1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 50 #ifdef PC98 51 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 52 #endif 53 54 #include <cam/cam.h> 55 #include <cam/cam_ccb.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_debug.h> 62 63 #include <cam/scsi/scsi_all.h> 64 #include <cam/scsi/scsi_message.h> 65 #include <cam/scsi/scsi_pass.h> 66 #include "opt_cam.h" 67 68 /* Datastructures internal to the xpt layer */ 69 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 70 71 /* 72 * Definition of an async handler callback block. These are used to add 73 * SIMs and peripherals to the async callback lists. 74 */ 75 struct async_node { 76 SLIST_ENTRY(async_node) links; 77 u_int32_t event_enable; /* Async Event enables */ 78 void (*callback)(void *arg, u_int32_t code, 79 struct cam_path *path, void *args); 80 void *callback_arg; 81 }; 82 83 SLIST_HEAD(async_list, async_node); 84 SLIST_HEAD(periph_list, cam_periph); 85 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 86 87 /* 88 * This is the maximum number of high powered commands (e.g. start unit) 89 * that can be outstanding at a particular time. 90 */ 91 #ifndef CAM_MAX_HIGHPOWER 92 #define CAM_MAX_HIGHPOWER 4 93 #endif 94 95 /* number of high powered commands that can go through right now */ 96 static int num_highpower = CAM_MAX_HIGHPOWER; 97 98 /* 99 * Structure for queueing a device in a run queue. 100 * There is one run queue for allocating new ccbs, 101 * and another for sending ccbs to the controller. 102 */ 103 struct cam_ed_qinfo { 104 cam_pinfo pinfo; 105 struct cam_ed *device; 106 }; 107 108 /* 109 * The CAM EDT (Existing Device Table) contains the device information for 110 * all devices for all busses in the system. The table contains a 111 * cam_ed structure for each device on the bus. 112 */ 113 struct cam_ed { 114 TAILQ_ENTRY(cam_ed) links; 115 struct cam_ed_qinfo alloc_ccb_entry; 116 struct cam_ed_qinfo send_ccb_entry; 117 struct cam_et *target; 118 lun_id_t lun_id; 119 struct camq drvq; /* 120 * Queue of type drivers wanting to do 121 * work on this device. 122 */ 123 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 124 struct async_list asyncs; /* Async callback info for this B/T/L */ 125 struct periph_list periphs; /* All attached devices */ 126 u_int generation; /* Generation number */ 127 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 128 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 129 /* Storage for the inquiry data */ 130 #ifdef CAM_NEW_TRAN_CODE 131 cam_proto protocol; 132 u_int protocol_version; 133 cam_xport transport; 134 u_int transport_version; 135 #endif /* CAM_NEW_TRAN_CODE */ 136 struct scsi_inquiry_data inq_data; 137 u_int8_t inq_flags; /* 138 * Current settings for inquiry flags. 139 * This allows us to override settings 140 * like disconnection and tagged 141 * queuing for a device. 142 */ 143 u_int8_t queue_flags; /* Queue flags from the control page */ 144 u_int8_t serial_num_len; 145 u_int8_t *serial_num; 146 u_int32_t qfrozen_cnt; 147 u_int32_t flags; 148 #define CAM_DEV_UNCONFIGURED 0x01 149 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 150 #define CAM_DEV_REL_ON_COMPLETE 0x04 151 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 152 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 153 #define CAM_DEV_TAG_AFTER_COUNT 0x20 154 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 155 u_int32_t tag_delay_count; 156 #define CAM_TAG_DELAY_COUNT 5 157 u_int32_t tag_saved_openings; 158 u_int32_t refcount; 159 struct callout_handle c_handle; 160 }; 161 162 /* 163 * Each target is represented by an ET (Existing Target). These 164 * entries are created when a target is successfully probed with an 165 * identify, and removed when a device fails to respond after a number 166 * of retries, or a bus rescan finds the device missing. 167 */ 168 struct cam_et { 169 TAILQ_HEAD(, cam_ed) ed_entries; 170 TAILQ_ENTRY(cam_et) links; 171 struct cam_eb *bus; 172 target_id_t target_id; 173 u_int32_t refcount; 174 u_int generation; 175 struct timeval last_reset; 176 }; 177 178 /* 179 * Each bus is represented by an EB (Existing Bus). These entries 180 * are created by calls to xpt_bus_register and deleted by calls to 181 * xpt_bus_deregister. 182 */ 183 struct cam_eb { 184 TAILQ_HEAD(, cam_et) et_entries; 185 TAILQ_ENTRY(cam_eb) links; 186 path_id_t path_id; 187 struct cam_sim *sim; 188 struct timeval last_reset; 189 u_int32_t flags; 190 #define CAM_EB_RUNQ_SCHEDULED 0x01 191 u_int32_t refcount; 192 u_int generation; 193 }; 194 195 struct cam_path { 196 struct cam_periph *periph; 197 struct cam_eb *bus; 198 struct cam_et *target; 199 struct cam_ed *device; 200 }; 201 202 struct xpt_quirk_entry { 203 struct scsi_inquiry_pattern inq_pat; 204 u_int8_t quirks; 205 #define CAM_QUIRK_NOLUNS 0x01 206 #define CAM_QUIRK_NOSERIAL 0x02 207 #define CAM_QUIRK_HILUNS 0x04 208 #define CAM_QUIRK_NOHILUNS 0x08 209 u_int mintags; 210 u_int maxtags; 211 }; 212 213 static int cam_srch_hi = 0; 214 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 215 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 216 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 217 sysctl_cam_search_luns, "I", 218 "allow search above LUN 7 for SCSI3 and greater devices"); 219 220 #define CAM_SCSI2_MAXLUN 8 221 /* 222 * If we're not quirked to search <= the first 8 luns 223 * and we are either quirked to search above lun 8, 224 * or we're > SCSI-2 and we've enabled hilun searching, 225 * or we're > SCSI-2 and the last lun was a success, 226 * we can look for luns above lun 8. 227 */ 228 #define CAN_SRCH_HI_SPARSE(dv) \ 229 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 230 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 231 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 232 233 #define CAN_SRCH_HI_DENSE(dv) \ 234 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 235 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 236 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 237 238 typedef enum { 239 XPT_FLAG_OPEN = 0x01 240 } xpt_flags; 241 242 struct xpt_softc { 243 xpt_flags flags; 244 u_int32_t generation; 245 }; 246 247 static const char quantum[] = "QUANTUM"; 248 static const char sony[] = "SONY"; 249 static const char west_digital[] = "WDIGTL"; 250 static const char samsung[] = "SAMSUNG"; 251 static const char seagate[] = "SEAGATE"; 252 static const char microp[] = "MICROP"; 253 254 static struct xpt_quirk_entry xpt_quirk_table[] = 255 { 256 { 257 /* Reports QUEUE FULL for temporary resource shortages */ 258 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 259 /*quirks*/0, /*mintags*/24, /*maxtags*/32 260 }, 261 { 262 /* Reports QUEUE FULL for temporary resource shortages */ 263 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 264 /*quirks*/0, /*mintags*/24, /*maxtags*/32 265 }, 266 { 267 /* Reports QUEUE FULL for temporary resource shortages */ 268 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 269 /*quirks*/0, /*mintags*/24, /*maxtags*/32 270 }, 271 { 272 /* Broken tagged queuing drive */ 273 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 274 /*quirks*/0, /*mintags*/0, /*maxtags*/0 275 }, 276 { 277 /* Broken tagged queuing drive */ 278 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 279 /*quirks*/0, /*mintags*/0, /*maxtags*/0 280 }, 281 { 282 /* Broken tagged queuing drive */ 283 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 284 /*quirks*/0, /*mintags*/0, /*maxtags*/0 285 }, 286 { 287 /* 288 * Unfortunately, the Quantum Atlas III has the same 289 * problem as the Atlas II drives above. 290 * Reported by: "Johan Granlund" <johan@granlund.nu> 291 * 292 * For future reference, the drive with the problem was: 293 * QUANTUM QM39100TD-SW N1B0 294 * 295 * It's possible that Quantum will fix the problem in later 296 * firmware revisions. If that happens, the quirk entry 297 * will need to be made specific to the firmware revisions 298 * with the problem. 299 * 300 */ 301 /* Reports QUEUE FULL for temporary resource shortages */ 302 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 303 /*quirks*/0, /*mintags*/24, /*maxtags*/32 304 }, 305 { 306 /* 307 * 18 Gig Atlas III, same problem as the 9G version. 308 * Reported by: Andre Albsmeier 309 * <andre.albsmeier@mchp.siemens.de> 310 * 311 * For future reference, the drive with the problem was: 312 * QUANTUM QM318000TD-S N491 313 */ 314 /* Reports QUEUE FULL for temporary resource shortages */ 315 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 316 /*quirks*/0, /*mintags*/24, /*maxtags*/32 317 }, 318 { 319 /* 320 * Broken tagged queuing drive 321 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 322 * and: Martin Renters <martin@tdc.on.ca> 323 */ 324 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 325 /*quirks*/0, /*mintags*/0, /*maxtags*/0 326 }, 327 /* 328 * The Seagate Medalist Pro drives have very poor write 329 * performance with anything more than 2 tags. 330 * 331 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 332 * Drive: <SEAGATE ST36530N 1444> 333 * 334 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 335 * Drive: <SEAGATE ST34520W 1281> 336 * 337 * No one has actually reported that the 9G version 338 * (ST39140*) of the Medalist Pro has the same problem, but 339 * we're assuming that it does because the 4G and 6.5G 340 * versions of the drive are broken. 341 */ 342 { 343 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 344 /*quirks*/0, /*mintags*/2, /*maxtags*/2 345 }, 346 { 347 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 348 /*quirks*/0, /*mintags*/2, /*maxtags*/2 349 }, 350 { 351 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 352 /*quirks*/0, /*mintags*/2, /*maxtags*/2 353 }, 354 { 355 /* 356 * Slow when tagged queueing is enabled. Write performance 357 * steadily drops off with more and more concurrent 358 * transactions. Best sequential write performance with 359 * tagged queueing turned off and write caching turned on. 360 * 361 * PR: kern/10398 362 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 363 * Drive: DCAS-34330 w/ "S65A" firmware. 364 * 365 * The drive with the problem had the "S65A" firmware 366 * revision, and has also been reported (by Stephen J. 367 * Roznowski <sjr@home.net>) for a drive with the "S61A" 368 * firmware revision. 369 * 370 * Although no one has reported problems with the 2 gig 371 * version of the DCAS drive, the assumption is that it 372 * has the same problems as the 4 gig version. Therefore 373 * this quirk entries disables tagged queueing for all 374 * DCAS drives. 375 */ 376 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 377 /*quirks*/0, /*mintags*/0, /*maxtags*/0 378 }, 379 { 380 /* Broken tagged queuing drive */ 381 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 382 /*quirks*/0, /*mintags*/0, /*maxtags*/0 383 }, 384 { 385 /* Broken tagged queuing drive */ 386 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 387 /*quirks*/0, /*mintags*/0, /*maxtags*/0 388 }, 389 { 390 /* This does not support other than LUN 0 */ 391 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" }, 392 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 393 }, 394 { 395 /* 396 * Broken tagged queuing drive. 397 * Submitted by: 398 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 399 * in PR kern/9535 400 */ 401 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 402 /*quirks*/0, /*mintags*/0, /*maxtags*/0 403 }, 404 { 405 /* 406 * Slow when tagged queueing is enabled. (1.5MB/sec versus 407 * 8MB/sec.) 408 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 409 * Best performance with these drives is achieved with 410 * tagged queueing turned off, and write caching turned on. 411 */ 412 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 413 /*quirks*/0, /*mintags*/0, /*maxtags*/0 414 }, 415 { 416 /* 417 * Slow when tagged queueing is enabled. (1.5MB/sec versus 418 * 8MB/sec.) 419 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 420 * Best performance with these drives is achieved with 421 * tagged queueing turned off, and write caching turned on. 422 */ 423 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 424 /*quirks*/0, /*mintags*/0, /*maxtags*/0 425 }, 426 { 427 /* 428 * Doesn't handle queue full condition correctly, 429 * so we need to limit maxtags to what the device 430 * can handle instead of determining this automatically. 431 */ 432 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 433 /*quirks*/0, /*mintags*/2, /*maxtags*/32 434 }, 435 { 436 /* Really only one LUN */ 437 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 438 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 439 }, 440 { 441 /* I can't believe we need a quirk for DPT volumes. */ 442 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 443 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 444 /*mintags*/0, /*maxtags*/255 445 }, 446 { 447 /* 448 * Many Sony CDROM drives don't like multi-LUN probing. 449 */ 450 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 451 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 452 }, 453 { 454 /* 455 * This drive doesn't like multiple LUN probing. 456 * Submitted by: Parag Patel <parag@cgt.com> 457 */ 458 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 459 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 460 }, 461 { 462 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 463 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 464 }, 465 { 466 /* 467 * The 8200 doesn't like multi-lun probing, and probably 468 * don't like serial number requests either. 469 */ 470 { 471 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 472 "EXB-8200*", "*" 473 }, 474 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 475 }, 476 { 477 /* 478 * Let's try the same as above, but for a drive that says 479 * it's an IPL-6860 but is actually an EXB 8200. 480 */ 481 { 482 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 483 "IPL-6860*", "*" 484 }, 485 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 486 }, 487 { 488 /* 489 * These Hitachi drives don't like multi-lun probing. 490 * The PR submitter has a DK319H, but says that the Linux 491 * kernel has a similar work-around for the DK312 and DK314, 492 * so all DK31* drives are quirked here. 493 * PR: misc/18793 494 * Submitted by: Paul Haddad <paul@pth.com> 495 */ 496 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 497 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 498 }, 499 { 500 /* 501 * The Hitachi CJ series with J8A8 firmware apparantly has 502 * problems with tagged commands. 503 * PR: 23536 504 * Reported by: amagai@nue.org 505 */ 506 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 507 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 508 }, 509 { 510 /* 511 * These are the large storage arrays. 512 * Submitted by: William Carrel <william.carrel@infospace.com> 513 */ 514 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 515 CAM_QUIRK_HILUNS, 2, 1024 516 }, 517 { 518 /* 519 * This old revision of the TDC3600 is also SCSI-1, and 520 * hangs upon serial number probing. 521 */ 522 { 523 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 524 " TDC 3600", "U07:" 525 }, 526 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 527 }, 528 { 529 /* 530 * Maxtor Personal Storage 3000XT (Firewire) 531 * hangs upon serial number probing. 532 */ 533 { 534 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 535 "1394 storage", "*" 536 }, 537 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 538 }, 539 { 540 /* 541 * Would repond to all LUNs if asked for. 542 */ 543 { 544 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 545 "CP150", "*" 546 }, 547 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 548 }, 549 { 550 /* 551 * Would repond to all LUNs if asked for. 552 */ 553 { 554 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 555 "96X2*", "*" 556 }, 557 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 558 }, 559 { 560 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 561 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 562 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 563 }, 564 { 565 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 566 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 567 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 568 }, 569 { 570 /* TeraSolutions special settings for TRC-22 RAID */ 571 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 572 /*quirks*/0, /*mintags*/55, /*maxtags*/255 573 }, 574 { 575 /* Veritas Storage Appliance */ 576 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 577 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 578 }, 579 { 580 /* 581 * Would respond to all LUNs. Device type and removable 582 * flag are jumper-selectable. 583 */ 584 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 585 "Tahiti 1", "*" 586 }, 587 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 588 }, 589 { 590 /* EasyRAID E5A aka. areca ARC-6010 */ 591 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 592 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 593 }, 594 { 595 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" }, 596 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 597 }, 598 { 599 /* Default tagged queuing parameters for all devices */ 600 { 601 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 602 /*vendor*/"*", /*product*/"*", /*revision*/"*" 603 }, 604 /*quirks*/0, /*mintags*/2, /*maxtags*/255 605 }, 606 }; 607 608 static const int xpt_quirk_table_size = 609 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 610 611 typedef enum { 612 DM_RET_COPY = 0x01, 613 DM_RET_FLAG_MASK = 0x0f, 614 DM_RET_NONE = 0x00, 615 DM_RET_STOP = 0x10, 616 DM_RET_DESCEND = 0x20, 617 DM_RET_ERROR = 0x30, 618 DM_RET_ACTION_MASK = 0xf0 619 } dev_match_ret; 620 621 typedef enum { 622 XPT_DEPTH_BUS, 623 XPT_DEPTH_TARGET, 624 XPT_DEPTH_DEVICE, 625 XPT_DEPTH_PERIPH 626 } xpt_traverse_depth; 627 628 struct xpt_traverse_config { 629 xpt_traverse_depth depth; 630 void *tr_func; 631 void *tr_arg; 632 }; 633 634 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 635 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 636 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 637 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 638 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 639 640 /* Transport layer configuration information */ 641 static struct xpt_softc xsoftc; 642 643 /* Queues for our software interrupt handler */ 644 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 645 static cam_isrq_t cam_bioq; 646 static struct mtx cam_bioq_lock; 647 648 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 649 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 650 static u_int xpt_max_ccbs; /* 651 * Maximum size of ccb pool. Modified as 652 * devices are added/removed or have their 653 * opening counts changed. 654 */ 655 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 656 657 struct cam_periph *xpt_periph; 658 659 static periph_init_t xpt_periph_init; 660 661 static periph_init_t probe_periph_init; 662 663 static struct periph_driver xpt_driver = 664 { 665 xpt_periph_init, "xpt", 666 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 667 }; 668 669 static struct periph_driver probe_driver = 670 { 671 probe_periph_init, "probe", 672 TAILQ_HEAD_INITIALIZER(probe_driver.units) 673 }; 674 675 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 676 PERIPHDRIVER_DECLARE(probe, probe_driver); 677 678 679 static d_open_t xptopen; 680 static d_close_t xptclose; 681 static d_ioctl_t xptioctl; 682 683 static struct cdevsw xpt_cdevsw = { 684 .d_version = D_VERSION, 685 .d_flags = D_NEEDGIANT, 686 .d_open = xptopen, 687 .d_close = xptclose, 688 .d_ioctl = xptioctl, 689 .d_name = "xpt", 690 }; 691 692 static struct intr_config_hook *xpt_config_hook; 693 694 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb); 695 static void dead_sim_poll(struct cam_sim *sim); 696 697 /* Dummy SIM that is used when the real one has gone. */ 698 static struct cam_sim cam_dead_sim = { 699 .sim_action = dead_sim_action, 700 .sim_poll = dead_sim_poll, 701 .sim_name = "dead_sim", 702 }; 703 704 #define SIM_DEAD(sim) ((sim) == &cam_dead_sim) 705 706 /* Registered busses */ 707 static TAILQ_HEAD(,cam_eb) xpt_busses; 708 static u_int bus_generation; 709 710 /* Storage for debugging datastructures */ 711 #ifdef CAMDEBUG 712 struct cam_path *cam_dpath; 713 u_int32_t cam_dflags; 714 u_int32_t cam_debug_delay; 715 #endif 716 717 /* Pointers to software interrupt handlers */ 718 static void *cambio_ih; 719 720 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 721 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 722 #endif 723 724 /* 725 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 726 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 727 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 728 */ 729 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 730 || defined(CAM_DEBUG_LUN) 731 #ifdef CAMDEBUG 732 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 733 || !defined(CAM_DEBUG_LUN) 734 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 735 and CAM_DEBUG_LUN" 736 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 737 #else /* !CAMDEBUG */ 738 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 739 #endif /* CAMDEBUG */ 740 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 741 742 /* Our boot-time initialization hook */ 743 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 744 745 static moduledata_t cam_moduledata = { 746 "cam", 747 cam_module_event_handler, 748 NULL 749 }; 750 751 static void xpt_init(void *); 752 753 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 754 MODULE_VERSION(cam, 1); 755 756 757 static cam_status xpt_compile_path(struct cam_path *new_path, 758 struct cam_periph *perph, 759 path_id_t path_id, 760 target_id_t target_id, 761 lun_id_t lun_id); 762 763 static void xpt_release_path(struct cam_path *path); 764 765 static void xpt_async_bcast(struct async_list *async_head, 766 u_int32_t async_code, 767 struct cam_path *path, 768 void *async_arg); 769 static void xpt_dev_async(u_int32_t async_code, 770 struct cam_eb *bus, 771 struct cam_et *target, 772 struct cam_ed *device, 773 void *async_arg); 774 static path_id_t xptnextfreepathid(void); 775 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 776 static union ccb *xpt_get_ccb(struct cam_ed *device); 777 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 778 u_int32_t new_priority); 779 static void xpt_run_dev_allocq(struct cam_eb *bus); 780 static void xpt_run_dev_sendq(struct cam_eb *bus); 781 static timeout_t xpt_release_devq_timeout; 782 static timeout_t xpt_release_simq_timeout; 783 static void xpt_release_bus(struct cam_eb *bus); 784 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 785 int run_queue); 786 static struct cam_et* 787 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 788 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 789 static struct cam_ed* 790 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 791 lun_id_t lun_id); 792 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 793 struct cam_ed *device); 794 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 795 static struct cam_eb* 796 xpt_find_bus(path_id_t path_id); 797 static struct cam_et* 798 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 799 static struct cam_ed* 800 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 801 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 802 static void xpt_scan_lun(struct cam_periph *periph, 803 struct cam_path *path, cam_flags flags, 804 union ccb *ccb); 805 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 806 static xpt_busfunc_t xptconfigbuscountfunc; 807 static xpt_busfunc_t xptconfigfunc; 808 static void xpt_config(void *arg); 809 static xpt_devicefunc_t xptpassannouncefunc; 810 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 811 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 812 static void xptpoll(struct cam_sim *sim); 813 static void camisr(void *); 814 #if 0 815 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 816 static void xptasync(struct cam_periph *periph, 817 u_int32_t code, cam_path *path); 818 #endif 819 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 820 u_int num_patterns, struct cam_eb *bus); 821 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 822 u_int num_patterns, 823 struct cam_ed *device); 824 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 825 u_int num_patterns, 826 struct cam_periph *periph); 827 static xpt_busfunc_t xptedtbusfunc; 828 static xpt_targetfunc_t xptedttargetfunc; 829 static xpt_devicefunc_t xptedtdevicefunc; 830 static xpt_periphfunc_t xptedtperiphfunc; 831 static xpt_pdrvfunc_t xptplistpdrvfunc; 832 static xpt_periphfunc_t xptplistperiphfunc; 833 static int xptedtmatch(struct ccb_dev_match *cdm); 834 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 835 static int xptbustraverse(struct cam_eb *start_bus, 836 xpt_busfunc_t *tr_func, void *arg); 837 static int xpttargettraverse(struct cam_eb *bus, 838 struct cam_et *start_target, 839 xpt_targetfunc_t *tr_func, void *arg); 840 static int xptdevicetraverse(struct cam_et *target, 841 struct cam_ed *start_device, 842 xpt_devicefunc_t *tr_func, void *arg); 843 static int xptperiphtraverse(struct cam_ed *device, 844 struct cam_periph *start_periph, 845 xpt_periphfunc_t *tr_func, void *arg); 846 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 847 xpt_pdrvfunc_t *tr_func, void *arg); 848 static int xptpdperiphtraverse(struct periph_driver **pdrv, 849 struct cam_periph *start_periph, 850 xpt_periphfunc_t *tr_func, 851 void *arg); 852 static xpt_busfunc_t xptdefbusfunc; 853 static xpt_targetfunc_t xptdeftargetfunc; 854 static xpt_devicefunc_t xptdefdevicefunc; 855 static xpt_periphfunc_t xptdefperiphfunc; 856 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 857 #ifdef notusedyet 858 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 859 void *arg); 860 #endif 861 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 862 void *arg); 863 #ifdef notusedyet 864 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 865 void *arg); 866 #endif 867 static xpt_devicefunc_t xptsetasyncfunc; 868 static xpt_busfunc_t xptsetasyncbusfunc; 869 static cam_status xptregister(struct cam_periph *periph, 870 void *arg); 871 static cam_status proberegister(struct cam_periph *periph, 872 void *arg); 873 static void probeschedule(struct cam_periph *probe_periph); 874 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 875 static void proberequestdefaultnegotiation(struct cam_periph *periph); 876 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 877 static void probecleanup(struct cam_periph *periph); 878 static void xpt_find_quirk(struct cam_ed *device); 879 #ifdef CAM_NEW_TRAN_CODE 880 static void xpt_devise_transport(struct cam_path *path); 881 #endif /* CAM_NEW_TRAN_CODE */ 882 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 883 struct cam_ed *device, 884 int async_update); 885 static void xpt_toggle_tags(struct cam_path *path); 886 static void xpt_start_tags(struct cam_path *path); 887 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 888 struct cam_ed *dev); 889 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 890 struct cam_ed *dev); 891 static __inline int periph_is_queued(struct cam_periph *periph); 892 static __inline int device_is_alloc_queued(struct cam_ed *device); 893 static __inline int device_is_send_queued(struct cam_ed *device); 894 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 895 896 static __inline int 897 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 898 { 899 int retval; 900 901 if (dev->ccbq.devq_openings > 0) { 902 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 903 cam_ccbq_resize(&dev->ccbq, 904 dev->ccbq.dev_openings 905 + dev->ccbq.dev_active); 906 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 907 } 908 /* 909 * The priority of a device waiting for CCB resources 910 * is that of the the highest priority peripheral driver 911 * enqueued. 