xref: /freebsd/sys/cam/cam_xpt.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_queue.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_xpt_internal.h>
60 #include <cam/cam_debug.h>
61 #include <cam/cam_compat.h>
62 
63 #include <cam/scsi/scsi_all.h>
64 #include <cam/scsi/scsi_message.h>
65 #include <cam/scsi/scsi_pass.h>
66 
67 #include <machine/md_var.h>	/* geometry translation */
68 #include <machine/stdarg.h>	/* for xpt_print below */
69 
70 #include "opt_cam.h"
71 
72 /*
73  * This is the maximum number of high powered commands (e.g. start unit)
74  * that can be outstanding at a particular time.
75  */
76 #ifndef CAM_MAX_HIGHPOWER
77 #define CAM_MAX_HIGHPOWER  4
78 #endif
79 
80 /* Datastructures internal to the xpt layer */
81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
83 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
84 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
85 
86 /* Object for defering XPT actions to a taskqueue */
87 struct xpt_task {
88 	struct task	task;
89 	void		*data1;
90 	uintptr_t	data2;
91 };
92 
93 typedef enum {
94 	XPT_FLAG_OPEN		= 0x01
95 } xpt_flags;
96 
97 struct xpt_softc {
98 	xpt_flags		flags;
99 
100 	/* number of high powered commands that can go through right now */
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/* Registered busses */
110 	TAILQ_HEAD(,cam_eb)	xpt_busses;
111 	u_int			bus_generation;
112 
113 	struct intr_config_hook	*xpt_config_hook;
114 
115 	int			boot_delay;
116 	struct callout 		boot_callout;
117 
118 	struct mtx		xpt_topo_lock;
119 	struct mtx		xpt_lock;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156            &xsoftc.boot_delay, 0, "Bus registration wait time");
157 
158 /* Queues for our software interrupt handler */
159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161 static cam_simq_t cam_simq;
162 static struct mtx cam_simq_lock;
163 
164 /* Pointers to software interrupt handlers */
165 static void *cambio_ih;
166 
167 struct cam_periph *xpt_periph;
168 
169 static periph_init_t xpt_periph_init;
170 
171 static struct periph_driver xpt_driver =
172 {
173 	xpt_periph_init, "xpt",
174 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175 	CAM_PERIPH_DRV_EARLY
176 };
177 
178 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179 
180 static d_open_t xptopen;
181 static d_close_t xptclose;
182 static d_ioctl_t xptioctl;
183 static d_ioctl_t xptdoioctl;
184 
185 static struct cdevsw xpt_cdevsw = {
186 	.d_version =	D_VERSION,
187 	.d_flags =	0,
188 	.d_open =	xptopen,
189 	.d_close =	xptclose,
190 	.d_ioctl =	xptioctl,
191 	.d_name =	"xpt",
192 };
193 
194 /* Storage for debugging datastructures */
195 struct cam_path *cam_dpath;
196 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
197 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
199 	&cam_dflags, 0, "Enabled debug flags");
200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
201 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
202 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
203 	&cam_debug_delay, 0, "Delay in us after each debug message");
204 
205 /* Our boot-time initialization hook */
206 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
207 
208 static moduledata_t cam_moduledata = {
209 	"cam",
210 	cam_module_event_handler,
211 	NULL
212 };
213 
214 static int	xpt_init(void *);
215 
216 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
217 MODULE_VERSION(cam, 1);
218 
219 
220 static void		xpt_async_bcast(struct async_list *async_head,
221 					u_int32_t async_code,
222 					struct cam_path *path,
223 					void *async_arg);
224 static path_id_t xptnextfreepathid(void);
225 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
226 static union ccb *xpt_get_ccb(struct cam_ed *device);
227 static void	 xpt_run_dev_allocq(struct cam_ed *device);
228 static void	 xpt_run_devq(struct cam_devq *devq);
229 static timeout_t xpt_release_devq_timeout;
230 static void	 xpt_release_simq_timeout(void *arg) __unused;
231 static void	 xpt_release_bus(struct cam_eb *bus);
232 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
233 		    int run_queue);
234 static struct cam_et*
235 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
236 static void	 xpt_release_target(struct cam_et *target);
237 static struct cam_eb*
238 		 xpt_find_bus(path_id_t path_id);
239 static struct cam_et*
240 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
241 static struct cam_ed*
242 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
243 static void	 xpt_config(void *arg);
244 static xpt_devicefunc_t xptpassannouncefunc;
245 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
246 static void	 xptpoll(struct cam_sim *sim);
247 static void	 camisr(void *);
248 static void	 camisr_runqueue(struct cam_sim *);
249 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
250 				    u_int num_patterns, struct cam_eb *bus);
251 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
252 				       u_int num_patterns,
253 				       struct cam_ed *device);
254 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
255 				       u_int num_patterns,
256 				       struct cam_periph *periph);
257 static xpt_busfunc_t	xptedtbusfunc;
258 static xpt_targetfunc_t	xptedttargetfunc;
259 static xpt_devicefunc_t	xptedtdevicefunc;
260 static xpt_periphfunc_t	xptedtperiphfunc;
261 static xpt_pdrvfunc_t	xptplistpdrvfunc;
262 static xpt_periphfunc_t	xptplistperiphfunc;
263 static int		xptedtmatch(struct ccb_dev_match *cdm);
264 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
265 static int		xptbustraverse(struct cam_eb *start_bus,
266 				       xpt_busfunc_t *tr_func, void *arg);
267 static int		xpttargettraverse(struct cam_eb *bus,
268 					  struct cam_et *start_target,
269 					  xpt_targetfunc_t *tr_func, void *arg);
270 static int		xptdevicetraverse(struct cam_et *target,
271 					  struct cam_ed *start_device,
272 					  xpt_devicefunc_t *tr_func, void *arg);
273 static int		xptperiphtraverse(struct cam_ed *device,
274 					  struct cam_periph *start_periph,
275 					  xpt_periphfunc_t *tr_func, void *arg);
276 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
277 					xpt_pdrvfunc_t *tr_func, void *arg);
278 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
279 					    struct cam_periph *start_periph,
280 					    xpt_periphfunc_t *tr_func,
281 					    void *arg);
282 static xpt_busfunc_t	xptdefbusfunc;
283 static xpt_targetfunc_t	xptdeftargetfunc;
284 static xpt_devicefunc_t	xptdefdevicefunc;
285 static xpt_periphfunc_t	xptdefperiphfunc;
286 static void		xpt_finishconfig_task(void *context, int pending);
287 static void		xpt_dev_async_default(u_int32_t async_code,
288 					      struct cam_eb *bus,
289 					      struct cam_et *target,
290 					      struct cam_ed *device,
291 					      void *async_arg);
292 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
293 						 struct cam_et *target,
294 						 lun_id_t lun_id);
295 static xpt_devicefunc_t	xptsetasyncfunc;
296 static xpt_busfunc_t	xptsetasyncbusfunc;
297 static cam_status	xptregister(struct cam_periph *periph,
298 				    void *arg);
299 static __inline int periph_is_queued(struct cam_periph *periph);
300 static __inline int device_is_queued(struct cam_ed *device);
301 
302 static __inline int
303 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
304 {
305 	int	retval;
306 
307 	if ((dev->ccbq.queue.entries > 0) &&
308 	    (dev->ccbq.dev_openings > 0) &&
309 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
310 		/*
311 		 * The priority of a device waiting for controller
312 		 * resources is that of the highest priority CCB
313 		 * enqueued.
314 		 */
315 		retval =
316 		    xpt_schedule_dev(&devq->send_queue,
317 				     &dev->devq_entry.pinfo,
318 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
319 	} else {
320 		retval = 0;
321 	}
322 	return (retval);
323 }
324 
325 static __inline int
326 periph_is_queued(struct cam_periph *periph)
327 {
328 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
329 }
330 
331 static __inline int
332 device_is_queued(struct cam_ed *device)
333 {
334 	return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
335 }
336 
337 static void
338 xpt_periph_init()
339 {
340 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
341 }
342 
343 static void
344 xptdone(struct cam_periph *periph, union ccb *done_ccb)
345 {
346 	/* Caller will release the CCB */
347 	wakeup(&done_ccb->ccb_h.cbfcnp);
348 }
349 
350 static int
351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
352 {
353 
354 	/*
355 	 * Only allow read-write access.
356 	 */
357 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
358 		return(EPERM);
359 
360 	/*
361 	 * We don't allow nonblocking access.
362 	 */
363 	if ((flags & O_NONBLOCK) != 0) {
364 		printf("%s: can't do nonblocking access\n", devtoname(dev));
365 		return(ENODEV);
366 	}
367 
368 	/* Mark ourselves open */
369 	mtx_lock(&xsoftc.xpt_lock);
370 	xsoftc.flags |= XPT_FLAG_OPEN;
371 	mtx_unlock(&xsoftc.xpt_lock);
372 
373 	return(0);
374 }
375 
376 static int
377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379 
380 	/* Mark ourselves closed */
381 	mtx_lock(&xsoftc.xpt_lock);
382 	xsoftc.flags &= ~XPT_FLAG_OPEN;
383 	mtx_unlock(&xsoftc.xpt_lock);
384 
385 	return(0);
386 }
387 
388 /*
389  * Don't automatically grab the xpt softc lock here even though this is going
390  * through the xpt device.  The xpt device is really just a back door for
391  * accessing other devices and SIMs, so the right thing to do is to grab
392  * the appropriate SIM lock once the bus/SIM is located.
393  */
394 static int
395 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
396 {
397 	int error;
398 
399 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
400 		error = cam_compat_ioctl(dev, &cmd, &addr, &flag, td);
401 		if (error == EAGAIN)
402 			return (xptdoioctl(dev, cmd, addr, flag, td));
403 	}
404 	return (error);
405 }
406 
407 static int
408 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
409 {
410 	int error;
411 
412 	error = 0;
413 
414 	switch(cmd) {
415 	/*
416 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
417 	 * to accept CCB types that don't quite make sense to send through a
418 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
419 	 * in the CAM spec.
420 	 */
421 	case CAMIOCOMMAND: {
422 		union ccb *ccb;
423 		union ccb *inccb;
424 		struct cam_eb *bus;
425 
426 		inccb = (union ccb *)addr;
427 
428 		bus = xpt_find_bus(inccb->ccb_h.path_id);
429 		if (bus == NULL)
430 			return (EINVAL);
431 
432 		switch (inccb->ccb_h.func_code) {
433 		case XPT_SCAN_BUS:
434 		case XPT_RESET_BUS:
435 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 				xpt_release_bus(bus);
438 				return (EINVAL);
439 			}
440 			break;
441 		case XPT_SCAN_TGT:
442 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 				xpt_release_bus(bus);
445 				return (EINVAL);
446 			}
447 			break;
448 		default:
449 			break;
450 		}
451 
452 		switch(inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 		case XPT_PATH_INQ:
456 		case XPT_ENG_INQ:
457 		case XPT_SCAN_LUN:
458 		case XPT_SCAN_TGT:
459 
460 			ccb = xpt_alloc_ccb();
461 
462 			CAM_SIM_LOCK(bus->sim);
463 
464 			/*
465 			 * Create a path using the bus, target, and lun the
466 			 * user passed in.
467 			 */
468 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
469 					    inccb->ccb_h.path_id,
470 					    inccb->ccb_h.target_id,
471 					    inccb->ccb_h.target_lun) !=
472 					    CAM_REQ_CMP){
473 				error = EINVAL;
474 				CAM_SIM_UNLOCK(bus->sim);
475 				xpt_free_ccb(ccb);
476 				break;
477 			}
478 			/* Ensure all of our fields are correct */
479 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
480 				      inccb->ccb_h.pinfo.priority);
481 			xpt_merge_ccb(ccb, inccb);
482 			ccb->ccb_h.cbfcnp = xptdone;
483 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
484 			bcopy(ccb, inccb, sizeof(union ccb));
485 			xpt_free_path(ccb->ccb_h.path);
486 			xpt_free_ccb(ccb);
487 			CAM_SIM_UNLOCK(bus->sim);
488 			break;
489 
490 		case XPT_DEBUG: {
491 			union ccb ccb;
492 
493 			/*
494 			 * This is an immediate CCB, so it's okay to
495 			 * allocate it on the stack.
496 			 */
497 
498 			CAM_SIM_LOCK(bus->sim);
499 
500 			/*
501 			 * Create a path using the bus, target, and lun the
502 			 * user passed in.
503 			 */
504 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
505 					    inccb->ccb_h.path_id,
506 					    inccb->ccb_h.target_id,
507 					    inccb->ccb_h.target_lun) !=
508 					    CAM_REQ_CMP){
509 				error = EINVAL;
510 				CAM_SIM_UNLOCK(bus->sim);
511 				break;
512 			}
513 			/* Ensure all of our fields are correct */
514 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
515 				      inccb->ccb_h.pinfo.priority);
516 			xpt_merge_ccb(&ccb, inccb);
517 			ccb.ccb_h.cbfcnp = xptdone;
518 			xpt_action(&ccb);
519 			bcopy(&ccb, inccb, sizeof(union ccb));
520 			xpt_free_path(ccb.ccb_h.path);
521 			CAM_SIM_UNLOCK(bus->sim);
522 			break;
523 
524 		}
525 		case XPT_DEV_MATCH: {
526 			struct cam_periph_map_info mapinfo;
527 			struct cam_path *old_path;
528 
529 			/*
530 			 * We can't deal with physical addresses for this
531 			 * type of transaction.
532 			 */
533 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
534 			    CAM_DATA_VADDR) {
535 				error = EINVAL;
536 				break;
537 			}
538 
539 			/*
540 			 * Save this in case the caller had it set to
541 			 * something in particular.
542 			 */
543 			old_path = inccb->ccb_h.path;
544 
545 			/*
546 			 * We really don't need a path for the matching
547 			 * code.  The path is needed because of the
548 			 * debugging statements in xpt_action().  They
549 			 * assume that the CCB has a valid path.
550 			 */
551 			inccb->ccb_h.path = xpt_periph->path;
552 
553 			bzero(&mapinfo, sizeof(mapinfo));
554 
555 			/*
556 			 * Map the pattern and match buffers into kernel
557 			 * virtual address space.
558 			 */
559 			error = cam_periph_mapmem(inccb, &mapinfo);
560 
561 			if (error) {
562 				inccb->ccb_h.path = old_path;
563 				break;
564 			}
565 
566 			/*
567 			 * This is an immediate CCB, we can send it on directly.
568 			 */
569 			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
570 			xpt_action(inccb);
571 			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
572 
573 			/*
574 			 * Map the buffers back into user space.
