 			if (i == cgdl->index) {
2867 				strlcpy(cgdl->periph_name,
2868 					nperiph->periph_name,
2869 					sizeof(cgdl->periph_name));
2870 				cgdl->unit_number = nperiph->unit_number;
2871 				found = true;
2872 			}
2873 		}
2874 		if (!found) {
2875 			cgdl->status = CAM_GDEVLIST_ERROR;
2876 			break;
2877 		}
2878 
2879 		if (nperiph == NULL)
2880 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2881 		else
2882 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2883 
2884 		cgdl->index++;
2885 		cgdl->generation = device->generation;
2886 
2887 		cgdl->ccb_h.status = CAM_REQ_CMP;
2888 		break;
2889 	}
2890 	case XPT_DEV_MATCH:
2891 	{
2892 		dev_pos_type position_type;
2893 		struct ccb_dev_match *cdm;
2894 
2895 		cdm = &start_ccb->cdm;
2896 
2897 		/*
2898 		 * There are two ways of getting at information in the EDT.
2899 		 * The first way is via the primary EDT tree.  It starts
2900 		 * with a list of buses, then a list of targets on a bus,
2901 		 * then devices/luns on a target, and then peripherals on a
2902 		 * device/lun.  The "other" way is by the peripheral driver
2903 		 * lists.  The peripheral driver lists are organized by
2904 		 * peripheral driver.  (obviously)  So it makes sense to
2905 		 * use the peripheral driver list if the user is looking
2906 		 * for something like "da1", or all "da" devices.  If the
2907 		 * user is looking for something on a particular bus/target
2908 		 * or lun, it's generally better to go through the EDT tree.
2909 		 */
2910 
2911 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2912 			position_type = cdm->pos.position_type;
2913 		else {
2914 			u_int i;
2915 
2916 			position_type = CAM_DEV_POS_NONE;
2917 
2918 			for (i = 0; i < cdm->num_patterns; i++) {
2919 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2920 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2921 					position_type = CAM_DEV_POS_EDT;
2922 					break;
2923 				}
2924 			}
2925 
2926 			if (cdm->num_patterns == 0)
2927 				position_type = CAM_DEV_POS_EDT;
2928 			else if (position_type == CAM_DEV_POS_NONE)
2929 				position_type = CAM_DEV_POS_PDRV;
2930 		}
2931 
2932 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2933 		case CAM_DEV_POS_EDT:
2934 			xptedtmatch(cdm);
2935 			break;
2936 		case CAM_DEV_POS_PDRV:
2937 			xptperiphlistmatch(cdm);
2938 			break;
2939 		default:
2940 			cdm->status = CAM_DEV_MATCH_ERROR;
2941 			break;
2942 		}
2943 
2944 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2945 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2946 		else
2947 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2948 
2949 		break;
2950 	}
2951 	case XPT_SASYNC_CB:
2952 	{
2953 		struct ccb_setasync *csa;
2954 		struct async_node *cur_entry;
2955 		struct async_list *async_head;
2956 		u_int32_t added;
2957 
2958 		csa = &start_ccb->csa;
2959 		added = csa->event_enable;
2960 		async_head = &path->device->asyncs;
2961 
2962 		/*
2963 		 * If there is already an entry for us, simply
2964 		 * update it.
2965 		 */
2966 		cur_entry = SLIST_FIRST(async_head);
2967 		while (cur_entry != NULL) {
2968 			if ((cur_entry->callback_arg == csa->callback_arg)
2969 			 && (cur_entry->callback == csa->callback))
2970 				break;
2971 			cur_entry = SLIST_NEXT(cur_entry, links);
2972 		}
2973 
2974 		if (cur_entry != NULL) {
2975 		 	/*
2976 			 * If the request has no flags set,
2977 			 * remove the entry.
2978 			 */
2979 			added &= ~cur_entry->event_enable;
2980 			if (csa->event_enable == 0) {
2981 				SLIST_REMOVE(async_head, cur_entry,
2982 					     async_node, links);
2983 				xpt_release_device(path->device);
2984 				free(cur_entry, M_CAMXPT);
2985 			} else {
2986 				cur_entry->event_enable = csa->event_enable;
2987 			}
2988 			csa->event_enable = added;
2989 		} else {
2990 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2991 					   M_NOWAIT);
2992 			if (cur_entry == NULL) {
2993 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2994 				break;
2995 			}
2996 			cur_entry->event_enable = csa->event_enable;
2997 			cur_entry->event_lock = (path->bus->sim->mtx &&
2998 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2999 			cur_entry->callback_arg = csa->callback_arg;
3000 			cur_entry->callback = csa->callback;
3001 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3002 			xpt_acquire_device(path->device);
3003 		}
3004 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3005 		break;
3006 	}
3007 	case XPT_REL_SIMQ:
3008 	{
3009 		struct ccb_relsim *crs;
3010 		struct cam_ed *dev;
3011 
3012 		crs = &start_ccb->crs;
3013 		dev = path->device;
3014 		if (dev == NULL) {
3015 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3016 			break;
3017 		}
3018 
3019 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3020 			/* Don't ever go below one opening */
3021 			if (crs->openings > 0) {
3022 				xpt_dev_ccbq_resize(path, crs->openings);
3023 				if (bootverbose) {
3024 					xpt_print(path,
3025 					    "number of openings is now %d\n",
3026 					    crs->openings);
3027 				}
3028 			}
3029 		}
3030 
3031 		mtx_lock(&dev->sim->devq->send_mtx);
3032 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3033 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3034 				/*
3035 				 * Just extend the old timeout and decrement
3036 				 * the freeze count so that a single timeout
3037 				 * is sufficient for releasing the queue.
3038 				 */
3039 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3040 				callout_stop(&dev->callout);
3041 			} else {
3042 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3043 			}
3044 
3045 			callout_reset_sbt(&dev->callout,
3046 			    SBT_1MS * crs->release_timeout, SBT_1MS,
3047 			    xpt_release_devq_timeout, dev, 0);
3048 
3049 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3050 		}
3051 
3052 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3053 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3054 				/*
3055 				 * Decrement the freeze count so that a single
3056 				 * completion is still sufficient to unfreeze
3057 				 * the queue.
3058 				 */
3059 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3060 			} else {
3061 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3062 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3063 			}
3064 		}
3065 
3066 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3067 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3068 			 || (dev->ccbq.dev_active == 0)) {
3069 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3070 			} else {
3071 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3072 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3073 			}
3074 		}
3075 		mtx_unlock(&dev->sim->devq->send_mtx);
3076 
3077 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3078 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3079 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3080 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3081 		break;
3082 	}
3083 	case XPT_DEBUG: {
3084 		struct cam_path *oldpath;
3085 
3086 		/* Check that all request bits are supported. */
3087 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3088 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3089 			break;
3090 		}
3091 
3092 		cam_dflags = CAM_DEBUG_NONE;
3093 		if (cam_dpath != NULL) {
3094 			oldpath = cam_dpath;
3095 			cam_dpath = NULL;
3096 			xpt_free_path(oldpath);
3097 		}
3098 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3099 			if (xpt_create_path(&cam_dpath, NULL,
3100 					    start_ccb->ccb_h.path_id,
3101 					    start_ccb->ccb_h.target_id,
3102 					    start_ccb->ccb_h.target_lun) !=
3103 					    CAM_REQ_CMP) {
3104 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3105 			} else {
3106 				cam_dflags = start_ccb->cdbg.flags;
3107 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3108 				xpt_print(cam_dpath, "debugging flags now %x\n",
3109 				    cam_dflags);
3110 			}
3111 		} else
3112 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3113 		break;
3114 	}
3115 	case XPT_NOOP:
3116 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3117 			xpt_freeze_devq(path, 1);
3118 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3119 		break;
3120 	case XPT_REPROBE_LUN:
3121 		xpt_async(AC_INQ_CHANGED, path, NULL);
3122 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3123 		xpt_done(start_ccb);
3124 		break;
3125 	case XPT_ASYNC:
3126 		/*
3127 		 * Queue the async operation so it can be run from a sleepable
3128 		 * context.
3129 		 */
3130 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3131 		mtx_lock(&cam_async.cam_doneq_mtx);
3132 		STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3133 		start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3134 		mtx_unlock(&cam_async.cam_doneq_mtx);
3135 		wakeup(&cam_async.cam_doneq);
3136 		break;
3137 	default:
3138 	case XPT_SDEV_TYPE:
3139 	case XPT_TERM_IO:
3140 	case XPT_ENG_INQ:
3141 		/* XXX Implement */
3142 		xpt_print(start_ccb->ccb_h.path,
3143 		    "%s: CCB type %#x %s not supported\n", __func__,
3144 		    start_ccb->ccb_h.func_code,
3145 		    xpt_action_name(start_ccb->ccb_h.func_code));
3146 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3147 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3148 			xpt_done(start_ccb);
3149 		}
3150 		break;
3151 	}
3152 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3153 	    ("xpt_action_default: func= %#x %s status %#x\n",
3154 		start_ccb->ccb_h.func_code,
3155  		xpt_action_name(start_ccb->ccb_h.func_code),
3156 		start_ccb->ccb_h.status));
3157 }
3158 
3159 /*
3160  * Call the sim poll routine to allow the sim to complete
3161  * any inflight requests, then call camisr_runqueue to
3162  * complete any CCB that the polling completed.
3163  */
3164 void
3165 xpt_sim_poll(struct cam_sim *sim)
3166 {
3167 	struct mtx *mtx;
3168 
3169 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3170 	mtx = sim->mtx;
3171 	if (mtx)
3172 		mtx_lock(mtx);
3173 	(*(sim->sim_poll))(sim);
3174 	if (mtx)
3175 		mtx_unlock(mtx);
3176 	camisr_runqueue();
3177 }
3178 
3179 uint32_t
3180 xpt_poll_setup(union ccb *start_ccb)
3181 {
3182 	u_int32_t timeout;
3183 	struct	  cam_sim *sim;
3184 	struct	  cam_devq *devq;
3185 	struct	  cam_ed *dev;
3186 
3187 	timeout = start_ccb->ccb_h.timeout * 10;
3188 	sim = start_ccb->ccb_h.path->bus->sim;
3189 	devq = sim->devq;
3190 	dev = start_ccb->ccb_h.path->device;
3191 
3192 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3193 
3194 	/*
3195 	 * Steal an opening so that no other queued requests
3196 	 * can get it before us while we simulate interrupts.
