xref: /freebsd/sys/cam/cam_xpt.c (revision 410556f1f10fd35b350102725fd8504c3cb0afc8)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/stdarg.h>	/* for xpt_print below */
75 
76 #include "opt_cam.h"
77 
78 /* Wild guess based on not wanting to grow the stack too much */
79 #define XPT_PRINT_MAXLEN	512
80 #ifdef PRINTF_BUFR_SIZE
81 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
82 #else
83 #define XPT_PRINT_LEN	128
84 #endif
85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
86 
87 /*
88  * This is the maximum number of high powered commands (e.g. start unit)
89  * that can be outstanding at a particular time.
90  */
91 #ifndef CAM_MAX_HIGHPOWER
92 #define CAM_MAX_HIGHPOWER  4
93 #endif
94 
95 /* Datastructures internal to the xpt layer */
96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
100 
101 struct xpt_softc {
102 	uint32_t		xpt_generation;
103 
104 	/* number of high powered commands that can go through right now */
105 	struct mtx		xpt_highpower_lock;
106 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
107 	int			num_highpower;
108 
109 	/* queue for handling async rescan requests. */
110 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
111 	int buses_to_config;
112 	int buses_config_done;
113 	int announce_nosbuf;
114 
115 	/*
116 	 * Registered buses
117 	 *
118 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
119 	 * "buses" is preferred.
120 	 */
121 	TAILQ_HEAD(,cam_eb)	xpt_busses;
122 	u_int			bus_generation;
123 
124 	int			boot_delay;
125 	struct callout 		boot_callout;
126 	struct task		boot_task;
127 	struct root_hold_token	xpt_rootmount;
128 
129 	struct mtx		xpt_topo_lock;
130 	struct taskqueue	*xpt_taskq;
131 };
132 
133 typedef enum {
134 	DM_RET_COPY		= 0x01,
135 	DM_RET_FLAG_MASK	= 0x0f,
136 	DM_RET_NONE		= 0x00,
137 	DM_RET_STOP		= 0x10,
138 	DM_RET_DESCEND		= 0x20,
139 	DM_RET_ERROR		= 0x30,
140 	DM_RET_ACTION_MASK	= 0xf0
141 } dev_match_ret;
142 
143 typedef enum {
144 	XPT_DEPTH_BUS,
145 	XPT_DEPTH_TARGET,
146 	XPT_DEPTH_DEVICE,
147 	XPT_DEPTH_PERIPH
148 } xpt_traverse_depth;
149 
150 struct xpt_traverse_config {
151 	xpt_traverse_depth	depth;
152 	void			*tr_func;
153 	void			*tr_arg;
154 };
155 
156 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
157 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
158 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
159 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
160 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
161 
162 /* Transport layer configuration information */
163 static struct xpt_softc xsoftc;
164 
165 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
166 
167 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
168            &xsoftc.boot_delay, 0, "Bus registration wait time");
169 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
170 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
171 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
172 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
173 
174 struct cam_doneq {
175 	struct mtx_padalign	cam_doneq_mtx;
176 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
177 	int			cam_doneq_sleep;
178 };
179 
180 static struct cam_doneq cam_doneqs[MAXCPU];
181 static u_int __read_mostly cam_num_doneqs;
182 static struct proc *cam_proc;
183 static struct cam_doneq cam_async;
184 
185 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
186            &cam_num_doneqs, 0, "Number of completion queues/threads");
187 
188 struct cam_periph *xpt_periph;
189 
190 static periph_init_t xpt_periph_init;
191 
192 static struct periph_driver xpt_driver =
193 {
194 	xpt_periph_init, "xpt",
195 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
196 	CAM_PERIPH_DRV_EARLY
197 };
198 
199 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
200 
201 static d_open_t xptopen;
202 static d_close_t xptclose;
203 static d_ioctl_t xptioctl;
204 static d_ioctl_t xptdoioctl;
205 
206 static struct cdevsw xpt_cdevsw = {
207 	.d_version =	D_VERSION,
208 	.d_flags =	0,
209 	.d_open =	xptopen,
210 	.d_close =	xptclose,
211 	.d_ioctl =	xptioctl,
212 	.d_name =	"xpt",
213 };
214 
215 /* Storage for debugging datastructures */
216 struct cam_path *cam_dpath;
217 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
218 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
219 	&cam_dflags, 0, "Enabled debug flags");
220 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
221 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
222 	&cam_debug_delay, 0, "Delay in us after each debug message");
223 
224 /* Our boot-time initialization hook */
225 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
226 
227 static moduledata_t cam_moduledata = {
228 	"cam",
229 	cam_module_event_handler,
230 	NULL
231 };
232 
233 static int	xpt_init(void *);
234 
235 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
236 MODULE_VERSION(cam, 1);
237 
238 static void		xpt_async_bcast(struct async_list *async_head,
239 					u_int32_t async_code,
240 					struct cam_path *path,
241 					void *async_arg);
242 static path_id_t xptnextfreepathid(void);
243 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
244 static union ccb *xpt_get_ccb(struct cam_periph *periph);
245 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
246 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
247 static void	 xpt_run_allocq_task(void *context, int pending);
248 static void	 xpt_run_devq(struct cam_devq *devq);
249 static callout_func_t xpt_release_devq_timeout;
250 static void	 xpt_acquire_bus(struct cam_eb *bus);
251 static void	 xpt_release_bus(struct cam_eb *bus);
252 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
253 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
254 		    int run_queue);
255 static struct cam_et*
256 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
257 static void	 xpt_acquire_target(struct cam_et *target);
258 static void	 xpt_release_target(struct cam_et *target);
259 static struct cam_eb*
260 		 xpt_find_bus(path_id_t path_id);
261 static struct cam_et*
262 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
263 static struct cam_ed*
264 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
265 static void	 xpt_config(void *arg);
266 static void	 xpt_hold_boot_locked(void);
267 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
268 				 u_int32_t new_priority);
269 static xpt_devicefunc_t xptpassannouncefunc;
270 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
271 static void	 xptpoll(struct cam_sim *sim);
272 static void	 camisr_runqueue(void);
273 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
274 static void	 xpt_done_td(void *);
275 static void	 xpt_async_td(void *);
276 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
277 				    u_int num_patterns, struct cam_eb *bus);
278 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
279 				       u_int num_patterns,
280 				       struct cam_ed *device);
281 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
282 				       u_int num_patterns,
283 				       struct cam_periph *periph);
284 static xpt_busfunc_t	xptedtbusfunc;
285 static xpt_targetfunc_t	xptedttargetfunc;
286 static xpt_devicefunc_t	xptedtdevicefunc;
287 static xpt_periphfunc_t	xptedtperiphfunc;
288 static xpt_pdrvfunc_t	xptplistpdrvfunc;
289 static xpt_periphfunc_t	xptplistperiphfunc;
290 static int		xptedtmatch(struct ccb_dev_match *cdm);
291 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
292 static int		xptbustraverse(struct cam_eb *start_bus,
293 				       xpt_busfunc_t *tr_func, void *arg);
294 static int		xpttargettraverse(struct cam_eb *bus,
295 					  struct cam_et *start_target,
296 					  xpt_targetfunc_t *tr_func, void *arg);
297 static int		xptdevicetraverse(struct cam_et *target,
298 					  struct cam_ed *start_device,
299 					  xpt_devicefunc_t *tr_func, void *arg);
300 static int		xptperiphtraverse(struct cam_ed *device,
301 					  struct cam_periph *start_periph,
302 					  xpt_periphfunc_t *tr_func, void *arg);
303 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
304 					xpt_pdrvfunc_t *tr_func, void *arg);
305 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
306 					    struct cam_periph *start_periph,
307 					    xpt_periphfunc_t *tr_func,
308 					    void *arg);
309 static xpt_busfunc_t	xptdefbusfunc;
310 static xpt_targetfunc_t	xptdeftargetfunc;
311 static xpt_devicefunc_t	xptdefdevicefunc;
312 static xpt_periphfunc_t	xptdefperiphfunc;
313 static void		xpt_finishconfig_task(void *context, int pending);
314 static void		xpt_dev_async_default(u_int32_t async_code,
315 					      struct cam_eb *bus,
316 					      struct cam_et *target,
317 					      struct cam_ed *device,
318 					      void *async_arg);
319 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
320 						 struct cam_et *target,
321 						 lun_id_t lun_id);
322 static xpt_devicefunc_t	xptsetasyncfunc;
323 static xpt_busfunc_t	xptsetasyncbusfunc;
324 static cam_status	xptregister(struct cam_periph *periph,
325 				    void *arg);
326 
327 static __inline int
328 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
329 {
330 	int	retval;
331 
332 	mtx_assert(&devq->send_mtx, MA_OWNED);
333 	if ((dev->ccbq.queue.entries > 0) &&
334 	    (dev->ccbq.dev_openings > 0) &&
335 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
336 		/*
337 		 * The priority of a device waiting for controller
338 		 * resources is that of the highest priority CCB
339 		 * enqueued.
340 		 */
341 		retval =
342 		    xpt_schedule_dev(&devq->send_queue,
343 				     &dev->devq_entry,
344 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
345 	} else {
346 		retval = 0;
347 	}
348 	return (retval);
349 }
350 
351 static __inline int
352 device_is_queued(struct cam_ed *device)
353 {
354 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
355 }
356 
357 static void
358 xpt_periph_init(void)
359 {
360 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
361 }
362 
363 static int
364 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
365 {
366 
367 	/*
368 	 * Only allow read-write access.
369 	 */
370 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
371 		return(EPERM);
372 
373 	/*
374 	 * We don't allow nonblocking access.
375 	 */
376 	if ((flags & O_NONBLOCK) != 0) {
377 		printf("%s: can't do nonblocking access\n", devtoname(dev));
378 		return(ENODEV);
379 	}
380 
381 	return(0);
382 }
383 
384 static int
385 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
386 {
387 
388 	return(0);
389 }
390 
391 /*
392  * Don't automatically grab the xpt softc lock here even though this is going
393  * through the xpt device.  The xpt device is really just a back door for
394  * accessing other devices and SIMs, so the right thing to do is to grab
395  * the appropriate SIM lock once the bus/SIM is located.
396  */
397 static int
398 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
399 {
400 	int error;
401 
402 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
403 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
404 	}
405 	return (error);
406 }
407 
408 static int
409 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
410 {
411 	int error;
412 
413 	error = 0;
414 
415 	switch(cmd) {
416 	/*
417 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
418 	 * to accept CCB types that don't quite make sense to send through a
419 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
420 	 * in the CAM spec.
421 	 */
422 	case CAMIOCOMMAND: {
423 		union ccb *ccb;
424 		union ccb *inccb;
425 		struct cam_eb *bus;
426 
427 		inccb = (union ccb *)addr;
428 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
429 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
430 			inccb->csio.bio = NULL;
431 #endif
432 
433 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
434 			return (EINVAL);
435 
436 		bus = xpt_find_bus(inccb->ccb_h.path_id);
437 		if (bus == NULL)
438 			return (EINVAL);
439 
440 		switch (inccb->ccb_h.func_code) {
441 		case XPT_SCAN_BUS:
442 		case XPT_RESET_BUS:
443 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
444 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
445 				xpt_release_bus(bus);
446 				return (EINVAL);
447 			}
448 			break;
449 		case XPT_SCAN_TGT:
450 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
451 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
452 				xpt_release_bus(bus);
453 				return (EINVAL);
454 			}
455 			break;
456 		default:
457 			break;
458 		}
459 
460 		switch(inccb->ccb_h.func_code) {
461 		case XPT_SCAN_BUS:
462 		case XPT_RESET_BUS:
463 		case XPT_PATH_INQ:
464 		case XPT_ENG_INQ:
465 		case XPT_SCAN_LUN:
466 		case XPT_SCAN_TGT:
467 
468 			ccb = xpt_alloc_ccb();
469 
470 			/*
471 			 * Create a path using the bus, target, and lun the
472 			 * user passed in.
473 			 */
474 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
475 					    inccb->ccb_h.path_id,
476 					    inccb->ccb_h.target_id,
477 					    inccb->ccb_h.target_lun) !=
478 					    CAM_REQ_CMP){
479 				error = EINVAL;
480 				xpt_free_ccb(ccb);
481 				break;
482 			}
483 			/* Ensure all of our fields are correct */
484 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
485 				      inccb->ccb_h.pinfo.priority);
486 			xpt_merge_ccb(ccb, inccb);
487 			xpt_path_lock(ccb->ccb_h.path);
488 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
489 			xpt_path_unlock(ccb->ccb_h.path);
490 			bcopy(ccb, inccb, sizeof(union ccb));
491 			xpt_free_path(ccb->ccb_h.path);
492 			xpt_free_ccb(ccb);
493 			break;
494 
495 		case XPT_DEBUG: {
496 			union ccb ccb;
497 
498 			/*
499 			 * This is an immediate CCB, so it's okay to
500 			 * allocate it on the stack.
501 			 */
502 
503 			/*
504 			 * Create a path using the bus, target, and lun the
505 			 * user passed in.
506 			 */
507 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
508 					    inccb->ccb_h.path_id,
509 					    inccb->ccb_h.target_id,
510 					    inccb->ccb_h.target_lun) !=
511 					    CAM_REQ_CMP){
512 				error = EINVAL;
513 				break;
514 			}
515 			/* Ensure all of our fields are correct */
516 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
517 				      inccb->ccb_h.pinfo.priority);
518 			xpt_merge_ccb(&ccb, inccb);
519 			xpt_action(&ccb);
520 			bcopy(&ccb, inccb, sizeof(union ccb));
521 			xpt_free_path(ccb.ccb_h.path);
522 			break;
523 		}
524 		case XPT_DEV_MATCH: {
525 			struct cam_periph_map_info mapinfo;
526 			struct cam_path *old_path;
527 
528 			/*
529 			 * We can't deal with physical addresses for this
530 			 * type of transaction.
531 			 */
532 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
533 			    CAM_DATA_VADDR) {
534 				error = EINVAL;
535 				break;
536 			}
537 
538 			/*
539 			 * Save this in case the caller had it set to
540 			 * something in particular.
541 			 */
542 			old_path = inccb->ccb_h.path;
543 
544 			/*
545 			 * We really don't need a path for the matching
546 			 * code.  The path is needed because of the
547 			 * debugging statements in xpt_action().  They
548 			 * assume that the CCB has a valid path.
549 			 */
550 			inccb->ccb_h.path = xpt_periph->path;
551 
552 			bzero(&mapinfo, sizeof(mapinfo));
553 
554 			/*
555 			 * Map the pattern and match buffers into kernel
556 			 * virtual address space.
557 			 */
558 			error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
559 
560 			if (error) {
561 				inccb->ccb_h.path = old_path;
562 				break;
563 			}
564 
565 			/*
566 			 * This is an immediate CCB, we can send it on directly.
567 			 */
568 			xpt_action(inccb);
569 
570 			/*
571 			 * Map the buffers back into user space.
572 			 */
573 			cam_periph_unmapmem(inccb, &mapinfo);
574 
575 			inccb->ccb_h.path = old_path;
576 
577 			error = 0;
578 			break;
579 		}
580 		default:
581 			error = ENOTSUP;
582 			break;
583 		}
584 		xpt_release_bus(bus);
585 		break;
586 	}
587 	/*
588 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
589 	 * with the periphal driver name and unit name filled in.  The other
590 	 * fields don't really matter as input.  The passthrough driver name
591 	 * ("pass"), and unit number are passed back in the ccb.  The current
592 	 * device generation number, and the index into the device peripheral
593 	 * driver list, and the status are also passed back.  Note that
594 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
595 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
596 	 * (or rather should be) impossible for the device peripheral driver
597 	 * list to change since we look at the whole thing in one pass, and
598 	 * we do it with lock protection.
599 	 *
600 	 */
601 	case CAMGETPASSTHRU: {
602 		union ccb *ccb;
603 		struct cam_periph *periph;
604 		struct periph_driver **p_drv;
605 		char   *name;
606 		u_int unit;
607 		int base_periph_found;
608 
609 		ccb = (union ccb *)addr;
610 		unit = ccb->cgdl.unit_number;
611 		name = ccb->cgdl.periph_name;
612 		base_periph_found = 0;
613 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
614 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
615 			ccb->csio.bio = NULL;
616 #endif
617 
618 		/*
619 		 * Sanity check -- make sure we don't get a null peripheral
620 		 * driver name.
621 		 */
622 		if (*ccb->cgdl.periph_name == '\0') {
623 			error = EINVAL;
624 			break;
625 		}
626 
627 		/* Keep the list from changing while we traverse it */
628 		xpt_lock_buses();
629 
630 		/* first find our driver in the list of drivers */
631 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
632 			if (strcmp((*p_drv)->driver_name, name) == 0)
633 				break;
634 
635 		if (*p_drv == NULL) {
636 			xpt_unlock_buses();
637 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
638 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
639 			*ccb->cgdl.periph_name = '\0';
640 			ccb->cgdl.unit_number = 0;
641 			error = ENOENT;
642 			break;
643 		}
644 
645 		/*
646 		 * Run through every peripheral instance of this driver
647 		 * and check to see whether it matches the unit passed
648 		 * in by the user.  If it does, get out of the loops and
649 		 * find the passthrough driver associated with that
650 		 * peripheral driver.
651 		 */
652 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
653 		     periph = TAILQ_NEXT(periph, unit_links)) {
654 			if (periph->unit_number == unit)
655 				break;
656 		}
657 		/*
658 		 * If we found the peripheral driver that the user passed
659 		 * in, go through all of the peripheral drivers for that
660 		 * particular device and look for a passthrough driver.
661 		 */
662 		if (periph != NULL) {
663 			struct cam_ed *device;
664 			int i;
665 
666 			base_periph_found = 1;
667 			device = periph->path->device;
668 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
669 			     periph != NULL;
670 			     periph = SLIST_NEXT(periph, periph_links), i++) {
671 				/*
672 				 * Check to see whether we have a
673 				 * passthrough device or not.
674 				 */
675 				if (strcmp(periph->periph_name, "pass") == 0) {
676 					/*
677 					 * Fill in the getdevlist fields.
678 					 */
679 					strlcpy(ccb->cgdl.periph_name,
680 					       periph->periph_name,
681 					       sizeof(ccb->cgdl.periph_name));
682 					ccb->cgdl.unit_number =
683 						periph->unit_number;
684 					if (SLIST_NEXT(periph, periph_links))
685 						ccb->cgdl.status =
686 							CAM_GDEVLIST_MORE_DEVS;
687 					else
688 						ccb->cgdl.status =
689 						       CAM_GDEVLIST_LAST_DEVICE;
690 					ccb->cgdl.generation =
691 						device->generation;
692 					ccb->cgdl.index = i;
693 					/*
694 					 * Fill in some CCB header fields
695 					 * that the user may want.
696 					 */
697 					ccb->ccb_h.path_id =
698 						periph->path->bus->path_id;
699 					ccb->ccb_h.target_id =
700 						periph->path->target->target_id;
701 					ccb->ccb_h.target_lun =
702 						periph->path->device->lun_id;
703 					ccb->ccb_h.status = CAM_REQ_CMP;
704 					break;
705 				}
706 			}
707 		}
708 
709 		/*
710 		 * If the periph is null here, one of two things has
711 		 * happened.  The first possibility is that we couldn't
712 		 * find the unit number of the particular peripheral driver
713 		 * that the user is asking about.  e.g. the user asks for
714 		 * the passthrough driver for "da11".  We find the list of
715 		 * "da" peripherals all right, but there is no unit 11.
716 		 * The other possibility is that we went through the list
717 		 * of peripheral drivers attached to the device structure,
718 		 * but didn't find one with the name "pass".  Either way,
719 		 * we return ENOENT, since we couldn't find something.
720 		 */
721 		if (periph == NULL) {
722 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
723 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
724 			*ccb->cgdl.periph_name = '\0';
725 			ccb->cgdl.unit_number = 0;
726 			error = ENOENT;
727 			/*
728 			 * It is unfortunate that this is even necessary,
729 			 * but there are many, many clueless users out there.
730 			 * If this is true, the user is looking for the
731 			 * passthrough driver, but doesn't have one in his
732 			 * kernel.