575 			 */
576 			cam_periph_unmapmem(inccb, &mapinfo);
577 
578 			inccb->ccb_h.path = old_path;
579 
580 			error = 0;
581 			break;
582 		}
583 		default:
584 			error = ENOTSUP;
585 			break;
586 		}
587 		xpt_release_bus(bus);
588 		break;
589 	}
590 	/*
591 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
592 	 * with the periphal driver name and unit name filled in.  The other
593 	 * fields don't really matter as input.  The passthrough driver name
594 	 * ("pass"), and unit number are passed back in the ccb.  The current
595 	 * device generation number, and the index into the device peripheral
596 	 * driver list, and the status are also passed back.  Note that
597 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
598 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
599 	 * (or rather should be) impossible for the device peripheral driver
600 	 * list to change since we look at the whole thing in one pass, and
601 	 * we do it with lock protection.
602 	 *
603 	 */
604 	case CAMGETPASSTHRU: {
605 		union ccb *ccb;
606 		struct cam_periph *periph;
607 		struct periph_driver **p_drv;
608 		char   *name;
609 		u_int unit;
610 		int base_periph_found;
611 
612 		ccb = (union ccb *)addr;
613 		unit = ccb->cgdl.unit_number;
614 		name = ccb->cgdl.periph_name;
615 		base_periph_found = 0;
616 
617 		/*
618 		 * Sanity check -- make sure we don't get a null peripheral
619 		 * driver name.
620 		 */
621 		if (*ccb->cgdl.periph_name == '\0') {
622 			error = EINVAL;
623 			break;
624 		}
625 
626 		/* Keep the list from changing while we traverse it */
627 		xpt_lock_buses();
628 
629 		/* first find our driver in the list of drivers */
630 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
631 			if (strcmp((*p_drv)->driver_name, name) == 0)
632 				break;
633 
634 		if (*p_drv == NULL) {
635 			xpt_unlock_buses();
636 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
637 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
638 			*ccb->cgdl.periph_name = '\0';
639 			ccb->cgdl.unit_number = 0;
640 			error = ENOENT;
641 			break;
642 		}
643 
644 		/*
645 		 * Run through every peripheral instance of this driver
646 		 * and check to see whether it matches the unit passed
647 		 * in by the user.  If it does, get out of the loops and
648 		 * find the passthrough driver associated with that
649 		 * peripheral driver.
650 		 */
651 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
652 		     periph = TAILQ_NEXT(periph, unit_links)) {
653 
654 			if (periph->unit_number == unit)
655 				break;
656 		}
657 		/*
658 		 * If we found the peripheral driver that the user passed
659 		 * in, go through all of the peripheral drivers for that
660 		 * particular device and look for a passthrough driver.
661 		 */
662 		if (periph != NULL) {
663 			struct cam_ed *device;
664 			int i;
665 
666 			base_periph_found = 1;
667 			device = periph->path->device;
668 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
669 			     periph != NULL;
670 			     periph = SLIST_NEXT(periph, periph_links), i++) {
671 				/*
672 				 * Check to see whether we have a
673 				 * passthrough device or not.
674 				 */
675 				if (strcmp(periph->periph_name, "pass") == 0) {
676 					/*
677 					 * Fill in the getdevlist fields.
678 					 */
679 					strcpy(ccb->cgdl.periph_name,
680 					       periph->periph_name);
681 					ccb->cgdl.unit_number =
682 						periph->unit_number;
683 					if (SLIST_NEXT(periph, periph_links))
684 						ccb->cgdl.status =
685 							CAM_GDEVLIST_MORE_DEVS;
686 					else
687 						ccb->cgdl.status =
688 						       CAM_GDEVLIST_LAST_DEVICE;
689 					ccb->cgdl.generation =
690 						device->generation;
691 					ccb->cgdl.index = i;
692 					/*
693 					 * Fill in some CCB header fields
694 					 * that the user may want.
695 					 */
696 					ccb->ccb_h.path_id =
697 						periph->path->bus->path_id;
698 					ccb->ccb_h.target_id =
699 						periph->path->target->target_id;
700 					ccb->ccb_h.target_lun =
701 						periph->path->device->lun_id;
702 					ccb->ccb_h.status = CAM_REQ_CMP;
703 					break;
704 				}
705 			}
706 		}
707 
708 		/*
709 		 * If the periph is null here, one of two things has
710 		 * happened.  The first possibility is that we couldn't
711 		 * find the unit number of the particular peripheral driver
712 		 * that the user is asking about.  e.g. the user asks for
713 		 * the passthrough driver for "da11".  We find the list of
714 		 * "da" peripherals all right, but there is no unit 11.
715 		 * The other possibility is that we went through the list
716 		 * of peripheral drivers attached to the device structure,
717 		 * but didn't find one with the name "pass".  Either way,
718 		 * we return ENOENT, since we couldn't find something.
719 		 */
720 		if (periph == NULL) {
721 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
722 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
723 			*ccb->cgdl.periph_name = '\0';
724 			ccb->cgdl.unit_number = 0;
725 			error = ENOENT;
726 			/*
727 			 * It is unfortunate that this is even necessary,
728 			 * but there are many, many clueless users out there.
729 			 * If this is true, the user is looking for the
730 			 * passthrough driver, but doesn't have one in his
731 			 * kernel.
732 			 */
733 			if (base_periph_found == 1) {
734 				printf("xptioctl: pass driver is not in the "
735 				       "kernel\n");
736 				printf("xptioctl: put \"device pass\" in "
737 				       "your kernel config file\n");
738 			}
739 		}
740 		xpt_unlock_buses();
741 		break;
742 		}
743 	default:
744 		error = ENOTTY;
745 		break;
746 	}
747 
748 	return(error);
749 }
750 
751 static int
752 cam_module_event_handler(module_t mod, int what, void *arg)
753 {
754 	int error;
755 
756 	switch (what) {
757 	case MOD_LOAD:
758 		if ((error = xpt_init(NULL)) != 0)
759 			return (error);
760 		break;
761 	case MOD_UNLOAD:
762 		return EBUSY;
763 	default:
764 		return EOPNOTSUPP;
765 	}
766 
767 	return 0;
768 }
769 
770 static void
771 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
772 {
773 
774 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
775 		xpt_free_path(done_ccb->ccb_h.path);
776 		xpt_free_ccb(done_ccb);
777 	} else {
778 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
779 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
780 	}
781 	xpt_release_boot();
782 }
783 
784 /* thread to handle bus rescans */
785 static void
786 xpt_scanner_thread(void *dummy)
787 {
788 	union ccb	*ccb;
789 	struct cam_sim	*sim;
790 
791 	xpt_lock_buses();
792 	for (;;) {
793 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
794 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
795 			       "ccb_scanq", 0);
796 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
797 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
798 			xpt_unlock_buses();
799 
800 			sim = ccb->ccb_h.path->bus->sim;
801 			CAM_SIM_LOCK(sim);
802 			xpt_action(ccb);
803 			CAM_SIM_UNLOCK(sim);
804 
805 			xpt_lock_buses();
806 		}
807 	}
808 }
809 
810 void
811 xpt_rescan(union ccb *ccb)
812 {
813 	struct ccb_hdr *hdr;
814 
815 	/* Prepare request */
816 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
817 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
818 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
819 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
820 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
821 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
822 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
823 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
824 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
825 	else {
826 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
827 		xpt_free_path(ccb->ccb_h.path);
828 		xpt_free_ccb(ccb);
829 		return;
830 	}
831 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
832 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
833 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
834 	/* Don't make duplicate entries for the same paths. */
835 	xpt_lock_buses();
836 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
837 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
838 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
839 				wakeup(&xsoftc.ccb_scanq);
840 				xpt_unlock_buses();
841 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
842 				xpt_free_path(ccb->ccb_h.path);
843 				xpt_free_ccb(ccb);
844 				return;
845 			}
846 		}
847 	}
848 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
849 	xsoftc.buses_to_config++;
850 	wakeup(&xsoftc.ccb_scanq);
851 	xpt_unlock_buses();
852 }
853 
854 /* Functions accessed by the peripheral drivers */
855 static int
856 xpt_init(void *dummy)
857 {
858 	struct cam_sim *xpt_sim;
859 	struct cam_path *path;
860 	struct cam_devq *devq;
861 	cam_status status;
862 
863 	TAILQ_INIT(&xsoftc.xpt_busses);
864 	TAILQ_INIT(&cam_simq);
865 	TAILQ_INIT(&xsoftc.ccb_scanq);
866 	STAILQ_INIT(&xsoftc.highpowerq);
867 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
868 
869 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
870 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
871 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
872 
873 #ifdef CAM_BOOT_DELAY
874 	/*
875 	 * Override this value at compile time to assist our users
876 	 * who don't use loader to boot a kernel.
877 	 */
878 	xsoftc.boot_delay = CAM_BOOT_DELAY;
879 #endif
880 	/*
881 	 * The xpt layer is, itself, the equivelent of a SIM.
882 	 * Allow 16 ccbs in the ccb pool for it.  This should
883 	 * give decent parallelism when we probe busses and
884 	 * perform other XPT functions.
885 	 */
886 	devq = cam_simq_alloc(16);
887 	xpt_sim = cam_sim_alloc(xptaction,
888 				xptpoll,
889 				"xpt",
890 				/*softc*/NULL,
891 				/*unit*/0,
892 				/*mtx*/&xsoftc.xpt_lock,
893 				/*max_dev_transactions*/0,
894 				/*max_tagged_dev_transactions*/0,
895 				devq);
896 	if (xpt_sim == NULL)
897 		return (ENOMEM);
898 
899 	mtx_lock(&xsoftc.xpt_lock);
900 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
901 		mtx_unlock(&xsoftc.xpt_lock);
902 		printf("xpt_init: xpt_bus_register failed with status %#x,"
903 		       " failing attach\n", status);
904 		return (EINVAL);
905 	}
906 
907 	/*
908 	 * Looking at the XPT from the SIM layer, the XPT is
909 	 * the equivelent of a peripheral driver.  Allocate
910 	 * a peripheral driver entry for us.
911 	 */
912 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
913 				      CAM_TARGET_WILDCARD,
914 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
915 		mtx_unlock(&xsoftc.xpt_lock);
916 		printf("xpt_init: xpt_create_path failed with status %#x,"
917 		       " failing attach\n", status);
918 		return (EINVAL);
919 	}
920 
921 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
922 			 path, NULL, 0, xpt_sim);
923 	xpt_free_path(path);
924 	mtx_unlock(&xsoftc.xpt_lock);
925 	/* Install our software interrupt handlers */
926 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
927 	/*
928 	 * Register a callback for when interrupts are enabled.
929 	 */
930 	xsoftc.xpt_config_hook =
931 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
932 					      M_CAMXPT, M_NOWAIT | M_ZERO);
933 	if (xsoftc.xpt_config_hook == NULL) {
934 		printf("xpt_init: Cannot malloc config hook "
935 		       "- failing attach\n");
936 		return (ENOMEM);
937 	}
938 	xsoftc.xpt_config_hook->ich_func = xpt_config;
939 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
940 		free (xsoftc.xpt_config_hook, M_CAMXPT);
941 		printf("xpt_init: config_intrhook_establish failed "
942 		       "- failing attach\n");
943 	}
944 
945 	return (0);
946 }
947 
948 static cam_status
949 xptregister(struct cam_periph *periph, void *arg)
950 {
951 	struct cam_sim *xpt_sim;
952 
953 	if (periph == NULL) {
954 		printf("xptregister: periph was NULL!!\n");
955 		return(CAM_REQ_CMP_ERR);
956 	}
957 
958 	xpt_sim = (struct cam_sim *)arg;
959 	xpt_sim->softc = periph;
960 	xpt_periph = periph;
961 	periph->softc = NULL;
962 
963 	return(CAM_REQ_CMP);
964 }
965 
966 int32_t
967 xpt_add_periph(struct cam_periph *periph)
968 {
969 	struct cam_ed *device;
970 	int32_t	 status;
971 	struct periph_list *periph_head;
972 
973 	mtx_assert(periph->sim->mtx, MA_OWNED);
974 
975 	device = periph->path->device;
976 
977 	periph_head = &device->periphs;
978 
979 	status = CAM_REQ_CMP;
980 
981 	if (device != NULL) {
982 		/*
983 		 * Make room for this peripheral
984 		 * so it will fit in the queue
985 		 * when it's scheduled to run
986 		 */
987 		status = camq_resize(&device->drvq,
988 				     device->drvq.array_size + 1);
989 
990 		device->generation++;
991 
992 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
993 	}
994 
995 	return (status);
996 }
997 
998 void
999 xpt_remove_periph(struct cam_periph *periph)
1000 {
1001 	struct cam_ed *device;
1002 
1003 	mtx_assert(periph->sim->mtx, MA_OWNED);
1004 
1005 	device = periph->path->device;
1006 
1007 	if (device != NULL) {
1008 		struct periph_list *periph_head;
1009 
1010 		periph_head = &device->periphs;
1011 
1012 		/* Release the slot for this peripheral */
1013 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1014 
1015 		device->generation++;
1016 
1017 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1018 	}
1019 }
1020 
1021 
1022 void
1023 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1024 {
1025 	struct	cam_path *path = periph->path;
1026 
1027 	mtx_assert(periph->sim->mtx, MA_OWNED);
1028 
1029 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1030 	       periph->periph_name, periph->unit_number,
1031 	       path->bus->sim->sim_name,
1032 	       path->bus->sim->unit_number,
1033 	       path->bus->sim->bus_id,
1034 	       path->bus->path_id,
1035 	       path->target->target_id,
1036 	       path->device->lun_id);
1037 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1038 	if (path->device->protocol == PROTO_SCSI)
1039 		scsi_print_inquiry(&path->device->inq_data);
1040 	else if (path->device->protocol == PROTO_ATA ||
1041 	    path->device->protocol == PROTO_SATAPM)
1042 		ata_print_ident(&path->device->ident_data);
1043 	else if (path->device->protocol == PROTO_SEMB)
1044 		semb_print_ident(
1045 		    (struct sep_identify_data *)&path->device->ident_data);
1046 	else
1047 		printf("Unknown protocol device\n");
1048 	if (bootverbose && path->device->serial_num_len > 0) {
1049 		/* Don't wrap the screen  - print only the first 60 chars */
1050 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1051 		       periph->unit_number, path->device->serial_num);
1052 	}
1053 	/* Announce transport details. */
1054 	(*(path->bus->xport->announce))(periph);
1055 	/* Announce command queueing. */
1056 	if (path->device->inq_flags & SID_CmdQue
1057 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1058 		printf("%s%d: Command Queueing enabled\n",
1059 		       periph->periph_name, periph->unit_number);
1060 	}
1061 	/* Announce caller's details if they've passed in. */
1062 	if (announce_string != NULL)
1063 		printf("%s%d: %s\n", periph->periph_name,
1064 		       periph->unit_number, announce_string);
1065 }
1066 
1067 void
1068 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1069 {
1070 	if (quirks != 0) {
1071 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1072 		    periph->unit_number, quirks, bit_string);
1073 	}
1074 }
1075 
1076 int
1077 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1078 {
1079 	int ret = -1, l;
1080 	struct ccb_dev_advinfo cdai;
1081 	struct scsi_vpd_id_descriptor *idd;
1082 
1083 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1084 
1085 	memset(&cdai, 0, sizeof(cdai));
1086 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1087 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1088 	cdai.bufsiz = len;
1089 
1090 	if (!strcmp(attr, "GEOM::ident"))
1091 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1092 	else if (!strcmp(attr, "GEOM::physpath"))
1093 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1094 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1095 		 strcmp(attr, "GEOM::lunname") == 0) {
1096 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1097 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1098 	} else
1099 		goto out;
1100 
1101 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1102 	if (cdai.buf == NULL) {
1103 		ret = ENOMEM;
1104 		goto out;
1105 	}
1106 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1107 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1108 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1109 	if (cdai.provsiz == 0)
1110 		goto out;
1111 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1112 		if (strcmp(attr, "GEOM::lunid") == 0) {
1113 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1114 			    cdai.provsiz, scsi_devid_is_lun_naa);
1115 			if (idd == NULL)
1116 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1117 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1118 		} else
1119 			idd = NULL;
1120 		if (idd == NULL)
1121 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1122 			    cdai.provsiz, scsi_devid_is_lun_t10);
1123 		if (idd == NULL)
1124 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1125 			    cdai.provsiz, scsi_devid_is_lun_name);
1126 		if (idd == NULL)
1127 			goto out;
1128 		ret = 0;
1129 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII ||
1130 		    (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1131 			l = strnlen(idd->identifier, idd->length);
1132 			if (l < len) {
1133 				bcopy(idd->identifier, buf, l);
1134 				buf[l] = 0;
1135 			} else
1136 				ret = EFAULT;
1137 		} else {
1138 			if (idd->length * 2 < len) {
1139 				for (l = 0; l < idd->length; l++)
1140 					sprintf(buf + l * 2, "%02x",
1141 					    idd->identifier[l]);
1142 			} else
1143 				ret = EFAULT;
1144 		}
1145 	} else {
1146 		ret = 0;
1147 		if (strlcpy(buf, cdai.buf, len) >= len)
1148 			ret = EFAULT;
1149 	}
1150 
1151 out:
1152 	if (cdai.buf != NULL)
1153 		free(cdai.buf, M_CAMXPT);
1154 	return ret;
1155 }
1156 
1157 static dev_match_ret
1158 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1159 	    struct cam_eb *bus)
1160 {
1161 	dev_match_ret retval;
1162 	int i;
1163 
1164 	retval = DM_RET_NONE;
1165 
1166 	/*
1167 	 * If we aren't given something to match against, that's an error.