3197 	 */
3198 	mtx_lock(&devq->send_mtx);
3199 	dev->ccbq.dev_openings--;
3200 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3201 	    (--timeout > 0)) {
3202 		mtx_unlock(&devq->send_mtx);
3203 		DELAY(100);
3204 		xpt_sim_poll(sim);
3205 		mtx_lock(&devq->send_mtx);
3206 	}
3207 	dev->ccbq.dev_openings++;
3208 	mtx_unlock(&devq->send_mtx);
3209 
3210 	return (timeout);
3211 }
3212 
3213 void
3214 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3215 {
3216 
3217 	KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3218 	    ("%s: non-pollable sim", __func__));
3219 	while (--timeout > 0) {
3220 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3221 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3222 		    != CAM_REQ_INPROG)
3223 			break;
3224 		DELAY(100);
3225 	}
3226 
3227 	if (timeout == 0) {
3228 		/*
3229 		 * XXX Is it worth adding a sim_timeout entry
3230 		 * point so we can attempt recovery?  If
3231 		 * this is only used for dumps, I don't think
3232 		 * it is.
3233 		 */
3234 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3235 	}
3236 }
3237 
3238 /*
3239  * Schedule a peripheral driver to receive a ccb when its
3240  * target device has space for more transactions.
3241  */
3242 void
3243 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3244 {
3245 
3246 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3247 	cam_periph_assert(periph, MA_OWNED);
3248 	if (new_priority < periph->scheduled_priority) {
3249 		periph->scheduled_priority = new_priority;
3250 		xpt_run_allocq(periph, 0);
3251 	}
3252 }
3253 
3254 /*
3255  * Schedule a device to run on a given queue.
3256  * If the device was inserted as a new entry on the queue,
3257  * return 1 meaning the device queue should be run. If we
3258  * were already queued, implying someone else has already
3259  * started the queue, return 0 so the caller doesn't attempt
3260  * to run the queue.
3261  */
3262 static int
3263 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3264 		 u_int32_t new_priority)
3265 {
3266 	int retval;
3267 	u_int32_t old_priority;
3268 
3269 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3270 
3271 	old_priority = pinfo->priority;
3272 
3273 	/*
3274 	 * Are we already queued?
3275 	 */
3276 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3277 		/* Simply reorder based on new priority */
3278 		if (new_priority < old_priority) {
3279 			camq_change_priority(queue, pinfo->index,
3280 					     new_priority);
3281 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3282 					("changed priority to %d\n",
3283 					 new_priority));
3284 			retval = 1;
3285 		} else
3286 			retval = 0;
3287 	} else {
3288 		/* New entry on the queue */
3289 		if (new_priority < old_priority)
3290 			pinfo->priority = new_priority;
3291 
3292 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3293 				("Inserting onto queue\n"));
3294 		pinfo->generation = ++queue->generation;
3295 		camq_insert(queue, pinfo);
3296 		retval = 1;
3297 	}
3298 	return (retval);
3299 }
3300 
3301 static void
3302 xpt_run_allocq_task(void *context, int pending)
3303 {
3304 	struct cam_periph *periph = context;
3305 
3306 	cam_periph_lock(periph);
3307 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3308 	xpt_run_allocq(periph, 1);
3309 	cam_periph_unlock(periph);
3310 	cam_periph_release(periph);
3311 }
3312 
3313 static void
3314 xpt_run_allocq(struct cam_periph *periph, int sleep)
3315 {
3316 	struct cam_ed	*device;
3317 	union ccb	*ccb;
3318 	uint32_t	 prio;
3319 
3320 	cam_periph_assert(periph, MA_OWNED);
3321 	if (periph->periph_allocating)
3322 		return;
3323 	cam_periph_doacquire(periph);
3324 	periph->periph_allocating = 1;
3325 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3326 	device = periph->path->device;
3327 	ccb = NULL;
3328 restart:
3329 	while ((prio = min(periph->scheduled_priority,
3330 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3331 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3332 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3333 		if (ccb == NULL &&
3334 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3335 			if (sleep) {
3336 				ccb = xpt_get_ccb(periph);
3337 				goto restart;
3338 			}
3339 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3340 				break;
3341 			cam_periph_doacquire(periph);
3342 			periph->flags |= CAM_PERIPH_RUN_TASK;
3343 			taskqueue_enqueue(xsoftc.xpt_taskq,
3344 			    &periph->periph_run_task);
3345 			break;
3346 		}
3347 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3348 		if (prio == periph->immediate_priority) {
3349 			periph->immediate_priority = CAM_PRIORITY_NONE;
3350 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3351 					("waking cam_periph_getccb()\n"));
3352 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3353 					  periph_links.sle);
3354 			wakeup(&periph->ccb_list);
3355 		} else {
3356 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3357 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3358 					("calling periph_start()\n"));
3359 			periph->periph_start(periph, ccb);
3360 		}
3361 		ccb = NULL;
3362 	}
3363 	if (ccb != NULL)
3364 		xpt_release_ccb(ccb);
3365 	periph->periph_allocating = 0;
3366 	cam_periph_release_locked(periph);
3367 }
3368 
3369 static void
3370 xpt_run_devq(struct cam_devq *devq)
3371 {
3372 	struct mtx *mtx;
3373 
3374 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3375 
3376 	devq->send_queue.qfrozen_cnt++;
3377 	while ((devq->send_queue.entries > 0)
3378 	    && (devq->send_openings > 0)
3379 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3380 		struct	cam_ed *device;
3381 		union ccb *work_ccb;
3382 		struct	cam_sim *sim;
3383 		struct xpt_proto *proto;
3384 
3385 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3386 							   CAMQ_HEAD);
3387 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3388 				("running device %p\n", device));
3389 
3390 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3391 		if (work_ccb == NULL) {
3392 			printf("device on run queue with no ccbs???\n");
3393 			continue;
3394 		}
3395 
3396 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3397 			mtx_lock(&xsoftc.xpt_highpower_lock);
3398 		 	if (xsoftc.num_highpower <= 0) {
3399 				/*
3400 				 * We got a high power command, but we
3401 				 * don't have any available slots.  Freeze
3402 				 * the device queue until we have a slot
3403 				 * available.
3404 				 */
3405 				xpt_freeze_devq_device(device, 1);
3406 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3407 						   highpowerq_entry);
3408 
3409 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3410 				continue;
3411 			} else {
3412 				/*
3413 				 * Consume a high power slot while
3414 				 * this ccb runs.
3415 				 */
3416 				xsoftc.num_highpower--;
3417 			}
3418 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3419 		}
3420 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3421 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3422 		devq->send_openings--;
3423 		devq->send_active++;
3424 		xpt_schedule_devq(devq, device);
3425 		mtx_unlock(&devq->send_mtx);
3426 
3427 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3428 			/*
3429 			 * The client wants to freeze the queue
3430 			 * after this CCB is sent.
3431 			 */
3432 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3433 		}
3434 
3435 		/* In Target mode, the peripheral driver knows best... */
3436 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3437 			if ((device->inq_flags & SID_CmdQue) != 0
3438 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3439 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3440 			else
3441 				/*
3442 				 * Clear this in case of a retried CCB that
3443 				 * failed due to a rejected tag.
3444 				 */
3445 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3446 		}
3447 
3448 		KASSERT(device == work_ccb->ccb_h.path->device,
3449 		    ("device (%p) / path->device (%p) mismatch",
3450 			device, work_ccb->ccb_h.path->device));
3451 		proto = xpt_proto_find(device->protocol);
3452 		if (proto && proto->ops->debug_out)
3453 			proto->ops->debug_out(work_ccb);
3454 
3455 		/*
3456 		 * Device queues can be shared among multiple SIM instances
3457 		 * that reside on different buses.  Use the SIM from the
3458 		 * queued device, rather than the one from the calling bus.
3459 		 */
3460 		sim = device->sim;
3461 		mtx = sim->mtx;
3462 		if (mtx && !mtx_owned(mtx))
3463 			mtx_lock(mtx);
3464 		else
3465 			mtx = NULL;
3466 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3467 		(*(sim->sim_action))(sim, work_ccb);
3468 		if (mtx)
3469 			mtx_unlock(mtx);
3470 		mtx_lock(&devq->send_mtx);
3471 	}
3472 	devq->send_queue.qfrozen_cnt--;
3473 }
3474 
3475 /*
3476  * This function merges stuff from the src ccb into the dst ccb, while keeping
3477  * important fields in the dst ccb constant.
3478  */
3479 void
3480 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3481 {
3482 
3483 	/*
3484 	 * Pull fields that are valid for peripheral drivers to set
3485 	 * into the dst CCB along with the CCB "payload".
3486 	 */
3487 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3488 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3489 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3490 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3491 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3492 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3493 }
3494 
3495 void
3496 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3497 		    u_int32_t priority, u_int32_t flags)
3498 {
3499 
3500 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3501 	ccb_h->pinfo.priority = priority;
3502 	ccb_h->path = path;
3503 	ccb_h->path_id = path->bus->path_id;
3504 	if (path->target)
3505 		ccb_h->target_id = path->target->target_id;
3506 	else
3507 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3508 	if (path->device) {
3509 		ccb_h->target_lun = path->device->lun_id;
3510 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3511 	} else {
3512 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3513 	}
3514 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3515 	ccb_h->flags = flags;
3516 	ccb_h->xflags = 0;
3517 }
3518 
3519 void
3520 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3521 {
3522 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3523 }
3524 
3525 /* Path manipulation functions */
3526 cam_status
3527 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3528 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3529 {
3530 	struct	   cam_path *path;
3531 	cam_status status;
3532 
3533 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3534 
3535 	if (path == NULL) {
3536 		status = CAM_RESRC_UNAVAIL;
3537 		return(status);
3538 	}
3539 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3540 	if (status != CAM_REQ_CMP) {
3541 		free(path, M_CAMPATH);
3542 		path = NULL;
3543 	}
3544 	*new_path_ptr = path;
3545 	return (status);
3546 }
3547 
3548 cam_status
3549 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3550 			 struct cam_periph *periph, path_id_t path_id,
3551 			 target_id_t target_id, lun_id_t lun_id)
3552 {
3553 
3554 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3555 	    lun_id));
3556 }
3557 
3558 cam_status
3559 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3560 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3561 {
3562 	struct	     cam_eb *bus;
3563 	struct	     cam_et *target;
3564 	struct	     cam_ed *device;
3565 	cam_status   status;
3566 
3567 	status = CAM_REQ_CMP;	/* Completed without error */
3568 	target = NULL;		/* Wildcarded */
3569 	device = NULL;		/* Wildcarded */
3570 
3571 	/*
3572 	 * We will potentially modify the EDT, so block interrupts
3573 	 * that may attempt to create cam paths.