733 			 */
734 			if (base_periph_found == 1) {
735 				printf("xptioctl: pass driver is not in the "
736 				       "kernel\n");
737 				printf("xptioctl: put \"device pass\" in "
738 				       "your kernel config file\n");
739 			}
740 		}
741 		xpt_unlock_buses();
742 		break;
743 		}
744 	default:
745 		error = ENOTTY;
746 		break;
747 	}
748 
749 	return(error);
750 }
751 
752 static int
753 cam_module_event_handler(module_t mod, int what, void *arg)
754 {
755 	int error;
756 
757 	switch (what) {
758 	case MOD_LOAD:
759 		if ((error = xpt_init(NULL)) != 0)
760 			return (error);
761 		break;
762 	case MOD_UNLOAD:
763 		return EBUSY;
764 	default:
765 		return EOPNOTSUPP;
766 	}
767 
768 	return 0;
769 }
770 
771 static struct xpt_proto *
772 xpt_proto_find(cam_proto proto)
773 {
774 	struct xpt_proto **pp;
775 
776 	SET_FOREACH(pp, cam_xpt_proto_set) {
777 		if ((*pp)->proto == proto)
778 			return *pp;
779 	}
780 
781 	return NULL;
782 }
783 
784 static void
785 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
786 {
787 
788 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
789 		xpt_free_path(done_ccb->ccb_h.path);
790 		xpt_free_ccb(done_ccb);
791 	} else {
792 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
793 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
794 	}
795 	xpt_release_boot();
796 }
797 
798 /* thread to handle bus rescans */
799 static void
800 xpt_scanner_thread(void *dummy)
801 {
802 	union ccb	*ccb;
803 	struct mtx	*mtx;
804 	struct cam_ed	*device;
805 
806 	xpt_lock_buses();
807 	for (;;) {
808 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
809 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
810 			       "-", 0);
811 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
812 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
813 			xpt_unlock_buses();
814 
815 			/*
816 			 * We need to lock the device's mutex which we use as
817 			 * the path mutex. We can't do it directly because the
818 			 * cam_path in the ccb may wind up going away because
819 			 * the path lock may be dropped and the path retired in
820 			 * the completion callback. We do this directly to keep
821 			 * the reference counts in cam_path sane. We also have
822 			 * to copy the device pointer because ccb_h.path may
823 			 * be freed in the callback.
824 			 */
825 			mtx = xpt_path_mtx(ccb->ccb_h.path);
826 			device = ccb->ccb_h.path->device;
827 			xpt_acquire_device(device);
828 			mtx_lock(mtx);
829 			xpt_action(ccb);
830 			mtx_unlock(mtx);
831 			xpt_release_device(device);
832 
833 			xpt_lock_buses();
834 		}
835 	}
836 }
837 
838 void
839 xpt_rescan(union ccb *ccb)
840 {
841 	struct ccb_hdr *hdr;
842 
843 	/* Prepare request */
844 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
845 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
846 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
847 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
848 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
849 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
850 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
851 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
852 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
853 	else {
854 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
855 		xpt_free_path(ccb->ccb_h.path);
856 		xpt_free_ccb(ccb);
857 		return;
858 	}
859 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
860 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
861  		xpt_action_name(ccb->ccb_h.func_code)));
862 
863 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
864 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
865 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
866 	/* Don't make duplicate entries for the same paths. */
867 	xpt_lock_buses();
868 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
869 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
870 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
871 				wakeup(&xsoftc.ccb_scanq);
872 				xpt_unlock_buses();
873 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
874 				xpt_free_path(ccb->ccb_h.path);
875 				xpt_free_ccb(ccb);
876 				return;
877 			}
878 		}
879 	}
880 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
881 	xpt_hold_boot_locked();
882 	wakeup(&xsoftc.ccb_scanq);
883 	xpt_unlock_buses();
884 }
885 
886 /* Functions accessed by the peripheral drivers */
887 static int
888 xpt_init(void *dummy)
889 {
890 	struct cam_sim *xpt_sim;
891 	struct cam_path *path;
892 	struct cam_devq *devq;
893 	cam_status status;
894 	int error, i;
895 
896 	TAILQ_INIT(&xsoftc.xpt_busses);
897 	TAILQ_INIT(&xsoftc.ccb_scanq);
898 	STAILQ_INIT(&xsoftc.highpowerq);
899 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
900 
901 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
902 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
903 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
904 
905 #ifdef CAM_BOOT_DELAY
906 	/*
907 	 * Override this value at compile time to assist our users
908 	 * who don't use loader to boot a kernel.
909 	 */
910 	xsoftc.boot_delay = CAM_BOOT_DELAY;
911 #endif
912 
913 	/*
914 	 * The xpt layer is, itself, the equivalent of a SIM.
915 	 * Allow 16 ccbs in the ccb pool for it.  This should
916 	 * give decent parallelism when we probe buses and
917 	 * perform other XPT functions.
918 	 */
919 	devq = cam_simq_alloc(16);
920 	xpt_sim = cam_sim_alloc(xptaction,
921 				xptpoll,
922 				"xpt",
923 				/*softc*/NULL,
924 				/*unit*/0,
925 				/*mtx*/NULL,
926 				/*max_dev_transactions*/0,
927 				/*max_tagged_dev_transactions*/0,
928 				devq);
929 	if (xpt_sim == NULL)
930 		return (ENOMEM);
931 
932 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
933 		printf("xpt_init: xpt_bus_register failed with status %#x,"
934 		       " failing attach\n", status);
935 		return (EINVAL);
936 	}
937 
938 	/*
939 	 * Looking at the XPT from the SIM layer, the XPT is
940 	 * the equivalent of a peripheral driver.  Allocate
941 	 * a peripheral driver entry for us.
942 	 */
943 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
944 				      CAM_TARGET_WILDCARD,
945 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
946 		printf("xpt_init: xpt_create_path failed with status %#x,"
947 		       " failing attach\n", status);
948 		return (EINVAL);
949 	}
950 	xpt_path_lock(path);
951 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
952 			 path, NULL, 0, xpt_sim);
953 	xpt_path_unlock(path);
954 	xpt_free_path(path);
955 
956 	if (cam_num_doneqs < 1)
957 		cam_num_doneqs = 1 + mp_ncpus / 6;
958 	else if (cam_num_doneqs > MAXCPU)
959 		cam_num_doneqs = MAXCPU;
960 	for (i = 0; i < cam_num_doneqs; i++) {
961 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
962 		    MTX_DEF);
963 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
964 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
965 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
966 		if (error != 0) {
967 			cam_num_doneqs = i;
968 			break;
969 		}
970 	}
971 	if (cam_num_doneqs < 1) {
972 		printf("xpt_init: Cannot init completion queues "
973 		       "- failing attach\n");
974 		return (ENOMEM);
975 	}
976 
977 	mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
978 	STAILQ_INIT(&cam_async.cam_doneq);
979 	if (kproc_kthread_add(xpt_async_td, &cam_async,
980 		&cam_proc, NULL, 0, 0, "cam", "async") != 0) {
981 		printf("xpt_init: Cannot init async thread "
982 		       "- failing attach\n");
983 		return (ENOMEM);
984 	}
985 
986 	/*
987 	 * Register a callback for when interrupts are enabled.
988 	 */
989 	config_intrhook_oneshot(xpt_config, NULL);
990 
991 	return (0);
992 }
993 
994 static cam_status
995 xptregister(struct cam_periph *periph, void *arg)
996 {
997 	struct cam_sim *xpt_sim;
998 
999 	if (periph == NULL) {
1000 		printf("xptregister: periph was NULL!!\n");
1001 		return(CAM_REQ_CMP_ERR);
1002 	}
1003 
1004 	xpt_sim = (struct cam_sim *)arg;
1005 	xpt_sim->softc = periph;
1006 	xpt_periph = periph;
1007 	periph->softc = NULL;
1008 
1009 	return(CAM_REQ_CMP);
1010 }
1011 
1012 int32_t
1013 xpt_add_periph(struct cam_periph *periph)
1014 {
1015 	struct cam_ed *device;
1016 	int32_t	 status;
1017 
1018 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1019 	device = periph->path->device;
1020 	status = CAM_REQ_CMP;
1021 	if (device != NULL) {
1022 		mtx_lock(&device->target->bus->eb_mtx);
1023 		device->generation++;
1024 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1025 		mtx_unlock(&device->target->bus->eb_mtx);
1026 		atomic_add_32(&xsoftc.xpt_generation, 1);
1027 	}
1028 
1029 	return (status);
1030 }
1031 
1032 void
1033 xpt_remove_periph(struct cam_periph *periph)
1034 {
1035 	struct cam_ed *device;
1036 
1037 	device = periph->path->device;
1038 	if (device != NULL) {
1039 		mtx_lock(&device->target->bus->eb_mtx);
1040 		device->generation++;
1041 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1042 		mtx_unlock(&device->target->bus->eb_mtx);
1043 		atomic_add_32(&xsoftc.xpt_generation, 1);
1044 	}
1045 }
1046 
1047 void
1048 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1049 {
1050 	struct	cam_path *path = periph->path;
1051 	struct  xpt_proto *proto;
1052 
1053 	cam_periph_assert(periph, MA_OWNED);
1054 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1055 
1056 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1057 	       periph->periph_name, periph->unit_number,
1058 	       path->bus->sim->sim_name,
1059 	       path->bus->sim->unit_number,
1060 	       path->bus->sim->bus_id,
1061 	       path->bus->path_id,
1062 	       path->target->target_id,
1063 	       (uintmax_t)path->device->lun_id);
1064 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1065 	proto = xpt_proto_find(path->device->protocol);
1066 	if (proto)
1067 		proto->ops->announce(path->device);
1068 	else
1069 		printf("%s%d: Unknown protocol device %d\n",
1070 		    periph->periph_name, periph->unit_number,
1071 		    path->device->protocol);
1072 	if (path->device->serial_num_len > 0) {
1073 		/* Don't wrap the screen  - print only the first 60 chars */
1074 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1075 		       periph->unit_number, path->device->serial_num);
1076 	}
1077 	/* Announce transport details. */
1078 	path->bus->xport->ops->announce(periph);
1079 	/* Announce command queueing. */
1080 	if (path->device->inq_flags & SID_CmdQue
1081 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1082 		printf("%s%d: Command Queueing enabled\n",
1083 		       periph->periph_name, periph->unit_number);
1084 	}
1085 	/* Announce caller's details if they've passed in. */
1086 	if (announce_string != NULL)
1087 		printf("%s%d: %s\n", periph->periph_name,
1088 		       periph->unit_number, announce_string);
1089 }
1090 
1091 void
1092 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1093     char *announce_string)
1094 {
1095 	struct	cam_path *path = periph->path;
1096 	struct  xpt_proto *proto;
1097 
1098 	cam_periph_assert(periph, MA_OWNED);
1099 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1100 
1101 	/* Fall back to the non-sbuf method if necessary */
1102 	if (xsoftc.announce_nosbuf != 0) {
1103 		xpt_announce_periph(periph, announce_string);
1104 		return;
1105 	}
1106 	proto = xpt_proto_find(path->device->protocol);
1107 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1108 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1109 		xpt_announce_periph(periph, announce_string);
1110 		return;
1111 	}
1112 
1113 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1114 	    periph->periph_name, periph->unit_number,
1115 	    path->bus->sim->sim_name,
1116 	    path->bus->sim->unit_number,
1117 	    path->bus->sim->bus_id,
1118 	    path->bus->path_id,
1119 	    path->target->target_id,
1120 	    (uintmax_t)path->device->lun_id);
1121 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1122 
1123 	if (proto)
1124 		proto->ops->announce_sbuf(path->device, sb);
1125 	else
1126 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1127 		    periph->periph_name, periph->unit_number,
1128 		    path->device->protocol);
1129 	if (path->device->serial_num_len > 0) {
1130 		/* Don't wrap the screen  - print only the first 60 chars */
1131 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1132 		    periph->periph_name, periph->unit_number,
1133 		    path->device->serial_num);
1134 	}
1135 	/* Announce transport details. */
1136 	path->bus->xport->ops->announce_sbuf(periph, sb);
1137 	/* Announce command queueing. */
1138 	if (path->device->inq_flags & SID_CmdQue
1139 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1140 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1141 		    periph->periph_name, periph->unit_number);
1142 	}
1143 	/* Announce caller's details if they've passed in. */
1144 	if (announce_string != NULL)
1145 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1146 		    periph->unit_number, announce_string);
1147 }
1148 
1149 void
1150 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1151 {
1152 	if (quirks != 0) {
1153 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1154 		    periph->unit_number, quirks, bit_string);
1155 	}
1156 }
1157 
1158 void
1159 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1160 			 int quirks, char *bit_string)
1161 {
1162 	if (xsoftc.announce_nosbuf != 0) {
1163 		xpt_announce_quirks(periph, quirks, bit_string);
1164 		return;
1165 	}
1166 
1167 	if (quirks != 0) {
1168 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1169 		    periph->unit_number, quirks, bit_string);
1170 	}
1171 }
1172 
1173 void
1174 xpt_denounce_periph(struct cam_periph *periph)
1175 {
1176 	struct	cam_path *path = periph->path;
1177 	struct  xpt_proto *proto;
1178 
1179 	cam_periph_assert(periph, MA_OWNED);
1180 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1181 	       periph->periph_name, periph->unit_number,
1182 	       path->bus->sim->sim_name,
1183 	       path->bus->sim->unit_number,
1184 	       path->bus->sim->bus_id,
1185 	       path->bus->path_id,
1186 	       path->target->target_id,
1187 	       (uintmax_t)path->device->lun_id);
1188 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1189 	proto = xpt_proto_find(path->device->protocol);
1190 	if (proto)
1191 		proto->ops->denounce(path->device);
1192 	else
1193 		printf("%s%d: Unknown protocol device %d\n",
1194 		    periph->periph_name, periph->unit_number,
1195 		    path->device->protocol);
1196 	if (path->device->serial_num_len > 0)
1197 		printf(" s/n %.60s", path->device->serial_num);
1198 	printf(" detached\n");
1199 }
1200 
1201 void
1202 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1203 {
1204 	struct cam_path *path = periph->path;
1205 	struct xpt_proto *proto;
1206 
1207 	cam_periph_assert(periph, MA_OWNED);
1208 
1209 	/* Fall back to the non-sbuf method if necessary */
1210 	if (xsoftc.announce_nosbuf != 0) {
1211 		xpt_denounce_periph(periph);
1212 		return;
1213 	}
1214 	proto = xpt_proto_find(path->device->protocol);
1215 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1216 		xpt_denounce_periph(periph);
1217 		return;
1218 	}
1219 
1220 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1221 	    periph->periph_name, periph->unit_number,
1222 	    path->bus->sim->sim_name,
1223 	    path->bus->sim->unit_number,
1224 	    path->bus->sim->bus_id,
1225 	    path->bus->path_id,
1226 	    path->target->target_id,
1227 	    (uintmax_t)path->device->lun_id);
1228 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1229 
1230 	if (proto)
1231 		proto->ops->denounce_sbuf(path->device, sb);
1232 	else
1233 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1234 		    periph->periph_name, periph->unit_number,
1235 		    path->device->protocol);
1236 	if (path->device->serial_num_len > 0)
1237 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1238 	sbuf_printf(sb, " detached\n");
1239 }
1240 
1241 int
1242 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1243 {
1244 	int ret = -1, l, o;
1245 	struct ccb_dev_advinfo cdai;
1246 	struct scsi_vpd_device_id *did;
1247 	struct scsi_vpd_id_descriptor *idd;
1248 
1249 	xpt_path_assert(path, MA_OWNED);
1250 
1251 	memset(&cdai, 0, sizeof(cdai));
1252 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1253 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1254 	cdai.flags = CDAI_FLAG_NONE;
1255 	cdai.bufsiz = len;
1256 	cdai.buf = buf;
1257 
1258 	if (!strcmp(attr, "GEOM::ident"))
1259 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1260 	else if (!strcmp(attr, "GEOM::physpath"))
1261 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1262 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1263 		 strcmp(attr, "GEOM::lunname") == 0) {
1264 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1265 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1266 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1267 		if (cdai.buf == NULL) {
1268 			ret = ENOMEM;
1269 			goto out;
1270 		}
1271 	} else
1272 		goto out;
1273 
1274 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1275 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1276 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1277 	if (cdai.provsiz == 0)
1278 		goto out;
1279 	switch(cdai.buftype) {
1280 	case CDAI_TYPE_SCSI_DEVID:
1281 		did = (struct scsi_vpd_device_id *)cdai.buf;
1282 		if (strcmp(attr, "GEOM::lunid") == 0) {
1283 			idd = scsi_get_devid(did, cdai.provsiz,
1284 			    scsi_devid_is_lun_naa);
1285 			if (idd == NULL)
1286 				idd = scsi_get_devid(did, cdai.provsiz,
1287 				    scsi_devid_is_lun_eui64);
1288 			if (idd == NULL)
1289 				idd = scsi_get_devid(did, cdai.provsiz,
1290 				    scsi_devid_is_lun_uuid);
1291 			if (idd == NULL)
1292 				idd = scsi_get_devid(did, cdai.provsiz,
1293 				    scsi_devid_is_lun_md5);
1294 		} else
1295 			idd = NULL;
1296 
1297 		if (idd == NULL)
1298 			idd = scsi_get_devid(did, cdai.provsiz,
1299 			    scsi_devid_is_lun_t10);
1300 		if (idd == NULL)
1301 			idd = scsi_get_devid(did, cdai.provsiz,
1302 			    scsi_devid_is_lun_name);
1303 		if (idd == NULL)
1304 			break;
1305 
1306 		ret = 0;
1307 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1308 		    SVPD_ID_CODESET_ASCII) {
1309 			if (idd->length < len) {
1310 				for (l = 0; l < idd->length; l++)
1311 					buf[l] = idd->identifier[l] ?
1312 					    idd->identifier[l] : ' ';
1313 				buf[l] = 0;
1314 			} else
1315 				ret = EFAULT;
1316 			break;
1317 		}
1318 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1319 		    SVPD_ID_CODESET_UTF8) {
1320 			l = strnlen(idd->identifier, idd->length);
1321 			if (l < len) {
1322 				bcopy(idd->identifier, buf, l);
1323 				buf[l] = 0;
1324 			} else
1325 				ret = EFAULT;
1326 			break;
1327 		}
1328 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1329 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1330 			if ((idd->length - 2) * 2 + 4 >= len) {
1331 				ret = EFAULT;
1332 				break;
1333 			}
1334 			for (l = 2, o = 0; l < idd->length; l++) {
1335 				if (l == 6 || l == 8 || l == 10 || l == 12)
1336 				    o += sprintf(buf + o, "-");
1337 				o += sprintf(buf + o, "%02x",
1338 				    idd->identifier[l]);
1339 			}
1340 			break;
1341 		}
1342 		if (idd->length * 2 < len) {
1343 			for (l = 0; l < idd->length; l++)
1344 				sprintf(buf + l * 2, "%02x",
1345 				    idd->identifier[l]);
1346 		} else
1347 				ret = EFAULT;
1348 		break;
1349 	default:
1350 		if (cdai.provsiz < len) {
1351 			cdai.buf[cdai.provsiz] = 0;
1352 			ret = 0;
1353 		} else
1354 			ret = EFAULT;
1355 		break;
1356 	}
1357 
1358 out:
1359 	if ((char *)cdai.buf != buf)
1360 		free(cdai.buf, M_CAMXPT);
1361 	return ret;
1362 }
1363 
1364 static dev_match_ret
1365 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1366 	    struct cam_eb *bus)
1367 {
1368 	dev_match_ret retval;
1369 	u_int i;
1370 
1371 	retval = DM_RET_NONE;
1372 
1373 	/*
1374 	 * If we aren't given something to match against, that's an error.
1375 	 */
1376 	if (bus == NULL)
1377 		return(DM_RET_ERROR);
1378 
1379 	/*
1380 	 * If there are no match entries, then this bus matches no
1381 	 * matter what.
1382 	 */
1383 	if ((patterns == NULL) || (num_patterns == 0))
1384 		return(DM_RET_DESCEND | DM_RET_COPY);
1385 
1386 	for (i = 0; i < num_patterns; i++) {
1387 		struct bus_match_pattern *cur_pattern;
1388 
1389 		/*
1390 		 * If the pattern in question isn't for a bus node, we
1391 		 * aren't interested.  However, we do indicate to the
1392 		 * calling routine that we should continue descending the
1393 		 * tree, since the user wants to match against lower-level
1394 		 * EDT elements.
1395 		 */
1396 		if (patterns[i].type != DEV_MATCH_BUS) {
1397 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1398 				retval |= DM_RET_DESCEND;
1399 			continue;
1400 		}
1401 
1402 		cur_pattern = &patterns[i].pattern.bus_pattern;
1403 
1404 		/*
1405 		 * If they want to match any bus node, we give them any
1406 		 * device node.
1407 		 */
1408 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1409 			/* set the copy flag */
1410 			retval |= DM_RET_COPY;
1411 
1412 			/*
1413 			 * If we've already decided on an action, go ahead
1414 			 * and return.
1415 			 */
1416 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1417 				return(retval);
1418 		}
1419 
1420 		/*
1421 		 * Not sure why someone would do this...
1422 		 */
1423 		if (cur_pattern->flags == BUS_MATCH_NONE)
1424 			continue;
1425 
1426 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1427 		 && (cur_pattern->path_id != bus->path_id))
1428 			continue;
1429 
1430 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1431 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1432 			continue;
1433 
1434 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1435 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1436 			continue;
1437 
1438 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1439 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1440 			     DEV_IDLEN) != 0))
1441 			continue;
1442 
1443 		/*
1444 		 * If we get to this point, the user definitely wants
1445 		 * information on this bus.  So tell the caller to copy the
1446 		 * data out.
1447 		 */
1448 		retval |= DM_RET_COPY;
1449 
1450 		/*
1451 		 * If the return action has been set to descend, then we
1452 		 * know that we've already seen a non-bus matching
1453 		 * expression, therefore we need to further descend the tree.