912 */ 913 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 914 &dev->alloc_ccb_entry.pinfo, 915 CAMQ_GET_HEAD(&dev->drvq)->priority); 916 } else { 917 retval = 0; 918 } 919 920 return (retval); 921 } 922 923 static __inline int 924 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 925 { 926 int retval; 927 928 if (dev->ccbq.dev_openings > 0) { 929 /* 930 * The priority of a device waiting for controller 931 * resources is that of the the highest priority CCB 932 * enqueued. 933 */ 934 retval = 935 xpt_schedule_dev(&bus->sim->devq->send_queue, 936 &dev->send_ccb_entry.pinfo, 937 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 938 } else { 939 retval = 0; 940 } 941 return (retval); 942 } 943 944 static __inline int 945 periph_is_queued(struct cam_periph *periph) 946 { 947 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 948 } 949 950 static __inline int 951 device_is_alloc_queued(struct cam_ed *device) 952 { 953 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 954 } 955 956 static __inline int 957 device_is_send_queued(struct cam_ed *device) 958 { 959 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 960 } 961 962 static __inline int 963 dev_allocq_is_runnable(struct cam_devq *devq) 964 { 965 /* 966 * Have work to do. 967 * Have space to do more work. 968 * Allowed to do work. 969 */ 970 return ((devq->alloc_queue.qfrozen_cnt == 0) 971 && (devq->alloc_queue.entries > 0) 972 && (devq->alloc_openings > 0)); 973 } 974 975 static void 976 xpt_periph_init() 977 { 978 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 979 } 980 981 static void 982 probe_periph_init() 983 { 984 } 985 986 987 static void 988 xptdone(struct cam_periph *periph, union ccb *done_ccb) 989 { 990 /* Caller will release the CCB */ 991 wakeup(&done_ccb->ccb_h.cbfcnp); 992 } 993 994 static int 995 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 996 { 997 int unit; 998 999 unit = minor(dev) & 0xff; 1000 1001 /* 1002 * Only allow read-write access. 1003 */ 1004 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 1005 return(EPERM); 1006 1007 /* 1008 * We don't allow nonblocking access. 1009 */ 1010 if ((flags & O_NONBLOCK) != 0) { 1011 printf("xpt%d: can't do nonblocking access\n", unit); 1012 return(ENODEV); 1013 } 1014 1015 /* 1016 * We only have one transport layer right now. If someone accesses 1017 * us via something other than minor number 1, point out their 1018 * mistake. 1019 */ 1020 if (unit != 0) { 1021 printf("xptopen: got invalid xpt unit %d\n", unit); 1022 return(ENXIO); 1023 } 1024 1025 /* Mark ourselves open */ 1026 xsoftc.flags |= XPT_FLAG_OPEN; 1027 1028 return(0); 1029 } 1030 1031 static int 1032 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 1033 { 1034 int unit; 1035 1036 unit = minor(dev) & 0xff; 1037 1038 /* 1039 * We only have one transport layer right now. If someone accesses 1040 * us via something other than minor number 1, point out their 1041 * mistake. 1042 */ 1043 if (unit != 0) { 1044 printf("xptclose: got invalid xpt unit %d\n", unit); 1045 return(ENXIO); 1046 } 1047 1048 /* Mark ourselves closed */ 1049 xsoftc.flags &= ~XPT_FLAG_OPEN; 1050 1051 return(0); 1052 } 1053 1054 static int 1055 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1056 { 1057 int unit, error; 1058 1059 error = 0; 1060 unit = minor(dev) & 0xff; 1061 1062 /* 1063 * We only have one transport layer right now. If someone accesses 1064 * us via something other than minor number 1, point out their 1065 * mistake. 1066 */ 1067 if (unit != 0) { 1068 printf("xptioctl: got invalid xpt unit %d\n", unit); 1069 return(ENXIO); 1070 } 1071 1072 switch(cmd) { 1073 /* 1074 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1075 * to accept CCB types that don't quite make sense to send through a 1076 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1077 * in the CAM spec. 1078 */ 1079 case CAMIOCOMMAND: { 1080 union ccb *ccb; 1081 union ccb *inccb; 1082 1083 inccb = (union ccb *)addr; 1084 1085 switch(inccb->ccb_h.func_code) { 1086 case XPT_SCAN_BUS: 1087 case XPT_RESET_BUS: 1088 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1089 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1090 error = EINVAL; 1091 break; 1092 } 1093 /* FALLTHROUGH */ 1094 case XPT_PATH_INQ: 1095 case XPT_ENG_INQ: 1096 case XPT_SCAN_LUN: 1097 1098 ccb = xpt_alloc_ccb(); 1099 1100 /* 1101 * Create a path using the bus, target, and lun the 1102 * user passed in. 1103 */ 1104 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1105 inccb->ccb_h.path_id, 1106 inccb->ccb_h.target_id, 1107 inccb->ccb_h.target_lun) != 1108 CAM_REQ_CMP){ 1109 error = EINVAL; 1110 xpt_free_ccb(ccb); 1111 break; 1112 } 1113 /* Ensure all of our fields are correct */ 1114 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1115 inccb->ccb_h.pinfo.priority); 1116 xpt_merge_ccb(ccb, inccb); 1117 ccb->ccb_h.cbfcnp = xptdone; 1118 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1119 bcopy(ccb, inccb, sizeof(union ccb)); 1120 xpt_free_path(ccb->ccb_h.path); 1121 xpt_free_ccb(ccb); 1122 break; 1123 1124 case XPT_DEBUG: { 1125 union ccb ccb; 1126 1127 /* 1128 * This is an immediate CCB, so it's okay to 1129 * allocate it on the stack. 1130 */ 1131 1132 /* 1133 * Create a path using the bus, target, and lun the 1134 * user passed in. 1135 */ 1136 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1137 inccb->ccb_h.path_id, 1138 inccb->ccb_h.target_id, 1139 inccb->ccb_h.target_lun) != 1140 CAM_REQ_CMP){ 1141 error = EINVAL; 1142 break; 1143 } 1144 /* Ensure all of our fields are correct */ 1145 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1146 inccb->ccb_h.pinfo.priority); 1147 xpt_merge_ccb(&ccb, inccb); 1148 ccb.ccb_h.cbfcnp = xptdone; 1149 xpt_action(&ccb); 1150 bcopy(&ccb, inccb, sizeof(union ccb)); 1151 xpt_free_path(ccb.ccb_h.path); 1152 break; 1153 1154 } 1155 case XPT_DEV_MATCH: { 1156 struct cam_periph_map_info mapinfo; 1157 struct cam_path *old_path; 1158 1159 /* 1160 * We can't deal with physical addresses for this 1161 * type of transaction. 1162 */ 1163 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1164 error = EINVAL; 1165 break; 1166 } 1167 1168 /* 1169 * Save this in case the caller had it set to 1170 * something in particular. 1171 */ 1172 old_path = inccb->ccb_h.path; 1173 1174 /* 1175 * We really don't need a path for the matching 1176 * code. The path is needed because of the 1177 * debugging statements in xpt_action(). They 1178 * assume that the CCB has a valid path. 1179 */ 1180 inccb->ccb_h.path = xpt_periph->path; 1181 1182 bzero(&mapinfo, sizeof(mapinfo)); 1183 1184 /* 1185 * Map the pattern and match buffers into kernel 1186 * virtual address space. 1187 */ 1188 error = cam_periph_mapmem(inccb, &mapinfo); 1189 1190 if (error) { 1191 inccb->ccb_h.path = old_path; 1192 break; 1193 } 1194 1195 /* 1196 * This is an immediate CCB, we can send it on directly. 1197 */ 1198 xpt_action(inccb); 1199 1200 /* 1201 * Map the buffers back into user space. 1202 */ 1203 cam_periph_unmapmem(inccb, &mapinfo); 1204 1205 inccb->ccb_h.path = old_path; 1206 1207 error = 0; 1208 break; 1209 } 1210 default: 1211 error = ENOTSUP; 1212 break; 1213 } 1214 break; 1215 } 1216 /* 1217 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1218 * with the periphal driver name and unit name filled in. The other 1219 * fields don't really matter as input. The passthrough driver name 1220 * ("pass"), and unit number are passed back in the ccb. The current 1221 * device generation number, and the index into the device peripheral 1222 * driver list, and the status are also passed back. Note that 1223 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1224 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1225 * (or rather should be) impossible for the device peripheral driver 1226 * list to change since we look at the whole thing in one pass, and 1227 * we do it with splcam protection. 1228 * 1229 */ 1230 case CAMGETPASSTHRU: { 1231 union ccb *ccb; 1232 struct cam_periph *periph; 1233 struct periph_driver **p_drv; 1234 char *name; 1235 u_int unit; 1236 u_int cur_generation; 1237 int base_periph_found; 1238 int splbreaknum; 1239 int s; 1240 1241 ccb = (union ccb *)addr; 1242 unit = ccb->cgdl.unit_number; 1243 name = ccb->cgdl.periph_name; 1244 /* 1245 * Every 100 devices, we want to drop our spl protection to 1246 * give the software interrupt handler a chance to run. 1247 * Most systems won't run into this check, but this should 1248 * avoid starvation in the software interrupt handler in 1249 * large systems. 1250 */ 1251 splbreaknum = 100; 1252 1253 ccb = (union ccb *)addr; 1254 1255 base_periph_found = 0; 1256 1257 /* 1258 * Sanity check -- make sure we don't get a null peripheral 1259 * driver name. 1260 */ 1261 if (*ccb->cgdl.periph_name == '\0') { 1262 error = EINVAL; 1263 break; 1264 } 1265 1266 /* Keep the list from changing while we traverse it */ 1267 s = splcam(); 1268 ptstartover: 1269 cur_generation = xsoftc.generation; 1270 1271 /* first find our driver in the list of drivers */ 1272 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1273 if (strcmp((*p_drv)->driver_name, name) == 0) 1274 break; 1275 1276 if (*p_drv == NULL) { 1277 splx(s); 1278 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1279 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1280 *ccb->cgdl.periph_name = '\0'; 1281 ccb->cgdl.unit_number = 0; 1282 error = ENOENT; 1283 break; 1284 } 1285 1286 /* 1287 * Run through every peripheral instance of this driver 1288 * and check to see whether it matches the unit passed 1289 * in by the user. If it does, get out of the loops and 1290 * find the passthrough driver associated with that 1291 * peripheral driver. 1292 */ 1293 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1294 periph = TAILQ_NEXT(periph, unit_links)) { 1295 1296 if (periph->unit_number == unit) { 1297 break; 1298 } else if (--splbreaknum == 0) { 1299 splx(s); 1300 s = splcam(); 1301 splbreaknum = 100; 1302 if (cur_generation != xsoftc.generation) 1303 goto ptstartover; 1304 } 1305 } 1306 /* 1307 * If we found the peripheral driver that the user passed 1308 * in, go through all of the peripheral drivers for that 1309 * particular device and look for a passthrough driver. 1310 */ 1311 if (periph != NULL) { 1312 struct cam_ed *device; 1313 int i; 1314 1315 base_periph_found = 1; 1316 device = periph->path->device; 1317 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1318 periph != NULL; 1319 periph = SLIST_NEXT(periph, periph_links), i++) { 1320 /* 1321 * Check to see whether we have a 1322 * passthrough device or not. 1323 */ 1324 if (strcmp(periph->periph_name, "pass") == 0) { 1325 /* 1326 * Fill in the getdevlist fields. 1327 */ 1328 strcpy(ccb->cgdl.periph_name, 1329 periph->periph_name); 1330 ccb->cgdl.unit_number = 1331 periph->unit_number; 1332 if (SLIST_NEXT(periph, periph_links)) 1333 ccb->cgdl.status = 1334 CAM_GDEVLIST_MORE_DEVS; 1335 else 1336 ccb->cgdl.status = 1337 CAM_GDEVLIST_LAST_DEVICE; 1338 ccb->cgdl.generation = 1339 device->generation; 1340 ccb->cgdl.index = i; 1341 /* 1342 * Fill in some CCB header fields 1343 * that the user may want. 1344 */ 1345 ccb->ccb_h.path_id = 1346 periph->path->bus->path_id; 1347 ccb->ccb_h.target_id = 1348 periph->path->target->target_id; 1349 ccb->ccb_h.target_lun = 1350 periph->path->device->lun_id; 1351 ccb->ccb_h.status = CAM_REQ_CMP; 1352 break; 1353 } 1354 } 1355 } 1356 1357 /* 1358 * If the periph is null here, one of two things has 1359 * happened. The first possibility is that we couldn't 1360 * find the unit number of the particular peripheral driver 1361 * that the user is asking about. e.g. the user asks for 1362 * the passthrough driver for "da11". We find the list of 1363 * "da" peripherals all right, but there is no unit 11. 1364 * The other possibility is that we went through the list 1365 * of peripheral drivers attached to the device structure, 1366 * but didn't find one with the name "pass". Either way, 1367 * we return ENOENT, since we couldn't find something. 1368 */ 1369 if (periph == NULL) { 1370 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1371 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1372 *ccb->cgdl.periph_name = '\0'; 1373 ccb->cgdl.unit_number = 0; 1374 error = ENOENT; 1375 /* 1376 * It is unfortunate that this is even necessary, 1377 * but there are many, many clueless users out there. 1378 * If this is true, the user is looking for the 1379 * passthrough driver, but doesn't have one in his 1380 * kernel. 1381 */ 1382 if (base_periph_found == 1) { 1383 printf("xptioctl: pass driver is not in the " 1384 "kernel\n"); 1385 printf("xptioctl: put \"device pass0\" in " 1386 "your kernel config file\n"); 1387 } 1388 } 1389 splx(s); 1390 break; 1391 } 1392 default: 1393 error = ENOTTY; 1394 break; 1395 } 1396 1397 return(error); 1398 } 1399 1400 static int 1401 cam_module_event_handler(module_t mod, int what, void *arg) 1402 { 1403 if (what == MOD_LOAD) { 1404 xpt_init(NULL); 1405 } else if (what == MOD_UNLOAD) { 1406 return EBUSY; 1407 } else { 1408 return EOPNOTSUPP; 1409 } 1410 1411 return 0; 1412 } 1413 1414 /* Functions accessed by the peripheral drivers */ 1415 static void 1416 xpt_init(dummy) 1417 void *dummy; 1418 { 1419 struct cam_sim *xpt_sim; 1420 struct cam_path *path; 1421 struct cam_devq *devq; 1422 cam_status status; 1423 1424 TAILQ_INIT(&xpt_busses); 1425 TAILQ_INIT(&cam_bioq); 1426 SLIST_INIT(&ccb_freeq); 1427 STAILQ_INIT(&highpowerq); 1428 1429 mtx_init(&cam_bioq_lock, "CAM BIOQ lock", NULL, MTX_DEF); 1430 1431 /* 1432 * The xpt layer is, itself, the equivelent of a SIM. 1433 * Allow 16 ccbs in the ccb pool for it. This should 1434 * give decent parallelism when we probe busses and 1435 * perform other XPT functions. 1436 */ 1437 devq = cam_simq_alloc(16); 1438 xpt_sim = cam_sim_alloc(xptaction, 1439 xptpoll, 1440 "xpt", 1441 /*softc*/NULL, 1442 /*unit*/0, 1443 /*max_dev_transactions*/0, 1444 /*max_tagged_dev_transactions*/0, 1445 devq); 1446 xpt_max_ccbs = 16; 1447 1448 xpt_bus_register(xpt_sim, /*bus #*/0); 1449 1450 /* 1451 * Looking at the XPT from the SIM layer, the XPT is 1452 * the equivelent of a peripheral driver. Allocate 1453 * a peripheral driver entry for us. 1454 */ 1455 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1456 CAM_TARGET_WILDCARD, 1457 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1458 printf("xpt_init: xpt_create_path failed with status %#x," 1459 " failing attach\n", status); 1460 return; 1461 } 1462 1463 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1464 path, NULL, 0, NULL); 1465 xpt_free_path(path); 1466 1467 xpt_sim->softc = xpt_periph; 1468 1469 /* 1470 * Register a callback for when interrupts are enabled. 1471 */ 1472 xpt_config_hook = 1473 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1474 M_TEMP, M_NOWAIT | M_ZERO); 1475 if (xpt_config_hook == NULL) { 1476 printf("xpt_init: Cannot malloc config hook " 1477 "- failing attach\n"); 1478 return; 1479 } 1480 1481 xpt_config_hook->ich_func = xpt_config; 1482 if (config_intrhook_establish(xpt_config_hook) != 0) { 1483 free (xpt_config_hook, M_TEMP); 1484 printf("xpt_init: config_intrhook_establish failed " 1485 "- failing attach\n"); 1486 } 1487 1488 /* Install our software interrupt handlers */ 1489 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1490 } 1491 1492 static cam_status 1493 xptregister(struct cam_periph *periph, void *arg) 1494 { 1495 if (periph == NULL) { 1496 printf("xptregister: periph was NULL!!\n"); 1497 return(CAM_REQ_CMP_ERR); 1498 } 1499 1500 periph->softc = NULL; 1501 1502 xpt_periph = periph; 1503 1504 return(CAM_REQ_CMP); 1505 } 1506 1507 int32_t 1508 xpt_add_periph(struct cam_periph *periph) 1509 { 1510 struct cam_ed *device; 1511 int32_t status; 1512 struct periph_list *periph_head; 1513 1514 GIANT_REQUIRED; 1515 1516 device = periph->path->device; 1517 1518 periph_head = &device->periphs; 1519 1520 status = CAM_REQ_CMP; 1521 1522 if (device != NULL) { 1523 int s; 1524 1525 /* 1526 * Make room for this peripheral 1527 * so it will fit in the queue 1528 * when it's scheduled to run 1529 */ 1530 s = splsoftcam(); 1531 status = camq_resize(&device->drvq, 1532 device->drvq.array_size + 1); 1533 1534 device->generation++; 1535 1536 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1537 1538 splx(s); 1539 } 1540 1541 xsoftc.generation++; 1542 1543 return (status); 1544 } 1545 1546 void 1547 xpt_remove_periph(struct cam_periph *periph) 1548 { 1549 struct cam_ed *device; 1550 1551 GIANT_REQUIRED; 1552 1553 device = periph->path->device; 1554 1555 if (device != NULL) { 1556 int s; 1557 struct periph_list *periph_head; 1558 1559 periph_head = &device->periphs; 1560 1561 /* Release the slot for this peripheral */ 1562 s = splsoftcam(); 1563 camq_resize(&device->drvq, device->drvq.array_size - 1); 1564 1565 device->generation++; 1566 1567 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1568 1569 splx(s); 1570 } 1571 1572 xsoftc.generation++; 1573 1574 } 1575 1576 #ifdef CAM_NEW_TRAN_CODE 1577 1578 void 1579 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1580 { 1581 struct ccb_pathinq cpi; 1582 struct ccb_trans_settings cts; 1583 struct cam_path *path; 1584 u_int speed; 1585 u_int freq; 1586 u_int mb; 1587 int s; 1588 1589 GIANT_REQUIRED; 1590 1591 path = periph->path; 1592 /* 1593 * To ensure that this is printed in one piece, 1594 * mask out CAM interrupts. 1595 */ 1596 s = splsoftcam(); 1597 printf("%s%d at %s%d bus %d target %d lun %d\n", 1598 periph->periph_name, periph->unit_number, 1599 path->bus->sim->sim_name, 1600 path->bus->sim->unit_number, 1601 path->bus->sim->bus_id, 1602 path->target->target_id, 1603 path->device->lun_id); 1604 printf("%s%d: ", periph->periph_name, periph->unit_number); 1605 scsi_print_inquiry(&path->device->inq_data); 1606 if (bootverbose && path->device->serial_num_len > 0) { 1607 /* Don't wrap the screen - print only the first 60 chars */ 1608 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1609 periph->unit_number, path->device->serial_num); 1610 } 1611 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1612 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1613 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1614 xpt_action((union ccb*)&cts); 1615 1616 /* Ask the SIM for its base transfer speed */ 1617 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1618 cpi.ccb_h.func_code = XPT_PATH_INQ; 1619 xpt_action((union ccb *)&cpi); 1620 1621 speed = cpi.base_transfer_speed; 1622 freq = 0; 1623 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1624 struct ccb_trans_settings_spi *spi; 1625 1626 spi = &cts.xport_specific.spi; 1627 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1628 && spi->sync_offset != 0) { 1629 freq = scsi_calc_syncsrate(spi->sync_period); 1630 speed = freq; 1631 } 1632 1633 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1634 speed *= (0x01 << spi->bus_width); 1635 } 1636 1637 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1638 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1639 if (fc->valid & CTS_FC_VALID_SPEED) { 1640 speed = fc->bitrate; 1641 } 1642 } 1643 1644 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1645 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; 1646 if (sas->valid & CTS_SAS_VALID_SPEED) { 1647 speed = sas->bitrate; 1648 } 1649 } 1650 1651 mb = speed / 1000; 1652 if (mb > 0) 1653 printf("%s%d: %d.%03dMB/s transfers", 1654 periph->periph_name, periph->unit_number, 1655 mb, speed % 1000); 1656 else 1657 printf("%s%d: %dKB/s transfers", periph->periph_name, 1658 periph->unit_number, speed); 1659 /* Report additional information about SPI connections */ 1660 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1661 struct ccb_trans_settings_spi *spi; 1662 1663 spi = &cts.xport_specific.spi; 1664 if (freq != 0) { 1665 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1666 freq % 1000, 1667 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1668 ? " DT" : "", 1669 spi->sync_offset); 1670 } 1671 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1672 && spi->bus_width > 0) { 1673 if (freq != 0) { 1674 printf(", "); 1675 } else { 1676 printf(" ("); 1677 } 1678 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1679 } else if (freq != 0) { 1680 printf(")"); 1681 } 1682 } 1683 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1684 struct ccb_trans_settings_fc *fc; 1685 1686 fc = &cts.xport_specific.fc; 1687 if (fc->valid & CTS_FC_VALID_WWNN) 1688 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1689 if (fc->valid & CTS_FC_VALID_WWPN) 1690 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1691 if (fc->valid & CTS_FC_VALID_PORT) 1692 printf(" PortID 0x%x", fc->port); 1693 } 1694 1695 if (path->device->inq_flags & SID_CmdQue 1696 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1697 printf("\n%s%d: Tagged Queueing Enabled", 1698 periph->periph_name, periph->unit_number); 1699 } 1700 printf("\n"); 1701 1702 /* 1703 * We only want to print the caller's announce string if they've 1704 * passed one in.. 1705 */ 1706 if (announce_string != NULL) 1707 printf("%s%d: %s\n", periph->periph_name, 1708 periph->unit_number, announce_string); 1709 splx(s); 1710 } 1711 #else /* CAM_NEW_TRAN_CODE */ 1712 void 1713 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1714 { 1715 int s; 1716 u_int mb; 1717 struct cam_path *path; 1718 struct ccb_trans_settings cts; 1719 1720 GIANT_REQUIRED; 1721 1722 path = periph->path; 1723 /* 1724 * To ensure that this is printed in one piece, 1725 * mask out CAM interrupts. 1726 */ 1727 s = splsoftcam(); 1728 printf("%s%d at %s%d bus %d target %d lun %d\n", 1729 periph->periph_name, periph->unit_number, 1730 path->bus->sim->sim_name, 1731 path->bus->sim->unit_number, 1732 path->bus->sim->bus_id, 1733 path->target->target_id, 1734 path->device->lun_id); 1735 printf("%s%d: ", periph->periph_name, periph->unit_number); 1736 scsi_print_inquiry(&path->device->inq_data); 1737 if ((bootverbose) 1738 && (path->device->serial_num_len > 0)) { 1739 /* Don't wrap the screen - print only the first 60 chars */ 1740 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1741 periph->unit_number, path->device->serial_num); 1742 } 1743 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1744 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1745 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1746 xpt_action((union ccb*)&cts); 1747 if (cts.ccb_h.status == CAM_REQ_CMP) { 1748 u_int speed; 1749 u_int freq; 1750 1751 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1752 && cts.sync_offset != 0) { 1753 freq = scsi_calc_syncsrate(cts.sync_period); 1754 speed = freq; 1755 } else { 1756 struct ccb_pathinq cpi; 1757 1758 /* Ask the SIM for its base transfer speed */ 1759 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1760 cpi.ccb_h.func_code = XPT_PATH_INQ; 1761 xpt_action((union ccb *)&cpi); 1762 1763 speed = cpi.base_transfer_speed; 1764 freq = 0; 1765 } 1766 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1767 speed *= (0x01 << cts.bus_width); 1768 mb = speed / 1000; 1769 if (mb > 0) 1770 printf("%s%d: %d.%03dMB/s transfers", 1771 periph->periph_name, periph->unit_number, 1772 mb, speed % 1000); 1773 else 1774 printf("%s%d: %dKB/s transfers", periph->periph_name, 1775 periph->unit_number, speed); 1776 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1777 && cts.sync_offset != 0) { 1778 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1779 freq % 1000, cts.sync_offset); 1780 } 1781 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1782 && cts.bus_width > 0) { 1783 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1784 && cts.sync_offset != 0) { 1785 printf(", "); 1786 } else { 1787 printf(" ("); 1788 } 1789 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1790 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1791 && cts.sync_offset != 0) { 1792 printf(")"); 1793 } 1794 1795 if (path->device->inq_flags & SID_CmdQue 1796 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1797 printf(", Tagged Queueing Enabled"); 1798 } 1799 1800 printf("\n"); 1801 } else if (path->device->inq_flags & SID_CmdQue 1802 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1803 printf("%s%d: Tagged Queueing Enabled\n", 1804 periph->periph_name, periph->unit_number); 1805 } 1806 1807 /* 1808 * We only want to print the caller's announce string if they've 1809 * passed one in.. 1810 */ 1811 if (announce_string != NULL) 1812 printf("%s%d: %s\n", periph->periph_name, 1813 periph->unit_number, announce_string); 1814 splx(s); 1815 } 1816 1817 #endif /* CAM_NEW_TRAN_CODE */ 1818 1819 static dev_match_ret 1820 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1821 struct cam_eb *bus) 1822 { 1823 dev_match_ret retval; 1824 int i; 1825 1826 retval = DM_RET_NONE; 1827 1828 /* 1829 * If we aren't given something to match against, that's an error. 