1168 	 */
1169 	if (bus == NULL)
1170 		return(DM_RET_ERROR);
1171 
1172 	/*
1173 	 * If there are no match entries, then this bus matches no
1174 	 * matter what.
1175 	 */
1176 	if ((patterns == NULL) || (num_patterns == 0))
1177 		return(DM_RET_DESCEND | DM_RET_COPY);
1178 
1179 	for (i = 0; i < num_patterns; i++) {
1180 		struct bus_match_pattern *cur_pattern;
1181 
1182 		/*
1183 		 * If the pattern in question isn't for a bus node, we
1184 		 * aren't interested.  However, we do indicate to the
1185 		 * calling routine that we should continue descending the
1186 		 * tree, since the user wants to match against lower-level
1187 		 * EDT elements.
1188 		 */
1189 		if (patterns[i].type != DEV_MATCH_BUS) {
1190 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1191 				retval |= DM_RET_DESCEND;
1192 			continue;
1193 		}
1194 
1195 		cur_pattern = &patterns[i].pattern.bus_pattern;
1196 
1197 		/*
1198 		 * If they want to match any bus node, we give them any
1199 		 * device node.
1200 		 */
1201 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1202 			/* set the copy flag */
1203 			retval |= DM_RET_COPY;
1204 
1205 			/*
1206 			 * If we've already decided on an action, go ahead
1207 			 * and return.
1208 			 */
1209 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1210 				return(retval);
1211 		}
1212 
1213 		/*
1214 		 * Not sure why someone would do this...
1215 		 */
1216 		if (cur_pattern->flags == BUS_MATCH_NONE)
1217 			continue;
1218 
1219 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1220 		 && (cur_pattern->path_id != bus->path_id))
1221 			continue;
1222 
1223 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1224 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1225 			continue;
1226 
1227 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1228 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1229 			continue;
1230 
1231 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1232 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1233 			     DEV_IDLEN) != 0))
1234 			continue;
1235 
1236 		/*
1237 		 * If we get to this point, the user definitely wants
1238 		 * information on this bus.  So tell the caller to copy the
1239 		 * data out.
1240 		 */
1241 		retval |= DM_RET_COPY;
1242 
1243 		/*
1244 		 * If the return action has been set to descend, then we
1245 		 * know that we've already seen a non-bus matching
1246 		 * expression, therefore we need to further descend the tree.
1247 		 * This won't change by continuing around the loop, so we
1248 		 * go ahead and return.  If we haven't seen a non-bus
1249 		 * matching expression, we keep going around the loop until
1250 		 * we exhaust the matching expressions.  We'll set the stop
1251 		 * flag once we fall out of the loop.
1252 		 */
1253 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1254 			return(retval);
1255 	}
1256 
1257 	/*
1258 	 * If the return action hasn't been set to descend yet, that means
1259 	 * we haven't seen anything other than bus matching patterns.  So
1260 	 * tell the caller to stop descending the tree -- the user doesn't
1261 	 * want to match against lower level tree elements.
1262 	 */
1263 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1264 		retval |= DM_RET_STOP;
1265 
1266 	return(retval);
1267 }
1268 
1269 static dev_match_ret
1270 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1271 	       struct cam_ed *device)
1272 {
1273 	dev_match_ret retval;
1274 	int i;
1275 
1276 	retval = DM_RET_NONE;
1277 
1278 	/*
1279 	 * If we aren't given something to match against, that's an error.
1280 	 */
1281 	if (device == NULL)
1282 		return(DM_RET_ERROR);
1283 
1284 	/*
1285 	 * If there are no match entries, then this device matches no
1286 	 * matter what.
1287 	 */
1288 	if ((patterns == NULL) || (num_patterns == 0))
1289 		return(DM_RET_DESCEND | DM_RET_COPY);
1290 
1291 	for (i = 0; i < num_patterns; i++) {
1292 		struct device_match_pattern *cur_pattern;
1293 		struct scsi_vpd_device_id *device_id_page;
1294 
1295 		/*
1296 		 * If the pattern in question isn't for a device node, we
1297 		 * aren't interested.
1298 		 */
1299 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1300 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1301 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1302 				retval |= DM_RET_DESCEND;
1303 			continue;
1304 		}
1305 
1306 		cur_pattern = &patterns[i].pattern.device_pattern;
1307 
1308 		/* Error out if mutually exclusive options are specified. */
1309 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1310 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1311 			return(DM_RET_ERROR);
1312 
1313 		/*
1314 		 * If they want to match any device node, we give them any
1315 		 * device node.
1316 		 */
1317 		if (cur_pattern->flags == DEV_MATCH_ANY)
1318 			goto copy_dev_node;
1319 
1320 		/*
1321 		 * Not sure why someone would do this...
1322 		 */
1323 		if (cur_pattern->flags == DEV_MATCH_NONE)
1324 			continue;
1325 
1326 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1327 		 && (cur_pattern->path_id != device->target->bus->path_id))
1328 			continue;
1329 
1330 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1331 		 && (cur_pattern->target_id != device->target->target_id))
1332 			continue;
1333 
1334 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1335 		 && (cur_pattern->target_lun != device->lun_id))
1336 			continue;
1337 
1338 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1339 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1340 				    (caddr_t)&cur_pattern->data.inq_pat,
1341 				    1, sizeof(cur_pattern->data.inq_pat),
1342 				    scsi_static_inquiry_match) == NULL))
1343 			continue;
1344 
1345 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1346 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1347 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1348 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1349 				      device->device_id_len
1350 				    - SVPD_DEVICE_ID_HDR_LEN,
1351 				      cur_pattern->data.devid_pat.id,
1352 				      cur_pattern->data.devid_pat.id_len) != 0))
1353 			continue;
1354 
1355 copy_dev_node:
1356 		/*
1357 		 * If we get to this point, the user definitely wants
1358 		 * information on this device.  So tell the caller to copy
1359 		 * the data out.
1360 		 */
1361 		retval |= DM_RET_COPY;
1362 
1363 		/*
1364 		 * If the return action has been set to descend, then we
1365 		 * know that we've already seen a peripheral matching
1366 		 * expression, therefore we need to further descend the tree.
1367 		 * This won't change by continuing around the loop, so we
1368 		 * go ahead and return.  If we haven't seen a peripheral
1369 		 * matching expression, we keep going around the loop until
1370 		 * we exhaust the matching expressions.  We'll set the stop
1371 		 * flag once we fall out of the loop.
1372 		 */
1373 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1374 			return(retval);
1375 	}
1376 
1377 	/*
1378 	 * If the return action hasn't been set to descend yet, that means
1379 	 * we haven't seen any peripheral matching patterns.  So tell the
1380 	 * caller to stop descending the tree -- the user doesn't want to
1381 	 * match against lower level tree elements.
1382 	 */
1383 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1384 		retval |= DM_RET_STOP;
1385 
1386 	return(retval);
1387 }
1388 
1389 /*
1390  * Match a single peripheral against any number of match patterns.
1391  */
1392 static dev_match_ret
1393 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1394 	       struct cam_periph *periph)
1395 {
1396 	dev_match_ret retval;
1397 	int i;
1398 
1399 	/*
1400 	 * If we aren't given something to match against, that's an error.
1401 	 */
1402 	if (periph == NULL)
1403 		return(DM_RET_ERROR);
1404 
1405 	/*
1406 	 * If there are no match entries, then this peripheral matches no
1407 	 * matter what.
1408 	 */
1409 	if ((patterns == NULL) || (num_patterns == 0))
1410 		return(DM_RET_STOP | DM_RET_COPY);
1411 
1412 	/*
1413 	 * There aren't any nodes below a peripheral node, so there's no
1414 	 * reason to descend the tree any further.
1415 	 */
1416 	retval = DM_RET_STOP;
1417 
1418 	for (i = 0; i < num_patterns; i++) {
1419 		struct periph_match_pattern *cur_pattern;
1420 
1421 		/*
1422 		 * If the pattern in question isn't for a peripheral, we
1423 		 * aren't interested.
1424 		 */
1425 		if (patterns[i].type != DEV_MATCH_PERIPH)
1426 			continue;
1427 
1428 		cur_pattern = &patterns[i].pattern.periph_pattern;
1429 
1430 		/*
1431 		 * If they want to match on anything, then we will do so.
1432 		 */
1433 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1434 			/* set the copy flag */
1435 			retval |= DM_RET_COPY;
1436 
1437 			/*
1438 			 * We've already set the return action to stop,
1439 			 * since there are no nodes below peripherals in
1440 			 * the tree.
1441 			 */
1442 			return(retval);
1443 		}
1444 
1445 		/*
1446 		 * Not sure why someone would do this...
1447 		 */
1448 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1449 			continue;
1450 
1451 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1452 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1453 			continue;
1454 
1455 		/*
1456 		 * For the target and lun id's, we have to make sure the
1457 		 * target and lun pointers aren't NULL.  The xpt peripheral
1458 		 * has a wildcard target and device.
1459 		 */
1460 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1461 		 && ((periph->path->target == NULL)
1462 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1463 			continue;
1464 
1465 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1466 		 && ((periph->path->device == NULL)
1467 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1468 			continue;
1469 
1470 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1471 		 && (cur_pattern->unit_number != periph->unit_number))
1472 			continue;
1473 
1474 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1475 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1476 			     DEV_IDLEN) != 0))
1477 			continue;
1478 
1479 		/*
1480 		 * If we get to this point, the user definitely wants
1481 		 * information on this peripheral.  So tell the caller to
1482 		 * copy the data out.
1483 		 */
1484 		retval |= DM_RET_COPY;
1485 
1486 		/*
1487 		 * The return action has already been set to stop, since
1488 		 * peripherals don't have any nodes below them in the EDT.
1489 		 */
1490 		return(retval);
1491 	}
1492 
1493 	/*
1494 	 * If we get to this point, the peripheral that was passed in
1495 	 * doesn't match any of the patterns.
1496 	 */
1497 	return(retval);
1498 }
1499 
1500 static int
1501 xptedtbusfunc(struct cam_eb *bus, void *arg)
1502 {
1503 	struct ccb_dev_match *cdm;
1504 	dev_match_ret retval;
1505 
1506 	cdm = (struct ccb_dev_match *)arg;
1507 
1508 	/*
1509 	 * If our position is for something deeper in the tree, that means
1510 	 * that we've already seen this node.  So, we keep going down.
1511 	 */
1512 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1513 	 && (cdm->pos.cookie.bus == bus)
1514 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1515 	 && (cdm->pos.cookie.target != NULL))
1516 		retval = DM_RET_DESCEND;
1517 	else
1518 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1519 
1520 	/*
1521 	 * If we got an error, bail out of the search.
1522 	 */
1523 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1524 		cdm->status = CAM_DEV_MATCH_ERROR;
1525 		return(0);
1526 	}
1527 
1528 	/*
1529 	 * If the copy flag is set, copy this bus out.
1530 	 */
1531 	if (retval & DM_RET_COPY) {
1532 		int spaceleft, j;
1533 
1534 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1535 			sizeof(struct dev_match_result));
1536 
1537 		/*
1538 		 * If we don't have enough space to put in another
1539 		 * match result, save our position and tell the
1540 		 * user there are more devices to check.
1541 		 */
1542 		if (spaceleft < sizeof(struct dev_match_result)) {
1543 			bzero(&cdm->pos, sizeof(cdm->pos));
1544 			cdm->pos.position_type =
1545 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1546 
1547 			cdm->pos.cookie.bus = bus;
1548 			cdm->pos.generations[CAM_BUS_GENERATION]=
1549 				xsoftc.bus_generation;
1550 			cdm->status = CAM_DEV_MATCH_MORE;
1551 			return(0);
1552 		}
1553 		j = cdm->num_matches;
1554 		cdm->num_matches++;
1555 		cdm->matches[j].type = DEV_MATCH_BUS;
1556 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1557 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1558 		cdm->matches[j].result.bus_result.unit_number =
1559 			bus->sim->unit_number;
1560 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1561 			bus->sim->sim_name, DEV_IDLEN);
1562 	}
1563 
1564 	/*
1565 	 * If the user is only interested in busses, there's no
1566 	 * reason to descend to the next level in the tree.
1567 	 */
1568 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1569 		return(1);
1570 
1571 	/*
1572 	 * If there is a target generation recorded, check it to
1573 	 * make sure the target list hasn't changed.