3574 	 */
3575 	bus = xpt_find_bus(path_id);
3576 	if (bus == NULL) {
3577 		status = CAM_PATH_INVALID;
3578 	} else {
3579 		xpt_lock_buses();
3580 		mtx_lock(&bus->eb_mtx);
3581 		target = xpt_find_target(bus, target_id);
3582 		if (target == NULL) {
3583 			/* Create one */
3584 			struct cam_et *new_target;
3585 
3586 			new_target = xpt_alloc_target(bus, target_id);
3587 			if (new_target == NULL) {
3588 				status = CAM_RESRC_UNAVAIL;
3589 			} else {
3590 				target = new_target;
3591 			}
3592 		}
3593 		xpt_unlock_buses();
3594 		if (target != NULL) {
3595 			device = xpt_find_device(target, lun_id);
3596 			if (device == NULL) {
3597 				/* Create one */
3598 				struct cam_ed *new_device;
3599 
3600 				new_device =
3601 				    (*(bus->xport->ops->alloc_device))(bus,
3602 								       target,
3603 								       lun_id);
3604 				if (new_device == NULL) {
3605 					status = CAM_RESRC_UNAVAIL;
3606 				} else {
3607 					device = new_device;
3608 				}
3609 			}
3610 		}
3611 		mtx_unlock(&bus->eb_mtx);
3612 	}
3613 
3614 	/*
3615 	 * Only touch the user's data if we are successful.
3616 	 */
3617 	if (status == CAM_REQ_CMP) {
3618 		new_path->periph = perph;
3619 		new_path->bus = bus;
3620 		new_path->target = target;
3621 		new_path->device = device;
3622 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3623 	} else {
3624 		if (device != NULL)
3625 			xpt_release_device(device);
3626 		if (target != NULL)
3627 			xpt_release_target(target);
3628 		if (bus != NULL)
3629 			xpt_release_bus(bus);
3630 	}
3631 	return (status);
3632 }
3633 
3634 int
3635 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3636 {
3637 	struct	   cam_path *new_path;
3638 
3639 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3640 	if (new_path == NULL)
3641 		return (ENOMEM);
3642 	*new_path = *path;
3643 	if (path->bus != NULL)
3644 		xpt_acquire_bus(path->bus);
3645 	if (path->target != NULL)
3646 		xpt_acquire_target(path->target);
3647 	if (path->device != NULL)
3648 		xpt_acquire_device(path->device);
3649 	*new_path_ptr = new_path;
3650 	return (0);
3651 }
3652 
3653 void
3654 xpt_release_path(struct cam_path *path)
3655 {
3656 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3657 	if (path->device != NULL) {
3658 		xpt_release_device(path->device);
3659 		path->device = NULL;
3660 	}
3661 	if (path->target != NULL) {
3662 		xpt_release_target(path->target);
3663 		path->target = NULL;
3664 	}
3665 	if (path->bus != NULL) {
3666 		xpt_release_bus(path->bus);
3667 		path->bus = NULL;
3668 	}
3669 }
3670 
3671 void
3672 xpt_free_path(struct cam_path *path)
3673 {
3674 
3675 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3676 	xpt_release_path(path);
3677 	free(path, M_CAMPATH);
3678 }
3679 
3680 void
3681 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3682     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3683 {
3684 
3685 	xpt_lock_buses();
3686 	if (bus_ref) {
3687 		if (path->bus)
3688 			*bus_ref = path->bus->refcount;
3689 		else
3690 			*bus_ref = 0;
3691 	}
3692 	if (periph_ref) {
3693 		if (path->periph)
3694 			*periph_ref = path->periph->refcount;
3695 		else
3696 			*periph_ref = 0;
3697 	}
3698 	xpt_unlock_buses();
3699 	if (target_ref) {
3700 		if (path->target)
3701 			*target_ref = path->target->refcount;
3702 		else
3703 			*target_ref = 0;
3704 	}
3705 	if (device_ref) {
3706 		if (path->device)
3707 			*device_ref = path->device->refcount;
3708 		else
3709 			*device_ref = 0;
3710 	}
3711 }
3712 
3713 /*
3714  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3715  * in path1, 2 for match with wildcards in path2.
3716  */
3717 int
3718 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3719 {
3720 	int retval = 0;
3721 
3722 	if (path1->bus != path2->bus) {
3723 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3724 			retval = 1;
3725 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3726 			retval = 2;
3727 		else
3728 			return (-1);
3729 	}
3730 	if (path1->target != path2->target) {
3731 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3732 			if (retval == 0)
3733 				retval = 1;
3734 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3735 			retval = 2;
3736 		else
3737 			return (-1);
3738 	}
3739 	if (path1->device != path2->device) {
3740 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3741 			if (retval == 0)
3742 				retval = 1;
3743 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3744 			retval = 2;
3745 		else
3746 			return (-1);
3747 	}
3748 	return (retval);
3749 }
3750 
3751 int
3752 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3753 {
3754 	int retval = 0;
3755 
3756 	if (path->bus != dev->target->bus) {
3757 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3758 			retval = 1;
3759 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3760 			retval = 2;
3761 		else
3762 			return (-1);
3763 	}
3764 	if (path->target != dev->target) {
3765 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3766 			if (retval == 0)
3767 				retval = 1;
3768 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3769 			retval = 2;
3770 		else
3771 			return (-1);
3772 	}
3773 	if (path->device != dev) {
3774 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3775 			if (retval == 0)
3776 				retval = 1;
3777 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3778 			retval = 2;
3779 		else
3780 			return (-1);
3781 	}
3782 	return (retval);
3783 }
3784 
3785 void
3786 xpt_print_path(struct cam_path *path)
3787 {
3788 	struct sbuf sb;
3789 	char buffer[XPT_PRINT_LEN];
3790 
3791 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3792 	xpt_path_sbuf(path, &sb);
3793 	sbuf_finish(&sb);
3794 	printf("%s", sbuf_data(&sb));
3795 	sbuf_delete(&sb);
3796 }
3797 
3798 void
3799 xpt_print_device(struct cam_ed *device)
3800 {
3801 
3802 	if (device == NULL)
3803 		printf("(nopath): ");
3804 	else {
3805 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3806 		       device->sim->unit_number,
3807 		       device->sim->bus_id,
3808 		       device->target->target_id,
3809 		       (uintmax_t)device->lun_id);
3810 	}
3811 }
3812 
3813 void
3814 xpt_print(struct cam_path *path, const char *fmt, ...)
3815 {
3816 	va_list ap;
3817 	struct sbuf sb;
3818 	char buffer[XPT_PRINT_LEN];
3819 
3820 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3821 
3822 	xpt_path_sbuf(path, &sb);
3823 	va_start(ap, fmt);
3824 	sbuf_vprintf(&sb, fmt, ap);
3825 	va_end(ap);
3826 
3827 	sbuf_finish(&sb);
3828 	printf("%s", sbuf_data(&sb));
3829 	sbuf_delete(&sb);
3830 }
3831 
3832 int
3833 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3834 {
3835 	struct sbuf sb;
3836 	int len;
3837 
3838 	sbuf_new(&sb, str, str_len, 0);
3839 	len = xpt_path_sbuf(path, &sb);
3840 	sbuf_finish(&sb);
3841 	return (len);
3842 }
3843 
3844 int
3845 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3846 {
3847 
3848 	if (path == NULL)
3849 		sbuf_printf(sb, "(nopath): ");
3850 	else {
3851 		if (path->periph != NULL)
3852 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3853 				    path->periph->unit_number);
3854 		else
3855 			sbuf_printf(sb, "(noperiph:");
3856 
3857 		if (path->bus != NULL)
3858 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3859 				    path->bus->sim->unit_number,
3860 				    path->bus->sim->bus_id);
3861 		else
3862 			sbuf_printf(sb, "nobus:");
3863 
3864 		if (path->target != NULL)
3865 			sbuf_printf(sb, "%d:", path->target->target_id);
3866 		else
3867 			sbuf_printf(sb, "X:");
3868 
3869 		if (path->device != NULL)
3870 			sbuf_printf(sb, "%jx): ",
3871 			    (uintmax_t)path->device->lun_id);
3872 		else
3873 			sbuf_printf(sb, "X): ");
3874 	}
3875 
3876 	return(sbuf_len(sb));
3877 }
3878 
3879 path_id_t
3880 xpt_path_path_id(struct cam_path *path)
3881 {
3882 	return(path->bus->path_id);
3883 }
3884 
3885 target_id_t
3886 xpt_path_target_id(struct cam_path *path)
3887 {
3888 	if (path->target != NULL)
3889 		return (path->target->target_id);
3890 	else
3891 		return (CAM_TARGET_WILDCARD);
3892 }
3893 
3894 lun_id_t
3895 xpt_path_lun_id(struct cam_path *path)
3896 {
3897 	if (path->device != NULL)
3898 		return (path->device->lun_id);
3899 	else
3900 		return (CAM_LUN_WILDCARD);
3901 }
3902 
3903 struct cam_sim *
3904 xpt_path_sim(struct cam_path *path)
3905 {
3906 
3907 	return (path->bus->sim);
3908 }
3909 
3910 struct cam_periph*
3911 xpt_path_periph(struct cam_path *path)
3912 {
3913 
3914 	return (path->periph);
3915 }
3916 
3917 /*
3918  * Release a CAM control block for the caller.  Remit the cost of the structure
3919  * to the device referenced by the path.  If the this device had no 'credits'
3920  * and peripheral drivers have registered async callbacks for this notification
3921  * call them now.