1830 */ 1831 if (bus == NULL) 1832 return(DM_RET_ERROR); 1833 1834 /* 1835 * If there are no match entries, then this bus matches no 1836 * matter what. 1837 */ 1838 if ((patterns == NULL) || (num_patterns == 0)) 1839 return(DM_RET_DESCEND | DM_RET_COPY); 1840 1841 for (i = 0; i < num_patterns; i++) { 1842 struct bus_match_pattern *cur_pattern; 1843 1844 /* 1845 * If the pattern in question isn't for a bus node, we 1846 * aren't interested. However, we do indicate to the 1847 * calling routine that we should continue descending the 1848 * tree, since the user wants to match against lower-level 1849 * EDT elements. 1850 */ 1851 if (patterns[i].type != DEV_MATCH_BUS) { 1852 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1853 retval |= DM_RET_DESCEND; 1854 continue; 1855 } 1856 1857 cur_pattern = &patterns[i].pattern.bus_pattern; 1858 1859 /* 1860 * If they want to match any bus node, we give them any 1861 * device node. 1862 */ 1863 if (cur_pattern->flags == BUS_MATCH_ANY) { 1864 /* set the copy flag */ 1865 retval |= DM_RET_COPY; 1866 1867 /* 1868 * If we've already decided on an action, go ahead 1869 * and return. 1870 */ 1871 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1872 return(retval); 1873 } 1874 1875 /* 1876 * Not sure why someone would do this... 1877 */ 1878 if (cur_pattern->flags == BUS_MATCH_NONE) 1879 continue; 1880 1881 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1882 && (cur_pattern->path_id != bus->path_id)) 1883 continue; 1884 1885 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1886 && (cur_pattern->bus_id != bus->sim->bus_id)) 1887 continue; 1888 1889 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1890 && (cur_pattern->unit_number != bus->sim->unit_number)) 1891 continue; 1892 1893 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1894 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1895 DEV_IDLEN) != 0)) 1896 continue; 1897 1898 /* 1899 * If we get to this point, the user definitely wants 1900 * information on this bus. So tell the caller to copy the 1901 * data out. 1902 */ 1903 retval |= DM_RET_COPY; 1904 1905 /* 1906 * If the return action has been set to descend, then we 1907 * know that we've already seen a non-bus matching 1908 * expression, therefore we need to further descend the tree. 1909 * This won't change by continuing around the loop, so we 1910 * go ahead and return. If we haven't seen a non-bus 1911 * matching expression, we keep going around the loop until 1912 * we exhaust the matching expressions. We'll set the stop 1913 * flag once we fall out of the loop. 1914 */ 1915 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1916 return(retval); 1917 } 1918 1919 /* 1920 * If the return action hasn't been set to descend yet, that means 1921 * we haven't seen anything other than bus matching patterns. So 1922 * tell the caller to stop descending the tree -- the user doesn't 1923 * want to match against lower level tree elements. 1924 */ 1925 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1926 retval |= DM_RET_STOP; 1927 1928 return(retval); 1929 } 1930 1931 static dev_match_ret 1932 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1933 struct cam_ed *device) 1934 { 1935 dev_match_ret retval; 1936 int i; 1937 1938 retval = DM_RET_NONE; 1939 1940 /* 1941 * If we aren't given something to match against, that's an error. 1942 */ 1943 if (device == NULL) 1944 return(DM_RET_ERROR); 1945 1946 /* 1947 * If there are no match entries, then this device matches no 1948 * matter what. 1949 */ 1950 if ((patterns == NULL) || (num_patterns == 0)) 1951 return(DM_RET_DESCEND | DM_RET_COPY); 1952 1953 for (i = 0; i < num_patterns; i++) { 1954 struct device_match_pattern *cur_pattern; 1955 1956 /* 1957 * If the pattern in question isn't for a device node, we 1958 * aren't interested. 1959 */ 1960 if (patterns[i].type != DEV_MATCH_DEVICE) { 1961 if ((patterns[i].type == DEV_MATCH_PERIPH) 1962 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1963 retval |= DM_RET_DESCEND; 1964 continue; 1965 } 1966 1967 cur_pattern = &patterns[i].pattern.device_pattern; 1968 1969 /* 1970 * If they want to match any device node, we give them any 1971 * device node. 1972 */ 1973 if (cur_pattern->flags == DEV_MATCH_ANY) { 1974 /* set the copy flag */ 1975 retval |= DM_RET_COPY; 1976 1977 1978 /* 1979 * If we've already decided on an action, go ahead 1980 * and return. 1981 */ 1982 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1983 return(retval); 1984 } 1985 1986 /* 1987 * Not sure why someone would do this... 1988 */ 1989 if (cur_pattern->flags == DEV_MATCH_NONE) 1990 continue; 1991 1992 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1993 && (cur_pattern->path_id != device->target->bus->path_id)) 1994 continue; 1995 1996 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1997 && (cur_pattern->target_id != device->target->target_id)) 1998 continue; 1999 2000 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 2001 && (cur_pattern->target_lun != device->lun_id)) 2002 continue; 2003 2004 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 2005 && (cam_quirkmatch((caddr_t)&device->inq_data, 2006 (caddr_t)&cur_pattern->inq_pat, 2007 1, sizeof(cur_pattern->inq_pat), 2008 scsi_static_inquiry_match) == NULL)) 2009 continue; 2010 2011 /* 2012 * If we get to this point, the user definitely wants 2013 * information on this device. So tell the caller to copy 2014 * the data out. 2015 */ 2016 retval |= DM_RET_COPY; 2017 2018 /* 2019 * If the return action has been set to descend, then we 2020 * know that we've already seen a peripheral matching 2021 * expression, therefore we need to further descend the tree. 2022 * This won't change by continuing around the loop, so we 2023 * go ahead and return. If we haven't seen a peripheral 2024 * matching expression, we keep going around the loop until 2025 * we exhaust the matching expressions. We'll set the stop 2026 * flag once we fall out of the loop. 2027 */ 2028 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 2029 return(retval); 2030 } 2031 2032 /* 2033 * If the return action hasn't been set to descend yet, that means 2034 * we haven't seen any peripheral matching patterns. So tell the 2035 * caller to stop descending the tree -- the user doesn't want to 2036 * match against lower level tree elements. 2037 */ 2038 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 2039 retval |= DM_RET_STOP; 2040 2041 return(retval); 2042 } 2043 2044 /* 2045 * Match a single peripheral against any number of match patterns. 2046 */ 2047 static dev_match_ret 2048 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 2049 struct cam_periph *periph) 2050 { 2051 dev_match_ret retval; 2052 int i; 2053 2054 /* 2055 * If we aren't given something to match against, that's an error. 2056 */ 2057 if (periph == NULL) 2058 return(DM_RET_ERROR); 2059 2060 /* 2061 * If there are no match entries, then this peripheral matches no 2062 * matter what. 2063 */ 2064 if ((patterns == NULL) || (num_patterns == 0)) 2065 return(DM_RET_STOP | DM_RET_COPY); 2066 2067 /* 2068 * There aren't any nodes below a peripheral node, so there's no 2069 * reason to descend the tree any further. 2070 */ 2071 retval = DM_RET_STOP; 2072 2073 for (i = 0; i < num_patterns; i++) { 2074 struct periph_match_pattern *cur_pattern; 2075 2076 /* 2077 * If the pattern in question isn't for a peripheral, we 2078 * aren't interested. 2079 */ 2080 if (patterns[i].type != DEV_MATCH_PERIPH) 2081 continue; 2082 2083 cur_pattern = &patterns[i].pattern.periph_pattern; 2084 2085 /* 2086 * If they want to match on anything, then we will do so. 2087 */ 2088 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2089 /* set the copy flag */ 2090 retval |= DM_RET_COPY; 2091 2092 /* 2093 * We've already set the return action to stop, 2094 * since there are no nodes below peripherals in 2095 * the tree. 2096 */ 2097 return(retval); 2098 } 2099 2100 /* 2101 * Not sure why someone would do this... 2102 */ 2103 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2104 continue; 2105 2106 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2107 && (cur_pattern->path_id != periph->path->bus->path_id)) 2108 continue; 2109 2110 /* 2111 * For the target and lun id's, we have to make sure the 2112 * target and lun pointers aren't NULL. The xpt peripheral 2113 * has a wildcard target and device. 2114 */ 2115 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2116 && ((periph->path->target == NULL) 2117 ||(cur_pattern->target_id != periph->path->target->target_id))) 2118 continue; 2119 2120 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2121 && ((periph->path->device == NULL) 2122 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2123 continue; 2124 2125 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2126 && (cur_pattern->unit_number != periph->unit_number)) 2127 continue; 2128 2129 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2130 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2131 DEV_IDLEN) != 0)) 2132 continue; 2133 2134 /* 2135 * If we get to this point, the user definitely wants 2136 * information on this peripheral. So tell the caller to 2137 * copy the data out. 2138 */ 2139 retval |= DM_RET_COPY; 2140 2141 /* 2142 * The return action has already been set to stop, since 2143 * peripherals don't have any nodes below them in the EDT. 2144 */ 2145 return(retval); 2146 } 2147 2148 /* 2149 * If we get to this point, the peripheral that was passed in 2150 * doesn't match any of the patterns. 2151 */ 2152 return(retval); 2153 } 2154 2155 static int 2156 xptedtbusfunc(struct cam_eb *bus, void *arg) 2157 { 2158 struct ccb_dev_match *cdm; 2159 dev_match_ret retval; 2160 2161 cdm = (struct ccb_dev_match *)arg; 2162 2163 /* 2164 * If our position is for something deeper in the tree, that means 2165 * that we've already seen this node. So, we keep going down. 2166 */ 2167 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2168 && (cdm->pos.cookie.bus == bus) 2169 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2170 && (cdm->pos.cookie.target != NULL)) 2171 retval = DM_RET_DESCEND; 2172 else 2173 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2174 2175 /* 2176 * If we got an error, bail out of the search. 2177 */ 2178 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2179 cdm->status = CAM_DEV_MATCH_ERROR; 2180 return(0); 2181 } 2182 2183 /* 2184 * If the copy flag is set, copy this bus out. 2185 */ 2186 if (retval & DM_RET_COPY) { 2187 int spaceleft, j; 2188 2189 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2190 sizeof(struct dev_match_result)); 2191 2192 /* 2193 * If we don't have enough space to put in another 2194 * match result, save our position and tell the 2195 * user there are more devices to check. 2196 */ 2197 if (spaceleft < sizeof(struct dev_match_result)) { 2198 bzero(&cdm->pos, sizeof(cdm->pos)); 2199 cdm->pos.position_type = 2200 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2201 2202 cdm->pos.cookie.bus = bus; 2203 cdm->pos.generations[CAM_BUS_GENERATION]= 2204 bus_generation; 2205 cdm->status = CAM_DEV_MATCH_MORE; 2206 return(0); 2207 } 2208 j = cdm->num_matches; 2209 cdm->num_matches++; 2210 cdm->matches[j].type = DEV_MATCH_BUS; 2211 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2212 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2213 cdm->matches[j].result.bus_result.unit_number = 2214 bus->sim->unit_number; 2215 strncpy(cdm->matches[j].result.bus_result.dev_name, 2216 bus->sim->sim_name, DEV_IDLEN); 2217 } 2218 2219 /* 2220 * If the user is only interested in busses, there's no 2221 * reason to descend to the next level in the tree. 2222 */ 2223 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2224 return(1); 2225 2226 /* 2227 * If there is a target generation recorded, check it to 2228 * make sure the target list hasn't changed. 2229 */ 2230 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2231 && (bus == cdm->pos.cookie.bus) 2232 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2233 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2234 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2235 bus->generation)) { 2236 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2237 return(0); 2238 } 2239 2240 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2241 && (cdm->pos.cookie.bus == bus) 2242 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2243 && (cdm->pos.cookie.target != NULL)) 2244 return(xpttargettraverse(bus, 2245 (struct cam_et *)cdm->pos.cookie.target, 2246 xptedttargetfunc, arg)); 2247 else 2248 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2249 } 2250 2251 static int 2252 xptedttargetfunc(struct cam_et *target, void *arg) 2253 { 2254 struct ccb_dev_match *cdm; 2255 2256 cdm = (struct ccb_dev_match *)arg; 2257 2258 /* 2259 * If there is a device list generation recorded, check it to 2260 * make sure the device list hasn't changed. 2261 */ 2262 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2263 && (cdm->pos.cookie.bus == target->bus) 2264 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2265 && (cdm->pos.cookie.target == target) 2266 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2267 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2268 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2269 target->generation)) { 2270 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2271 return(0); 2272 } 2273 2274 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2275 && (cdm->pos.cookie.bus == target->bus) 2276 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2277 && (cdm->pos.cookie.target == target) 2278 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2279 && (cdm->pos.cookie.device != NULL)) 2280 return(xptdevicetraverse(target, 2281 (struct cam_ed *)cdm->pos.cookie.device, 2282 xptedtdevicefunc, arg)); 2283 else 2284 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2285 } 2286 2287 static int 2288 xptedtdevicefunc(struct cam_ed *device, void *arg) 2289 { 2290 2291 struct ccb_dev_match *cdm; 2292 dev_match_ret retval; 2293 2294 cdm = (struct ccb_dev_match *)arg; 2295 2296 /* 2297 * If our position is for something deeper in the tree, that means 2298 * that we've already seen this node. So, we keep going down. 2299 */ 2300 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2301 && (cdm->pos.cookie.device == device) 2302 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2303 && (cdm->pos.cookie.periph != NULL)) 2304 retval = DM_RET_DESCEND; 2305 else 2306 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2307 device); 2308 2309 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2310 cdm->status = CAM_DEV_MATCH_ERROR; 2311 return(0); 2312 } 2313 2314 /* 2315 * If the copy flag is set, copy this device out. 2316 */ 2317 if (retval & DM_RET_COPY) { 2318 int spaceleft, j; 2319 2320 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2321 sizeof(struct dev_match_result)); 2322 2323 /* 2324 * If we don't have enough space to put in another 2325 * match result, save our position and tell the 2326 * user there are more devices to check. 2327 */ 2328 if (spaceleft < sizeof(struct dev_match_result)) { 2329 bzero(&cdm->pos, sizeof(cdm->pos)); 2330 cdm->pos.position_type = 2331 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2332 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2333 2334 cdm->pos.cookie.bus = device->target->bus; 2335 cdm->pos.generations[CAM_BUS_GENERATION]= 2336 bus_generation; 2337 cdm->pos.cookie.target = device->target; 2338 cdm->pos.generations[CAM_TARGET_GENERATION] = 2339 device->target->bus->generation; 2340 cdm->pos.cookie.device = device; 2341 cdm->pos.generations[CAM_DEV_GENERATION] = 2342 device->target->generation; 2343 cdm->status = CAM_DEV_MATCH_MORE; 2344 return(0); 2345 } 2346 j = cdm->num_matches; 2347 cdm->num_matches++; 2348 cdm->matches[j].type = DEV_MATCH_DEVICE; 2349 cdm->matches[j].result.device_result.path_id = 2350 device->target->bus->path_id; 2351 cdm->matches[j].result.device_result.target_id = 2352 device->target->target_id; 2353 cdm->matches[j].result.device_result.target_lun = 2354 device->lun_id; 2355 bcopy(&device->inq_data, 2356 &cdm->matches[j].result.device_result.inq_data, 2357 sizeof(struct scsi_inquiry_data)); 2358 2359 /* Let the user know whether this device is unconfigured */ 2360 if (device->flags & CAM_DEV_UNCONFIGURED) 2361 cdm->matches[j].result.device_result.flags = 2362 DEV_RESULT_UNCONFIGURED; 2363 else 2364 cdm->matches[j].result.device_result.flags = 2365 DEV_RESULT_NOFLAG; 2366 } 2367 2368 /* 2369 * If the user isn't interested in peripherals, don't descend 2370 * the tree any further. 2371 */ 2372 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2373 return(1); 2374 2375 /* 2376 * If there is a peripheral list generation recorded, make sure 2377 * it hasn't changed. 2378 */ 2379 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2380 && (device->target->bus == cdm->pos.cookie.bus) 2381 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2382 && (device->target == cdm->pos.cookie.target) 2383 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2384 && (device == cdm->pos.cookie.device) 2385 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2386 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2387 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2388 device->generation)){ 2389 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2390 return(0); 2391 } 2392 2393 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2394 && (cdm->pos.cookie.bus == device->target->bus) 2395 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2396 && (cdm->pos.cookie.target == device->target) 2397 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2398 && (cdm->pos.cookie.device == device) 2399 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2400 && (cdm->pos.cookie.periph != NULL)) 2401 return(xptperiphtraverse(device, 2402 (struct cam_periph *)cdm->pos.cookie.periph, 2403 xptedtperiphfunc, arg)); 2404 else 2405 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2406 } 2407 2408 static int 2409 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2410 { 2411 struct ccb_dev_match *cdm; 2412 dev_match_ret retval; 2413 2414 cdm = (struct ccb_dev_match *)arg; 2415 2416 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2417 2418 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2419 cdm->status = CAM_DEV_MATCH_ERROR; 2420 return(0); 2421 } 2422 2423 /* 2424 * If the copy flag is set, copy this peripheral out. 2425 */ 2426 if (retval & DM_RET_COPY) { 2427 int spaceleft, j; 2428 2429 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2430 sizeof(struct dev_match_result)); 2431 2432 /* 2433 * If we don't have enough space to put in another 2434 * match result, save our position and tell the 2435 * user there are more devices to check. 2436 */ 2437 if (spaceleft < sizeof(struct dev_match_result)) { 2438 bzero(&cdm->pos, sizeof(cdm->pos)); 2439 cdm->pos.position_type = 2440 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2441 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2442 CAM_DEV_POS_PERIPH; 2443 2444 cdm->pos.cookie.bus = periph->path->bus; 2445 cdm->pos.generations[CAM_BUS_GENERATION]= 2446 bus_generation; 2447 cdm->pos.cookie.target = periph->path->target; 2448 cdm->pos.generations[CAM_TARGET_GENERATION] = 2449 periph->path->bus->generation; 2450 cdm->pos.cookie.device = periph->path->device; 2451 cdm->pos.generations[CAM_DEV_GENERATION] = 2452 periph->path->target->generation; 2453 cdm->pos.cookie.periph = periph; 2454 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2455 periph->path->device->generation; 2456 cdm->status = CAM_DEV_MATCH_MORE; 2457 return(0); 2458 } 2459 2460 j = cdm->num_matches; 2461 cdm->num_matches++; 2462 cdm->matches[j].type = DEV_MATCH_PERIPH; 2463 cdm->matches[j].result.periph_result.path_id = 2464 periph->path->bus->path_id; 2465 cdm->matches[j].result.periph_result.target_id = 2466 periph->path->target->target_id; 2467 cdm->matches[j].result.periph_result.target_lun = 2468 periph->path->device->lun_id; 2469 cdm->matches[j].result.periph_result.unit_number = 2470 periph->unit_number; 2471 strncpy(cdm->matches[j].result.periph_result.periph_name, 2472 periph->periph_name, DEV_IDLEN); 2473 } 2474 2475 return(1); 2476 } 2477 2478 static int 2479 xptedtmatch(struct ccb_dev_match *cdm) 2480 { 2481 int ret; 2482 2483 cdm->num_matches = 0; 2484 2485 /* 2486 * Check the bus list generation. If it has changed, the user 2487 * needs to reset everything and start over. 2488 */ 2489 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2490 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2491 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2492 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2493 return(0); 2494 } 2495 2496 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2497 && (cdm->pos.cookie.bus != NULL)) 2498 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2499 xptedtbusfunc, cdm); 2500 else 2501 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2502 2503 /* 2504 * If we get back 0, that means that we had to stop before fully 2505 * traversing the EDT. It also means that one of the subroutines 2506 * has set the status field to the proper value. If we get back 1, 2507 * we've fully traversed the EDT and copied out any matching entries. 2508 */ 2509 if (ret == 1) 2510 cdm->status = CAM_DEV_MATCH_LAST; 2511 2512 return(ret); 2513 } 2514 2515 static int 2516 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2517 { 2518 struct ccb_dev_match *cdm; 2519 2520 cdm = (struct ccb_dev_match *)arg; 2521 2522 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2523 && (cdm->pos.cookie.pdrv == pdrv) 2524 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2525 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2526 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2527 (*pdrv)->generation)) { 2528 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2529 return(0); 2530 } 2531 2532 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2533 && (cdm->pos.cookie.pdrv == pdrv) 2534 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2535 && (cdm->pos.cookie.periph != NULL)) 2536 return(xptpdperiphtraverse(pdrv, 2537 (struct cam_periph *)cdm->pos.cookie.periph, 2538 xptplistperiphfunc, arg)); 2539 else 2540 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2541 } 2542 2543 static int 2544 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2545 { 2546 struct ccb_dev_match *cdm; 2547 dev_match_ret retval; 2548 2549 cdm = (struct ccb_dev_match *)arg; 2550 2551 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2552 2553 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2554 cdm->status = CAM_DEV_MATCH_ERROR; 2555 return(0); 2556 } 2557 2558 /* 2559 * If the copy flag is set, copy this peripheral out. 2560 */ 2561 if (retval & DM_RET_COPY) { 2562 int spaceleft, j; 2563 2564 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2565 sizeof(struct dev_match_result)); 2566 2567 /* 2568 * If we don't have enough space to put in another 2569 * match result, save our position and tell the 2570 * user there are more devices to check. 2571 */ 2572 if (spaceleft < sizeof(struct dev_match_result)) { 2573 struct periph_driver **pdrv; 2574 2575 pdrv = NULL; 2576 bzero(&cdm->pos, sizeof(cdm->pos)); 2577 cdm->pos.position_type = 2578 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2579 CAM_DEV_POS_PERIPH; 2580 2581 /* 2582 * This may look a bit non-sensical, but it is 2583 * actually quite logical. There are very few 2584 * peripheral drivers, and bloating every peripheral 2585 * structure with a pointer back to its parent 2586 * peripheral driver linker set entry would cost 2587 * more in the long run than doing this quick lookup. 2588 */ 2589 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2590 if (strcmp((*pdrv)->driver_name, 2591 periph->periph_name) == 0) 2592 break; 2593 } 2594 2595 if (*pdrv == NULL) { 2596 cdm->status = CAM_DEV_MATCH_ERROR; 2597 return(0); 2598 } 2599 2600 cdm->pos.cookie.pdrv = pdrv; 2601 /* 2602 * The periph generation slot does double duty, as 2603 * does the periph pointer slot. They are used for 2604 * both edt and pdrv lookups and positioning. 2605 */ 2606 cdm->pos.cookie.periph = periph; 2607 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2608 (*pdrv)->generation; 2609 cdm->status = CAM_DEV_MATCH_MORE; 2610 return(0); 2611 } 2612 2613 j = cdm->num_matches; 2614 cdm->num_matches++; 2615 cdm->matches[j].type = DEV_MATCH_PERIPH; 2616 cdm->matches[j].result.periph_result.path_id = 2617 periph->path->bus->path_id; 2618 2619 /* 2620 * The transport layer peripheral doesn't have a target or 2621 * lun. 2622 */ 2623 if (periph->path->target) 2624 cdm->matches[j].result.periph_result.target_id = 2625 periph->path->target->target_id; 2626 else 2627 cdm->matches[j].result.periph_result.target_id = -1; 2628 2629 if (periph->path->device) 2630 cdm->matches[j].result.periph_result.target_lun = 2631 periph->path->device->lun_id; 2632 else 2633 cdm->matches[j].result.periph_result.target_lun = -1; 2634 2635 cdm->matches[j].result.periph_result.unit_number = 2636 periph->unit_number; 2637 strncpy(cdm->matches[j].result.periph_result.periph_name, 2638 periph->periph_name, DEV_IDLEN); 2639 } 2640 2641 return(1); 2642 } 2643 2644 static int 2645 xptperiphlistmatch(struct ccb_dev_match *cdm) 2646 { 2647 int ret; 2648 2649 cdm->num_matches = 0; 2650 2651 /* 2652 * At this point in the edt traversal function, we check the bus 2653 * list generation to make sure that no busses have been added or 2654 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2655 * For the peripheral driver list traversal function, however, we 2656 * don't have to worry about new peripheral driver types coming or 2657 * going; they're in a linker set, and therefore can't change 2658 * without a recompile. 2659 */ 2660 2661 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2662 && (cdm->pos.cookie.pdrv != NULL)) 2663 ret = xptpdrvtraverse( 2664 (struct periph_driver **)cdm->pos.cookie.pdrv, 2665 xptplistpdrvfunc, cdm); 2666 else 2667 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2668 2669 /* 2670 * If we get back 0, that means that we had to stop before fully 2671 * traversing the peripheral driver tree. It also means that one of 2672 * the subroutines has set the status field to the proper value. If 2673 * we get back 1, we've fully traversed the EDT and copied out any 2674 * matching entries. 