1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/reboot.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 52 #ifdef PC98 53 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_sim.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/cam_xpt_sim.h> 63 #include <cam/cam_xpt_periph.h> 64 #include <cam/cam_xpt_internal.h> 65 #include <cam/cam_debug.h> 66 67 #include <cam/scsi/scsi_all.h> 68 #include <cam/scsi/scsi_message.h> 69 #include <cam/scsi/scsi_pass.h> 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 #include "opt_cam.h" 72 73 /* 74 * This is the maximum number of high powered commands (e.g. start unit) 75 * that can be outstanding at a particular time. 76 */ 77 #ifndef CAM_MAX_HIGHPOWER 78 #define CAM_MAX_HIGHPOWER 4 79 #endif 80 81 /* Datastructures internal to the xpt layer */ 82 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 83 84 /* Object for defering XPT actions to a taskqueue */ 85 struct xpt_task { 86 struct task task; 87 void *data1; 88 uintptr_t data2; 89 }; 90 91 typedef enum { 92 XPT_FLAG_OPEN = 0x01 93 } xpt_flags; 94 95 struct xpt_softc { 96 xpt_flags flags; 97 u_int32_t xpt_generation; 98 99 /* number of high powered commands that can go through right now */ 100 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 101 int num_highpower; 102 103 /* queue for handling async rescan requests. */ 104 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 105 int buses_to_config; 106 int buses_config_done; 107 108 /* Registered busses */ 109 TAILQ_HEAD(,cam_eb) xpt_busses; 110 u_int bus_generation; 111 112 struct intr_config_hook *xpt_config_hook; 113 114 int boot_delay; 115 struct callout boot_callout; 116 117 struct mtx xpt_topo_lock; 118 struct mtx xpt_lock; 119 }; 120 121 typedef enum { 122 DM_RET_COPY = 0x01, 123 DM_RET_FLAG_MASK = 0x0f, 124 DM_RET_NONE = 0x00, 125 DM_RET_STOP = 0x10, 126 DM_RET_DESCEND = 0x20, 127 DM_RET_ERROR = 0x30, 128 DM_RET_ACTION_MASK = 0xf0 129 } dev_match_ret; 130 131 typedef enum { 132 XPT_DEPTH_BUS, 133 XPT_DEPTH_TARGET, 134 XPT_DEPTH_DEVICE, 135 XPT_DEPTH_PERIPH 136 } xpt_traverse_depth; 137 138 struct xpt_traverse_config { 139 xpt_traverse_depth depth; 140 void *tr_func; 141 void *tr_arg; 142 }; 143 144 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 145 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 146 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 147 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 148 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 149 150 /* Transport layer configuration information */ 151 static struct xpt_softc xsoftc; 152 153 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 154 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 155 &xsoftc.boot_delay, 0, "Bus registration wait time"); 156 static int xpt_power_down = 0; 157 TUNABLE_INT("kern.cam.power_down", &xpt_power_down); 158 SYSCTL_INT(_kern_cam, OID_AUTO, power_down, CTLFLAG_RW, 159 &xpt_power_down, 0, "Power down devices on shutdown"); 160 161 /* Queues for our software interrupt handler */ 162 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 163 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 164 static cam_simq_t cam_simq; 165 static struct mtx cam_simq_lock; 166 167 /* Pointers to software interrupt handlers */ 168 static void *cambio_ih; 169 170 struct cam_periph *xpt_periph; 171 172 static periph_init_t xpt_periph_init; 173 174 static struct periph_driver xpt_driver = 175 { 176 xpt_periph_init, "xpt", 177 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 178 CAM_PERIPH_DRV_EARLY 179 }; 180 181 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 182 183 static d_open_t xptopen; 184 static d_close_t xptclose; 185 static d_ioctl_t xptioctl; 186 187 static struct cdevsw xpt_cdevsw = { 188 .d_version = D_VERSION, 189 .d_flags = 0, 190 .d_open = xptopen, 191 .d_close = xptclose, 192 .d_ioctl = xptioctl, 193 .d_name = "xpt", 194 }; 195 196 /* Storage for debugging datastructures */ 197 #ifdef CAMDEBUG 198 struct cam_path *cam_dpath; 199 u_int32_t cam_dflags; 200 u_int32_t cam_debug_delay; 201 #endif 202 203 /* Our boot-time initialization hook */ 204 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 205 206 static moduledata_t cam_moduledata = { 207 "cam", 208 cam_module_event_handler, 209 NULL 210 }; 211 212 static int xpt_init(void *); 213 214 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 215 MODULE_VERSION(cam, 1); 216 217 218 static void xpt_async_bcast(struct async_list *async_head, 219 u_int32_t async_code, 220 struct cam_path *path, 221 void *async_arg); 222 static path_id_t xptnextfreepathid(void); 223 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 224 static union ccb *xpt_get_ccb(struct cam_ed *device); 225 static void xpt_run_dev_allocq(struct cam_eb *bus); 226 static void xpt_run_dev_sendq(struct cam_eb *bus); 227 static timeout_t xpt_release_devq_timeout; 228 static void xpt_release_simq_timeout(void *arg) __unused; 229 static void xpt_release_bus(struct cam_eb *bus); 230 static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, 231 u_int count, int run_queue); 232 static struct cam_et* 233 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 234 static void xpt_release_target(struct cam_et *target); 235 static struct cam_eb* 236 xpt_find_bus(path_id_t path_id); 237 static struct cam_et* 238 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 239 static struct cam_ed* 240 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 241 static void xpt_config(void *arg); 242 static xpt_devicefunc_t xptpassannouncefunc; 243 static void xpt_shutdown(void *arg, int howto); 244 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 245 static void xptpoll(struct cam_sim *sim); 246 static void camisr(void *); 247 static void camisr_runqueue(void *); 248 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 249 u_int num_patterns, struct cam_eb *bus); 250 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 251 u_int num_patterns, 252 struct cam_ed *device); 253 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 254 u_int num_patterns, 255 struct cam_periph *periph); 256 static xpt_busfunc_t xptedtbusfunc; 257 static xpt_targetfunc_t xptedttargetfunc; 258 static xpt_devicefunc_t xptedtdevicefunc; 259 static xpt_periphfunc_t xptedtperiphfunc; 260 static xpt_pdrvfunc_t xptplistpdrvfunc; 261 static xpt_periphfunc_t xptplistperiphfunc; 262 static int xptedtmatch(struct ccb_dev_match *cdm); 263 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 264 static int xptbustraverse(struct cam_eb *start_bus, 265 xpt_busfunc_t *tr_func, void *arg); 266 static int xpttargettraverse(struct cam_eb *bus, 267 struct cam_et *start_target, 268 xpt_targetfunc_t *tr_func, void *arg); 269 static int xptdevicetraverse(struct cam_et *target, 270 struct cam_ed *start_device, 271 xpt_devicefunc_t *tr_func, void *arg); 272 static int xptperiphtraverse(struct cam_ed *device, 273 struct cam_periph *start_periph, 274 xpt_periphfunc_t *tr_func, void *arg); 275 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 276 xpt_pdrvfunc_t *tr_func, void *arg); 277 static int xptpdperiphtraverse(struct periph_driver **pdrv, 278 struct cam_periph *start_periph, 279 xpt_periphfunc_t *tr_func, 280 void *arg); 281 static xpt_busfunc_t xptdefbusfunc; 282 static xpt_targetfunc_t xptdeftargetfunc; 283 static xpt_devicefunc_t xptdefdevicefunc; 284 static xpt_periphfunc_t xptdefperiphfunc; 285 static void xpt_finishconfig_task(void *context, int pending); 286 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 287 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 288 void *arg); 289 static void xpt_dev_async_default(u_int32_t async_code, 290 struct cam_eb *bus, 291 struct cam_et *target, 292 struct cam_ed *device, 293 void *async_arg); 294 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 295 struct cam_et *target, 296 lun_id_t lun_id); 297 static xpt_devicefunc_t xptsetasyncfunc; 298 static xpt_busfunc_t xptsetasyncbusfunc; 299 static cam_status xptregister(struct cam_periph *periph, 300 void *arg); 301 static __inline int periph_is_queued(struct cam_periph *periph); 302 static __inline int device_is_alloc_queued(struct cam_ed *device); 303 static __inline int device_is_send_queued(struct cam_ed *device); 304 305 static __inline int 306 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 307 { 308 int retval; 309 310 if ((dev->drvq.entries > 0) && 311 (dev->ccbq.devq_openings > 0) && 312 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 313 CAMQ_GET_PRIO(&dev->drvq))) == 0)) { 314 /* 315 * The priority of a device waiting for CCB resources 316 * is that of the the highest priority peripheral driver 317 * enqueued. 318 */ 319 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 320 &dev->alloc_ccb_entry.pinfo, 321 CAMQ_GET_PRIO(&dev->drvq)); 322 } else { 323 retval = 0; 324 } 325 326 return (retval); 327 } 328 329 static __inline int 330 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 331 { 332 int retval; 333 334 if ((dev->ccbq.queue.entries > 0) && 335 (dev->ccbq.dev_openings > 0) && 336 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) { 337 /* 338 * The priority of a device waiting for controller 339 * resources is that of the the highest priority CCB 340 * enqueued. 341 */ 342 retval = 343 xpt_schedule_dev(&bus->sim->devq->send_queue, 344 &dev->send_ccb_entry.pinfo, 345 CAMQ_GET_PRIO(&dev->ccbq.queue)); 346 } else { 347 retval = 0; 348 } 349 return (retval); 350 } 351 352 static __inline int 353 periph_is_queued(struct cam_periph *periph) 354 { 355 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 356 } 357 358 static __inline int 359 device_is_alloc_queued(struct cam_ed *device) 360 { 361 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 362 } 363 364 static __inline int 365 device_is_send_queued(struct cam_ed *device) 366 { 367 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 368 } 369 370 static void 371 xpt_periph_init() 372 { 373 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 374 } 375 376 static void 377 xptdone(struct cam_periph *periph, union ccb *done_ccb) 378 { 379 /* Caller will release the CCB */ 380 wakeup(&done_ccb->ccb_h.cbfcnp); 381 } 382 383 static int 384 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 385 { 386 387 /* 388 * Only allow read-write access. 389 */ 390 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 391 return(EPERM); 392 393 /* 394 * We don't allow nonblocking access. 395 */ 396 if ((flags & O_NONBLOCK) != 0) { 397 printf("%s: can't do nonblocking access\n", devtoname(dev)); 398 return(ENODEV); 399 } 400 401 /* Mark ourselves open */ 402 mtx_lock(&xsoftc.xpt_lock); 403 xsoftc.flags |= XPT_FLAG_OPEN; 404 mtx_unlock(&xsoftc.xpt_lock); 405 406 return(0); 407 } 408 409 static int 410 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 411 { 412 413 /* Mark ourselves closed */ 414 mtx_lock(&xsoftc.xpt_lock); 415 xsoftc.flags &= ~XPT_FLAG_OPEN; 416 mtx_unlock(&xsoftc.xpt_lock); 417 418 return(0); 419 } 420 421 /* 422 * Don't automatically grab the xpt softc lock here even though this is going 423 * through the xpt device. The xpt device is really just a back door for 424 * accessing other devices and SIMs, so the right thing to do is to grab 425 * the appropriate SIM lock once the bus/SIM is located. 426 */ 427 static int 428 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 429 { 430 int error; 431 432 error = 0; 433 434 switch(cmd) { 435 /* 436 * For the transport layer CAMIOCOMMAND ioctl, we really only want 437 * to accept CCB types that don't quite make sense to send through a 438 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 439 * in the CAM spec. 440 */ 441 case CAMIOCOMMAND: { 442 union ccb *ccb; 443 union ccb *inccb; 444 struct cam_eb *bus; 445 446 inccb = (union ccb *)addr; 447 448 bus = xpt_find_bus(inccb->ccb_h.path_id); 449 if (bus == NULL) { 450 error = EINVAL; 451 break; 452 } 453 454 switch(inccb->ccb_h.func_code) { 455 case XPT_SCAN_BUS: 456 case XPT_RESET_BUS: 457 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 458 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 459 error = EINVAL; 460 break; 461 } 462 /* FALLTHROUGH */ 463 case XPT_PATH_INQ: 464 case XPT_ENG_INQ: 465 case XPT_SCAN_LUN: 466 467 ccb = xpt_alloc_ccb(); 468 469 CAM_SIM_LOCK(bus->sim); 470 /* Ensure passed in target/lun supported on this bus. */ 471 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) || 472 (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 473 if (xpt_create_path(&ccb->ccb_h.path, 474 xpt_periph, 475 inccb->ccb_h.path_id, 476 CAM_TARGET_WILDCARD, 477 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 478 error = EINVAL; 479 CAM_SIM_UNLOCK(bus->sim); 480 xpt_free_ccb(ccb); 481 break; 482 } 483 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 484 inccb->ccb_h.pinfo.priority); 485 ccb->ccb_h.func_code = XPT_PATH_INQ; 486 xpt_action(ccb); 487 xpt_free_path(ccb->ccb_h.path); 488 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD && 489 inccb->ccb_h.target_id > ccb->cpi.max_target) || 490 (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD && 491 inccb->ccb_h.target_lun > ccb->cpi.max_lun)) { 492 error = EINVAL; 493 CAM_SIM_UNLOCK(bus->sim); 494 xpt_free_ccb(ccb); 495 break; 496 } 497 } 498 /* 499 * Create a path using the bus, target, and lun the 500 * user passed in. 501 */ 502 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 503 inccb->ccb_h.path_id, 504 inccb->ccb_h.target_id, 505 inccb->ccb_h.target_lun) != 506 CAM_REQ_CMP){ 507 error = EINVAL; 508 CAM_SIM_UNLOCK(bus->sim); 509 xpt_free_ccb(ccb); 510 break; 511 } 512 /* Ensure all of our fields are correct */ 513 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 514 inccb->ccb_h.pinfo.priority); 515 xpt_merge_ccb(ccb, inccb); 516 ccb->ccb_h.cbfcnp = xptdone; 517 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 518 bcopy(ccb, inccb, sizeof(union ccb)); 519 xpt_free_path(ccb->ccb_h.path); 520 xpt_free_ccb(ccb); 521 CAM_SIM_UNLOCK(bus->sim); 522 break; 523 524 case XPT_DEBUG: { 525 union ccb ccb; 526 527 /* 528 * This is an immediate CCB, so it's okay to 529 * allocate it on the stack. 530 */ 531 532 CAM_SIM_LOCK(bus->sim); 533 534 /* 535 * Create a path using the bus, target, and lun the 536 * user passed in. 537 */ 538 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 539 inccb->ccb_h.path_id, 540 inccb->ccb_h.target_id, 541 inccb->ccb_h.target_lun) != 542 CAM_REQ_CMP){ 543 error = EINVAL; 544 CAM_SIM_UNLOCK(bus->sim); 545 break; 546 } 547 /* Ensure all of our fields are correct */ 548 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 549 inccb->ccb_h.pinfo.priority); 550 xpt_merge_ccb(&ccb, inccb); 551 ccb.ccb_h.cbfcnp = xptdone; 552 xpt_action(&ccb); 553 CAM_SIM_UNLOCK(bus->sim); 554 bcopy(&ccb, inccb, sizeof(union ccb)); 555 xpt_free_path(ccb.ccb_h.path); 556 break; 557 558 } 559 case XPT_DEV_MATCH: { 560 struct cam_periph_map_info mapinfo; 561 struct cam_path *old_path; 562 563 /* 564 * We can't deal with physical addresses for this 565 * type of transaction. 566 */ 567 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 568 error = EINVAL; 569 break; 570 } 571 572 /* 573 * Save this in case the caller had it set to 574 * something in particular. 575 */ 576 old_path = inccb->ccb_h.path; 577 578 /* 579 * We really don't need a path for the matching 580 * code. The path is needed because of the 581 * debugging statements in xpt_action(). They 582 * assume that the CCB has a valid path. 583 */ 584 inccb->ccb_h.path = xpt_periph->path; 585 586 bzero(&mapinfo, sizeof(mapinfo)); 587 588 /* 589 * Map the pattern and match buffers into kernel 590 * virtual address space. 591 */ 592 error = cam_periph_mapmem(inccb, &mapinfo); 593 594 if (error) { 595 inccb->ccb_h.path = old_path; 596 break; 597 } 598 599 /* 600 * This is an immediate CCB, we can send it on directly. 601 */ 602 xpt_action(inccb); 603 604 /* 605 * Map the buffers back into user space. 606 */ 607 cam_periph_unmapmem(inccb, &mapinfo); 608 609 inccb->ccb_h.path = old_path; 610 611 error = 0; 612 break; 613 } 614 default: 615 error = ENOTSUP; 616 break; 617 } 618 xpt_release_bus(bus); 619 break; 620 } 621 /* 622 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 623 * with the periphal driver name and unit name filled in. The other 624 * fields don't really matter as input. The passthrough driver name 625 * ("pass"), and unit number are passed back in the ccb. The current 626 * device generation number, and the index into the device peripheral 627 * driver list, and the status are also passed back. Note that 628 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 629 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 630 * (or rather should be) impossible for the device peripheral driver 631 * list to change since we look at the whole thing in one pass, and 632 * we do it with lock protection. 633 * 634 */ 635 case CAMGETPASSTHRU: { 636 union ccb *ccb; 637 struct cam_periph *periph; 638 struct periph_driver **p_drv; 639 char *name; 640 u_int unit; 641 u_int cur_generation; 642 int base_periph_found; 643 int splbreaknum; 644 645 ccb = (union ccb *)addr; 646 unit = ccb->cgdl.unit_number; 647 name = ccb->cgdl.periph_name; 648 /* 649 * Every 100 devices, we want to drop our lock protection to 650 * give the software interrupt handler a chance to run. 651 * Most systems won't run into this check, but this should 652 * avoid starvation in the software interrupt handler in 653 * large systems. 