3922  */
3923 void
3924 xpt_release_ccb(union ccb *free_ccb)
3925 {
3926 	struct	 cam_ed *device;
3927 	struct	 cam_periph *periph;
3928 
3929 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3930 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3931 	device = free_ccb->ccb_h.path->device;
3932 	periph = free_ccb->ccb_h.path->periph;
3933 
3934 	xpt_free_ccb(free_ccb);
3935 	periph->periph_allocated--;
3936 	cam_ccbq_release_opening(&device->ccbq);
3937 	xpt_run_allocq(periph, 0);
3938 }
3939 
3940 /* Functions accessed by SIM drivers */
3941 
3942 static struct xpt_xport_ops xport_default_ops = {
3943 	.alloc_device = xpt_alloc_device_default,
3944 	.action = xpt_action_default,
3945 	.async = xpt_dev_async_default,
3946 };
3947 static struct xpt_xport xport_default = {
3948 	.xport = XPORT_UNKNOWN,
3949 	.name = "unknown",
3950 	.ops = &xport_default_ops,
3951 };
3952 
3953 CAM_XPT_XPORT(xport_default);
3954 
3955 /*
3956  * A sim structure, listing the SIM entry points and instance
3957  * identification info is passed to xpt_bus_register to hook the SIM
3958  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3959  * for this new bus and places it in the array of buses and assigns
3960  * it a path_id.  The path_id may be influenced by "hard wiring"
3961  * information specified by the user.  Once interrupt services are
3962  * available, the bus will be probed.
3963  */
3964 int
3965 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3966 {
3967 	struct cam_eb *new_bus;
3968 	struct cam_eb *old_bus;
3969 	struct ccb_pathinq cpi;
3970 	struct cam_path *path;
3971 	cam_status status;
3972 
3973 	sim->bus_id = bus;
3974 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3975 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3976 	if (new_bus == NULL) {
3977 		/* Couldn't satisfy request */
3978 		return (ENOMEM);
3979 	}
3980 
3981 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3982 	TAILQ_INIT(&new_bus->et_entries);
3983 	cam_sim_hold(sim);
3984 	new_bus->sim = sim;
3985 	timevalclear(&new_bus->last_reset);
3986 	new_bus->flags = 0;
3987 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3988 	new_bus->generation = 0;
3989 	new_bus->parent_dev = parent;
3990 
3991 	xpt_lock_buses();
3992 	sim->path_id = new_bus->path_id =
3993 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3994 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3995 	while (old_bus != NULL
3996 	    && old_bus->path_id < new_bus->path_id)
3997 		old_bus = TAILQ_NEXT(old_bus, links);
3998 	if (old_bus != NULL)
3999 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4000 	else
4001 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4002 	xsoftc.bus_generation++;
4003 	xpt_unlock_buses();
4004 
4005 	/*
4006 	 * Set a default transport so that a PATH_INQ can be issued to
4007 	 * the SIM.  This will then allow for probing and attaching of
4008 	 * a more appropriate transport.
4009 	 */
4010 	new_bus->xport = &xport_default;
4011 
4012 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4013 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4014 	if (status != CAM_REQ_CMP) {
4015 		xpt_release_bus(new_bus);
4016 		return (ENOMEM);
4017 	}
4018 
4019 	xpt_path_inq(&cpi, path);
4020 
4021 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4022 		struct xpt_xport **xpt;
4023 
4024 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4025 			if ((*xpt)->xport == cpi.transport) {
4026 				new_bus->xport = *xpt;
4027 				break;
4028 			}
4029 		}
4030 		if (new_bus->xport == NULL) {
4031 			xpt_print(path,
4032 			    "No transport found for %d\n", cpi.transport);
4033 			xpt_release_bus(new_bus);
4034 			free(path, M_CAMXPT);
4035 			return (EINVAL);
4036 		}
4037 	}
4038 
4039 	/* Notify interested parties */
4040 	if (sim->path_id != CAM_XPT_PATH_ID) {
4041 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4042 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4043 			union	ccb *scan_ccb;
4044 
4045 			/* Initiate bus rescan. */
4046 			scan_ccb = xpt_alloc_ccb_nowait();
4047 			if (scan_ccb != NULL) {
4048 				scan_ccb->ccb_h.path = path;
4049 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4050 				scan_ccb->crcn.flags = 0;
4051 				xpt_rescan(scan_ccb);
4052 			} else {
4053 				xpt_print(path,
4054 					  "Can't allocate CCB to scan bus\n");
4055 				xpt_free_path(path);
4056 			}
4057 		} else
4058 			xpt_free_path(path);
4059 	} else
4060 		xpt_free_path(path);
4061 	return (CAM_SUCCESS);
4062 }
4063 
4064 int
4065 xpt_bus_deregister(path_id_t pathid)
4066 {
4067 	struct cam_path bus_path;
4068 	cam_status status;
4069 
4070 	status = xpt_compile_path(&bus_path, NULL, pathid,
4071 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4072 	if (status != CAM_REQ_CMP)
4073 		return (ENOMEM);
4074 
4075 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4076 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4077 
4078 	/* Release the reference count held while registered. */
4079 	xpt_release_bus(bus_path.bus);
4080 	xpt_release_path(&bus_path);
4081 
4082 	return (CAM_SUCCESS);
4083 }
4084 
4085 static path_id_t
4086 xptnextfreepathid(void)
4087 {
4088 	struct cam_eb *bus;
4089 	path_id_t pathid;
4090 	const char *strval;
4091 
4092 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4093 	pathid = 0;
4094 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4095 retry:
4096 	/* Find an unoccupied pathid */
4097 	while (bus != NULL && bus->path_id <= pathid) {
4098 		if (bus->path_id == pathid)
4099 			pathid++;
4100 		bus = TAILQ_NEXT(bus, links);
4101 	}
4102 
4103 	/*
4104 	 * Ensure that this pathid is not reserved for
4105 	 * a bus that may be registered in the future.
4106 	 */
4107 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4108 		++pathid;
4109 		/* Start the search over */
4110 		goto retry;
4111 	}
4112 	return (pathid);
4113 }
4114 
4115 static path_id_t
4116 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4117 {
4118 	path_id_t pathid;
4119 	int i, dunit, val;
4120 	char buf[32];
4121 	const char *dname;
4122 
4123 	pathid = CAM_XPT_PATH_ID;
4124 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4125 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4126 		return (pathid);
4127 	i = 0;
4128 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4129 		if (strcmp(dname, "scbus")) {
4130 			/* Avoid a bit of foot shooting. */
4131 			continue;
4132 		}
4133 		if (dunit < 0)		/* unwired?! */
4134 			continue;
4135 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4136 			if (sim_bus == val) {
4137 				pathid = dunit;
4138 				break;
4139 			}
4140 		} else if (sim_bus == 0) {
4141 			/* Unspecified matches bus 0 */
4142 			pathid = dunit;
4143 			break;
4144 		} else {
4145 			printf("Ambiguous scbus configuration for %s%d "
4146 			       "bus %d, cannot wire down.  The kernel "
4147 			       "config entry for scbus%d should "
4148 			       "specify a controller bus.\n"
4149 			       "Scbus will be assigned dynamically.\n",
4150 			       sim_name, sim_unit, sim_bus, dunit);
4151 			break;
4152 		}
4153 	}
4154 
4155 	if (pathid == CAM_XPT_PATH_ID)
4156 		pathid = xptnextfreepathid();
4157 	return (pathid);
4158 }
4159 
4160 static const char *
4161 xpt_async_string(u_int32_t async_code)
4162 {
4163 
4164 	switch (async_code) {
4165 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4166 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4167 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4168 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4169 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4170 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4171 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4172 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4173 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4174 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4175 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4176 	case AC_CONTRACT: return ("AC_CONTRACT");
4177 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4178 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4179 	}
4180 	return ("AC_UNKNOWN");
4181 }
4182 
4183 static int
4184 xpt_async_size(u_int32_t async_code)
4185 {
4186 
4187 	switch (async_code) {
4188 	case AC_BUS_RESET: return (0);
4189 	case AC_UNSOL_RESEL: return (0);
4190 	case AC_SCSI_AEN: return (0);
4191 	case AC_SENT_BDR: return (0);
4192 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4193 	case AC_PATH_DEREGISTERED: return (0);
4194 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4195 	case AC_LOST_DEVICE: return (0);
4196 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4197 	case AC_INQ_CHANGED: return (0);
4198 	case AC_GETDEV_CHANGED: return (0);
4199 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4200 	case AC_ADVINFO_CHANGED: return (-1);
4201 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4202 	}
4203 	return (0);
4204 }
4205 
4206 static int
4207 xpt_async_process_dev(struct cam_ed *device, void *arg)
4208 {
4209 	union ccb *ccb = arg;
4210 	struct cam_path *path = ccb->ccb_h.path;
4211 	void *async_arg = ccb->casync.async_arg_ptr;
4212 	u_int32_t async_code = ccb->casync.async_code;
4213 	bool relock;
4214 
4215 	if (path->device != device
4216 	 && path->device->lun_id != CAM_LUN_WILDCARD
4217 	 && device->lun_id != CAM_LUN_WILDCARD)
4218 		return (1);
4219 
4220 	/*
4221 	 * The async callback could free the device.
4222 	 * If it is a broadcast async, it doesn't hold
4223 	 * device reference, so take our own reference.
4224 	 */
4225 	xpt_acquire_device(device);
4226 
4227 	/*
4228 	 * If async for specific device is to be delivered to
4229 	 * the wildcard client, take the specific device lock.
4230 	 * XXX: We may need a way for client to specify it.