1454 		 * This won't change by continuing around the loop, so we
1455 		 * go ahead and return.  If we haven't seen a non-bus
1456 		 * matching expression, we keep going around the loop until
1457 		 * we exhaust the matching expressions.  We'll set the stop
1458 		 * flag once we fall out of the loop.
1459 		 */
1460 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1461 			return(retval);
1462 	}
1463 
1464 	/*
1465 	 * If the return action hasn't been set to descend yet, that means
1466 	 * we haven't seen anything other than bus matching patterns.  So
1467 	 * tell the caller to stop descending the tree -- the user doesn't
1468 	 * want to match against lower level tree elements.
1469 	 */
1470 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1471 		retval |= DM_RET_STOP;
1472 
1473 	return(retval);
1474 }
1475 
1476 static dev_match_ret
1477 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1478 	       struct cam_ed *device)
1479 {
1480 	dev_match_ret retval;
1481 	u_int i;
1482 
1483 	retval = DM_RET_NONE;
1484 
1485 	/*
1486 	 * If we aren't given something to match against, that's an error.
1487 	 */
1488 	if (device == NULL)
1489 		return(DM_RET_ERROR);
1490 
1491 	/*
1492 	 * If there are no match entries, then this device matches no
1493 	 * matter what.
1494 	 */
1495 	if ((patterns == NULL) || (num_patterns == 0))
1496 		return(DM_RET_DESCEND | DM_RET_COPY);
1497 
1498 	for (i = 0; i < num_patterns; i++) {
1499 		struct device_match_pattern *cur_pattern;
1500 		struct scsi_vpd_device_id *device_id_page;
1501 
1502 		/*
1503 		 * If the pattern in question isn't for a device node, we
1504 		 * aren't interested.
1505 		 */
1506 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1507 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1508 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1509 				retval |= DM_RET_DESCEND;
1510 			continue;
1511 		}
1512 
1513 		cur_pattern = &patterns[i].pattern.device_pattern;
1514 
1515 		/* Error out if mutually exclusive options are specified. */
1516 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1517 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1518 			return(DM_RET_ERROR);
1519 
1520 		/*
1521 		 * If they want to match any device node, we give them any
1522 		 * device node.
1523 		 */
1524 		if (cur_pattern->flags == DEV_MATCH_ANY)
1525 			goto copy_dev_node;
1526 
1527 		/*
1528 		 * Not sure why someone would do this...
1529 		 */
1530 		if (cur_pattern->flags == DEV_MATCH_NONE)
1531 			continue;
1532 
1533 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1534 		 && (cur_pattern->path_id != device->target->bus->path_id))
1535 			continue;
1536 
1537 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1538 		 && (cur_pattern->target_id != device->target->target_id))
1539 			continue;
1540 
1541 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1542 		 && (cur_pattern->target_lun != device->lun_id))
1543 			continue;
1544 
1545 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1546 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1547 				    (caddr_t)&cur_pattern->data.inq_pat,
1548 				    1, sizeof(cur_pattern->data.inq_pat),
1549 				    scsi_static_inquiry_match) == NULL))
1550 			continue;
1551 
1552 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1553 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1554 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1555 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1556 				      device->device_id_len
1557 				    - SVPD_DEVICE_ID_HDR_LEN,
1558 				      cur_pattern->data.devid_pat.id,
1559 				      cur_pattern->data.devid_pat.id_len) != 0))
1560 			continue;
1561 
1562 copy_dev_node:
1563 		/*
1564 		 * If we get to this point, the user definitely wants
1565 		 * information on this device.  So tell the caller to copy
1566 		 * the data out.
1567 		 */
1568 		retval |= DM_RET_COPY;
1569 
1570 		/*
1571 		 * If the return action has been set to descend, then we
1572 		 * know that we've already seen a peripheral matching
1573 		 * expression, therefore we need to further descend the tree.
1574 		 * This won't change by continuing around the loop, so we
1575 		 * go ahead and return.  If we haven't seen a peripheral
1576 		 * matching expression, we keep going around the loop until
1577 		 * we exhaust the matching expressions.  We'll set the stop
1578 		 * flag once we fall out of the loop.
1579 		 */
1580 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1581 			return(retval);
1582 	}
1583 
1584 	/*
1585 	 * If the return action hasn't been set to descend yet, that means
1586 	 * we haven't seen any peripheral matching patterns.  So tell the
1587 	 * caller to stop descending the tree -- the user doesn't want to
1588 	 * match against lower level tree elements.
1589 	 */
1590 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1591 		retval |= DM_RET_STOP;
1592 
1593 	return(retval);
1594 }
1595 
1596 /*
1597  * Match a single peripheral against any number of match patterns.
1598  */
1599 static dev_match_ret
1600 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1601 	       struct cam_periph *periph)
1602 {
1603 	dev_match_ret retval;
1604 	u_int i;
1605 
1606 	/*
1607 	 * If we aren't given something to match against, that's an error.
1608 	 */
1609 	if (periph == NULL)
1610 		return(DM_RET_ERROR);
1611 
1612 	/*
1613 	 * If there are no match entries, then this peripheral matches no
1614 	 * matter what.
1615 	 */
1616 	if ((patterns == NULL) || (num_patterns == 0))
1617 		return(DM_RET_STOP | DM_RET_COPY);
1618 
1619 	/*
1620 	 * There aren't any nodes below a peripheral node, so there's no
1621 	 * reason to descend the tree any further.
1622 	 */
1623 	retval = DM_RET_STOP;
1624 
1625 	for (i = 0; i < num_patterns; i++) {
1626 		struct periph_match_pattern *cur_pattern;
1627 
1628 		/*
1629 		 * If the pattern in question isn't for a peripheral, we
1630 		 * aren't interested.
1631 		 */
1632 		if (patterns[i].type != DEV_MATCH_PERIPH)
1633 			continue;
1634 
1635 		cur_pattern = &patterns[i].pattern.periph_pattern;
1636 
1637 		/*
1638 		 * If they want to match on anything, then we will do so.
1639 		 */
1640 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1641 			/* set the copy flag */
1642 			retval |= DM_RET_COPY;
1643 
1644 			/*
1645 			 * We've already set the return action to stop,
1646 			 * since there are no nodes below peripherals in
1647 			 * the tree.
1648 			 */
1649 			return(retval);
1650 		}
1651 
1652 		/*
1653 		 * Not sure why someone would do this...
1654 		 */
1655 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1656 			continue;
1657 
1658 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1659 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1660 			continue;
1661 
1662 		/*
1663 		 * For the target and lun id's, we have to make sure the
1664 		 * target and lun pointers aren't NULL.  The xpt peripheral
1665 		 * has a wildcard target and device.
1666 		 */
1667 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1668 		 && ((periph->path->target == NULL)
1669 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1670 			continue;
1671 
1672 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1673 		 && ((periph->path->device == NULL)
1674 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1675 			continue;
1676 
1677 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1678 		 && (cur_pattern->unit_number != periph->unit_number))
1679 			continue;
1680 
1681 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1682 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1683 			     DEV_IDLEN) != 0))
1684 			continue;
1685 
1686 		/*
1687 		 * If we get to this point, the user definitely wants
1688 		 * information on this peripheral.  So tell the caller to
1689 		 * copy the data out.
1690 		 */
1691 		retval |= DM_RET_COPY;
1692 
1693 		/*
1694 		 * The return action has already been set to stop, since
1695 		 * peripherals don't have any nodes below them in the EDT.
1696 		 */
1697 		return(retval);
1698 	}
1699 
1700 	/*
1701 	 * If we get to this point, the peripheral that was passed in
1702 	 * doesn't match any of the patterns.
1703 	 */
1704 	return(retval);
1705 }
1706 
1707 static int
1708 xptedtbusfunc(struct cam_eb *bus, void *arg)
1709 {
1710 	struct ccb_dev_match *cdm;
1711 	struct cam_et *target;
1712 	dev_match_ret retval;
1713 
1714 	cdm = (struct ccb_dev_match *)arg;
1715 
1716 	/*
1717 	 * If our position is for something deeper in the tree, that means
1718 	 * that we've already seen this node.  So, we keep going down.
1719 	 */
1720 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1721 	 && (cdm->pos.cookie.bus == bus)
1722 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1723 	 && (cdm->pos.cookie.target != NULL))
1724 		retval = DM_RET_DESCEND;
1725 	else
1726 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1727 
1728 	/*
1729 	 * If we got an error, bail out of the search.
1730 	 */
1731 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1732 		cdm->status = CAM_DEV_MATCH_ERROR;
1733 		return(0);
1734 	}
1735 
1736 	/*
1737 	 * If the copy flag is set, copy this bus out.
1738 	 */
1739 	if (retval & DM_RET_COPY) {
1740 		int spaceleft, j;
1741 
1742 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1743 			sizeof(struct dev_match_result));
1744 
1745 		/*
1746 		 * If we don't have enough space to put in another
1747 		 * match result, save our position and tell the
1748 		 * user there are more devices to check.
1749 		 */
1750 		if (spaceleft < sizeof(struct dev_match_result)) {
1751 			bzero(&cdm->pos, sizeof(cdm->pos));
1752 			cdm->pos.position_type =
1753 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1754 
1755 			cdm->pos.cookie.bus = bus;
1756 			cdm->pos.generations[CAM_BUS_GENERATION]=
1757 				xsoftc.bus_generation;
1758 			cdm->status = CAM_DEV_MATCH_MORE;
1759 			return(0);
1760 		}
1761 		j = cdm->num_matches;
1762 		cdm->num_matches++;
1763 		cdm->matches[j].type = DEV_MATCH_BUS;
1764 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1765 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1766 		cdm->matches[j].result.bus_result.unit_number =
1767 			bus->sim->unit_number;
1768 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1769 			bus->sim->sim_name,
1770 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1771 	}
1772 
1773 	/*
1774 	 * If the user is only interested in buses, there's no
1775 	 * reason to descend to the next level in the tree.
1776 	 */
1777 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1778 		return(1);
1779 
1780 	/*
1781 	 * If there is a target generation recorded, check it to
1782 	 * make sure the target list hasn't changed.
1783 	 */
1784 	mtx_lock(&bus->eb_mtx);
1785 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1786 	 && (cdm->pos.cookie.bus == bus)
1787 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1788 	 && (cdm->pos.cookie.target != NULL)) {
1789 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1790 		    bus->generation)) {
1791 			mtx_unlock(&bus->eb_mtx);
1792 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1793 			return (0);
1794 		}
1795 		target = (struct cam_et *)cdm->pos.cookie.target;
1796 		target->refcount++;
1797 	} else
1798 		target = NULL;
1799 	mtx_unlock(&bus->eb_mtx);
1800 
1801 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1802 }
1803 
1804 static int
1805 xptedttargetfunc(struct cam_et *target, void *arg)
1806 {
1807 	struct ccb_dev_match *cdm;
1808 	struct cam_eb *bus;
1809 	struct cam_ed *device;
1810 
1811 	cdm = (struct ccb_dev_match *)arg;
1812 	bus = target->bus;
1813 
1814 	/*
1815 	 * If there is a device list generation recorded, check it to
1816 	 * make sure the device list hasn't changed.
1817 	 */
1818 	mtx_lock(&bus->eb_mtx);
1819 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1820 	 && (cdm->pos.cookie.bus == bus)
1821 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1822 	 && (cdm->pos.cookie.target == target)
1823 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1824 	 && (cdm->pos.cookie.device != NULL)) {
1825 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1826 		    target->generation) {
1827 			mtx_unlock(&bus->eb_mtx);
1828 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1829 			return(0);
1830 		}
1831 		device = (struct cam_ed *)cdm->pos.cookie.device;
1832 		device->refcount++;
1833 	} else
1834 		device = NULL;
1835 	mtx_unlock(&bus->eb_mtx);
1836 
1837 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1838 }
1839 
1840 static int
1841 xptedtdevicefunc(struct cam_ed *device, void *arg)
1842 {
1843 	struct cam_eb *bus;
1844 	struct cam_periph *periph;
1845 	struct ccb_dev_match *cdm;
1846 	dev_match_ret retval;
1847 
1848 	cdm = (struct ccb_dev_match *)arg;
1849 	bus = device->target->bus;
1850 
1851 	/*
1852 	 * If our position is for something deeper in the tree, that means
1853 	 * that we've already seen this node.  So, we keep going down.
1854 	 */
1855 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1856 	 && (cdm->pos.cookie.device == device)
1857 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1858 	 && (cdm->pos.cookie.periph != NULL))
1859 		retval = DM_RET_DESCEND;
1860 	else
1861 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1862 					device);
1863 
1864 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1865 		cdm->status = CAM_DEV_MATCH_ERROR;
1866 		return(0);
1867 	}
1868 
1869 	/*
1870 	 * If the copy flag is set, copy this device out.
1871 	 */
1872 	if (retval & DM_RET_COPY) {
1873 		int spaceleft, j;
1874 
1875 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1876 			sizeof(struct dev_match_result));
1877 
1878 		/*
1879 		 * If we don't have enough space to put in another
1880 		 * match result, save our position and tell the
1881 		 * user there are more devices to check.
1882 		 */
1883 		if (spaceleft < sizeof(struct dev_match_result)) {
1884 			bzero(&cdm->pos, sizeof(cdm->pos));
1885 			cdm->pos.position_type =
1886 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1887 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1888 
1889 			cdm->pos.cookie.bus = device->target->bus;
1890 			cdm->pos.generations[CAM_BUS_GENERATION]=
1891 				xsoftc.bus_generation;
1892 			cdm->pos.cookie.target = device->target;
1893 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1894 				device->target->bus->generation;
1895 			cdm->pos.cookie.device = device;
1896 			cdm->pos.generations[CAM_DEV_GENERATION] =
1897 				device->target->generation;
1898 			cdm->status = CAM_DEV_MATCH_MORE;
1899 			return(0);
1900 		}
1901 		j = cdm->num_matches;
1902 		cdm->num_matches++;
1903 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1904 		cdm->matches[j].result.device_result.path_id =
1905 			device->target->bus->path_id;
1906 		cdm->matches[j].result.device_result.target_id =
1907 			device->target->target_id;
1908 		cdm->matches[j].result.device_result.target_lun =
1909 			device->lun_id;
1910 		cdm->matches[j].result.device_result.protocol =
1911 			device->protocol;
1912 		bcopy(&device->inq_data,
1913 		      &cdm->matches[j].result.device_result.inq_data,
1914 		      sizeof(struct scsi_inquiry_data));
1915 		bcopy(&device->ident_data,
1916 		      &cdm->matches[j].result.device_result.ident_data,
1917 		      sizeof(struct ata_params));
1918 
1919 		/* Let the user know whether this device is unconfigured */
1920 		if (device->flags & CAM_DEV_UNCONFIGURED)
1921 			cdm->matches[j].result.device_result.flags =
1922 				DEV_RESULT_UNCONFIGURED;
1923 		else
1924 			cdm->matches[j].result.device_result.flags =
1925 				DEV_RESULT_NOFLAG;
1926 	}
1927 
1928 	/*
1929 	 * If the user isn't interested in peripherals, don't descend
1930 	 * the tree any further.
1931 	 */
1932 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1933 		return(1);
1934 
1935 	/*
1936 	 * If there is a peripheral list generation recorded, make sure
1937 	 * it hasn't changed.
1938 	 */
1939 	xpt_lock_buses();
1940 	mtx_lock(&bus->eb_mtx);
1941 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1942 	 && (cdm->pos.cookie.bus == bus)
1943 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1944 	 && (cdm->pos.cookie.target == device->target)
1945 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1946 	 && (cdm->pos.cookie.device == device)
1947 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1948 	 && (cdm->pos.cookie.periph != NULL)) {
1949 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1950 		    device->generation) {
1951 			mtx_unlock(&bus->eb_mtx);
1952 			xpt_unlock_buses();
1953 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1954 			return(0);
1955 		}
1956 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1957 		periph->refcount++;
1958 	} else
1959 		periph = NULL;
1960 	mtx_unlock(&bus->eb_mtx);
1961 	xpt_unlock_buses();
1962 
1963 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1964 }
1965 
1966 static int
1967 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1968 {
1969 	struct ccb_dev_match *cdm;
1970 	dev_match_ret retval;
1971 
1972 	cdm = (struct ccb_dev_match *)arg;
1973 
1974 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1975 
1976 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1977 		cdm->status = CAM_DEV_MATCH_ERROR;
1978 		return(0);
1979 	}
1980 
1981 	/*
1982 	 * If the copy flag is set, copy this peripheral out.
1983 	 */
1984 	if (retval & DM_RET_COPY) {
1985 		int spaceleft, j;
1986 		size_t l;
1987 
1988 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1989 			sizeof(struct dev_match_result));
1990 
1991 		/*
1992 		 * If we don't have enough space to put in another
1993 		 * match result, save our position and tell the
1994 		 * user there are more devices to check.
1995 		 */
1996 		if (spaceleft < sizeof(struct dev_match_result)) {
1997 			bzero(&cdm->pos, sizeof(cdm->pos));
1998 			cdm->pos.position_type =
1999 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2000 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2001 				CAM_DEV_POS_PERIPH;
2002 
2003 			cdm->pos.cookie.bus = periph->path->bus;
2004 			cdm->pos.generations[CAM_BUS_GENERATION]=
2005 				xsoftc.bus_generation;
2006 			cdm->pos.cookie.target = periph->path->target;
2007 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2008 				periph->path->bus->generation;
2009 			cdm->pos.cookie.device = periph->path->device;
2010 			cdm->pos.generations[CAM_DEV_GENERATION] =
2011 				periph->path->target->generation;
2012 			cdm->pos.cookie.periph = periph;
2013 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2014 				periph->path->device->generation;
2015 			cdm->status = CAM_DEV_MATCH_MORE;
2016 			return(0);
2017 		}
2018 
2019 		j = cdm->num_matches;
2020 		cdm->num_matches++;
2021 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2022 		cdm->matches[j].result.periph_result.path_id =
2023 			periph->path->bus->path_id;
2024 		cdm->matches[j].result.periph_result.target_id =
2025 			periph->path->target->target_id;
2026 		cdm->matches[j].result.periph_result.target_lun =
2027 			periph->path->device->lun_id;
2028 		cdm->matches[j].result.periph_result.unit_number =
2029 			periph->unit_number;
2030 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2031 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2032 			periph->periph_name, l);
2033 	}
2034 
2035 	return(1);
2036 }
2037 
2038 static int
2039 xptedtmatch(struct ccb_dev_match *cdm)
2040 {
2041 	struct cam_eb *bus;
2042 	int ret;
2043 
2044 	cdm->num_matches = 0;
2045 
2046 	/*
2047 	 * Check the bus list generation.  If it has changed, the user
2048 	 * needs to reset everything and start over.
2049 	 */
2050 	xpt_lock_buses();
2051 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2052 	 && (cdm->pos.cookie.bus != NULL)) {
2053 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2054 		    xsoftc.bus_generation) {
2055 			xpt_unlock_buses();
2056 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2057 			return(0);
2058 		}
2059 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2060 		bus->refcount++;
2061 	} else
2062 		bus = NULL;
2063 	xpt_unlock_buses();
2064 
2065 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2066 
2067 	/*
2068 	 * If we get back 0, that means that we had to stop before fully
2069 	 * traversing the EDT.  It also means that one of the subroutines
2070 	 * has set the status field to the proper value.  If we get back 1,
2071 	 * we've fully traversed the EDT and copied out any matching entries.
2072 	 */
2073 	if (ret == 1)
2074 		cdm->status = CAM_DEV_MATCH_LAST;
2075 
2076 	return(ret);
2077 }
2078 
2079 static int
2080 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2081 {
2082 	struct cam_periph *periph;
2083 	struct ccb_dev_match *cdm;
2084 
2085 	cdm = (struct ccb_dev_match *)arg;
2086 
2087 	xpt_lock_buses();
2088 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2089 	 && (cdm->pos.cookie.pdrv == pdrv)
2090 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2091 	 && (cdm->pos.cookie.periph != NULL)) {
2092 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2093 		    (*pdrv)->generation) {
2094 			xpt_unlock_buses();
2095 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2096 			return(0);
2097 		}
2098 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2099 		periph->refcount++;
2100 	} else
2101 		periph = NULL;
2102 	xpt_unlock_buses();
2103 
2104 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2105 }
2106 
2107 static int
2108 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2109 {
2110 	struct ccb_dev_match *cdm;
2111 	dev_match_ret retval;
2112 
2113 	cdm = (struct ccb_dev_match *)arg;
2114 
2115 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2116 
2117 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2118 		cdm->status = CAM_DEV_MATCH_ERROR;
2119 		return(0);
2120 	}
2121 
2122 	/*
2123 	 * If the copy flag is set, copy this peripheral out.
2124 	 */
2125 	if (retval & DM_RET_COPY) {
2126 		int spaceleft, j;
2127 		size_t l;
2128 
2129 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2130 			sizeof(struct dev_match_result));
2131 
2132 		/*
2133 		 * If we don't have enough space to put in another
2134 		 * match result, save our position and tell the
2135 		 * user there are more devices to check.