2675 */ 2676 if (ret == 1) 2677 cdm->status = CAM_DEV_MATCH_LAST; 2678 2679 return(ret); 2680 } 2681 2682 static int 2683 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2684 { 2685 struct cam_eb *bus, *next_bus; 2686 int retval; 2687 2688 retval = 1; 2689 2690 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2691 bus != NULL; 2692 bus = next_bus) { 2693 next_bus = TAILQ_NEXT(bus, links); 2694 2695 retval = tr_func(bus, arg); 2696 if (retval == 0) 2697 return(retval); 2698 } 2699 2700 return(retval); 2701 } 2702 2703 static int 2704 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2705 xpt_targetfunc_t *tr_func, void *arg) 2706 { 2707 struct cam_et *target, *next_target; 2708 int retval; 2709 2710 retval = 1; 2711 for (target = (start_target ? start_target : 2712 TAILQ_FIRST(&bus->et_entries)); 2713 target != NULL; target = next_target) { 2714 2715 next_target = TAILQ_NEXT(target, links); 2716 2717 retval = tr_func(target, arg); 2718 2719 if (retval == 0) 2720 return(retval); 2721 } 2722 2723 return(retval); 2724 } 2725 2726 static int 2727 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2728 xpt_devicefunc_t *tr_func, void *arg) 2729 { 2730 struct cam_ed *device, *next_device; 2731 int retval; 2732 2733 retval = 1; 2734 for (device = (start_device ? start_device : 2735 TAILQ_FIRST(&target->ed_entries)); 2736 device != NULL; 2737 device = next_device) { 2738 2739 next_device = TAILQ_NEXT(device, links); 2740 2741 retval = tr_func(device, arg); 2742 2743 if (retval == 0) 2744 return(retval); 2745 } 2746 2747 return(retval); 2748 } 2749 2750 static int 2751 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2752 xpt_periphfunc_t *tr_func, void *arg) 2753 { 2754 struct cam_periph *periph, *next_periph; 2755 int retval; 2756 2757 retval = 1; 2758 2759 for (periph = (start_periph ? start_periph : 2760 SLIST_FIRST(&device->periphs)); 2761 periph != NULL; 2762 periph = next_periph) { 2763 2764 next_periph = SLIST_NEXT(periph, periph_links); 2765 2766 retval = tr_func(periph, arg); 2767 if (retval == 0) 2768 return(retval); 2769 } 2770 2771 return(retval); 2772 } 2773 2774 static int 2775 xptpdrvtraverse(struct periph_driver **start_pdrv, 2776 xpt_pdrvfunc_t *tr_func, void *arg) 2777 { 2778 struct periph_driver **pdrv; 2779 int retval; 2780 2781 retval = 1; 2782 2783 /* 2784 * We don't traverse the peripheral driver list like we do the 2785 * other lists, because it is a linker set, and therefore cannot be 2786 * changed during runtime. If the peripheral driver list is ever 2787 * re-done to be something other than a linker set (i.e. it can 2788 * change while the system is running), the list traversal should 2789 * be modified to work like the other traversal functions. 2790 */ 2791 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2792 *pdrv != NULL; pdrv++) { 2793 retval = tr_func(pdrv, arg); 2794 2795 if (retval == 0) 2796 return(retval); 2797 } 2798 2799 return(retval); 2800 } 2801 2802 static int 2803 xptpdperiphtraverse(struct periph_driver **pdrv, 2804 struct cam_periph *start_periph, 2805 xpt_periphfunc_t *tr_func, void *arg) 2806 { 2807 struct cam_periph *periph, *next_periph; 2808 int retval; 2809 2810 retval = 1; 2811 2812 for (periph = (start_periph ? start_periph : 2813 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2814 periph = next_periph) { 2815 2816 next_periph = TAILQ_NEXT(periph, unit_links); 2817 2818 retval = tr_func(periph, arg); 2819 if (retval == 0) 2820 return(retval); 2821 } 2822 return(retval); 2823 } 2824 2825 static int 2826 xptdefbusfunc(struct cam_eb *bus, void *arg) 2827 { 2828 struct xpt_traverse_config *tr_config; 2829 2830 tr_config = (struct xpt_traverse_config *)arg; 2831 2832 if (tr_config->depth == XPT_DEPTH_BUS) { 2833 xpt_busfunc_t *tr_func; 2834 2835 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2836 2837 return(tr_func(bus, tr_config->tr_arg)); 2838 } else 2839 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2840 } 2841 2842 static int 2843 xptdeftargetfunc(struct cam_et *target, void *arg) 2844 { 2845 struct xpt_traverse_config *tr_config; 2846 2847 tr_config = (struct xpt_traverse_config *)arg; 2848 2849 if (tr_config->depth == XPT_DEPTH_TARGET) { 2850 xpt_targetfunc_t *tr_func; 2851 2852 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2853 2854 return(tr_func(target, tr_config->tr_arg)); 2855 } else 2856 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2857 } 2858 2859 static int 2860 xptdefdevicefunc(struct cam_ed *device, void *arg) 2861 { 2862 struct xpt_traverse_config *tr_config; 2863 2864 tr_config = (struct xpt_traverse_config *)arg; 2865 2866 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2867 xpt_devicefunc_t *tr_func; 2868 2869 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2870 2871 return(tr_func(device, tr_config->tr_arg)); 2872 } else 2873 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2874 } 2875 2876 static int 2877 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2878 { 2879 struct xpt_traverse_config *tr_config; 2880 xpt_periphfunc_t *tr_func; 2881 2882 tr_config = (struct xpt_traverse_config *)arg; 2883 2884 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2885 2886 /* 2887 * Unlike the other default functions, we don't check for depth 2888 * here. The peripheral driver level is the last level in the EDT, 2889 * so if we're here, we should execute the function in question. 2890 */ 2891 return(tr_func(periph, tr_config->tr_arg)); 2892 } 2893 2894 /* 2895 * Execute the given function for every bus in the EDT. 2896 */ 2897 static int 2898 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2899 { 2900 struct xpt_traverse_config tr_config; 2901 2902 tr_config.depth = XPT_DEPTH_BUS; 2903 tr_config.tr_func = tr_func; 2904 tr_config.tr_arg = arg; 2905 2906 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2907 } 2908 2909 #ifdef notusedyet 2910 /* 2911 * Execute the given function for every target in the EDT. 2912 */ 2913 static int 2914 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2915 { 2916 struct xpt_traverse_config tr_config; 2917 2918 tr_config.depth = XPT_DEPTH_TARGET; 2919 tr_config.tr_func = tr_func; 2920 tr_config.tr_arg = arg; 2921 2922 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2923 } 2924 #endif /* notusedyet */ 2925 2926 /* 2927 * Execute the given function for every device in the EDT. 2928 */ 2929 static int 2930 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2931 { 2932 struct xpt_traverse_config tr_config; 2933 2934 tr_config.depth = XPT_DEPTH_DEVICE; 2935 tr_config.tr_func = tr_func; 2936 tr_config.tr_arg = arg; 2937 2938 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2939 } 2940 2941 #ifdef notusedyet 2942 /* 2943 * Execute the given function for every peripheral in the EDT. 2944 */ 2945 static int 2946 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2947 { 2948 struct xpt_traverse_config tr_config; 2949 2950 tr_config.depth = XPT_DEPTH_PERIPH; 2951 tr_config.tr_func = tr_func; 2952 tr_config.tr_arg = arg; 2953 2954 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2955 } 2956 #endif /* notusedyet */ 2957 2958 static int 2959 xptsetasyncfunc(struct cam_ed *device, void *arg) 2960 { 2961 struct cam_path path; 2962 struct ccb_getdev cgd; 2963 struct async_node *cur_entry; 2964 2965 cur_entry = (struct async_node *)arg; 2966 2967 /* 2968 * Don't report unconfigured devices (Wildcard devs, 2969 * devices only for target mode, device instances 2970 * that have been invalidated but are waiting for 2971 * their last reference count to be released). 2972 */ 2973 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2974 return (1); 2975 2976 xpt_compile_path(&path, 2977 NULL, 2978 device->target->bus->path_id, 2979 device->target->target_id, 2980 device->lun_id); 2981 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2982 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2983 xpt_action((union ccb *)&cgd); 2984 cur_entry->callback(cur_entry->callback_arg, 2985 AC_FOUND_DEVICE, 2986 &path, &cgd); 2987 xpt_release_path(&path); 2988 2989 return(1); 2990 } 2991 2992 static int 2993 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2994 { 2995 struct cam_path path; 2996 struct ccb_pathinq cpi; 2997 struct async_node *cur_entry; 2998 2999 cur_entry = (struct async_node *)arg; 3000 3001 xpt_compile_path(&path, /*periph*/NULL, 3002 bus->sim->path_id, 3003 CAM_TARGET_WILDCARD, 3004 CAM_LUN_WILDCARD); 3005 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 3006 cpi.ccb_h.func_code = XPT_PATH_INQ; 3007 xpt_action((union ccb *)&cpi); 3008 cur_entry->callback(cur_entry->callback_arg, 3009 AC_PATH_REGISTERED, 3010 &path, &cpi); 3011 xpt_release_path(&path); 3012 3013 return(1); 3014 } 3015 3016 void 3017 xpt_action(union ccb *start_ccb) 3018 { 3019 int iopl; 3020 3021 GIANT_REQUIRED; 3022 3023 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 3024 3025 start_ccb->ccb_h.status = CAM_REQ_INPROG; 3026 3027 iopl = splsoftcam(); 3028 switch (start_ccb->ccb_h.func_code) { 3029 case XPT_SCSI_IO: 3030 { 3031 #ifdef CAM_NEW_TRAN_CODE 3032 struct cam_ed *device; 3033 #endif /* CAM_NEW_TRAN_CODE */ 3034 #ifdef CAMDEBUG 3035 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3036 struct cam_path *path; 3037 3038 path = start_ccb->ccb_h.path; 3039 #endif 3040 3041 /* 3042 * For the sake of compatibility with SCSI-1 3043 * devices that may not understand the identify 3044 * message, we include lun information in the 3045 * second byte of all commands. SCSI-1 specifies 3046 * that luns are a 3 bit value and reserves only 3 3047 * bits for lun information in the CDB. Later 3048 * revisions of the SCSI spec allow for more than 8 3049 * luns, but have deprecated lun information in the 3050 * CDB. So, if the lun won't fit, we must omit. 3051 * 3052 * Also be aware that during initial probing for devices, 3053 * the inquiry information is unknown but initialized to 0. 3054 * This means that this code will be exercised while probing 3055 * devices with an ANSI revision greater than 2. 3056 */ 3057 #ifdef CAM_NEW_TRAN_CODE 3058 device = start_ccb->ccb_h.path->device; 3059 if (device->protocol_version <= SCSI_REV_2 3060 #else /* CAM_NEW_TRAN_CODE */ 3061 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 3062 #endif /* CAM_NEW_TRAN_CODE */ 3063 && start_ccb->ccb_h.target_lun < 8 3064 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3065 3066 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3067 start_ccb->ccb_h.target_lun << 5; 3068 } 3069 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3070 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3071 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3072 &path->device->inq_data), 3073 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3074 cdb_str, sizeof(cdb_str)))); 3075 } 3076 /* FALLTHROUGH */ 3077 case XPT_TARGET_IO: 3078 case XPT_CONT_TARGET_IO: 3079 start_ccb->csio.sense_resid = 0; 3080 start_ccb->csio.resid = 0; 3081 /* FALLTHROUGH */ 3082 case XPT_RESET_DEV: 3083 case XPT_ENG_EXEC: 3084 { 3085 struct cam_path *path; 3086 struct cam_sim *sim; 3087 int s; 3088 int runq; 3089 3090 path = start_ccb->ccb_h.path; 3091 s = splsoftcam(); 3092 3093 sim = path->bus->sim; 3094 if (SIM_DEAD(sim)) { 3095 /* The SIM has gone; just execute the CCB directly. */ 3096 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb); 3097 (*(sim->sim_action))(sim, start_ccb); 3098 splx(s); 3099 break; 3100 } 3101 3102 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3103 if (path->device->qfrozen_cnt == 0) 3104 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3105 else 3106 runq = 0; 3107 splx(s); 3108 if (runq != 0) 3109 xpt_run_dev_sendq(path->bus); 3110 break; 3111 } 3112 case XPT_SET_TRAN_SETTINGS: 3113 { 3114 xpt_set_transfer_settings(&start_ccb->cts, 3115 start_ccb->ccb_h.path->device, 3116 /*async_update*/FALSE); 3117 break; 3118 } 3119 case XPT_CALC_GEOMETRY: 3120 { 3121 struct cam_sim *sim; 3122 3123 /* Filter out garbage */ 3124 if (start_ccb->ccg.block_size == 0 3125 || start_ccb->ccg.volume_size == 0) { 3126 start_ccb->ccg.cylinders = 0; 3127 start_ccb->ccg.heads = 0; 3128 start_ccb->ccg.secs_per_track = 0; 3129 start_ccb->ccb_h.status = CAM_REQ_CMP; 3130 break; 3131 } 3132 #ifdef PC98 3133 /* 3134 * In a PC-98 system, geometry translation depens on 3135 * the "real" device geometry obtained from mode page 4. 3136 * SCSI geometry translation is performed in the 3137 * initialization routine of the SCSI BIOS and the result 3138 * stored in host memory. If the translation is available 3139 * in host memory, use it. If not, rely on the default 3140 * translation the device driver performs. 3141 */ 3142 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3143 start_ccb->ccb_h.status = CAM_REQ_CMP; 3144 break; 3145 } 3146 #endif 3147 sim = start_ccb->ccb_h.path->bus->sim; 3148 (*(sim->sim_action))(sim, start_ccb); 3149 break; 3150 } 3151 case XPT_ABORT: 3152 { 3153 union ccb* abort_ccb; 3154 int s; 3155 3156 abort_ccb = start_ccb->cab.abort_ccb; 3157 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3158 3159 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3160 struct cam_ccbq *ccbq; 3161 3162 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3163 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3164 abort_ccb->ccb_h.status = 3165 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3166 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3167 s = splcam(); 3168 xpt_done(abort_ccb); 3169 splx(s); 3170 start_ccb->ccb_h.status = CAM_REQ_CMP; 3171 break; 3172 } 3173 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3174 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3175 /* 3176 * We've caught this ccb en route to 3177 * the SIM. Flag it for abort and the 3178 * SIM will do so just before starting 3179 * real work on the CCB. 3180 */ 3181 abort_ccb->ccb_h.status = 3182 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3183 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3184 start_ccb->ccb_h.status = CAM_REQ_CMP; 3185 break; 3186 } 3187 } 3188 if (XPT_FC_IS_QUEUED(abort_ccb) 3189 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3190 /* 3191 * It's already completed but waiting 3192 * for our SWI to get to it. 3193 */ 3194 start_ccb->ccb_h.status = CAM_UA_ABORT; 3195 break; 3196 } 3197 /* 3198 * If we weren't able to take care of the abort request 3199 * in the XPT, pass the request down to the SIM for processing. 3200 */ 3201 } 3202 /* FALLTHROUGH */ 3203 case XPT_ACCEPT_TARGET_IO: 3204 case XPT_EN_LUN: 3205 case XPT_IMMED_NOTIFY: 3206 case XPT_NOTIFY_ACK: 3207 case XPT_GET_TRAN_SETTINGS: 3208 case XPT_RESET_BUS: 3209 { 3210 struct cam_sim *sim; 3211 3212 sim = start_ccb->ccb_h.path->bus->sim; 3213 (*(sim->sim_action))(sim, start_ccb); 3214 break; 3215 } 3216 case XPT_PATH_INQ: 3217 { 3218 struct cam_sim *sim; 3219 3220 sim = start_ccb->ccb_h.path->bus->sim; 3221 (*(sim->sim_action))(sim, start_ccb); 3222 break; 3223 } 3224 case XPT_PATH_STATS: 3225 start_ccb->cpis.last_reset = 3226 start_ccb->ccb_h.path->bus->last_reset; 3227 start_ccb->ccb_h.status = CAM_REQ_CMP; 3228 break; 3229 case XPT_GDEV_TYPE: 3230 { 3231 struct cam_ed *dev; 3232 int s; 3233 3234 dev = start_ccb->ccb_h.path->device; 3235 s = splcam(); 3236 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3237 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3238 } else { 3239 struct ccb_getdev *cgd; 3240 struct cam_eb *bus; 3241 struct cam_et *tar; 3242 3243 cgd = &start_ccb->cgd; 3244 bus = cgd->ccb_h.path->bus; 3245 tar = cgd->ccb_h.path->target; 3246 cgd->inq_data = dev->inq_data; 3247 cgd->ccb_h.status = CAM_REQ_CMP; 3248 cgd->serial_num_len = dev->serial_num_len; 3249 if ((dev->serial_num_len > 0) 3250 && (dev->serial_num != NULL)) 3251 bcopy(dev->serial_num, cgd->serial_num, 3252 dev->serial_num_len); 3253 } 3254 splx(s); 3255 break; 3256 } 3257 case XPT_GDEV_STATS: 3258 { 3259 struct cam_ed *dev; 3260 int s; 3261 3262 dev = start_ccb->ccb_h.path->device; 3263 s = splcam(); 3264 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3265 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3266 } else { 3267 struct ccb_getdevstats *cgds; 3268 struct cam_eb *bus; 3269 struct cam_et *tar; 3270 3271 cgds = &start_ccb->cgds; 3272 bus = cgds->ccb_h.path->bus; 3273 tar = cgds->ccb_h.path->target; 3274 cgds->dev_openings = dev->ccbq.dev_openings; 3275 cgds->dev_active = dev->ccbq.dev_active; 3276 cgds->devq_openings = dev->ccbq.devq_openings; 3277 cgds->devq_queued = dev->ccbq.queue.entries; 3278 cgds->held = dev->ccbq.held; 3279 cgds->last_reset = tar->last_reset; 3280 cgds->maxtags = dev->quirk->maxtags; 3281 cgds->mintags = dev->quirk->mintags; 3282 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3283 cgds->last_reset = bus->last_reset; 3284 cgds->ccb_h.status = CAM_REQ_CMP; 3285 } 3286 splx(s); 3287 break; 3288 } 3289 case XPT_GDEVLIST: 3290 { 3291 struct cam_periph *nperiph; 3292 struct periph_list *periph_head; 3293 struct ccb_getdevlist *cgdl; 3294 u_int i; 3295 int s; 3296 struct cam_ed *device; 3297 int found; 3298 3299 3300 found = 0; 3301 3302 /* 3303 * Don't want anyone mucking with our data. 3304 */ 3305 s = splcam(); 3306 device = start_ccb->ccb_h.path->device; 3307 periph_head = &device->periphs; 3308 cgdl = &start_ccb->cgdl; 3309 3310 /* 3311 * Check and see if the list has changed since the user 3312 * last requested a list member. If so, tell them that the 3313 * list has changed, and therefore they need to start over 3314 * from the beginning. 3315 */ 3316 if ((cgdl->index != 0) && 3317 (cgdl->generation != device->generation)) { 3318 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3319 splx(s); 3320 break; 3321 } 3322 3323 /* 3324 * Traverse the list of peripherals and attempt to find 3325 * the requested peripheral. 3326 */ 3327 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3328 (nperiph != NULL) && (i <= cgdl->index); 3329 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3330 if (i == cgdl->index) { 3331 strncpy(cgdl->periph_name, 3332 nperiph->periph_name, 3333 DEV_IDLEN); 3334 cgdl->unit_number = nperiph->unit_number; 3335 found = 1; 3336 } 3337 } 3338 if (found == 0) { 3339 cgdl->status = CAM_GDEVLIST_ERROR; 3340 splx(s); 3341 break; 3342 } 3343 3344 if (nperiph == NULL) 3345 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3346 else 3347 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3348 3349 cgdl->index++; 3350 cgdl->generation = device->generation; 3351 3352 splx(s); 3353 cgdl->ccb_h.status = CAM_REQ_CMP; 3354 break; 3355 } 3356 case XPT_DEV_MATCH: 3357 { 3358 int s; 3359 dev_pos_type position_type; 3360 struct ccb_dev_match *cdm; 3361 3362 cdm = &start_ccb->cdm; 3363 3364 /* 3365 * Prevent EDT changes while we traverse it. 3366 */ 3367 s = splcam(); 3368 /* 3369 * There are two ways of getting at information in the EDT. 3370 * The first way is via the primary EDT tree. It starts 3371 * with a list of busses, then a list of targets on a bus, 3372 * then devices/luns on a target, and then peripherals on a 3373 * device/lun. The "other" way is by the peripheral driver 3374 * lists. The peripheral driver lists are organized by 3375 * peripheral driver. (obviously) So it makes sense to 3376 * use the peripheral driver list if the user is looking 3377 * for something like "da1", or all "da" devices. If the 3378 * user is looking for something on a particular bus/target 3379 * or lun, it's generally better to go through the EDT tree. 3380 */ 3381 3382 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3383 position_type = cdm->pos.position_type; 3384 else { 3385 u_int i; 3386 3387 position_type = CAM_DEV_POS_NONE; 3388 3389 for (i = 0; i < cdm->num_patterns; i++) { 3390 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3391 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3392 position_type = CAM_DEV_POS_EDT; 3393 break; 3394 } 3395 } 3396 3397 if (cdm->num_patterns == 0) 3398 position_type = CAM_DEV_POS_EDT; 3399 else if (position_type == CAM_DEV_POS_NONE) 3400 position_type = CAM_DEV_POS_PDRV; 3401 } 3402 3403 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3404 case CAM_DEV_POS_EDT: 3405 xptedtmatch(cdm); 3406 break; 3407 case CAM_DEV_POS_PDRV: 3408 xptperiphlistmatch(cdm); 3409 break; 3410 default: 3411 cdm->status = CAM_DEV_MATCH_ERROR; 3412 break; 3413 } 3414 3415 splx(s); 3416 3417 if (cdm->status == CAM_DEV_MATCH_ERROR) 3418 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3419 else 3420 start_ccb->ccb_h.status = CAM_REQ_CMP; 3421 3422 break; 3423 } 3424 case XPT_SASYNC_CB: 3425 { 3426 struct ccb_setasync *csa; 3427 struct async_node *cur_entry; 3428 struct async_list *async_head; 3429 u_int32_t added; 3430 int s; 3431 3432 csa = &start_ccb->csa; 3433 added = csa->event_enable; 3434 async_head = &csa->ccb_h.path->device->asyncs; 3435 3436 /* 3437 * If there is already an entry for us, simply 3438 * update it. 3439 */ 3440 s = splcam(); 3441 cur_entry = SLIST_FIRST(async_head); 3442 while (cur_entry != NULL) { 3443 if ((cur_entry->callback_arg == csa->callback_arg) 3444 && (cur_entry->callback == csa->callback)) 3445 break; 3446 cur_entry = SLIST_NEXT(cur_entry, links); 3447 } 3448 3449 if (cur_entry != NULL) { 3450 /* 3451 * If the request has no flags set, 3452 * remove the entry. 3453 */ 3454 added &= ~cur_entry->event_enable; 3455 if (csa->event_enable == 0) { 3456 SLIST_REMOVE(async_head, cur_entry, 3457 async_node, links); 3458 csa->ccb_h.path->device->refcount--; 3459 free(cur_entry, M_CAMXPT); 3460 } else { 3461 cur_entry->event_enable = csa->event_enable; 3462 } 3463 } else { 3464 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3465 M_NOWAIT); 3466 if (cur_entry == NULL) { 3467 splx(s); 3468 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3469 break; 3470 } 3471 cur_entry->event_enable = csa->event_enable; 3472 cur_entry->callback_arg = csa->callback_arg; 3473 cur_entry->callback = csa->callback; 3474 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3475 csa->ccb_h.path->device->refcount++; 3476 } 3477 3478 if ((added & AC_FOUND_DEVICE) != 0) { 3479 /* 3480 * Get this peripheral up to date with all 3481 * the currently existing devices. 3482 */ 3483 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3484 } 3485 if ((added & AC_PATH_REGISTERED) != 0) { 3486 /* 3487 * Get this peripheral up to date with all 3488 * the currently existing busses. 3489 */ 3490 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3491 } 3492 splx(s); 3493 start_ccb->ccb_h.status = CAM_REQ_CMP; 3494 break; 3495 } 3496 case XPT_REL_SIMQ: 3497 { 3498 struct ccb_relsim *crs; 3499 struct cam_ed *dev; 3500 int s; 3501 3502 crs = &start_ccb->crs; 3503 dev = crs->ccb_h.path->device; 3504 if (dev == NULL) { 3505 3506 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3507 break; 3508 } 3509 3510 s = splcam(); 3511 3512 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3513 3514 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 3515 /* Don't ever go below one opening */ 3516 if (crs->openings > 0) { 3517 xpt_dev_ccbq_resize(crs->ccb_h.path, 3518 crs->openings); 3519 3520 if (bootverbose) { 3521 xpt_print_path(crs->ccb_h.path); 3522 printf("tagged openings " 3523 "now %d\n", 3524 crs->openings); 3525 } 3526 } 3527 } 3528 } 3529 3530 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3531 3532 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3533 3534 /* 3535 * Just extend the old timeout and decrement 3536 * the freeze count so that a single timeout 3537 * is sufficient for releasing the queue. 3538 */ 3539 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3540 untimeout(xpt_release_devq_timeout, 3541 dev, dev->c_handle); 3542 } else { 3543 3544 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3545 } 3546 3547 dev->c_handle = 3548 timeout(xpt_release_devq_timeout, 3549 dev, 3550 (crs->release_timeout * hz) / 1000); 3551 3552 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3553 3554 } 3555 3556 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3557 3558 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3559 /* 3560 * Decrement the freeze count so that a single 3561 * completion is still sufficient to unfreeze 3562 * the queue. 3563 */ 3564 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3565 } else { 3566 3567 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3568 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3569 } 3570 } 3571 3572 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3573 3574 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3575 || (dev->ccbq.dev_active == 0)) { 3576 3577 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3578 } else { 3579 3580 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3581 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3582 } 3583 } 3584 splx(s); 3585 3586 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3587 3588 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3589 /*run_queue*/TRUE); 3590 } 3591 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3592 start_ccb->ccb_h.status = CAM_REQ_CMP; 3593 break; 3594 } 3595 case XPT_SCAN_BUS: 3596 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3597 break; 3598 case XPT_SCAN_LUN: 3599 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3600 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3601 start_ccb); 3602 break; 3603 case XPT_DEBUG: { 3604 #ifdef CAMDEBUG 3605 int s; 3606 3607 s = splcam(); 3608 #ifdef CAM_DEBUG_DELAY 3609 cam_debug_delay = CAM_DEBUG_DELAY; 3610 #endif 3611 cam_dflags = start_ccb->cdbg.flags; 3612 if (cam_dpath != NULL) { 3613 xpt_free_path(cam_dpath); 3614 cam_dpath = NULL; 3615 } 3616 3617 if (cam_dflags != CAM_DEBUG_NONE) { 3618 if (xpt_create_path(&cam_dpath, xpt_periph, 3619 start_ccb->ccb_h.path_id, 3620 start_ccb->ccb_h.target_id, 3621 start_ccb->ccb_h.target_lun) != 3622 CAM_REQ_CMP) { 3623 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3624 cam_dflags = CAM_DEBUG_NONE; 3625 } else { 3626 start_ccb->ccb_h.status = CAM_REQ_CMP; 3627 xpt_print_path(cam_dpath); 3628 printf("debugging flags now %x\n", cam_dflags); 3629 } 3630 } else { 3631 cam_dpath = NULL; 3632 start_ccb->ccb_h.status = CAM_REQ_CMP; 3633 } 3634 splx(s); 3635 #else /* !CAMDEBUG */ 3636 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3637 #endif /* CAMDEBUG */ 3638 break; 3639 } 3640 case XPT_NOOP: 3641 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3642 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3643 start_ccb->ccb_h.status = CAM_REQ_CMP; 3644 break; 3645 default: 3646 case XPT_SDEV_TYPE: 3647 case XPT_TERM_IO: 3648 case XPT_ENG_INQ: 3649 /* XXX Implement */ 3650 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3651 break; 3652 } 3653 splx(iopl); 3654 } 3655 3656 void 3657 xpt_polled_action(union ccb *start_ccb) 3658 { 3659 int s; 3660 u_int32_t timeout; 3661 struct cam_sim *sim; 3662 struct cam_devq *devq; 3663 struct cam_ed *dev; 3664 3665 GIANT_REQUIRED; 3666 3667 timeout = start_ccb->ccb_h.timeout; 3668 sim = start_ccb->ccb_h.path->bus->sim; 3669 devq = sim->devq; 3670 dev = start_ccb->ccb_h.path->device; 3671 3672 s = splcam(); 3673 3674 /* 3675 * Steal an opening so that no other queued requests 3676 * can get it before us while we simulate interrupts. 