4231 	 */
4232 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4233 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4234 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4235 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4236 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4237 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4238 		mtx_unlock(&device->device_mtx);
4239 		xpt_path_lock(path);
4240 		relock = true;
4241 	} else
4242 		relock = false;
4243 
4244 	(*(device->target->bus->xport->ops->async))(async_code,
4245 	    device->target->bus, device->target, device, async_arg);
4246 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4247 
4248 	if (relock) {
4249 		xpt_path_unlock(path);
4250 		mtx_lock(&device->device_mtx);
4251 	}
4252 	xpt_release_device(device);
4253 	return (1);
4254 }
4255 
4256 static int
4257 xpt_async_process_tgt(struct cam_et *target, void *arg)
4258 {
4259 	union ccb *ccb = arg;
4260 	struct cam_path *path = ccb->ccb_h.path;
4261 
4262 	if (path->target != target
4263 	 && path->target->target_id != CAM_TARGET_WILDCARD
4264 	 && target->target_id != CAM_TARGET_WILDCARD)
4265 		return (1);
4266 
4267 	if (ccb->casync.async_code == AC_SENT_BDR) {
4268 		/* Update our notion of when the last reset occurred */
4269 		microtime(&target->last_reset);
4270 	}
4271 
4272 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4273 }
4274 
4275 static void
4276 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4277 {
4278 	struct cam_eb *bus;
4279 	struct cam_path *path;
4280 	void *async_arg;
4281 	u_int32_t async_code;
4282 
4283 	path = ccb->ccb_h.path;
4284 	async_code = ccb->casync.async_code;
4285 	async_arg = ccb->casync.async_arg_ptr;
4286 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4287 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4288 	bus = path->bus;
4289 
4290 	if (async_code == AC_BUS_RESET) {
4291 		/* Update our notion of when the last reset occurred */
4292 		microtime(&bus->last_reset);
4293 	}
4294 
4295 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4296 
4297 	/*
4298 	 * If this wasn't a fully wildcarded async, tell all
4299 	 * clients that want all async events.
4300 	 */
4301 	if (bus != xpt_periph->path->bus) {
4302 		xpt_path_lock(xpt_periph->path);
4303 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4304 		xpt_path_unlock(xpt_periph->path);
4305 	}
4306 
4307 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4308 		xpt_release_devq(path, 1, TRUE);
4309 	else
4310 		xpt_release_simq(path->bus->sim, TRUE);
4311 	if (ccb->casync.async_arg_size > 0)
4312 		free(async_arg, M_CAMXPT);
4313 	xpt_free_path(path);
4314 	xpt_free_ccb(ccb);
4315 }
4316 
4317 static void
4318 xpt_async_bcast(struct async_list *async_head,
4319 		u_int32_t async_code,
4320 		struct cam_path *path, void *async_arg)
4321 {
4322 	struct async_node *cur_entry;
4323 	struct mtx *mtx;
4324 
4325 	cur_entry = SLIST_FIRST(async_head);
4326 	while (cur_entry != NULL) {
4327 		struct async_node *next_entry;
4328 		/*
4329 		 * Grab the next list entry before we call the current
4330 		 * entry's callback.  This is because the callback function
4331 		 * can delete its async callback entry.
4332 		 */
4333 		next_entry = SLIST_NEXT(cur_entry, links);
4334 		if ((cur_entry->event_enable & async_code) != 0) {
4335 			mtx = cur_entry->event_lock ?
4336 			    path->device->sim->mtx : NULL;
4337 			if (mtx)
4338 				mtx_lock(mtx);
4339 			cur_entry->callback(cur_entry->callback_arg,
4340 					    async_code, path,
4341 					    async_arg);
4342 			if (mtx)
4343 				mtx_unlock(mtx);
4344 		}
4345 		cur_entry = next_entry;
4346 	}
4347 }
4348 
4349 void
4350 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4351 {
4352 	union ccb *ccb;
4353 	int size;
4354 
4355 	ccb = xpt_alloc_ccb_nowait();
4356 	if (ccb == NULL) {
4357 		xpt_print(path, "Can't allocate CCB to send %s\n",
4358 		    xpt_async_string(async_code));
4359 		return;
4360 	}
4361 
4362 	if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4363 		xpt_print(path, "Can't allocate path to send %s\n",
4364 		    xpt_async_string(async_code));
4365 		xpt_free_ccb(ccb);
4366 		return;
4367 	}
4368 	ccb->ccb_h.path->periph = NULL;
4369 	ccb->ccb_h.func_code = XPT_ASYNC;
4370 	ccb->ccb_h.cbfcnp = xpt_async_process;
4371 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4372 	ccb->casync.async_code = async_code;
4373 	ccb->casync.async_arg_size = 0;
4374 	size = xpt_async_size(async_code);
4375 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4376 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4377 		ccb->ccb_h.func_code,
4378 		xpt_action_name(ccb->ccb_h.func_code),
4379 		async_code,
4380 		xpt_async_string(async_code)));
4381 	if (size > 0 && async_arg != NULL) {
4382 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4383 		if (ccb->casync.async_arg_ptr == NULL) {
4384 			xpt_print(path, "Can't allocate argument to send %s\n",
4385 			    xpt_async_string(async_code));
4386 			xpt_free_path(ccb->ccb_h.path);
4387 			xpt_free_ccb(ccb);
4388 			return;
4389 		}
4390 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4391 		ccb->casync.async_arg_size = size;
4392 	} else if (size < 0) {
4393 		ccb->casync.async_arg_ptr = async_arg;
4394 		ccb->casync.async_arg_size = size;
4395 	}
4396 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4397 		xpt_freeze_devq(path, 1);
4398 	else
4399 		xpt_freeze_simq(path->bus->sim, 1);
4400 	xpt_action(ccb);
4401 }
4402 
4403 static void
4404 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4405 		      struct cam_et *target, struct cam_ed *device,
4406 		      void *async_arg)
4407 {
4408 
4409 	/*
4410 	 * We only need to handle events for real devices.
4411 	 */
4412 	if (target->target_id == CAM_TARGET_WILDCARD
4413 	 || device->lun_id == CAM_LUN_WILDCARD)
4414 		return;
4415 
4416 	printf("%s called\n", __func__);
4417 }
4418 
4419 static uint32_t
4420 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4421 {
4422 	struct cam_devq	*devq;
4423 	uint32_t freeze;
4424 
4425 	devq = dev->sim->devq;
4426 	mtx_assert(&devq->send_mtx, MA_OWNED);
4427 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4428 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4429 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4430 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4431 	/* Remove frozen device from sendq. */
4432 	if (device_is_queued(dev))
4433 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4434 	return (freeze);
4435 }
4436 
4437 u_int32_t
4438 xpt_freeze_devq(struct cam_path *path, u_int count)
4439 {
4440 	struct cam_ed	*dev = path->device;
4441 	struct cam_devq	*devq;
4442 	uint32_t	 freeze;
4443 
4444 	devq = dev->sim->devq;
4445 	mtx_lock(&devq->send_mtx);
4446 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4447 	freeze = xpt_freeze_devq_device(dev, count);
4448 	mtx_unlock(&devq->send_mtx);
4449 	return (freeze);
4450 }
4451 
4452 u_int32_t
4453 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4454 {
4455 	struct cam_devq	*devq;
4456 	uint32_t	 freeze;
4457 
4458 	devq = sim->devq;
4459 	mtx_lock(&devq->send_mtx);
4460 	freeze = (devq->send_queue.qfrozen_cnt += count);
4461 	mtx_unlock(&devq->send_mtx);
4462 	return (freeze);
4463 }
4464 
4465 static void
4466 xpt_release_devq_timeout(void *arg)
4467 {
4468 	struct cam_ed *dev;
4469 	struct cam_devq *devq;
4470 
4471 	dev = (struct cam_ed *)arg;
4472 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4473 	devq = dev->sim->devq;
4474 	mtx_assert(&devq->send_mtx, MA_OWNED);
4475 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4476 		xpt_run_devq(devq);
4477 }
4478 
4479 void
4480 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4481 {
4482 	struct cam_ed *dev;
4483 	struct cam_devq *devq;
4484 
4485 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4486 	    count, run_queue));
4487 	dev = path->device;
4488 	devq = dev->sim->devq;
4489 	mtx_lock(&devq->send_mtx);
4490 	if (xpt_release_devq_device(dev, count, run_queue))
4491 		xpt_run_devq(dev->sim->devq);
4492 	mtx_unlock(&devq->send_mtx);
4493 }
4494 
4495 static int
4496 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4497 {
4498 
4499 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4500 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4501 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4502 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4503 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4504 #ifdef INVARIANTS
4505 		printf("xpt_release_devq(): requested %u > present %u\n",
4506 		    count, dev->ccbq.queue.qfrozen_cnt);
4507 #endif
4508 		count = dev->ccbq.queue.qfrozen_cnt;
4509 	}
4510 	dev->ccbq.queue.qfrozen_cnt -= count;
4511 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4512 		/*
4513 		 * No longer need to wait for a successful
4514 		 * command completion.
4515 		 */
4516 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4517 		/*
4518 		 * Remove any timeouts that might be scheduled
4519 		 * to release this queue.
4520 		 */
4521 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4522 			callout_stop(&dev->callout);
4523 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4524 		}
4525 		/*
4526 		 * Now that we are unfrozen schedule the
4527 		 * device so any pending transactions are
4528 		 * run.
4529 		 */
4530 		xpt_schedule_devq(dev->sim->devq, dev);
4531 	} else
4532 		run_queue = 0;
4533 	return (run_queue);
4534 }
4535 
4536 void
4537 xpt_release_simq(struct cam_sim *sim, int run_queue)
4538 {
4539 	struct cam_devq	*devq;
4540 
4541 	devq = sim->devq;
4542 	mtx_lock(&devq->send_mtx);
4543 	if (devq->send_queue.qfrozen_cnt <= 0) {
4544 #ifdef INVARIANTS
4545 		printf("xpt_release_simq: requested 1 > present %u\n",
4546 		    devq->send_queue.qfrozen_cnt);
4547 #endif
4548 	} else
4549 		devq->send_queue.qfrozen_cnt--;
4550 	if (devq->send_queue.qfrozen_cnt == 0) {
4551 		if (run_queue) {
4552 			/*
4553 			 * Now that we are unfrozen run the send queue.