2136 		 */
2137 		if (spaceleft < sizeof(struct dev_match_result)) {
2138 			struct periph_driver **pdrv;
2139 
2140 			pdrv = NULL;
2141 			bzero(&cdm->pos, sizeof(cdm->pos));
2142 			cdm->pos.position_type =
2143 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2144 				CAM_DEV_POS_PERIPH;
2145 
2146 			/*
2147 			 * This may look a bit non-sensical, but it is
2148 			 * actually quite logical.  There are very few
2149 			 * peripheral drivers, and bloating every peripheral
2150 			 * structure with a pointer back to its parent
2151 			 * peripheral driver linker set entry would cost
2152 			 * more in the long run than doing this quick lookup.
2153 			 */
2154 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2155 				if (strcmp((*pdrv)->driver_name,
2156 				    periph->periph_name) == 0)
2157 					break;
2158 			}
2159 
2160 			if (*pdrv == NULL) {
2161 				cdm->status = CAM_DEV_MATCH_ERROR;
2162 				return(0);
2163 			}
2164 
2165 			cdm->pos.cookie.pdrv = pdrv;
2166 			/*
2167 			 * The periph generation slot does double duty, as
2168 			 * does the periph pointer slot.  They are used for
2169 			 * both edt and pdrv lookups and positioning.
2170 			 */
2171 			cdm->pos.cookie.periph = periph;
2172 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2173 				(*pdrv)->generation;
2174 			cdm->status = CAM_DEV_MATCH_MORE;
2175 			return(0);
2176 		}
2177 
2178 		j = cdm->num_matches;
2179 		cdm->num_matches++;
2180 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2181 		cdm->matches[j].result.periph_result.path_id =
2182 			periph->path->bus->path_id;
2183 
2184 		/*
2185 		 * The transport layer peripheral doesn't have a target or
2186 		 * lun.
2187 		 */
2188 		if (periph->path->target)
2189 			cdm->matches[j].result.periph_result.target_id =
2190 				periph->path->target->target_id;
2191 		else
2192 			cdm->matches[j].result.periph_result.target_id =
2193 				CAM_TARGET_WILDCARD;
2194 
2195 		if (periph->path->device)
2196 			cdm->matches[j].result.periph_result.target_lun =
2197 				periph->path->device->lun_id;
2198 		else
2199 			cdm->matches[j].result.periph_result.target_lun =
2200 				CAM_LUN_WILDCARD;
2201 
2202 		cdm->matches[j].result.periph_result.unit_number =
2203 			periph->unit_number;
2204 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2205 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2206 			periph->periph_name, l);
2207 	}
2208 
2209 	return(1);
2210 }
2211 
2212 static int
2213 xptperiphlistmatch(struct ccb_dev_match *cdm)
2214 {
2215 	int ret;
2216 
2217 	cdm->num_matches = 0;
2218 
2219 	/*
2220 	 * At this point in the edt traversal function, we check the bus
2221 	 * list generation to make sure that no buses have been added or
2222 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2223 	 * For the peripheral driver list traversal function, however, we
2224 	 * don't have to worry about new peripheral driver types coming or
2225 	 * going; they're in a linker set, and therefore can't change
2226 	 * without a recompile.
2227 	 */
2228 
2229 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2230 	 && (cdm->pos.cookie.pdrv != NULL))
2231 		ret = xptpdrvtraverse(
2232 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2233 				xptplistpdrvfunc, cdm);
2234 	else
2235 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2236 
2237 	/*
2238 	 * If we get back 0, that means that we had to stop before fully
2239 	 * traversing the peripheral driver tree.  It also means that one of
2240 	 * the subroutines has set the status field to the proper value.  If
2241 	 * we get back 1, we've fully traversed the EDT and copied out any
2242 	 * matching entries.
2243 	 */
2244 	if (ret == 1)
2245 		cdm->status = CAM_DEV_MATCH_LAST;
2246 
2247 	return(ret);
2248 }
2249 
2250 static int
2251 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2252 {
2253 	struct cam_eb *bus, *next_bus;
2254 	int retval;
2255 
2256 	retval = 1;
2257 	if (start_bus)
2258 		bus = start_bus;
2259 	else {
2260 		xpt_lock_buses();
2261 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2262 		if (bus == NULL) {
2263 			xpt_unlock_buses();
2264 			return (retval);
2265 		}
2266 		bus->refcount++;
2267 		xpt_unlock_buses();
2268 	}
2269 	for (; bus != NULL; bus = next_bus) {
2270 		retval = tr_func(bus, arg);
2271 		if (retval == 0) {
2272 			xpt_release_bus(bus);
2273 			break;
2274 		}
2275 		xpt_lock_buses();
2276 		next_bus = TAILQ_NEXT(bus, links);
2277 		if (next_bus)
2278 			next_bus->refcount++;
2279 		xpt_unlock_buses();
2280 		xpt_release_bus(bus);
2281 	}
2282 	return(retval);
2283 }
2284 
2285 static int
2286 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2287 		  xpt_targetfunc_t *tr_func, void *arg)
2288 {
2289 	struct cam_et *target, *next_target;
2290 	int retval;
2291 
2292 	retval = 1;
2293 	if (start_target)
2294 		target = start_target;
2295 	else {
2296 		mtx_lock(&bus->eb_mtx);
2297 		target = TAILQ_FIRST(&bus->et_entries);
2298 		if (target == NULL) {
2299 			mtx_unlock(&bus->eb_mtx);
2300 			return (retval);
2301 		}
2302 		target->refcount++;
2303 		mtx_unlock(&bus->eb_mtx);
2304 	}
2305 	for (; target != NULL; target = next_target) {
2306 		retval = tr_func(target, arg);
2307 		if (retval == 0) {
2308 			xpt_release_target(target);
2309 			break;
2310 		}
2311 		mtx_lock(&bus->eb_mtx);
2312 		next_target = TAILQ_NEXT(target, links);
2313 		if (next_target)
2314 			next_target->refcount++;
2315 		mtx_unlock(&bus->eb_mtx);
2316 		xpt_release_target(target);
2317 	}
2318 	return(retval);
2319 }
2320 
2321 static int
2322 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2323 		  xpt_devicefunc_t *tr_func, void *arg)
2324 {
2325 	struct cam_eb *bus;
2326 	struct cam_ed *device, *next_device;
2327 	int retval;
2328 
2329 	retval = 1;
2330 	bus = target->bus;
2331 	if (start_device)
2332 		device = start_device;
2333 	else {
2334 		mtx_lock(&bus->eb_mtx);
2335 		device = TAILQ_FIRST(&target->ed_entries);
2336 		if (device == NULL) {
2337 			mtx_unlock(&bus->eb_mtx);
2338 			return (retval);
2339 		}
2340 		device->refcount++;
2341 		mtx_unlock(&bus->eb_mtx);
2342 	}
2343 	for (; device != NULL; device = next_device) {
2344 		mtx_lock(&device->device_mtx);
2345 		retval = tr_func(device, arg);
2346 		mtx_unlock(&device->device_mtx);
2347 		if (retval == 0) {
2348 			xpt_release_device(device);
2349 			break;
2350 		}
2351 		mtx_lock(&bus->eb_mtx);
2352 		next_device = TAILQ_NEXT(device, links);
2353 		if (next_device)
2354 			next_device->refcount++;
2355 		mtx_unlock(&bus->eb_mtx);
2356 		xpt_release_device(device);
2357 	}
2358 	return(retval);
2359 }
2360 
2361 static int
2362 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2363 		  xpt_periphfunc_t *tr_func, void *arg)
2364 {
2365 	struct cam_eb *bus;
2366 	struct cam_periph *periph, *next_periph;
2367 	int retval;
2368 
2369 	retval = 1;
2370 
2371 	bus = device->target->bus;
2372 	if (start_periph)
2373 		periph = start_periph;
2374 	else {
2375 		xpt_lock_buses();
2376 		mtx_lock(&bus->eb_mtx);
2377 		periph = SLIST_FIRST(&device->periphs);
2378 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2379 			periph = SLIST_NEXT(periph, periph_links);
2380 		if (periph == NULL) {
2381 			mtx_unlock(&bus->eb_mtx);
2382 			xpt_unlock_buses();
2383 			return (retval);
2384 		}
2385 		periph->refcount++;
2386 		mtx_unlock(&bus->eb_mtx);
2387 		xpt_unlock_buses();
2388 	}
2389 	for (; periph != NULL; periph = next_periph) {
2390 		retval = tr_func(periph, arg);
2391 		if (retval == 0) {
2392 			cam_periph_release_locked(periph);
2393 			break;
2394 		}
2395 		xpt_lock_buses();
2396 		mtx_lock(&bus->eb_mtx);
2397 		next_periph = SLIST_NEXT(periph, periph_links);
2398 		while (next_periph != NULL &&
2399 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2400 			next_periph = SLIST_NEXT(next_periph, periph_links);
2401 		if (next_periph)
2402 			next_periph->refcount++;
2403 		mtx_unlock(&bus->eb_mtx);
2404 		xpt_unlock_buses();
2405 		cam_periph_release_locked(periph);
2406 	}
2407 	return(retval);
2408 }
2409 
2410 static int
2411 xptpdrvtraverse(struct periph_driver **start_pdrv,
2412 		xpt_pdrvfunc_t *tr_func, void *arg)
2413 {
2414 	struct periph_driver **pdrv;
2415 	int retval;
2416 
2417 	retval = 1;
2418 
2419 	/*
2420 	 * We don't traverse the peripheral driver list like we do the
2421 	 * other lists, because it is a linker set, and therefore cannot be
2422 	 * changed during runtime.  If the peripheral driver list is ever
2423 	 * re-done to be something other than a linker set (i.e. it can
2424 	 * change while the system is running), the list traversal should
2425 	 * be modified to work like the other traversal functions.
2426 	 */
2427 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2428 	     *pdrv != NULL; pdrv++) {
2429 		retval = tr_func(pdrv, arg);
2430 
2431 		if (retval == 0)
2432 			return(retval);
2433 	}
2434 
2435 	return(retval);
2436 }
2437 
2438 static int
2439 xptpdperiphtraverse(struct periph_driver **pdrv,
2440 		    struct cam_periph *start_periph,
2441 		    xpt_periphfunc_t *tr_func, void *arg)
2442 {
2443 	struct cam_periph *periph, *next_periph;
2444 	int retval;
2445 
2446 	retval = 1;
2447 
2448 	if (start_periph)
2449 		periph = start_periph;
2450 	else {
2451 		xpt_lock_buses();
2452 		periph = TAILQ_FIRST(&(*pdrv)->units);
2453 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2454 			periph = TAILQ_NEXT(periph, unit_links);
2455 		if (periph == NULL) {
2456 			xpt_unlock_buses();
2457 			return (retval);
2458 		}
2459 		periph->refcount++;
2460 		xpt_unlock_buses();
2461 	}
2462 	for (; periph != NULL; periph = next_periph) {
2463 		cam_periph_lock(periph);
2464 		retval = tr_func(periph, arg);
2465 		cam_periph_unlock(periph);
2466 		if (retval == 0) {
2467 			cam_periph_release(periph);
2468 			break;
2469 		}
2470 		xpt_lock_buses();
2471 		next_periph = TAILQ_NEXT(periph, unit_links);
2472 		while (next_periph != NULL &&
2473 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2474 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2475 		if (next_periph)
2476 			next_periph->refcount++;
2477 		xpt_unlock_buses();
2478 		cam_periph_release(periph);
2479 	}
2480 	return(retval);
2481 }
2482 
2483 static int
2484 xptdefbusfunc(struct cam_eb *bus, void *arg)
2485 {
2486 	struct xpt_traverse_config *tr_config;
2487 
2488 	tr_config = (struct xpt_traverse_config *)arg;
2489 
2490 	if (tr_config->depth == XPT_DEPTH_BUS) {
2491 		xpt_busfunc_t *tr_func;
2492 
2493 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2494 
2495 		return(tr_func(bus, tr_config->tr_arg));
2496 	} else
2497 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2498 }
2499 
2500 static int
2501 xptdeftargetfunc(struct cam_et *target, void *arg)
2502 {
2503 	struct xpt_traverse_config *tr_config;
2504 
2505 	tr_config = (struct xpt_traverse_config *)arg;
2506 
2507 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2508 		xpt_targetfunc_t *tr_func;
2509 
2510 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2511 
2512 		return(tr_func(target, tr_config->tr_arg));
2513 	} else
2514 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2515 }
2516 
2517 static int
2518 xptdefdevicefunc(struct cam_ed *device, void *arg)
2519 {
2520 	struct xpt_traverse_config *tr_config;
2521 
2522 	tr_config = (struct xpt_traverse_config *)arg;
2523 
2524 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2525 		xpt_devicefunc_t *tr_func;
2526 
2527 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2528 
2529 		return(tr_func(device, tr_config->tr_arg));
2530 	} else
2531 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2532 }
2533 
2534 static int
2535 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2536 {
2537 	struct xpt_traverse_config *tr_config;
2538 	xpt_periphfunc_t *tr_func;
2539 
2540 	tr_config = (struct xpt_traverse_config *)arg;
2541 
2542 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2543 
2544 	/*
2545 	 * Unlike the other default functions, we don't check for depth
2546 	 * here.  The peripheral driver level is the last level in the EDT,
2547 	 * so if we're here, we should execute the function in question.
2548 	 */
2549 	return(tr_func(periph, tr_config->tr_arg));
2550 }
2551 
2552 /*
2553  * Execute the given function for every bus in the EDT.
2554  */
2555 static int
2556 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2557 {
2558 	struct xpt_traverse_config tr_config;
2559 
2560 	tr_config.depth = XPT_DEPTH_BUS;
2561 	tr_config.tr_func = tr_func;
2562 	tr_config.tr_arg = arg;
2563 
2564 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2565 }
2566 
2567 /*
2568  * Execute the given function for every device in the EDT.
2569  */
2570 static int
2571 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2572 {
2573 	struct xpt_traverse_config tr_config;
2574 
2575 	tr_config.depth = XPT_DEPTH_DEVICE;
2576 	tr_config.tr_func = tr_func;
2577 	tr_config.tr_arg = arg;
2578 
2579 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2580 }
2581 
2582 static int
2583 xptsetasyncfunc(struct cam_ed *device, void *arg)
2584 {
2585 	struct cam_path path;
2586 	struct ccb_getdev cgd;
2587 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2588 
2589 	/*
2590 	 * Don't report unconfigured devices (Wildcard devs,
2591 	 * devices only for target mode, device instances
2592 	 * that have been invalidated but are waiting for
2593 	 * their last reference count to be released).
2594 	 */
2595 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2596 		return (1);
2597 
2598 	xpt_compile_path(&path,
2599 			 NULL,
2600 			 device->target->bus->path_id,
2601 			 device->target->target_id,
2602 			 device->lun_id);
2603 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2604 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2605 	xpt_action((union ccb *)&cgd);
2606 	csa->callback(csa->callback_arg,
2607 			    AC_FOUND_DEVICE,
2608 			    &path, &cgd);
2609 	xpt_release_path(&path);
2610 
2611 	return(1);
2612 }
2613 
2614 static int
2615 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2616 {
2617 	struct cam_path path;
2618 	struct ccb_pathinq cpi;
2619 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2620 
2621 	xpt_compile_path(&path, /*periph*/NULL,
2622 			 bus->path_id,
2623 			 CAM_TARGET_WILDCARD,
2624 			 CAM_LUN_WILDCARD);
2625 	xpt_path_lock(&path);
2626 	xpt_path_inq(&cpi, &path);
2627 	csa->callback(csa->callback_arg,
2628 			    AC_PATH_REGISTERED,
2629 			    &path, &cpi);
2630 	xpt_path_unlock(&path);
2631 	xpt_release_path(&path);
2632 
2633 	return(1);
2634 }
2635 
2636 void
2637 xpt_action(union ccb *start_ccb)
2638 {
2639 
2640 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2641 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2642 		xpt_action_name(start_ccb->ccb_h.func_code)));
2643 
2644 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2645 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2646 }
2647 
2648 void
2649 xpt_action_default(union ccb *start_ccb)
2650 {
2651 	struct cam_path *path;
2652 	struct cam_sim *sim;
2653 	struct mtx *mtx;
2654 
2655 	path = start_ccb->ccb_h.path;
2656 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2657 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2658 		xpt_action_name(start_ccb->ccb_h.func_code)));
2659 
2660 	switch (start_ccb->ccb_h.func_code) {
2661 	case XPT_SCSI_IO:
2662 	{
2663 		struct cam_ed *device;
2664 
2665 		/*
2666 		 * For the sake of compatibility with SCSI-1
2667 		 * devices that may not understand the identify
2668 		 * message, we include lun information in the
2669 		 * second byte of all commands.  SCSI-1 specifies
2670 		 * that luns are a 3 bit value and reserves only 3
2671 		 * bits for lun information in the CDB.  Later
2672 		 * revisions of the SCSI spec allow for more than 8
2673 		 * luns, but have deprecated lun information in the
2674 		 * CDB.  So, if the lun won't fit, we must omit.
2675 		 *
2676 		 * Also be aware that during initial probing for devices,
2677 		 * the inquiry information is unknown but initialized to 0.
2678 		 * This means that this code will be exercised while probing
2679 		 * devices with an ANSI revision greater than 2.
2680 		 */
2681 		device = path->device;
2682 		if (device->protocol_version <= SCSI_REV_2
2683 		 && start_ccb->ccb_h.target_lun < 8
2684 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2685 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2686 			    start_ccb->ccb_h.target_lun << 5;
2687 		}
2688 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2689 	}
2690 	/* FALLTHROUGH */
2691 	case XPT_TARGET_IO:
2692 	case XPT_CONT_TARGET_IO:
2693 		start_ccb->csio.sense_resid = 0;
2694 		start_ccb->csio.resid = 0;
2695 		/* FALLTHROUGH */
2696 	case XPT_ATA_IO:
2697 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2698 			start_ccb->ataio.resid = 0;
2699 		/* FALLTHROUGH */
2700 	case XPT_NVME_IO:
2701 	case XPT_NVME_ADMIN:
2702 	case XPT_MMC_IO:
2703 	case XPT_RESET_DEV:
2704 	case XPT_ENG_EXEC:
2705 	case XPT_SMP_IO:
2706 	{
2707 		struct cam_devq *devq;
2708 
2709 		devq = path->bus->sim->devq;
2710 		mtx_lock(&devq->send_mtx);
2711 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2712 		if (xpt_schedule_devq(devq, path->device) != 0)
2713 			xpt_run_devq(devq);
2714 		mtx_unlock(&devq->send_mtx);
2715 		break;
2716 	}
2717 	case XPT_CALC_GEOMETRY:
2718 		/* Filter out garbage */
2719 		if (start_ccb->ccg.block_size == 0
2720 		 || start_ccb->ccg.volume_size == 0) {
2721 			start_ccb->ccg.cylinders = 0;
2722 			start_ccb->ccg.heads = 0;
2723 			start_ccb->ccg.secs_per_track = 0;
2724 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2725 			break;
2726 		}
2727 		goto call_sim;
2728 	case XPT_ABORT:
2729 	{
2730 		union ccb* abort_ccb;
2731 
2732 		abort_ccb = start_ccb->cab.abort_ccb;
2733 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2734 			struct cam_ed *device;
2735 			struct cam_devq *devq;
2736 
2737 			device = abort_ccb->ccb_h.path->device;
2738 			devq = device->sim->devq;
2739 
2740 			mtx_lock(&devq->send_mtx);
2741 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2742 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2743 				abort_ccb->ccb_h.status =
2744 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2745 				xpt_freeze_devq_device(device, 1);
2746 				mtx_unlock(&devq->send_mtx);
2747 				xpt_done(abort_ccb);
2748 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2749 				break;
2750 			}
2751 			mtx_unlock(&devq->send_mtx);
2752 
2753 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2754 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2755 				/*
2756 				 * We've caught this ccb en route to
2757 				 * the SIM.  Flag it for abort and the
2758 				 * SIM will do so just before starting
2759 				 * real work on the CCB.
2760 				 */
2761 				abort_ccb->ccb_h.status =
2762 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2763 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2764 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2765 				break;
2766 			}
2767 		}
2768 		if (XPT_FC_IS_QUEUED(abort_ccb)
2769 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2770 			/*
2771 			 * It's already completed but waiting
2772 			 * for our SWI to get to it.
2773 			 */
2774 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2775 			break;
2776 		}
2777 		/*
2778 		 * If we weren't able to take care of the abort request
2779 		 * in the XPT, pass the request down to the SIM for processing.