3677 */ 3678 dev->ccbq.devq_openings--; 3679 dev->ccbq.dev_openings--; 3680 3681 while(((devq != NULL && devq->send_openings <= 0) || 3682 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3683 DELAY(1000); 3684 (*(sim->sim_poll))(sim); 3685 camisr(&cam_bioq); 3686 } 3687 3688 dev->ccbq.devq_openings++; 3689 dev->ccbq.dev_openings++; 3690 3691 if (timeout != 0) { 3692 xpt_action(start_ccb); 3693 while(--timeout > 0) { 3694 (*(sim->sim_poll))(sim); 3695 camisr(&cam_bioq); 3696 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3697 != CAM_REQ_INPROG) 3698 break; 3699 DELAY(1000); 3700 } 3701 if (timeout == 0) { 3702 /* 3703 * XXX Is it worth adding a sim_timeout entry 3704 * point so we can attempt recovery? If 3705 * this is only used for dumps, I don't think 3706 * it is. 3707 */ 3708 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3709 } 3710 } else { 3711 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3712 } 3713 splx(s); 3714 } 3715 3716 /* 3717 * Schedule a peripheral driver to receive a ccb when it's 3718 * target device has space for more transactions. 3719 */ 3720 void 3721 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3722 { 3723 struct cam_ed *device; 3724 union ccb *work_ccb; 3725 int s; 3726 int runq; 3727 3728 GIANT_REQUIRED; 3729 3730 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3731 device = perph->path->device; 3732 s = splsoftcam(); 3733 if (periph_is_queued(perph)) { 3734 /* Simply reorder based on new priority */ 3735 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3736 (" change priority to %d\n", new_priority)); 3737 if (new_priority < perph->pinfo.priority) { 3738 camq_change_priority(&device->drvq, 3739 perph->pinfo.index, 3740 new_priority); 3741 } 3742 runq = 0; 3743 } else if (SIM_DEAD(perph->path->bus->sim)) { 3744 /* The SIM is gone so just call periph_start directly. */ 3745 work_ccb = xpt_get_ccb(perph->path->device); 3746 splx(s); 3747 if (work_ccb == NULL) 3748 return; /* XXX */ 3749 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority); 3750 perph->pinfo.priority = new_priority; 3751 perph->periph_start(perph, work_ccb); 3752 return; 3753 } else { 3754 /* New entry on the queue */ 3755 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3756 (" added periph to queue\n")); 3757 perph->pinfo.priority = new_priority; 3758 perph->pinfo.generation = ++device->drvq.generation; 3759 camq_insert(&device->drvq, &perph->pinfo); 3760 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3761 } 3762 splx(s); 3763 if (runq != 0) { 3764 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3765 (" calling xpt_run_devq\n")); 3766 xpt_run_dev_allocq(perph->path->bus); 3767 } 3768 } 3769 3770 3771 /* 3772 * Schedule a device to run on a given queue. 3773 * If the device was inserted as a new entry on the queue, 3774 * return 1 meaning the device queue should be run. If we 3775 * were already queued, implying someone else has already 3776 * started the queue, return 0 so the caller doesn't attempt 3777 * to run the queue. Must be run at either splsoftcam 3778 * (or splcam since that encompases splsoftcam). 3779 */ 3780 static int 3781 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3782 u_int32_t new_priority) 3783 { 3784 int retval; 3785 u_int32_t old_priority; 3786 3787 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3788 3789 old_priority = pinfo->priority; 3790 3791 /* 3792 * Are we already queued? 3793 */ 3794 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3795 /* Simply reorder based on new priority */ 3796 if (new_priority < old_priority) { 3797 camq_change_priority(queue, pinfo->index, 3798 new_priority); 3799 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3800 ("changed priority to %d\n", 3801 new_priority)); 3802 } 3803 retval = 0; 3804 } else { 3805 /* New entry on the queue */ 3806 if (new_priority < old_priority) 3807 pinfo->priority = new_priority; 3808 3809 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3810 ("Inserting onto queue\n")); 3811 pinfo->generation = ++queue->generation; 3812 camq_insert(queue, pinfo); 3813 retval = 1; 3814 } 3815 return (retval); 3816 } 3817 3818 static void 3819 xpt_run_dev_allocq(struct cam_eb *bus) 3820 { 3821 struct cam_devq *devq; 3822 int s; 3823 3824 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3825 devq = bus->sim->devq; 3826 3827 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3828 (" qfrozen_cnt == 0x%x, entries == %d, " 3829 "openings == %d, active == %d\n", 3830 devq->alloc_queue.qfrozen_cnt, 3831 devq->alloc_queue.entries, 3832 devq->alloc_openings, 3833 devq->alloc_active)); 3834 3835 s = splsoftcam(); 3836 devq->alloc_queue.qfrozen_cnt++; 3837 while ((devq->alloc_queue.entries > 0) 3838 && (devq->alloc_openings > 0) 3839 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3840 struct cam_ed_qinfo *qinfo; 3841 struct cam_ed *device; 3842 union ccb *work_ccb; 3843 struct cam_periph *drv; 3844 struct camq *drvq; 3845 3846 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3847 CAMQ_HEAD); 3848 device = qinfo->device; 3849 3850 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3851 ("running device %p\n", device)); 3852 3853 drvq = &device->drvq; 3854 3855 #ifdef CAMDEBUG 3856 if (drvq->entries <= 0) { 3857 panic("xpt_run_dev_allocq: " 3858 "Device on queue without any work to do"); 3859 } 3860 #endif 3861 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3862 devq->alloc_openings--; 3863 devq->alloc_active++; 3864 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3865 splx(s); 3866 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3867 drv->pinfo.priority); 3868 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3869 ("calling periph start\n")); 3870 drv->periph_start(drv, work_ccb); 3871 } else { 3872 /* 3873 * Malloc failure in alloc_ccb 3874 */ 3875 /* 3876 * XXX add us to a list to be run from free_ccb 3877 * if we don't have any ccbs active on this 3878 * device queue otherwise we may never get run 3879 * again. 3880 */ 3881 break; 3882 } 3883 3884 /* Raise IPL for possible insertion and test at top of loop */ 3885 s = splsoftcam(); 3886 3887 if (drvq->entries > 0) { 3888 /* We have more work. Attempt to reschedule */ 3889 xpt_schedule_dev_allocq(bus, device); 3890 } 3891 } 3892 devq->alloc_queue.qfrozen_cnt--; 3893 splx(s); 3894 } 3895 3896 static void 3897 xpt_run_dev_sendq(struct cam_eb *bus) 3898 { 3899 struct cam_devq *devq; 3900 int s; 3901 3902 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3903 3904 devq = bus->sim->devq; 3905 3906 s = splcam(); 3907 devq->send_queue.qfrozen_cnt++; 3908 splx(s); 3909 s = splsoftcam(); 3910 while ((devq->send_queue.entries > 0) 3911 && (devq->send_openings > 0)) { 3912 struct cam_ed_qinfo *qinfo; 3913 struct cam_ed *device; 3914 union ccb *work_ccb; 3915 struct cam_sim *sim; 3916 int ospl; 3917 3918 ospl = splcam(); 3919 if (devq->send_queue.qfrozen_cnt > 1) { 3920 splx(ospl); 3921 break; 3922 } 3923 3924 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3925 CAMQ_HEAD); 3926 device = qinfo->device; 3927 3928 /* 3929 * If the device has been "frozen", don't attempt 3930 * to run it. 3931 */ 3932 if (device->qfrozen_cnt > 0) { 3933 splx(ospl); 3934 continue; 3935 } 3936 3937 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3938 ("running device %p\n", device)); 3939 3940 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3941 if (work_ccb == NULL) { 3942 printf("device on run queue with no ccbs???\n"); 3943 splx(ospl); 3944 continue; 3945 } 3946 3947 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3948 3949 if (num_highpower <= 0) { 3950 /* 3951 * We got a high power command, but we 3952 * don't have any available slots. Freeze 3953 * the device queue until we have a slot 3954 * available. 3955 */ 3956 device->qfrozen_cnt++; 3957 STAILQ_INSERT_TAIL(&highpowerq, 3958 &work_ccb->ccb_h, 3959 xpt_links.stqe); 3960 3961 splx(ospl); 3962 continue; 3963 } else { 3964 /* 3965 * Consume a high power slot while 3966 * this ccb runs. 3967 */ 3968 num_highpower--; 3969 } 3970 } 3971 devq->active_dev = device; 3972 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3973 3974 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3975 splx(ospl); 3976 3977 devq->send_openings--; 3978 devq->send_active++; 3979 3980 if (device->ccbq.queue.entries > 0) 3981 xpt_schedule_dev_sendq(bus, device); 3982 3983 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3984 /* 3985 * The client wants to freeze the queue 3986 * after this CCB is sent. 3987 */ 3988 ospl = splcam(); 3989 device->qfrozen_cnt++; 3990 splx(ospl); 3991 } 3992 3993 splx(s); 3994 3995 /* In Target mode, the peripheral driver knows best... */ 3996 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3997 if ((device->inq_flags & SID_CmdQue) != 0 3998 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3999 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 4000 else 4001 /* 4002 * Clear this in case of a retried CCB that 4003 * failed due to a rejected tag. 4004 */ 4005 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 4006 } 4007 4008 /* 4009 * Device queues can be shared among multiple sim instances 4010 * that reside on different busses. Use the SIM in the queue 4011 * CCB's path, rather than the one in the bus that was passed 4012 * into this function. 4013 */ 4014 sim = work_ccb->ccb_h.path->bus->sim; 4015 (*(sim->sim_action))(sim, work_ccb); 4016 4017 ospl = splcam(); 4018 devq->active_dev = NULL; 4019 splx(ospl); 4020 /* Raise IPL for possible insertion and test at top of loop */ 4021 s = splsoftcam(); 4022 } 4023 splx(s); 4024 s = splcam(); 4025 devq->send_queue.qfrozen_cnt--; 4026 splx(s); 4027 } 4028 4029 /* 4030 * This function merges stuff from the slave ccb into the master ccb, while 4031 * keeping important fields in the master ccb constant. 4032 */ 4033 void 4034 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 4035 { 4036 GIANT_REQUIRED; 4037 4038 /* 4039 * Pull fields that are valid for peripheral drivers to set 4040 * into the master CCB along with the CCB "payload". 4041 */ 4042 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 4043 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 4044 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 4045 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 4046 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 4047 sizeof(union ccb) - sizeof(struct ccb_hdr)); 4048 } 4049 4050 void 4051 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 4052 { 4053 GIANT_REQUIRED; 4054 4055 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 4056 ccb_h->pinfo.priority = priority; 4057 ccb_h->path = path; 4058 ccb_h->path_id = path->bus->path_id; 4059 if (path->target) 4060 ccb_h->target_id = path->target->target_id; 4061 else 4062 ccb_h->target_id = CAM_TARGET_WILDCARD; 4063 if (path->device) { 4064 ccb_h->target_lun = path->device->lun_id; 4065 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 4066 } else { 4067 ccb_h->target_lun = CAM_TARGET_WILDCARD; 4068 } 4069 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4070 ccb_h->flags = 0; 4071 } 4072 4073 /* Path manipulation functions */ 4074 cam_status 4075 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 4076 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4077 { 4078 struct cam_path *path; 4079 cam_status status; 4080 4081 GIANT_REQUIRED; 4082 4083 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 4084 4085 if (path == NULL) { 4086 status = CAM_RESRC_UNAVAIL; 4087 return(status); 4088 } 4089 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 4090 if (status != CAM_REQ_CMP) { 4091 free(path, M_CAMXPT); 4092 path = NULL; 4093 } 4094 *new_path_ptr = path; 4095 return (status); 4096 } 4097 4098 static cam_status 4099 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 4100 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4101 { 4102 struct cam_eb *bus; 4103 struct cam_et *target; 4104 struct cam_ed *device; 4105 cam_status status; 4106 int s; 4107 4108 status = CAM_REQ_CMP; /* Completed without error */ 4109 target = NULL; /* Wildcarded */ 4110 device = NULL; /* Wildcarded */ 4111 4112 /* 4113 * We will potentially modify the EDT, so block interrupts 4114 * that may attempt to create cam paths. 4115 */ 4116 s = splcam(); 4117 bus = xpt_find_bus(path_id); 4118 if (bus == NULL) { 4119 status = CAM_PATH_INVALID; 4120 } else { 4121 target = xpt_find_target(bus, target_id); 4122 if (target == NULL) { 4123 /* Create one */ 4124 struct cam_et *new_target; 4125 4126 new_target = xpt_alloc_target(bus, target_id); 4127 if (new_target == NULL) { 4128 status = CAM_RESRC_UNAVAIL; 4129 } else { 4130 target = new_target; 4131 } 4132 } 4133 if (target != NULL) { 4134 device = xpt_find_device(target, lun_id); 4135 if (device == NULL) { 4136 /* Create one */ 4137 struct cam_ed *new_device; 4138 4139 new_device = xpt_alloc_device(bus, 4140 target, 4141 lun_id); 4142 if (new_device == NULL) { 4143 status = CAM_RESRC_UNAVAIL; 4144 } else { 4145 device = new_device; 4146 } 4147 } 4148 } 4149 } 4150 splx(s); 4151 4152 /* 4153 * Only touch the user's data if we are successful. 4154 */ 4155 if (status == CAM_REQ_CMP) { 4156 new_path->periph = perph; 4157 new_path->bus = bus; 4158 new_path->target = target; 4159 new_path->device = device; 4160 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4161 } else { 4162 if (device != NULL) 4163 xpt_release_device(bus, target, device); 4164 if (target != NULL) 4165 xpt_release_target(bus, target); 4166 if (bus != NULL) 4167 xpt_release_bus(bus); 4168 } 4169 return (status); 4170 } 4171 4172 static void 4173 xpt_release_path(struct cam_path *path) 4174 { 4175 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4176 if (path->device != NULL) { 4177 xpt_release_device(path->bus, path->target, path->device); 4178 path->device = NULL; 4179 } 4180 if (path->target != NULL) { 4181 xpt_release_target(path->bus, path->target); 4182 path->target = NULL; 4183 } 4184 if (path->bus != NULL) { 4185 xpt_release_bus(path->bus); 4186 path->bus = NULL; 4187 } 4188 } 4189 4190 void 4191 xpt_free_path(struct cam_path *path) 4192 { 4193 GIANT_REQUIRED; 4194 4195 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4196 xpt_release_path(path); 4197 free(path, M_CAMXPT); 4198 } 4199 4200 4201 /* 4202 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4203 * in path1, 2 for match with wildcards in path2. 4204 */ 4205 int 4206 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4207 { 4208 GIANT_REQUIRED; 4209 4210 int retval = 0; 4211 4212 if (path1->bus != path2->bus) { 4213 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4214 retval = 1; 4215 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4216 retval = 2; 4217 else 4218 return (-1); 4219 } 4220 if (path1->target != path2->target) { 4221 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4222 if (retval == 0) 4223 retval = 1; 4224 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4225 retval = 2; 4226 else 4227 return (-1); 4228 } 4229 if (path1->device != path2->device) { 4230 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4231 if (retval == 0) 4232 retval = 1; 4233 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4234 retval = 2; 4235 else 4236 return (-1); 4237 } 4238 return (retval); 4239 } 4240 4241 void 4242 xpt_print_path(struct cam_path *path) 4243 { 4244 GIANT_REQUIRED; 4245 4246 if (path == NULL) 4247 printf("(nopath): "); 4248 else { 4249 if (path->periph != NULL) 4250 printf("(%s%d:", path->periph->periph_name, 4251 path->periph->unit_number); 4252 else 4253 printf("(noperiph:"); 4254 4255 if (path->bus != NULL) 4256 printf("%s%d:%d:", path->bus->sim->sim_name, 4257 path->bus->sim->unit_number, 4258 path->bus->sim->bus_id); 4259 else 4260 printf("nobus:"); 4261 4262 if (path->target != NULL) 4263 printf("%d:", path->target->target_id); 4264 else 4265 printf("X:"); 4266 4267 if (path->device != NULL) 4268 printf("%d): ", path->device->lun_id); 4269 else 4270 printf("X): "); 4271 } 4272 } 4273 4274 int 4275 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4276 { 4277 struct sbuf sb; 4278 4279 GIANT_REQUIRED; 4280 4281 sbuf_new(&sb, str, str_len, 0); 4282 4283 if (path == NULL) 4284 sbuf_printf(&sb, "(nopath): "); 4285 else { 4286 if (path->periph != NULL) 4287 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4288 path->periph->unit_number); 4289 else 4290 sbuf_printf(&sb, "(noperiph:"); 4291 4292 if (path->bus != NULL) 4293 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4294 path->bus->sim->unit_number, 4295 path->bus->sim->bus_id); 4296 else 4297 sbuf_printf(&sb, "nobus:"); 4298 4299 if (path->target != NULL) 4300 sbuf_printf(&sb, "%d:", path->target->target_id); 4301 else 4302 sbuf_printf(&sb, "X:"); 4303 4304 if (path->device != NULL) 4305 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4306 else 4307 sbuf_printf(&sb, "X): "); 4308 } 4309 sbuf_finish(&sb); 4310 4311 return(sbuf_len(&sb)); 4312 } 4313 4314 path_id_t 4315 xpt_path_path_id(struct cam_path *path) 4316 { 4317 GIANT_REQUIRED; 4318 4319 return(path->bus->path_id); 4320 } 4321 4322 target_id_t 4323 xpt_path_target_id(struct cam_path *path) 4324 { 4325 GIANT_REQUIRED; 4326 4327 if (path->target != NULL) 4328 return (path->target->target_id); 4329 else 4330 return (CAM_TARGET_WILDCARD); 4331 } 4332 4333 lun_id_t 4334 xpt_path_lun_id(struct cam_path *path) 4335 { 4336 GIANT_REQUIRED; 4337 4338 if (path->device != NULL) 4339 return (path->device->lun_id); 4340 else 4341 return (CAM_LUN_WILDCARD); 4342 } 4343 4344 struct cam_sim * 4345 xpt_path_sim(struct cam_path *path) 4346 { 4347 GIANT_REQUIRED; 4348 4349 return (path->bus->sim); 4350 } 4351 4352 struct cam_periph* 4353 xpt_path_periph(struct cam_path *path) 4354 { 4355 GIANT_REQUIRED; 4356 4357 return (path->periph); 4358 } 4359 4360 /* 4361 * Release a CAM control block for the caller. Remit the cost of the structure 4362 * to the device referenced by the path. If the this device had no 'credits' 4363 * and peripheral drivers have registered async callbacks for this notification 4364 * call them now. 4365 */ 4366 void 4367 xpt_release_ccb(union ccb *free_ccb) 4368 { 4369 int s; 4370 struct cam_path *path; 4371 struct cam_ed *device; 4372 struct cam_eb *bus; 4373 4374 GIANT_REQUIRED; 4375 4376 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4377 path = free_ccb->ccb_h.path; 4378 device = path->device; 4379 bus = path->bus; 4380 s = splsoftcam(); 4381 cam_ccbq_release_opening(&device->ccbq); 4382 if (xpt_ccb_count > xpt_max_ccbs) { 4383 xpt_free_ccb(free_ccb); 4384 xpt_ccb_count--; 4385 } else { 4386 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4387 } 4388 if (bus->sim->devq == NULL) { 4389 splx(s); 4390 return; 4391 } 4392 bus->sim->devq->alloc_openings++; 4393 bus->sim->devq->alloc_active--; 4394 /* XXX Turn this into an inline function - xpt_run_device?? */ 4395 if ((device_is_alloc_queued(device) == 0) 4396 && (device->drvq.entries > 0)) { 4397 xpt_schedule_dev_allocq(bus, device); 4398 } 4399 splx(s); 4400 if (dev_allocq_is_runnable(bus->sim->devq)) 4401 xpt_run_dev_allocq(bus); 4402 } 4403 4404 /* Functions accessed by SIM drivers */ 4405 4406 /* 4407 * A sim structure, listing the SIM entry points and instance 4408 * identification info is passed to xpt_bus_register to hook the SIM 4409 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4410 * for this new bus and places it in the array of busses and assigns 4411 * it a path_id. The path_id may be influenced by "hard wiring" 4412 * information specified by the user. Once interrupt services are 4413 * availible, the bus will be probed. 4414 */ 4415 int32_t 4416 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4417 { 4418 struct cam_eb *new_bus; 4419 struct cam_eb *old_bus; 4420 struct ccb_pathinq cpi; 4421 int s; 4422 4423 GIANT_REQUIRED; 4424 4425 sim->bus_id = bus; 4426 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4427 M_CAMXPT, M_NOWAIT); 4428 if (new_bus == NULL) { 4429 /* Couldn't satisfy request */ 4430 return (CAM_RESRC_UNAVAIL); 4431 } 4432 4433 if (strcmp(sim->sim_name, "xpt") != 0) { 4434 4435 sim->path_id = 4436 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4437 } 4438 4439 TAILQ_INIT(&new_bus->et_entries); 4440 new_bus->path_id = sim->path_id; 4441 new_bus->sim = sim; 4442 timevalclear(&new_bus->last_reset); 4443 new_bus->flags = 0; 4444 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4445 new_bus->generation = 0; 4446 s = splcam(); 4447 old_bus = TAILQ_FIRST(&xpt_busses); 4448 while (old_bus != NULL 4449 && old_bus->path_id < new_bus->path_id) 4450 old_bus = TAILQ_NEXT(old_bus, links); 4451 if (old_bus != NULL) 4452 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4453 else 4454 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4455 bus_generation++; 4456 splx(s); 4457 4458 /* Notify interested parties */ 4459 if (sim->path_id != CAM_XPT_PATH_ID) { 4460 struct cam_path path; 4461 4462 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4463 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4464 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4465 cpi.ccb_h.func_code = XPT_PATH_INQ; 4466 xpt_action((union ccb *)&cpi); 4467 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4468 xpt_release_path(&path); 4469 } 4470 return (CAM_SUCCESS); 4471 } 4472 4473 int32_t 4474 xpt_bus_deregister(path_id_t pathid) 4475 { 4476 struct cam_path bus_path; 4477 struct cam_ed *device; 4478 struct cam_ed_qinfo *qinfo; 4479 struct cam_devq *devq; 4480 struct cam_periph *periph; 4481 struct cam_sim *ccbsim; 4482 union ccb *work_ccb; 4483 cam_status status; 4484 4485 GIANT_REQUIRED; 4486 4487 status = xpt_compile_path(&bus_path, NULL, pathid, 4488 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4489 if (status != CAM_REQ_CMP) 4490 return (status); 4491 4492 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4493 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4494 4495 /* The SIM may be gone, so use a dummy SIM for any stray operations. */ 4496 devq = bus_path.bus->sim->devq; 4497 bus_path.bus->sim = &cam_dead_sim; 4498 4499 /* Execute any pending operations now. */ 4500 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 4501 CAMQ_HEAD)) != NULL || 4502 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 4503 CAMQ_HEAD)) != NULL) { 4504 do { 4505 device = qinfo->device; 4506 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 4507 if (work_ccb != NULL) { 4508 devq->active_dev = device; 4509 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 4510 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 4511 ccbsim = work_ccb->ccb_h.path->bus->sim; 4512 (*(ccbsim->sim_action))(ccbsim, work_ccb); 4513 } 4514 4515 periph = (struct cam_periph *)camq_remove(&device->drvq, 4516 CAMQ_HEAD); 4517 if (periph != NULL) 4518 xpt_schedule(periph, periph->pinfo.priority); 4519 } while (work_ccb != NULL || periph != NULL); 4520 } 4521 4522 /* Make sure all completed CCBs are processed. */ 4523 while (!TAILQ_EMPTY(&cam_bioq)) { 4524 camisr(&cam_bioq); 4525 4526 /* Repeat the async's for the benefit of any new devices. */ 4527 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4528 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4529 } 4530 4531 /* Release the reference count held while registered. */ 4532 xpt_release_bus(bus_path.bus); 4533 xpt_release_path(&bus_path); 4534 4535 /* Recheck for more completed CCBs. */ 4536 while (!TAILQ_EMPTY(&cam_bioq)) 4537 camisr(&cam_bioq); 4538 4539 return (CAM_REQ_CMP); 4540 } 4541 4542 static path_id_t 4543 xptnextfreepathid(void) 4544 { 4545 struct cam_eb *bus; 4546 path_id_t pathid; 4547 const char *strval; 4548 4549 pathid = 0; 4550 bus = TAILQ_FIRST(&xpt_busses); 4551 retry: 4552 /* Find an unoccupied pathid */ 4553 while (bus != NULL 4554 && bus->path_id <= pathid) { 4555 if (bus->path_id == pathid) 4556 pathid++; 4557 bus = TAILQ_NEXT(bus, links); 4558 } 4559 4560 /* 4561 * Ensure that this pathid is not reserved for 4562 * a bus that may be registered in the future. 4563 */ 4564 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4565 ++pathid; 4566 /* Start the search over */ 4567 goto retry; 4568 } 4569 return (pathid); 4570 } 4571 4572 static path_id_t 4573 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4574 { 4575 path_id_t pathid; 4576 int i, dunit, val; 4577 char buf[32]; 4578 const char *dname; 4579 4580 pathid = CAM_XPT_PATH_ID; 4581 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4582 i = 0; 4583 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4584 if (strcmp(dname, "scbus")) { 4585 /* Avoid a bit of foot shooting. */ 4586 continue; 4587 } 4588 if (dunit < 0) /* unwired?! */ 4589 continue; 4590 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4591 if (sim_bus == val) { 4592 pathid = dunit; 4593 break; 4594 } 4595 } else if (sim_bus == 0) { 4596 /* Unspecified matches bus 0 */ 4597 pathid = dunit; 4598 break; 4599 } else { 4600 printf("Ambiguous scbus configuration for %s%d " 4601 "bus %d, cannot wire down. The kernel " 4602 "config entry for scbus%d should " 4603 "specify a controller bus.\n" 4604 "Scbus will be assigned dynamically.\n", 4605 sim_name, sim_unit, sim_bus, dunit); 4606 break; 4607 } 4608 } 4609 4610 if (pathid == CAM_XPT_PATH_ID) 4611 pathid = xptnextfreepathid(); 4612 return (pathid); 4613 } 4614 4615 void 4616 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4617 { 4618 struct cam_eb *bus; 4619 struct cam_et *target, *next_target; 4620 struct cam_ed *device, *next_device; 4621 int s; 4622 4623 GIANT_REQUIRED; 4624 4625 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4626 4627 /* 4628 * Most async events come from a CAM interrupt context. In 4629 * a few cases, the error recovery code at the peripheral layer, 4630 * which may run from our SWI or a process context, may signal 4631 * deferred events with a call to xpt_async. Ensure async 4632 * notifications are serialized by blocking cam interrupts. 