4554 			 */
4555 			xpt_run_devq(sim->devq);
4556 		}
4557 	}
4558 	mtx_unlock(&devq->send_mtx);
4559 }
4560 
4561 void
4562 xpt_done(union ccb *done_ccb)
4563 {
4564 	struct cam_doneq *queue;
4565 	int	run, hash;
4566 
4567 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4568 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4569 	    done_ccb->csio.bio != NULL)
4570 		biotrack(done_ccb->csio.bio, __func__);
4571 #endif
4572 
4573 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4574 	    ("xpt_done: func= %#x %s status %#x\n",
4575 		done_ccb->ccb_h.func_code,
4576 		xpt_action_name(done_ccb->ccb_h.func_code),
4577 		done_ccb->ccb_h.status));
4578 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4579 		return;
4580 
4581 	/* Store the time the ccb was in the sim */
4582 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4583 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4584 	hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4585 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4586 	queue = &cam_doneqs[hash];
4587 	mtx_lock(&queue->cam_doneq_mtx);
4588 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4589 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4590 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4591 	mtx_unlock(&queue->cam_doneq_mtx);
4592 	if (run && !dumping)
4593 		wakeup(&queue->cam_doneq);
4594 }
4595 
4596 void
4597 xpt_done_direct(union ccb *done_ccb)
4598 {
4599 
4600 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4601 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4602 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4603 		return;
4604 
4605 	/* Store the time the ccb was in the sim */
4606 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4607 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4608 	xpt_done_process(&done_ccb->ccb_h);
4609 }
4610 
4611 union ccb *
4612 xpt_alloc_ccb(void)
4613 {
4614 	union ccb *new_ccb;
4615 
4616 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4617 	return (new_ccb);
4618 }
4619 
4620 union ccb *
4621 xpt_alloc_ccb_nowait(void)
4622 {
4623 	union ccb *new_ccb;
4624 
4625 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4626 	return (new_ccb);
4627 }
4628 
4629 void
4630 xpt_free_ccb(union ccb *free_ccb)
4631 {
4632 	struct cam_periph *periph;
4633 
4634 	if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4635 		/*
4636 		 * Looks like a CCB allocated from a periph UMA zone.
4637 		 */
4638 		periph = free_ccb->ccb_h.path->periph;
4639 		uma_zfree(periph->ccb_zone, free_ccb);
4640 	} else {
4641 		free(free_ccb, M_CAMCCB);
4642 	}
4643 }
4644 
4645 /* Private XPT functions */
4646 
4647 /*
4648  * Get a CAM control block for the caller. Charge the structure to the device
4649  * referenced by the path.  If we don't have sufficient resources to allocate
4650  * more ccbs, we return NULL.
4651  */
4652 static union ccb *
4653 xpt_get_ccb_nowait(struct cam_periph *periph)
4654 {
4655 	union ccb *new_ccb;
4656 	int alloc_flags;
4657 
4658 	if (periph->ccb_zone != NULL) {
4659 		alloc_flags = CAM_CCB_FROM_UMA;
4660 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4661 	} else {
4662 		alloc_flags = 0;
4663 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4664 	}
4665 	if (new_ccb == NULL)
4666 		return (NULL);
4667 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4668 	periph->periph_allocated++;
4669 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4670 	return (new_ccb);
4671 }
4672 
4673 static union ccb *
4674 xpt_get_ccb(struct cam_periph *periph)
4675 {
4676 	union ccb *new_ccb;
4677 	int alloc_flags;
4678 
4679 	cam_periph_unlock(periph);
4680 	if (periph->ccb_zone != NULL) {
4681 		alloc_flags = CAM_CCB_FROM_UMA;
4682 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4683 	} else {
4684 		alloc_flags = 0;
4685 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4686 	}
4687 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4688 	cam_periph_lock(periph);
4689 	periph->periph_allocated++;
4690 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4691 	return (new_ccb);
4692 }
4693 
4694 union ccb *
4695 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4696 {
4697 	struct ccb_hdr *ccb_h;
4698 
4699 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4700 	cam_periph_assert(periph, MA_OWNED);
4701 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4702 	    ccb_h->pinfo.priority != priority) {
4703 		if (priority < periph->immediate_priority) {
4704 			periph->immediate_priority = priority;
4705 			xpt_run_allocq(periph, 0);
4706 		} else
4707 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4708 			    "cgticb", 0);
4709 	}
4710 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4711 	return ((union ccb *)ccb_h);
4712 }
4713 
4714 static void
4715 xpt_acquire_bus(struct cam_eb *bus)
4716 {
4717 
4718 	xpt_lock_buses();
4719 	bus->refcount++;
4720 	xpt_unlock_buses();
4721 }
4722 
4723 static void
4724 xpt_release_bus(struct cam_eb *bus)
4725 {
4726 
4727 	xpt_lock_buses();
4728 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4729 	if (--bus->refcount > 0) {
4730 		xpt_unlock_buses();
4731 		return;
4732 	}
4733 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4734 	xsoftc.bus_generation++;
4735 	xpt_unlock_buses();
4736 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4737 	    ("destroying bus, but target list is not empty"));
4738 	cam_sim_release(bus->sim);
4739 	mtx_destroy(&bus->eb_mtx);
4740 	free(bus, M_CAMXPT);
4741 }
4742 
4743 static struct cam_et *
4744 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4745 {
4746 	struct cam_et *cur_target, *target;
4747 
4748 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4749 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4750 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4751 					 M_NOWAIT|M_ZERO);
4752 	if (target == NULL)
4753 		return (NULL);
4754 
4755 	TAILQ_INIT(&target->ed_entries);
4756 	target->bus = bus;
4757 	target->target_id = target_id;
4758 	target->refcount = 1;
4759 	target->generation = 0;
4760 	target->luns = NULL;
4761 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4762 	timevalclear(&target->last_reset);
4763 	/*
4764 	 * Hold a reference to our parent bus so it
4765 	 * will not go away before we do.
4766 	 */
4767 	bus->refcount++;
4768 
4769 	/* Insertion sort into our bus's target list */
4770 	cur_target = TAILQ_FIRST(&bus->et_entries);
4771 	while (cur_target != NULL && cur_target->target_id < target_id)
4772 		cur_target = TAILQ_NEXT(cur_target, links);
4773 	if (cur_target != NULL) {
4774 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4775 	} else {
4776 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4777 	}
4778 	bus->generation++;
4779 	return (target);
4780 }
4781 
4782 static void
4783 xpt_acquire_target(struct cam_et *target)
4784 {
4785 	struct cam_eb *bus = target->bus;
4786 
4787 	mtx_lock(&bus->eb_mtx);
4788 	target->refcount++;
4789 	mtx_unlock(&bus->eb_mtx);
4790 }
4791 
4792 static void
4793 xpt_release_target(struct cam_et *target)
4794 {
4795 	struct cam_eb *bus = target->bus;
4796 
4797 	mtx_lock(&bus->eb_mtx);
4798 	if (--target->refcount > 0) {
4799 		mtx_unlock(&bus->eb_mtx);
4800 		return;
4801 	}
4802 	TAILQ_REMOVE(&bus->et_entries, target, links);
4803 	bus->generation++;
4804 	mtx_unlock(&bus->eb_mtx);
4805 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4806 	    ("destroying target, but device list is not empty"));
4807 	xpt_release_bus(bus);
4808 	mtx_destroy(&target->luns_mtx);
4809 	if (target->luns)
4810 		free(target->luns, M_CAMXPT);
4811 	free(target, M_CAMXPT);
4812 }
4813 
4814 static struct cam_ed *
4815 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4816 			 lun_id_t lun_id)
4817 {
4818 	struct cam_ed *device;
4819 
4820 	device = xpt_alloc_device(bus, target, lun_id);
4821 	if (device == NULL)
4822 		return (NULL);
4823 
4824 	device->mintags = 1;
4825 	device->maxtags = 1;
4826 	return (device);
4827 }
4828 
4829 static void
4830 xpt_destroy_device(void *context, int pending)
4831 {
4832 	struct cam_ed	*device = context;
4833 
4834 	mtx_lock(&device->device_mtx);
4835 	mtx_destroy(&device->device_mtx);
4836 	free(device, M_CAMDEV);
4837 }
4838 
4839 struct cam_ed *
4840 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4841 {
4842 	struct cam_ed	*cur_device, *device;
4843 	struct cam_devq	*devq;
4844 	cam_status status;
4845 
4846 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4847 	/* Make space for us in the device queue on our bus */
4848 	devq = bus->sim->devq;
4849 	mtx_lock(&devq->send_mtx);
4850 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4851 	mtx_unlock(&devq->send_mtx);
4852 	if (status != CAM_REQ_CMP)
4853 		return (NULL);
4854 
4855 	device = (struct cam_ed *)malloc(sizeof(*device),
4856 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4857 	if (device == NULL)
4858 		return (NULL);
4859 
4860 	cam_init_pinfo(&device->devq_entry);
4861 	device->target = target;
4862 	device->lun_id = lun_id;
4863 	device->sim = bus->sim;
4864 	if (cam_ccbq_init(&device->ccbq,
4865 			  bus->sim->max_dev_openings) != 0) {
4866 		free(device, M_CAMDEV);
4867 		return (NULL);
4868 	}
4869 	SLIST_INIT(&device->asyncs);
4870 	SLIST_INIT(&device->periphs);
4871 	device->generation = 0;
4872 	device->flags = CAM_DEV_UNCONFIGURED;
4873 	device->tag_delay_count = 0;
4874 	device->tag_saved_openings = 0;
4875 	device->refcount = 1;
4876 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4877 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4878 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4879 	/*
4880 	 * Hold a reference to our parent bus so it
4881 	 * will not go away before we do.
4882 	 */
4883 	target->refcount++;
4884 
4885 	cur_device = TAILQ_FIRST(&target->ed_entries);
4886 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4887 		cur_device = TAILQ_NEXT(cur_device, links);
4888 	if (cur_device != NULL)
4889 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4890 	else
4891 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4892 	target->generation++;
4893 	return (device);
4894 }
4895 
4896 void
4897 xpt_acquire_device(struct cam_ed *device)
4898 {
4899 	struct cam_eb *bus = device->target->bus;
4900 
4901 	mtx_lock(&bus->eb_mtx);
4902 	device->refcount++;
4903 	mtx_unlock(&bus->eb_mtx);
4904 }
4905 
4906 void
4907 xpt_release_device(struct cam_ed *device)
4908 {
4909 	struct cam_eb *bus = device->target->bus;
4910 	struct cam_devq *devq;
4911 
4912 	mtx_lock(&bus->eb_mtx);
4913 	if (--device->refcount > 0) {
4914 		mtx_unlock(&bus->eb_mtx);
4915 		return;
4916 	}
4917 
4918 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4919 	device->target->generation++;
4920 	mtx_unlock(&bus->eb_mtx);
4921 
4922 	/* Release our slot in the devq */
4923 	devq = bus->sim->devq;
4924 	mtx_lock(&devq->send_mtx);
4925 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4926 
4927 	KASSERT(SLIST_EMPTY(&device->periphs),
4928 	    ("destroying device, but periphs list is not empty"));
4929 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4930 	    ("destroying device while still queued for ccbs"));
4931 
4932 	/* The send_mtx must be held when accessing the callout */
4933 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4934 		callout_stop(&device->callout);
4935 
4936 	mtx_unlock(&devq->send_mtx);
4937 
4938 	xpt_release_target(device->target);
4939 
4940 	cam_ccbq_fini(&device->ccbq);
4941 	/*
4942 	 * Free allocated memory.  free(9) does nothing if the
4943 	 * supplied pointer is NULL, so it is safe to call without
4944 	 * checking.