654 */ 655 splbreaknum = 100; 656 657 ccb = (union ccb *)addr; 658 659 base_periph_found = 0; 660 661 /* 662 * Sanity check -- make sure we don't get a null peripheral 663 * driver name. 664 */ 665 if (*ccb->cgdl.periph_name == '\0') { 666 error = EINVAL; 667 break; 668 } 669 670 /* Keep the list from changing while we traverse it */ 671 mtx_lock(&xsoftc.xpt_topo_lock); 672 ptstartover: 673 cur_generation = xsoftc.xpt_generation; 674 675 /* first find our driver in the list of drivers */ 676 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 677 if (strcmp((*p_drv)->driver_name, name) == 0) 678 break; 679 680 if (*p_drv == NULL) { 681 mtx_unlock(&xsoftc.xpt_topo_lock); 682 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 683 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 684 *ccb->cgdl.periph_name = '\0'; 685 ccb->cgdl.unit_number = 0; 686 error = ENOENT; 687 break; 688 } 689 690 /* 691 * Run through every peripheral instance of this driver 692 * and check to see whether it matches the unit passed 693 * in by the user. If it does, get out of the loops and 694 * find the passthrough driver associated with that 695 * peripheral driver. 696 */ 697 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 698 periph = TAILQ_NEXT(periph, unit_links)) { 699 700 if (periph->unit_number == unit) { 701 break; 702 } else if (--splbreaknum == 0) { 703 mtx_unlock(&xsoftc.xpt_topo_lock); 704 mtx_lock(&xsoftc.xpt_topo_lock); 705 splbreaknum = 100; 706 if (cur_generation != xsoftc.xpt_generation) 707 goto ptstartover; 708 } 709 } 710 /* 711 * If we found the peripheral driver that the user passed 712 * in, go through all of the peripheral drivers for that 713 * particular device and look for a passthrough driver. 714 */ 715 if (periph != NULL) { 716 struct cam_ed *device; 717 int i; 718 719 base_periph_found = 1; 720 device = periph->path->device; 721 for (i = 0, periph = SLIST_FIRST(&device->periphs); 722 periph != NULL; 723 periph = SLIST_NEXT(periph, periph_links), i++) { 724 /* 725 * Check to see whether we have a 726 * passthrough device or not. 727 */ 728 if (strcmp(periph->periph_name, "pass") == 0) { 729 /* 730 * Fill in the getdevlist fields. 731 */ 732 strcpy(ccb->cgdl.periph_name, 733 periph->periph_name); 734 ccb->cgdl.unit_number = 735 periph->unit_number; 736 if (SLIST_NEXT(periph, periph_links)) 737 ccb->cgdl.status = 738 CAM_GDEVLIST_MORE_DEVS; 739 else 740 ccb->cgdl.status = 741 CAM_GDEVLIST_LAST_DEVICE; 742 ccb->cgdl.generation = 743 device->generation; 744 ccb->cgdl.index = i; 745 /* 746 * Fill in some CCB header fields 747 * that the user may want. 748 */ 749 ccb->ccb_h.path_id = 750 periph->path->bus->path_id; 751 ccb->ccb_h.target_id = 752 periph->path->target->target_id; 753 ccb->ccb_h.target_lun = 754 periph->path->device->lun_id; 755 ccb->ccb_h.status = CAM_REQ_CMP; 756 break; 757 } 758 } 759 } 760 761 /* 762 * If the periph is null here, one of two things has 763 * happened. The first possibility is that we couldn't 764 * find the unit number of the particular peripheral driver 765 * that the user is asking about. e.g. the user asks for 766 * the passthrough driver for "da11". We find the list of 767 * "da" peripherals all right, but there is no unit 11. 768 * The other possibility is that we went through the list 769 * of peripheral drivers attached to the device structure, 770 * but didn't find one with the name "pass". Either way, 771 * we return ENOENT, since we couldn't find something. 772 */ 773 if (periph == NULL) { 774 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 775 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 776 *ccb->cgdl.periph_name = '\0'; 777 ccb->cgdl.unit_number = 0; 778 error = ENOENT; 779 /* 780 * It is unfortunate that this is even necessary, 781 * but there are many, many clueless users out there. 782 * If this is true, the user is looking for the 783 * passthrough driver, but doesn't have one in his 784 * kernel. 785 */ 786 if (base_periph_found == 1) { 787 printf("xptioctl: pass driver is not in the " 788 "kernel\n"); 789 printf("xptioctl: put \"device pass\" in " 790 "your kernel config file\n"); 791 } 792 } 793 mtx_unlock(&xsoftc.xpt_topo_lock); 794 break; 795 } 796 default: 797 error = ENOTTY; 798 break; 799 } 800 801 return(error); 802 } 803 804 static int 805 cam_module_event_handler(module_t mod, int what, void *arg) 806 { 807 int error; 808 809 switch (what) { 810 case MOD_LOAD: 811 if ((error = xpt_init(NULL)) != 0) 812 return (error); 813 break; 814 case MOD_UNLOAD: 815 return EBUSY; 816 default: 817 return EOPNOTSUPP; 818 } 819 820 return 0; 821 } 822 823 static void 824 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 825 { 826 827 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 828 xpt_free_path(done_ccb->ccb_h.path); 829 xpt_free_ccb(done_ccb); 830 } else { 831 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 832 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 833 } 834 xpt_release_boot(); 835 } 836 837 /* thread to handle bus rescans */ 838 static void 839 xpt_scanner_thread(void *dummy) 840 { 841 union ccb *ccb; 842 struct cam_sim *sim; 843 844 xpt_lock_buses(); 845 for (;;) { 846 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 847 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 848 "ccb_scanq", 0); 849 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 850 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 851 xpt_unlock_buses(); 852 853 sim = ccb->ccb_h.path->bus->sim; 854 CAM_SIM_LOCK(sim); 855 xpt_action(ccb); 856 CAM_SIM_UNLOCK(sim); 857 858 xpt_lock_buses(); 859 } 860 } 861 } 862 863 void 864 xpt_rescan(union ccb *ccb) 865 { 866 struct ccb_hdr *hdr; 867 868 /* Prepare request */ 869 if(ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD) 870 ccb->ccb_h.func_code = XPT_SCAN_BUS; 871 else 872 ccb->ccb_h.func_code = XPT_SCAN_LUN; 873 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 874 ccb->ccb_h.cbfcnp = xpt_rescan_done; 875 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 876 /* Don't make duplicate entries for the same paths. */ 877 xpt_lock_buses(); 878 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 879 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 880 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 881 wakeup(&xsoftc.ccb_scanq); 882 xpt_unlock_buses(); 883 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 884 xpt_free_path(ccb->ccb_h.path); 885 xpt_free_ccb(ccb); 886 return; 887 } 888 } 889 } 890 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 891 xsoftc.buses_to_config++; 892 wakeup(&xsoftc.ccb_scanq); 893 xpt_unlock_buses(); 894 } 895 896 /* Functions accessed by the peripheral drivers */ 897 static int 898 xpt_init(void *dummy) 899 { 900 struct cam_sim *xpt_sim; 901 struct cam_path *path; 902 struct cam_devq *devq; 903 cam_status status; 904 905 TAILQ_INIT(&xsoftc.xpt_busses); 906 TAILQ_INIT(&cam_simq); 907 TAILQ_INIT(&xsoftc.ccb_scanq); 908 STAILQ_INIT(&xsoftc.highpowerq); 909 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 910 911 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 912 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 913 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 914 915 /* 916 * The xpt layer is, itself, the equivelent of a SIM. 917 * Allow 16 ccbs in the ccb pool for it. This should 918 * give decent parallelism when we probe busses and 919 * perform other XPT functions. 920 */ 921 devq = cam_simq_alloc(16); 922 xpt_sim = cam_sim_alloc(xptaction, 923 xptpoll, 924 "xpt", 925 /*softc*/NULL, 926 /*unit*/0, 927 /*mtx*/&xsoftc.xpt_lock, 928 /*max_dev_transactions*/0, 929 /*max_tagged_dev_transactions*/0, 930 devq); 931 if (xpt_sim == NULL) 932 return (ENOMEM); 933 934 mtx_lock(&xsoftc.xpt_lock); 935 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 936 mtx_unlock(&xsoftc.xpt_lock); 937 printf("xpt_init: xpt_bus_register failed with status %#x," 938 " failing attach\n", status); 939 return (EINVAL); 940 } 941 942 /* 943 * Looking at the XPT from the SIM layer, the XPT is 944 * the equivelent of a peripheral driver. Allocate 945 * a peripheral driver entry for us. 946 */ 947 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 948 CAM_TARGET_WILDCARD, 949 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 950 mtx_unlock(&xsoftc.xpt_lock); 951 printf("xpt_init: xpt_create_path failed with status %#x," 952 " failing attach\n", status); 953 return (EINVAL); 954 } 955 956 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 957 path, NULL, 0, xpt_sim); 958 xpt_free_path(path); 959 mtx_unlock(&xsoftc.xpt_lock); 960 /* Install our software interrupt handlers */ 961 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 962 /* 963 * Register a callback for when interrupts are enabled. 964 */ 965 xsoftc.xpt_config_hook = 966 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 967 M_CAMXPT, M_NOWAIT | M_ZERO); 968 if (xsoftc.xpt_config_hook == NULL) { 969 printf("xpt_init: Cannot malloc config hook " 970 "- failing attach\n"); 971 return (ENOMEM); 972 } 973 xsoftc.xpt_config_hook->ich_func = xpt_config; 974 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 975 free (xsoftc.xpt_config_hook, M_CAMXPT); 976 printf("xpt_init: config_intrhook_establish failed " 977 "- failing attach\n"); 978 } 979 980 return (0); 981 } 982 983 static cam_status 984 xptregister(struct cam_periph *periph, void *arg) 985 { 986 struct cam_sim *xpt_sim; 987 988 if (periph == NULL) { 989 printf("xptregister: periph was NULL!!\n"); 990 return(CAM_REQ_CMP_ERR); 991 } 992 993 xpt_sim = (struct cam_sim *)arg; 994 xpt_sim->softc = periph; 995 xpt_periph = periph; 996 periph->softc = NULL; 997 998 return(CAM_REQ_CMP); 999 } 1000 1001 int32_t 1002 xpt_add_periph(struct cam_periph *periph) 1003 { 1004 struct cam_ed *device; 1005 int32_t status; 1006 struct periph_list *periph_head; 1007 1008 mtx_assert(periph->sim->mtx, MA_OWNED); 1009 1010 device = periph->path->device; 1011 1012 periph_head = &device->periphs; 1013 1014 status = CAM_REQ_CMP; 1015 1016 if (device != NULL) { 1017 /* 1018 * Make room for this peripheral 1019 * so it will fit in the queue 1020 * when it's scheduled to run 1021 */ 1022 status = camq_resize(&device->drvq, 1023 device->drvq.array_size + 1); 1024 1025 device->generation++; 1026 1027 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1028 } 1029 1030 mtx_lock(&xsoftc.xpt_topo_lock); 1031 xsoftc.xpt_generation++; 1032 mtx_unlock(&xsoftc.xpt_topo_lock); 1033 1034 return (status); 1035 } 1036 1037 void 1038 xpt_remove_periph(struct cam_periph *periph) 1039 { 1040 struct cam_ed *device; 1041 1042 mtx_assert(periph->sim->mtx, MA_OWNED); 1043 1044 device = periph->path->device; 1045 1046 if (device != NULL) { 1047 struct periph_list *periph_head; 1048 1049 periph_head = &device->periphs; 1050 1051 /* Release the slot for this peripheral */ 1052 camq_resize(&device->drvq, device->drvq.array_size - 1); 1053 1054 device->generation++; 1055 1056 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1057 } 1058 1059 mtx_lock(&xsoftc.xpt_topo_lock); 1060 xsoftc.xpt_generation++; 1061 mtx_unlock(&xsoftc.xpt_topo_lock); 1062 } 1063 1064 1065 void 1066 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1067 { 1068 struct ccb_pathinq cpi; 1069 struct ccb_trans_settings cts; 1070 struct cam_path *path; 1071 u_int speed; 1072 u_int freq; 1073 u_int mb; 1074 1075 mtx_assert(periph->sim->mtx, MA_OWNED); 1076 1077 path = periph->path; 1078 /* 1079 * To ensure that this is printed in one piece, 1080 * mask out CAM interrupts. 1081 */ 1082 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1083 periph->periph_name, periph->unit_number, 1084 path->bus->sim->sim_name, 1085 path->bus->sim->unit_number, 1086 path->bus->sim->bus_id, 1087 path->bus->path_id, 1088 path->target->target_id, 1089 path->device->lun_id); 1090 printf("%s%d: ", periph->periph_name, periph->unit_number); 1091 if (path->device->protocol == PROTO_SCSI) 1092 scsi_print_inquiry(&path->device->inq_data); 1093 else if (path->device->protocol == PROTO_ATA || 1094 path->device->protocol == PROTO_SATAPM) 1095 ata_print_ident(&path->device->ident_data); 1096 else 1097 printf("Unknown protocol device\n"); 1098 if (bootverbose && path->device->serial_num_len > 0) { 1099 /* Don't wrap the screen - print only the first 60 chars */ 1100 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1101 periph->unit_number, path->device->serial_num); 1102 } 1103 xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NORMAL); 1104 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1105 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1106 xpt_action((union ccb*)&cts); 1107 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1108 return; 1109 } 1110 1111 /* Ask the SIM for its base transfer speed */ 1112 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 1113 cpi.ccb_h.func_code = XPT_PATH_INQ; 1114 xpt_action((union ccb *)&cpi); 1115 1116 speed = cpi.base_transfer_speed; 1117 freq = 0; 1118 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1119 struct ccb_trans_settings_spi *spi = 1120 &cts.xport_specific.spi; 1121 1122 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1123 && spi->sync_offset != 0) { 1124 freq = scsi_calc_syncsrate(spi->sync_period); 1125 speed = freq; 1126 } 1127 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1128 speed *= (0x01 << spi->bus_width); 1129 } 1130 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1131 struct ccb_trans_settings_fc *fc = 1132 &cts.xport_specific.fc; 1133 1134 if (fc->valid & CTS_FC_VALID_SPEED) 1135 speed = fc->bitrate; 1136 } 1137 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1138 struct ccb_trans_settings_sas *sas = 1139 &cts.xport_specific.sas; 1140 1141 if (sas->valid & CTS_SAS_VALID_SPEED) 1142 speed = sas->bitrate; 1143 } 1144 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_ATA) { 1145 struct ccb_trans_settings_ata *ata = 1146 &cts.xport_specific.ata; 1147 1148 if (ata->valid & CTS_ATA_VALID_MODE) 1149 speed = ata_mode2speed(ata->mode); 1150 } 1151 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SATA) { 1152 struct ccb_trans_settings_sata *sata = 1153 &cts.xport_specific.sata; 1154 1155 if (sata->valid & CTS_SATA_VALID_REVISION) 1156 speed = ata_revision2speed(sata->revision); 1157 } 1158 1159 mb = speed / 1000; 1160 if (mb > 0) 1161 printf("%s%d: %d.%03dMB/s transfers", 1162 periph->periph_name, periph->unit_number, 1163 mb, speed % 1000); 1164 else 1165 printf("%s%d: %dKB/s transfers", periph->periph_name, 1166 periph->unit_number, speed); 1167 /* Report additional information about SPI connections */ 1168 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1169 struct ccb_trans_settings_spi *spi; 1170 1171 spi = &cts.xport_specific.spi; 1172 if (freq != 0) { 1173 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1174 freq % 1000, 1175 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1176 ? " DT" : "", 1177 spi->sync_offset); 1178 } 1179 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1180 && spi->bus_width > 0) { 1181 if (freq != 0) { 1182 printf(", "); 1183 } else { 1184 printf(" ("); 1185 } 1186 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1187 } else if (freq != 0) { 1188 printf(")"); 1189 } 1190 } 1191 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1192 struct ccb_trans_settings_fc *fc; 1193 1194 fc = &cts.xport_specific.fc; 1195 if (fc->valid & CTS_FC_VALID_WWNN) 1196 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1197 if (fc->valid & CTS_FC_VALID_WWPN) 1198 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1199 if (fc->valid & CTS_FC_VALID_PORT) 1200 printf(" PortID 0x%x", fc->port); 1201 } 1202 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_ATA) { 1203 struct ccb_trans_settings_ata *ata = 1204 &cts.xport_specific.ata; 1205 1206 printf(" ("); 1207 if (ata->valid & CTS_ATA_VALID_MODE) 1208 printf("%s, ", ata_mode2string(ata->mode)); 1209 if ((ata->valid & CTS_ATA_VALID_ATAPI) && ata->atapi != 0) 1210 printf("ATAPI %dbytes, ", ata->atapi); 1211 if (ata->valid & CTS_ATA_VALID_BYTECOUNT) 1212 printf("PIO %dbytes", ata->bytecount); 1213 printf(")"); 1214 } 1215 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SATA) { 1216 struct ccb_trans_settings_sata *sata = 1217 &cts.xport_specific.sata; 1218 1219 printf(" ("); 1220 if (sata->valid & CTS_SATA_VALID_REVISION) 1221 printf("SATA %d.x, ", sata->revision); 1222 if (sata->valid & CTS_SATA_VALID_MODE) 1223 printf("%s, ", ata_mode2string(sata->mode)); 1224 if ((sata->valid & CTS_ATA_VALID_ATAPI) && sata->atapi != 0) 1225 printf("ATAPI %dbytes, ", sata->atapi); 1226 if (sata->valid & CTS_SATA_VALID_BYTECOUNT) 1227 printf("PIO %dbytes", sata->bytecount); 1228 printf(")"); 1229 } 1230 if (path->device->inq_flags & SID_CmdQue 1231 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1232 printf("\n%s%d: Command Queueing enabled", 1233 periph->periph_name, periph->unit_number); 1234 } 1235 printf("\n"); 1236 1237 /* 1238 * We only want to print the caller's announce string if they've 1239 * passed one in.. 1240 */ 1241 if (announce_string != NULL) 1242 printf("%s%d: %s\n", periph->periph_name, 1243 periph->unit_number, announce_string); 1244 } 1245 1246 static dev_match_ret 1247 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1248 struct cam_eb *bus) 1249 { 1250 dev_match_ret retval; 1251 int i; 1252 1253 retval = DM_RET_NONE; 1254 1255 /* 1256 * If we aren't given something to match against, that's an error. 1257 */ 1258 if (bus == NULL) 1259 return(DM_RET_ERROR); 1260 1261 /* 1262 * If there are no match entries, then this bus matches no 1263 * matter what. 1264 */ 1265 if ((patterns == NULL) || (num_patterns == 0)) 1266 return(DM_RET_DESCEND | DM_RET_COPY); 1267 1268 for (i = 0; i < num_patterns; i++) { 1269 struct bus_match_pattern *cur_pattern; 1270 1271 /* 1272 * If the pattern in question isn't for a bus node, we 1273 * aren't interested. However, we do indicate to the 1274 * calling routine that we should continue descending the 1275 * tree, since the user wants to match against lower-level 1276 * EDT elements. 1277 */ 1278 if (patterns[i].type != DEV_MATCH_BUS) { 1279 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1280 retval |= DM_RET_DESCEND; 1281 continue; 1282 } 1283 1284 cur_pattern = &patterns[i].pattern.bus_pattern; 1285 1286 /* 1287 * If they want to match any bus node, we give them any 1288 * device node. 1289 */ 1290 if (cur_pattern->flags == BUS_MATCH_ANY) { 1291 /* set the copy flag */ 1292 retval |= DM_RET_COPY; 1293 1294 /* 1295 * If we've already decided on an action, go ahead 1296 * and return. 