2780 		 */
2781 	}
2782 	/* FALLTHROUGH */
2783 	case XPT_ACCEPT_TARGET_IO:
2784 	case XPT_EN_LUN:
2785 	case XPT_IMMED_NOTIFY:
2786 	case XPT_NOTIFY_ACK:
2787 	case XPT_RESET_BUS:
2788 	case XPT_IMMEDIATE_NOTIFY:
2789 	case XPT_NOTIFY_ACKNOWLEDGE:
2790 	case XPT_GET_SIM_KNOB_OLD:
2791 	case XPT_GET_SIM_KNOB:
2792 	case XPT_SET_SIM_KNOB:
2793 	case XPT_GET_TRAN_SETTINGS:
2794 	case XPT_SET_TRAN_SETTINGS:
2795 	case XPT_PATH_INQ:
2796 call_sim:
2797 		sim = path->bus->sim;
2798 		mtx = sim->mtx;
2799 		if (mtx && !mtx_owned(mtx))
2800 			mtx_lock(mtx);
2801 		else
2802 			mtx = NULL;
2803 
2804 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2805 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2806 		(*(sim->sim_action))(sim, start_ccb);
2807 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2808 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2809 		if (mtx)
2810 			mtx_unlock(mtx);
2811 		break;
2812 	case XPT_PATH_STATS:
2813 		start_ccb->cpis.last_reset = path->bus->last_reset;
2814 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2815 		break;
2816 	case XPT_GDEV_TYPE:
2817 	{
2818 		struct cam_ed *dev;
2819 
2820 		dev = path->device;
2821 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2822 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2823 		} else {
2824 			struct ccb_getdev *cgd;
2825 
2826 			cgd = &start_ccb->cgd;
2827 			cgd->protocol = dev->protocol;
2828 			cgd->inq_data = dev->inq_data;
2829 			cgd->ident_data = dev->ident_data;
2830 			cgd->inq_flags = dev->inq_flags;
2831 			cgd->ccb_h.status = CAM_REQ_CMP;
2832 			cgd->serial_num_len = dev->serial_num_len;
2833 			if ((dev->serial_num_len > 0)
2834 			 && (dev->serial_num != NULL))
2835 				bcopy(dev->serial_num, cgd->serial_num,
2836 				      dev->serial_num_len);
2837 		}
2838 		break;
2839 	}
2840 	case XPT_GDEV_STATS:
2841 	{
2842 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2843 		struct cam_ed *dev = path->device;
2844 		struct cam_eb *bus = path->bus;
2845 		struct cam_et *tar = path->target;
2846 		struct cam_devq *devq = bus->sim->devq;
2847 
2848 		mtx_lock(&devq->send_mtx);
2849 		cgds->dev_openings = dev->ccbq.dev_openings;
2850 		cgds->dev_active = dev->ccbq.dev_active;
2851 		cgds->allocated = dev->ccbq.allocated;
2852 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2853 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2854 		cgds->last_reset = tar->last_reset;
2855 		cgds->maxtags = dev->maxtags;
2856 		cgds->mintags = dev->mintags;
2857 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2858 			cgds->last_reset = bus->last_reset;
2859 		mtx_unlock(&devq->send_mtx);
2860 		cgds->ccb_h.status = CAM_REQ_CMP;
2861 		break;
2862 	}
2863 	case XPT_GDEVLIST:
2864 	{
2865 		struct cam_periph	*nperiph;
2866 		struct periph_list	*periph_head;
2867 		struct ccb_getdevlist	*cgdl;
2868 		u_int			i;
2869 		struct cam_ed		*device;
2870 		int			found;
2871 
2872 		found = 0;
2873 
2874 		/*
2875 		 * Don't want anyone mucking with our data.
2876 		 */
2877 		device = path->device;
2878 		periph_head = &device->periphs;
2879 		cgdl = &start_ccb->cgdl;
2880 
2881 		/*
2882 		 * Check and see if the list has changed since the user
2883 		 * last requested a list member.  If so, tell them that the
2884 		 * list has changed, and therefore they need to start over
2885 		 * from the beginning.
2886 		 */
2887 		if ((cgdl->index != 0) &&
2888 		    (cgdl->generation != device->generation)) {
2889 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2890 			break;
2891 		}
2892 
2893 		/*
2894 		 * Traverse the list of peripherals and attempt to find
2895 		 * the requested peripheral.
2896 		 */
2897 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2898 		     (nperiph != NULL) && (i <= cgdl->index);
2899 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2900 			if (i == cgdl->index) {
2901 				strlcpy(cgdl->periph_name,
2902 					nperiph->periph_name,
2903 					sizeof(cgdl->periph_name));
2904 				cgdl->unit_number = nperiph->unit_number;
2905 				found = 1;
2906 			}
2907 		}
2908 		if (found == 0) {
2909 			cgdl->status = CAM_GDEVLIST_ERROR;
2910 			break;
2911 		}
2912 
2913 		if (nperiph == NULL)
2914 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2915 		else
2916 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2917 
2918 		cgdl->index++;
2919 		cgdl->generation = device->generation;
2920 
2921 		cgdl->ccb_h.status = CAM_REQ_CMP;
2922 		break;
2923 	}
2924 	case XPT_DEV_MATCH:
2925 	{
2926 		dev_pos_type position_type;
2927 		struct ccb_dev_match *cdm;
2928 
2929 		cdm = &start_ccb->cdm;
2930 
2931 		/*
2932 		 * There are two ways of getting at information in the EDT.
2933 		 * The first way is via the primary EDT tree.  It starts
2934 		 * with a list of buses, then a list of targets on a bus,
2935 		 * then devices/luns on a target, and then peripherals on a
2936 		 * device/lun.  The "other" way is by the peripheral driver
2937 		 * lists.  The peripheral driver lists are organized by
2938 		 * peripheral driver.  (obviously)  So it makes sense to
2939 		 * use the peripheral driver list if the user is looking
2940 		 * for something like "da1", or all "da" devices.  If the
2941 		 * user is looking for something on a particular bus/target
2942 		 * or lun, it's generally better to go through the EDT tree.
2943 		 */
2944 
2945 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2946 			position_type = cdm->pos.position_type;
2947 		else {
2948 			u_int i;
2949 
2950 			position_type = CAM_DEV_POS_NONE;
2951 
2952 			for (i = 0; i < cdm->num_patterns; i++) {
2953 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2954 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2955 					position_type = CAM_DEV_POS_EDT;
2956 					break;
2957 				}
2958 			}
2959 
2960 			if (cdm->num_patterns == 0)
2961 				position_type = CAM_DEV_POS_EDT;
2962 			else if (position_type == CAM_DEV_POS_NONE)
2963 				position_type = CAM_DEV_POS_PDRV;
2964 		}
2965 
2966 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2967 		case CAM_DEV_POS_EDT:
2968 			xptedtmatch(cdm);
2969 			break;
2970 		case CAM_DEV_POS_PDRV:
2971 			xptperiphlistmatch(cdm);
2972 			break;
2973 		default:
2974 			cdm->status = CAM_DEV_MATCH_ERROR;
2975 			break;
2976 		}
2977 
2978 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2979 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2980 		else
2981 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2982 
2983 		break;
2984 	}
2985 	case XPT_SASYNC_CB:
2986 	{
2987 		struct ccb_setasync *csa;
2988 		struct async_node *cur_entry;
2989 		struct async_list *async_head;
2990 		u_int32_t added;
2991 
2992 		csa = &start_ccb->csa;
2993 		added = csa->event_enable;
2994 		async_head = &path->device->asyncs;
2995 
2996 		/*
2997 		 * If there is already an entry for us, simply
2998 		 * update it.
2999 		 */
3000 		cur_entry = SLIST_FIRST(async_head);
3001 		while (cur_entry != NULL) {
3002 			if ((cur_entry->callback_arg == csa->callback_arg)
3003 			 && (cur_entry->callback == csa->callback))
3004 				break;
3005 			cur_entry = SLIST_NEXT(cur_entry, links);
3006 		}
3007 
3008 		if (cur_entry != NULL) {
3009 		 	/*
3010 			 * If the request has no flags set,
3011 			 * remove the entry.
3012 			 */
3013 			added &= ~cur_entry->event_enable;
3014 			if (csa->event_enable == 0) {
3015 				SLIST_REMOVE(async_head, cur_entry,
3016 					     async_node, links);
3017 				xpt_release_device(path->device);
3018 				free(cur_entry, M_CAMXPT);
3019 			} else {
3020 				cur_entry->event_enable = csa->event_enable;
3021 			}
3022 			csa->event_enable = added;
3023 		} else {
3024 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3025 					   M_NOWAIT);
3026 			if (cur_entry == NULL) {
3027 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3028 				break;
3029 			}
3030 			cur_entry->event_enable = csa->event_enable;
3031 			cur_entry->event_lock = (path->bus->sim->mtx &&
3032 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3033 			cur_entry->callback_arg = csa->callback_arg;
3034 			cur_entry->callback = csa->callback;
3035 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3036 			xpt_acquire_device(path->device);
3037 		}
3038 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3039 		break;
3040 	}
3041 	case XPT_REL_SIMQ:
3042 	{
3043 		struct ccb_relsim *crs;
3044 		struct cam_ed *dev;
3045 
3046 		crs = &start_ccb->crs;
3047 		dev = path->device;
3048 		if (dev == NULL) {
3049 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3050 			break;
3051 		}
3052 
3053 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3054 			/* Don't ever go below one opening */
3055 			if (crs->openings > 0) {
3056 				xpt_dev_ccbq_resize(path, crs->openings);
3057 				if (bootverbose) {
3058 					xpt_print(path,
3059 					    "number of openings is now %d\n",
3060 					    crs->openings);
3061 				}
3062 			}
3063 		}
3064 
3065 		mtx_lock(&dev->sim->devq->send_mtx);
3066 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3067 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3068 				/*
3069 				 * Just extend the old timeout and decrement
3070 				 * the freeze count so that a single timeout
3071 				 * is sufficient for releasing the queue.
3072 				 */
3073 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3074 				callout_stop(&dev->callout);
3075 			} else {
3076 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3077 			}
3078 
3079 			callout_reset_sbt(&dev->callout,
3080 			    SBT_1MS * crs->release_timeout, 0,
3081 			    xpt_release_devq_timeout, dev, 0);
3082 
3083 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3084 		}
3085 
3086 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3087 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3088 				/*
3089 				 * Decrement the freeze count so that a single
3090 				 * completion is still sufficient to unfreeze
3091 				 * the queue.
3092 				 */
3093 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3094 			} else {
3095 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3096 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3097 			}
3098 		}
3099 
3100 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3101 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3102 			 || (dev->ccbq.dev_active == 0)) {
3103 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3104 			} else {
3105 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3106 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3107 			}
3108 		}
3109 		mtx_unlock(&dev->sim->devq->send_mtx);
3110 
3111 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3112 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3113 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3114 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3115 		break;
3116 	}
3117 	case XPT_DEBUG: {
3118 		struct cam_path *oldpath;
3119 
3120 		/* Check that all request bits are supported. */
3121 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3122 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3123 			break;
3124 		}
3125 
3126 		cam_dflags = CAM_DEBUG_NONE;
3127 		if (cam_dpath != NULL) {
3128 			oldpath = cam_dpath;
3129 			cam_dpath = NULL;
3130 			xpt_free_path(oldpath);
3131 		}
3132 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3133 			if (xpt_create_path(&cam_dpath, NULL,
3134 					    start_ccb->ccb_h.path_id,
3135 					    start_ccb->ccb_h.target_id,
3136 					    start_ccb->ccb_h.target_lun) !=
3137 					    CAM_REQ_CMP) {
3138 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3139 			} else {
3140 				cam_dflags = start_ccb->cdbg.flags;
3141 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3142 				xpt_print(cam_dpath, "debugging flags now %x\n",
3143 				    cam_dflags);
3144 			}
3145 		} else
3146 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3147 		break;
3148 	}
3149 	case XPT_NOOP:
3150 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3151 			xpt_freeze_devq(path, 1);
3152 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3153 		break;
3154 	case XPT_REPROBE_LUN:
3155 		xpt_async(AC_INQ_CHANGED, path, NULL);
3156 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3157 		xpt_done(start_ccb);
3158 		break;
3159 	case XPT_ASYNC:
3160 		/*
3161 		 * Queue the async operation so it can be run from a sleepable
3162 		 * context.
3163 		 */
3164 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3165 		mtx_lock(&cam_async.cam_doneq_mtx);
3166 		STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3167 		start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3168 		mtx_unlock(&cam_async.cam_doneq_mtx);
3169 		wakeup(&cam_async.cam_doneq);
3170 		break;
3171 	default:
3172 	case XPT_SDEV_TYPE:
3173 	case XPT_TERM_IO:
3174 	case XPT_ENG_INQ:
3175 		/* XXX Implement */
3176 		xpt_print(start_ccb->ccb_h.path,
3177 		    "%s: CCB type %#x %s not supported\n", __func__,
3178 		    start_ccb->ccb_h.func_code,
3179 		    xpt_action_name(start_ccb->ccb_h.func_code));
3180 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3181 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3182 			xpt_done(start_ccb);
3183 		}
3184 		break;
3185 	}
3186 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3187 	    ("xpt_action_default: func= %#x %s status %#x\n",
3188 		start_ccb->ccb_h.func_code,
3189  		xpt_action_name(start_ccb->ccb_h.func_code),
3190 		start_ccb->ccb_h.status));
3191 }
3192 
3193 /*
3194  * Call the sim poll routine to allow the sim to complete
3195  * any inflight requests, then call camisr_runqueue to
3196  * complete any CCB that the polling completed.
3197  */
3198 void
3199 xpt_sim_poll(struct cam_sim *sim)
3200 {
3201 	struct mtx *mtx;
3202 
3203 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3204 	mtx = sim->mtx;
3205 	if (mtx)
3206 		mtx_lock(mtx);
3207 	(*(sim->sim_poll))(sim);
3208 	if (mtx)
3209 		mtx_unlock(mtx);
3210 	camisr_runqueue();
3211 }
3212 
3213 uint32_t
3214 xpt_poll_setup(union ccb *start_ccb)
3215 {
3216 	u_int32_t timeout;
3217 	struct	  cam_sim *sim;
3218 	struct	  cam_devq *devq;
3219 	struct	  cam_ed *dev;
3220 
3221 	timeout = start_ccb->ccb_h.timeout * 10;
3222 	sim = start_ccb->ccb_h.path->bus->sim;
3223 	devq = sim->devq;
3224 	dev = start_ccb->ccb_h.path->device;
3225 
3226 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3227 
3228 	/*
3229 	 * Steal an opening so that no other queued requests
3230 	 * can get it before us while we simulate interrupts.
3231 	 */
3232 	mtx_lock(&devq->send_mtx);
3233 	dev->ccbq.dev_openings--;
3234 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3235 	    (--timeout > 0)) {
3236 		mtx_unlock(&devq->send_mtx);
3237 		DELAY(100);
3238 		xpt_sim_poll(sim);
3239 		mtx_lock(&devq->send_mtx);
3240 	}
3241 	dev->ccbq.dev_openings++;
3242 	mtx_unlock(&devq->send_mtx);
3243 
3244 	return (timeout);
3245 }
3246 
3247 void
3248 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3249 {
3250 
3251 	KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3252 	    ("%s: non-pollable sim", __func__));
3253 	while (--timeout > 0) {
3254 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3255 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3256 		    != CAM_REQ_INPROG)
3257 			break;
3258 		DELAY(100);
3259 	}
3260 
3261 	if (timeout == 0) {
3262 		/*
3263 		 * XXX Is it worth adding a sim_timeout entry
3264 		 * point so we can attempt recovery?  If
3265 		 * this is only used for dumps, I don't think
3266 		 * it is.
3267 		 */
3268 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3269 	}
3270 }
3271 
3272 void
3273 xpt_polled_action(union ccb *start_ccb)
3274 {
3275 	uint32_t	timeout;
3276 	struct cam_ed	*dev;
3277 
3278 	timeout = start_ccb->ccb_h.timeout * 10;
3279 	dev = start_ccb->ccb_h.path->device;
3280 
3281 	mtx_unlock(&dev->device_mtx);
3282 
3283 	timeout = xpt_poll_setup(start_ccb);
3284 	if (timeout > 0) {
3285 		xpt_action(start_ccb);
3286 		xpt_pollwait(start_ccb, timeout);
3287 	} else {
3288 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3289 	}
3290 
3291 	mtx_lock(&dev->device_mtx);
3292 }
3293 
3294 /*
3295  * Schedule a peripheral driver to receive a ccb when its
3296  * target device has space for more transactions.
3297  */
3298 void
3299 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3300 {
3301 
3302 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3303 	cam_periph_assert(periph, MA_OWNED);
3304 	if (new_priority < periph->scheduled_priority) {
3305 		periph->scheduled_priority = new_priority;
3306 		xpt_run_allocq(periph, 0);
3307 	}
3308 }
3309 
3310 /*
3311  * Schedule a device to run on a given queue.
3312  * If the device was inserted as a new entry on the queue,
3313  * return 1 meaning the device queue should be run. If we
3314  * were already queued, implying someone else has already
3315  * started the queue, return 0 so the caller doesn't attempt
3316  * to run the queue.
3317  */
3318 static int
3319 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3320 		 u_int32_t new_priority)
3321 {
3322 	int retval;
3323 	u_int32_t old_priority;
3324 
3325 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3326 
3327 	old_priority = pinfo->priority;
3328 
3329 	/*
3330 	 * Are we already queued?
3331 	 */
3332 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3333 		/* Simply reorder based on new priority */
3334 		if (new_priority < old_priority) {
3335 			camq_change_priority(queue, pinfo->index,
3336 					     new_priority);
3337 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3338 					("changed priority to %d\n",
3339 					 new_priority));
3340 			retval = 1;
3341 		} else
3342 			retval = 0;
3343 	} else {
3344 		/* New entry on the queue */
3345 		if (new_priority < old_priority)
3346 			pinfo->priority = new_priority;
3347 
3348 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3349 				("Inserting onto queue\n"));
3350 		pinfo->generation = ++queue->generation;
3351 		camq_insert(queue, pinfo);
3352 		retval = 1;
3353 	}
3354 	return (retval);
3355 }
3356 
3357 static void
3358 xpt_run_allocq_task(void *context, int pending)
3359 {
3360 	struct cam_periph *periph = context;
3361 
3362 	cam_periph_lock(periph);
3363 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3364 	xpt_run_allocq(periph, 1);
3365 	cam_periph_unlock(periph);
3366 	cam_periph_release(periph);
3367 }
3368 
3369 static void
3370 xpt_run_allocq(struct cam_periph *periph, int sleep)
3371 {
3372 	struct cam_ed	*device;
3373 	union ccb	*ccb;
3374 	uint32_t	 prio;
3375 
3376 	cam_periph_assert(periph, MA_OWNED);
3377 	if (periph->periph_allocating)
3378 		return;
3379 	cam_periph_doacquire(periph);
3380 	periph->periph_allocating = 1;
3381 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3382 	device = periph->path->device;
3383 	ccb = NULL;
3384 restart:
3385 	while ((prio = min(periph->scheduled_priority,
3386 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3387 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3388 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3389 		if (ccb == NULL &&
3390 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3391 			if (sleep) {
3392 				ccb = xpt_get_ccb(periph);
3393 				goto restart;
3394 			}
3395 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3396 				break;
3397 			cam_periph_doacquire(periph);
3398 			periph->flags |= CAM_PERIPH_RUN_TASK;
3399 			taskqueue_enqueue(xsoftc.xpt_taskq,
3400 			    &periph->periph_run_task);
3401 			break;
3402 		}
3403 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3404 		if (prio == periph->immediate_priority) {
3405 			periph->immediate_priority = CAM_PRIORITY_NONE;
3406 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3407 					("waking cam_periph_getccb()\n"));
3408 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3409 					  periph_links.sle);
3410 			wakeup(&periph->ccb_list);
3411 		} else {
3412 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3413 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3414 					("calling periph_start()\n"));
3415 			periph->periph_start(periph, ccb);
3416 		}
3417 		ccb = NULL;
3418 	}
3419 	if (ccb != NULL)
3420 		xpt_release_ccb(ccb);
3421 	periph->periph_allocating = 0;
3422 	cam_periph_release_locked(periph);
3423 }
3424 
3425 static void
3426 xpt_run_devq(struct cam_devq *devq)
3427 {
3428 	struct mtx *mtx;
3429 
3430 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3431 
3432 	devq->send_queue.qfrozen_cnt++;
3433 	while ((devq->send_queue.entries > 0)
3434 	    && (devq->send_openings > 0)
3435 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3436 		struct	cam_ed *device;
3437 		union ccb *work_ccb;
3438 		struct	cam_sim *sim;
3439 		struct xpt_proto *proto;
3440 
3441 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3442 							   CAMQ_HEAD);
3443 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3444 				("running device %p\n", device));
3445 
3446 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3447 		if (work_ccb == NULL) {
3448 			printf("device on run queue with no ccbs???\n");
3449 			continue;
3450 		}
3451 
3452 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3453 			mtx_lock(&xsoftc.xpt_highpower_lock);
3454 		 	if (xsoftc.num_highpower <= 0) {
3455 				/*
3456 				 * We got a high power command, but we
3457 				 * don't have any available slots.  Freeze
3458 				 * the device queue until we have a slot
3459 				 * available.
3460 				 */
3461 				xpt_freeze_devq_device(device, 1);
3462 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3463 						   highpowerq_entry);
3464 
3465 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3466 				continue;
3467 			} else {
3468 				/*
3469 				 * Consume a high power slot while
3470 				 * this ccb runs.