1574 	 */
1575 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1576 	 && (bus == cdm->pos.cookie.bus)
1577 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1578 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1579 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1580 	     bus->generation)) {
1581 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1582 		return(0);
1583 	}
1584 
1585 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1586 	 && (cdm->pos.cookie.bus == bus)
1587 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1588 	 && (cdm->pos.cookie.target != NULL))
1589 		return(xpttargettraverse(bus,
1590 					(struct cam_et *)cdm->pos.cookie.target,
1591 					 xptedttargetfunc, arg));
1592 	else
1593 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1594 }
1595 
1596 static int
1597 xptedttargetfunc(struct cam_et *target, void *arg)
1598 {
1599 	struct ccb_dev_match *cdm;
1600 
1601 	cdm = (struct ccb_dev_match *)arg;
1602 
1603 	/*
1604 	 * If there is a device list generation recorded, check it to
1605 	 * make sure the device list hasn't changed.
1606 	 */
1607 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1608 	 && (cdm->pos.cookie.bus == target->bus)
1609 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1610 	 && (cdm->pos.cookie.target == target)
1611 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1612 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1613 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1614 	     target->generation)) {
1615 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1616 		return(0);
1617 	}
1618 
1619 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1620 	 && (cdm->pos.cookie.bus == target->bus)
1621 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1622 	 && (cdm->pos.cookie.target == target)
1623 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1624 	 && (cdm->pos.cookie.device != NULL))
1625 		return(xptdevicetraverse(target,
1626 					(struct cam_ed *)cdm->pos.cookie.device,
1627 					 xptedtdevicefunc, arg));
1628 	else
1629 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1630 }
1631 
1632 static int
1633 xptedtdevicefunc(struct cam_ed *device, void *arg)
1634 {
1635 
1636 	struct ccb_dev_match *cdm;
1637 	dev_match_ret retval;
1638 
1639 	cdm = (struct ccb_dev_match *)arg;
1640 
1641 	/*
1642 	 * If our position is for something deeper in the tree, that means
1643 	 * that we've already seen this node.  So, we keep going down.
1644 	 */
1645 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1646 	 && (cdm->pos.cookie.device == device)
1647 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1648 	 && (cdm->pos.cookie.periph != NULL))
1649 		retval = DM_RET_DESCEND;
1650 	else
1651 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1652 					device);
1653 
1654 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1655 		cdm->status = CAM_DEV_MATCH_ERROR;
1656 		return(0);
1657 	}
1658 
1659 	/*
1660 	 * If the copy flag is set, copy this device out.
1661 	 */
1662 	if (retval & DM_RET_COPY) {
1663 		int spaceleft, j;
1664 
1665 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1666 			sizeof(struct dev_match_result));
1667 
1668 		/*
1669 		 * If we don't have enough space to put in another
1670 		 * match result, save our position and tell the
1671 		 * user there are more devices to check.
1672 		 */
1673 		if (spaceleft < sizeof(struct dev_match_result)) {
1674 			bzero(&cdm->pos, sizeof(cdm->pos));
1675 			cdm->pos.position_type =
1676 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1677 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1678 
1679 			cdm->pos.cookie.bus = device->target->bus;
1680 			cdm->pos.generations[CAM_BUS_GENERATION]=
1681 				xsoftc.bus_generation;
1682 			cdm->pos.cookie.target = device->target;
1683 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1684 				device->target->bus->generation;
1685 			cdm->pos.cookie.device = device;
1686 			cdm->pos.generations[CAM_DEV_GENERATION] =
1687 				device->target->generation;
1688 			cdm->status = CAM_DEV_MATCH_MORE;
1689 			return(0);
1690 		}
1691 		j = cdm->num_matches;
1692 		cdm->num_matches++;
1693 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1694 		cdm->matches[j].result.device_result.path_id =
1695 			device->target->bus->path_id;
1696 		cdm->matches[j].result.device_result.target_id =
1697 			device->target->target_id;
1698 		cdm->matches[j].result.device_result.target_lun =
1699 			device->lun_id;
1700 		cdm->matches[j].result.device_result.protocol =
1701 			device->protocol;
1702 		bcopy(&device->inq_data,
1703 		      &cdm->matches[j].result.device_result.inq_data,
1704 		      sizeof(struct scsi_inquiry_data));
1705 		bcopy(&device->ident_data,
1706 		      &cdm->matches[j].result.device_result.ident_data,
1707 		      sizeof(struct ata_params));
1708 
1709 		/* Let the user know whether this device is unconfigured */
1710 		if (device->flags & CAM_DEV_UNCONFIGURED)
1711 			cdm->matches[j].result.device_result.flags =
1712 				DEV_RESULT_UNCONFIGURED;
1713 		else
1714 			cdm->matches[j].result.device_result.flags =
1715 				DEV_RESULT_NOFLAG;
1716 	}
1717 
1718 	/*
1719 	 * If the user isn't interested in peripherals, don't descend
1720 	 * the tree any further.
1721 	 */
1722 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1723 		return(1);
1724 
1725 	/*
1726 	 * If there is a peripheral list generation recorded, make sure
1727 	 * it hasn't changed.
1728 	 */
1729 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1730 	 && (device->target->bus == cdm->pos.cookie.bus)
1731 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1732 	 && (device->target == cdm->pos.cookie.target)
1733 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1734 	 && (device == cdm->pos.cookie.device)
1735 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1736 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1737 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1738 	     device->generation)){
1739 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1740 		return(0);
1741 	}
1742 
1743 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1744 	 && (cdm->pos.cookie.bus == device->target->bus)
1745 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1746 	 && (cdm->pos.cookie.target == device->target)
1747 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1748 	 && (cdm->pos.cookie.device == device)
1749 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1750 	 && (cdm->pos.cookie.periph != NULL))
1751 		return(xptperiphtraverse(device,
1752 				(struct cam_periph *)cdm->pos.cookie.periph,
1753 				xptedtperiphfunc, arg));
1754 	else
1755 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1756 }
1757 
1758 static int
1759 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1760 {
1761 	struct ccb_dev_match *cdm;
1762 	dev_match_ret retval;
1763 
1764 	cdm = (struct ccb_dev_match *)arg;
1765 
1766 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1767 
1768 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1769 		cdm->status = CAM_DEV_MATCH_ERROR;
1770 		return(0);
1771 	}
1772 
1773 	/*
1774 	 * If the copy flag is set, copy this peripheral out.
1775 	 */
1776 	if (retval & DM_RET_COPY) {
1777 		int spaceleft, j;
1778 
1779 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1780 			sizeof(struct dev_match_result));
1781 
1782 		/*
1783 		 * If we don't have enough space to put in another
1784 		 * match result, save our position and tell the
1785 		 * user there are more devices to check.
1786 		 */
1787 		if (spaceleft < sizeof(struct dev_match_result)) {
1788 			bzero(&cdm->pos, sizeof(cdm->pos));
1789 			cdm->pos.position_type =
1790 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1791 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1792 				CAM_DEV_POS_PERIPH;
1793 
1794 			cdm->pos.cookie.bus = periph->path->bus;
1795 			cdm->pos.generations[CAM_BUS_GENERATION]=
1796 				xsoftc.bus_generation;
1797 			cdm->pos.cookie.target = periph->path->target;
1798 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1799 				periph->path->bus->generation;
1800 			cdm->pos.cookie.device = periph->path->device;
1801 			cdm->pos.generations[CAM_DEV_GENERATION] =
1802 				periph->path->target->generation;
1803 			cdm->pos.cookie.periph = periph;
1804 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1805 				periph->path->device->generation;
1806 			cdm->status = CAM_DEV_MATCH_MORE;
1807 			return(0);
1808 		}
1809 
1810 		j = cdm->num_matches;
1811 		cdm->num_matches++;
1812 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1813 		cdm->matches[j].result.periph_result.path_id =
1814 			periph->path->bus->path_id;
1815 		cdm->matches[j].result.periph_result.target_id =
1816 			periph->path->target->target_id;
1817 		cdm->matches[j].result.periph_result.target_lun =
1818 			periph->path->device->lun_id;
1819 		cdm->matches[j].result.periph_result.unit_number =
1820 			periph->unit_number;
1821 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1822 			periph->periph_name, DEV_IDLEN);
1823 	}
1824 
1825 	return(1);
1826 }
1827 
1828 static int
1829 xptedtmatch(struct ccb_dev_match *cdm)
1830 {
1831 	int ret;
1832 
1833 	cdm->num_matches = 0;
1834 
1835 	/*
1836 	 * Check the bus list generation.  If it has changed, the user
1837 	 * needs to reset everything and start over.
1838 	 */
1839 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1840 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1841 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1842 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1843 		return(0);
1844 	}
1845 
1846 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1847 	 && (cdm->pos.cookie.bus != NULL))
1848 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1849 				     xptedtbusfunc, cdm);
1850 	else
1851 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1852 
1853 	/*
1854 	 * If we get back 0, that means that we had to stop before fully
1855 	 * traversing the EDT.  It also means that one of the subroutines
1856 	 * has set the status field to the proper value.  If we get back 1,
1857 	 * we've fully traversed the EDT and copied out any matching entries.
1858 	 */
1859 	if (ret == 1)
1860 		cdm->status = CAM_DEV_MATCH_LAST;
1861 
1862 	return(ret);
1863 }
1864 
1865 static int
1866 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1867 {
1868 	struct ccb_dev_match *cdm;
1869 
1870 	cdm = (struct ccb_dev_match *)arg;
1871 
1872 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1873 	 && (cdm->pos.cookie.pdrv == pdrv)
1874 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1875 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1876 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1877 	     (*pdrv)->generation)) {
1878 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1879 		return(0);
1880 	}
1881 
1882 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1883 	 && (cdm->pos.cookie.pdrv == pdrv)
1884 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1885 	 && (cdm->pos.cookie.periph != NULL))
1886 		return(xptpdperiphtraverse(pdrv,
1887 				(struct cam_periph *)cdm->pos.cookie.periph,
1888 				xptplistperiphfunc, arg));
1889 	else
1890 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1891 }
1892 
1893 static int
1894 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1895 {
1896 	struct ccb_dev_match *cdm;
1897 	dev_match_ret retval;
1898 
1899 	cdm = (struct ccb_dev_match *)arg;
1900 
1901 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1902 
1903 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1904 		cdm->status = CAM_DEV_MATCH_ERROR;
1905 		return(0);
1906 	}
1907 
1908 	/*
1909 	 * If the copy flag is set, copy this peripheral out.
1910 	 */
1911 	if (retval & DM_RET_COPY) {
1912 		int spaceleft, j;
1913 
1914 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1915 			sizeof(struct dev_match_result));
1916 
1917 		/*
1918 		 * If we don't have enough space to put in another
1919 		 * match result, save our position and tell the
1920 		 * user there are more devices to check.
1921 		 */
1922 		if (spaceleft < sizeof(struct dev_match_result)) {
1923 			struct periph_driver **pdrv;
1924 
1925 			pdrv = NULL;
1926 			bzero(&cdm->pos, sizeof(cdm->pos));
1927 			cdm->pos.position_type =
1928 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1929 				CAM_DEV_POS_PERIPH;
1930 
1931 			/*
1932 			 * This may look a bit non-sensical, but it is
1933 			 * actually quite logical.  There are very few
1934 			 * peripheral drivers, and bloating every peripheral
1935 			 * structure with a pointer back to its parent
1936 			 * peripheral driver linker set entry would cost
1937 			 * more in the long run than doing this quick lookup.
1938 			 */
1939 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1940 				if (strcmp((*pdrv)->driver_name,
1941 				    periph->periph_name) == 0)
1942 					break;
1943 			}
1944 
1945 			if (*pdrv == NULL) {
1946 				cdm->status = CAM_DEV_MATCH_ERROR;
1947 				return(0);
1948 			}
1949 
1950 			cdm->pos.cookie.pdrv = pdrv;
1951 			/*
1952 			 * The periph generation slot does double duty, as
1953 			 * does the periph pointer slot.  They are used for
1954 			 * both edt and pdrv lookups and positioning.
1955 			 */
1956 			cdm->pos.cookie.periph = periph;
1957 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1958 				(*pdrv)->generation;
1959 			cdm->status = CAM_DEV_MATCH_MORE;
1960 			return(0);
1961 		}
1962 
1963 		j = cdm->num_matches;
1964 		cdm->num_matches++;
1965 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1966 		cdm->matches[j].result.periph_result.path_id =
1967 			periph->path->bus->path_id;
1968 
1969 		/*
1970 		 * The transport layer peripheral doesn't have a target or
1971 		 * lun.
1972 		 */
1973 		if (periph->path->target)
1974 			cdm->matches[j].result.periph_result.target_id =
1975 				periph->path->target->target_id;
1976 		else
1977 			cdm->matches[j].result.periph_result.target_id = -1;
1978 
1979 		if (periph->path->device)
1980 			cdm->matches[j].result.periph_result.target_lun =
1981 				periph->path->device->lun_id;
1982 		else
1983 			cdm->matches[j].result.periph_result.target_lun = -1;
1984 
1985 		cdm->matches[j].result.periph_result.unit_number =
1986 			periph->unit_number;
1987 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1988 			periph->periph_name, DEV_IDLEN);
1989 	}
1990 
1991 	return(1);
1992 }
1993 
1994 static int
1995 xptperiphlistmatch(struct ccb_dev_match *cdm)
1996 {
1997 	int ret;
1998 
1999 	cdm->num_matches = 0;
2000 
2001 	/*
2002 	 * At this point in the edt traversal function, we check the bus
2003 	 * list generation to make sure that no busses have been added or
2004 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2005 	 * For the peripheral driver list traversal function, however, we
2006 	 * don't have to worry about new peripheral driver types coming or
2007 	 * going; they're in a linker set, and therefore can't change
2008 	 * without a recompile.
2009 	 */
2010 
2011 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2012 	 && (cdm->pos.cookie.pdrv != NULL))
2013 		ret = xptpdrvtraverse(
2014 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2015 				xptplistpdrvfunc, cdm);
2016 	else
2017 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2018 
2019 	/*
2020 	 * If we get back 0, that means that we had to stop before fully
2021 	 * traversing the peripheral driver tree.  It also means that one of
2022 	 * the subroutines has set the status field to the proper value.  If
2023 	 * we get back 1, we've fully traversed the EDT and copied out any
2024 	 * matching entries.
2025 	 */
2026 	if (ret == 1)
2027 		cdm->status = CAM_DEV_MATCH_LAST;
2028 
2029 	return(ret);
2030 }
2031 
2032 static int
2033 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2034 {
2035 	struct cam_eb *bus, *next_bus;
2036 	int retval;
2037 
2038 	retval = 1;
2039 
2040 	xpt_lock_buses();
2041 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2042 	     bus != NULL;
2043 	     bus = next_bus) {
2044 
2045 		bus->refcount++;
2046 
2047 		/*
2048 		 * XXX The locking here is obviously very complex.  We
2049 		 * should work to simplify it.