4945 	 */
4946 	free(device->supported_vpds, M_CAMXPT);
4947 	free(device->device_id, M_CAMXPT);
4948 	free(device->ext_inq, M_CAMXPT);
4949 	free(device->physpath, M_CAMXPT);
4950 	free(device->rcap_buf, M_CAMXPT);
4951 	free(device->serial_num, M_CAMXPT);
4952 	free(device->nvme_data, M_CAMXPT);
4953 	free(device->nvme_cdata, M_CAMXPT);
4954 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4955 }
4956 
4957 u_int32_t
4958 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4959 {
4960 	int	result;
4961 	struct	cam_ed *dev;
4962 
4963 	dev = path->device;
4964 	mtx_lock(&dev->sim->devq->send_mtx);
4965 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4966 	mtx_unlock(&dev->sim->devq->send_mtx);
4967 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4968 	 || (dev->inq_flags & SID_CmdQue) != 0)
4969 		dev->tag_saved_openings = newopenings;
4970 	return (result);
4971 }
4972 
4973 static struct cam_eb *
4974 xpt_find_bus(path_id_t path_id)
4975 {
4976 	struct cam_eb *bus;
4977 
4978 	xpt_lock_buses();
4979 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4980 	     bus != NULL;
4981 	     bus = TAILQ_NEXT(bus, links)) {
4982 		if (bus->path_id == path_id) {
4983 			bus->refcount++;
4984 			break;
4985 		}
4986 	}
4987 	xpt_unlock_buses();
4988 	return (bus);
4989 }
4990 
4991 static struct cam_et *
4992 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4993 {
4994 	struct cam_et *target;
4995 
4996 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4997 	for (target = TAILQ_FIRST(&bus->et_entries);
4998 	     target != NULL;
4999 	     target = TAILQ_NEXT(target, links)) {
5000 		if (target->target_id == target_id) {
5001 			target->refcount++;
5002 			break;
5003 		}
5004 	}
5005 	return (target);
5006 }
5007 
5008 static struct cam_ed *
5009 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5010 {
5011 	struct cam_ed *device;
5012 
5013 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5014 	for (device = TAILQ_FIRST(&target->ed_entries);
5015 	     device != NULL;
5016 	     device = TAILQ_NEXT(device, links)) {
5017 		if (device->lun_id == lun_id) {
5018 			device->refcount++;
5019 			break;
5020 		}
5021 	}
5022 	return (device);
5023 }
5024 
5025 void
5026 xpt_start_tags(struct cam_path *path)
5027 {
5028 	struct ccb_relsim crs;
5029 	struct cam_ed *device;
5030 	struct cam_sim *sim;
5031 	int    newopenings;
5032 
5033 	device = path->device;
5034 	sim = path->bus->sim;
5035 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5036 	xpt_freeze_devq(path, /*count*/1);
5037 	device->inq_flags |= SID_CmdQue;
5038 	if (device->tag_saved_openings != 0)
5039 		newopenings = device->tag_saved_openings;
5040 	else
5041 		newopenings = min(device->maxtags,
5042 				  sim->max_tagged_dev_openings);
5043 	xpt_dev_ccbq_resize(path, newopenings);
5044 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5045 	memset(&crs, 0, sizeof(crs));
5046 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5047 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5048 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5049 	crs.openings
5050 	    = crs.release_timeout
5051 	    = crs.qfrozen_cnt
5052 	    = 0;
5053 	xpt_action((union ccb *)&crs);
5054 }
5055 
5056 void
5057 xpt_stop_tags(struct cam_path *path)
5058 {
5059 	struct ccb_relsim crs;
5060 	struct cam_ed *device;
5061 	struct cam_sim *sim;
5062 
5063 	device = path->device;
5064 	sim = path->bus->sim;
5065 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5066 	device->tag_delay_count = 0;
5067 	xpt_freeze_devq(path, /*count*/1);
5068 	device->inq_flags &= ~SID_CmdQue;
5069 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5070 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5071 	memset(&crs, 0, sizeof(crs));
5072 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5073 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5074 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5075 	crs.openings
5076 	    = crs.release_timeout
5077 	    = crs.qfrozen_cnt
5078 	    = 0;
5079 	xpt_action((union ccb *)&crs);
5080 }
5081 
5082 /*
5083  * Assume all possible buses are detected by this time, so allow boot
5084  * as soon as they all are scanned.
5085  */
5086 static void
5087 xpt_boot_delay(void *arg)
5088 {
5089 
5090 	xpt_release_boot();
5091 }
5092 
5093 /*
5094  * Now that all config hooks have completed, start boot_delay timer,
5095  * waiting for possibly still undetected buses (USB) to appear.
5096  */
5097 static void
5098 xpt_ch_done(void *arg)
5099 {
5100 
5101 	callout_init(&xsoftc.boot_callout, 1);
5102 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5103 	    SBT_1MS, xpt_boot_delay, NULL, 0);
5104 }
5105 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5106 
5107 /*
5108  * Now that interrupts are enabled, go find our devices
5109  */
5110 static void
5111 xpt_config(void *arg)
5112 {
5113 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5114 		printf("xpt_config: failed to create taskqueue thread.\n");
5115 
5116 	/* Setup debugging path */
5117 	if (cam_dflags != CAM_DEBUG_NONE) {
5118 		if (xpt_create_path(&cam_dpath, NULL,
5119 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5120 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5121 			printf("xpt_config: xpt_create_path() failed for debug"
5122 			       " target %d:%d:%d, debugging disabled\n",
5123 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5124 			cam_dflags = CAM_DEBUG_NONE;
5125 		}
5126 	} else
5127 		cam_dpath = NULL;
5128 
5129 	periphdriver_init(1);
5130 	xpt_hold_boot();
5131 
5132 	/* Fire up rescan thread. */
5133 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5134 	    "cam", "scanner")) {
5135 		printf("xpt_config: failed to create rescan thread.\n");
5136 	}
5137 }
5138 
5139 void
5140 xpt_hold_boot_locked(void)
5141 {
5142 
5143 	if (xsoftc.buses_to_config++ == 0)
5144 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5145 }
5146 
5147 void
5148 xpt_hold_boot(void)
5149 {
5150 
5151 	xpt_lock_buses();
5152 	xpt_hold_boot_locked();
5153 	xpt_unlock_buses();
5154 }
5155 
5156 void
5157 xpt_release_boot(void)
5158 {
5159 
5160 	xpt_lock_buses();
5161 	if (--xsoftc.buses_to_config == 0) {
5162 		if (xsoftc.buses_config_done == 0) {
5163 			xsoftc.buses_config_done = 1;
5164 			xsoftc.buses_to_config++;
5165 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5166 			    NULL);
5167 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5168 		} else
5169 			root_mount_rel(&xsoftc.xpt_rootmount);
5170 	}
5171 	xpt_unlock_buses();
5172 }
5173 
5174 /*
5175  * If the given device only has one peripheral attached to it, and if that
5176  * peripheral is the passthrough driver, announce it.  This insures that the
5177  * user sees some sort of announcement for every peripheral in their system.
5178  */
5179 static int
5180 xptpassannouncefunc(struct cam_ed *device, void *arg)
5181 {
5182 	struct cam_periph *periph;
5183 	int i;
5184 
5185 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5186 	     periph = SLIST_NEXT(periph, periph_links), i++);
5187 
5188 	periph = SLIST_FIRST(&device->periphs);
5189 	if ((i == 1)
5190 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5191 		xpt_announce_periph(periph, NULL);
5192 
5193 	return(1);
5194 }
5195 
5196 static void
5197 xpt_finishconfig_task(void *context, int pending)
5198 {
5199 
5200 	periphdriver_init(2);
5201 	/*
5202 	 * Check for devices with no "standard" peripheral driver
5203 	 * attached.  For any devices like that, announce the
5204 	 * passthrough driver so the user will see something.
5205 	 */
5206 	if (!bootverbose)
5207 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5208 
5209 	xpt_release_boot();
5210 }
5211 
5212 cam_status
5213 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5214 		   struct cam_path *path)
5215 {
5216 	struct ccb_setasync csa;
5217 	cam_status status;
5218 	bool xptpath = false;
5219 
5220 	if (path == NULL) {
5221 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5222 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5223 		if (status != CAM_REQ_CMP)
5224 			return (status);
5225 		xpt_path_lock(path);
5226 		xptpath = true;
5227 	}
5228 
5229 	memset(&csa, 0, sizeof(csa));
5230 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5231 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5232 	csa.event_enable = event;
5233 	csa.callback = cbfunc;
5234 	csa.callback_arg = cbarg;
5235 	xpt_action((union ccb *)&csa);
5236 	status = csa.ccb_h.status;
5237 
5238 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5239 	    ("xpt_register_async: func %p\n", cbfunc));
5240 
5241 	if (xptpath) {
5242 		xpt_path_unlock(path);
5243 		xpt_free_path(path);
5244 	}
5245 
5246 	if ((status == CAM_REQ_CMP) &&
5247 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5248 		/*
5249 		 * Get this peripheral up to date with all
5250 		 * the currently existing devices.
5251 		 */
5252 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5253 	}
5254 	if ((status == CAM_REQ_CMP) &&
5255 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5256 		/*
5257 		 * Get this peripheral up to date with all
5258 		 * the currently existing buses.