4633 */ 4634 s = splcam(); 4635 4636 bus = path->bus; 4637 4638 if (async_code == AC_BUS_RESET) { 4639 int s; 4640 4641 s = splclock(); 4642 /* Update our notion of when the last reset occurred */ 4643 microtime(&bus->last_reset); 4644 splx(s); 4645 } 4646 4647 for (target = TAILQ_FIRST(&bus->et_entries); 4648 target != NULL; 4649 target = next_target) { 4650 4651 next_target = TAILQ_NEXT(target, links); 4652 4653 if (path->target != target 4654 && path->target->target_id != CAM_TARGET_WILDCARD 4655 && target->target_id != CAM_TARGET_WILDCARD) 4656 continue; 4657 4658 if (async_code == AC_SENT_BDR) { 4659 int s; 4660 4661 /* Update our notion of when the last reset occurred */ 4662 s = splclock(); 4663 microtime(&path->target->last_reset); 4664 splx(s); 4665 } 4666 4667 for (device = TAILQ_FIRST(&target->ed_entries); 4668 device != NULL; 4669 device = next_device) { 4670 4671 next_device = TAILQ_NEXT(device, links); 4672 4673 if (path->device != device 4674 && path->device->lun_id != CAM_LUN_WILDCARD 4675 && device->lun_id != CAM_LUN_WILDCARD) 4676 continue; 4677 4678 xpt_dev_async(async_code, bus, target, 4679 device, async_arg); 4680 4681 xpt_async_bcast(&device->asyncs, async_code, 4682 path, async_arg); 4683 } 4684 } 4685 4686 /* 4687 * If this wasn't a fully wildcarded async, tell all 4688 * clients that want all async events. 4689 */ 4690 if (bus != xpt_periph->path->bus) 4691 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4692 path, async_arg); 4693 splx(s); 4694 } 4695 4696 static void 4697 xpt_async_bcast(struct async_list *async_head, 4698 u_int32_t async_code, 4699 struct cam_path *path, void *async_arg) 4700 { 4701 struct async_node *cur_entry; 4702 4703 cur_entry = SLIST_FIRST(async_head); 4704 while (cur_entry != NULL) { 4705 struct async_node *next_entry; 4706 /* 4707 * Grab the next list entry before we call the current 4708 * entry's callback. This is because the callback function 4709 * can delete its async callback entry. 4710 */ 4711 next_entry = SLIST_NEXT(cur_entry, links); 4712 if ((cur_entry->event_enable & async_code) != 0) 4713 cur_entry->callback(cur_entry->callback_arg, 4714 async_code, path, 4715 async_arg); 4716 cur_entry = next_entry; 4717 } 4718 } 4719 4720 /* 4721 * Handle any per-device event notifications that require action by the XPT. 4722 */ 4723 static void 4724 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4725 struct cam_ed *device, void *async_arg) 4726 { 4727 cam_status status; 4728 struct cam_path newpath; 4729 4730 /* 4731 * We only need to handle events for real devices. 4732 */ 4733 if (target->target_id == CAM_TARGET_WILDCARD 4734 || device->lun_id == CAM_LUN_WILDCARD) 4735 return; 4736 4737 /* 4738 * We need our own path with wildcards expanded to 4739 * handle certain types of events. 4740 */ 4741 if ((async_code == AC_SENT_BDR) 4742 || (async_code == AC_BUS_RESET) 4743 || (async_code == AC_INQ_CHANGED)) 4744 status = xpt_compile_path(&newpath, NULL, 4745 bus->path_id, 4746 target->target_id, 4747 device->lun_id); 4748 else 4749 status = CAM_REQ_CMP_ERR; 4750 4751 if (status == CAM_REQ_CMP) { 4752 4753 /* 4754 * Allow transfer negotiation to occur in a 4755 * tag free environment. 4756 */ 4757 if (async_code == AC_SENT_BDR 4758 || async_code == AC_BUS_RESET) 4759 xpt_toggle_tags(&newpath); 4760 4761 if (async_code == AC_INQ_CHANGED) { 4762 /* 4763 * We've sent a start unit command, or 4764 * something similar to a device that 4765 * may have caused its inquiry data to 4766 * change. So we re-scan the device to 4767 * refresh the inquiry data for it. 4768 */ 4769 xpt_scan_lun(newpath.periph, &newpath, 4770 CAM_EXPECT_INQ_CHANGE, NULL); 4771 } 4772 xpt_release_path(&newpath); 4773 } else if (async_code == AC_LOST_DEVICE) { 4774 device->flags |= CAM_DEV_UNCONFIGURED; 4775 } else if (async_code == AC_TRANSFER_NEG) { 4776 struct ccb_trans_settings *settings; 4777 4778 settings = (struct ccb_trans_settings *)async_arg; 4779 xpt_set_transfer_settings(settings, device, 4780 /*async_update*/TRUE); 4781 } 4782 } 4783 4784 u_int32_t 4785 xpt_freeze_devq(struct cam_path *path, u_int count) 4786 { 4787 int s; 4788 struct ccb_hdr *ccbh; 4789 4790 GIANT_REQUIRED; 4791 4792 s = splcam(); 4793 path->device->qfrozen_cnt += count; 4794 4795 /* 4796 * Mark the last CCB in the queue as needing 4797 * to be requeued if the driver hasn't 4798 * changed it's state yet. This fixes a race 4799 * where a ccb is just about to be queued to 4800 * a controller driver when it's interrupt routine 4801 * freezes the queue. To completly close the 4802 * hole, controller drives must check to see 4803 * if a ccb's status is still CAM_REQ_INPROG 4804 * under spl protection just before they queue 4805 * the CCB. See ahc_action/ahc_freeze_devq for 4806 * an example. 4807 */ 4808 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4809 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4810 ccbh->status = CAM_REQUEUE_REQ; 4811 splx(s); 4812 return (path->device->qfrozen_cnt); 4813 } 4814 4815 u_int32_t 4816 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4817 { 4818 GIANT_REQUIRED; 4819 4820 sim->devq->send_queue.qfrozen_cnt += count; 4821 if (sim->devq->active_dev != NULL) { 4822 struct ccb_hdr *ccbh; 4823 4824 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4825 ccb_hdr_tailq); 4826 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4827 ccbh->status = CAM_REQUEUE_REQ; 4828 } 4829 return (sim->devq->send_queue.qfrozen_cnt); 4830 } 4831 4832 static void 4833 xpt_release_devq_timeout(void *arg) 4834 { 4835 struct cam_ed *device; 4836 4837 device = (struct cam_ed *)arg; 4838 4839 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4840 } 4841 4842 void 4843 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4844 { 4845 GIANT_REQUIRED; 4846 4847 xpt_release_devq_device(path->device, count, run_queue); 4848 } 4849 4850 static void 4851 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4852 { 4853 int rundevq; 4854 int s0, s1; 4855 4856 rundevq = 0; 4857 s0 = splsoftcam(); 4858 s1 = splcam(); 4859 if (dev->qfrozen_cnt > 0) { 4860 4861 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4862 dev->qfrozen_cnt -= count; 4863 if (dev->qfrozen_cnt == 0) { 4864 4865 /* 4866 * No longer need to wait for a successful 4867 * command completion. 4868 */ 4869 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4870 4871 /* 4872 * Remove any timeouts that might be scheduled 4873 * to release this queue. 4874 */ 4875 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4876 untimeout(xpt_release_devq_timeout, dev, 4877 dev->c_handle); 4878 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4879 } 4880 4881 /* 4882 * Now that we are unfrozen schedule the 4883 * device so any pending transactions are 4884 * run. 4885 */ 4886 if ((dev->ccbq.queue.entries > 0) 4887 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4888 && (run_queue != 0)) { 4889 rundevq = 1; 4890 } 4891 } 4892 } 4893 splx(s1); 4894 if (rundevq != 0) 4895 xpt_run_dev_sendq(dev->target->bus); 4896 splx(s0); 4897 } 4898 4899 void 4900 xpt_release_simq(struct cam_sim *sim, int run_queue) 4901 { 4902 int s; 4903 struct camq *sendq; 4904 4905 GIANT_REQUIRED; 4906 4907 sendq = &(sim->devq->send_queue); 4908 s = splcam(); 4909 if (sendq->qfrozen_cnt > 0) { 4910 4911 sendq->qfrozen_cnt--; 4912 if (sendq->qfrozen_cnt == 0) { 4913 struct cam_eb *bus; 4914 4915 /* 4916 * If there is a timeout scheduled to release this 4917 * sim queue, remove it. The queue frozen count is 4918 * already at 0. 4919 */ 4920 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4921 untimeout(xpt_release_simq_timeout, sim, 4922 sim->c_handle); 4923 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4924 } 4925 bus = xpt_find_bus(sim->path_id); 4926 splx(s); 4927 4928 if (run_queue) { 4929 /* 4930 * Now that we are unfrozen run the send queue. 4931 */ 4932 xpt_run_dev_sendq(bus); 4933 } 4934 xpt_release_bus(bus); 4935 } else 4936 splx(s); 4937 } else 4938 splx(s); 4939 } 4940 4941 static void 4942 xpt_release_simq_timeout(void *arg) 4943 { 4944 struct cam_sim *sim; 4945 4946 sim = (struct cam_sim *)arg; 4947 xpt_release_simq(sim, /* run_queue */ TRUE); 4948 } 4949 4950 void 4951 xpt_done(union ccb *done_ccb) 4952 { 4953 int s; 4954 4955 s = splcam(); 4956 4957 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4958 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4959 /* 4960 * Queue up the request for handling by our SWI handler 4961 * any of the "non-immediate" type of ccbs. 4962 */ 4963 switch (done_ccb->ccb_h.path->periph->type) { 4964 case CAM_PERIPH_BIO: 4965 mtx_lock(&cam_bioq_lock); 4966 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4967 sim_links.tqe); 4968 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4969 mtx_unlock(&cam_bioq_lock); 4970 swi_sched(cambio_ih, 0); 4971 break; 4972 default: 4973 panic("unknown periph type %d", 4974 done_ccb->ccb_h.path->periph->type); 4975 } 4976 } 4977 splx(s); 4978 } 4979 4980 union ccb * 4981 xpt_alloc_ccb() 4982 { 4983 union ccb *new_ccb; 4984 4985 GIANT_REQUIRED; 4986 4987 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_WAITOK); 4988 return (new_ccb); 4989 } 4990 4991 union ccb * 4992 xpt_alloc_ccb_nowait() 4993 { 4994 union ccb *new_ccb; 4995 4996 GIANT_REQUIRED; 4997 4998 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_NOWAIT); 4999 return (new_ccb); 5000 } 5001 5002 void 5003 xpt_free_ccb(union ccb *free_ccb) 5004 { 5005 free(free_ccb, M_CAMXPT); 5006 } 5007 5008 5009 5010 /* Private XPT functions */ 5011 5012 /* 5013 * Get a CAM control block for the caller. Charge the structure to the device 5014 * referenced by the path. If the this device has no 'credits' then the 5015 * device already has the maximum number of outstanding operations under way 5016 * and we return NULL. If we don't have sufficient resources to allocate more 5017 * ccbs, we also return NULL. 5018 */ 5019 static union ccb * 5020 xpt_get_ccb(struct cam_ed *device) 5021 { 5022 union ccb *new_ccb; 5023 int s; 5024 5025 s = splsoftcam(); 5026 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 5027 new_ccb = xpt_alloc_ccb_nowait(); 5028 if (new_ccb == NULL) { 5029 splx(s); 5030 return (NULL); 5031 } 5032 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 5033 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 5034 xpt_links.sle); 5035 xpt_ccb_count++; 5036 } 5037 cam_ccbq_take_opening(&device->ccbq); 5038 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 5039 splx(s); 5040 return (new_ccb); 5041 } 5042 5043 static void 5044 xpt_release_bus(struct cam_eb *bus) 5045 { 5046 int s; 5047 5048 s = splcam(); 5049 if ((--bus->refcount == 0) 5050 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 5051 TAILQ_REMOVE(&xpt_busses, bus, links); 5052 bus_generation++; 5053 splx(s); 5054 free(bus, M_CAMXPT); 5055 } else 5056 splx(s); 5057 } 5058 5059 static struct cam_et * 5060 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 5061 { 5062 struct cam_et *target; 5063 5064 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 5065 if (target != NULL) { 5066 struct cam_et *cur_target; 5067 5068 TAILQ_INIT(&target->ed_entries); 5069 target->bus = bus; 5070 target->target_id = target_id; 5071 target->refcount = 1; 5072 target->generation = 0; 5073 timevalclear(&target->last_reset); 5074 /* 5075 * Hold a reference to our parent bus so it 5076 * will not go away before we do. 5077 */ 5078 bus->refcount++; 5079 5080 /* Insertion sort into our bus's target list */ 5081 cur_target = TAILQ_FIRST(&bus->et_entries); 5082 while (cur_target != NULL && cur_target->target_id < target_id) 5083 cur_target = TAILQ_NEXT(cur_target, links); 5084 5085 if (cur_target != NULL) { 5086 TAILQ_INSERT_BEFORE(cur_target, target, links); 5087 } else { 5088 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 5089 } 5090 bus->generation++; 5091 } 5092 return (target); 5093 } 5094 5095 static void 5096 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 5097 { 5098 int s; 5099 5100 s = splcam(); 5101 if ((--target->refcount == 0) 5102 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 5103 TAILQ_REMOVE(&bus->et_entries, target, links); 5104 bus->generation++; 5105 splx(s); 5106 free(target, M_CAMXPT); 5107 xpt_release_bus(bus); 5108 } else 5109 splx(s); 5110 } 5111 5112 static struct cam_ed * 5113 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 5114 { 5115 #ifdef CAM_NEW_TRAN_CODE 5116 struct cam_path path; 5117 #endif /* CAM_NEW_TRAN_CODE */ 5118 struct cam_ed *device; 5119 struct cam_devq *devq; 5120 cam_status status; 5121 5122 if (SIM_DEAD(bus->sim)) 5123 return (NULL); 5124 5125 /* Make space for us in the device queue on our bus */ 5126 devq = bus->sim->devq; 5127 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 5128 5129 if (status != CAM_REQ_CMP) { 5130 device = NULL; 5131 } else { 5132 device = (struct cam_ed *)malloc(sizeof(*device), 5133 M_CAMXPT, M_NOWAIT); 5134 } 5135 5136 if (device != NULL) { 5137 struct cam_ed *cur_device; 5138 5139 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 5140 device->alloc_ccb_entry.device = device; 5141 cam_init_pinfo(&device->send_ccb_entry.pinfo); 5142 device->send_ccb_entry.device = device; 5143 device->target = target; 5144 device->lun_id = lun_id; 5145 /* Initialize our queues */ 5146 if (camq_init(&device->drvq, 0) != 0) { 5147 free(device, M_CAMXPT); 5148 return (NULL); 5149 } 5150 if (cam_ccbq_init(&device->ccbq, 5151 bus->sim->max_dev_openings) != 0) { 5152 camq_fini(&device->drvq); 5153 free(device, M_CAMXPT); 5154 return (NULL); 5155 } 5156 SLIST_INIT(&device->asyncs); 5157 SLIST_INIT(&device->periphs); 5158 device->generation = 0; 5159 device->owner = NULL; 5160 /* 5161 * Take the default quirk entry until we have inquiry 5162 * data and can determine a better quirk to use. 5163 */ 5164 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5165 bzero(&device->inq_data, sizeof(device->inq_data)); 5166 device->inq_flags = 0; 5167 device->queue_flags = 0; 5168 device->serial_num = NULL; 5169 device->serial_num_len = 0; 5170 device->qfrozen_cnt = 0; 5171 device->flags = CAM_DEV_UNCONFIGURED; 5172 device->tag_delay_count = 0; 5173 device->tag_saved_openings = 0; 5174 device->refcount = 1; 5175 callout_handle_init(&device->c_handle); 5176 5177 /* 5178 * Hold a reference to our parent target so it 5179 * will not go away before we do. 5180 */ 5181 target->refcount++; 5182 5183 /* 5184 * XXX should be limited by number of CCBs this bus can 5185 * do. 5186 */ 5187 xpt_max_ccbs += device->ccbq.devq_openings; 5188 /* Insertion sort into our target's device list */ 5189 cur_device = TAILQ_FIRST(&target->ed_entries); 5190 while (cur_device != NULL && cur_device->lun_id < lun_id) 5191 cur_device = TAILQ_NEXT(cur_device, links); 5192 if (cur_device != NULL) { 5193 TAILQ_INSERT_BEFORE(cur_device, device, links); 5194 } else { 5195 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5196 } 5197 target->generation++; 5198 #ifdef CAM_NEW_TRAN_CODE 5199 if (lun_id != CAM_LUN_WILDCARD) { 5200 xpt_compile_path(&path, 5201 NULL, 5202 bus->path_id, 5203 target->target_id, 5204 lun_id); 5205 xpt_devise_transport(&path); 5206 xpt_release_path(&path); 5207 } 5208 #endif /* CAM_NEW_TRAN_CODE */ 5209 } 5210 return (device); 5211 } 5212 5213 static void 5214 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5215 struct cam_ed *device) 5216 { 5217 int s; 5218 5219 s = splcam(); 5220 if ((--device->refcount == 0) 5221 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5222 struct cam_devq *devq; 5223 5224 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5225 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5226 panic("Removing device while still queued for ccbs"); 5227 5228 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5229 untimeout(xpt_release_devq_timeout, device, 5230 device->c_handle); 5231 5232 TAILQ_REMOVE(&target->ed_entries, device,links); 5233 target->generation++; 5234 xpt_max_ccbs -= device->ccbq.devq_openings; 5235 if (!SIM_DEAD(bus->sim)) { 5236 /* Release our slot in the devq */ 5237 devq = bus->sim->devq; 5238 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5239 } 5240 splx(s); 5241 camq_fini(&device->drvq); 5242 camq_fini(&device->ccbq.queue); 5243 free(device, M_CAMXPT); 5244 xpt_release_target(bus, target); 5245 } else 5246 splx(s); 5247 } 5248 5249 static u_int32_t 5250 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5251 { 5252 int s; 5253 int diff; 5254 int result; 5255 struct cam_ed *dev; 5256 5257 dev = path->device; 5258 s = splsoftcam(); 5259 5260 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5261 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5262 if (result == CAM_REQ_CMP && (diff < 0)) { 5263 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5264 } 5265 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5266 || (dev->inq_flags & SID_CmdQue) != 0) 5267 dev->tag_saved_openings = newopenings; 5268 /* Adjust the global limit */ 5269 xpt_max_ccbs += diff; 5270 splx(s); 5271 return (result); 5272 } 5273 5274 static struct cam_eb * 5275 xpt_find_bus(path_id_t path_id) 5276 { 5277 struct cam_eb *bus; 5278 5279 for (bus = TAILQ_FIRST(&xpt_busses); 5280 bus != NULL; 5281 bus = TAILQ_NEXT(bus, links)) { 5282 if (bus->path_id == path_id) { 5283 bus->refcount++; 5284 break; 5285 } 5286 } 5287 return (bus); 5288 } 5289 5290 static struct cam_et * 5291 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5292 { 5293 struct cam_et *target; 5294 5295 for (target = TAILQ_FIRST(&bus->et_entries); 5296 target != NULL; 5297 target = TAILQ_NEXT(target, links)) { 5298 if (target->target_id == target_id) { 5299 target->refcount++; 5300 break; 5301 } 5302 } 5303 return (target); 5304 } 5305 5306 static struct cam_ed * 5307 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5308 { 5309 struct cam_ed *device; 5310 5311 for (device = TAILQ_FIRST(&target->ed_entries); 5312 device != NULL; 5313 device = TAILQ_NEXT(device, links)) { 5314 if (device->lun_id == lun_id) { 5315 device->refcount++; 5316 break; 5317 } 5318 } 5319 return (device); 5320 } 5321 5322 typedef struct { 5323 union ccb *request_ccb; 5324 struct ccb_pathinq *cpi; 5325 int counter; 5326 } xpt_scan_bus_info; 5327 5328 /* 5329 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5330 * As the scan progresses, xpt_scan_bus is used as the 5331 * callback on completion function. 5332 */ 5333 static void 5334 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5335 { 5336 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5337 ("xpt_scan_bus\n")); 5338 switch (request_ccb->ccb_h.func_code) { 5339 case XPT_SCAN_BUS: 5340 { 5341 xpt_scan_bus_info *scan_info; 5342 union ccb *work_ccb; 5343 struct cam_path *path; 5344 u_int i; 5345 u_int max_target; 5346 u_int initiator_id; 5347 5348 /* Find out the characteristics of the bus */ 5349 work_ccb = xpt_alloc_ccb(); 5350 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5351 request_ccb->ccb_h.pinfo.priority); 5352 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5353 xpt_action(work_ccb); 5354 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5355 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5356 xpt_free_ccb(work_ccb); 5357 xpt_done(request_ccb); 5358 return; 5359 } 5360 5361 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5362 /* 5363 * Can't scan the bus on an adapter that 5364 * cannot perform the initiator role. 5365 */ 5366 request_ccb->ccb_h.status = CAM_REQ_CMP; 5367 xpt_free_ccb(work_ccb); 5368 xpt_done(request_ccb); 5369 return; 5370 } 5371 5372 /* Save some state for use while we probe for devices */ 5373 scan_info = (xpt_scan_bus_info *) 5374 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5375 scan_info->request_ccb = request_ccb; 5376 scan_info->cpi = &work_ccb->cpi; 5377 5378 /* Cache on our stack so we can work asynchronously */ 5379 max_target = scan_info->cpi->max_target; 5380 initiator_id = scan_info->cpi->initiator_id; 5381 5382 5383 /* 5384 * We can scan all targets in parallel, or do it sequentially. 5385 */ 5386 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5387 max_target = 0; 5388 scan_info->counter = 0; 5389 } else { 5390 scan_info->counter = scan_info->cpi->max_target + 1; 5391 if (scan_info->cpi->initiator_id < scan_info->counter) { 5392 scan_info->counter--; 5393 } 5394 } 5395 5396 for (i = 0; i <= max_target; i++) { 5397 cam_status status; 5398 if (i == initiator_id) 5399 continue; 5400 5401 status = xpt_create_path(&path, xpt_periph, 5402 request_ccb->ccb_h.path_id, 5403 i, 0); 5404 if (status != CAM_REQ_CMP) { 5405 printf("xpt_scan_bus: xpt_create_path failed" 5406 " with status %#x, bus scan halted\n", 5407 status); 5408 free(scan_info, M_TEMP); 5409 request_ccb->ccb_h.status = status; 5410 xpt_free_ccb(work_ccb); 5411 xpt_done(request_ccb); 5412 break; 5413 } 5414 work_ccb = xpt_alloc_ccb(); 5415 xpt_setup_ccb(&work_ccb->ccb_h, path, 5416 request_ccb->ccb_h.pinfo.priority); 5417 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5418 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5419 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5420 work_ccb->crcn.flags = request_ccb->crcn.flags; 5421 xpt_action(work_ccb); 5422 } 5423 break; 5424 } 5425 case XPT_SCAN_LUN: 5426 { 5427 cam_status status; 5428 struct cam_path *path; 5429 xpt_scan_bus_info *scan_info; 5430 path_id_t path_id; 5431 target_id_t target_id; 5432 lun_id_t lun_id; 5433 5434 /* Reuse the same CCB to query if a device was really found */ 5435 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5436 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5437 request_ccb->ccb_h.pinfo.priority); 5438 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5439 5440 path_id = request_ccb->ccb_h.path_id; 5441 target_id = request_ccb->ccb_h.target_id; 5442 lun_id = request_ccb->ccb_h.target_lun; 5443 xpt_action(request_ccb); 5444 5445 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5446 struct cam_ed *device; 5447 struct cam_et *target; 5448 int s, phl; 5449 5450 /* 5451 * If we already probed lun 0 successfully, or 5452 * we have additional configured luns on this 5453 * target that might have "gone away", go onto 5454 * the next lun. 5455 */ 5456 target = request_ccb->ccb_h.path->target; 5457 /* 5458 * We may touch devices that we don't 5459 * hold references too, so ensure they 5460 * don't disappear out from under us. 5461 * The target above is referenced by the 5462 * path in the request ccb. 5463 */ 5464 phl = 0; 5465 s = splcam(); 5466 device = TAILQ_FIRST(&target->ed_entries); 5467 if (device != NULL) { 5468 phl = CAN_SRCH_HI_SPARSE(device); 5469 if (device->lun_id == 0) 5470 device = TAILQ_NEXT(device, links); 5471 } 5472 splx(s); 5473 if ((lun_id != 0) || (device != NULL)) { 5474 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5475 lun_id++; 5476 } 5477 } else { 5478 struct cam_ed *device; 5479 5480 device = request_ccb->ccb_h.path->device; 5481 5482 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5483 /* Try the next lun */ 5484 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5485 || CAN_SRCH_HI_DENSE(device)) 5486 lun_id++; 5487 } 5488 } 5489 5490 /* 5491 * Free the current request path- we're done with it. 5492 */ 5493 xpt_free_path(request_ccb->ccb_h.path); 5494 5495 /* 5496 * Check to see if we scan any further luns. 5497 */ 5498 if (lun_id == request_ccb->ccb_h.target_lun 5499 || lun_id > scan_info->cpi->max_lun) { 5500 int done; 5501 5502 hop_again: 5503 done = 0; 5504 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5505 scan_info->counter++; 5506 if (scan_info->counter == 5507 scan_info->cpi->initiator_id) { 5508 scan_info->counter++; 5509 } 5510 if (scan_info->counter >= 5511 scan_info->cpi->max_target+1) { 5512 done = 1; 5513 } 5514 } else { 5515 scan_info->counter--; 5516 if (scan_info->counter == 0) { 5517 done = 1; 5518 } 5519 } 5520 if (done) { 5521 xpt_free_ccb(request_ccb); 5522 xpt_free_ccb((union ccb *)scan_info->cpi); 5523 request_ccb = scan_info->request_ccb; 5524 free(scan_info, M_TEMP); 5525 request_ccb->ccb_h.status = CAM_REQ_CMP; 5526 xpt_done(request_ccb); 5527 break; 5528 } 5529 5530 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) { 5531 break; 5532 } 5533 status = xpt_create_path(&path, xpt_periph, 5534 scan_info->request_ccb->ccb_h.path_id, 5535 scan_info->counter, 0); 5536 if (status != CAM_REQ_CMP) { 5537 printf("xpt_scan_bus: xpt_create_path failed" 5538 " with status %#x, bus scan halted\n", 5539 status); 5540 xpt_free_ccb(request_ccb); 5541 xpt_free_ccb((union ccb *)scan_info->cpi); 5542 request_ccb = scan_info->request_ccb; 5543 free(scan_info, M_TEMP); 5544 request_ccb->ccb_h.status = status; 5545 xpt_done(request_ccb); 5546 break; 5547 } 5548 xpt_setup_ccb(&request_ccb->ccb_h, path, 5549 request_ccb->ccb_h.pinfo.priority); 5550 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5551 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5552 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5553 request_ccb->crcn.flags = 5554 scan_info->request_ccb->crcn.flags; 5555 } else { 5556 status = xpt_create_path(&path, xpt_periph, 5557 path_id, target_id, lun_id); 5558 if (status != CAM_REQ_CMP) { 5559 printf("xpt_scan_bus: xpt_create_path failed " 5560 "with status %#x, halting LUN scan\n", 5561 status); 5562 goto hop_again; 5563 } 5564 xpt_setup_ccb(&request_ccb->ccb_h, path, 5565 request_ccb->ccb_h.pinfo.priority); 5566 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5567 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5568 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5569 request_ccb->crcn.flags = 5570 scan_info->request_ccb->crcn.flags; 5571 } 5572 xpt_action(request_ccb); 5573 break; 5574 } 5575 default: 5576 break; 5577 } 5578 } 5579 5580 typedef enum { 5581 PROBE_TUR, 5582 PROBE_INQUIRY, 5583 PROBE_FULL_INQUIRY, 5584 PROBE_MODE_SENSE, 5585 PROBE_SERIAL_NUM, 5586 PROBE_TUR_FOR_NEGOTIATION 5587 } probe_action; 5588 5589 typedef enum { 5590 PROBE_INQUIRY_CKSUM = 0x01, 5591 PROBE_SERIAL_CKSUM = 0x02, 5592 PROBE_NO_ANNOUNCE = 0x04 5593 } probe_flags; 5594 5595 typedef struct { 5596 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5597 probe_action action; 5598 union ccb saved_ccb; 5599 probe_flags flags; 5600 MD5_CTX context; 5601 u_int8_t digest[16]; 5602 } probe_softc; 5603 5604 static void 5605 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5606 cam_flags flags, union ccb *request_ccb) 5607 { 5608 struct ccb_pathinq cpi; 5609 cam_status status; 5610 struct cam_path *new_path; 5611 struct cam_periph *old_periph; 5612 int s; 5613 5614 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5615 ("xpt_scan_lun\n")); 5616 5617 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5618 cpi.ccb_h.func_code = XPT_PATH_INQ; 5619 xpt_action((union ccb *)&cpi); 5620 5621 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5622 if (request_ccb != NULL) { 5623 request_ccb->ccb_h.status = cpi.ccb_h.status; 5624 xpt_done(request_ccb); 5625 } 5626 return; 5627 } 5628 5629 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5630 /* 5631 * Can't scan the bus on an adapter that 5632 * cannot perform the initiator role. 5633 */ 5634 if (request_ccb != NULL) { 5635 request_ccb->ccb_h.status = CAM_REQ_CMP; 5636 xpt_done(request_ccb); 5637 } 5638 return; 5639 } 5640 5641 if (request_ccb == NULL) { 5642 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5643 if (request_ccb == NULL) { 5644 xpt_print_path(path); 5645 printf("xpt_scan_lun: can't allocate CCB, can't " 5646 "continue\n"); 5647 return; 5648 } 5649 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5650 if (new_path == NULL) { 5651 xpt_print_path(path); 5652 printf("xpt_scan_lun: can't allocate path, can't " 5653 "continue\n"); 5654 free(request_ccb, M_TEMP); 5655 return; 5656 } 5657 status = xpt_compile_path(new_path, xpt_periph, 5658 path->bus->path_id, 5659 path->target->target_id, 5660 path->device->lun_id); 5661 5662 if (status != CAM_REQ_CMP) { 5663 xpt_print_path(path); 5664 printf("xpt_scan_lun: can't compile path, can't " 5665 "continue\n"); 5666 free(request_ccb, M_TEMP); 5667 free(new_path, M_TEMP); 5668 return; 5669 } 5670 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5671 request_ccb->ccb_h.cbfcnp = xptscandone; 5672 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5673 request_ccb->crcn.flags = flags; 5674 } 5675 5676 s = splsoftcam(); 5677 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5678 probe_softc *softc; 5679 5680 softc = (probe_softc *)old_periph->softc; 5681 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5682 periph_links.tqe); 5683 } else { 5684 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5685 probestart, "probe", 5686 CAM_PERIPH_BIO, 5687 request_ccb->ccb_h.path, NULL, 0, 5688 request_ccb); 5689 5690 if (status != CAM_REQ_CMP) { 5691 xpt_print_path(path); 5692 printf("xpt_scan_lun: cam_alloc_periph returned an " 5693 "error, can't continue probe\n"); 5694 request_ccb->ccb_h.status = status; 5695 xpt_done(request_ccb); 5696 } 5697 } 5698 splx(s); 5699 } 5700 5701 static void 5702 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5703 { 5704 xpt_release_path(done_ccb->ccb_h.path); 5705 free(done_ccb->ccb_h.path, M_TEMP); 5706 free(done_ccb, M_TEMP); 5707 } 5708 5709 static cam_status 5710 proberegister(struct cam_periph *periph, void *arg) 5711 { 5712 union ccb *request_ccb; /* CCB representing the probe request */ 5713 probe_softc *softc; 5714 5715 request_ccb = (union ccb *)arg; 5716 if (periph == NULL) { 5717 printf("proberegister: periph was NULL!!