1297 */ 1298 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1299 return(retval); 1300 } 1301 1302 /* 1303 * Not sure why someone would do this... 1304 */ 1305 if (cur_pattern->flags == BUS_MATCH_NONE) 1306 continue; 1307 1308 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1309 && (cur_pattern->path_id != bus->path_id)) 1310 continue; 1311 1312 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1313 && (cur_pattern->bus_id != bus->sim->bus_id)) 1314 continue; 1315 1316 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1317 && (cur_pattern->unit_number != bus->sim->unit_number)) 1318 continue; 1319 1320 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1321 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1322 DEV_IDLEN) != 0)) 1323 continue; 1324 1325 /* 1326 * If we get to this point, the user definitely wants 1327 * information on this bus. So tell the caller to copy the 1328 * data out. 1329 */ 1330 retval |= DM_RET_COPY; 1331 1332 /* 1333 * If the return action has been set to descend, then we 1334 * know that we've already seen a non-bus matching 1335 * expression, therefore we need to further descend the tree. 1336 * This won't change by continuing around the loop, so we 1337 * go ahead and return. If we haven't seen a non-bus 1338 * matching expression, we keep going around the loop until 1339 * we exhaust the matching expressions. We'll set the stop 1340 * flag once we fall out of the loop. 1341 */ 1342 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1343 return(retval); 1344 } 1345 1346 /* 1347 * If the return action hasn't been set to descend yet, that means 1348 * we haven't seen anything other than bus matching patterns. So 1349 * tell the caller to stop descending the tree -- the user doesn't 1350 * want to match against lower level tree elements. 1351 */ 1352 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1353 retval |= DM_RET_STOP; 1354 1355 return(retval); 1356 } 1357 1358 static dev_match_ret 1359 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1360 struct cam_ed *device) 1361 { 1362 dev_match_ret retval; 1363 int i; 1364 1365 retval = DM_RET_NONE; 1366 1367 /* 1368 * If we aren't given something to match against, that's an error. 1369 */ 1370 if (device == NULL) 1371 return(DM_RET_ERROR); 1372 1373 /* 1374 * If there are no match entries, then this device matches no 1375 * matter what. 1376 */ 1377 if ((patterns == NULL) || (num_patterns == 0)) 1378 return(DM_RET_DESCEND | DM_RET_COPY); 1379 1380 for (i = 0; i < num_patterns; i++) { 1381 struct device_match_pattern *cur_pattern; 1382 1383 /* 1384 * If the pattern in question isn't for a device node, we 1385 * aren't interested. 1386 */ 1387 if (patterns[i].type != DEV_MATCH_DEVICE) { 1388 if ((patterns[i].type == DEV_MATCH_PERIPH) 1389 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1390 retval |= DM_RET_DESCEND; 1391 continue; 1392 } 1393 1394 cur_pattern = &patterns[i].pattern.device_pattern; 1395 1396 /* 1397 * If they want to match any device node, we give them any 1398 * device node. 1399 */ 1400 if (cur_pattern->flags == DEV_MATCH_ANY) { 1401 /* set the copy flag */ 1402 retval |= DM_RET_COPY; 1403 1404 1405 /* 1406 * If we've already decided on an action, go ahead 1407 * and return. 1408 */ 1409 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1410 return(retval); 1411 } 1412 1413 /* 1414 * Not sure why someone would do this... 1415 */ 1416 if (cur_pattern->flags == DEV_MATCH_NONE) 1417 continue; 1418 1419 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1420 && (cur_pattern->path_id != device->target->bus->path_id)) 1421 continue; 1422 1423 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1424 && (cur_pattern->target_id != device->target->target_id)) 1425 continue; 1426 1427 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1428 && (cur_pattern->target_lun != device->lun_id)) 1429 continue; 1430 1431 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1432 && (cam_quirkmatch((caddr_t)&device->inq_data, 1433 (caddr_t)&cur_pattern->inq_pat, 1434 1, sizeof(cur_pattern->inq_pat), 1435 scsi_static_inquiry_match) == NULL)) 1436 continue; 1437 1438 /* 1439 * If we get to this point, the user definitely wants 1440 * information on this device. So tell the caller to copy 1441 * the data out. 1442 */ 1443 retval |= DM_RET_COPY; 1444 1445 /* 1446 * If the return action has been set to descend, then we 1447 * know that we've already seen a peripheral matching 1448 * expression, therefore we need to further descend the tree. 1449 * This won't change by continuing around the loop, so we 1450 * go ahead and return. If we haven't seen a peripheral 1451 * matching expression, we keep going around the loop until 1452 * we exhaust the matching expressions. We'll set the stop 1453 * flag once we fall out of the loop. 1454 */ 1455 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1456 return(retval); 1457 } 1458 1459 /* 1460 * If the return action hasn't been set to descend yet, that means 1461 * we haven't seen any peripheral matching patterns. So tell the 1462 * caller to stop descending the tree -- the user doesn't want to 1463 * match against lower level tree elements. 1464 */ 1465 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1466 retval |= DM_RET_STOP; 1467 1468 return(retval); 1469 } 1470 1471 /* 1472 * Match a single peripheral against any number of match patterns. 1473 */ 1474 static dev_match_ret 1475 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1476 struct cam_periph *periph) 1477 { 1478 dev_match_ret retval; 1479 int i; 1480 1481 /* 1482 * If we aren't given something to match against, that's an error. 1483 */ 1484 if (periph == NULL) 1485 return(DM_RET_ERROR); 1486 1487 /* 1488 * If there are no match entries, then this peripheral matches no 1489 * matter what. 1490 */ 1491 if ((patterns == NULL) || (num_patterns == 0)) 1492 return(DM_RET_STOP | DM_RET_COPY); 1493 1494 /* 1495 * There aren't any nodes below a peripheral node, so there's no 1496 * reason to descend the tree any further. 1497 */ 1498 retval = DM_RET_STOP; 1499 1500 for (i = 0; i < num_patterns; i++) { 1501 struct periph_match_pattern *cur_pattern; 1502 1503 /* 1504 * If the pattern in question isn't for a peripheral, we 1505 * aren't interested. 1506 */ 1507 if (patterns[i].type != DEV_MATCH_PERIPH) 1508 continue; 1509 1510 cur_pattern = &patterns[i].pattern.periph_pattern; 1511 1512 /* 1513 * If they want to match on anything, then we will do so. 1514 */ 1515 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1516 /* set the copy flag */ 1517 retval |= DM_RET_COPY; 1518 1519 /* 1520 * We've already set the return action to stop, 1521 * since there are no nodes below peripherals in 1522 * the tree. 1523 */ 1524 return(retval); 1525 } 1526 1527 /* 1528 * Not sure why someone would do this... 1529 */ 1530 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1531 continue; 1532 1533 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1534 && (cur_pattern->path_id != periph->path->bus->path_id)) 1535 continue; 1536 1537 /* 1538 * For the target and lun id's, we have to make sure the 1539 * target and lun pointers aren't NULL. The xpt peripheral 1540 * has a wildcard target and device. 1541 */ 1542 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1543 && ((periph->path->target == NULL) 1544 ||(cur_pattern->target_id != periph->path->target->target_id))) 1545 continue; 1546 1547 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1548 && ((periph->path->device == NULL) 1549 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1550 continue; 1551 1552 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1553 && (cur_pattern->unit_number != periph->unit_number)) 1554 continue; 1555 1556 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1557 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1558 DEV_IDLEN) != 0)) 1559 continue; 1560 1561 /* 1562 * If we get to this point, the user definitely wants 1563 * information on this peripheral. So tell the caller to 1564 * copy the data out. 1565 */ 1566 retval |= DM_RET_COPY; 1567 1568 /* 1569 * The return action has already been set to stop, since 1570 * peripherals don't have any nodes below them in the EDT. 1571 */ 1572 return(retval); 1573 } 1574 1575 /* 1576 * If we get to this point, the peripheral that was passed in 1577 * doesn't match any of the patterns. 1578 */ 1579 return(retval); 1580 } 1581 1582 static int 1583 xptedtbusfunc(struct cam_eb *bus, void *arg) 1584 { 1585 struct ccb_dev_match *cdm; 1586 dev_match_ret retval; 1587 1588 cdm = (struct ccb_dev_match *)arg; 1589 1590 /* 1591 * If our position is for something deeper in the tree, that means 1592 * that we've already seen this node. So, we keep going down. 1593 */ 1594 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1595 && (cdm->pos.cookie.bus == bus) 1596 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1597 && (cdm->pos.cookie.target != NULL)) 1598 retval = DM_RET_DESCEND; 1599 else 1600 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1601 1602 /* 1603 * If we got an error, bail out of the search. 1604 */ 1605 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1606 cdm->status = CAM_DEV_MATCH_ERROR; 1607 return(0); 1608 } 1609 1610 /* 1611 * If the copy flag is set, copy this bus out. 1612 */ 1613 if (retval & DM_RET_COPY) { 1614 int spaceleft, j; 1615 1616 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1617 sizeof(struct dev_match_result)); 1618 1619 /* 1620 * If we don't have enough space to put in another 1621 * match result, save our position and tell the 1622 * user there are more devices to check. 1623 */ 1624 if (spaceleft < sizeof(struct dev_match_result)) { 1625 bzero(&cdm->pos, sizeof(cdm->pos)); 1626 cdm->pos.position_type = 1627 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1628 1629 cdm->pos.cookie.bus = bus; 1630 cdm->pos.generations[CAM_BUS_GENERATION]= 1631 xsoftc.bus_generation; 1632 cdm->status = CAM_DEV_MATCH_MORE; 1633 return(0); 1634 } 1635 j = cdm->num_matches; 1636 cdm->num_matches++; 1637 cdm->matches[j].type = DEV_MATCH_BUS; 1638 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1639 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1640 cdm->matches[j].result.bus_result.unit_number = 1641 bus->sim->unit_number; 1642 strncpy(cdm->matches[j].result.bus_result.dev_name, 1643 bus->sim->sim_name, DEV_IDLEN); 1644 } 1645 1646 /* 1647 * If the user is only interested in busses, there's no 1648 * reason to descend to the next level in the tree. 1649 */ 1650 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1651 return(1); 1652 1653 /* 1654 * If there is a target generation recorded, check it to 1655 * make sure the target list hasn't changed. 1656 */ 1657 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1658 && (bus == cdm->pos.cookie.bus) 1659 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1660 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1661 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1662 bus->generation)) { 1663 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1664 return(0); 1665 } 1666 1667 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1668 && (cdm->pos.cookie.bus == bus) 1669 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1670 && (cdm->pos.cookie.target != NULL)) 1671 return(xpttargettraverse(bus, 1672 (struct cam_et *)cdm->pos.cookie.target, 1673 xptedttargetfunc, arg)); 1674 else 1675 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1676 } 1677 1678 static int 1679 xptedttargetfunc(struct cam_et *target, void *arg) 1680 { 1681 struct ccb_dev_match *cdm; 1682 1683 cdm = (struct ccb_dev_match *)arg; 1684 1685 /* 1686 * If there is a device list generation recorded, check it to 1687 * make sure the device list hasn't changed. 1688 */ 1689 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1690 && (cdm->pos.cookie.bus == target->bus) 1691 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1692 && (cdm->pos.cookie.target == target) 1693 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1694 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1695 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1696 target->generation)) { 1697 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1698 return(0); 1699 } 1700 1701 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1702 && (cdm->pos.cookie.bus == target->bus) 1703 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1704 && (cdm->pos.cookie.target == target) 1705 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1706 && (cdm->pos.cookie.device != NULL)) 1707 return(xptdevicetraverse(target, 1708 (struct cam_ed *)cdm->pos.cookie.device, 1709 xptedtdevicefunc, arg)); 1710 else 1711 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1712 } 1713 1714 static int 1715 xptedtdevicefunc(struct cam_ed *device, void *arg) 1716 { 1717 1718 struct ccb_dev_match *cdm; 1719 dev_match_ret retval; 1720 1721 cdm = (struct ccb_dev_match *)arg; 1722 1723 /* 1724 * If our position is for something deeper in the tree, that means 1725 * that we've already seen this node. So, we keep going down. 1726 */ 1727 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1728 && (cdm->pos.cookie.device == device) 1729 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1730 && (cdm->pos.cookie.periph != NULL)) 1731 retval = DM_RET_DESCEND; 1732 else 1733 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1734 device); 1735 1736 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1737 cdm->status = CAM_DEV_MATCH_ERROR; 1738 return(0); 1739 } 1740 1741 /* 1742 * If the copy flag is set, copy this device out. 1743 */ 1744 if (retval & DM_RET_COPY) { 1745 int spaceleft, j; 1746 1747 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1748 sizeof(struct dev_match_result)); 1749 1750 /* 1751 * If we don't have enough space to put in another 1752 * match result, save our position and tell the 1753 * user there are more devices to check. 1754 */ 1755 if (spaceleft < sizeof(struct dev_match_result)) { 1756 bzero(&cdm->pos, sizeof(cdm->pos)); 1757 cdm->pos.position_type = 1758 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1759 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1760 1761 cdm->pos.cookie.bus = device->target->bus; 1762 cdm->pos.generations[CAM_BUS_GENERATION]= 1763 xsoftc.bus_generation; 1764 cdm->pos.cookie.target = device->target; 1765 cdm->pos.generations[CAM_TARGET_GENERATION] = 1766 device->target->bus->generation; 1767 cdm->pos.cookie.device = device; 1768 cdm->pos.generations[CAM_DEV_GENERATION] = 1769 device->target->generation; 1770 cdm->status = CAM_DEV_MATCH_MORE; 1771 return(0); 1772 } 1773 j = cdm->num_matches; 1774 cdm->num_matches++; 1775 cdm->matches[j].type = DEV_MATCH_DEVICE; 1776 cdm->matches[j].result.device_result.path_id = 1777 device->target->bus->path_id; 1778 cdm->matches[j].result.device_result.target_id = 1779 device->target->target_id; 1780 cdm->matches[j].result.device_result.target_lun = 1781 device->lun_id; 1782 cdm->matches[j].result.device_result.protocol = 1783 device->protocol; 1784 bcopy(&device->inq_data, 1785 &cdm->matches[j].result.device_result.inq_data, 1786 sizeof(struct scsi_inquiry_data)); 1787 bcopy(&device->ident_data, 1788 &cdm->matches[j].result.device_result.ident_data, 1789 sizeof(struct ata_params)); 1790 1791 /* Let the user know whether this device is unconfigured */ 1792 if (device->flags & CAM_DEV_UNCONFIGURED) 1793 cdm->matches[j].result.device_result.flags = 1794 DEV_RESULT_UNCONFIGURED; 1795 else 1796 cdm->matches[j].result.device_result.flags = 1797 DEV_RESULT_NOFLAG; 1798 } 1799 1800 /* 1801 * If the user isn't interested in peripherals, don't descend 1802 * the tree any further. 1803 */ 1804 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1805 return(1); 1806 1807 /* 1808 * If there is a peripheral list generation recorded, make sure 1809 * it hasn't changed. 1810 */ 1811 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1812 && (device->target->bus == cdm->pos.cookie.bus) 1813 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1814 && (device->target == cdm->pos.cookie.target) 1815 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1816 && (device == cdm->pos.cookie.device) 1817 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1818 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1819 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1820 device->generation)){ 1821 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1822 return(0); 1823 } 1824 1825 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1826 && (cdm->pos.cookie.bus == device->target->bus) 1827 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1828 && (cdm->pos.cookie.target == device->target) 1829 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1830 && (cdm->pos.cookie.device == device) 1831 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1832 && (cdm->pos.cookie.periph != NULL)) 1833 return(xptperiphtraverse(device, 1834 (struct cam_periph *)cdm->pos.cookie.periph, 1835 xptedtperiphfunc, arg)); 1836 else 1837 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1838 } 1839 1840 static int 1841 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1842 { 1843 struct ccb_dev_match *cdm; 1844 dev_match_ret retval; 1845 1846 cdm = (struct ccb_dev_match *)arg; 1847 1848 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1849 1850 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1851 cdm->status = CAM_DEV_MATCH_ERROR; 1852 return(0); 1853 } 1854 1855 /* 1856 * If the copy flag is set, copy this peripheral out. 1857 */ 1858 if (retval & DM_RET_COPY) { 1859 int spaceleft, j; 1860 1861 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1862 sizeof(struct dev_match_result)); 1863 1864 /* 1865 * If we don't have enough space to put in another 1866 * match result, save our position and tell the 1867 * user there are more devices to check. 