5259 		 */
5260 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5261 	}
5262 
5263 	return (status);
5264 }
5265 
5266 static void
5267 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5268 {
5269 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5270 
5271 	switch (work_ccb->ccb_h.func_code) {
5272 	/* Common cases first */
5273 	case XPT_PATH_INQ:		/* Path routing inquiry */
5274 	{
5275 		struct ccb_pathinq *cpi;
5276 
5277 		cpi = &work_ccb->cpi;
5278 		cpi->version_num = 1; /* XXX??? */
5279 		cpi->hba_inquiry = 0;
5280 		cpi->target_sprt = 0;
5281 		cpi->hba_misc = 0;
5282 		cpi->hba_eng_cnt = 0;
5283 		cpi->max_target = 0;
5284 		cpi->max_lun = 0;
5285 		cpi->initiator_id = 0;
5286 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5287 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5288 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5289 		cpi->unit_number = sim->unit_number;
5290 		cpi->bus_id = sim->bus_id;
5291 		cpi->base_transfer_speed = 0;
5292 		cpi->protocol = PROTO_UNSPECIFIED;
5293 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5294 		cpi->transport = XPORT_UNSPECIFIED;
5295 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5296 		cpi->ccb_h.status = CAM_REQ_CMP;
5297 		break;
5298 	}
5299 	default:
5300 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5301 		break;
5302 	}
5303 	xpt_done(work_ccb);
5304 }
5305 
5306 /*
5307  * The xpt as a "controller" has no interrupt sources, so polling
5308  * is a no-op.
5309  */
5310 static void
5311 xptpoll(struct cam_sim *sim)
5312 {
5313 }
5314 
5315 void
5316 xpt_lock_buses(void)
5317 {
5318 	mtx_lock(&xsoftc.xpt_topo_lock);
5319 }
5320 
5321 void
5322 xpt_unlock_buses(void)
5323 {
5324 	mtx_unlock(&xsoftc.xpt_topo_lock);
5325 }
5326 
5327 struct mtx *
5328 xpt_path_mtx(struct cam_path *path)
5329 {
5330 
5331 	return (&path->device->device_mtx);
5332 }
5333 
5334 static void
5335 xpt_done_process(struct ccb_hdr *ccb_h)
5336 {
5337 	struct cam_sim *sim = NULL;
5338 	struct cam_devq *devq = NULL;
5339 	struct mtx *mtx = NULL;
5340 
5341 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5342 	struct ccb_scsiio *csio;
5343 
5344 	if (ccb_h->func_code == XPT_SCSI_IO) {
5345 		csio = &((union ccb *)ccb_h)->csio;
5346 		if (csio->bio != NULL)
5347 			biotrack(csio->bio, __func__);
5348 	}
5349 #endif
5350 
5351 	if (ccb_h->flags & CAM_HIGH_POWER) {
5352 		struct highpowerlist	*hphead;
5353 		struct cam_ed		*device;
5354 
5355 		mtx_lock(&xsoftc.xpt_highpower_lock);
5356 		hphead = &xsoftc.highpowerq;
5357 
5358 		device = STAILQ_FIRST(hphead);
5359 
5360 		/*
5361 		 * Increment the count since this command is done.
5362 		 */
5363 		xsoftc.num_highpower++;
5364 
5365 		/*
5366 		 * Any high powered commands queued up?
5367 		 */
5368 		if (device != NULL) {
5369 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5370 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5371 
5372 			mtx_lock(&device->sim->devq->send_mtx);
5373 			xpt_release_devq_device(device,
5374 					 /*count*/1, /*runqueue*/TRUE);
5375 			mtx_unlock(&device->sim->devq->send_mtx);
5376 		} else
5377 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5378 	}
5379 
5380 	/*
5381 	 * Insulate against a race where the periph is destroyed but CCBs are
5382 	 * still not all processed. This shouldn't happen, but allows us better
5383 	 * bug diagnostic when it does.
5384 	 */
5385 	if (ccb_h->path->bus)
5386 		sim = ccb_h->path->bus->sim;
5387 
5388 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5389 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5390 		xpt_release_simq(sim, /*run_queue*/FALSE);
5391 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5392 	}
5393 
5394 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5395 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5396 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5397 		ccb_h->status &= ~CAM_DEV_QFRZN;
5398 	}
5399 
5400 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5401 		struct cam_ed *dev = ccb_h->path->device;
5402 
5403 		if (sim)
5404 			devq = sim->devq;
5405 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5406 			ccb_h, xpt_action_name(ccb_h->func_code)));
5407 
5408 		mtx_lock(&devq->send_mtx);
5409 		devq->send_active--;
5410 		devq->send_openings++;
5411 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5412 
5413 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5414 		  && (dev->ccbq.dev_active == 0))) {
5415 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5416 			xpt_release_devq_device(dev, /*count*/1,
5417 					 /*run_queue*/FALSE);
5418 		}
5419 
5420 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5421 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5422 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5423 			xpt_release_devq_device(dev, /*count*/1,
5424 					 /*run_queue*/FALSE);
5425 		}
5426 
5427 		if (!device_is_queued(dev))
5428 			(void)xpt_schedule_devq(devq, dev);
5429 		xpt_run_devq(devq);
5430 		mtx_unlock(&devq->send_mtx);
5431 
5432 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5433 			mtx = xpt_path_mtx(ccb_h->path);
5434 			mtx_lock(mtx);
5435 
5436 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5437 			 && (--dev->tag_delay_count == 0))
5438 				xpt_start_tags(ccb_h->path);
5439 		}
5440 	}
5441 
5442 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5443 		if (mtx == NULL) {
5444 			mtx = xpt_path_mtx(ccb_h->path);
5445 			mtx_lock(mtx);
5446 		}
5447 	} else {
5448 		if (mtx != NULL) {
5449 			mtx_unlock(mtx);
5450 			mtx = NULL;
5451 		}
5452 	}
5453 
5454 	/* Call the peripheral driver's callback */
5455 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5456 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5457 	if (mtx != NULL)
5458 		mtx_unlock(mtx);
5459 }
5460 
5461 /*
5462  * Parameterize instead and use xpt_done_td?
5463  */
5464 static void
5465 xpt_async_td(void *arg)
5466 {
5467 	struct cam_doneq *queue = arg;
5468 	struct ccb_hdr *ccb_h;
5469 	STAILQ_HEAD(, ccb_hdr)	doneq;
5470 
5471 	STAILQ_INIT(&doneq);
5472 	mtx_lock(&queue->cam_doneq_mtx);
5473 	while (1) {
5474 		while (STAILQ_EMPTY(&queue->cam_doneq))
5475 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5476 			    PRIBIO, "-", 0);
5477 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5478 		mtx_unlock(&queue->cam_doneq_mtx);
5479 
5480 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5481 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5482 			xpt_done_process(ccb_h);
5483 		}
5484 
5485 		mtx_lock(&queue->cam_doneq_mtx);
5486 	}
5487 }
5488 
5489 void
5490 xpt_done_td(void *arg)
5491 {
5492 	struct cam_doneq *queue = arg;
5493 	struct ccb_hdr *ccb_h;
5494 	STAILQ_HEAD(, ccb_hdr)	doneq;
5495 
5496 	STAILQ_INIT(&doneq);
5497 	mtx_lock(&queue->cam_doneq_mtx);
5498 	while (1) {
5499 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5500 			queue->cam_doneq_sleep = 1;
5501 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5502 			    PRIBIO, "-", 0);
5503 			queue->cam_doneq_sleep = 0;
5504 		}
5505 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5506 		mtx_unlock(&queue->cam_doneq_mtx);
5507 
5508 		THREAD_NO_SLEEPING();
5509 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5510 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5511 			xpt_done_process(ccb_h);
5512 		}
5513 		THREAD_SLEEPING_OK();
5514 
5515 		mtx_lock(&queue->cam_doneq_mtx);
5516 	}
5517 }
5518 
5519 static void
5520 camisr_runqueue(void)
5521 {
5522 	struct	ccb_hdr *ccb_h;
5523 	struct cam_doneq *queue;
5524 	int i;
5525 
5526 	/* Process global queues. */
5527 	for (i = 0; i < cam_num_doneqs; i++) {
5528 		queue = &cam_doneqs[i];
5529 		mtx_lock(&queue->cam_doneq_mtx);
5530 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5531 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5532 			mtx_unlock(&queue->cam_doneq_mtx);
5533 			xpt_done_process(ccb_h);
5534 			mtx_lock(&queue->cam_doneq_mtx);
5535 		}
5536 		mtx_unlock(&queue->cam_doneq_mtx);
5537 	}
5538 }
5539 
5540 /**
5541  * @brief Return the device_t associated with the path
5542  *
5543  * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5544  * stored in the internal cam_eb bus structure. There is no guarnatee any given
5545  * path will have a @c device_t associated with it (it's legal to call @c
5546  * xpt_bus_register with a @c NULL @c device_t.
5547  *
5548  * @param path		Path to return the device_t for.
5549  */
5550 device_t
5551 xpt_path_sim_device(const struct cam_path *path)
5552 {
5553 	return (path->bus->parent_dev);
5554 }
5555 
5556 struct kv
5557 {
5558 	uint32_t v;
5559 	const char *name;
5560 };
5561 
5562 static struct kv map[] = {
5563 	{ XPT_NOOP, "XPT_NOOP" },
5564 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5565 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5566 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5567 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5568 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5569 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5570 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5571 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5572 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5573 	{ XPT_DEBUG, "XPT_DEBUG" },
5574 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5575 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5576 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5577 	{ XPT_ASYNC, "XPT_ASYNC" },
5578 	{ XPT_ABORT, "XPT_ABORT" },
5579 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5580 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5581 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5582 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5583 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5584 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5585 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5586 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5587 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5588 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5589 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5590 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5591 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5592 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5593 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5594 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5595 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5596 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5597 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5598 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5599 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5600 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5601 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5602 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5603 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5604 	{ 0, 0 }
5605 };
5606 
5607 const char *
5608 xpt_action_name(uint32_t action)
5609 {
5610 	static char buffer[32];	/* Only for unknown messages -- racy */
5611 	struct kv *walker = map;
5612 
5613 	while (walker->name != NULL) {
5614 		if (walker->v == action)
5615 			return (walker->name);
5616 		walker++;
5617 	}
5618 
5619 	snprintf(buffer, sizeof(buffer), "%#x", action);
5620 	return (buffer);
5621 }
5622