\n"); 5718 return(CAM_REQ_CMP_ERR); 5719 } 5720 5721 if (request_ccb == NULL) { 5722 printf("proberegister: no probe CCB, " 5723 "can't register device\n"); 5724 return(CAM_REQ_CMP_ERR); 5725 } 5726 5727 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5728 5729 if (softc == NULL) { 5730 printf("proberegister: Unable to probe new device. " 5731 "Unable to allocate softc\n"); 5732 return(CAM_REQ_CMP_ERR); 5733 } 5734 TAILQ_INIT(&softc->request_ccbs); 5735 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5736 periph_links.tqe); 5737 softc->flags = 0; 5738 periph->softc = softc; 5739 cam_periph_acquire(periph); 5740 /* 5741 * Ensure we've waited at least a bus settle 5742 * delay before attempting to probe the device. 5743 * For HBAs that don't do bus resets, this won't make a difference. 5744 */ 5745 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5746 scsi_delay); 5747 probeschedule(periph); 5748 return(CAM_REQ_CMP); 5749 } 5750 5751 static void 5752 probeschedule(struct cam_periph *periph) 5753 { 5754 struct ccb_pathinq cpi; 5755 union ccb *ccb; 5756 probe_softc *softc; 5757 5758 softc = (probe_softc *)periph->softc; 5759 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5760 5761 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5762 cpi.ccb_h.func_code = XPT_PATH_INQ; 5763 xpt_action((union ccb *)&cpi); 5764 5765 /* 5766 * If a device has gone away and another device, or the same one, 5767 * is back in the same place, it should have a unit attention 5768 * condition pending. It will not report the unit attention in 5769 * response to an inquiry, which may leave invalid transfer 5770 * negotiations in effect. The TUR will reveal the unit attention 5771 * condition. Only send the TUR for lun 0, since some devices 5772 * will get confused by commands other than inquiry to non-existent 5773 * luns. If you think a device has gone away start your scan from 5774 * lun 0. This will insure that any bogus transfer settings are 5775 * invalidated. 5776 * 5777 * If we haven't seen the device before and the controller supports 5778 * some kind of transfer negotiation, negotiate with the first 5779 * sent command if no bus reset was performed at startup. This 5780 * ensures that the device is not confused by transfer negotiation 5781 * settings left over by loader or BIOS action. 5782 */ 5783 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5784 && (ccb->ccb_h.target_lun == 0)) { 5785 softc->action = PROBE_TUR; 5786 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5787 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5788 proberequestdefaultnegotiation(periph); 5789 softc->action = PROBE_INQUIRY; 5790 } else { 5791 softc->action = PROBE_INQUIRY; 5792 } 5793 5794 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5795 softc->flags |= PROBE_NO_ANNOUNCE; 5796 else 5797 softc->flags &= ~PROBE_NO_ANNOUNCE; 5798 5799 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5800 } 5801 5802 static void 5803 probestart(struct cam_periph *periph, union ccb *start_ccb) 5804 { 5805 /* Probe the device that our peripheral driver points to */ 5806 struct ccb_scsiio *csio; 5807 probe_softc *softc; 5808 5809 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5810 5811 softc = (probe_softc *)periph->softc; 5812 csio = &start_ccb->csio; 5813 5814 switch (softc->action) { 5815 case PROBE_TUR: 5816 case PROBE_TUR_FOR_NEGOTIATION: 5817 { 5818 scsi_test_unit_ready(csio, 5819 /*retries*/4, 5820 probedone, 5821 MSG_SIMPLE_Q_TAG, 5822 SSD_FULL_SIZE, 5823 /*timeout*/60000); 5824 break; 5825 } 5826 case PROBE_INQUIRY: 5827 case PROBE_FULL_INQUIRY: 5828 { 5829 u_int inquiry_len; 5830 struct scsi_inquiry_data *inq_buf; 5831 5832 inq_buf = &periph->path->device->inq_data; 5833 /* 5834 * If the device is currently configured, we calculate an 5835 * MD5 checksum of the inquiry data, and if the serial number 5836 * length is greater than 0, add the serial number data 5837 * into the checksum as well. Once the inquiry and the 5838 * serial number check finish, we attempt to figure out 5839 * whether we still have the same device. 5840 */ 5841 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5842 5843 MD5Init(&softc->context); 5844 MD5Update(&softc->context, (unsigned char *)inq_buf, 5845 sizeof(struct scsi_inquiry_data)); 5846 softc->flags |= PROBE_INQUIRY_CKSUM; 5847 if (periph->path->device->serial_num_len > 0) { 5848 MD5Update(&softc->context, 5849 periph->path->device->serial_num, 5850 periph->path->device->serial_num_len); 5851 softc->flags |= PROBE_SERIAL_CKSUM; 5852 } 5853 MD5Final(softc->digest, &softc->context); 5854 } 5855 5856 if (softc->action == PROBE_INQUIRY) 5857 inquiry_len = SHORT_INQUIRY_LENGTH; 5858 else 5859 inquiry_len = inq_buf->additional_length 5860 + offsetof(struct scsi_inquiry_data, 5861 additional_length) + 1; 5862 5863 /* 5864 * Some parallel SCSI devices fail to send an 5865 * ignore wide residue message when dealing with 5866 * odd length inquiry requests. Round up to be 5867 * safe. 5868 */ 5869 inquiry_len = roundup2(inquiry_len, 2); 5870 5871 scsi_inquiry(csio, 5872 /*retries*/4, 5873 probedone, 5874 MSG_SIMPLE_Q_TAG, 5875 (u_int8_t *)inq_buf, 5876 inquiry_len, 5877 /*evpd*/FALSE, 5878 /*page_code*/0, 5879 SSD_MIN_SIZE, 5880 /*timeout*/60 * 1000); 5881 break; 5882 } 5883 case PROBE_MODE_SENSE: 5884 { 5885 void *mode_buf; 5886 int mode_buf_len; 5887 5888 mode_buf_len = sizeof(struct scsi_mode_header_6) 5889 + sizeof(struct scsi_mode_blk_desc) 5890 + sizeof(struct scsi_control_page); 5891 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5892 if (mode_buf != NULL) { 5893 scsi_mode_sense(csio, 5894 /*retries*/4, 5895 probedone, 5896 MSG_SIMPLE_Q_TAG, 5897 /*dbd*/FALSE, 5898 SMS_PAGE_CTRL_CURRENT, 5899 SMS_CONTROL_MODE_PAGE, 5900 mode_buf, 5901 mode_buf_len, 5902 SSD_FULL_SIZE, 5903 /*timeout*/60000); 5904 break; 5905 } 5906 xpt_print_path(periph->path); 5907 printf("Unable to mode sense control page - malloc failure\n"); 5908 softc->action = PROBE_SERIAL_NUM; 5909 } 5910 /* FALLTHROUGH */ 5911 case PROBE_SERIAL_NUM: 5912 { 5913 struct scsi_vpd_unit_serial_number *serial_buf; 5914 struct cam_ed* device; 5915 5916 serial_buf = NULL; 5917 device = periph->path->device; 5918 device->serial_num = NULL; 5919 device->serial_num_len = 0; 5920 5921 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5922 serial_buf = (struct scsi_vpd_unit_serial_number *) 5923 malloc(sizeof(*serial_buf), M_TEMP, 5924 M_NOWAIT | M_ZERO); 5925 5926 if (serial_buf != NULL) { 5927 scsi_inquiry(csio, 5928 /*retries*/4, 5929 probedone, 5930 MSG_SIMPLE_Q_TAG, 5931 (u_int8_t *)serial_buf, 5932 sizeof(*serial_buf), 5933 /*evpd*/TRUE, 5934 SVPD_UNIT_SERIAL_NUMBER, 5935 SSD_MIN_SIZE, 5936 /*timeout*/60 * 1000); 5937 break; 5938 } 5939 /* 5940 * We'll have to do without, let our probedone 5941 * routine finish up for us. 5942 */ 5943 start_ccb->csio.data_ptr = NULL; 5944 probedone(periph, start_ccb); 5945 return; 5946 } 5947 } 5948 xpt_action(start_ccb); 5949 } 5950 5951 static void 5952 proberequestdefaultnegotiation(struct cam_periph *periph) 5953 { 5954 struct ccb_trans_settings cts; 5955 5956 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5957 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5958 #ifdef CAM_NEW_TRAN_CODE 5959 cts.type = CTS_TYPE_USER_SETTINGS; 5960 #else /* CAM_NEW_TRAN_CODE */ 5961 cts.flags = CCB_TRANS_USER_SETTINGS; 5962 #endif /* CAM_NEW_TRAN_CODE */ 5963 xpt_action((union ccb *)&cts); 5964 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5965 #ifdef CAM_NEW_TRAN_CODE 5966 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5967 #else /* CAM_NEW_TRAN_CODE */ 5968 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5969 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5970 #endif /* CAM_NEW_TRAN_CODE */ 5971 xpt_action((union ccb *)&cts); 5972 } 5973 5974 static void 5975 probedone(struct cam_periph *periph, union ccb *done_ccb) 5976 { 5977 probe_softc *softc; 5978 struct cam_path *path; 5979 u_int32_t priority; 5980 5981 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5982 5983 softc = (probe_softc *)periph->softc; 5984 path = done_ccb->ccb_h.path; 5985 priority = done_ccb->ccb_h.pinfo.priority; 5986 5987 switch (softc->action) { 5988 case PROBE_TUR: 5989 { 5990 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5991 5992 if (cam_periph_error(done_ccb, 0, 5993 SF_NO_PRINT, NULL) == ERESTART) 5994 return; 5995 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5996 /* Don't wedge the queue */ 5997 xpt_release_devq(done_ccb->ccb_h.path, 5998 /*count*/1, 5999 /*run_queue*/TRUE); 6000 } 6001 softc->action = PROBE_INQUIRY; 6002 xpt_release_ccb(done_ccb); 6003 xpt_schedule(periph, priority); 6004 return; 6005 } 6006 case PROBE_INQUIRY: 6007 case PROBE_FULL_INQUIRY: 6008 { 6009 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6010 struct scsi_inquiry_data *inq_buf; 6011 u_int8_t periph_qual; 6012 6013 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 6014 inq_buf = &path->device->inq_data; 6015 6016 periph_qual = SID_QUAL(inq_buf); 6017 6018 switch(periph_qual) { 6019 case SID_QUAL_LU_CONNECTED: 6020 { 6021 u_int8_t len; 6022 6023 /* 6024 * We conservatively request only 6025 * SHORT_INQUIRY_LEN bytes of inquiry 6026 * information during our first try 6027 * at sending an INQUIRY. If the device 6028 * has more information to give, 6029 * perform a second request specifying 6030 * the amount of information the device 6031 * is willing to give. 6032 */ 6033 len = inq_buf->additional_length 6034 + offsetof(struct scsi_inquiry_data, 6035 additional_length) + 1; 6036 if (softc->action == PROBE_INQUIRY 6037 && len > SHORT_INQUIRY_LENGTH) { 6038 softc->action = PROBE_FULL_INQUIRY; 6039 xpt_release_ccb(done_ccb); 6040 xpt_schedule(periph, priority); 6041 return; 6042 } 6043 6044 xpt_find_quirk(path->device); 6045 6046 #ifdef CAM_NEW_TRAN_CODE 6047 xpt_devise_transport(path); 6048 #endif /* CAM_NEW_TRAN_CODE */ 6049 if (INQ_DATA_TQ_ENABLED(inq_buf)) 6050 softc->action = PROBE_MODE_SENSE; 6051 else 6052 softc->action = PROBE_SERIAL_NUM; 6053 6054 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6055 6056 xpt_release_ccb(done_ccb); 6057 xpt_schedule(periph, priority); 6058 return; 6059 } 6060 default: 6061 break; 6062 } 6063 } else if (cam_periph_error(done_ccb, 0, 6064 done_ccb->ccb_h.target_lun > 0 6065 ? SF_RETRY_UA|SF_QUIET_IR 6066 : SF_RETRY_UA, 6067 &softc->saved_ccb) == ERESTART) { 6068 return; 6069 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6070 /* Don't wedge the queue */ 6071 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6072 /*run_queue*/TRUE); 6073 } 6074 /* 6075 * If we get to this point, we got an error status back 6076 * from the inquiry and the error status doesn't require 6077 * automatically retrying the command. Therefore, the 6078 * inquiry failed. If we had inquiry information before 6079 * for this device, but this latest inquiry command failed, 6080 * the device has probably gone away. If this device isn't 6081 * already marked unconfigured, notify the peripheral 6082 * drivers that this device is no more. 6083 */ 6084 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 6085 /* Send the async notification. */ 6086 xpt_async(AC_LOST_DEVICE, path, NULL); 6087 6088 xpt_release_ccb(done_ccb); 6089 break; 6090 } 6091 case PROBE_MODE_SENSE: 6092 { 6093 struct ccb_scsiio *csio; 6094 struct scsi_mode_header_6 *mode_hdr; 6095 6096 csio = &done_ccb->csio; 6097 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 6098 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6099 struct scsi_control_page *page; 6100 u_int8_t *offset; 6101 6102 offset = ((u_int8_t *)&mode_hdr[1]) 6103 + mode_hdr->blk_desc_len; 6104 page = (struct scsi_control_page *)offset; 6105 path->device->queue_flags = page->queue_flags; 6106 } else if (cam_periph_error(done_ccb, 0, 6107 SF_RETRY_UA|SF_NO_PRINT, 6108 &softc->saved_ccb) == ERESTART) { 6109 return; 6110 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6111 /* Don't wedge the queue */ 6112 xpt_release_devq(done_ccb->ccb_h.path, 6113 /*count*/1, /*run_queue*/TRUE); 6114 } 6115 xpt_release_ccb(done_ccb); 6116 free(mode_hdr, M_TEMP); 6117 softc->action = PROBE_SERIAL_NUM; 6118 xpt_schedule(periph, priority); 6119 return; 6120 } 6121 case PROBE_SERIAL_NUM: 6122 { 6123 struct ccb_scsiio *csio; 6124 struct scsi_vpd_unit_serial_number *serial_buf; 6125 u_int32_t priority; 6126 int changed; 6127 int have_serialnum; 6128 6129 changed = 1; 6130 have_serialnum = 0; 6131 csio = &done_ccb->csio; 6132 priority = done_ccb->ccb_h.pinfo.priority; 6133 serial_buf = 6134 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 6135 6136 /* Clean up from previous instance of this device */ 6137 if (path->device->serial_num != NULL) { 6138 free(path->device->serial_num, M_CAMXPT); 6139 path->device->serial_num = NULL; 6140 path->device->serial_num_len = 0; 6141 } 6142 6143 if (serial_buf == NULL) { 6144 /* 6145 * Don't process the command as it was never sent 6146 */ 6147 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6148 && (serial_buf->length > 0)) { 6149 6150 have_serialnum = 1; 6151 path->device->serial_num = 6152 (u_int8_t *)malloc((serial_buf->length + 1), 6153 M_CAMXPT, M_NOWAIT); 6154 if (path->device->serial_num != NULL) { 6155 bcopy(serial_buf->serial_num, 6156 path->device->serial_num, 6157 serial_buf->length); 6158 path->device->serial_num_len = 6159 serial_buf->length; 6160 path->device->serial_num[serial_buf->length] 6161 = '\0'; 6162 } 6163 } else if (cam_periph_error(done_ccb, 0, 6164 SF_RETRY_UA|SF_NO_PRINT, 6165 &softc->saved_ccb) == ERESTART) { 6166 return; 6167 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6168 /* Don't wedge the queue */ 6169 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6170 /*run_queue*/TRUE); 6171 } 6172 6173 /* 6174 * Let's see if we have seen this device before. 6175 */ 6176 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6177 MD5_CTX context; 6178 u_int8_t digest[16]; 6179 6180 MD5Init(&context); 6181 6182 MD5Update(&context, 6183 (unsigned char *)&path->device->inq_data, 6184 sizeof(struct scsi_inquiry_data)); 6185 6186 if (have_serialnum) 6187 MD5Update(&context, serial_buf->serial_num, 6188 serial_buf->length); 6189 6190 MD5Final(digest, &context); 6191 if (bcmp(softc->digest, digest, 16) == 0) 6192 changed = 0; 6193 6194 /* 6195 * XXX Do we need to do a TUR in order to ensure 6196 * that the device really hasn't changed??? 6197 */ 6198 if ((changed != 0) 6199 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6200 xpt_async(AC_LOST_DEVICE, path, NULL); 6201 } 6202 if (serial_buf != NULL) 6203 free(serial_buf, M_TEMP); 6204 6205 if (changed != 0) { 6206 /* 6207 * Now that we have all the necessary 6208 * information to safely perform transfer 6209 * negotiations... Controllers don't perform 6210 * any negotiation or tagged queuing until 6211 * after the first XPT_SET_TRAN_SETTINGS ccb is 6212 * received. So, on a new device, just retreive 6213 * the user settings, and set them as the current 6214 * settings to set the device up. 6215 */ 6216 proberequestdefaultnegotiation(periph); 6217 xpt_release_ccb(done_ccb); 6218 6219 /* 6220 * Perform a TUR to allow the controller to 6221 * perform any necessary transfer negotiation. 6222 */ 6223 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6224 xpt_schedule(periph, priority); 6225 return; 6226 } 6227 xpt_release_ccb(done_ccb); 6228 break; 6229 } 6230 case PROBE_TUR_FOR_NEGOTIATION: 6231 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6232 /* Don't wedge the queue */ 6233 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6234 /*run_queue*/TRUE); 6235 } 6236 6237 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6238 6239 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6240 /* Inform the XPT that a new device has been found */ 6241 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6242 xpt_action(done_ccb); 6243 6244 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6245 done_ccb); 6246 } 6247 xpt_release_ccb(done_ccb); 6248 break; 6249 } 6250 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6251 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6252 done_ccb->ccb_h.status = CAM_REQ_CMP; 6253 xpt_done(done_ccb); 6254 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6255 cam_periph_invalidate(periph); 6256 cam_periph_release(periph); 6257 } else { 6258 probeschedule(periph); 6259 } 6260 } 6261 6262 static void 6263 probecleanup(struct cam_periph *periph) 6264 { 6265 free(periph->softc, M_TEMP); 6266 } 6267 6268 static void 6269 xpt_find_quirk(struct cam_ed *device) 6270 { 6271 caddr_t match; 6272 6273 match = cam_quirkmatch((caddr_t)&device->inq_data, 6274 (caddr_t)xpt_quirk_table, 6275 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6276 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6277 6278 if (match == NULL) 6279 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6280 6281 device->quirk = (struct xpt_quirk_entry *)match; 6282 } 6283 6284 static int 6285 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6286 { 6287 int error, bool; 6288 6289 bool = cam_srch_hi; 6290 error = sysctl_handle_int(oidp, &bool, sizeof(bool), req); 6291 if (error != 0 || req->newptr == NULL) 6292 return (error); 6293 if (bool == 0 || bool == 1) { 6294 cam_srch_hi = bool; 6295 return (0); 6296 } else { 6297 return (EINVAL); 6298 } 6299 } 6300 6301 #ifdef CAM_NEW_TRAN_CODE 6302 6303 static void 6304 xpt_devise_transport(struct cam_path *path) 6305 { 6306 struct ccb_pathinq cpi; 6307 struct ccb_trans_settings cts; 6308 struct scsi_inquiry_data *inq_buf; 6309 6310 /* Get transport information from the SIM */ 6311 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6312 cpi.ccb_h.func_code = XPT_PATH_INQ; 6313 xpt_action((union ccb *)&cpi); 6314 6315 inq_buf = NULL; 6316 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6317 inq_buf = &path->device->inq_data; 6318 path->device->protocol = PROTO_SCSI; 6319 path->device->protocol_version = 6320 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6321 path->device->transport = cpi.transport; 6322 path->device->transport_version = cpi.transport_version; 6323 6324 /* 6325 * Any device not using SPI3 features should 6326 * be considered SPI2 or lower. 6327 */ 6328 if (inq_buf != NULL) { 6329 if (path->device->transport == XPORT_SPI 6330 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6331 && path->device->transport_version > 2) 6332 path->device->transport_version = 2; 6333 } else { 6334 struct cam_ed* otherdev; 6335 6336 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6337 otherdev != NULL; 6338 otherdev = TAILQ_NEXT(otherdev, links)) { 6339 if (otherdev != path->device) 6340 break; 6341 } 6342 6343 if (otherdev != NULL) { 6344 /* 6345 * Initially assume the same versioning as 6346 * prior luns for this target. 6347 */ 6348 path->device->protocol_version = 6349 otherdev->protocol_version; 6350 path->device->transport_version = 6351 otherdev->transport_version; 6352 } else { 6353 /* Until we know better, opt for safty */ 6354 path->device->protocol_version = 2; 6355 if (path->device->transport == XPORT_SPI) 6356 path->device->transport_version = 2; 6357 else 6358 path->device->transport_version = 0; 6359 } 6360 } 6361 6362 /* 6363 * XXX 6364 * For a device compliant with SPC-2 we should be able 6365 * to determine the transport version supported by 6366 * scrutinizing the version descriptors in the 6367 * inquiry buffer. 6368 */ 6369 6370 /* Tell the controller what we think */ 6371 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6372 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6373 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6374 cts.transport = path->device->transport; 6375 cts.transport_version = path->device->transport_version; 6376 cts.protocol = path->device->protocol; 6377 cts.protocol_version = path->device->protocol_version; 6378 cts.proto_specific.valid = 0; 6379 cts.xport_specific.valid = 0; 6380 xpt_action((union ccb *)&cts); 6381 } 6382 6383 static void 6384 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6385 int async_update) 6386 { 6387 struct ccb_pathinq cpi; 6388 struct ccb_trans_settings cur_cts; 6389 struct ccb_trans_settings_scsi *scsi; 6390 struct ccb_trans_settings_scsi *cur_scsi; 6391 struct cam_sim *sim; 6392 struct scsi_inquiry_data *inq_data; 6393 6394 if (device == NULL) { 6395 cts->ccb_h.status = CAM_PATH_INVALID; 6396 xpt_done((union ccb *)cts); 6397 return; 6398 } 6399 6400 if (cts->protocol == PROTO_UNKNOWN 6401 || cts->protocol == PROTO_UNSPECIFIED) { 6402 cts->protocol = device->protocol; 6403 cts->protocol_version = device->protocol_version; 6404 } 6405 6406 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6407 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6408 cts->protocol_version = device->protocol_version; 6409 6410 if (cts->protocol != device->protocol) { 6411 xpt_print_path(cts->ccb_h.path); 6412 printf("Uninitialized Protocol %x:%x?\n", 6413 cts->protocol, device->protocol); 6414 cts->protocol = device->protocol; 6415 } 6416 6417 if (cts->protocol_version > device->protocol_version) { 6418 if (bootverbose) { 6419 xpt_print_path(cts->ccb_h.path); 6420 printf("Down reving Protocol Version from %d to %d?\n", 6421 cts->protocol_version, device->protocol_version); 6422 } 6423 cts->protocol_version = device->protocol_version; 6424 } 6425 6426 if (cts->transport == XPORT_UNKNOWN 6427 || cts->transport == XPORT_UNSPECIFIED) { 6428 cts->transport = device->transport; 6429 cts->transport_version = device->transport_version; 6430 } 6431 6432 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6433 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6434 cts->transport_version = device->transport_version; 6435 6436 if (cts->transport != device->transport) { 6437 xpt_print_path(cts->ccb_h.path); 6438 printf("Uninitialized Transport %x:%x?\n", 6439 cts->transport, device->transport); 6440 cts->transport = device->transport; 6441 } 6442 6443 if (cts->transport_version > device->transport_version) { 6444 if (bootverbose) { 6445 xpt_print_path(cts->ccb_h.path); 6446 printf("Down reving Transport Version from %d to %d?\n", 6447 cts->transport_version, 6448 device->transport_version); 6449 } 6450 cts->transport_version = device->transport_version; 6451 } 6452 6453 sim = cts->ccb_h.path->bus->sim; 6454 6455 /* 6456 * Nothing more of interest to do unless 6457 * this is a device connected via the 6458 * SCSI protocol. 6459 */ 6460 if (cts->protocol != PROTO_SCSI) { 6461 if (async_update == FALSE) 6462 (*(sim->sim_action))(sim, (union ccb *)cts); 6463 return; 6464 } 6465 6466 inq_data = &device->inq_data; 6467 scsi = &cts->proto_specific.scsi; 6468 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6469 cpi.ccb_h.func_code = XPT_PATH_INQ; 6470 xpt_action((union ccb *)&cpi); 6471 6472 /* SCSI specific sanity checking */ 6473 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6474 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 6475 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6476 || (device->quirk->mintags == 0)) { 6477 /* 6478 * Can't tag on hardware that doesn't support tags, 6479 * doesn't have it enabled, or has broken tag support. 