1868 */ 1869 if (spaceleft < sizeof(struct dev_match_result)) { 1870 bzero(&cdm->pos, sizeof(cdm->pos)); 1871 cdm->pos.position_type = 1872 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1873 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1874 CAM_DEV_POS_PERIPH; 1875 1876 cdm->pos.cookie.bus = periph->path->bus; 1877 cdm->pos.generations[CAM_BUS_GENERATION]= 1878 xsoftc.bus_generation; 1879 cdm->pos.cookie.target = periph->path->target; 1880 cdm->pos.generations[CAM_TARGET_GENERATION] = 1881 periph->path->bus->generation; 1882 cdm->pos.cookie.device = periph->path->device; 1883 cdm->pos.generations[CAM_DEV_GENERATION] = 1884 periph->path->target->generation; 1885 cdm->pos.cookie.periph = periph; 1886 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1887 periph->path->device->generation; 1888 cdm->status = CAM_DEV_MATCH_MORE; 1889 return(0); 1890 } 1891 1892 j = cdm->num_matches; 1893 cdm->num_matches++; 1894 cdm->matches[j].type = DEV_MATCH_PERIPH; 1895 cdm->matches[j].result.periph_result.path_id = 1896 periph->path->bus->path_id; 1897 cdm->matches[j].result.periph_result.target_id = 1898 periph->path->target->target_id; 1899 cdm->matches[j].result.periph_result.target_lun = 1900 periph->path->device->lun_id; 1901 cdm->matches[j].result.periph_result.unit_number = 1902 periph->unit_number; 1903 strncpy(cdm->matches[j].result.periph_result.periph_name, 1904 periph->periph_name, DEV_IDLEN); 1905 } 1906 1907 return(1); 1908 } 1909 1910 static int 1911 xptedtmatch(struct ccb_dev_match *cdm) 1912 { 1913 int ret; 1914 1915 cdm->num_matches = 0; 1916 1917 /* 1918 * Check the bus list generation. If it has changed, the user 1919 * needs to reset everything and start over. 1920 */ 1921 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1922 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1923 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1924 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1925 return(0); 1926 } 1927 1928 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1929 && (cdm->pos.cookie.bus != NULL)) 1930 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1931 xptedtbusfunc, cdm); 1932 else 1933 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1934 1935 /* 1936 * If we get back 0, that means that we had to stop before fully 1937 * traversing the EDT. It also means that one of the subroutines 1938 * has set the status field to the proper value. If we get back 1, 1939 * we've fully traversed the EDT and copied out any matching entries. 1940 */ 1941 if (ret == 1) 1942 cdm->status = CAM_DEV_MATCH_LAST; 1943 1944 return(ret); 1945 } 1946 1947 static int 1948 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1949 { 1950 struct ccb_dev_match *cdm; 1951 1952 cdm = (struct ccb_dev_match *)arg; 1953 1954 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1955 && (cdm->pos.cookie.pdrv == pdrv) 1956 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1957 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1958 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1959 (*pdrv)->generation)) { 1960 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1961 return(0); 1962 } 1963 1964 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1965 && (cdm->pos.cookie.pdrv == pdrv) 1966 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1967 && (cdm->pos.cookie.periph != NULL)) 1968 return(xptpdperiphtraverse(pdrv, 1969 (struct cam_periph *)cdm->pos.cookie.periph, 1970 xptplistperiphfunc, arg)); 1971 else 1972 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1973 } 1974 1975 static int 1976 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1977 { 1978 struct ccb_dev_match *cdm; 1979 dev_match_ret retval; 1980 1981 cdm = (struct ccb_dev_match *)arg; 1982 1983 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1984 1985 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1986 cdm->status = CAM_DEV_MATCH_ERROR; 1987 return(0); 1988 } 1989 1990 /* 1991 * If the copy flag is set, copy this peripheral out. 1992 */ 1993 if (retval & DM_RET_COPY) { 1994 int spaceleft, j; 1995 1996 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1997 sizeof(struct dev_match_result)); 1998 1999 /* 2000 * If we don't have enough space to put in another 2001 * match result, save our position and tell the 2002 * user there are more devices to check. 2003 */ 2004 if (spaceleft < sizeof(struct dev_match_result)) { 2005 struct periph_driver **pdrv; 2006 2007 pdrv = NULL; 2008 bzero(&cdm->pos, sizeof(cdm->pos)); 2009 cdm->pos.position_type = 2010 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2011 CAM_DEV_POS_PERIPH; 2012 2013 /* 2014 * This may look a bit non-sensical, but it is 2015 * actually quite logical. There are very few 2016 * peripheral drivers, and bloating every peripheral 2017 * structure with a pointer back to its parent 2018 * peripheral driver linker set entry would cost 2019 * more in the long run than doing this quick lookup. 2020 */ 2021 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2022 if (strcmp((*pdrv)->driver_name, 2023 periph->periph_name) == 0) 2024 break; 2025 } 2026 2027 if (*pdrv == NULL) { 2028 cdm->status = CAM_DEV_MATCH_ERROR; 2029 return(0); 2030 } 2031 2032 cdm->pos.cookie.pdrv = pdrv; 2033 /* 2034 * The periph generation slot does double duty, as 2035 * does the periph pointer slot. They are used for 2036 * both edt and pdrv lookups and positioning. 2037 */ 2038 cdm->pos.cookie.periph = periph; 2039 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2040 (*pdrv)->generation; 2041 cdm->status = CAM_DEV_MATCH_MORE; 2042 return(0); 2043 } 2044 2045 j = cdm->num_matches; 2046 cdm->num_matches++; 2047 cdm->matches[j].type = DEV_MATCH_PERIPH; 2048 cdm->matches[j].result.periph_result.path_id = 2049 periph->path->bus->path_id; 2050 2051 /* 2052 * The transport layer peripheral doesn't have a target or 2053 * lun. 2054 */ 2055 if (periph->path->target) 2056 cdm->matches[j].result.periph_result.target_id = 2057 periph->path->target->target_id; 2058 else 2059 cdm->matches[j].result.periph_result.target_id = -1; 2060 2061 if (periph->path->device) 2062 cdm->matches[j].result.periph_result.target_lun = 2063 periph->path->device->lun_id; 2064 else 2065 cdm->matches[j].result.periph_result.target_lun = -1; 2066 2067 cdm->matches[j].result.periph_result.unit_number = 2068 periph->unit_number; 2069 strncpy(cdm->matches[j].result.periph_result.periph_name, 2070 periph->periph_name, DEV_IDLEN); 2071 } 2072 2073 return(1); 2074 } 2075 2076 static int 2077 xptperiphlistmatch(struct ccb_dev_match *cdm) 2078 { 2079 int ret; 2080 2081 cdm->num_matches = 0; 2082 2083 /* 2084 * At this point in the edt traversal function, we check the bus 2085 * list generation to make sure that no busses have been added or 2086 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2087 * For the peripheral driver list traversal function, however, we 2088 * don't have to worry about new peripheral driver types coming or 2089 * going; they're in a linker set, and therefore can't change 2090 * without a recompile. 2091 */ 2092 2093 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2094 && (cdm->pos.cookie.pdrv != NULL)) 2095 ret = xptpdrvtraverse( 2096 (struct periph_driver **)cdm->pos.cookie.pdrv, 2097 xptplistpdrvfunc, cdm); 2098 else 2099 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2100 2101 /* 2102 * If we get back 0, that means that we had to stop before fully 2103 * traversing the peripheral driver tree. It also means that one of 2104 * the subroutines has set the status field to the proper value. If 2105 * we get back 1, we've fully traversed the EDT and copied out any 2106 * matching entries. 2107 */ 2108 if (ret == 1) 2109 cdm->status = CAM_DEV_MATCH_LAST; 2110 2111 return(ret); 2112 } 2113 2114 static int 2115 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2116 { 2117 struct cam_eb *bus, *next_bus; 2118 int retval; 2119 2120 retval = 1; 2121 2122 mtx_lock(&xsoftc.xpt_topo_lock); 2123 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2124 bus != NULL; 2125 bus = next_bus) { 2126 next_bus = TAILQ_NEXT(bus, links); 2127 2128 mtx_unlock(&xsoftc.xpt_topo_lock); 2129 CAM_SIM_LOCK(bus->sim); 2130 retval = tr_func(bus, arg); 2131 CAM_SIM_UNLOCK(bus->sim); 2132 if (retval == 0) 2133 return(retval); 2134 mtx_lock(&xsoftc.xpt_topo_lock); 2135 } 2136 mtx_unlock(&xsoftc.xpt_topo_lock); 2137 2138 return(retval); 2139 } 2140 2141 int 2142 xpt_sim_opened(struct cam_sim *sim) 2143 { 2144 struct cam_eb *bus; 2145 struct cam_et *target; 2146 struct cam_ed *device; 2147 struct cam_periph *periph; 2148 2149 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1")); 2150 mtx_assert(sim->mtx, MA_OWNED); 2151 2152 mtx_lock(&xsoftc.xpt_topo_lock); 2153 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 2154 if (bus->sim != sim) 2155 continue; 2156 2157 TAILQ_FOREACH(target, &bus->et_entries, links) { 2158 TAILQ_FOREACH(device, &target->ed_entries, links) { 2159 SLIST_FOREACH(periph, &device->periphs, 2160 periph_links) { 2161 if (periph->refcount > 0) { 2162 mtx_unlock(&xsoftc.xpt_topo_lock); 2163 return (1); 2164 } 2165 } 2166 } 2167 } 2168 } 2169 2170 mtx_unlock(&xsoftc.xpt_topo_lock); 2171 return (0); 2172 } 2173 2174 static int 2175 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2176 xpt_targetfunc_t *tr_func, void *arg) 2177 { 2178 struct cam_et *target, *next_target; 2179 int retval; 2180 2181 retval = 1; 2182 for (target = (start_target ? start_target : 2183 TAILQ_FIRST(&bus->et_entries)); 2184 target != NULL; target = next_target) { 2185 2186 next_target = TAILQ_NEXT(target, links); 2187 2188 retval = tr_func(target, arg); 2189 2190 if (retval == 0) 2191 return(retval); 2192 } 2193 2194 return(retval); 2195 } 2196 2197 static int 2198 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2199 xpt_devicefunc_t *tr_func, void *arg) 2200 { 2201 struct cam_ed *device, *next_device; 2202 int retval; 2203 2204 retval = 1; 2205 for (device = (start_device ? start_device : 2206 TAILQ_FIRST(&target->ed_entries)); 2207 device != NULL; 2208 device = next_device) { 2209 2210 next_device = TAILQ_NEXT(device, links); 2211 2212 retval = tr_func(device, arg); 2213 2214 if (retval == 0) 2215 return(retval); 2216 } 2217 2218 return(retval); 2219 } 2220 2221 static int 2222 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2223 xpt_periphfunc_t *tr_func, void *arg) 2224 { 2225 struct cam_periph *periph, *next_periph; 2226 int retval; 2227 2228 retval = 1; 2229 2230 for (periph = (start_periph ? start_periph : 2231 SLIST_FIRST(&device->periphs)); 2232 periph != NULL; 2233 periph = next_periph) { 2234 2235 next_periph = SLIST_NEXT(periph, periph_links); 2236 2237 retval = tr_func(periph, arg); 2238 if (retval == 0) 2239 return(retval); 2240 } 2241 2242 return(retval); 2243 } 2244 2245 static int 2246 xptpdrvtraverse(struct periph_driver **start_pdrv, 2247 xpt_pdrvfunc_t *tr_func, void *arg) 2248 { 2249 struct periph_driver **pdrv; 2250 int retval; 2251 2252 retval = 1; 2253 2254 /* 2255 * We don't traverse the peripheral driver list like we do the 2256 * other lists, because it is a linker set, and therefore cannot be 2257 * changed during runtime. If the peripheral driver list is ever 2258 * re-done to be something other than a linker set (i.e. it can 2259 * change while the system is running), the list traversal should 2260 * be modified to work like the other traversal functions. 2261 */ 2262 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2263 *pdrv != NULL; pdrv++) { 2264 retval = tr_func(pdrv, arg); 2265 2266 if (retval == 0) 2267 return(retval); 2268 } 2269 2270 return(retval); 2271 } 2272 2273 static int 2274 xptpdperiphtraverse(struct periph_driver **pdrv, 2275 struct cam_periph *start_periph, 2276 xpt_periphfunc_t *tr_func, void *arg) 2277 { 2278 struct cam_periph *periph, *next_periph; 2279 int retval; 2280 2281 retval = 1; 2282 2283 for (periph = (start_periph ? start_periph : 2284 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2285 periph = next_periph) { 2286 2287 next_periph = TAILQ_NEXT(periph, unit_links); 2288 2289 retval = tr_func(periph, arg); 2290 if (retval == 0) 2291 return(retval); 2292 } 2293 return(retval); 2294 } 2295 2296 static int 2297 xptdefbusfunc(struct cam_eb *bus, void *arg) 2298 { 2299 struct xpt_traverse_config *tr_config; 2300 2301 tr_config = (struct xpt_traverse_config *)arg; 2302 2303 if (tr_config->depth == XPT_DEPTH_BUS) { 2304 xpt_busfunc_t *tr_func; 2305 2306 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2307 2308 return(tr_func(bus, tr_config->tr_arg)); 2309 } else 2310 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2311 } 2312 2313 static int 2314 xptdeftargetfunc(struct cam_et *target, void *arg) 2315 { 2316 struct xpt_traverse_config *tr_config; 2317 2318 tr_config = (struct xpt_traverse_config *)arg; 2319 2320 if (tr_config->depth == XPT_DEPTH_TARGET) { 2321 xpt_targetfunc_t *tr_func; 2322 2323 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2324 2325 return(tr_func(target, tr_config->tr_arg)); 2326 } else 2327 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2328 } 2329 2330 static int 2331 xptdefdevicefunc(struct cam_ed *device, void *arg) 2332 { 2333 struct xpt_traverse_config *tr_config; 2334 2335 tr_config = (struct xpt_traverse_config *)arg; 2336 2337 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2338 xpt_devicefunc_t *tr_func; 2339 2340 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2341 2342 return(tr_func(device, tr_config->tr_arg)); 2343 } else 2344 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2345 } 2346 2347 static int 2348 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2349 { 2350 struct xpt_traverse_config *tr_config; 2351 xpt_periphfunc_t *tr_func; 2352 2353 tr_config = (struct xpt_traverse_config *)arg; 2354 2355 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2356 2357 /* 2358 * Unlike the other default functions, we don't check for depth 2359 * here. The peripheral driver level is the last level in the EDT, 2360 * so if we're here, we should execute the function in question. 2361 */ 2362 return(tr_func(periph, tr_config->tr_arg)); 2363 } 2364 2365 /* 2366 * Execute the given function for every bus in the EDT. 2367 */ 2368 static int 2369 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2370 { 2371 struct xpt_traverse_config tr_config; 2372 2373 tr_config.depth = XPT_DEPTH_BUS; 2374 tr_config.tr_func = tr_func; 2375 tr_config.tr_arg = arg; 2376 2377 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2378 } 2379 2380 /* 2381 * Execute the given function for every device in the EDT. 2382 */ 2383 static int 2384 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2385 { 2386 struct xpt_traverse_config tr_config; 2387 2388 tr_config.depth = XPT_DEPTH_DEVICE; 2389 tr_config.tr_func = tr_func; 2390 tr_config.tr_arg = arg; 2391 2392 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2393 } 2394 2395 static int 2396 xptsetasyncfunc(struct cam_ed *device, void *arg) 2397 { 2398 struct cam_path path; 2399 struct ccb_getdev cgd; 2400 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2401 2402 /* 2403 * Don't report unconfigured devices (Wildcard devs, 2404 * devices only for target mode, device instances 2405 * that have been invalidated but are waiting for 2406 * their last reference count to be released). 2407 */ 2408 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2409 return (1); 2410 2411 xpt_compile_path(&path, 2412 NULL, 2413 device->target->bus->path_id, 2414 device->target->target_id, 2415 device->lun_id); 2416 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2417 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2418 xpt_action((union ccb *)&cgd); 2419 csa->callback(csa->callback_arg, 2420 AC_FOUND_DEVICE, 2421 &path, &cgd); 2422 xpt_release_path(&path); 2423 2424 return(1); 2425 } 2426 2427 static int 2428 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2429 { 2430 struct cam_path path; 2431 struct ccb_pathinq cpi; 2432 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2433 2434 xpt_compile_path(&path, /*periph*/NULL, 2435 bus->sim->path_id, 2436 CAM_TARGET_WILDCARD, 2437 CAM_LUN_WILDCARD); 2438 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2439 cpi.ccb_h.func_code = XPT_PATH_INQ; 2440 xpt_action((union ccb *)&cpi); 2441 csa->callback(csa->callback_arg, 2442 AC_PATH_REGISTERED, 2443 &path, &cpi); 2444 xpt_release_path(&path); 2445 2446 return(1); 2447 } 2448 2449 void 2450 xpt_action(union ccb *start_ccb) 2451 { 2452 2453 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2454 2455 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2456 /* Compatibility for RL-unaware code. */ 2457 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0) 2458 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1; 2459 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2460 } 2461 2462 void 2463 xpt_action_default(union ccb *start_ccb) 2464 { 2465 2466 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2467 2468 2469 switch (start_ccb->ccb_h.func_code) { 2470 case XPT_SCSI_IO: 2471 { 2472 struct cam_ed *device; 2473 #ifdef CAMDEBUG 2474 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2475 struct cam_path *path; 2476 2477 path = start_ccb->ccb_h.path; 2478 #endif 2479 2480 /* 2481 * For the sake of compatibility with SCSI-1 2482 * devices that may not understand the identify 2483 * message, we include lun information in the 2484 * second byte of all commands. SCSI-1 specifies 2485 * that luns are a 3 bit value and reserves only 3 2486 * bits for lun information in the CDB. Later 2487 * revisions of the SCSI spec allow for more than 8 2488 * luns, but have deprecated lun information in the 2489 * CDB. So, if the lun won't fit, we must omit. 2490 * 2491 * Also be aware that during initial probing for devices, 2492 * the inquiry information is unknown but initialized to 0. 