2050 		 */
2051 		xpt_unlock_buses();
2052 		CAM_SIM_LOCK(bus->sim);
2053 		retval = tr_func(bus, arg);
2054 		CAM_SIM_UNLOCK(bus->sim);
2055 
2056 		xpt_lock_buses();
2057 		next_bus = TAILQ_NEXT(bus, links);
2058 		xpt_unlock_buses();
2059 
2060 		xpt_release_bus(bus);
2061 
2062 		if (retval == 0)
2063 			return(retval);
2064 		xpt_lock_buses();
2065 	}
2066 	xpt_unlock_buses();
2067 
2068 	return(retval);
2069 }
2070 
2071 static int
2072 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2073 		  xpt_targetfunc_t *tr_func, void *arg)
2074 {
2075 	struct cam_et *target, *next_target;
2076 	int retval;
2077 
2078 	mtx_assert(bus->sim->mtx, MA_OWNED);
2079 	retval = 1;
2080 	for (target = (start_target ? start_target :
2081 		       TAILQ_FIRST(&bus->et_entries));
2082 	     target != NULL; target = next_target) {
2083 
2084 		target->refcount++;
2085 
2086 		retval = tr_func(target, arg);
2087 
2088 		next_target = TAILQ_NEXT(target, links);
2089 
2090 		xpt_release_target(target);
2091 
2092 		if (retval == 0)
2093 			return(retval);
2094 	}
2095 
2096 	return(retval);
2097 }
2098 
2099 static int
2100 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2101 		  xpt_devicefunc_t *tr_func, void *arg)
2102 {
2103 	struct cam_ed *device, *next_device;
2104 	int retval;
2105 
2106 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
2107 	retval = 1;
2108 	for (device = (start_device ? start_device :
2109 		       TAILQ_FIRST(&target->ed_entries));
2110 	     device != NULL;
2111 	     device = next_device) {
2112 
2113 		/*
2114 		 * Hold a reference so the current device does not go away
2115 		 * on us.
2116 		 */
2117 		device->refcount++;
2118 
2119 		retval = tr_func(device, arg);
2120 
2121 		/*
2122 		 * Grab our next pointer before we release the current
2123 		 * device.
2124 		 */
2125 		next_device = TAILQ_NEXT(device, links);
2126 
2127 		xpt_release_device(device);
2128 
2129 		if (retval == 0)
2130 			return(retval);
2131 	}
2132 
2133 	return(retval);
2134 }
2135 
2136 static int
2137 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2138 		  xpt_periphfunc_t *tr_func, void *arg)
2139 {
2140 	struct cam_periph *periph, *next_periph;
2141 	int retval;
2142 
2143 	retval = 1;
2144 
2145 	mtx_assert(device->sim->mtx, MA_OWNED);
2146 	xpt_lock_buses();
2147 	for (periph = (start_periph ? start_periph :
2148 		       SLIST_FIRST(&device->periphs));
2149 	     periph != NULL;
2150 	     periph = next_periph) {
2151 
2152 
2153 		/*
2154 		 * In this case, we want to show peripherals that have been
2155 		 * invalidated, but not peripherals that are scheduled to
2156 		 * be freed.  So instead of calling cam_periph_acquire(),
2157 		 * which will fail if the periph has been invalidated, we
2158 		 * just check for the free flag here.  If it is in the
2159 		 * process of being freed, we skip to the next periph.
2160 		 */
2161 		if (periph->flags & CAM_PERIPH_FREE) {
2162 			next_periph = SLIST_NEXT(periph, periph_links);
2163 			continue;
2164 		}
2165 
2166 		/*
2167 		 * Acquire a reference to this periph while we call the
2168 		 * traversal function, so it can't go away.
2169 		 */
2170 		periph->refcount++;
2171 
2172 		retval = tr_func(periph, arg);
2173 
2174 		/*
2175 		 * Grab the next peripheral before we release this one, so
2176 		 * our next pointer is still valid.
2177 		 */
2178 		next_periph = SLIST_NEXT(periph, periph_links);
2179 
2180 		cam_periph_release_locked_buses(periph);
2181 
2182 		if (retval == 0)
2183 			goto bailout_done;
2184 	}
2185 
2186 bailout_done:
2187 
2188 	xpt_unlock_buses();
2189 
2190 	return(retval);
2191 }
2192 
2193 static int
2194 xptpdrvtraverse(struct periph_driver **start_pdrv,
2195 		xpt_pdrvfunc_t *tr_func, void *arg)
2196 {
2197 	struct periph_driver **pdrv;
2198 	int retval;
2199 
2200 	retval = 1;
2201 
2202 	/*
2203 	 * We don't traverse the peripheral driver list like we do the
2204 	 * other lists, because it is a linker set, and therefore cannot be
2205 	 * changed during runtime.  If the peripheral driver list is ever
2206 	 * re-done to be something other than a linker set (i.e. it can
2207 	 * change while the system is running), the list traversal should
2208 	 * be modified to work like the other traversal functions.
2209 	 */
2210 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2211 	     *pdrv != NULL; pdrv++) {
2212 		retval = tr_func(pdrv, arg);
2213 
2214 		if (retval == 0)
2215 			return(retval);
2216 	}
2217 
2218 	return(retval);
2219 }
2220 
2221 static int
2222 xptpdperiphtraverse(struct periph_driver **pdrv,
2223 		    struct cam_periph *start_periph,
2224 		    xpt_periphfunc_t *tr_func, void *arg)
2225 {
2226 	struct cam_periph *periph, *next_periph;
2227 	struct cam_sim *sim;
2228 	int retval;
2229 
2230 	retval = 1;
2231 
2232 	xpt_lock_buses();
2233 	for (periph = (start_periph ? start_periph :
2234 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2235 	     periph = next_periph) {
2236 
2237 
2238 		/*
2239 		 * In this case, we want to show peripherals that have been
2240 		 * invalidated, but not peripherals that are scheduled to
2241 		 * be freed.  So instead of calling cam_periph_acquire(),
2242 		 * which will fail if the periph has been invalidated, we
2243 		 * just check for the free flag here.  If it is free, we
2244 		 * skip to the next periph.
2245 		 */
2246 		if (periph->flags & CAM_PERIPH_FREE) {
2247 			next_periph = TAILQ_NEXT(periph, unit_links);
2248 			continue;
2249 		}
2250 
2251 		/*
2252 		 * Acquire a reference to this periph while we call the
2253 		 * traversal function, so it can't go away.
2254 		 */
2255 		periph->refcount++;
2256 		sim = periph->sim;
2257 		xpt_unlock_buses();
2258 		CAM_SIM_LOCK(sim);
2259 		xpt_lock_buses();
2260 		retval = tr_func(periph, arg);
2261 
2262 		/*
2263 		 * Grab the next peripheral before we release this one, so
2264 		 * our next pointer is still valid.
2265 		 */
2266 		next_periph = TAILQ_NEXT(periph, unit_links);
2267 
2268 		cam_periph_release_locked_buses(periph);
2269 		CAM_SIM_UNLOCK(sim);
2270 
2271 		if (retval == 0)
2272 			goto bailout_done;
2273 	}
2274 bailout_done:
2275 
2276 	xpt_unlock_buses();
2277 
2278 	return(retval);
2279 }
2280 
2281 static int
2282 xptdefbusfunc(struct cam_eb *bus, void *arg)
2283 {
2284 	struct xpt_traverse_config *tr_config;
2285 
2286 	tr_config = (struct xpt_traverse_config *)arg;
2287 
2288 	if (tr_config->depth == XPT_DEPTH_BUS) {
2289 		xpt_busfunc_t *tr_func;
2290 
2291 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2292 
2293 		return(tr_func(bus, tr_config->tr_arg));
2294 	} else
2295 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2296 }
2297 
2298 static int
2299 xptdeftargetfunc(struct cam_et *target, void *arg)
2300 {
2301 	struct xpt_traverse_config *tr_config;
2302 
2303 	tr_config = (struct xpt_traverse_config *)arg;
2304 
2305 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2306 		xpt_targetfunc_t *tr_func;
2307 
2308 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2309 
2310 		return(tr_func(target, tr_config->tr_arg));
2311 	} else
2312 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2313 }
2314 
2315 static int
2316 xptdefdevicefunc(struct cam_ed *device, void *arg)
2317 {
2318 	struct xpt_traverse_config *tr_config;
2319 
2320 	tr_config = (struct xpt_traverse_config *)arg;
2321 
2322 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2323 		xpt_devicefunc_t *tr_func;
2324 
2325 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2326 
2327 		return(tr_func(device, tr_config->tr_arg));
2328 	} else
2329 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2330 }
2331 
2332 static int
2333 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2334 {
2335 	struct xpt_traverse_config *tr_config;
2336 	xpt_periphfunc_t *tr_func;
2337 
2338 	tr_config = (struct xpt_traverse_config *)arg;
2339 
2340 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2341 
2342 	/*
2343 	 * Unlike the other default functions, we don't check for depth
2344 	 * here.  The peripheral driver level is the last level in the EDT,
2345 	 * so if we're here, we should execute the function in question.
2346 	 */
2347 	return(tr_func(periph, tr_config->tr_arg));
2348 }
2349 
2350 /*
2351  * Execute the given function for every bus in the EDT.
2352  */
2353 static int
2354 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2355 {
2356 	struct xpt_traverse_config tr_config;
2357 
2358 	tr_config.depth = XPT_DEPTH_BUS;
2359 	tr_config.tr_func = tr_func;
2360 	tr_config.tr_arg = arg;
2361 
2362 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2363 }
2364 
2365 /*
2366  * Execute the given function for every device in the EDT.
2367  */
2368 static int
2369 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2370 {
2371 	struct xpt_traverse_config tr_config;
2372 
2373 	tr_config.depth = XPT_DEPTH_DEVICE;
2374 	tr_config.tr_func = tr_func;
2375 	tr_config.tr_arg = arg;
2376 
2377 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2378 }
2379 
2380 static int
2381 xptsetasyncfunc(struct cam_ed *device, void *arg)
2382 {
2383 	struct cam_path path;
2384 	struct ccb_getdev cgd;
2385 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2386 
2387 	/*
2388 	 * Don't report unconfigured devices (Wildcard devs,
2389 	 * devices only for target mode, device instances
2390 	 * that have been invalidated but are waiting for
2391 	 * their last reference count to be released).
2392 	 */
2393 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2394 		return (1);
2395 
2396 	xpt_compile_path(&path,
2397 			 NULL,
2398 			 device->target->bus->path_id,
2399 			 device->target->target_id,
2400 			 device->lun_id);
2401 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2402 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2403 	xpt_action((union ccb *)&cgd);
2404 	csa->callback(csa->callback_arg,
2405 			    AC_FOUND_DEVICE,
2406 			    &path, &cgd);
2407 	xpt_release_path(&path);
2408 
2409 	return(1);
2410 }
2411 
2412 static int
2413 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2414 {
2415 	struct cam_path path;
2416 	struct ccb_pathinq cpi;
2417 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2418 
2419 	xpt_compile_path(&path, /*periph*/NULL,
2420 			 bus->sim->path_id,
2421 			 CAM_TARGET_WILDCARD,
2422 			 CAM_LUN_WILDCARD);
2423 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2424 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2425 	xpt_action((union ccb *)&cpi);
2426 	csa->callback(csa->callback_arg,
2427 			    AC_PATH_REGISTERED,
2428 			    &path, &cpi);
2429 	xpt_release_path(&path);
2430 
2431 	return(1);
2432 }
2433 
2434 void
2435 xpt_action(union ccb *start_ccb)
2436 {
2437 
2438 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2439 
2440 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2441 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2442 }
2443 
2444 void
2445 xpt_action_default(union ccb *start_ccb)
2446 {
2447 	struct cam_path *path;
2448 
2449 	path = start_ccb->ccb_h.path;
2450 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2451 
2452 	switch (start_ccb->ccb_h.func_code) {
2453 	case XPT_SCSI_IO:
2454 	{
2455 		struct cam_ed *device;
2456 
2457 		/*
2458 		 * For the sake of compatibility with SCSI-1
2459 		 * devices that may not understand the identify
2460 		 * message, we include lun information in the
2461 		 * second byte of all commands.  SCSI-1 specifies
2462 		 * that luns are a 3 bit value and reserves only 3
2463 		 * bits for lun information in the CDB.  Later
2464 		 * revisions of the SCSI spec allow for more than 8
2465 		 * luns, but have deprecated lun information in the
2466 		 * CDB.  So, if the lun won't fit, we must omit.
2467 		 *
2468 		 * Also be aware that during initial probing for devices,
2469 		 * the inquiry information is unknown but initialized to 0.
2470 		 * This means that this code will be exercised while probing
2471 		 * devices with an ANSI revision greater than 2.
2472 		 */
2473 		device = path->device;
2474 		if (device->protocol_version <= SCSI_REV_2
2475 		 && start_ccb->ccb_h.target_lun < 8
2476 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2477 
2478 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2479 			    start_ccb->ccb_h.target_lun << 5;
2480 		}
2481 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2482 	}
2483 	/* FALLTHROUGH */
2484 	case XPT_TARGET_IO:
2485 	case XPT_CONT_TARGET_IO:
2486 		start_ccb->csio.sense_resid = 0;
2487 		start_ccb->csio.resid = 0;
2488 		/* FALLTHROUGH */
2489 	case XPT_ATA_IO:
2490 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2491 			start_ccb->ataio.resid = 0;
2492 		/* FALLTHROUGH */
2493 	case XPT_RESET_DEV:
2494 	case XPT_ENG_EXEC:
2495 	case XPT_SMP_IO:
2496 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2497 		if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2498 			xpt_run_devq(path->bus->sim->devq);
2499 		break;
2500 	case XPT_CALC_GEOMETRY:
2501 	{
2502 		struct cam_sim *sim;
2503 
2504 		/* Filter out garbage */
2505 		if (start_ccb->ccg.block_size == 0
2506 		 || start_ccb->ccg.volume_size == 0) {
2507 			start_ccb->ccg.cylinders = 0;
2508 			start_ccb->ccg.heads = 0;
2509 			start_ccb->ccg.secs_per_track = 0;
2510 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2511 			break;
2512 		}
2513 #if defined(PC98) || defined(__sparc64__)
2514 		/*
2515 		 * In a PC-98 system, geometry translation depens on
2516 		 * the "real" device geometry obtained from mode page 4.
2517 		 * SCSI geometry translation is performed in the
2518 		 * initialization routine of the SCSI BIOS and the result
2519 		 * stored in host memory.  If the translation is available
2520 		 * in host memory, use it.  If not, rely on the default
2521 		 * translation the device driver performs.
2522 		 * For sparc64, we may need adjust the geometry of large
2523 		 * disks in order to fit the limitations of the 16-bit
2524 		 * fields of the VTOC8 disk label.