6480 */ 6481 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6482 } 6483 6484 if (async_update == FALSE) { 6485 /* 6486 * Perform sanity checking against what the 6487 * controller and device can do. 6488 */ 6489 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6490 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6491 cur_cts.type = cts->type; 6492 xpt_action((union ccb *)&cur_cts); 6493 6494 cur_scsi = &cur_cts.proto_specific.scsi; 6495 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6496 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6497 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6498 } 6499 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6500 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6501 } 6502 6503 /* SPI specific sanity checking */ 6504 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6505 u_int spi3caps; 6506 struct ccb_trans_settings_spi *spi; 6507 struct ccb_trans_settings_spi *cur_spi; 6508 6509 spi = &cts->xport_specific.spi; 6510 6511 cur_spi = &cur_cts.xport_specific.spi; 6512 6513 /* Fill in any gaps in what the user gave us */ 6514 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6515 spi->sync_period = cur_spi->sync_period; 6516 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6517 spi->sync_period = 0; 6518 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6519 spi->sync_offset = cur_spi->sync_offset; 6520 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6521 spi->sync_offset = 0; 6522 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6523 spi->ppr_options = cur_spi->ppr_options; 6524 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6525 spi->ppr_options = 0; 6526 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6527 spi->bus_width = cur_spi->bus_width; 6528 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6529 spi->bus_width = 0; 6530 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6531 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6532 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6533 } 6534 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6535 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6536 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6537 && (inq_data->flags & SID_Sync) == 0 6538 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6539 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6540 || (cur_spi->sync_offset == 0) 6541 || (cur_spi->sync_period == 0)) { 6542 /* Force async */ 6543 spi->sync_period = 0; 6544 spi->sync_offset = 0; 6545 } 6546 6547 switch (spi->bus_width) { 6548 case MSG_EXT_WDTR_BUS_32_BIT: 6549 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6550 || (inq_data->flags & SID_WBus32) != 0 6551 || cts->type == CTS_TYPE_USER_SETTINGS) 6552 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6553 break; 6554 /* Fall Through to 16-bit */ 6555 case MSG_EXT_WDTR_BUS_16_BIT: 6556 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6557 || (inq_data->flags & SID_WBus16) != 0 6558 || cts->type == CTS_TYPE_USER_SETTINGS) 6559 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6560 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6561 break; 6562 } 6563 /* Fall Through to 8-bit */ 6564 default: /* New bus width?? */ 6565 case MSG_EXT_WDTR_BUS_8_BIT: 6566 /* All targets can do this */ 6567 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6568 break; 6569 } 6570 6571 spi3caps = cpi.xport_specific.spi.ppr_options; 6572 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6573 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6574 spi3caps &= inq_data->spi3data; 6575 6576 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6577 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6578 6579 if ((spi3caps & SID_SPI_IUS) == 0) 6580 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6581 6582 if ((spi3caps & SID_SPI_QAS) == 0) 6583 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6584 6585 /* No SPI Transfer settings are allowed unless we are wide */ 6586 if (spi->bus_width == 0) 6587 spi->ppr_options = 0; 6588 6589 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6590 /* 6591 * Can't tag queue without disconnection. 6592 */ 6593 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6594 scsi->valid |= CTS_SCSI_VALID_TQ; 6595 } 6596 6597 /* 6598 * If we are currently performing tagged transactions to 6599 * this device and want to change its negotiation parameters, 6600 * go non-tagged for a bit to give the controller a chance to 6601 * negotiate unhampered by tag messages. 6602 */ 6603 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6604 && (device->inq_flags & SID_CmdQue) != 0 6605 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6606 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6607 CTS_SPI_VALID_SYNC_OFFSET| 6608 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6609 xpt_toggle_tags(cts->ccb_h.path); 6610 } 6611 6612 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6613 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6614 int device_tagenb; 6615 6616 /* 6617 * If we are transitioning from tags to no-tags or 6618 * vice-versa, we need to carefully freeze and restart 6619 * the queue so that we don't overlap tagged and non-tagged 6620 * commands. We also temporarily stop tags if there is 6621 * a change in transfer negotiation settings to allow 6622 * "tag-less" negotiation. 6623 */ 6624 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6625 || (device->inq_flags & SID_CmdQue) != 0) 6626 device_tagenb = TRUE; 6627 else 6628 device_tagenb = FALSE; 6629 6630 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6631 && device_tagenb == FALSE) 6632 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6633 && device_tagenb == TRUE)) { 6634 6635 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6636 /* 6637 * Delay change to use tags until after a 6638 * few commands have gone to this device so 6639 * the controller has time to perform transfer 6640 * negotiations without tagged messages getting 6641 * in the way. 6642 */ 6643 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6644 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6645 } else { 6646 struct ccb_relsim crs; 6647 6648 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6649 device->inq_flags &= ~SID_CmdQue; 6650 xpt_dev_ccbq_resize(cts->ccb_h.path, 6651 sim->max_dev_openings); 6652 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6653 device->tag_delay_count = 0; 6654 6655 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6656 /*priority*/1); 6657 crs.ccb_h.func_code = XPT_REL_SIMQ; 6658 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6659 crs.openings 6660 = crs.release_timeout 6661 = crs.qfrozen_cnt 6662 = 0; 6663 xpt_action((union ccb *)&crs); 6664 } 6665 } 6666 } 6667 if (async_update == FALSE) 6668 (*(sim->sim_action))(sim, (union ccb *)cts); 6669 } 6670 6671 #else /* CAM_NEW_TRAN_CODE */ 6672 6673 static void 6674 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6675 int async_update) 6676 { 6677 struct cam_sim *sim; 6678 int qfrozen; 6679 6680 sim = cts->ccb_h.path->bus->sim; 6681 if (async_update == FALSE) { 6682 struct scsi_inquiry_data *inq_data; 6683 struct ccb_pathinq cpi; 6684 struct ccb_trans_settings cur_cts; 6685 6686 if (device == NULL) { 6687 cts->ccb_h.status = CAM_PATH_INVALID; 6688 xpt_done((union ccb *)cts); 6689 return; 6690 } 6691 6692 /* 6693 * Perform sanity checking against what the 6694 * controller and device can do. 6695 */ 6696 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6697 cpi.ccb_h.func_code = XPT_PATH_INQ; 6698 xpt_action((union ccb *)&cpi); 6699 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6700 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6701 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 6702 xpt_action((union ccb *)&cur_cts); 6703 inq_data = &device->inq_data; 6704 6705 /* Fill in any gaps in what the user gave us */ 6706 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 6707 cts->sync_period = cur_cts.sync_period; 6708 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 6709 cts->sync_offset = cur_cts.sync_offset; 6710 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 6711 cts->bus_width = cur_cts.bus_width; 6712 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 6713 cts->flags &= ~CCB_TRANS_DISC_ENB; 6714 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 6715 } 6716 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 6717 cts->flags &= ~CCB_TRANS_TAG_ENB; 6718 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 6719 } 6720 6721 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6722 && (inq_data->flags & SID_Sync) == 0) 6723 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6724 || (cts->sync_offset == 0) 6725 || (cts->sync_period == 0)) { 6726 /* Force async */ 6727 cts->sync_period = 0; 6728 cts->sync_offset = 0; 6729 } else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6730 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 6731 && cts->sync_period <= 0x9) { 6732 /* 6733 * Don't allow DT transmission rates if the 6734 * device does not support it. 6735 */ 6736 cts->sync_period = 0xa; 6737 } 6738 6739 switch (cts->bus_width) { 6740 case MSG_EXT_WDTR_BUS_32_BIT: 6741 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6742 || (inq_data->flags & SID_WBus32) != 0) 6743 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6744 break; 6745 /* FALLTHROUGH to 16-bit */ 6746 case MSG_EXT_WDTR_BUS_16_BIT: 6747 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6748 || (inq_data->flags & SID_WBus16) != 0) 6749 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6750 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6751 break; 6752 } 6753 /* FALLTHROUGH to 8-bit */ 6754 default: /* New bus width?? */ 6755 case MSG_EXT_WDTR_BUS_8_BIT: 6756 /* All targets can do this */ 6757 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6758 break; 6759 } 6760 6761 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 6762 /* 6763 * Can't tag queue without disconnection. 6764 */ 6765 cts->flags &= ~CCB_TRANS_TAG_ENB; 6766 cts->valid |= CCB_TRANS_TQ_VALID; 6767 } 6768 6769 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6770 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 6771 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6772 || (device->quirk->mintags == 0)) { 6773 /* 6774 * Can't tag on hardware that doesn't support, 6775 * doesn't have it enabled, or has broken tag support. 6776 */ 6777 cts->flags &= ~CCB_TRANS_TAG_ENB; 6778 } 6779 } 6780 6781 qfrozen = FALSE; 6782 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 6783 int device_tagenb; 6784 6785 /* 6786 * If we are transitioning from tags to no-tags or 6787 * vice-versa, we need to carefully freeze and restart 6788 * the queue so that we don't overlap tagged and non-tagged 6789 * commands. We also temporarily stop tags if there is 6790 * a change in transfer negotiation settings to allow 6791 * "tag-less" negotiation. 6792 */ 6793 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6794 || (device->inq_flags & SID_CmdQue) != 0) 6795 device_tagenb = TRUE; 6796 else 6797 device_tagenb = FALSE; 6798 6799 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 6800 && device_tagenb == FALSE) 6801 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 6802 && device_tagenb == TRUE)) { 6803 6804 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 6805 /* 6806 * Delay change to use tags until after a 6807 * few commands have gone to this device so 6808 * the controller has time to perform transfer 6809 * negotiations without tagged messages getting 6810 * in the way. 6811 */ 6812 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6813 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6814 } else { 6815 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6816 qfrozen = TRUE; 6817 device->inq_flags &= ~SID_CmdQue; 6818 xpt_dev_ccbq_resize(cts->ccb_h.path, 6819 sim->max_dev_openings); 6820 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6821 device->tag_delay_count = 0; 6822 } 6823 } 6824 } 6825 6826 if (async_update == FALSE) { 6827 /* 6828 * If we are currently performing tagged transactions to 6829 * this device and want to change its negotiation parameters, 6830 * go non-tagged for a bit to give the controller a chance to 6831 * negotiate unhampered by tag messages. 6832 */ 6833 if ((device->inq_flags & SID_CmdQue) != 0 6834 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 6835 CCB_TRANS_SYNC_OFFSET_VALID| 6836 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 6837 xpt_toggle_tags(cts->ccb_h.path); 6838 6839 (*(sim->sim_action))(sim, (union ccb *)cts); 6840 } 6841 6842 if (qfrozen) { 6843 struct ccb_relsim crs; 6844 6845 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6846 /*priority*/1); 6847 crs.ccb_h.func_code = XPT_REL_SIMQ; 6848 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6849 crs.openings 6850 = crs.release_timeout 6851 = crs.qfrozen_cnt 6852 = 0; 6853 xpt_action((union ccb *)&crs); 6854 } 6855 } 6856 6857 6858 #endif /* CAM_NEW_TRAN_CODE */ 6859 6860 static void 6861 xpt_toggle_tags(struct cam_path *path) 6862 { 6863 struct cam_ed *dev; 6864 6865 /* 6866 * Give controllers a chance to renegotiate 6867 * before starting tag operations. We 6868 * "toggle" tagged queuing off then on 6869 * which causes the tag enable command delay 6870 * counter to come into effect. 6871 */ 6872 dev = path->device; 6873 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6874 || ((dev->inq_flags & SID_CmdQue) != 0 6875 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6876 struct ccb_trans_settings cts; 6877 6878 xpt_setup_ccb(&cts.ccb_h, path, 1); 6879 #ifdef CAM_NEW_TRAN_CODE 6880 cts.protocol = PROTO_SCSI; 6881 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6882 cts.transport = XPORT_UNSPECIFIED; 6883 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6884 cts.proto_specific.scsi.flags = 0; 6885 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6886 #else /* CAM_NEW_TRAN_CODE */ 6887 cts.flags = 0; 6888 cts.valid = CCB_TRANS_TQ_VALID; 6889 #endif /* CAM_NEW_TRAN_CODE */ 6890 xpt_set_transfer_settings(&cts, path->device, 6891 /*async_update*/TRUE); 6892 #ifdef CAM_NEW_TRAN_CODE 6893 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6894 #else /* CAM_NEW_TRAN_CODE */ 6895 cts.flags = CCB_TRANS_TAG_ENB; 6896 #endif /* CAM_NEW_TRAN_CODE */ 6897 xpt_set_transfer_settings(&cts, path->device, 6898 /*async_update*/TRUE); 6899 } 6900 } 6901 6902 static void 6903 xpt_start_tags(struct cam_path *path) 6904 { 6905 struct ccb_relsim crs; 6906 struct cam_ed *device; 6907 struct cam_sim *sim; 6908 int newopenings; 6909 6910 device = path->device; 6911 sim = path->bus->sim; 6912 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6913 xpt_freeze_devq(path, /*count*/1); 6914 device->inq_flags |= SID_CmdQue; 6915 if (device->tag_saved_openings != 0) 6916 newopenings = device->tag_saved_openings; 6917 else 6918 newopenings = min(device->quirk->maxtags, 6919 sim->max_tagged_dev_openings); 6920 xpt_dev_ccbq_resize(path, newopenings); 6921 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6922 crs.ccb_h.func_code = XPT_REL_SIMQ; 6923 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6924 crs.openings 6925 = crs.release_timeout 6926 = crs.qfrozen_cnt 6927 = 0; 6928 xpt_action((union ccb *)&crs); 6929 } 6930 6931 static int busses_to_config; 6932 static int busses_to_reset; 6933 6934 static int 6935 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6936 { 6937 if (bus->path_id != CAM_XPT_PATH_ID) { 6938 struct cam_path path; 6939 struct ccb_pathinq cpi; 6940 int can_negotiate; 6941 6942 busses_to_config++; 6943 xpt_compile_path(&path, NULL, bus->path_id, 6944 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6945 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6946 cpi.ccb_h.func_code = XPT_PATH_INQ; 6947 xpt_action((union ccb *)&cpi); 6948 can_negotiate = cpi.hba_inquiry; 6949 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6950 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6951 && can_negotiate) 6952 busses_to_reset++; 6953 xpt_release_path(&path); 6954 } 6955 6956 return(1); 6957 } 6958 6959 static int 6960 xptconfigfunc(struct cam_eb *bus, void *arg) 6961 { 6962 struct cam_path *path; 6963 union ccb *work_ccb; 6964 6965 if (bus->path_id != CAM_XPT_PATH_ID) { 6966 cam_status status; 6967 int can_negotiate; 6968 6969 work_ccb = xpt_alloc_ccb(); 6970 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6971 CAM_TARGET_WILDCARD, 6972 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6973 printf("xptconfigfunc: xpt_create_path failed with " 6974 "status %#x for bus %d\n", status, bus->path_id); 6975 printf("xptconfigfunc: halting bus configuration\n"); 6976 xpt_free_ccb(work_ccb); 6977 busses_to_config--; 6978 xpt_finishconfig(xpt_periph, NULL); 6979 return(0); 6980 } 6981 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6982 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6983 xpt_action(work_ccb); 6984 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6985 printf("xptconfigfunc: CPI failed on bus %d " 6986 "with status %d\n", bus->path_id, 6987 work_ccb->ccb_h.status); 6988 xpt_finishconfig(xpt_periph, work_ccb); 6989 return(1); 6990 } 6991 6992 can_negotiate = work_ccb->cpi.hba_inquiry; 6993 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6994 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6995 && (can_negotiate != 0)) { 6996 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6997 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6998 work_ccb->ccb_h.cbfcnp = NULL; 6999 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 7000 ("Resetting Bus\n")); 7001 xpt_action(work_ccb); 7002 xpt_finishconfig(xpt_periph, work_ccb); 7003 } else { 7004 /* Act as though we performed a successful BUS RESET */ 7005 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 7006 xpt_finishconfig(xpt_periph, work_ccb); 7007 } 7008 } 7009 7010 return(1); 7011 } 7012 7013 static void 7014 xpt_config(void *arg) 7015 { 7016 /* 7017 * Now that interrupts are enabled, go find our devices 7018 */ 7019 7020 #ifdef CAMDEBUG 7021 /* Setup debugging flags and path */ 7022 #ifdef CAM_DEBUG_FLAGS 7023 cam_dflags = CAM_DEBUG_FLAGS; 7024 #else /* !CAM_DEBUG_FLAGS */ 7025 cam_dflags = CAM_DEBUG_NONE; 7026 #endif /* CAM_DEBUG_FLAGS */ 7027 #ifdef CAM_DEBUG_BUS 7028 if (cam_dflags != CAM_DEBUG_NONE) { 7029 if (xpt_create_path(&cam_dpath, xpt_periph, 7030 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 7031 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 7032 printf("xpt_config: xpt_create_path() failed for debug" 7033 " target %d:%d:%d, debugging disabled\n", 7034 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 7035 cam_dflags = CAM_DEBUG_NONE; 7036 } 7037 } else 7038 cam_dpath = NULL; 7039 #else /* !CAM_DEBUG_BUS */ 7040 cam_dpath = NULL; 7041 #endif /* CAM_DEBUG_BUS */ 7042 #endif /* CAMDEBUG */ 7043 7044 /* 7045 * Scan all installed busses. 7046 */ 7047 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 7048 7049 if (busses_to_config == 0) { 7050 /* Call manually because we don't have any busses */ 7051 xpt_finishconfig(xpt_periph, NULL); 7052 } else { 7053 if (busses_to_reset > 0 && scsi_delay >= 2000) { 7054 printf("Waiting %d seconds for SCSI " 7055 "devices to settle\n", scsi_delay/1000); 7056 } 7057 xpt_for_all_busses(xptconfigfunc, NULL); 7058 } 7059 } 7060 7061 /* 7062 * If the given device only has one peripheral attached to it, and if that 7063 * peripheral is the passthrough driver, announce it. This insures that the 7064 * user sees some sort of announcement for every peripheral in their system. 7065 */ 7066 static int 7067 xptpassannouncefunc(struct cam_ed *device, void *arg) 7068 { 7069 struct cam_periph *periph; 7070 int i; 7071 7072 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 7073 periph = SLIST_NEXT(periph, periph_links), i++); 7074 7075 periph = SLIST_FIRST(&device->periphs); 7076 if ((i == 1) 7077 && (strncmp(periph->periph_name, "pass", 4) == 0)) 7078 xpt_announce_periph(periph, NULL); 7079 7080 return(1); 7081 } 7082 7083 static void 7084 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 7085 { 7086 struct periph_driver **p_drv; 7087 int i; 7088 7089 if (done_ccb != NULL) { 7090 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 7091 ("xpt_finishconfig\n")); 7092 switch(done_ccb->ccb_h.func_code) { 7093 case XPT_RESET_BUS: 7094 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 7095 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 7096 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 7097 done_ccb->crcn.flags = 0; 7098 xpt_action(done_ccb); 7099 return; 7100 } 7101 /* FALLTHROUGH */ 7102 case XPT_SCAN_BUS: 7103 default: 7104 xpt_free_path(done_ccb->ccb_h.path); 7105 busses_to_config--; 7106 break; 7107 } 7108 } 7109 7110 if (busses_to_config == 0) { 7111 /* Register all the peripheral drivers */ 7112 /* XXX This will have to change when we have loadable modules */ 7113 p_drv = periph_drivers; 7114 for (i = 0; p_drv[i] != NULL; i++) { 7115 (*p_drv[i]->init)(); 7116 } 7117 7118 /* 7119 * Check for devices with no "standard" peripheral driver 7120 * attached. For any devices like that, announce the 7121 * passthrough driver so the user will see something. 7122 */ 7123 xpt_for_all_devices(xptpassannouncefunc, NULL); 7124 7125 /* Release our hook so that the boot can continue. */ 7126 config_intrhook_disestablish(xpt_config_hook); 7127 free(xpt_config_hook, M_TEMP); 7128 xpt_config_hook = NULL; 7129 } 7130 if (done_ccb != NULL) 7131 xpt_free_ccb(done_ccb); 7132 } 7133 7134 static void 7135 xptaction(struct cam_sim *sim, union ccb *work_ccb) 7136 { 7137 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 7138 7139 switch (work_ccb->ccb_h.func_code) { 7140 /* Common cases first */ 7141 case XPT_PATH_INQ: /* Path routing inquiry */ 7142 { 7143 struct ccb_pathinq *cpi; 7144 7145 cpi = &work_ccb->cpi; 7146 cpi->version_num = 1; /* XXX??? */ 7147 cpi->hba_inquiry = 0; 7148 cpi->target_sprt = 0; 7149 cpi->hba_misc = 0; 7150 cpi->hba_eng_cnt = 0; 7151 cpi->max_target = 0; 7152 cpi->max_lun = 0; 7153 cpi->initiator_id = 0; 7154 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7155 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7156 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7157 cpi->unit_number = sim->unit_number; 7158 cpi->bus_id = sim->bus_id; 7159 cpi->base_transfer_speed = 0; 7160 #ifdef CAM_NEW_TRAN_CODE 7161 cpi->protocol = PROTO_UNSPECIFIED; 7162 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7163 cpi->transport = XPORT_UNSPECIFIED; 7164 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7165 #endif /* CAM_NEW_TRAN_CODE */ 7166 cpi->ccb_h.status = CAM_REQ_CMP; 7167 xpt_done(work_ccb); 7168 break; 7169 } 7170 default: 7171 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7172 xpt_done(work_ccb); 7173 break; 7174 } 7175 } 7176 7177 /* 7178 * The xpt as a "controller" has no interrupt sources, so polling 7179 * is a no-op. 7180 */ 7181 static void 7182 xptpoll(struct cam_sim *sim) 7183 { 7184 } 7185 7186 static void 7187 camisr(void *V_queue) 7188 { 7189 cam_isrq_t *oqueue = V_queue; 7190 cam_isrq_t queue; 7191 int s; 7192 struct ccb_hdr *ccb_h; 7193 7194 /* 7195 * Transfer the ccb_bioq list to a temporary list so we can operate 7196 * on it without needing to lock/unlock on every loop. The concat 7197 * function with re-init the real list for us. 7198 */ 7199 s = splcam(); 7200 mtx_lock(&cam_bioq_lock); 7201 TAILQ_INIT(&queue); 7202 TAILQ_CONCAT(&queue, oqueue, sim_links.tqe); 7203 mtx_unlock(&cam_bioq_lock); 7204 7205 while ((ccb_h = TAILQ_FIRST(&queue)) != NULL) { 7206 int runq; 7207 7208 TAILQ_REMOVE(&queue, ccb_h, sim_links.tqe); 7209 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7210 splx(s); 7211 7212 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7213 ("camisr\n")); 7214 7215 runq = FALSE; 7216 7217 if (ccb_h->flags & CAM_HIGH_POWER) { 7218 struct highpowerlist *hphead; 7219 union ccb *send_ccb; 7220 7221 hphead = &highpowerq; 7222 7223 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7224 7225 /* 7226 * Increment the count since this command is done. 7227 */ 7228 num_highpower++; 7229 7230 /* 7231 * Any high powered commands queued up? 7232 */ 7233 if (send_ccb != NULL) { 7234 7235 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7236 7237 xpt_release_devq(send_ccb->ccb_h.path, 7238 /*count*/1, /*runqueue*/TRUE); 7239 } 7240 } 7241 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7242 struct cam_ed *dev; 7243 7244 dev = ccb_h->path->device; 7245 7246 s = splcam(); 7247 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7248 7249 if (!SIM_DEAD(ccb_h->path->bus->sim)) { 7250 ccb_h->path->bus->sim->devq->send_active--; 7251 ccb_h->path->bus->sim->devq->send_openings++; 7252 } 7253 splx(s); 7254 7255 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7256 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7257 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7258 && (dev->ccbq.dev_active == 0))) { 7259 7260 xpt_release_devq(ccb_h->path, /*count*/1, 7261 /*run_queue*/TRUE); 7262 } 7263 7264 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7265 && (--dev->tag_delay_count == 0)) 7266 xpt_start_tags(ccb_h->path); 7267 7268 if ((dev->ccbq.queue.entries > 0) 7269 && (dev->qfrozen_cnt == 0) 7270 && (device_is_send_queued(dev) == 0)) { 7271 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7272 dev); 7273 } 7274 } 7275 7276 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7277 xpt_release_simq(ccb_h->path->bus->sim, 7278 /*run_queue*/TRUE); 7279 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7280 runq = FALSE; 7281 } 7282 7283 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7284 && (ccb_h->status & CAM_DEV_QFRZN)) { 7285 xpt_release_devq(ccb_h->path, /*count*/1, 7286 /*run_queue*/TRUE); 7287 ccb_h->status &= ~CAM_DEV_QFRZN; 7288 } else if (runq) { 7289 xpt_run_dev_sendq(ccb_h->path->bus); 7290 } 7291 7292 /* Call the peripheral driver's callback */ 7293 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7294 7295 /* Raise IPL for while test */ 7296 s = splcam(); 7297 } 7298 splx(s); 7299 } 7300 7301 static void 7302 dead_sim_action(struct cam_sim *sim, union ccb *ccb) 7303 { 7304 7305 ccb->ccb_h.status = CAM_DEV_NOT_THERE; 7306 xpt_done(ccb); 7307 } 7308 7309 static void 7310 dead_sim_poll(struct cam_sim *sim) 7311 { 7312 } 7313