2493 * This means that this code will be exercised while probing 2494 * devices with an ANSI revision greater than 2. 2495 */ 2496 device = start_ccb->ccb_h.path->device; 2497 if (device->protocol_version <= SCSI_REV_2 2498 && start_ccb->ccb_h.target_lun < 8 2499 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2500 2501 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2502 start_ccb->ccb_h.target_lun << 5; 2503 } 2504 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2505 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2506 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2507 &path->device->inq_data), 2508 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2509 cdb_str, sizeof(cdb_str)))); 2510 } 2511 /* FALLTHROUGH */ 2512 case XPT_TARGET_IO: 2513 case XPT_CONT_TARGET_IO: 2514 start_ccb->csio.sense_resid = 0; 2515 start_ccb->csio.resid = 0; 2516 /* FALLTHROUGH */ 2517 case XPT_ATA_IO: 2518 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) { 2519 start_ccb->ataio.resid = 0; 2520 } 2521 case XPT_RESET_DEV: 2522 case XPT_ENG_EXEC: 2523 { 2524 struct cam_path *path = start_ccb->ccb_h.path; 2525 int frozen; 2526 2527 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2528 path->device->sim->devq->alloc_openings += frozen; 2529 if (frozen > 0) 2530 xpt_run_dev_allocq(path->bus); 2531 if (xpt_schedule_dev_sendq(path->bus, path->device)) 2532 xpt_run_dev_sendq(path->bus); 2533 break; 2534 } 2535 case XPT_CALC_GEOMETRY: 2536 { 2537 struct cam_sim *sim; 2538 2539 /* Filter out garbage */ 2540 if (start_ccb->ccg.block_size == 0 2541 || start_ccb->ccg.volume_size == 0) { 2542 start_ccb->ccg.cylinders = 0; 2543 start_ccb->ccg.heads = 0; 2544 start_ccb->ccg.secs_per_track = 0; 2545 start_ccb->ccb_h.status = CAM_REQ_CMP; 2546 break; 2547 } 2548 #ifdef PC98 2549 /* 2550 * In a PC-98 system, geometry translation depens on 2551 * the "real" device geometry obtained from mode page 4. 2552 * SCSI geometry translation is performed in the 2553 * initialization routine of the SCSI BIOS and the result 2554 * stored in host memory. If the translation is available 2555 * in host memory, use it. If not, rely on the default 2556 * translation the device driver performs. 2557 */ 2558 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2559 start_ccb->ccb_h.status = CAM_REQ_CMP; 2560 break; 2561 } 2562 #endif 2563 sim = start_ccb->ccb_h.path->bus->sim; 2564 (*(sim->sim_action))(sim, start_ccb); 2565 break; 2566 } 2567 case XPT_ABORT: 2568 { 2569 union ccb* abort_ccb; 2570 2571 abort_ccb = start_ccb->cab.abort_ccb; 2572 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2573 2574 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2575 struct cam_ccbq *ccbq; 2576 struct cam_ed *device; 2577 2578 device = abort_ccb->ccb_h.path->device; 2579 ccbq = &device->ccbq; 2580 device->sim->devq->alloc_openings -= 2581 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2582 abort_ccb->ccb_h.status = 2583 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2584 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2585 xpt_done(abort_ccb); 2586 start_ccb->ccb_h.status = CAM_REQ_CMP; 2587 break; 2588 } 2589 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2590 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2591 /* 2592 * We've caught this ccb en route to 2593 * the SIM. Flag it for abort and the 2594 * SIM will do so just before starting 2595 * real work on the CCB. 2596 */ 2597 abort_ccb->ccb_h.status = 2598 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2599 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2600 start_ccb->ccb_h.status = CAM_REQ_CMP; 2601 break; 2602 } 2603 } 2604 if (XPT_FC_IS_QUEUED(abort_ccb) 2605 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2606 /* 2607 * It's already completed but waiting 2608 * for our SWI to get to it. 2609 */ 2610 start_ccb->ccb_h.status = CAM_UA_ABORT; 2611 break; 2612 } 2613 /* 2614 * If we weren't able to take care of the abort request 2615 * in the XPT, pass the request down to the SIM for processing. 2616 */ 2617 } 2618 /* FALLTHROUGH */ 2619 case XPT_ACCEPT_TARGET_IO: 2620 case XPT_EN_LUN: 2621 case XPT_IMMED_NOTIFY: 2622 case XPT_NOTIFY_ACK: 2623 case XPT_RESET_BUS: 2624 case XPT_IMMEDIATE_NOTIFY: 2625 case XPT_NOTIFY_ACKNOWLEDGE: 2626 case XPT_GET_SIM_KNOB: 2627 case XPT_SET_SIM_KNOB: 2628 { 2629 struct cam_sim *sim; 2630 2631 sim = start_ccb->ccb_h.path->bus->sim; 2632 (*(sim->sim_action))(sim, start_ccb); 2633 break; 2634 } 2635 case XPT_PATH_INQ: 2636 { 2637 struct cam_sim *sim; 2638 2639 sim = start_ccb->ccb_h.path->bus->sim; 2640 (*(sim->sim_action))(sim, start_ccb); 2641 break; 2642 } 2643 case XPT_PATH_STATS: 2644 start_ccb->cpis.last_reset = 2645 start_ccb->ccb_h.path->bus->last_reset; 2646 start_ccb->ccb_h.status = CAM_REQ_CMP; 2647 break; 2648 case XPT_GDEV_TYPE: 2649 { 2650 struct cam_ed *dev; 2651 2652 dev = start_ccb->ccb_h.path->device; 2653 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2654 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2655 } else { 2656 struct ccb_getdev *cgd; 2657 struct cam_eb *bus; 2658 struct cam_et *tar; 2659 2660 cgd = &start_ccb->cgd; 2661 bus = cgd->ccb_h.path->bus; 2662 tar = cgd->ccb_h.path->target; 2663 cgd->protocol = dev->protocol; 2664 cgd->inq_data = dev->inq_data; 2665 cgd->ident_data = dev->ident_data; 2666 cgd->inq_flags = dev->inq_flags; 2667 cgd->ccb_h.status = CAM_REQ_CMP; 2668 cgd->serial_num_len = dev->serial_num_len; 2669 if ((dev->serial_num_len > 0) 2670 && (dev->serial_num != NULL)) 2671 bcopy(dev->serial_num, cgd->serial_num, 2672 dev->serial_num_len); 2673 } 2674 break; 2675 } 2676 case XPT_GDEV_STATS: 2677 { 2678 struct cam_ed *dev; 2679 2680 dev = start_ccb->ccb_h.path->device; 2681 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2682 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2683 } else { 2684 struct ccb_getdevstats *cgds; 2685 struct cam_eb *bus; 2686 struct cam_et *tar; 2687 2688 cgds = &start_ccb->cgds; 2689 bus = cgds->ccb_h.path->bus; 2690 tar = cgds->ccb_h.path->target; 2691 cgds->dev_openings = dev->ccbq.dev_openings; 2692 cgds->dev_active = dev->ccbq.dev_active; 2693 cgds->devq_openings = dev->ccbq.devq_openings; 2694 cgds->devq_queued = dev->ccbq.queue.entries; 2695 cgds->held = dev->ccbq.held; 2696 cgds->last_reset = tar->last_reset; 2697 cgds->maxtags = dev->maxtags; 2698 cgds->mintags = dev->mintags; 2699 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2700 cgds->last_reset = bus->last_reset; 2701 cgds->ccb_h.status = CAM_REQ_CMP; 2702 } 2703 break; 2704 } 2705 case XPT_GDEVLIST: 2706 { 2707 struct cam_periph *nperiph; 2708 struct periph_list *periph_head; 2709 struct ccb_getdevlist *cgdl; 2710 u_int i; 2711 struct cam_ed *device; 2712 int found; 2713 2714 2715 found = 0; 2716 2717 /* 2718 * Don't want anyone mucking with our data. 2719 */ 2720 device = start_ccb->ccb_h.path->device; 2721 periph_head = &device->periphs; 2722 cgdl = &start_ccb->cgdl; 2723 2724 /* 2725 * Check and see if the list has changed since the user 2726 * last requested a list member. If so, tell them that the 2727 * list has changed, and therefore they need to start over 2728 * from the beginning. 2729 */ 2730 if ((cgdl->index != 0) && 2731 (cgdl->generation != device->generation)) { 2732 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2733 break; 2734 } 2735 2736 /* 2737 * Traverse the list of peripherals and attempt to find 2738 * the requested peripheral. 2739 */ 2740 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2741 (nperiph != NULL) && (i <= cgdl->index); 2742 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2743 if (i == cgdl->index) { 2744 strncpy(cgdl->periph_name, 2745 nperiph->periph_name, 2746 DEV_IDLEN); 2747 cgdl->unit_number = nperiph->unit_number; 2748 found = 1; 2749 } 2750 } 2751 if (found == 0) { 2752 cgdl->status = CAM_GDEVLIST_ERROR; 2753 break; 2754 } 2755 2756 if (nperiph == NULL) 2757 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2758 else 2759 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2760 2761 cgdl->index++; 2762 cgdl->generation = device->generation; 2763 2764 cgdl->ccb_h.status = CAM_REQ_CMP; 2765 break; 2766 } 2767 case XPT_DEV_MATCH: 2768 { 2769 dev_pos_type position_type; 2770 struct ccb_dev_match *cdm; 2771 2772 cdm = &start_ccb->cdm; 2773 2774 /* 2775 * There are two ways of getting at information in the EDT. 2776 * The first way is via the primary EDT tree. It starts 2777 * with a list of busses, then a list of targets on a bus, 2778 * then devices/luns on a target, and then peripherals on a 2779 * device/lun. The "other" way is by the peripheral driver 2780 * lists. The peripheral driver lists are organized by 2781 * peripheral driver. (obviously) So it makes sense to 2782 * use the peripheral driver list if the user is looking 2783 * for something like "da1", or all "da" devices. If the 2784 * user is looking for something on a particular bus/target 2785 * or lun, it's generally better to go through the EDT tree. 2786 */ 2787 2788 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2789 position_type = cdm->pos.position_type; 2790 else { 2791 u_int i; 2792 2793 position_type = CAM_DEV_POS_NONE; 2794 2795 for (i = 0; i < cdm->num_patterns; i++) { 2796 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2797 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2798 position_type = CAM_DEV_POS_EDT; 2799 break; 2800 } 2801 } 2802 2803 if (cdm->num_patterns == 0) 2804 position_type = CAM_DEV_POS_EDT; 2805 else if (position_type == CAM_DEV_POS_NONE) 2806 position_type = CAM_DEV_POS_PDRV; 2807 } 2808 2809 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2810 case CAM_DEV_POS_EDT: 2811 xptedtmatch(cdm); 2812 break; 2813 case CAM_DEV_POS_PDRV: 2814 xptperiphlistmatch(cdm); 2815 break; 2816 default: 2817 cdm->status = CAM_DEV_MATCH_ERROR; 2818 break; 2819 } 2820 2821 if (cdm->status == CAM_DEV_MATCH_ERROR) 2822 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2823 else 2824 start_ccb->ccb_h.status = CAM_REQ_CMP; 2825 2826 break; 2827 } 2828 case XPT_SASYNC_CB: 2829 { 2830 struct ccb_setasync *csa; 2831 struct async_node *cur_entry; 2832 struct async_list *async_head; 2833 u_int32_t added; 2834 2835 csa = &start_ccb->csa; 2836 added = csa->event_enable; 2837 async_head = &csa->ccb_h.path->device->asyncs; 2838 2839 /* 2840 * If there is already an entry for us, simply 2841 * update it. 2842 */ 2843 cur_entry = SLIST_FIRST(async_head); 2844 while (cur_entry != NULL) { 2845 if ((cur_entry->callback_arg == csa->callback_arg) 2846 && (cur_entry->callback == csa->callback)) 2847 break; 2848 cur_entry = SLIST_NEXT(cur_entry, links); 2849 } 2850 2851 if (cur_entry != NULL) { 2852 /* 2853 * If the request has no flags set, 2854 * remove the entry. 2855 */ 2856 added &= ~cur_entry->event_enable; 2857 if (csa->event_enable == 0) { 2858 SLIST_REMOVE(async_head, cur_entry, 2859 async_node, links); 2860 xpt_release_device(csa->ccb_h.path->device); 2861 free(cur_entry, M_CAMXPT); 2862 } else { 2863 cur_entry->event_enable = csa->event_enable; 2864 } 2865 csa->event_enable = added; 2866 } else { 2867 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2868 M_NOWAIT); 2869 if (cur_entry == NULL) { 2870 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2871 break; 2872 } 2873 cur_entry->event_enable = csa->event_enable; 2874 cur_entry->callback_arg = csa->callback_arg; 2875 cur_entry->callback = csa->callback; 2876 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2877 xpt_acquire_device(csa->ccb_h.path->device); 2878 } 2879 start_ccb->ccb_h.status = CAM_REQ_CMP; 2880 break; 2881 } 2882 case XPT_REL_SIMQ: 2883 { 2884 struct ccb_relsim *crs; 2885 struct cam_ed *dev; 2886 2887 crs = &start_ccb->crs; 2888 dev = crs->ccb_h.path->device; 2889 if (dev == NULL) { 2890 2891 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2892 break; 2893 } 2894 2895 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2896 2897 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 2898 /* Don't ever go below one opening */ 2899 if (crs->openings > 0) { 2900 xpt_dev_ccbq_resize(crs->ccb_h.path, 2901 crs->openings); 2902 2903 if (bootverbose) { 2904 xpt_print(crs->ccb_h.path, 2905 "tagged openings now %d\n", 2906 crs->openings); 2907 } 2908 } 2909 } 2910 } 2911 2912 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2913 2914 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2915 2916 /* 2917 * Just extend the old timeout and decrement 2918 * the freeze count so that a single timeout 2919 * is sufficient for releasing the queue. 2920 */ 2921 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2922 callout_stop(&dev->callout); 2923 } else { 2924 2925 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2926 } 2927 2928 callout_reset(&dev->callout, 2929 (crs->release_timeout * hz) / 1000, 2930 xpt_release_devq_timeout, dev); 2931 2932 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2933 2934 } 2935 2936 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2937 2938 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2939 /* 2940 * Decrement the freeze count so that a single 2941 * completion is still sufficient to unfreeze 2942 * the queue. 2943 */ 2944 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2945 } else { 2946 2947 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2948 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2949 } 2950 } 2951 2952 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2953 2954 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2955 || (dev->ccbq.dev_active == 0)) { 2956 2957 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2958 } else { 2959 2960 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2961 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2962 } 2963 } 2964 2965 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 2966 xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/ 2967 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2968 crs->release_timeout : 0, 2969 /*count*/1, /*run_queue*/TRUE); 2970 } 2971 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0]; 2972 start_ccb->ccb_h.status = CAM_REQ_CMP; 2973 break; 2974 } 2975 case XPT_DEBUG: { 2976 #ifdef CAMDEBUG 2977 #ifdef CAM_DEBUG_DELAY 2978 cam_debug_delay = CAM_DEBUG_DELAY; 2979 #endif 2980 cam_dflags = start_ccb->cdbg.flags; 2981 if (cam_dpath != NULL) { 2982 xpt_free_path(cam_dpath); 2983 cam_dpath = NULL; 2984 } 2985 2986 if (cam_dflags != CAM_DEBUG_NONE) { 2987 if (xpt_create_path(&cam_dpath, xpt_periph, 2988 start_ccb->ccb_h.path_id, 2989 start_ccb->ccb_h.target_id, 2990 start_ccb->ccb_h.target_lun) != 2991 CAM_REQ_CMP) { 2992 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2993 cam_dflags = CAM_DEBUG_NONE; 2994 } else { 2995 start_ccb->ccb_h.status = CAM_REQ_CMP; 2996 xpt_print(cam_dpath, "debugging flags now %x\n", 2997 cam_dflags); 2998 } 2999 } else { 3000 cam_dpath = NULL; 3001 start_ccb->ccb_h.status = CAM_REQ_CMP; 3002 } 3003 #else /* !CAMDEBUG */ 3004 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3005 #endif /* CAMDEBUG */ 3006 break; 3007 } 3008 case XPT_FREEZE_QUEUE: 3009 { 3010 struct ccb_relsim *crs = &start_ccb->crs; 3011 3012 xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/ 3013 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 3014 crs->release_timeout : 0, /*count*/1); 3015 start_ccb->ccb_h.status = CAM_REQ_CMP; 3016 break; 3017 } 3018 case XPT_NOOP: 3019 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3020 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3021 start_ccb->ccb_h.status = CAM_REQ_CMP; 3022 break; 3023 default: 3024 case XPT_SDEV_TYPE: 3025 case XPT_TERM_IO: 3026 case XPT_ENG_INQ: 3027 /* XXX Implement */ 3028 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3029 break; 3030 } 3031 } 3032 3033 void 3034 xpt_polled_action(union ccb *start_ccb) 3035 { 3036 u_int32_t timeout; 3037 struct cam_sim *sim; 3038 struct cam_devq *devq; 3039 struct cam_ed *dev; 3040 3041 3042 timeout = start_ccb->ccb_h.timeout; 3043 sim = start_ccb->ccb_h.path->bus->sim; 3044 devq = sim->devq; 3045 dev = start_ccb->ccb_h.path->device; 3046 3047 mtx_assert(sim->mtx, MA_OWNED); 3048 3049 /* 3050 * Steal an opening so that no other queued requests 3051 * can get it before us while we simulate interrupts. 3052 */ 3053 dev->ccbq.devq_openings--; 3054 dev->ccbq.dev_openings--; 3055 3056 while(((devq != NULL && devq->send_openings <= 0) || 3057 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3058 DELAY(1000); 3059 (*(sim->sim_poll))(sim); 3060 camisr_runqueue(&sim->sim_doneq); 3061 } 3062 3063 dev->ccbq.devq_openings++; 3064 dev->ccbq.dev_openings++; 3065 3066 if (timeout != 0) { 3067 xpt_action(start_ccb); 3068 while(--timeout > 0) { 3069 (*(sim->sim_poll))(sim); 3070 camisr_runqueue(&sim->sim_doneq); 3071 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3072 != CAM_REQ_INPROG) 3073 break; 3074 DELAY(1000); 3075 } 3076 if (timeout == 0) { 3077 /* 3078 * XXX Is it worth adding a sim_timeout entry 3079 * point so we can attempt recovery? If 3080 * this is only used for dumps, I don't think 3081 * it is. 3082 */ 3083 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3084 } 3085 } else { 3086 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3087 } 3088 } 3089 3090 /* 3091 * Schedule a peripheral driver to receive a ccb when it's 3092 * target device has space for more transactions. 