2525 		 */
2526 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2527 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2528 			break;
2529 		}
2530 #endif
2531 		sim = path->bus->sim;
2532 		(*(sim->sim_action))(sim, start_ccb);
2533 		break;
2534 	}
2535 	case XPT_ABORT:
2536 	{
2537 		union ccb* abort_ccb;
2538 
2539 		abort_ccb = start_ccb->cab.abort_ccb;
2540 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2541 
2542 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2543 				struct cam_ccbq *ccbq;
2544 				struct cam_ed *device;
2545 
2546 				device = abort_ccb->ccb_h.path->device;
2547 				ccbq = &device->ccbq;
2548 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2549 				abort_ccb->ccb_h.status =
2550 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2551 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2552 				xpt_done(abort_ccb);
2553 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2554 				break;
2555 			}
2556 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2557 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2558 				/*
2559 				 * We've caught this ccb en route to
2560 				 * the SIM.  Flag it for abort and the
2561 				 * SIM will do so just before starting
2562 				 * real work on the CCB.
2563 				 */
2564 				abort_ccb->ccb_h.status =
2565 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2566 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2567 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2568 				break;
2569 			}
2570 		}
2571 		if (XPT_FC_IS_QUEUED(abort_ccb)
2572 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2573 			/*
2574 			 * It's already completed but waiting
2575 			 * for our SWI to get to it.
2576 			 */
2577 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2578 			break;
2579 		}
2580 		/*
2581 		 * If we weren't able to take care of the abort request
2582 		 * in the XPT, pass the request down to the SIM for processing.
2583 		 */
2584 	}
2585 	/* FALLTHROUGH */
2586 	case XPT_ACCEPT_TARGET_IO:
2587 	case XPT_EN_LUN:
2588 	case XPT_IMMED_NOTIFY:
2589 	case XPT_NOTIFY_ACK:
2590 	case XPT_RESET_BUS:
2591 	case XPT_IMMEDIATE_NOTIFY:
2592 	case XPT_NOTIFY_ACKNOWLEDGE:
2593 	case XPT_GET_SIM_KNOB:
2594 	case XPT_SET_SIM_KNOB:
2595 	{
2596 		struct cam_sim *sim;
2597 
2598 		sim = path->bus->sim;
2599 		(*(sim->sim_action))(sim, start_ccb);
2600 		break;
2601 	}
2602 	case XPT_PATH_INQ:
2603 	{
2604 		struct cam_sim *sim;
2605 
2606 		sim = path->bus->sim;
2607 		(*(sim->sim_action))(sim, start_ccb);
2608 		break;
2609 	}
2610 	case XPT_PATH_STATS:
2611 		start_ccb->cpis.last_reset = path->bus->last_reset;
2612 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2613 		break;
2614 	case XPT_GDEV_TYPE:
2615 	{
2616 		struct cam_ed *dev;
2617 
2618 		dev = path->device;
2619 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2620 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2621 		} else {
2622 			struct ccb_getdev *cgd;
2623 
2624 			cgd = &start_ccb->cgd;
2625 			cgd->protocol = dev->protocol;
2626 			cgd->inq_data = dev->inq_data;
2627 			cgd->ident_data = dev->ident_data;
2628 			cgd->inq_flags = dev->inq_flags;
2629 			cgd->ccb_h.status = CAM_REQ_CMP;
2630 			cgd->serial_num_len = dev->serial_num_len;
2631 			if ((dev->serial_num_len > 0)
2632 			 && (dev->serial_num != NULL))
2633 				bcopy(dev->serial_num, cgd->serial_num,
2634 				      dev->serial_num_len);
2635 		}
2636 		break;
2637 	}
2638 	case XPT_GDEV_STATS:
2639 	{
2640 		struct cam_ed *dev;
2641 
2642 		dev = path->device;
2643 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2644 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2645 		} else {
2646 			struct ccb_getdevstats *cgds;
2647 			struct cam_eb *bus;
2648 			struct cam_et *tar;
2649 
2650 			cgds = &start_ccb->cgds;
2651 			bus = path->bus;
2652 			tar = path->target;
2653 			cgds->dev_openings = dev->ccbq.dev_openings;
2654 			cgds->dev_active = dev->ccbq.dev_active;
2655 			cgds->devq_openings = dev->ccbq.devq_openings;
2656 			cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2657 			cgds->held = dev->ccbq.held;
2658 			cgds->last_reset = tar->last_reset;
2659 			cgds->maxtags = dev->maxtags;
2660 			cgds->mintags = dev->mintags;
2661 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2662 				cgds->last_reset = bus->last_reset;
2663 			cgds->ccb_h.status = CAM_REQ_CMP;
2664 		}
2665 		break;
2666 	}
2667 	case XPT_GDEVLIST:
2668 	{
2669 		struct cam_periph	*nperiph;
2670 		struct periph_list	*periph_head;
2671 		struct ccb_getdevlist	*cgdl;
2672 		u_int			i;
2673 		struct cam_ed		*device;
2674 		int			found;
2675 
2676 
2677 		found = 0;
2678 
2679 		/*
2680 		 * Don't want anyone mucking with our data.
2681 		 */
2682 		device = path->device;
2683 		periph_head = &device->periphs;
2684 		cgdl = &start_ccb->cgdl;
2685 
2686 		/*
2687 		 * Check and see if the list has changed since the user
2688 		 * last requested a list member.  If so, tell them that the
2689 		 * list has changed, and therefore they need to start over
2690 		 * from the beginning.
2691 		 */
2692 		if ((cgdl->index != 0) &&
2693 		    (cgdl->generation != device->generation)) {
2694 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2695 			break;
2696 		}
2697 
2698 		/*
2699 		 * Traverse the list of peripherals and attempt to find
2700 		 * the requested peripheral.
2701 		 */
2702 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2703 		     (nperiph != NULL) && (i <= cgdl->index);
2704 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2705 			if (i == cgdl->index) {
2706 				strncpy(cgdl->periph_name,
2707 					nperiph->periph_name,
2708 					DEV_IDLEN);
2709 				cgdl->unit_number = nperiph->unit_number;
2710 				found = 1;
2711 			}
2712 		}
2713 		if (found == 0) {
2714 			cgdl->status = CAM_GDEVLIST_ERROR;
2715 			break;
2716 		}
2717 
2718 		if (nperiph == NULL)
2719 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2720 		else
2721 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2722 
2723 		cgdl->index++;
2724 		cgdl->generation = device->generation;
2725 
2726 		cgdl->ccb_h.status = CAM_REQ_CMP;
2727 		break;
2728 	}
2729 	case XPT_DEV_MATCH:
2730 	{
2731 		dev_pos_type position_type;
2732 		struct ccb_dev_match *cdm;
2733 
2734 		cdm = &start_ccb->cdm;
2735 
2736 		/*
2737 		 * There are two ways of getting at information in the EDT.
2738 		 * The first way is via the primary EDT tree.  It starts
2739 		 * with a list of busses, then a list of targets on a bus,
2740 		 * then devices/luns on a target, and then peripherals on a
2741 		 * device/lun.  The "other" way is by the peripheral driver
2742 		 * lists.  The peripheral driver lists are organized by
2743 		 * peripheral driver.  (obviously)  So it makes sense to
2744 		 * use the peripheral driver list if the user is looking
2745 		 * for something like "da1", or all "da" devices.  If the
2746 		 * user is looking for something on a particular bus/target
2747 		 * or lun, it's generally better to go through the EDT tree.
2748 		 */
2749 
2750 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2751 			position_type = cdm->pos.position_type;
2752 		else {
2753 			u_int i;
2754 
2755 			position_type = CAM_DEV_POS_NONE;
2756 
2757 			for (i = 0; i < cdm->num_patterns; i++) {
2758 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2759 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2760 					position_type = CAM_DEV_POS_EDT;
2761 					break;
2762 				}
2763 			}
2764 
2765 			if (cdm->num_patterns == 0)
2766 				position_type = CAM_DEV_POS_EDT;
2767 			else if (position_type == CAM_DEV_POS_NONE)
2768 				position_type = CAM_DEV_POS_PDRV;
2769 		}
2770 
2771 		/*
2772 		 * Note that we drop the SIM lock here, because the EDT
2773 		 * traversal code needs to do its own locking.
2774 		 */
2775 		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2776 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2777 		case CAM_DEV_POS_EDT:
2778 			xptedtmatch(cdm);
2779 			break;
2780 		case CAM_DEV_POS_PDRV:
2781 			xptperiphlistmatch(cdm);
2782 			break;
2783 		default:
2784 			cdm->status = CAM_DEV_MATCH_ERROR;
2785 			break;
2786 		}
2787 		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2788 
2789 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2790 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2791 		else
2792 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2793 
2794 		break;
2795 	}
2796 	case XPT_SASYNC_CB:
2797 	{
2798 		struct ccb_setasync *csa;
2799 		struct async_node *cur_entry;
2800 		struct async_list *async_head;
2801 		u_int32_t added;
2802 
2803 		csa = &start_ccb->csa;
2804 		added = csa->event_enable;
2805 		async_head = &path->device->asyncs;
2806 
2807 		/*
2808 		 * If there is already an entry for us, simply
2809 		 * update it.
2810 		 */
2811 		cur_entry = SLIST_FIRST(async_head);
2812 		while (cur_entry != NULL) {
2813 			if ((cur_entry->callback_arg == csa->callback_arg)
2814 			 && (cur_entry->callback == csa->callback))
2815 				break;
2816 			cur_entry = SLIST_NEXT(cur_entry, links);
2817 		}
2818 
2819 		if (cur_entry != NULL) {
2820 		 	/*
2821 			 * If the request has no flags set,
2822 			 * remove the entry.
2823 			 */
2824 			added &= ~cur_entry->event_enable;
2825 			if (csa->event_enable == 0) {
2826 				SLIST_REMOVE(async_head, cur_entry,
2827 					     async_node, links);
2828 				xpt_release_device(path->device);
2829 				free(cur_entry, M_CAMXPT);
2830 			} else {
2831 				cur_entry->event_enable = csa->event_enable;
2832 			}
2833 			csa->event_enable = added;
2834 		} else {
2835 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2836 					   M_NOWAIT);
2837 			if (cur_entry == NULL) {
2838 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2839 				break;
2840 			}
2841 			cur_entry->event_enable = csa->event_enable;
2842 			cur_entry->callback_arg = csa->callback_arg;
2843 			cur_entry->callback = csa->callback;
2844 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2845 			xpt_acquire_device(path->device);
2846 		}
2847 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2848 		break;
2849 	}
2850 	case XPT_REL_SIMQ:
2851 	{
2852 		struct ccb_relsim *crs;
2853 		struct cam_ed *dev;
2854 
2855 		crs = &start_ccb->crs;
2856 		dev = path->device;
2857 		if (dev == NULL) {
2858 
2859 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2860 			break;
2861 		}
2862 
2863 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2864 
2865 			/* Don't ever go below one opening */
2866 			if (crs->openings > 0) {
2867 				xpt_dev_ccbq_resize(path, crs->openings);
2868 				if (bootverbose) {
2869 					xpt_print(path,
2870 					    "number of openings is now %d\n",
2871 					    crs->openings);
2872 				}
2873 			}
2874 		}
2875 
2876 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2877 
2878 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2879 
2880 				/*
2881 				 * Just extend the old timeout and decrement
2882 				 * the freeze count so that a single timeout
2883 				 * is sufficient for releasing the queue.
2884 				 */
2885 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2886 				callout_stop(&dev->callout);
2887 			} else {
2888 
2889 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2890 			}
2891 
2892 			callout_reset(&dev->callout,
2893 			    (crs->release_timeout * hz) / 1000,
2894 			    xpt_release_devq_timeout, dev);
2895 
2896 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2897 
2898 		}
2899 
2900 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2901 
2902 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2903 				/*
2904 				 * Decrement the freeze count so that a single
2905 				 * completion is still sufficient to unfreeze
2906 				 * the queue.
2907 				 */
2908 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2909 			} else {
2910 
2911 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2912 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2913 			}
2914 		}
2915 
2916 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2917 
2918 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2919 			 || (dev->ccbq.dev_active == 0)) {
2920 
2921 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2922 			} else {
2923 
2924 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2925 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2926 			}
2927 		}
2928 
2929 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2930 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2931 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2932 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2933 		break;
2934 	}
2935 	case XPT_DEBUG: {
2936 		struct cam_path *oldpath;
2937 		struct cam_sim *oldsim;
2938 
2939 		/* Check that all request bits are supported. */
2940 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2941 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2942 			break;
2943 		}
2944 
2945 		cam_dflags = CAM_DEBUG_NONE;
2946 		if (cam_dpath != NULL) {
2947 			/* To release the old path we must hold proper lock. */
2948 			oldpath = cam_dpath;
2949 			cam_dpath = NULL;
2950 			oldsim = xpt_path_sim(oldpath);
2951 			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2952 			CAM_SIM_LOCK(oldsim);
2953 			xpt_free_path(oldpath);
2954 			CAM_SIM_UNLOCK(oldsim);
2955 			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2956 		}
2957 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2958 			if (xpt_create_path(&cam_dpath, NULL,
2959 					    start_ccb->ccb_h.path_id,
2960 					    start_ccb->ccb_h.target_id,
2961 					    start_ccb->ccb_h.target_lun) !=
2962 					    CAM_REQ_CMP) {
2963 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2964 			} else {
2965 				cam_dflags = start_ccb->cdbg.flags;
2966 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2967 				xpt_print(cam_dpath, "debugging flags now %x\n",
2968 				    cam_dflags);
2969 			}
2970 		} else
2971 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2972 		break;
2973 	}
2974 	case XPT_NOOP:
2975 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2976 			xpt_freeze_devq(path, 1);
2977 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2978 		break;
2979 	default:
2980 	case XPT_SDEV_TYPE:
2981 	case XPT_TERM_IO:
2982 	case XPT_ENG_INQ:
2983 		/* XXX Implement */
2984 		printf("%s: CCB type %#x not supported\n", __func__,
2985 		       start_ccb->ccb_h.func_code);
2986 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2987 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2988 			xpt_done(start_ccb);
2989 		}
2990 		break;
2991 	}
2992 }
2993 
2994 void
2995 xpt_polled_action(union ccb *start_ccb)
2996 {
2997 	u_int32_t timeout;
2998 	struct	  cam_sim *sim;
2999 	struct	  cam_devq *devq;
3000 	struct	  cam_ed *dev;
3001 
3002 
3003 	timeout = start_ccb->ccb_h.timeout * 10;
3004 	sim = start_ccb->ccb_h.path->bus->sim;
3005 	devq = sim->devq;
3006 	dev = start_ccb->ccb_h.path->device;
3007 
3008 	mtx_assert(sim->mtx, MA_OWNED);
3009 
3010 	/* Don't use ISR for this SIM while polling. */
3011 	sim->flags |= CAM_SIM_POLLED;
3012 
3013 	/*
3014 	 * Steal an opening so that no other queued requests
3015 	 * can get it before us while we simulate interrupts.