3471 				 */
3472 				xsoftc.num_highpower--;
3473 			}
3474 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3475 		}
3476 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3477 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3478 		devq->send_openings--;
3479 		devq->send_active++;
3480 		xpt_schedule_devq(devq, device);
3481 		mtx_unlock(&devq->send_mtx);
3482 
3483 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3484 			/*
3485 			 * The client wants to freeze the queue
3486 			 * after this CCB is sent.
3487 			 */
3488 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3489 		}
3490 
3491 		/* In Target mode, the peripheral driver knows best... */
3492 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3493 			if ((device->inq_flags & SID_CmdQue) != 0
3494 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3495 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3496 			else
3497 				/*
3498 				 * Clear this in case of a retried CCB that
3499 				 * failed due to a rejected tag.
3500 				 */
3501 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3502 		}
3503 
3504 		KASSERT(device == work_ccb->ccb_h.path->device,
3505 		    ("device (%p) / path->device (%p) mismatch",
3506 			device, work_ccb->ccb_h.path->device));
3507 		proto = xpt_proto_find(device->protocol);
3508 		if (proto && proto->ops->debug_out)
3509 			proto->ops->debug_out(work_ccb);
3510 
3511 		/*
3512 		 * Device queues can be shared among multiple SIM instances
3513 		 * that reside on different buses.  Use the SIM from the
3514 		 * queued device, rather than the one from the calling bus.
3515 		 */
3516 		sim = device->sim;
3517 		mtx = sim->mtx;
3518 		if (mtx && !mtx_owned(mtx))
3519 			mtx_lock(mtx);
3520 		else
3521 			mtx = NULL;
3522 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3523 		(*(sim->sim_action))(sim, work_ccb);
3524 		if (mtx)
3525 			mtx_unlock(mtx);
3526 		mtx_lock(&devq->send_mtx);
3527 	}
3528 	devq->send_queue.qfrozen_cnt--;
3529 }
3530 
3531 /*
3532  * This function merges stuff from the src ccb into the dst ccb, while keeping
3533  * important fields in the dst ccb constant.
3534  */
3535 void
3536 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3537 {
3538 
3539 	/*
3540 	 * Pull fields that are valid for peripheral drivers to set
3541 	 * into the dst CCB along with the CCB "payload".
3542 	 */
3543 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3544 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3545 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3546 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3547 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3548 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3549 }
3550 
3551 void
3552 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3553 		    u_int32_t priority, u_int32_t flags)
3554 {
3555 
3556 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3557 	ccb_h->pinfo.priority = priority;
3558 	ccb_h->path = path;
3559 	ccb_h->path_id = path->bus->path_id;
3560 	if (path->target)
3561 		ccb_h->target_id = path->target->target_id;
3562 	else
3563 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3564 	if (path->device) {
3565 		ccb_h->target_lun = path->device->lun_id;
3566 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3567 	} else {
3568 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3569 	}
3570 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3571 	ccb_h->flags = flags;
3572 	ccb_h->xflags = 0;
3573 }
3574 
3575 void
3576 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3577 {
3578 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3579 }
3580 
3581 /* Path manipulation functions */
3582 cam_status
3583 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3584 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3585 {
3586 	struct	   cam_path *path;
3587 	cam_status status;
3588 
3589 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3590 
3591 	if (path == NULL) {
3592 		status = CAM_RESRC_UNAVAIL;
3593 		return(status);
3594 	}
3595 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3596 	if (status != CAM_REQ_CMP) {
3597 		free(path, M_CAMPATH);
3598 		path = NULL;
3599 	}
3600 	*new_path_ptr = path;
3601 	return (status);
3602 }
3603 
3604 cam_status
3605 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3606 			 struct cam_periph *periph, path_id_t path_id,
3607 			 target_id_t target_id, lun_id_t lun_id)
3608 {
3609 
3610 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3611 	    lun_id));
3612 }
3613 
3614 cam_status
3615 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3616 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3617 {
3618 	struct	     cam_eb *bus;
3619 	struct	     cam_et *target;
3620 	struct	     cam_ed *device;
3621 	cam_status   status;
3622 
3623 	status = CAM_REQ_CMP;	/* Completed without error */
3624 	target = NULL;		/* Wildcarded */
3625 	device = NULL;		/* Wildcarded */
3626 
3627 	/*
3628 	 * We will potentially modify the EDT, so block interrupts
3629 	 * that may attempt to create cam paths.
3630 	 */
3631 	bus = xpt_find_bus(path_id);
3632 	if (bus == NULL) {
3633 		status = CAM_PATH_INVALID;
3634 	} else {
3635 		xpt_lock_buses();
3636 		mtx_lock(&bus->eb_mtx);
3637 		target = xpt_find_target(bus, target_id);
3638 		if (target == NULL) {
3639 			/* Create one */
3640 			struct cam_et *new_target;
3641 
3642 			new_target = xpt_alloc_target(bus, target_id);
3643 			if (new_target == NULL) {
3644 				status = CAM_RESRC_UNAVAIL;
3645 			} else {
3646 				target = new_target;
3647 			}
3648 		}
3649 		xpt_unlock_buses();
3650 		if (target != NULL) {
3651 			device = xpt_find_device(target, lun_id);
3652 			if (device == NULL) {
3653 				/* Create one */
3654 				struct cam_ed *new_device;
3655 
3656 				new_device =
3657 				    (*(bus->xport->ops->alloc_device))(bus,
3658 								       target,
3659 								       lun_id);
3660 				if (new_device == NULL) {
3661 					status = CAM_RESRC_UNAVAIL;
3662 				} else {
3663 					device = new_device;
3664 				}
3665 			}
3666 		}
3667 		mtx_unlock(&bus->eb_mtx);
3668 	}
3669 
3670 	/*
3671 	 * Only touch the user's data if we are successful.
3672 	 */
3673 	if (status == CAM_REQ_CMP) {
3674 		new_path->periph = perph;
3675 		new_path->bus = bus;
3676 		new_path->target = target;
3677 		new_path->device = device;
3678 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3679 	} else {
3680 		if (device != NULL)
3681 			xpt_release_device(device);
3682 		if (target != NULL)
3683 			xpt_release_target(target);
3684 		if (bus != NULL)
3685 			xpt_release_bus(bus);
3686 	}
3687 	return (status);
3688 }
3689 
3690 cam_status
3691 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3692 {
3693 	struct	   cam_path *new_path;
3694 
3695 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3696 	if (new_path == NULL)
3697 		return(CAM_RESRC_UNAVAIL);
3698 	*new_path = *path;
3699 	if (path->bus != NULL)
3700 		xpt_acquire_bus(path->bus);
3701 	if (path->target != NULL)
3702 		xpt_acquire_target(path->target);
3703 	if (path->device != NULL)
3704 		xpt_acquire_device(path->device);
3705 	*new_path_ptr = new_path;
3706 	return (CAM_REQ_CMP);
3707 }
3708 
3709 void
3710 xpt_release_path(struct cam_path *path)
3711 {
3712 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3713 	if (path->device != NULL) {
3714 		xpt_release_device(path->device);
3715 		path->device = NULL;
3716 	}
3717 	if (path->target != NULL) {
3718 		xpt_release_target(path->target);
3719 		path->target = NULL;
3720 	}
3721 	if (path->bus != NULL) {
3722 		xpt_release_bus(path->bus);
3723 		path->bus = NULL;
3724 	}
3725 }
3726 
3727 void
3728 xpt_free_path(struct cam_path *path)
3729 {
3730 
3731 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3732 	xpt_release_path(path);
3733 	free(path, M_CAMPATH);
3734 }
3735 
3736 void
3737 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3738     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3739 {
3740 
3741 	xpt_lock_buses();
3742 	if (bus_ref) {
3743 		if (path->bus)
3744 			*bus_ref = path->bus->refcount;
3745 		else
3746 			*bus_ref = 0;
3747 	}
3748 	if (periph_ref) {
3749 		if (path->periph)
3750 			*periph_ref = path->periph->refcount;
3751 		else
3752 			*periph_ref = 0;
3753 	}
3754 	xpt_unlock_buses();
3755 	if (target_ref) {
3756 		if (path->target)
3757 			*target_ref = path->target->refcount;
3758 		else
3759 			*target_ref = 0;
3760 	}
3761 	if (device_ref) {
3762 		if (path->device)
3763 			*device_ref = path->device->refcount;
3764 		else
3765 			*device_ref = 0;
3766 	}
3767 }
3768 
3769 /*
3770  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3771  * in path1, 2 for match with wildcards in path2.
3772  */
3773 int
3774 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3775 {
3776 	int retval = 0;
3777 
3778 	if (path1->bus != path2->bus) {
3779 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3780 			retval = 1;
3781 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3782 			retval = 2;
3783 		else
3784 			return (-1);
3785 	}
3786 	if (path1->target != path2->target) {
3787 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3788 			if (retval == 0)
3789 				retval = 1;
3790 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3791 			retval = 2;
3792 		else
3793 			return (-1);
3794 	}
3795 	if (path1->device != path2->device) {
3796 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3797 			if (retval == 0)
3798 				retval = 1;
3799 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3800 			retval = 2;
3801 		else
3802 			return (-1);
3803 	}
3804 	return (retval);
3805 }
3806 
3807 int
3808 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3809 {
3810 	int retval = 0;
3811 
3812 	if (path->bus != dev->target->bus) {
3813 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3814 			retval = 1;
3815 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3816 			retval = 2;
3817 		else
3818 			return (-1);
3819 	}
3820 	if (path->target != dev->target) {
3821 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3822 			if (retval == 0)
3823 				retval = 1;
3824 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3825 			retval = 2;
3826 		else
3827 			return (-1);
3828 	}
3829 	if (path->device != dev) {
3830 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3831 			if (retval == 0)
3832 				retval = 1;
3833 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3834 			retval = 2;
3835 		else
3836 			return (-1);
3837 	}
3838 	return (retval);
3839 }
3840 
3841 void
3842 xpt_print_path(struct cam_path *path)
3843 {
3844 	struct sbuf sb;
3845 	char buffer[XPT_PRINT_LEN];
3846 
3847 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3848 	xpt_path_sbuf(path, &sb);
3849 	sbuf_finish(&sb);
3850 	printf("%s", sbuf_data(&sb));
3851 	sbuf_delete(&sb);
3852 }
3853 
3854 void
3855 xpt_print_device(struct cam_ed *device)
3856 {
3857 
3858 	if (device == NULL)
3859 		printf("(nopath): ");
3860 	else {
3861 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3862 		       device->sim->unit_number,
3863 		       device->sim->bus_id,
3864 		       device->target->target_id,
3865 		       (uintmax_t)device->lun_id);
3866 	}
3867 }
3868 
3869 void
3870 xpt_print(struct cam_path *path, const char *fmt, ...)
3871 {
3872 	va_list ap;
3873 	struct sbuf sb;
3874 	char buffer[XPT_PRINT_LEN];
3875 
3876 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3877 
3878 	xpt_path_sbuf(path, &sb);
3879 	va_start(ap, fmt);
3880 	sbuf_vprintf(&sb, fmt, ap);
3881 	va_end(ap);
3882 
3883 	sbuf_finish(&sb);
3884 	printf("%s", sbuf_data(&sb));
3885 	sbuf_delete(&sb);
3886 }
3887 
3888 int
3889 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3890 {
3891 	struct sbuf sb;
3892 	int len;
3893 
3894 	sbuf_new(&sb, str, str_len, 0);
3895 	len = xpt_path_sbuf(path, &sb);
3896 	sbuf_finish(&sb);
3897 	return (len);
3898 }
3899 
3900 int
3901 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3902 {
3903 
3904 	if (path == NULL)
3905 		sbuf_printf(sb, "(nopath): ");
3906 	else {
3907 		if (path->periph != NULL)
3908 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3909 				    path->periph->unit_number);
3910 		else
3911 			sbuf_printf(sb, "(noperiph:");
3912 
3913 		if (path->bus != NULL)
3914 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3915 				    path->bus->sim->unit_number,
3916 				    path->bus->sim->bus_id);
3917 		else
3918 			sbuf_printf(sb, "nobus:");
3919 
3920 		if (path->target != NULL)
3921 			sbuf_printf(sb, "%d:", path->target->target_id);
3922 		else
3923 			sbuf_printf(sb, "X:");
3924 
3925 		if (path->device != NULL)
3926 			sbuf_printf(sb, "%jx): ",
3927 			    (uintmax_t)path->device->lun_id);
3928 		else
3929 			sbuf_printf(sb, "X): ");
3930 	}
3931 
3932 	return(sbuf_len(sb));
3933 }
3934 
3935 path_id_t
3936 xpt_path_path_id(struct cam_path *path)
3937 {
3938 	return(path->bus->path_id);
3939 }
3940 
3941 target_id_t
3942 xpt_path_target_id(struct cam_path *path)
3943 {
3944 	if (path->target != NULL)
3945 		return (path->target->target_id);
3946 	else
3947 		return (CAM_TARGET_WILDCARD);
3948 }
3949 
3950 lun_id_t
3951 xpt_path_lun_id(struct cam_path *path)
3952 {
3953 	if (path->device != NULL)
3954 		return (path->device->lun_id);
3955 	else
3956 		return (CAM_LUN_WILDCARD);
3957 }
3958 
3959 struct cam_sim *
3960 xpt_path_sim(struct cam_path *path)
3961 {
3962 
3963 	return (path->bus->sim);
3964 }
3965 
3966 struct cam_periph*
3967 xpt_path_periph(struct cam_path *path)
3968 {
3969 
3970 	return (path->periph);
3971 }
3972 
3973 /*
3974  * Release a CAM control block for the caller.  Remit the cost of the structure
3975  * to the device referenced by the path.  If the this device had no 'credits'
3976  * and peripheral drivers have registered async callbacks for this notification
3977  * call them now.
3978  */
3979 void
3980 xpt_release_ccb(union ccb *free_ccb)
3981 {
3982 	struct	 cam_ed *device;
3983 	struct	 cam_periph *periph;
3984 
3985 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3986 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3987 	device = free_ccb->ccb_h.path->device;
3988 	periph = free_ccb->ccb_h.path->periph;
3989 
3990 	xpt_free_ccb(free_ccb);
3991 	periph->periph_allocated--;
3992 	cam_ccbq_release_opening(&device->ccbq);
3993 	xpt_run_allocq(periph, 0);
3994 }
3995 
3996 /* Functions accessed by SIM drivers */
3997 
3998 static struct xpt_xport_ops xport_default_ops = {
3999 	.alloc_device = xpt_alloc_device_default,
4000 	.action = xpt_action_default,
4001 	.async = xpt_dev_async_default,
4002 };
4003 static struct xpt_xport xport_default = {
4004 	.xport = XPORT_UNKNOWN,
4005 	.name = "unknown",
4006 	.ops = &xport_default_ops,
4007 };
4008 
4009 CAM_XPT_XPORT(xport_default);
4010 
4011 /*
4012  * A sim structure, listing the SIM entry points and instance
4013  * identification info is passed to xpt_bus_register to hook the SIM
4014  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4015  * for this new bus and places it in the array of buses and assigns
4016  * it a path_id.  The path_id may be influenced by "hard wiring"
4017  * information specified by the user.  Once interrupt services are
4018  * available, the bus will be probed.
4019  */
4020 int32_t
4021 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4022 {
4023 	struct cam_eb *new_bus;
4024 	struct cam_eb *old_bus;
4025 	struct ccb_pathinq cpi;
4026 	struct cam_path *path;
4027 	cam_status status;
4028 
4029 	sim->bus_id = bus;
4030 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4031 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4032 	if (new_bus == NULL) {
4033 		/* Couldn't satisfy request */
4034 		return (CAM_RESRC_UNAVAIL);
4035 	}
4036 
4037 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4038 	TAILQ_INIT(&new_bus->et_entries);
4039 	cam_sim_hold(sim);
4040 	new_bus->sim = sim;
4041 	timevalclear(&new_bus->last_reset);
4042 	new_bus->flags = 0;
4043 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4044 	new_bus->generation = 0;
4045 
4046 	xpt_lock_buses();
4047 	sim->path_id = new_bus->path_id =
4048 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4049 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4050 	while (old_bus != NULL
4051 	    && old_bus->path_id < new_bus->path_id)
4052 		old_bus = TAILQ_NEXT(old_bus, links);
4053 	if (old_bus != NULL)
4054 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4055 	else
4056 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4057 	xsoftc.bus_generation++;
4058 	xpt_unlock_buses();
4059 
4060 	/*
4061 	 * Set a default transport so that a PATH_INQ can be issued to
4062 	 * the SIM.  This will then allow for probing and attaching of
4063 	 * a more appropriate transport.
4064 	 */
4065 	new_bus->xport = &xport_default;
4066 
4067 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4068 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4069 	if (status != CAM_REQ_CMP) {
4070 		xpt_release_bus(new_bus);
4071 		return (CAM_RESRC_UNAVAIL);
4072 	}
4073 
4074 	xpt_path_inq(&cpi, path);
4075 
4076 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4077 		struct xpt_xport **xpt;
4078 
4079 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4080 			if ((*xpt)->xport == cpi.transport) {
4081 				new_bus->xport = *xpt;
4082 				break;
4083 			}
4084 		}
4085 		if (new_bus->xport == NULL) {
4086 			xpt_print(path,
4087 			    "No transport found for %d\n", cpi.transport);
4088 			xpt_release_bus(new_bus);
4089 			free(path, M_CAMXPT);
4090 			return (CAM_RESRC_UNAVAIL);
4091 		}
4092 	}
4093 
4094 	/* Notify interested parties */
4095 	if (sim->path_id != CAM_XPT_PATH_ID) {
4096 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4097 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4098 			union	ccb *scan_ccb;
4099 
4100 			/* Initiate bus rescan. */
4101 			scan_ccb = xpt_alloc_ccb_nowait();
4102 			if (scan_ccb != NULL) {
4103 				scan_ccb->ccb_h.path = path;
4104 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4105 				scan_ccb->crcn.flags = 0;
4106 				xpt_rescan(scan_ccb);
4107 			} else {
4108 				xpt_print(path,
4109 					  "Can't allocate CCB to scan bus\n");
4110 				xpt_free_path(path);
4111 			}
4112 		} else
4113 			xpt_free_path(path);
4114 	} else
4115 		xpt_free_path(path);
4116 	return (CAM_SUCCESS);
4117 }
4118 
4119 int32_t
4120 xpt_bus_deregister(path_id_t pathid)
4121 {
4122 	struct cam_path bus_path;
4123 	cam_status status;
4124 
4125 	status = xpt_compile_path(&bus_path, NULL, pathid,
4126 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4127 	if (status != CAM_REQ_CMP)
4128 		return (status);
4129 
4130 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4131 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4132 
4133 	/* Release the reference count held while registered. */
4134 	xpt_release_bus(bus_path.bus);
4135 	xpt_release_path(&bus_path);
4136 
4137 	return (CAM_REQ_CMP);
4138 }
4139 
4140 static path_id_t
4141 xptnextfreepathid(void)
4142 {
4143 	struct cam_eb *bus;
4144 	path_id_t pathid;
4145 	const char *strval;
4146 
4147 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4148 	pathid = 0;
4149 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4150 retry:
4151 	/* Find an unoccupied pathid */
4152 	while (bus != NULL && bus->path_id <= pathid) {
4153 		if (bus->path_id == pathid)
4154 			pathid++;
4155 		bus = TAILQ_NEXT(bus, links);
4156 	}
4157 
4158 	/*
4159 	 * Ensure that this pathid is not reserved for
4160 	 * a bus that may be registered in the future.