3093 */ 3094 void 3095 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3096 { 3097 struct cam_ed *device; 3098 int runq = 0; 3099 3100 mtx_assert(perph->sim->mtx, MA_OWNED); 3101 3102 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3103 device = perph->path->device; 3104 if (periph_is_queued(perph)) { 3105 /* Simply reorder based on new priority */ 3106 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3107 (" change priority to %d\n", new_priority)); 3108 if (new_priority < perph->pinfo.priority) { 3109 camq_change_priority(&device->drvq, 3110 perph->pinfo.index, 3111 new_priority); 3112 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3113 } 3114 } else { 3115 /* New entry on the queue */ 3116 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3117 (" added periph to queue\n")); 3118 perph->pinfo.priority = new_priority; 3119 perph->pinfo.generation = ++device->drvq.generation; 3120 camq_insert(&device->drvq, &perph->pinfo); 3121 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3122 } 3123 if (runq != 0) { 3124 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3125 (" calling xpt_run_devq\n")); 3126 xpt_run_dev_allocq(perph->path->bus); 3127 } 3128 } 3129 3130 3131 /* 3132 * Schedule a device to run on a given queue. 3133 * If the device was inserted as a new entry on the queue, 3134 * return 1 meaning the device queue should be run. If we 3135 * were already queued, implying someone else has already 3136 * started the queue, return 0 so the caller doesn't attempt 3137 * to run the queue. 3138 */ 3139 int 3140 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3141 u_int32_t new_priority) 3142 { 3143 int retval; 3144 u_int32_t old_priority; 3145 3146 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3147 3148 old_priority = pinfo->priority; 3149 3150 /* 3151 * Are we already queued? 3152 */ 3153 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3154 /* Simply reorder based on new priority */ 3155 if (new_priority < old_priority) { 3156 camq_change_priority(queue, pinfo->index, 3157 new_priority); 3158 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3159 ("changed priority to %d\n", 3160 new_priority)); 3161 retval = 1; 3162 } else 3163 retval = 0; 3164 } else { 3165 /* New entry on the queue */ 3166 if (new_priority < old_priority) 3167 pinfo->priority = new_priority; 3168 3169 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3170 ("Inserting onto queue\n")); 3171 pinfo->generation = ++queue->generation; 3172 camq_insert(queue, pinfo); 3173 retval = 1; 3174 } 3175 return (retval); 3176 } 3177 3178 static void 3179 xpt_run_dev_allocq(struct cam_eb *bus) 3180 { 3181 struct cam_devq *devq; 3182 3183 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3184 devq = bus->sim->devq; 3185 3186 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3187 (" qfrozen_cnt == 0x%x, entries == %d, " 3188 "openings == %d, active == %d\n", 3189 devq->alloc_queue.qfrozen_cnt[0], 3190 devq->alloc_queue.entries, 3191 devq->alloc_openings, 3192 devq->alloc_active)); 3193 3194 devq->alloc_queue.qfrozen_cnt[0]++; 3195 while ((devq->alloc_queue.entries > 0) 3196 && (devq->alloc_openings > 0) 3197 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) { 3198 struct cam_ed_qinfo *qinfo; 3199 struct cam_ed *device; 3200 union ccb *work_ccb; 3201 struct cam_periph *drv; 3202 struct camq *drvq; 3203 3204 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3205 CAMQ_HEAD); 3206 device = qinfo->device; 3207 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3208 ("running device %p\n", device)); 3209 3210 drvq = &device->drvq; 3211 3212 #ifdef CAMDEBUG 3213 if (drvq->entries <= 0) { 3214 panic("xpt_run_dev_allocq: " 3215 "Device on queue without any work to do"); 3216 } 3217 #endif 3218 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3219 devq->alloc_openings--; 3220 devq->alloc_active++; 3221 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3222 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3223 drv->pinfo.priority); 3224 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3225 ("calling periph start\n")); 3226 drv->periph_start(drv, work_ccb); 3227 } else { 3228 /* 3229 * Malloc failure in alloc_ccb 3230 */ 3231 /* 3232 * XXX add us to a list to be run from free_ccb 3233 * if we don't have any ccbs active on this 3234 * device queue otherwise we may never get run 3235 * again. 3236 */ 3237 break; 3238 } 3239 3240 /* We may have more work. Attempt to reschedule. */ 3241 xpt_schedule_dev_allocq(bus, device); 3242 } 3243 devq->alloc_queue.qfrozen_cnt[0]--; 3244 } 3245 3246 static void 3247 xpt_run_dev_sendq(struct cam_eb *bus) 3248 { 3249 struct cam_devq *devq; 3250 3251 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3252 3253 devq = bus->sim->devq; 3254 3255 devq->send_queue.qfrozen_cnt[0]++; 3256 while ((devq->send_queue.entries > 0) 3257 && (devq->send_openings > 0) 3258 && (devq->send_queue.qfrozen_cnt[0] <= 1)) { 3259 struct cam_ed_qinfo *qinfo; 3260 struct cam_ed *device; 3261 union ccb *work_ccb; 3262 struct cam_sim *sim; 3263 3264 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3265 CAMQ_HEAD); 3266 device = qinfo->device; 3267 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3268 ("running device %p\n", device)); 3269 3270 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3271 if (work_ccb == NULL) { 3272 printf("device on run queue with no ccbs???\n"); 3273 continue; 3274 } 3275 3276 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3277 3278 mtx_lock(&xsoftc.xpt_lock); 3279 if (xsoftc.num_highpower <= 0) { 3280 /* 3281 * We got a high power command, but we 3282 * don't have any available slots. Freeze 3283 * the device queue until we have a slot 3284 * available. 3285 */ 3286 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3287 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3288 &work_ccb->ccb_h, 3289 xpt_links.stqe); 3290 3291 mtx_unlock(&xsoftc.xpt_lock); 3292 continue; 3293 } else { 3294 /* 3295 * Consume a high power slot while 3296 * this ccb runs. 3297 */ 3298 xsoftc.num_highpower--; 3299 } 3300 mtx_unlock(&xsoftc.xpt_lock); 3301 } 3302 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3303 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3304 3305 devq->send_openings--; 3306 devq->send_active++; 3307 3308 xpt_schedule_dev_sendq(bus, device); 3309 3310 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3311 /* 3312 * The client wants to freeze the queue 3313 * after this CCB is sent. 3314 */ 3315 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3316 } 3317 3318 /* In Target mode, the peripheral driver knows best... */ 3319 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3320 if ((device->inq_flags & SID_CmdQue) != 0 3321 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3322 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3323 else 3324 /* 3325 * Clear this in case of a retried CCB that 3326 * failed due to a rejected tag. 3327 */ 3328 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3329 } 3330 3331 /* 3332 * Device queues can be shared among multiple sim instances 3333 * that reside on different busses. Use the SIM in the queue 3334 * CCB's path, rather than the one in the bus that was passed 3335 * into this function. 3336 */ 3337 sim = work_ccb->ccb_h.path->bus->sim; 3338 (*(sim->sim_action))(sim, work_ccb); 3339 } 3340 devq->send_queue.qfrozen_cnt[0]--; 3341 } 3342 3343 /* 3344 * This function merges stuff from the slave ccb into the master ccb, while 3345 * keeping important fields in the master ccb constant. 3346 */ 3347 void 3348 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3349 { 3350 3351 /* 3352 * Pull fields that are valid for peripheral drivers to set 3353 * into the master CCB along with the CCB "payload". 3354 */ 3355 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3356 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3357 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3358 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3359 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3360 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3361 } 3362 3363 void 3364 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3365 { 3366 3367 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3368 ccb_h->pinfo.priority = priority; 3369 ccb_h->path = path; 3370 ccb_h->path_id = path->bus->path_id; 3371 if (path->target) 3372 ccb_h->target_id = path->target->target_id; 3373 else 3374 ccb_h->target_id = CAM_TARGET_WILDCARD; 3375 if (path->device) { 3376 ccb_h->target_lun = path->device->lun_id; 3377 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3378 } else { 3379 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3380 } 3381 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3382 ccb_h->flags = 0; 3383 } 3384 3385 /* Path manipulation functions */ 3386 cam_status 3387 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3388 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3389 { 3390 struct cam_path *path; 3391 cam_status status; 3392 3393 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3394 3395 if (path == NULL) { 3396 status = CAM_RESRC_UNAVAIL; 3397 return(status); 3398 } 3399 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3400 if (status != CAM_REQ_CMP) { 3401 free(path, M_CAMXPT); 3402 path = NULL; 3403 } 3404 *new_path_ptr = path; 3405 return (status); 3406 } 3407 3408 cam_status 3409 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3410 struct cam_periph *periph, path_id_t path_id, 3411 target_id_t target_id, lun_id_t lun_id) 3412 { 3413 struct cam_path *path; 3414 struct cam_eb *bus = NULL; 3415 cam_status status; 3416 int need_unlock = 0; 3417 3418 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3419 3420 if (path_id != CAM_BUS_WILDCARD) { 3421 bus = xpt_find_bus(path_id); 3422 if (bus != NULL) { 3423 need_unlock = 1; 3424 CAM_SIM_LOCK(bus->sim); 3425 } 3426 } 3427 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3428 if (need_unlock) 3429 CAM_SIM_UNLOCK(bus->sim); 3430 if (status != CAM_REQ_CMP) { 3431 free(path, M_CAMXPT); 3432 path = NULL; 3433 } 3434 *new_path_ptr = path; 3435 return (status); 3436 } 3437 3438 cam_status 3439 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3440 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3441 { 3442 struct cam_eb *bus; 3443 struct cam_et *target; 3444 struct cam_ed *device; 3445 cam_status status; 3446 3447 status = CAM_REQ_CMP; /* Completed without error */ 3448 target = NULL; /* Wildcarded */ 3449 device = NULL; /* Wildcarded */ 3450 3451 /* 3452 * We will potentially modify the EDT, so block interrupts 3453 * that may attempt to create cam paths. 3454 */ 3455 bus = xpt_find_bus(path_id); 3456 if (bus == NULL) { 3457 status = CAM_PATH_INVALID; 3458 } else { 3459 target = xpt_find_target(bus, target_id); 3460 if (target == NULL) { 3461 /* Create one */ 3462 struct cam_et *new_target; 3463 3464 new_target = xpt_alloc_target(bus, target_id); 3465 if (new_target == NULL) { 3466 status = CAM_RESRC_UNAVAIL; 3467 } else { 3468 target = new_target; 3469 } 3470 } 3471 if (target != NULL) { 3472 device = xpt_find_device(target, lun_id); 3473 if (device == NULL) { 3474 /* Create one */ 3475 struct cam_ed *new_device; 3476 3477 new_device = 3478 (*(bus->xport->alloc_device))(bus, 3479 target, 3480 lun_id); 3481 if (new_device == NULL) { 3482 status = CAM_RESRC_UNAVAIL; 3483 } else { 3484 device = new_device; 3485 } 3486 } 3487 } 3488 } 3489 3490 /* 3491 * Only touch the user's data if we are successful. 3492 */ 3493 if (status == CAM_REQ_CMP) { 3494 new_path->periph = perph; 3495 new_path->bus = bus; 3496 new_path->target = target; 3497 new_path->device = device; 3498 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3499 } else { 3500 if (device != NULL) 3501 xpt_release_device(device); 3502 if (target != NULL) 3503 xpt_release_target(target); 3504 if (bus != NULL) 3505 xpt_release_bus(bus); 3506 } 3507 return (status); 3508 } 3509 3510 void 3511 xpt_release_path(struct cam_path *path) 3512 { 3513 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3514 if (path->device != NULL) { 3515 xpt_release_device(path->device); 3516 path->device = NULL; 3517 } 3518 if (path->target != NULL) { 3519 xpt_release_target(path->target); 3520 path->target = NULL; 3521 } 3522 if (path->bus != NULL) { 3523 xpt_release_bus(path->bus); 3524 path->bus = NULL; 3525 } 3526 } 3527 3528 void 3529 xpt_free_path(struct cam_path *path) 3530 { 3531 3532 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3533 xpt_release_path(path); 3534 free(path, M_CAMXPT); 3535 } 3536 3537 3538 /* 3539 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3540 * in path1, 2 for match with wildcards in path2. 3541 */ 3542 int 3543 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3544 { 3545 int retval = 0; 3546 3547 if (path1->bus != path2->bus) { 3548 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3549 retval = 1; 3550 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3551 retval = 2; 3552 else 3553 return (-1); 3554 } 3555 if (path1->target != path2->target) { 3556 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3557 if (retval == 0) 3558 retval = 1; 3559 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3560 retval = 2; 3561 else 3562 return (-1); 3563 } 3564 if (path1->device != path2->device) { 3565 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3566 if (retval == 0) 3567 retval = 1; 3568 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3569 retval = 2; 3570 else 3571 return (-1); 3572 } 3573 return (retval); 3574 } 3575 3576 void 3577 xpt_print_path(struct cam_path *path) 3578 { 3579 3580 if (path == NULL) 3581 printf("(nopath): "); 3582 else { 3583 if (path->periph != NULL) 3584 printf("(%s%d:", path->periph->periph_name, 3585 path->periph->unit_number); 3586 else 3587 printf("(noperiph:"); 3588 3589 if (path->bus != NULL) 3590 printf("%s%d:%d:", path->bus->sim->sim_name, 3591 path->bus->sim->unit_number, 3592 path->bus->sim->bus_id); 3593 else 3594 printf("nobus:"); 3595 3596 if (path->target != NULL) 3597 printf("%d:", path->target->target_id); 3598 else 3599 printf("X:"); 3600 3601 if (path->device != NULL) 3602 printf("%d): ", path->device->lun_id); 3603 else 3604 printf("X): "); 3605 } 3606 } 3607 3608 void 3609 xpt_print(struct cam_path *path, const char *fmt, ...) 3610 { 3611 va_list ap; 3612 xpt_print_path(path); 3613 va_start(ap, fmt); 3614 vprintf(fmt, ap); 3615 va_end(ap); 3616 } 3617 3618 int 3619 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3620 { 3621 struct sbuf sb; 3622 3623 #ifdef INVARIANTS 3624 if (path != NULL && path->bus != NULL) 3625 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3626 #endif 3627 3628 sbuf_new(&sb, str, str_len, 0); 3629 3630 if (path == NULL) 3631 sbuf_printf(&sb, "(nopath): "); 3632 else { 3633 if (path->periph != NULL) 3634 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3635 path->periph->unit_number); 3636 else 3637 sbuf_printf(&sb, "(noperiph:"); 3638 3639 if (path->bus != NULL) 3640 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3641 path->bus->sim->unit_number, 3642 path->bus->sim->bus_id); 3643 else 3644 sbuf_printf(&sb, "nobus:"); 3645 3646 if (path->target != NULL) 3647 sbuf_printf(&sb, "%d:", path->target->target_id); 3648 else 3649 sbuf_printf(&sb, "X:"); 3650 3651 if (path->device != NULL) 3652 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3653 else 3654 sbuf_printf(&sb, "X): "); 3655 } 3656 sbuf_finish(&sb); 3657 3658 return(sbuf_len(&sb)); 3659 } 3660 3661 path_id_t 3662 xpt_path_path_id(struct cam_path *path) 3663 { 3664 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3665 3666 return(path->bus->path_id); 3667 } 3668 3669 target_id_t 3670 xpt_path_target_id(struct cam_path *path) 3671 { 3672 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3673 3674 if (path->target != NULL) 3675 return (path->target->target_id); 3676 else 3677 return (CAM_TARGET_WILDCARD); 3678 } 3679 3680 lun_id_t 3681 xpt_path_lun_id(struct cam_path *path) 3682 { 3683 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3684 3685 if (path->device != NULL) 3686 return (path->device->lun_id); 3687 else 3688 return (CAM_LUN_WILDCARD); 3689 } 3690 3691 struct cam_sim * 3692 xpt_path_sim(struct cam_path *path) 3693 { 3694 3695 return (path->bus->sim); 3696 } 3697 3698 struct cam_periph* 3699 xpt_path_periph(struct cam_path *path) 3700 { 3701 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3702 3703 return (path->periph); 3704 } 3705 3706 /* 3707 * Release a CAM control block for the caller. Remit the cost of the structure 3708 * to the device referenced by the path. If the this device had no 'credits' 3709 * and peripheral drivers have registered async callbacks for this notification 3710 * call them now. 3711 */ 3712 void 3713 xpt_release_ccb(union ccb *free_ccb) 3714 { 3715 struct cam_path *path; 3716 struct cam_ed *device; 3717 struct cam_eb *bus; 3718 struct cam_sim *sim; 3719 3720 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3721 path = free_ccb->ccb_h.path; 3722 device = path->device; 3723 bus = path->bus; 3724 sim = bus->sim; 3725 3726 mtx_assert(sim->mtx, MA_OWNED); 3727 3728 cam_ccbq_release_opening(&device->ccbq); 3729 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3730 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3731 cam_ccbq_resize(&device->ccbq, 3732 device->ccbq.dev_openings + device->ccbq.dev_active); 3733 } 3734 if (sim->ccb_count > sim->max_ccbs) { 3735 xpt_free_ccb(free_ccb); 3736 sim->ccb_count--; 3737 } else { 3738 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3739 xpt_links.sle); 3740 } 3741 if (sim->devq == NULL) { 3742 return; 3743 } 3744 sim->devq->alloc_openings++; 3745 sim->devq->alloc_active--; 3746 if (device_is_alloc_queued(device) == 0) 3747 xpt_schedule_dev_allocq(bus, device); 3748 xpt_run_dev_allocq(bus); 3749 } 3750 3751 /* Functions accessed by SIM drivers */ 3752 3753 static struct xpt_xport xport_default = { 3754 .alloc_device = xpt_alloc_device_default, 3755 .action = xpt_action_default, 3756 .async = xpt_dev_async_default, 3757 }; 3758 3759 /* 3760 * A sim structure, listing the SIM entry points and instance 3761 * identification info is passed to xpt_bus_register to hook the SIM 3762 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3763 * for this new bus and places it in the array of busses and assigns 3764 * it a path_id. The path_id may be influenced by "hard wiring" 3765 * information specified by the user. Once interrupt services are 3766 * available, the bus will be probed. 