3016 	 */
3017 	dev->ccbq.devq_openings--;
3018 	dev->ccbq.dev_openings--;
3019 
3020 	while(((devq != NULL && devq->send_openings <= 0) ||
3021 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3022 		DELAY(100);
3023 		(*(sim->sim_poll))(sim);
3024 		camisr_runqueue(sim);
3025 	}
3026 
3027 	dev->ccbq.devq_openings++;
3028 	dev->ccbq.dev_openings++;
3029 
3030 	if (timeout != 0) {
3031 		xpt_action(start_ccb);
3032 		while(--timeout > 0) {
3033 			(*(sim->sim_poll))(sim);
3034 			camisr_runqueue(sim);
3035 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3036 			    != CAM_REQ_INPROG)
3037 				break;
3038 			DELAY(100);
3039 		}
3040 		if (timeout == 0) {
3041 			/*
3042 			 * XXX Is it worth adding a sim_timeout entry
3043 			 * point so we can attempt recovery?  If
3044 			 * this is only used for dumps, I don't think
3045 			 * it is.
3046 			 */
3047 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3048 		}
3049 	} else {
3050 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3051 	}
3052 
3053 	/* We will use CAM ISR for this SIM again. */
3054 	sim->flags &= ~CAM_SIM_POLLED;
3055 }
3056 
3057 /*
3058  * Schedule a peripheral driver to receive a ccb when it's
3059  * target device has space for more transactions.
3060  */
3061 void
3062 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3063 {
3064 	struct cam_ed *device;
3065 	int runq = 0;
3066 
3067 	mtx_assert(perph->sim->mtx, MA_OWNED);
3068 
3069 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3070 	device = perph->path->device;
3071 	if (periph_is_queued(perph)) {
3072 		/* Simply reorder based on new priority */
3073 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3074 			  ("   change priority to %d\n", new_priority));
3075 		if (new_priority < perph->pinfo.priority) {
3076 			camq_change_priority(&device->drvq,
3077 					     perph->pinfo.index,
3078 					     new_priority);
3079 			runq = 1;
3080 		}
3081 	} else {
3082 		/* New entry on the queue */
3083 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3084 			  ("   added periph to queue\n"));
3085 		perph->pinfo.priority = new_priority;
3086 		perph->pinfo.generation = ++device->drvq.generation;
3087 		camq_insert(&device->drvq, &perph->pinfo);
3088 		runq = 1;
3089 	}
3090 	if (runq != 0) {
3091 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3092 			  ("   calling xpt_run_dev_allocq\n"));
3093 		xpt_run_dev_allocq(device);
3094 	}
3095 }
3096 
3097 
3098 /*
3099  * Schedule a device to run on a given queue.
3100  * If the device was inserted as a new entry on the queue,
3101  * return 1 meaning the device queue should be run. If we
3102  * were already queued, implying someone else has already
3103  * started the queue, return 0 so the caller doesn't attempt
3104  * to run the queue.
3105  */
3106 int
3107 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3108 		 u_int32_t new_priority)
3109 {
3110 	int retval;
3111 	u_int32_t old_priority;
3112 
3113 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3114 
3115 	old_priority = pinfo->priority;
3116 
3117 	/*
3118 	 * Are we already queued?
3119 	 */
3120 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3121 		/* Simply reorder based on new priority */
3122 		if (new_priority < old_priority) {
3123 			camq_change_priority(queue, pinfo->index,
3124 					     new_priority);
3125 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3126 					("changed priority to %d\n",
3127 					 new_priority));
3128 			retval = 1;
3129 		} else
3130 			retval = 0;
3131 	} else {
3132 		/* New entry on the queue */
3133 		if (new_priority < old_priority)
3134 			pinfo->priority = new_priority;
3135 
3136 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3137 				("Inserting onto queue\n"));
3138 		pinfo->generation = ++queue->generation;
3139 		camq_insert(queue, pinfo);
3140 		retval = 1;
3141 	}
3142 	return (retval);
3143 }
3144 
3145 static void
3146 xpt_run_dev_allocq(struct cam_ed *device)
3147 {
3148 	struct camq	*drvq;
3149 
3150 	if (device->ccbq.devq_allocating)
3151 		return;
3152 	device->ccbq.devq_allocating = 1;
3153 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3154 	drvq = &device->drvq;
3155 	while ((drvq->entries > 0) &&
3156 	    (device->ccbq.devq_openings > 0 ||
3157 	     CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3158 	    (device->ccbq.queue.qfrozen_cnt == 0)) {
3159 		union	ccb *work_ccb;
3160 		struct	cam_periph *drv;
3161 
3162 		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3163 		    "Device on queue without any work to do"));
3164 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3165 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3166 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3167 				      drv->pinfo.priority);
3168 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3169 					("calling periph start\n"));
3170 			drv->periph_start(drv, work_ccb);
3171 		} else {
3172 			/*
3173 			 * Malloc failure in alloc_ccb
3174 			 */
3175 			/*
3176 			 * XXX add us to a list to be run from free_ccb
3177 			 * if we don't have any ccbs active on this
3178 			 * device queue otherwise we may never get run
3179 			 * again.
3180 			 */
3181 			break;
3182 		}
3183 	}
3184 	device->ccbq.devq_allocating = 0;
3185 }
3186 
3187 static void
3188 xpt_run_devq(struct cam_devq *devq)
3189 {
3190 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3191 
3192 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3193 
3194 	devq->send_queue.qfrozen_cnt++;
3195 	while ((devq->send_queue.entries > 0)
3196 	    && (devq->send_openings > 0)
3197 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3198 		struct	cam_ed_qinfo *qinfo;
3199 		struct	cam_ed *device;
3200 		union ccb *work_ccb;
3201 		struct	cam_sim *sim;
3202 
3203 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3204 							   CAMQ_HEAD);
3205 		device = qinfo->device;
3206 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3207 				("running device %p\n", device));
3208 
3209 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3210 		if (work_ccb == NULL) {
3211 			printf("device on run queue with no ccbs???\n");
3212 			continue;
3213 		}
3214 
3215 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3216 
3217 			mtx_lock(&xsoftc.xpt_lock);
3218 		 	if (xsoftc.num_highpower <= 0) {
3219 				/*
3220 				 * We got a high power command, but we
3221 				 * don't have any available slots.  Freeze
3222 				 * the device queue until we have a slot
3223 				 * available.
3224 				 */
3225 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3226 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3227 						   work_ccb->ccb_h.path->device,
3228 						   highpowerq_entry);
3229 
3230 				mtx_unlock(&xsoftc.xpt_lock);
3231 				continue;
3232 			} else {
3233 				/*
3234 				 * Consume a high power slot while
3235 				 * this ccb runs.
3236 				 */
3237 				xsoftc.num_highpower--;
3238 			}
3239 			mtx_unlock(&xsoftc.xpt_lock);
3240 		}
3241 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3242 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3243 
3244 		devq->send_openings--;
3245 		devq->send_active++;
3246 
3247 		xpt_schedule_devq(devq, device);
3248 
3249 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3250 			/*
3251 			 * The client wants to freeze the queue
3252 			 * after this CCB is sent.
3253 			 */
3254 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3255 		}
3256 
3257 		/* In Target mode, the peripheral driver knows best... */
3258 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3259 			if ((device->inq_flags & SID_CmdQue) != 0
3260 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3261 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3262 			else
3263 				/*
3264 				 * Clear this in case of a retried CCB that
3265 				 * failed due to a rejected tag.
3266 				 */
3267 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3268 		}
3269 
3270 		switch (work_ccb->ccb_h.func_code) {
3271 		case XPT_SCSI_IO:
3272 			CAM_DEBUG(work_ccb->ccb_h.path,
3273 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3274 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3275 					  &device->inq_data),
3276 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3277 					     cdb_str, sizeof(cdb_str))));
3278 			break;
3279 		case XPT_ATA_IO:
3280 			CAM_DEBUG(work_ccb->ccb_h.path,
3281 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3282 			     ata_op_string(&work_ccb->ataio.cmd),
3283 			     ata_cmd_string(&work_ccb->ataio.cmd,
3284 					    cdb_str, sizeof(cdb_str))));
3285 			break;
3286 		default:
3287 			break;
3288 		}
3289 
3290 		/*
3291 		 * Device queues can be shared among multiple sim instances
3292 		 * that reside on different busses.  Use the SIM in the queue
3293 		 * CCB's path, rather than the one in the bus that was passed
3294 		 * into this function.
3295 		 */
3296 		sim = work_ccb->ccb_h.path->bus->sim;
3297 		(*(sim->sim_action))(sim, work_ccb);
3298 	}
3299 	devq->send_queue.qfrozen_cnt--;
3300 }
3301 
3302 /*
3303  * This function merges stuff from the slave ccb into the master ccb, while
3304  * keeping important fields in the master ccb constant.
3305  */
3306 void
3307 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3308 {
3309 
3310 	/*
3311 	 * Pull fields that are valid for peripheral drivers to set
3312 	 * into the master CCB along with the CCB "payload".
3313 	 */
3314 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3315 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3316 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3317 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3318 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3319 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3320 }
3321 
3322 void
3323 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3324 {
3325 
3326 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3327 	ccb_h->pinfo.priority = priority;
3328 	ccb_h->path = path;
3329 	ccb_h->path_id = path->bus->path_id;
3330 	if (path->target)
3331 		ccb_h->target_id = path->target->target_id;
3332 	else
3333 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3334 	if (path->device) {
3335 		ccb_h->target_lun = path->device->lun_id;
3336 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3337 	} else {
3338 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3339 	}
3340 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3341 	ccb_h->flags = 0;
3342 }
3343 
3344 /* Path manipulation functions */
3345 cam_status
3346 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3347 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3348 {
3349 	struct	   cam_path *path;
3350 	cam_status status;
3351 
3352 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3353 
3354 	if (path == NULL) {
3355 		status = CAM_RESRC_UNAVAIL;
3356 		return(status);
3357 	}
3358 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3359 	if (status != CAM_REQ_CMP) {
3360 		free(path, M_CAMPATH);
3361 		path = NULL;
3362 	}
3363 	*new_path_ptr = path;
3364 	return (status);
3365 }
3366 
3367 cam_status
3368 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3369 			 struct cam_periph *periph, path_id_t path_id,
3370 			 target_id_t target_id, lun_id_t lun_id)
3371 {
3372 	struct	   cam_path *path;
3373 	struct	   cam_eb *bus = NULL;
3374 	cam_status status;
3375 
3376 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3377 
3378 	bus = xpt_find_bus(path_id);
3379 	if (bus != NULL)
3380 		CAM_SIM_LOCK(bus->sim);
3381 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3382 	if (bus != NULL) {
3383 		CAM_SIM_UNLOCK(bus->sim);
3384 		xpt_release_bus(bus);
3385 	}
3386 	if (status != CAM_REQ_CMP) {
3387 		free(path, M_CAMPATH);
3388 		path = NULL;
3389 	}
3390 	*new_path_ptr = path;
3391 	return (status);
3392 }
3393 
3394 cam_status
3395 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3396 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3397 {
3398 	struct	     cam_eb *bus;
3399 	struct	     cam_et *target;
3400 	struct	     cam_ed *device;
3401 	cam_status   status;
3402 
3403 	status = CAM_REQ_CMP;	/* Completed without error */
3404 	target = NULL;		/* Wildcarded */
3405 	device = NULL;		/* Wildcarded */
3406 
3407 	/*
3408 	 * We will potentially modify the EDT, so block interrupts
3409 	 * that may attempt to create cam paths.
3410 	 */
3411 	bus = xpt_find_bus(path_id);
3412 	if (bus == NULL) {
3413 		status = CAM_PATH_INVALID;
3414 	} else {
3415 		target = xpt_find_target(bus, target_id);
3416 		if (target == NULL) {
3417 			/* Create one */
3418 			struct cam_et *new_target;
3419 
3420 			new_target = xpt_alloc_target(bus, target_id);
3421 			if (new_target == NULL) {
3422 				status = CAM_RESRC_UNAVAIL;
3423 			} else {
3424 				target = new_target;
3425 			}
3426 		}
3427 		if (target != NULL) {
3428 			device = xpt_find_device(target, lun_id);
3429 			if (device == NULL) {
3430 				/* Create one */
3431 				struct cam_ed *new_device;
3432 
3433 				new_device =
3434 				    (*(bus->xport->alloc_device))(bus,
3435 								      target,
3436 								      lun_id);
3437 				if (new_device == NULL) {
3438 					status = CAM_RESRC_UNAVAIL;
3439 				} else {
3440 					device = new_device;
3441 				}
3442 			}
3443 		}
3444 	}
3445 
3446 	/*
3447 	 * Only touch the user's data if we are successful.
3448 	 */
3449 	if (status == CAM_REQ_CMP) {
3450 		new_path->periph = perph;
3451 		new_path->bus = bus;
3452 		new_path->target = target;
3453 		new_path->device = device;
3454 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3455 	} else {
3456 		if (device != NULL)
3457 			xpt_release_device(device);
3458 		if (target != NULL)
3459 			xpt_release_target(target);
3460 		if (bus != NULL)
3461 			xpt_release_bus(bus);
3462 	}
3463 	return (status);
3464 }
3465 
3466 void
3467 xpt_release_path(struct cam_path *path)
3468 {
3469 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3470 	if (path->device != NULL) {
3471 		xpt_release_device(path->device);
3472 		path->device = NULL;
3473 	}
3474 	if (path->target != NULL) {
3475 		xpt_release_target(path->target);
3476 		path->target = NULL;
3477 	}
3478 	if (path->bus != NULL) {
3479 		xpt_release_bus(path->bus);
3480 		path->bus = NULL;
3481 	}
3482 }
3483 
3484 void
3485 xpt_free_path(struct cam_path *path)
3486 {
3487 
3488 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3489 	xpt_release_path(path);
3490 	free(path, M_CAMPATH);
3491 }
3492 
3493 void
3494 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3495     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3496 {
3497 
3498 	xpt_lock_buses();
3499 	if (bus_ref) {
3500 		if (path->bus)
3501 			*bus_ref = path->bus->refcount;
3502 		else
3503 			*bus_ref = 0;
3504 	}
3505 	if (periph_ref) {
3506 		if (path->periph)
3507 			*periph_ref = path->periph->refcount;
3508 		else
3509 			*periph_ref = 0;
3510 	}
3511 	xpt_unlock_buses();
3512 	if (target_ref) {
3513 		if (path->target)
3514 			*target_ref = path->target->refcount;
3515 		else
3516 			*target_ref = 0;
3517 	}
3518 	if (device_ref) {
3519 		if (path->device)
3520 			*device_ref = path->device->refcount;
3521 		else
3522 			*device_ref = 0;
3523 	}
3524 }
3525 
3526 /*
3527  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3528  * in path1, 2 for match with wildcards in path2.