4161 	 */
4162 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4163 		++pathid;
4164 		/* Start the search over */
4165 		goto retry;
4166 	}
4167 	return (pathid);
4168 }
4169 
4170 static path_id_t
4171 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4172 {
4173 	path_id_t pathid;
4174 	int i, dunit, val;
4175 	char buf[32];
4176 	const char *dname;
4177 
4178 	pathid = CAM_XPT_PATH_ID;
4179 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4180 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4181 		return (pathid);
4182 	i = 0;
4183 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4184 		if (strcmp(dname, "scbus")) {
4185 			/* Avoid a bit of foot shooting. */
4186 			continue;
4187 		}
4188 		if (dunit < 0)		/* unwired?! */
4189 			continue;
4190 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4191 			if (sim_bus == val) {
4192 				pathid = dunit;
4193 				break;
4194 			}
4195 		} else if (sim_bus == 0) {
4196 			/* Unspecified matches bus 0 */
4197 			pathid = dunit;
4198 			break;
4199 		} else {
4200 			printf("Ambiguous scbus configuration for %s%d "
4201 			       "bus %d, cannot wire down.  The kernel "
4202 			       "config entry for scbus%d should "
4203 			       "specify a controller bus.\n"
4204 			       "Scbus will be assigned dynamically.\n",
4205 			       sim_name, sim_unit, sim_bus, dunit);
4206 			break;
4207 		}
4208 	}
4209 
4210 	if (pathid == CAM_XPT_PATH_ID)
4211 		pathid = xptnextfreepathid();
4212 	return (pathid);
4213 }
4214 
4215 static const char *
4216 xpt_async_string(u_int32_t async_code)
4217 {
4218 
4219 	switch (async_code) {
4220 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4221 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4222 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4223 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4224 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4225 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4226 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4227 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4228 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4229 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4230 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4231 	case AC_CONTRACT: return ("AC_CONTRACT");
4232 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4233 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4234 	}
4235 	return ("AC_UNKNOWN");
4236 }
4237 
4238 static int
4239 xpt_async_size(u_int32_t async_code)
4240 {
4241 
4242 	switch (async_code) {
4243 	case AC_BUS_RESET: return (0);
4244 	case AC_UNSOL_RESEL: return (0);
4245 	case AC_SCSI_AEN: return (0);
4246 	case AC_SENT_BDR: return (0);
4247 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4248 	case AC_PATH_DEREGISTERED: return (0);
4249 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4250 	case AC_LOST_DEVICE: return (0);
4251 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4252 	case AC_INQ_CHANGED: return (0);
4253 	case AC_GETDEV_CHANGED: return (0);
4254 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4255 	case AC_ADVINFO_CHANGED: return (-1);
4256 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4257 	}
4258 	return (0);
4259 }
4260 
4261 static int
4262 xpt_async_process_dev(struct cam_ed *device, void *arg)
4263 {
4264 	union ccb *ccb = arg;
4265 	struct cam_path *path = ccb->ccb_h.path;
4266 	void *async_arg = ccb->casync.async_arg_ptr;
4267 	u_int32_t async_code = ccb->casync.async_code;
4268 	int relock;
4269 
4270 	if (path->device != device
4271 	 && path->device->lun_id != CAM_LUN_WILDCARD
4272 	 && device->lun_id != CAM_LUN_WILDCARD)
4273 		return (1);
4274 
4275 	/*
4276 	 * The async callback could free the device.
4277 	 * If it is a broadcast async, it doesn't hold
4278 	 * device reference, so take our own reference.
4279 	 */
4280 	xpt_acquire_device(device);
4281 
4282 	/*
4283 	 * If async for specific device is to be delivered to
4284 	 * the wildcard client, take the specific device lock.
4285 	 * XXX: We may need a way for client to specify it.
4286 	 */
4287 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4288 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4289 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4290 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4291 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4292 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4293 		mtx_unlock(&device->device_mtx);
4294 		xpt_path_lock(path);
4295 		relock = 1;
4296 	} else
4297 		relock = 0;
4298 
4299 	(*(device->target->bus->xport->ops->async))(async_code,
4300 	    device->target->bus, device->target, device, async_arg);
4301 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4302 
4303 	if (relock) {
4304 		xpt_path_unlock(path);
4305 		mtx_lock(&device->device_mtx);
4306 	}
4307 	xpt_release_device(device);
4308 	return (1);
4309 }
4310 
4311 static int
4312 xpt_async_process_tgt(struct cam_et *target, void *arg)
4313 {
4314 	union ccb *ccb = arg;
4315 	struct cam_path *path = ccb->ccb_h.path;
4316 
4317 	if (path->target != target
4318 	 && path->target->target_id != CAM_TARGET_WILDCARD
4319 	 && target->target_id != CAM_TARGET_WILDCARD)
4320 		return (1);
4321 
4322 	if (ccb->casync.async_code == AC_SENT_BDR) {
4323 		/* Update our notion of when the last reset occurred */
4324 		microtime(&target->last_reset);
4325 	}
4326 
4327 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4328 }
4329 
4330 static void
4331 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4332 {
4333 	struct cam_eb *bus;
4334 	struct cam_path *path;
4335 	void *async_arg;
4336 	u_int32_t async_code;
4337 
4338 	path = ccb->ccb_h.path;
4339 	async_code = ccb->casync.async_code;
4340 	async_arg = ccb->casync.async_arg_ptr;
4341 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4342 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4343 	bus = path->bus;
4344 
4345 	if (async_code == AC_BUS_RESET) {
4346 		/* Update our notion of when the last reset occurred */
4347 		microtime(&bus->last_reset);
4348 	}
4349 
4350 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4351 
4352 	/*
4353 	 * If this wasn't a fully wildcarded async, tell all
4354 	 * clients that want all async events.
4355 	 */
4356 	if (bus != xpt_periph->path->bus) {
4357 		xpt_path_lock(xpt_periph->path);
4358 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4359 		xpt_path_unlock(xpt_periph->path);
4360 	}
4361 
4362 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4363 		xpt_release_devq(path, 1, TRUE);
4364 	else
4365 		xpt_release_simq(path->bus->sim, TRUE);
4366 	if (ccb->casync.async_arg_size > 0)
4367 		free(async_arg, M_CAMXPT);
4368 	xpt_free_path(path);
4369 	xpt_free_ccb(ccb);
4370 }
4371 
4372 static void
4373 xpt_async_bcast(struct async_list *async_head,
4374 		u_int32_t async_code,
4375 		struct cam_path *path, void *async_arg)
4376 {
4377 	struct async_node *cur_entry;
4378 	struct mtx *mtx;
4379 
4380 	cur_entry = SLIST_FIRST(async_head);
4381 	while (cur_entry != NULL) {
4382 		struct async_node *next_entry;
4383 		/*
4384 		 * Grab the next list entry before we call the current
4385 		 * entry's callback.  This is because the callback function
4386 		 * can delete its async callback entry.
4387 		 */
4388 		next_entry = SLIST_NEXT(cur_entry, links);
4389 		if ((cur_entry->event_enable & async_code) != 0) {
4390 			mtx = cur_entry->event_lock ?
4391 			    path->device->sim->mtx : NULL;
4392 			if (mtx)
4393 				mtx_lock(mtx);
4394 			cur_entry->callback(cur_entry->callback_arg,
4395 					    async_code, path,
4396 					    async_arg);
4397 			if (mtx)
4398 				mtx_unlock(mtx);
4399 		}
4400 		cur_entry = next_entry;
4401 	}
4402 }
4403 
4404 void
4405 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4406 {
4407 	union ccb *ccb;
4408 	int size;
4409 
4410 	ccb = xpt_alloc_ccb_nowait();
4411 	if (ccb == NULL) {
4412 		xpt_print(path, "Can't allocate CCB to send %s\n",
4413 		    xpt_async_string(async_code));
4414 		return;
4415 	}
4416 
4417 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4418 		xpt_print(path, "Can't allocate path to send %s\n",
4419 		    xpt_async_string(async_code));
4420 		xpt_free_ccb(ccb);
4421 		return;
4422 	}
4423 	ccb->ccb_h.path->periph = NULL;
4424 	ccb->ccb_h.func_code = XPT_ASYNC;
4425 	ccb->ccb_h.cbfcnp = xpt_async_process;
4426 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4427 	ccb->casync.async_code = async_code;
4428 	ccb->casync.async_arg_size = 0;
4429 	size = xpt_async_size(async_code);
4430 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4431 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4432 		ccb->ccb_h.func_code,
4433 		xpt_action_name(ccb->ccb_h.func_code),
4434 		async_code,
4435 		xpt_async_string(async_code)));
4436 	if (size > 0 && async_arg != NULL) {
4437 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4438 		if (ccb->casync.async_arg_ptr == NULL) {
4439 			xpt_print(path, "Can't allocate argument to send %s\n",
4440 			    xpt_async_string(async_code));
4441 			xpt_free_path(ccb->ccb_h.path);
4442 			xpt_free_ccb(ccb);
4443 			return;
4444 		}
4445 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4446 		ccb->casync.async_arg_size = size;
4447 	} else if (size < 0) {
4448 		ccb->casync.async_arg_ptr = async_arg;
4449 		ccb->casync.async_arg_size = size;
4450 	}
4451 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4452 		xpt_freeze_devq(path, 1);
4453 	else
4454 		xpt_freeze_simq(path->bus->sim, 1);
4455 	xpt_action(ccb);
4456 }
4457 
4458 static void
4459 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4460 		      struct cam_et *target, struct cam_ed *device,
4461 		      void *async_arg)
4462 {
4463 
4464 	/*
4465 	 * We only need to handle events for real devices.
4466 	 */
4467 	if (target->target_id == CAM_TARGET_WILDCARD
4468 	 || device->lun_id == CAM_LUN_WILDCARD)
4469 		return;
4470 
4471 	printf("%s called\n", __func__);
4472 }
4473 
4474 static uint32_t
4475 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4476 {
4477 	struct cam_devq	*devq;
4478 	uint32_t freeze;
4479 
4480 	devq = dev->sim->devq;
4481 	mtx_assert(&devq->send_mtx, MA_OWNED);
4482 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4483 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4484 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4485 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4486 	/* Remove frozen device from sendq. */
4487 	if (device_is_queued(dev))
4488 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4489 	return (freeze);
4490 }
4491 
4492 u_int32_t
4493 xpt_freeze_devq(struct cam_path *path, u_int count)
4494 {
4495 	struct cam_ed	*dev = path->device;
4496 	struct cam_devq	*devq;
4497 	uint32_t	 freeze;
4498 
4499 	devq = dev->sim->devq;
4500 	mtx_lock(&devq->send_mtx);
4501 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4502 	freeze = xpt_freeze_devq_device(dev, count);
4503 	mtx_unlock(&devq->send_mtx);
4504 	return (freeze);
4505 }
4506 
4507 u_int32_t
4508 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4509 {
4510 	struct cam_devq	*devq;
4511 	uint32_t	 freeze;
4512 
4513 	devq = sim->devq;
4514 	mtx_lock(&devq->send_mtx);
4515 	freeze = (devq->send_queue.qfrozen_cnt += count);
4516 	mtx_unlock(&devq->send_mtx);
4517 	return (freeze);
4518 }
4519 
4520 static void
4521 xpt_release_devq_timeout(void *arg)
4522 {
4523 	struct cam_ed *dev;
4524 	struct cam_devq *devq;
4525 
4526 	dev = (struct cam_ed *)arg;
4527 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4528 	devq = dev->sim->devq;
4529 	mtx_assert(&devq->send_mtx, MA_OWNED);
4530 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4531 		xpt_run_devq(devq);
4532 }
4533 
4534 void
4535 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4536 {
4537 	struct cam_ed *dev;
4538 	struct cam_devq *devq;
4539 
4540 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4541 	    count, run_queue));
4542 	dev = path->device;
4543 	devq = dev->sim->devq;
4544 	mtx_lock(&devq->send_mtx);
4545 	if (xpt_release_devq_device(dev, count, run_queue))
4546 		xpt_run_devq(dev->sim->devq);
4547 	mtx_unlock(&devq->send_mtx);
4548 }
4549 
4550 static int
4551 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4552 {
4553 
4554 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4555 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4556 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4557 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4558 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4559 #ifdef INVARIANTS
4560 		printf("xpt_release_devq(): requested %u > present %u\n",
4561 		    count, dev->ccbq.queue.qfrozen_cnt);
4562 #endif
4563 		count = dev->ccbq.queue.qfrozen_cnt;
4564 	}
4565 	dev->ccbq.queue.qfrozen_cnt -= count;
4566 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4567 		/*
4568 		 * No longer need to wait for a successful
4569 		 * command completion.
4570 		 */
4571 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4572 		/*
4573 		 * Remove any timeouts that might be scheduled
4574 		 * to release this queue.
4575 		 */
4576 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4577 			callout_stop(&dev->callout);
4578 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4579 		}
4580 		/*
4581 		 * Now that we are unfrozen schedule the
4582 		 * device so any pending transactions are
4583 		 * run.
4584 		 */
4585 		xpt_schedule_devq(dev->sim->devq, dev);
4586 	} else
4587 		run_queue = 0;
4588 	return (run_queue);
4589 }
4590 
4591 void
4592 xpt_release_simq(struct cam_sim *sim, int run_queue)
4593 {
4594 	struct cam_devq	*devq;
4595 
4596 	devq = sim->devq;
4597 	mtx_lock(&devq->send_mtx);
4598 	if (devq->send_queue.qfrozen_cnt <= 0) {
4599 #ifdef INVARIANTS
4600 		printf("xpt_release_simq: requested 1 > present %u\n",
4601 		    devq->send_queue.qfrozen_cnt);
4602 #endif
4603 	} else
4604 		devq->send_queue.qfrozen_cnt--;
4605 	if (devq->send_queue.qfrozen_cnt == 0) {
4606 		/*
4607 		 * If there is a timeout scheduled to release this
4608 		 * sim queue, remove it.  The queue frozen count is
4609 		 * already at 0.
4610 		 */
4611 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4612 			callout_stop(&sim->callout);
4613 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4614 		}
4615 		if (run_queue) {
4616 			/*
4617 			 * Now that we are unfrozen run the send queue.
4618 			 */
4619 			xpt_run_devq(sim->devq);
4620 		}
4621 	}
4622 	mtx_unlock(&devq->send_mtx);
4623 }
4624 
4625 void
4626 xpt_done(union ccb *done_ccb)
4627 {
4628 	struct cam_doneq *queue;
4629 	int	run, hash;
4630 
4631 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4632 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4633 	    done_ccb->csio.bio != NULL)
4634 		biotrack(done_ccb->csio.bio, __func__);
4635 #endif
4636 
4637 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4638 	    ("xpt_done: func= %#x %s status %#x\n",
4639 		done_ccb->ccb_h.func_code,
4640 		xpt_action_name(done_ccb->ccb_h.func_code),
4641 		done_ccb->ccb_h.status));
4642 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4643 		return;
4644 
4645 	/* Store the time the ccb was in the sim */
4646 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4647 	hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4648 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4649 	queue = &cam_doneqs[hash];
4650 	mtx_lock(&queue->cam_doneq_mtx);
4651 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4652 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4653 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4654 	mtx_unlock(&queue->cam_doneq_mtx);
4655 	if (run)
4656 		wakeup(&queue->cam_doneq);
4657 }
4658 
4659 void
4660 xpt_done_direct(union ccb *done_ccb)
4661 {
4662 
4663 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4664 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4665 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4666 		return;
4667 
4668 	/* Store the time the ccb was in the sim */
4669 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4670 	xpt_done_process(&done_ccb->ccb_h);
4671 }
4672 
4673 union ccb *
4674 xpt_alloc_ccb(void)
4675 {
4676 	union ccb *new_ccb;
4677 
4678 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4679 	return (new_ccb);
4680 }
4681 
4682 union ccb *
4683 xpt_alloc_ccb_nowait(void)
4684 {
4685 	union ccb *new_ccb;
4686 
4687 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4688 	return (new_ccb);
4689 }
4690 
4691 void
4692 xpt_free_ccb(union ccb *free_ccb)
4693 {
4694 	free(free_ccb, M_CAMCCB);
4695 }
4696 
4697 /* Private XPT functions */
4698 
4699 /*
4700  * Get a CAM control block for the caller. Charge the structure to the device
4701  * referenced by the path.  If we don't have sufficient resources to allocate
4702  * more ccbs, we return NULL.
4703  */
4704 static union ccb *
4705 xpt_get_ccb_nowait(struct cam_periph *periph)
4706 {
4707 	union ccb *new_ccb;
4708 
4709 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4710 	if (new_ccb == NULL)
4711 		return (NULL);
4712 	periph->periph_allocated++;
4713 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4714 	return (new_ccb);
4715 }
4716 
4717 static union ccb *
4718 xpt_get_ccb(struct cam_periph *periph)
4719 {
4720 	union ccb *new_ccb;
4721 
4722 	cam_periph_unlock(periph);
4723 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4724 	cam_periph_lock(periph);
4725 	periph->periph_allocated++;
4726 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4727 	return (new_ccb);
4728 }
4729 
4730 union ccb *
4731 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4732 {
4733 	struct ccb_hdr *ccb_h;
4734 
4735 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4736 	cam_periph_assert(periph, MA_OWNED);
4737 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4738 	    ccb_h->pinfo.priority != priority) {
4739 		if (priority < periph->immediate_priority) {
4740 			periph->immediate_priority = priority;
4741 			xpt_run_allocq(periph, 0);
4742 		} else
4743 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4744 			    "cgticb", 0);
4745 	}
4746 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4747 	return ((union ccb *)ccb_h);
4748 }
4749 
4750 static void
4751 xpt_acquire_bus(struct cam_eb *bus)
4752 {
4753 
4754 	xpt_lock_buses();
4755 	bus->refcount++;
4756 	xpt_unlock_buses();
4757 }
4758 
4759 static void
4760 xpt_release_bus(struct cam_eb *bus)
4761 {
4762 
4763 	xpt_lock_buses();
4764 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4765 	if (--bus->refcount > 0) {
4766 		xpt_unlock_buses();
4767 		return;
4768 	}
4769 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4770 	xsoftc.bus_generation++;
4771 	xpt_unlock_buses();
4772 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4773 	    ("destroying bus, but target list is not empty"));
4774 	cam_sim_release(bus->sim);
4775 	mtx_destroy(&bus->eb_mtx);
4776 	free(bus, M_CAMXPT);
4777 }
4778 
4779 static struct cam_et *
4780 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4781 {
4782 	struct cam_et *cur_target, *target;
4783 
4784 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4785 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4786 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4787 					 M_NOWAIT|M_ZERO);
4788 	if (target == NULL)
4789 		return (NULL);
4790 
4791 	TAILQ_INIT(&target->ed_entries);
4792 	target->bus = bus;
4793 	target->target_id = target_id;
4794 	target->refcount = 1;
4795 	target->generation = 0;
4796 	target->luns = NULL;
4797 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4798 	timevalclear(&target->last_reset);
4799 	/*
4800 	 * Hold a reference to our parent bus so it
4801 	 * will not go away before we do.
4802 	 */
4803 	bus->refcount++;
4804 
4805 	/* Insertion sort into our bus's target list */
4806 	cur_target = TAILQ_FIRST(&bus->et_entries);
4807 	while (cur_target != NULL && cur_target->target_id < target_id)
4808 		cur_target = TAILQ_NEXT(cur_target, links);
4809 	if (cur_target != NULL) {
4810 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4811 	} else {
4812 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4813 	}
4814 	bus->generation++;
4815 	return (target);
4816 }
4817 
4818 static void
4819 xpt_acquire_target(struct cam_et *target)
4820 {
4821 	struct cam_eb *bus = target->bus;
4822 
4823 	mtx_lock(&bus->eb_mtx);
4824 	target->refcount++;
4825 	mtx_unlock(&bus->eb_mtx);
4826 }
4827 
4828 static void
4829 xpt_release_target(struct cam_et *target)
4830 {
4831 	struct cam_eb *bus = target->bus;
4832 
4833 	mtx_lock(&bus->eb_mtx);
4834 	if (--target->refcount > 0) {
4835 		mtx_unlock(&bus->eb_mtx);
4836 		return;
4837 	}
4838 	TAILQ_REMOVE(&bus->et_entries, target, links);
4839 	bus->generation++;
4840 	mtx_unlock(&bus->eb_mtx);
4841 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4842 	    ("destroying target, but device list is not empty"));
4843 	xpt_release_bus(bus);
4844 	mtx_destroy(&target->luns_mtx);
4845 	if (target->luns)
4846 		free(target->luns, M_CAMXPT);
4847 	free(target, M_CAMXPT);
4848 }
4849 
4850 static struct cam_ed *
4851 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4852 			 lun_id_t lun_id)
4853 {
4854 	struct cam_ed *device;
4855 
4856 	device = xpt_alloc_device(bus, target, lun_id);
4857 	if (device == NULL)
4858 		return (NULL);
4859 
4860 	device->mintags = 1;
4861 	device->maxtags = 1;
4862 	return (device);
4863 }
4864 
4865 static void
4866 xpt_destroy_device(void *context, int pending)
4867 {
4868 	struct cam_ed	*device = context;
4869 
4870 	mtx_lock(&device->device_mtx);
4871 	mtx_destroy(&device->device_mtx);
4872 	free(device, M_CAMDEV);
4873 }
4874 
4875 struct cam_ed *
4876 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4877 {
4878 	struct cam_ed	*cur_device, *device;
4879 	struct cam_devq	*devq;
4880 	cam_status status;
4881 
4882 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4883 	/* Make space for us in the device queue on our bus */
4884 	devq = bus->sim->devq;
4885 	mtx_lock(&devq->send_mtx);
4886 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4887 	mtx_unlock(&devq->send_mtx);
4888 	if (status != CAM_REQ_CMP)
4889 		return (NULL);
4890 
4891 	device = (struct cam_ed *)malloc(sizeof(*device),
4892 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4893 	if (device == NULL)
4894 		return (NULL);
4895 
4896 	cam_init_pinfo(&device->devq_entry);
4897 	device->target = target;
4898 	device->lun_id = lun_id;
4899 	device->sim = bus->sim;
4900 	if (cam_ccbq_init(&device->ccbq,
4901 			  bus->sim->max_dev_openings) != 0) {
4902 		free(device, M_CAMDEV);
4903 		return (NULL);
4904 	}
4905 	SLIST_INIT(&device->asyncs);
4906 	SLIST_INIT(&device->periphs);
4907 	device->generation = 0;
4908 	device->flags = CAM_DEV_UNCONFIGURED;
4909 	device->tag_delay_count = 0;
4910 	device->tag_saved_openings = 0;
4911 	device->refcount = 1;
4912 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4913 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4914 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4915 	/*
4916 	 * Hold a reference to our parent bus so it
4917 	 * will not go away before we do.