3767 */ 3768 int32_t 3769 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3770 { 3771 struct cam_eb *new_bus; 3772 struct cam_eb *old_bus; 3773 struct ccb_pathinq cpi; 3774 struct cam_path *path; 3775 cam_status status; 3776 3777 mtx_assert(sim->mtx, MA_OWNED); 3778 3779 sim->bus_id = bus; 3780 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3781 M_CAMXPT, M_NOWAIT); 3782 if (new_bus == NULL) { 3783 /* Couldn't satisfy request */ 3784 return (CAM_RESRC_UNAVAIL); 3785 } 3786 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3787 if (path == NULL) { 3788 free(new_bus, M_CAMXPT); 3789 return (CAM_RESRC_UNAVAIL); 3790 } 3791 3792 if (strcmp(sim->sim_name, "xpt") != 0) { 3793 sim->path_id = 3794 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3795 } 3796 3797 TAILQ_INIT(&new_bus->et_entries); 3798 new_bus->path_id = sim->path_id; 3799 cam_sim_hold(sim); 3800 new_bus->sim = sim; 3801 timevalclear(&new_bus->last_reset); 3802 new_bus->flags = 0; 3803 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3804 new_bus->generation = 0; 3805 3806 mtx_lock(&xsoftc.xpt_topo_lock); 3807 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3808 while (old_bus != NULL 3809 && old_bus->path_id < new_bus->path_id) 3810 old_bus = TAILQ_NEXT(old_bus, links); 3811 if (old_bus != NULL) 3812 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3813 else 3814 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3815 xsoftc.bus_generation++; 3816 mtx_unlock(&xsoftc.xpt_topo_lock); 3817 3818 /* 3819 * Set a default transport so that a PATH_INQ can be issued to 3820 * the SIM. This will then allow for probing and attaching of 3821 * a more appropriate transport. 3822 */ 3823 new_bus->xport = &xport_default; 3824 3825 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id, 3826 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3827 if (status != CAM_REQ_CMP) 3828 printf("xpt_compile_path returned %d\n", status); 3829 3830 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3831 cpi.ccb_h.func_code = XPT_PATH_INQ; 3832 xpt_action((union ccb *)&cpi); 3833 3834 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3835 switch (cpi.transport) { 3836 case XPORT_SPI: 3837 case XPORT_SAS: 3838 case XPORT_FC: 3839 case XPORT_USB: 3840 case XPORT_ISCSI: 3841 case XPORT_PPB: 3842 new_bus->xport = scsi_get_xport(); 3843 break; 3844 case XPORT_ATA: 3845 case XPORT_SATA: 3846 new_bus->xport = ata_get_xport(); 3847 break; 3848 default: 3849 new_bus->xport = &xport_default; 3850 break; 3851 } 3852 } 3853 3854 /* Notify interested parties */ 3855 if (sim->path_id != CAM_XPT_PATH_ID) { 3856 union ccb *scan_ccb; 3857 3858 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3859 /* Initiate bus rescan. */ 3860 scan_ccb = xpt_alloc_ccb_nowait(); 3861 scan_ccb->ccb_h.path = path; 3862 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3863 scan_ccb->crcn.flags = 0; 3864 xpt_rescan(scan_ccb); 3865 } else 3866 xpt_free_path(path); 3867 return (CAM_SUCCESS); 3868 } 3869 3870 int32_t 3871 xpt_bus_deregister(path_id_t pathid) 3872 { 3873 struct cam_path bus_path; 3874 cam_status status; 3875 3876 status = xpt_compile_path(&bus_path, NULL, pathid, 3877 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3878 if (status != CAM_REQ_CMP) 3879 return (status); 3880 3881 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3882 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3883 3884 /* Release the reference count held while registered. */ 3885 xpt_release_bus(bus_path.bus); 3886 xpt_release_path(&bus_path); 3887 3888 return (CAM_REQ_CMP); 3889 } 3890 3891 static path_id_t 3892 xptnextfreepathid(void) 3893 { 3894 struct cam_eb *bus; 3895 path_id_t pathid; 3896 const char *strval; 3897 3898 pathid = 0; 3899 mtx_lock(&xsoftc.xpt_topo_lock); 3900 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3901 retry: 3902 /* Find an unoccupied pathid */ 3903 while (bus != NULL && bus->path_id <= pathid) { 3904 if (bus->path_id == pathid) 3905 pathid++; 3906 bus = TAILQ_NEXT(bus, links); 3907 } 3908 mtx_unlock(&xsoftc.xpt_topo_lock); 3909 3910 /* 3911 * Ensure that this pathid is not reserved for 3912 * a bus that may be registered in the future. 3913 */ 3914 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3915 ++pathid; 3916 /* Start the search over */ 3917 mtx_lock(&xsoftc.xpt_topo_lock); 3918 goto retry; 3919 } 3920 return (pathid); 3921 } 3922 3923 static path_id_t 3924 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3925 { 3926 path_id_t pathid; 3927 int i, dunit, val; 3928 char buf[32]; 3929 const char *dname; 3930 3931 pathid = CAM_XPT_PATH_ID; 3932 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3933 i = 0; 3934 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3935 if (strcmp(dname, "scbus")) { 3936 /* Avoid a bit of foot shooting. */ 3937 continue; 3938 } 3939 if (dunit < 0) /* unwired?! */ 3940 continue; 3941 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3942 if (sim_bus == val) { 3943 pathid = dunit; 3944 break; 3945 } 3946 } else if (sim_bus == 0) { 3947 /* Unspecified matches bus 0 */ 3948 pathid = dunit; 3949 break; 3950 } else { 3951 printf("Ambiguous scbus configuration for %s%d " 3952 "bus %d, cannot wire down. The kernel " 3953 "config entry for scbus%d should " 3954 "specify a controller bus.\n" 3955 "Scbus will be assigned dynamically.\n", 3956 sim_name, sim_unit, sim_bus, dunit); 3957 break; 3958 } 3959 } 3960 3961 if (pathid == CAM_XPT_PATH_ID) 3962 pathid = xptnextfreepathid(); 3963 return (pathid); 3964 } 3965 3966 void 3967 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 3968 { 3969 struct cam_eb *bus; 3970 struct cam_et *target, *next_target; 3971 struct cam_ed *device, *next_device; 3972 3973 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3974 3975 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 3976 3977 /* 3978 * Most async events come from a CAM interrupt context. In 3979 * a few cases, the error recovery code at the peripheral layer, 3980 * which may run from our SWI or a process context, may signal 3981 * deferred events with a call to xpt_async. 3982 */ 3983 3984 bus = path->bus; 3985 3986 if (async_code == AC_BUS_RESET) { 3987 /* Update our notion of when the last reset occurred */ 3988 microtime(&bus->last_reset); 3989 } 3990 3991 for (target = TAILQ_FIRST(&bus->et_entries); 3992 target != NULL; 3993 target = next_target) { 3994 3995 next_target = TAILQ_NEXT(target, links); 3996 3997 if (path->target != target 3998 && path->target->target_id != CAM_TARGET_WILDCARD 3999 && target->target_id != CAM_TARGET_WILDCARD) 4000 continue; 4001 4002 if (async_code == AC_SENT_BDR) { 4003 /* Update our notion of when the last reset occurred */ 4004 microtime(&path->target->last_reset); 4005 } 4006 4007 for (device = TAILQ_FIRST(&target->ed_entries); 4008 device != NULL; 4009 device = next_device) { 4010 4011 next_device = TAILQ_NEXT(device, links); 4012 4013 if (path->device != device 4014 && path->device->lun_id != CAM_LUN_WILDCARD 4015 && device->lun_id != CAM_LUN_WILDCARD) 4016 continue; 4017 /* 4018 * The async callback could free the device. 4019 * If it is a broadcast async, it doesn't hold 4020 * device reference, so take our own reference. 4021 */ 4022 xpt_acquire_device(device); 4023 (*(bus->xport->async))(async_code, bus, 4024 target, device, 4025 async_arg); 4026 4027 xpt_async_bcast(&device->asyncs, async_code, 4028 path, async_arg); 4029 xpt_release_device(device); 4030 } 4031 } 4032 4033 /* 4034 * If this wasn't a fully wildcarded async, tell all 4035 * clients that want all async events. 4036 */ 4037 if (bus != xpt_periph->path->bus) 4038 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4039 path, async_arg); 4040 } 4041 4042 static void 4043 xpt_async_bcast(struct async_list *async_head, 4044 u_int32_t async_code, 4045 struct cam_path *path, void *async_arg) 4046 { 4047 struct async_node *cur_entry; 4048 4049 cur_entry = SLIST_FIRST(async_head); 4050 while (cur_entry != NULL) { 4051 struct async_node *next_entry; 4052 /* 4053 * Grab the next list entry before we call the current 4054 * entry's callback. This is because the callback function 4055 * can delete its async callback entry. 4056 */ 4057 next_entry = SLIST_NEXT(cur_entry, links); 4058 if ((cur_entry->event_enable & async_code) != 0) 4059 cur_entry->callback(cur_entry->callback_arg, 4060 async_code, path, 4061 async_arg); 4062 cur_entry = next_entry; 4063 } 4064 } 4065 4066 static void 4067 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4068 struct cam_et *target, struct cam_ed *device, 4069 void *async_arg) 4070 { 4071 printf("xpt_dev_async called\n"); 4072 } 4073 4074 u_int32_t 4075 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count) 4076 { 4077 struct cam_ed *dev = path->device; 4078 4079 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4080 dev->sim->devq->alloc_openings += 4081 cam_ccbq_freeze(&dev->ccbq, rl, count); 4082 /* Remove frozen device from allocq. */ 4083 if (device_is_alloc_queued(dev) && 4084 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4085 CAMQ_GET_PRIO(&dev->drvq)))) { 4086 camq_remove(&dev->sim->devq->alloc_queue, 4087 dev->alloc_ccb_entry.pinfo.index); 4088 } 4089 /* Remove frozen device from sendq. */ 4090 if (device_is_send_queued(dev) && 4091 cam_ccbq_frozen_top(&dev->ccbq)) { 4092 camq_remove(&dev->sim->devq->send_queue, 4093 dev->send_ccb_entry.pinfo.index); 4094 } 4095 return (dev->ccbq.queue.qfrozen_cnt[rl]); 4096 } 4097 4098 u_int32_t 4099 xpt_freeze_devq(struct cam_path *path, u_int count) 4100 { 4101 4102 return (xpt_freeze_devq_rl(path, 0, count)); 4103 } 4104 4105 u_int32_t 4106 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4107 { 4108 4109 mtx_assert(sim->mtx, MA_OWNED); 4110 sim->devq->send_queue.qfrozen_cnt[0] += count; 4111 return (sim->devq->send_queue.qfrozen_cnt[0]); 4112 } 4113 4114 static void 4115 xpt_release_devq_timeout(void *arg) 4116 { 4117 struct cam_ed *device; 4118 4119 device = (struct cam_ed *)arg; 4120 4121 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE); 4122 } 4123 4124 void 4125 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4126 { 4127 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4128 4129 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue); 4130 } 4131 4132 void 4133 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue) 4134 { 4135 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4136 4137 xpt_release_devq_device(path->device, rl, count, run_queue); 4138 } 4139 4140 static void 4141 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue) 4142 { 4143 4144 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) { 4145 #ifdef INVARIANTS 4146 printf("xpt_release_devq(%d): requested %u > present %u\n", 4147 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]); 4148 #endif 4149 count = dev->ccbq.queue.qfrozen_cnt[rl]; 4150 } 4151 dev->sim->devq->alloc_openings -= 4152 cam_ccbq_release(&dev->ccbq, rl, count); 4153 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4154 CAMQ_GET_PRIO(&dev->drvq))) == 0) { 4155 if (xpt_schedule_dev_allocq(dev->target->bus, dev)) 4156 xpt_run_dev_allocq(dev->target->bus); 4157 } 4158 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) { 4159 /* 4160 * No longer need to wait for a successful 4161 * command completion. 4162 */ 4163 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4164 /* 4165 * Remove any timeouts that might be scheduled 4166 * to release this queue. 4167 */ 4168 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4169 callout_stop(&dev->callout); 4170 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4171 } 4172 if (run_queue == 0) 4173 return; 4174 /* 4175 * Now that we are unfrozen schedule the 4176 * device so any pending transactions are 4177 * run. 4178 */ 4179 if (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4180 xpt_run_dev_sendq(dev->target->bus); 4181 } 4182 } 4183 4184 void 4185 xpt_release_simq(struct cam_sim *sim, int run_queue) 4186 { 4187 struct camq *sendq; 4188 4189 mtx_assert(sim->mtx, MA_OWNED); 4190 sendq = &(sim->devq->send_queue); 4191 if (sendq->qfrozen_cnt[0] <= 0) { 4192 #ifdef INVARIANTS 4193 printf("xpt_release_simq: requested 1 > present %u\n", 4194 sendq->qfrozen_cnt[0]); 4195 #endif 4196 } else 4197 sendq->qfrozen_cnt[0]--; 4198 if (sendq->qfrozen_cnt[0] == 0) { 4199 /* 4200 * If there is a timeout scheduled to release this 4201 * sim queue, remove it. The queue frozen count is 4202 * already at 0. 4203 */ 4204 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4205 callout_stop(&sim->callout); 4206 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4207 } 4208 if (run_queue) { 4209 struct cam_eb *bus; 4210 4211 /* 4212 * Now that we are unfrozen run the send queue. 4213 */ 4214 bus = xpt_find_bus(sim->path_id); 4215 xpt_run_dev_sendq(bus); 4216 xpt_release_bus(bus); 4217 } 4218 } 4219 } 4220 4221 /* 4222 * XXX Appears to be unused. 4223 */ 4224 static void 4225 xpt_release_simq_timeout(void *arg) 4226 { 4227 struct cam_sim *sim; 4228 4229 sim = (struct cam_sim *)arg; 4230 xpt_release_simq(sim, /* run_queue */ TRUE); 4231 } 4232 4233 void 4234 xpt_done(union ccb *done_ccb) 4235 { 4236 struct cam_sim *sim; 4237 int first; 4238 4239 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4240 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4241 /* 4242 * Queue up the request for handling by our SWI handler 4243 * any of the "non-immediate" type of ccbs. 4244 */ 4245 sim = done_ccb->ccb_h.path->bus->sim; 4246 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4247 sim_links.tqe); 4248 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4249 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4250 mtx_lock(&cam_simq_lock); 4251 first = TAILQ_EMPTY(&cam_simq); 4252 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4253 mtx_unlock(&cam_simq_lock); 4254 sim->flags |= CAM_SIM_ON_DONEQ; 4255 if (first) 4256 swi_sched(cambio_ih, 0); 4257 } 4258 } 4259 } 4260 4261 union ccb * 4262 xpt_alloc_ccb() 4263 { 4264 union ccb *new_ccb; 4265 4266 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4267 return (new_ccb); 4268 } 4269 4270 union ccb * 4271 xpt_alloc_ccb_nowait() 4272 { 4273 union ccb *new_ccb; 4274 4275 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4276 return (new_ccb); 4277 } 4278 4279 void 4280 xpt_free_ccb(union ccb *free_ccb) 4281 { 4282 free(free_ccb, M_CAMXPT); 4283 } 4284 4285 4286 4287 /* Private XPT functions */ 4288 4289 /* 4290 * Get a CAM control block for the caller. Charge the structure to the device 4291 * referenced by the path. If the this device has no 'credits' then the 4292 * device already has the maximum number of outstanding operations under way 4293 * and we return NULL. If we don't have sufficient resources to allocate more 4294 * ccbs, we also return NULL. 4295 */ 4296 static union ccb * 4297 xpt_get_ccb(struct cam_ed *device) 4298 { 4299 union ccb *new_ccb; 4300 struct cam_sim *sim; 4301 4302 sim = device->sim; 4303 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4304 new_ccb = xpt_alloc_ccb_nowait(); 4305 if (new_ccb == NULL) { 4306 return (NULL); 4307 } 4308 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4309 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4310 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4311 xpt_links.sle); 4312 sim->ccb_count++; 4313 } 4314 cam_ccbq_take_opening(&device->ccbq); 4315 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4316 return (new_ccb); 4317 } 4318 4319 static void 4320 xpt_release_bus(struct cam_eb *bus) 4321 { 4322 4323 if ((--bus->refcount == 0) 4324 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4325 mtx_lock(&xsoftc.xpt_topo_lock); 4326 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4327 xsoftc.bus_generation++; 4328 mtx_unlock(&xsoftc.xpt_topo_lock); 4329 cam_sim_release(bus->sim); 4330 free(bus, M_CAMXPT); 4331 } 4332 } 4333 4334 static struct cam_et * 4335 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4336 { 4337 struct cam_et *target; 4338 4339 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4340 if (target != NULL) { 4341 struct cam_et *cur_target; 4342 4343 TAILQ_INIT(&target->ed_entries); 4344 target->bus = bus; 4345 target->target_id = target_id; 4346 target->refcount = 1; 4347 target->generation = 0; 4348 timevalclear(&target->last_reset); 4349 /* 4350 * Hold a reference to our parent bus so it 4351 * will not go away before we do. 4352 */ 4353 bus->refcount++; 4354 4355 /* Insertion sort into our bus's target list */ 4356 cur_target = TAILQ_FIRST(&bus->et_entries); 4357 while (cur_target != NULL && cur_target->target_id < target_id) 4358 cur_target = TAILQ_NEXT(cur_target, links); 4359 4360 if (cur_target != NULL) { 4361 TAILQ_INSERT_BEFORE(cur_target, target, links); 4362 } else { 4363 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4364 } 4365 bus->generation++; 4366 } 4367 return (target); 4368 } 4369 4370 static void 4371 xpt_release_target(struct cam_et *target) 4372 { 4373 4374 if ((--target->refcount == 0) 4375 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4376 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4377 target->bus->generation++; 4378 xpt_release_bus(target->bus); 4379 free(target, M_CAMXPT); 4380 } 4381 } 4382 4383 static struct cam_ed * 4384 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4385 lun_id_t lun_id) 4386 { 4387 struct cam_ed *device, *cur_device; 4388 4389 device = xpt_alloc_device(bus, target, lun_id); 4390 if (device == NULL) 4391 return (NULL); 4392 4393 device->mintags = 1; 4394 device->maxtags = 1; 4395 bus->sim->max_ccbs += device->ccbq.devq_openings; 4396 cur_device = TAILQ_FIRST(&target->ed_entries); 4397 while (cur_device != NULL && cur_device->lun_id < lun_id) 4398 cur_device = TAILQ_NEXT(cur_device, links); 4399 if (cur_device != NULL) { 4400 TAILQ_INSERT_BEFORE(cur_device, device, links); 4401 } else { 4402 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4403 } 4404 target->generation++; 4405 4406 return (device); 4407 } 4408 4409 struct cam_ed * 4410 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4411 { 4412 struct cam_ed *device; 4413 struct cam_devq *devq; 4414 cam_status status; 4415 4416 /* Make space for us in the device queue on our bus */ 4417 devq = bus->sim->devq; 4418 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4419 4420 if (status != CAM_REQ_CMP) { 4421 device = NULL; 4422 } else { 4423 device = (struct cam_ed *)malloc(sizeof(*device), 4424 M_CAMXPT, M_NOWAIT); 4425 } 4426 4427 if (device != NULL) { 4428 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4429 device->alloc_ccb_entry.device = device; 4430 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4431 device->send_ccb_entry.device = device; 4432 device->target = target; 4433 device->lun_id = lun_id; 4434 device->sim = bus->sim; 4435 /* Initialize our queues */ 4436 if (camq_init(&device->drvq, 0) != 0) { 4437 free(device, M_CAMXPT); 4438 return (NULL); 4439 } 4440 if (cam_ccbq_init(&device->ccbq, 4441 bus->sim->max_dev_openings) != 0) { 4442 camq_fini(&device->drvq); 4443 free(device, M_CAMXPT); 4444 return (NULL); 4445 } 4446 SLIST_INIT(&device->asyncs); 4447 SLIST_INIT(&device->periphs); 4448 device->generation = 0; 4449 device->owner = NULL; 4450 device->flags = CAM_DEV_UNCONFIGURED; 4451 device->tag_delay_count = 0; 4452 device->tag_saved_openings = 0; 4453 device->refcount = 1; 4454 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4455 4456 /* 4457 * Hold a reference to our parent target so it 4458 * will not go away before we do. 4459 */ 4460 target->refcount++; 4461 4462 } 4463 return (device); 4464 } 4465 4466 void 4467 xpt_acquire_device(struct cam_ed *device) 4468 { 4469 4470 device->refcount++; 4471 } 4472 4473 void 4474 xpt_release_device(struct cam_ed *device) 4475 { 4476 4477 if (--device->refcount == 0) { 4478 struct cam_devq *devq; 4479 4480 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4481 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4482 panic("Removing device while still queued for ccbs"); 4483 4484 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4485 callout_stop(&device->callout); 4486 4487 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4488 device->target->generation++; 4489 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4490 /* Release our slot in the devq */ 4491 devq = device->target->bus->sim->devq; 4492 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4493 camq_fini(&device->drvq); 4494 cam_ccbq_fini(&device->ccbq); 4495 xpt_release_target(device->target); 4496 free(device, M_CAMXPT); 4497 } 4498 } 4499 4500 u_int32_t 4501 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4502 { 4503 int diff; 4504 int result; 4505 struct cam_ed *dev; 4506 4507 dev = path->device; 4508 4509 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4510 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4511 if (result == CAM_REQ_CMP && (diff < 0)) { 4512 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4513 } 4514 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4515 || (dev->inq_flags & SID_CmdQue) != 0) 4516 dev->tag_saved_openings = newopenings; 4517 /* Adjust the global limit */ 4518 dev->sim->max_ccbs += diff; 4519 return (result); 4520 } 4521 4522 static struct cam_eb * 4523 xpt_find_bus(path_id_t path_id) 4524 { 4525 struct cam_eb *bus; 4526 4527 mtx_lock(&xsoftc.xpt_topo_lock); 4528 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4529 bus != NULL; 4530 bus = TAILQ_NEXT(bus, links)) { 4531 if (bus->path_id == path_id) { 4532 bus->refcount++; 4533 break; 4534 } 4535 } 4536 mtx_unlock(&xsoftc.xpt_topo_lock); 4537 return (bus); 4538 } 4539 4540 static struct cam_et * 4541 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4542 { 4543 struct cam_et *target; 4544 4545 for (target = TAILQ_FIRST(&bus->et_entries); 4546 target != NULL; 4547 target = TAILQ_NEXT(target, links)) { 4548 if (target->target_id == target_id) { 4549 target->refcount++; 4550 break; 4551 } 4552 } 4553 return (target); 4554 } 4555 4556 static struct cam_ed * 4557 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4558 { 4559 struct cam_ed *device; 4560 4561 for (device = TAILQ_FIRST(&target->ed_entries); 4562 device != NULL; 4563 device = TAILQ_NEXT(device, links)) { 4564 if (device->lun_id == lun_id) { 4565 device->refcount++; 4566 break; 4567 } 4568 } 4569 return (device); 4570 } 4571 4572 void 4573 xpt_start_tags(struct cam_path *path) 4574 { 4575 struct ccb_relsim crs; 4576 struct cam_ed *device; 4577 struct cam_sim *sim; 4578 int newopenings; 4579 4580 device = path->device; 4581 sim = path->bus->sim; 4582 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4583 xpt_freeze_devq(path, /*count*/1); 4584 device->inq_flags |= SID_CmdQue; 4585 if (device->tag_saved_openings != 0) 4586 newopenings = device->tag_saved_openings; 4587 else 4588 newopenings = min(device->maxtags, 4589 sim->max_tagged_dev_openings); 4590 xpt_dev_ccbq_resize(path, newopenings); 4591 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4592 crs.ccb_h.func_code = XPT_REL_SIMQ; 4593 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4594 crs.openings 4595 = crs.release_timeout 4596 = crs.qfrozen_cnt 4597 = 0; 4598 xpt_action((union ccb *)&crs); 4599 } 4600 4601 void 4602 xpt_stop_tags(struct cam_path *path) 4603 { 4604 struct ccb_relsim crs; 4605 struct cam_ed *device; 4606 struct cam_sim *sim; 4607 4608 device = path->device; 4609 sim = path->bus->sim; 4610 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4611 device->tag_delay_count = 0; 4612 xpt_freeze_devq(path, /*count*/1); 4613 device->inq_flags &= ~SID_CmdQue; 4614 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4615 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4616 crs.ccb_h.func_code = XPT_REL_SIMQ; 4617 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4618 crs.openings 4619 = crs.release_timeout 4620 = crs.qfrozen_cnt 4621 = 0; 4622 xpt_action((union ccb *)&crs); 4623 } 4624 4625 static void 4626 xpt_boot_delay(void *arg) 4627 { 4628 4629 xpt_release_boot(); 4630 } 4631 4632 static void 4633 xpt_config(void *arg) 4634 { 4635 /* 4636 * Now that interrupts are enabled, go find our devices 4637 */ 4638 4639 #ifdef CAMDEBUG 4640 /* Setup debugging flags and path */ 4641 #ifdef CAM_DEBUG_FLAGS 4642 cam_dflags = CAM_DEBUG_FLAGS; 4643 #else /* !CAM_DEBUG_FLAGS */ 4644 cam_dflags = CAM_DEBUG_NONE; 4645 #endif /* CAM_DEBUG_FLAGS */ 4646 #ifdef CAM_DEBUG_BUS 4647 if (cam_dflags != CAM_DEBUG_NONE) { 4648 /* 4649 * Locking is specifically omitted here. No SIMs have 4650 * registered yet, so xpt_create_path will only be searching 4651 * empty lists of targets and devices. 4652 */ 4653 if (xpt_create_path(&cam_dpath, xpt_periph, 4654 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4655 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4656 printf("xpt_config: xpt_create_path() failed for debug" 4657 " target %d:%d:%d, debugging disabled\n", 4658 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4659 cam_dflags = CAM_DEBUG_NONE; 4660 } 4661 } else 4662 cam_dpath = NULL; 4663 #else /* !CAM_DEBUG_BUS */ 4664 cam_dpath = NULL; 4665 #endif /* CAM_DEBUG_BUS */ 4666 #endif /* CAMDEBUG */ 4667 4668 /* Register our shutdown event handler */ 4669 if ((EVENTHANDLER_REGISTER(shutdown_final, xpt_shutdown, 4670 NULL, SHUTDOWN_PRI_FIRST)) == NULL) { 4671 printf("xpt_config: failed to register shutdown event.\n"); 4672 } 4673 4674 periphdriver_init(1); 4675 xpt_hold_boot(); 4676 callout_init(&xsoftc.boot_callout, 1); 4677 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4678 xpt_boot_delay, NULL); 4679 /* Fire up rescan thread. */ 4680 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4681 printf("xpt_config: failed to create rescan thread.\n"); 4682 } 4683 } 4684 4685 void 4686 xpt_hold_boot(void) 4687 { 4688 xpt_lock_buses(); 4689 xsoftc.buses_to_config++; 4690 xpt_unlock_buses(); 4691 } 4692 4693 void 4694 xpt_release_boot(void) 4695 { 4696 xpt_lock_buses(); 4697 xsoftc.buses_to_config--; 4698 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4699 struct xpt_task *task; 4700 4701 xsoftc.buses_config_done = 1; 4702 xpt_unlock_buses(); 4703 /* Call manually because we don't have any busses */ 4704 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4705 if (task != NULL) { 4706 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4707 taskqueue_enqueue(taskqueue_thread, &task->task); 4708 } 4709 } else 4710 xpt_unlock_buses(); 4711 } 4712 4713 /* 4714 * If the given device only has one peripheral attached to it, and if that 4715 * peripheral is the passthrough driver, announce it. This insures that the 4716 * user sees some sort of announcement for every peripheral in their system. 4717 */ 4718 static int 4719 xptpassannouncefunc(struct cam_ed *device, void *arg) 4720 { 4721 struct cam_periph *periph; 4722 int i; 4723 4724 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4725 periph = SLIST_NEXT(periph, periph_links), i++); 4726 4727 periph = SLIST_FIRST(&device->periphs); 4728 if ((i == 1) 4729 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4730 xpt_announce_periph(periph, NULL); 4731 4732 return(1); 4733 } 4734 4735 static void 4736 xpt_finishconfig_task(void *context, int pending) 4737 { 4738 4739 periphdriver_init(2); 4740 /* 4741 * Check for devices with no "standard" peripheral driver 4742 * attached. For any devices like that, announce the 4743 * passthrough driver so the user will see something. 4744 */ 4745 xpt_for_all_devices(xptpassannouncefunc, NULL); 4746 4747 /* Release our hook so that the boot can continue. */ 4748 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4749 free(xsoftc.xpt_config_hook, M_CAMXPT); 4750 xsoftc.xpt_config_hook = NULL; 4751 4752 free(context, M_CAMXPT); 4753 } 4754 4755 /* 4756 * Power down all devices when we are going to power down the system. 4757 */ 4758 static void 4759 xpt_shutdown_dev_done(struct cam_periph *periph, union ccb *done_ccb) 4760 { 4761 4762 /* No-op. We're polling. */ 4763 return; 4764 } 4765 4766 static int 4767 xpt_shutdown_dev(struct cam_ed *device, void *arg) 4768 { 4769 union ccb ccb; 4770 struct cam_path path; 4771 4772 if (device->flags & CAM_DEV_UNCONFIGURED) 4773 return (1); 4774 4775 if (device->protocol == PROTO_ATA) { 4776 /* Only power down device if it supports power management. */ 4777 if ((device->ident_data.support.command1 & 4778 ATA_SUPPORT_POWERMGT) == 0) 4779 return (1); 4780 } else if (device->protocol != PROTO_SCSI) 4781 return (1); 4782 4783 xpt_compile_path(&path, 4784 NULL, 4785 device->target->bus->path_id, 4786 device->target->target_id, 4787 device->lun_id); 4788 xpt_setup_ccb(&ccb.ccb_h, &path, CAM_PRIORITY_NORMAL); 4789 if (device->protocol == PROTO_ATA) { 4790 cam_fill_ataio(&ccb.ataio, 4791 1, 4792 xpt_shutdown_dev_done, 4793 CAM_DIR_NONE, 4794 0, 4795 NULL, 4796 0, 4797 30*1000); 4798 ata_28bit_cmd(&ccb.ataio, ATA_SLEEP, 0, 0, 0); 4799 } else { 4800 scsi_start_stop(&ccb.csio, 4801 /*retries*/1, 4802 xpt_shutdown_dev_done, 4803 MSG_SIMPLE_Q_TAG, 4804 /*start*/FALSE, 4805 /*load/eject*/FALSE, 4806 /*immediate*/TRUE, 4807 SSD_FULL_SIZE, 4808 /*timeout*/50*1000); 4809 } 4810 xpt_polled_action(&ccb); 4811 4812 if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 4813 xpt_print(&path, "Device power down failed\n"); 4814 if ((ccb.ccb_h.status & CAM_DEV_QFRZN) != 0) 4815 cam_release_devq(ccb.ccb_h.path, 4816 /*relsim_flags*/0, 4817 /*reduction*/0, 4818 /*timeout*/0, 4819 /*getcount_only*/0); 4820 xpt_release_path(&path); 4821 return (1); 4822 } 4823 4824 static void 4825 xpt_shutdown(void * arg, int howto) 4826 { 4827 4828 if (!xpt_power_down) 4829 return; 4830 if ((howto & RB_POWEROFF) == 0) 4831 return; 4832 4833 xpt_for_all_devices(xpt_shutdown_dev, NULL); 4834 } 4835 4836 cam_status 4837 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4838 struct cam_path *path) 4839 { 4840 struct ccb_setasync csa; 4841 cam_status status; 4842 int xptpath = 0; 4843 4844 if (path == NULL) { 4845 mtx_lock(&xsoftc.xpt_lock); 4846 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4847 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4848 if (status != CAM_REQ_CMP) { 4849 mtx_unlock(&xsoftc.xpt_lock); 4850 return (status); 4851 } 4852 xptpath = 1; 4853 } 4854 4855 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4856 csa.ccb_h.func_code = XPT_SASYNC_CB; 4857 csa.event_enable = event; 4858 csa.callback = cbfunc; 4859 csa.callback_arg = cbarg; 4860 xpt_action((union ccb *)&csa); 4861 status = csa.ccb_h.status; 4862 if (xptpath) { 4863 xpt_free_path(path); 4864 mtx_unlock(&xsoftc.xpt_lock); 4865 4866 if ((status == CAM_REQ_CMP) && 4867 (csa.event_enable & AC_FOUND_DEVICE)) { 4868 /* 4869 * Get this peripheral up to date with all 4870 * the currently existing devices. 4871 */ 4872 xpt_for_all_devices(xptsetasyncfunc, &csa); 4873 } 4874 if ((status == CAM_REQ_CMP) && 4875 (csa.event_enable & AC_PATH_REGISTERED)) { 4876 /* 4877 * Get this peripheral up to date with all 4878 * the currently existing busses. 4879 */ 4880 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4881 } 4882 } 4883 return (status); 4884 } 4885 4886 static void 4887 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4888 { 4889 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4890 4891 switch (work_ccb->ccb_h.func_code) { 4892 /* Common cases first */ 4893 case XPT_PATH_INQ: /* Path routing inquiry */ 4894 { 4895 struct ccb_pathinq *cpi; 4896 4897 cpi = &work_ccb->cpi; 4898 cpi->version_num = 1; /* XXX??? */ 4899 cpi->hba_inquiry = 0; 4900 cpi->target_sprt = 0; 4901 cpi->hba_misc = 0; 4902 cpi->hba_eng_cnt = 0; 4903 cpi->max_target = 0; 4904 cpi->max_lun = 0; 4905 cpi->initiator_id = 0; 4906 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4907 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4908 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4909 cpi->unit_number = sim->unit_number; 4910 cpi->bus_id = sim->bus_id; 4911 cpi->base_transfer_speed = 0; 4912 cpi->protocol = PROTO_UNSPECIFIED; 4913 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4914 cpi->transport = XPORT_UNSPECIFIED; 4915 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4916 cpi->ccb_h.status = CAM_REQ_CMP; 4917 xpt_done(work_ccb); 4918 break; 4919 } 4920 default: 4921 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4922 xpt_done(work_ccb); 4923 break; 4924 } 4925 } 4926 4927 /* 4928 * The xpt as a "controller" has no interrupt sources, so polling 4929 * is a no-op. 4930 */ 4931 static void 4932 xptpoll(struct cam_sim *sim) 4933 { 4934 } 4935 4936 void 4937 xpt_lock_buses(void) 4938 { 4939 mtx_lock(&xsoftc.xpt_topo_lock); 4940 } 4941 4942 void 4943 xpt_unlock_buses(void) 4944 { 4945 mtx_unlock(&xsoftc.xpt_topo_lock); 4946 } 4947 4948 static void 4949 camisr(void *dummy) 4950 { 4951 cam_simq_t queue; 4952 struct cam_sim *sim; 4953 4954 mtx_lock(&cam_simq_lock); 4955 TAILQ_INIT(&queue); 4956 while (!TAILQ_EMPTY(&cam_simq)) { 4957 TAILQ_CONCAT(&queue, &cam_simq, links); 4958 mtx_unlock(&cam_simq_lock); 4959 4960 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4961 TAILQ_REMOVE(&queue, sim, links); 4962 CAM_SIM_LOCK(sim); 4963 sim->flags &= ~CAM_SIM_ON_DONEQ; 4964 camisr_runqueue(&sim->sim_doneq); 4965 CAM_SIM_UNLOCK(sim); 4966 } 4967 mtx_lock(&cam_simq_lock); 4968 } 4969 mtx_unlock(&cam_simq_lock); 4970 } 4971 4972 static void 4973 camisr_runqueue(void *V_queue) 4974 { 4975 cam_isrq_t *queue = V_queue; 4976 struct ccb_hdr *ccb_h; 4977 4978 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 4979 int runq; 4980 4981 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 4982 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4983 4984 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 4985 ("camisr\n")); 4986 4987 runq = FALSE; 4988 4989 if (ccb_h->flags & CAM_HIGH_POWER) { 4990 struct highpowerlist *hphead; 4991 union ccb *send_ccb; 4992 4993 mtx_lock(&xsoftc.xpt_lock); 4994 hphead = &xsoftc.highpowerq; 4995 4996 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 4997 4998 /* 4999 * Increment the count since this command is done. 5000 */ 5001 xsoftc.num_highpower++; 5002 5003 /* 5004 * Any high powered commands queued up? 5005 */ 5006 if (send_ccb != NULL) { 5007 5008 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 5009 mtx_unlock(&xsoftc.xpt_lock); 5010 5011 xpt_release_devq(send_ccb->ccb_h.path, 5012 /*count*/1, /*runqueue*/TRUE); 5013 } else 5014 mtx_unlock(&xsoftc.xpt_lock); 5015 } 5016 5017 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5018 struct cam_ed *dev; 5019 5020 dev = ccb_h->path->device; 5021 5022 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5023 ccb_h->path->bus->sim->devq->send_active--; 5024 ccb_h->path->bus->sim->devq->send_openings++; 5025 runq = TRUE; 5026 5027 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5028 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 5029 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5030 && (dev->ccbq.dev_active == 0))) { 5031 xpt_release_devq(ccb_h->path, /*count*/1, 5032 /*run_queue*/FALSE); 5033 } 5034 5035 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5036 && (--dev->tag_delay_count == 0)) 5037 xpt_start_tags(ccb_h->path); 5038 } 5039 5040 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5041 xpt_release_simq(ccb_h->path->bus->sim, 5042 /*run_queue*/TRUE); 5043 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5044 runq = FALSE; 5045 } 5046 5047 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5048 && (ccb_h->status & CAM_DEV_QFRZN)) { 5049 xpt_release_devq(ccb_h->path, /*count*/1, 5050 /*run_queue*/TRUE); 5051 ccb_h->status &= ~CAM_DEV_QFRZN; 5052 } else if (runq) { 5053 xpt_run_dev_sendq(ccb_h->path->bus); 5054 } 5055 5056 /* Call the peripheral driver's callback */ 5057 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5058 } 5059 } 5060 5061