4918 	 */
4919 	target->refcount++;
4920 
4921 	cur_device = TAILQ_FIRST(&target->ed_entries);
4922 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4923 		cur_device = TAILQ_NEXT(cur_device, links);
4924 	if (cur_device != NULL)
4925 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4926 	else
4927 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4928 	target->generation++;
4929 	return (device);
4930 }
4931 
4932 void
4933 xpt_acquire_device(struct cam_ed *device)
4934 {
4935 	struct cam_eb *bus = device->target->bus;
4936 
4937 	mtx_lock(&bus->eb_mtx);
4938 	device->refcount++;
4939 	mtx_unlock(&bus->eb_mtx);
4940 }
4941 
4942 void
4943 xpt_release_device(struct cam_ed *device)
4944 {
4945 	struct cam_eb *bus = device->target->bus;
4946 	struct cam_devq *devq;
4947 
4948 	mtx_lock(&bus->eb_mtx);
4949 	if (--device->refcount > 0) {
4950 		mtx_unlock(&bus->eb_mtx);
4951 		return;
4952 	}
4953 
4954 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4955 	device->target->generation++;
4956 	mtx_unlock(&bus->eb_mtx);
4957 
4958 	/* Release our slot in the devq */
4959 	devq = bus->sim->devq;
4960 	mtx_lock(&devq->send_mtx);
4961 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4962 
4963 	KASSERT(SLIST_EMPTY(&device->periphs),
4964 	    ("destroying device, but periphs list is not empty"));
4965 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4966 	    ("destroying device while still queued for ccbs"));
4967 
4968 	/* The send_mtx must be held when accessing the callout */
4969 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4970 		callout_stop(&device->callout);
4971 
4972 	mtx_unlock(&devq->send_mtx);
4973 
4974 	xpt_release_target(device->target);
4975 
4976 	cam_ccbq_fini(&device->ccbq);
4977 	/*
4978 	 * Free allocated memory.  free(9) does nothing if the
4979 	 * supplied pointer is NULL, so it is safe to call without
4980 	 * checking.
4981 	 */
4982 	free(device->supported_vpds, M_CAMXPT);
4983 	free(device->device_id, M_CAMXPT);
4984 	free(device->ext_inq, M_CAMXPT);
4985 	free(device->physpath, M_CAMXPT);
4986 	free(device->rcap_buf, M_CAMXPT);
4987 	free(device->serial_num, M_CAMXPT);
4988 	free(device->nvme_data, M_CAMXPT);
4989 	free(device->nvme_cdata, M_CAMXPT);
4990 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4991 }
4992 
4993 u_int32_t
4994 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4995 {
4996 	int	result;
4997 	struct	cam_ed *dev;
4998 
4999 	dev = path->device;
5000 	mtx_lock(&dev->sim->devq->send_mtx);
5001 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5002 	mtx_unlock(&dev->sim->devq->send_mtx);
5003 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5004 	 || (dev->inq_flags & SID_CmdQue) != 0)
5005 		dev->tag_saved_openings = newopenings;
5006 	return (result);
5007 }
5008 
5009 static struct cam_eb *
5010 xpt_find_bus(path_id_t path_id)
5011 {
5012 	struct cam_eb *bus;
5013 
5014 	xpt_lock_buses();
5015 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5016 	     bus != NULL;
5017 	     bus = TAILQ_NEXT(bus, links)) {
5018 		if (bus->path_id == path_id) {
5019 			bus->refcount++;
5020 			break;
5021 		}
5022 	}
5023 	xpt_unlock_buses();
5024 	return (bus);
5025 }
5026 
5027 static struct cam_et *
5028 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5029 {
5030 	struct cam_et *target;
5031 
5032 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5033 	for (target = TAILQ_FIRST(&bus->et_entries);
5034 	     target != NULL;
5035 	     target = TAILQ_NEXT(target, links)) {
5036 		if (target->target_id == target_id) {
5037 			target->refcount++;
5038 			break;
5039 		}
5040 	}
5041 	return (target);
5042 }
5043 
5044 static struct cam_ed *
5045 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5046 {
5047 	struct cam_ed *device;
5048 
5049 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5050 	for (device = TAILQ_FIRST(&target->ed_entries);
5051 	     device != NULL;
5052 	     device = TAILQ_NEXT(device, links)) {
5053 		if (device->lun_id == lun_id) {
5054 			device->refcount++;
5055 			break;
5056 		}
5057 	}
5058 	return (device);
5059 }
5060 
5061 void
5062 xpt_start_tags(struct cam_path *path)
5063 {
5064 	struct ccb_relsim crs;
5065 	struct cam_ed *device;
5066 	struct cam_sim *sim;
5067 	int    newopenings;
5068 
5069 	device = path->device;
5070 	sim = path->bus->sim;
5071 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5072 	xpt_freeze_devq(path, /*count*/1);
5073 	device->inq_flags |= SID_CmdQue;
5074 	if (device->tag_saved_openings != 0)
5075 		newopenings = device->tag_saved_openings;
5076 	else
5077 		newopenings = min(device->maxtags,
5078 				  sim->max_tagged_dev_openings);
5079 	xpt_dev_ccbq_resize(path, newopenings);
5080 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5081 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5082 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5083 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5084 	crs.openings
5085 	    = crs.release_timeout
5086 	    = crs.qfrozen_cnt
5087 	    = 0;
5088 	xpt_action((union ccb *)&crs);
5089 }
5090 
5091 void
5092 xpt_stop_tags(struct cam_path *path)
5093 {
5094 	struct ccb_relsim crs;
5095 	struct cam_ed *device;
5096 	struct cam_sim *sim;
5097 
5098 	device = path->device;
5099 	sim = path->bus->sim;
5100 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5101 	device->tag_delay_count = 0;
5102 	xpt_freeze_devq(path, /*count*/1);
5103 	device->inq_flags &= ~SID_CmdQue;
5104 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5105 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5106 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5107 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5108 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5109 	crs.openings
5110 	    = crs.release_timeout
5111 	    = crs.qfrozen_cnt
5112 	    = 0;
5113 	xpt_action((union ccb *)&crs);
5114 }
5115 
5116 /*
5117  * Assume all possible buses are detected by this time, so allow boot
5118  * as soon as they all are scanned.
5119  */
5120 static void
5121 xpt_boot_delay(void *arg)
5122 {
5123 
5124 	xpt_release_boot();
5125 }
5126 
5127 /*
5128  * Now that all config hooks have completed, start boot_delay timer,
5129  * waiting for possibly still undetected buses (USB) to appear.
5130  */
5131 static void
5132 xpt_ch_done(void *arg)
5133 {
5134 
5135 	callout_init(&xsoftc.boot_callout, 1);
5136 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5137 	    xpt_boot_delay, NULL, 0);
5138 }
5139 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5140 
5141 /*
5142  * Now that interrupts are enabled, go find our devices
5143  */
5144 static void
5145 xpt_config(void *arg)
5146 {
5147 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5148 		printf("xpt_config: failed to create taskqueue thread.\n");
5149 
5150 	/* Setup debugging path */
5151 	if (cam_dflags != CAM_DEBUG_NONE) {
5152 		if (xpt_create_path(&cam_dpath, NULL,
5153 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5154 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5155 			printf("xpt_config: xpt_create_path() failed for debug"
5156 			       " target %d:%d:%d, debugging disabled\n",
5157 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5158 			cam_dflags = CAM_DEBUG_NONE;
5159 		}
5160 	} else
5161 		cam_dpath = NULL;
5162 
5163 	periphdriver_init(1);
5164 	xpt_hold_boot();
5165 
5166 	/* Fire up rescan thread. */
5167 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5168 	    "cam", "scanner")) {
5169 		printf("xpt_config: failed to create rescan thread.\n");
5170 	}
5171 }
5172 
5173 void
5174 xpt_hold_boot_locked(void)
5175 {
5176 
5177 	if (xsoftc.buses_to_config++ == 0)
5178 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5179 }
5180 
5181 void
5182 xpt_hold_boot(void)
5183 {
5184 
5185 	xpt_lock_buses();
5186 	xpt_hold_boot_locked();
5187 	xpt_unlock_buses();
5188 }
5189 
5190 void
5191 xpt_release_boot(void)
5192 {
5193 
5194 	xpt_lock_buses();
5195 	if (--xsoftc.buses_to_config == 0) {
5196 		if (xsoftc.buses_config_done == 0) {
5197 			xsoftc.buses_config_done = 1;
5198 			xsoftc.buses_to_config++;
5199 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5200 			    NULL);
5201 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5202 		} else
5203 			root_mount_rel(&xsoftc.xpt_rootmount);
5204 	}
5205 	xpt_unlock_buses();
5206 }
5207 
5208 /*
5209  * If the given device only has one peripheral attached to it, and if that
5210  * peripheral is the passthrough driver, announce it.  This insures that the
5211  * user sees some sort of announcement for every peripheral in their system.
5212  */
5213 static int
5214 xptpassannouncefunc(struct cam_ed *device, void *arg)
5215 {
5216 	struct cam_periph *periph;
5217 	int i;
5218 
5219 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5220 	     periph = SLIST_NEXT(periph, periph_links), i++);
5221 
5222 	periph = SLIST_FIRST(&device->periphs);
5223 	if ((i == 1)
5224 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5225 		xpt_announce_periph(periph, NULL);
5226 
5227 	return(1);
5228 }
5229 
5230 static void
5231 xpt_finishconfig_task(void *context, int pending)
5232 {
5233 
5234 	periphdriver_init(2);
5235 	/*
5236 	 * Check for devices with no "standard" peripheral driver
5237 	 * attached.  For any devices like that, announce the
5238 	 * passthrough driver so the user will see something.
5239 	 */
5240 	if (!bootverbose)
5241 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5242 
5243 	xpt_release_boot();
5244 }
5245 
5246 cam_status
5247 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5248 		   struct cam_path *path)
5249 {
5250 	struct ccb_setasync csa;
5251 	cam_status status;
5252 	int xptpath = 0;
5253 
5254 	if (path == NULL) {
5255 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5256 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5257 		if (status != CAM_REQ_CMP)
5258 			return (status);
5259 		xpt_path_lock(path);
5260 		xptpath = 1;
5261 	}
5262 
5263 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5264 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5265 	csa.event_enable = event;
5266 	csa.callback = cbfunc;
5267 	csa.callback_arg = cbarg;
5268 	xpt_action((union ccb *)&csa);
5269 	status = csa.ccb_h.status;
5270 
5271 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5272 	    ("xpt_register_async: func %p\n", cbfunc));
5273 
5274 	if (xptpath) {
5275 		xpt_path_unlock(path);
5276 		xpt_free_path(path);
5277 	}
5278 
5279 	if ((status == CAM_REQ_CMP) &&
5280 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5281 		/*
5282 		 * Get this peripheral up to date with all
5283 		 * the currently existing devices.
5284 		 */
5285 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5286 	}
5287 	if ((status == CAM_REQ_CMP) &&
5288 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5289 		/*
5290 		 * Get this peripheral up to date with all
5291 		 * the currently existing buses.
5292 		 */
5293 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5294 	}
5295 
5296 	return (status);
5297 }
5298 
5299 static void
5300 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5301 {
5302 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5303 
5304 	switch (work_ccb->ccb_h.func_code) {
5305 	/* Common cases first */
5306 	case XPT_PATH_INQ:		/* Path routing inquiry */
5307 	{
5308 		struct ccb_pathinq *cpi;
5309 
5310 		cpi = &work_ccb->cpi;
5311 		cpi->version_num = 1; /* XXX??? */
5312 		cpi->hba_inquiry = 0;
5313 		cpi->target_sprt = 0;
5314 		cpi->hba_misc = 0;
5315 		cpi->hba_eng_cnt = 0;
5316 		cpi->max_target = 0;
5317 		cpi->max_lun = 0;
5318 		cpi->initiator_id = 0;
5319 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5320 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5321 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5322 		cpi->unit_number = sim->unit_number;
5323 		cpi->bus_id = sim->bus_id;
5324 		cpi->base_transfer_speed = 0;
5325 		cpi->protocol = PROTO_UNSPECIFIED;
5326 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5327 		cpi->transport = XPORT_UNSPECIFIED;
5328 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5329 		cpi->ccb_h.status = CAM_REQ_CMP;
5330 		break;
5331 	}
5332 	default:
5333 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5334 		break;
5335 	}
5336 	xpt_done(work_ccb);
5337 }
5338 
5339 /*
5340  * The xpt as a "controller" has no interrupt sources, so polling
5341  * is a no-op.
5342  */
5343 static void
5344 xptpoll(struct cam_sim *sim)
5345 {
5346 }
5347 
5348 void
5349 xpt_lock_buses(void)
5350 {
5351 	mtx_lock(&xsoftc.xpt_topo_lock);
5352 }
5353 
5354 void
5355 xpt_unlock_buses(void)
5356 {
5357 	mtx_unlock(&xsoftc.xpt_topo_lock);
5358 }
5359 
5360 struct mtx *
5361 xpt_path_mtx(struct cam_path *path)
5362 {
5363 
5364 	return (&path->device->device_mtx);
5365 }
5366 
5367 static void
5368 xpt_done_process(struct ccb_hdr *ccb_h)
5369 {
5370 	struct cam_sim *sim = NULL;
5371 	struct cam_devq *devq = NULL;
5372 	struct mtx *mtx = NULL;
5373 
5374 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5375 	struct ccb_scsiio *csio;
5376 
5377 	if (ccb_h->func_code == XPT_SCSI_IO) {
5378 		csio = &((union ccb *)ccb_h)->csio;
5379 		if (csio->bio != NULL)
5380 			biotrack(csio->bio, __func__);
5381 	}
5382 #endif
5383 
5384 	if (ccb_h->flags & CAM_HIGH_POWER) {
5385 		struct highpowerlist	*hphead;
5386 		struct cam_ed		*device;
5387 
5388 		mtx_lock(&xsoftc.xpt_highpower_lock);
5389 		hphead = &xsoftc.highpowerq;
5390 
5391 		device = STAILQ_FIRST(hphead);
5392 
5393 		/*
5394 		 * Increment the count since this command is done.
5395 		 */
5396 		xsoftc.num_highpower++;
5397 
5398 		/*
5399 		 * Any high powered commands queued up?
5400 		 */
5401 		if (device != NULL) {
5402 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5403 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5404 
5405 			mtx_lock(&device->sim->devq->send_mtx);
5406 			xpt_release_devq_device(device,
5407 					 /*count*/1, /*runqueue*/TRUE);
5408 			mtx_unlock(&device->sim->devq->send_mtx);
5409 		} else
5410 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5411 	}
5412 
5413 	/*
5414 	 * Insulate against a race where the periph is destroyed but CCBs are
5415 	 * still not all processed. This shouldn't happen, but allows us better
5416 	 * bug diagnostic when it does.
5417 	 */
5418 	if (ccb_h->path->bus)
5419 		sim = ccb_h->path->bus->sim;
5420 
5421 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5422 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5423 		xpt_release_simq(sim, /*run_queue*/FALSE);
5424 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5425 	}
5426 
5427 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5428 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5429 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5430 		ccb_h->status &= ~CAM_DEV_QFRZN;
5431 	}
5432 
5433 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5434 		struct cam_ed *dev = ccb_h->path->device;
5435 
5436 		if (sim)
5437 			devq = sim->devq;
5438 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5439 			ccb_h, xpt_action_name(ccb_h->func_code)));
5440 
5441 		mtx_lock(&devq->send_mtx);
5442 		devq->send_active--;
5443 		devq->send_openings++;
5444 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5445 
5446 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5447 		  && (dev->ccbq.dev_active == 0))) {
5448 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5449 			xpt_release_devq_device(dev, /*count*/1,
5450 					 /*run_queue*/FALSE);
5451 		}
5452 
5453 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5454 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5455 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5456 			xpt_release_devq_device(dev, /*count*/1,
5457 					 /*run_queue*/FALSE);
5458 		}
5459 
5460 		if (!device_is_queued(dev))
5461 			(void)xpt_schedule_devq(devq, dev);
5462 		xpt_run_devq(devq);
5463 		mtx_unlock(&devq->send_mtx);
5464 
5465 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5466 			mtx = xpt_path_mtx(ccb_h->path);
5467 			mtx_lock(mtx);
5468 
5469 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5470 			 && (--dev->tag_delay_count == 0))
5471 				xpt_start_tags(ccb_h->path);
5472 		}
5473 	}
5474 
5475 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5476 		if (mtx == NULL) {
5477 			mtx = xpt_path_mtx(ccb_h->path);
5478 			mtx_lock(mtx);
5479 		}
5480 	} else {
5481 		if (mtx != NULL) {
5482 			mtx_unlock(mtx);
5483 			mtx = NULL;
5484 		}
5485 	}
5486 
5487 	/* Call the peripheral driver's callback */
5488 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5489 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5490 	if (mtx != NULL)
5491 		mtx_unlock(mtx);
5492 }
5493 
5494 /*
5495  * Parameterize instead and use xpt_done_td?
5496  */
5497 static void
5498 xpt_async_td(void *arg)
5499 {
5500 	struct cam_doneq *queue = arg;
5501 	struct ccb_hdr *ccb_h;
5502 	STAILQ_HEAD(, ccb_hdr)	doneq;
5503 
5504 	STAILQ_INIT(&doneq);
5505 	mtx_lock(&queue->cam_doneq_mtx);
5506 	while (1) {
5507 		while (STAILQ_EMPTY(&queue->cam_doneq))
5508 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5509 			    PRIBIO, "-", 0);
5510 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5511 		mtx_unlock(&queue->cam_doneq_mtx);
5512 
5513 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5514 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5515 			xpt_done_process(ccb_h);
5516 		}
5517 
5518 		mtx_lock(&queue->cam_doneq_mtx);
5519 	}
5520 }
5521 
5522 void
5523 xpt_done_td(void *arg)
5524 {
5525 	struct cam_doneq *queue = arg;
5526 	struct ccb_hdr *ccb_h;
5527 	STAILQ_HEAD(, ccb_hdr)	doneq;
5528 
5529 	STAILQ_INIT(&doneq);
5530 	mtx_lock(&queue->cam_doneq_mtx);
5531 	while (1) {
5532 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5533 			queue->cam_doneq_sleep = 1;
5534 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5535 			    PRIBIO, "-", 0);
5536 			queue->cam_doneq_sleep = 0;
5537 		}
5538 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5539 		mtx_unlock(&queue->cam_doneq_mtx);
5540 
5541 		THREAD_NO_SLEEPING();
5542 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5543 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5544 			xpt_done_process(ccb_h);
5545 		}
5546 		THREAD_SLEEPING_OK();
5547 
5548 		mtx_lock(&queue->cam_doneq_mtx);
5549 	}
5550 }
5551 
5552 static void
5553 camisr_runqueue(void)
5554 {
5555 	struct	ccb_hdr *ccb_h;
5556 	struct cam_doneq *queue;
5557 	int i;
5558 
5559 	/* Process global queues. */
5560 	for (i = 0; i < cam_num_doneqs; i++) {
5561 		queue = &cam_doneqs[i];
5562 		mtx_lock(&queue->cam_doneq_mtx);
5563 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5564 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5565 			mtx_unlock(&queue->cam_doneq_mtx);
5566 			xpt_done_process(ccb_h);
5567 			mtx_lock(&queue->cam_doneq_mtx);
5568 		}
5569 		mtx_unlock(&queue->cam_doneq_mtx);
5570 	}
5571 }
5572 
5573 struct kv
5574 {
5575 	uint32_t v;
5576 	const char *name;
5577 };
5578 
5579 static struct kv map[] = {
5580 	{ XPT_NOOP, "XPT_NOOP" },
5581 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5582 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5583 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5584 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5585 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5586 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5587 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5588 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5589 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5590 	{ XPT_DEBUG, "XPT_DEBUG" },
5591 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5592 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5593 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5594 	{ XPT_ASYNC, "XPT_ASYNC" },
5595 	{ XPT_ABORT, "XPT_ABORT" },
5596 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5597 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5598 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5599 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5600 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5601 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5602 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5603 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5604 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5605 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5606 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5607 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5608 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5609 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5610 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5611 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5612 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5613 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5614 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5615 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5616 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5617 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5618 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5619 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5620 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5621 	{ 0, 0 }
5622 };
5623 
5624 const char *
5625 xpt_action_name(uint32_t action)
5626 {
5627 	static char buffer[32];	/* Only for unknown messages -- racy */
5628 	struct kv *walker = map;
5629 
5630 	while (walker->name != NULL) {
5631 		if (walker->v == action)
5632 			return (walker->name);
5633 		walker++;
5634 	}
5635 
5636 	snprintf(buffer, sizeof(buffer), "%#x", action);
5637 	return (buffer);
5638 }
5639