3529  */
3530 int
3531 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3532 {
3533 	int retval = 0;
3534 
3535 	if (path1->bus != path2->bus) {
3536 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3537 			retval = 1;
3538 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3539 			retval = 2;
3540 		else
3541 			return (-1);
3542 	}
3543 	if (path1->target != path2->target) {
3544 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3545 			if (retval == 0)
3546 				retval = 1;
3547 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3548 			retval = 2;
3549 		else
3550 			return (-1);
3551 	}
3552 	if (path1->device != path2->device) {
3553 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3554 			if (retval == 0)
3555 				retval = 1;
3556 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3557 			retval = 2;
3558 		else
3559 			return (-1);
3560 	}
3561 	return (retval);
3562 }
3563 
3564 int
3565 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3566 {
3567 	int retval = 0;
3568 
3569 	if (path->bus != dev->target->bus) {
3570 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3571 			retval = 1;
3572 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3573 			retval = 2;
3574 		else
3575 			return (-1);
3576 	}
3577 	if (path->target != dev->target) {
3578 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3579 			if (retval == 0)
3580 				retval = 1;
3581 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3582 			retval = 2;
3583 		else
3584 			return (-1);
3585 	}
3586 	if (path->device != dev) {
3587 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3588 			if (retval == 0)
3589 				retval = 1;
3590 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3591 			retval = 2;
3592 		else
3593 			return (-1);
3594 	}
3595 	return (retval);
3596 }
3597 
3598 void
3599 xpt_print_path(struct cam_path *path)
3600 {
3601 
3602 	if (path == NULL)
3603 		printf("(nopath): ");
3604 	else {
3605 		if (path->periph != NULL)
3606 			printf("(%s%d:", path->periph->periph_name,
3607 			       path->periph->unit_number);
3608 		else
3609 			printf("(noperiph:");
3610 
3611 		if (path->bus != NULL)
3612 			printf("%s%d:%d:", path->bus->sim->sim_name,
3613 			       path->bus->sim->unit_number,
3614 			       path->bus->sim->bus_id);
3615 		else
3616 			printf("nobus:");
3617 
3618 		if (path->target != NULL)
3619 			printf("%d:", path->target->target_id);
3620 		else
3621 			printf("X:");
3622 
3623 		if (path->device != NULL)
3624 			printf("%d): ", path->device->lun_id);
3625 		else
3626 			printf("X): ");
3627 	}
3628 }
3629 
3630 void
3631 xpt_print_device(struct cam_ed *device)
3632 {
3633 
3634 	if (device == NULL)
3635 		printf("(nopath): ");
3636 	else {
3637 		printf("(noperiph:%s%d:%d:%d:%d): ", device->sim->sim_name,
3638 		       device->sim->unit_number,
3639 		       device->sim->bus_id,
3640 		       device->target->target_id,
3641 		       device->lun_id);
3642 	}
3643 }
3644 
3645 void
3646 xpt_print(struct cam_path *path, const char *fmt, ...)
3647 {
3648 	va_list ap;
3649 	xpt_print_path(path);
3650 	va_start(ap, fmt);
3651 	vprintf(fmt, ap);
3652 	va_end(ap);
3653 }
3654 
3655 int
3656 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3657 {
3658 	struct sbuf sb;
3659 
3660 #ifdef INVARIANTS
3661 	if (path != NULL && path->bus != NULL)
3662 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3663 #endif
3664 
3665 	sbuf_new(&sb, str, str_len, 0);
3666 
3667 	if (path == NULL)
3668 		sbuf_printf(&sb, "(nopath): ");
3669 	else {
3670 		if (path->periph != NULL)
3671 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3672 				    path->periph->unit_number);
3673 		else
3674 			sbuf_printf(&sb, "(noperiph:");
3675 
3676 		if (path->bus != NULL)
3677 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3678 				    path->bus->sim->unit_number,
3679 				    path->bus->sim->bus_id);
3680 		else
3681 			sbuf_printf(&sb, "nobus:");
3682 
3683 		if (path->target != NULL)
3684 			sbuf_printf(&sb, "%d:", path->target->target_id);
3685 		else
3686 			sbuf_printf(&sb, "X:");
3687 
3688 		if (path->device != NULL)
3689 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3690 		else
3691 			sbuf_printf(&sb, "X): ");
3692 	}
3693 	sbuf_finish(&sb);
3694 
3695 	return(sbuf_len(&sb));
3696 }
3697 
3698 path_id_t
3699 xpt_path_path_id(struct cam_path *path)
3700 {
3701 	return(path->bus->path_id);
3702 }
3703 
3704 target_id_t
3705 xpt_path_target_id(struct cam_path *path)
3706 {
3707 	if (path->target != NULL)
3708 		return (path->target->target_id);
3709 	else
3710 		return (CAM_TARGET_WILDCARD);
3711 }
3712 
3713 lun_id_t
3714 xpt_path_lun_id(struct cam_path *path)
3715 {
3716 	if (path->device != NULL)
3717 		return (path->device->lun_id);
3718 	else
3719 		return (CAM_LUN_WILDCARD);
3720 }
3721 
3722 struct cam_sim *
3723 xpt_path_sim(struct cam_path *path)
3724 {
3725 
3726 	return (path->bus->sim);
3727 }
3728 
3729 struct cam_periph*
3730 xpt_path_periph(struct cam_path *path)
3731 {
3732 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3733 
3734 	return (path->periph);
3735 }
3736 
3737 int
3738 xpt_path_legacy_ata_id(struct cam_path *path)
3739 {
3740 	struct cam_eb *bus;
3741 	int bus_id;
3742 
3743 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3744 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3745 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3746 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3747 		return (-1);
3748 
3749 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3750 	    path->bus->sim->unit_number < 2) {
3751 		bus_id = path->bus->sim->unit_number;
3752 	} else {
3753 		bus_id = 2;
3754 		xpt_lock_buses();
3755 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3756 			if (bus == path->bus)
3757 				break;
3758 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3759 			     bus->sim->unit_number >= 2) ||
3760 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3761 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3762 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3763 				bus_id++;
3764 		}
3765 		xpt_unlock_buses();
3766 	}
3767 	if (path->target != NULL) {
3768 		if (path->target->target_id < 2)
3769 			return (bus_id * 2 + path->target->target_id);
3770 		else
3771 			return (-1);
3772 	} else
3773 		return (bus_id * 2);
3774 }
3775 
3776 /*
3777  * Release a CAM control block for the caller.  Remit the cost of the structure
3778  * to the device referenced by the path.  If the this device had no 'credits'
3779  * and peripheral drivers have registered async callbacks for this notification
3780  * call them now.
3781  */
3782 void
3783 xpt_release_ccb(union ccb *free_ccb)
3784 {
3785 	struct	 cam_path *path;
3786 	struct	 cam_ed *device;
3787 	struct	 cam_eb *bus;
3788 	struct   cam_sim *sim;
3789 
3790 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3791 	path = free_ccb->ccb_h.path;
3792 	device = path->device;
3793 	bus = path->bus;
3794 	sim = bus->sim;
3795 
3796 	mtx_assert(sim->mtx, MA_OWNED);
3797 
3798 	cam_ccbq_release_opening(&device->ccbq);
3799 	if (sim->ccb_count > sim->max_ccbs) {
3800 		xpt_free_ccb(free_ccb);
3801 		sim->ccb_count--;
3802 	} else {
3803 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3804 		    xpt_links.sle);
3805 	}
3806 	xpt_run_dev_allocq(device);
3807 }
3808 
3809 /* Functions accessed by SIM drivers */
3810 
3811 static struct xpt_xport xport_default = {
3812 	.alloc_device = xpt_alloc_device_default,
3813 	.action = xpt_action_default,
3814 	.async = xpt_dev_async_default,
3815 };
3816 
3817 /*
3818  * A sim structure, listing the SIM entry points and instance
3819  * identification info is passed to xpt_bus_register to hook the SIM
3820  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3821  * for this new bus and places it in the array of busses and assigns
3822  * it a path_id.  The path_id may be influenced by "hard wiring"
3823  * information specified by the user.  Once interrupt services are
3824  * available, the bus will be probed.
3825  */
3826 int32_t
3827 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3828 {
3829 	struct cam_eb *new_bus;
3830 	struct cam_eb *old_bus;
3831 	struct ccb_pathinq cpi;
3832 	struct cam_path *path;
3833 	cam_status status;
3834 
3835 	mtx_assert(sim->mtx, MA_OWNED);
3836 
3837 	sim->bus_id = bus;
3838 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3839 					  M_CAMXPT, M_NOWAIT);
3840 	if (new_bus == NULL) {
3841 		/* Couldn't satisfy request */
3842 		return (CAM_RESRC_UNAVAIL);
3843 	}
3844 	if (strcmp(sim->sim_name, "xpt") != 0) {
3845 		sim->path_id =
3846 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3847 	}
3848 
3849 	TAILQ_INIT(&new_bus->et_entries);
3850 	new_bus->path_id = sim->path_id;
3851 	cam_sim_hold(sim);
3852 	new_bus->sim = sim;
3853 	timevalclear(&new_bus->last_reset);
3854 	new_bus->flags = 0;
3855 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3856 	new_bus->generation = 0;
3857 
3858 	xpt_lock_buses();
3859 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3860 	while (old_bus != NULL
3861 	    && old_bus->path_id < new_bus->path_id)
3862 		old_bus = TAILQ_NEXT(old_bus, links);
3863 	if (old_bus != NULL)
3864 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3865 	else
3866 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3867 	xsoftc.bus_generation++;
3868 	xpt_unlock_buses();
3869 
3870 	/*
3871 	 * Set a default transport so that a PATH_INQ can be issued to
3872 	 * the SIM.  This will then allow for probing and attaching of
3873 	 * a more appropriate transport.
3874 	 */
3875 	new_bus->xport = &xport_default;
3876 
3877 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3878 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3879 	if (status != CAM_REQ_CMP) {
3880 		xpt_release_bus(new_bus);
3881 		free(path, M_CAMXPT);
3882 		return (CAM_RESRC_UNAVAIL);
3883 	}
3884 
3885 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3886 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3887 	xpt_action((union ccb *)&cpi);
3888 
3889 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3890 		switch (cpi.transport) {
3891 		case XPORT_SPI:
3892 		case XPORT_SAS:
3893 		case XPORT_FC:
3894 		case XPORT_USB:
3895 		case XPORT_ISCSI:
3896 		case XPORT_PPB:
3897 			new_bus->xport = scsi_get_xport();
3898 			break;
3899 		case XPORT_ATA:
3900 		case XPORT_SATA:
3901 			new_bus->xport = ata_get_xport();
3902 			break;
3903 		default:
3904 			new_bus->xport = &xport_default;
3905 			break;
3906 		}
3907 	}
3908 
3909 	/* Notify interested parties */
3910 	if (sim->path_id != CAM_XPT_PATH_ID) {
3911 
3912 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3913 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3914 			union	ccb *scan_ccb;
3915 
3916 			/* Initiate bus rescan. */
3917 			scan_ccb = xpt_alloc_ccb_nowait();
3918 			if (scan_ccb != NULL) {
3919 				scan_ccb->ccb_h.path = path;
3920 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3921 				scan_ccb->crcn.flags = 0;
3922 				xpt_rescan(scan_ccb);
3923 			} else
3924 				xpt_print(path,
3925 					  "Can't allocate CCB to scan bus\n");
3926 		} else
3927 			xpt_free_path(path);
3928 	} else
3929 		xpt_free_path(path);
3930 	return (CAM_SUCCESS);
3931 }
3932 
3933 int32_t
3934 xpt_bus_deregister(path_id_t pathid)
3935 {
3936 	struct cam_path bus_path;
3937 	cam_status status;
3938 
3939 	status = xpt_compile_path(&bus_path, NULL, pathid,
3940 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3941 	if (status != CAM_REQ_CMP)
3942 		return (status);
3943 
3944 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3945 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3946 
3947 	/* Release the reference count held while registered. */
3948 	xpt_release_bus(bus_path.bus);
3949 	xpt_release_path(&bus_path);
3950 
3951 	return (CAM_REQ_CMP);
3952 }
3953 
3954 static path_id_t
3955 xptnextfreepathid(void)
3956 {
3957 	struct cam_eb *bus;
3958 	path_id_t pathid;
3959 	const char *strval;
3960 
3961 	pathid = 0;
3962 	xpt_lock_buses();
3963 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3964 retry:
3965 	/* Find an unoccupied pathid */
3966 	while (bus != NULL && bus->path_id <= pathid) {
3967 		if (bus->path_id == pathid)
3968 			pathid++;
3969 		bus = TAILQ_NEXT(bus, links);
3970 	}
3971 	xpt_unlock_buses();
3972 
3973 	/*
3974 	 * Ensure that this pathid is not reserved for
3975 	 * a bus that may be registered in the future.
3976 	 */
3977 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3978 		++pathid;
3979 		/* Start the search over */
3980 		xpt_lock_buses();
3981 		goto retry;
3982 	}
3983 	return (pathid);
3984 }
3985 
3986 static path_id_t
3987 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3988 {
3989 	path_id_t pathid;
3990 	int i, dunit, val;
3991 	char buf[32];
3992 	const char *dname;
3993 
3994 	pathid = CAM_XPT_PATH_ID;
3995 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3996 	i = 0;
3997 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3998 		if (strcmp(dname, "scbus")) {
3999 			/* Avoid a bit of foot shooting. */
4000 			continue;
4001 		}
4002 		if (dunit < 0)		/* unwired?! */
4003 			continue;
4004 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4005 			if (sim_bus == val) {
4006 				pathid = dunit;
4007 				break;
4008 			}
4009 		} else if (sim_bus == 0) {
4010 			/* Unspecified matches bus 0 */
4011 			pathid = dunit;
4012 			break;
4013 		} else {
4014 			printf("Ambiguous scbus configuration for %s%d "
4015 			       "bus %d, cannot wire down.  The kernel "
4016 			       "config entry for scbus%d should "
4017 			       "specify a controller bus.\n"
4018 			       "Scbus will be assigned dynamically.\n",
4019 			       sim_name, sim_unit, sim_bus, dunit);
4020 			break;
4021 		}
4022 	}
4023 
4024 	if (pathid == CAM_XPT_PATH_ID)
4025 		pathid = xptnextfreepathid();
4026 	return (pathid);
4027 }
4028 
4029 static const char *
4030 xpt_async_string(u_int32_t async_code)
4031 {
4032 
4033 	switch (async_code) {
4034 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4035 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4036 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4037 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4038 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4039 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4040 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4041 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4042 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4043 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4044 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4045 	case AC_CONTRACT: return ("AC_CONTRACT");
4046 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4047 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4048 	}
4049 	return ("AC_UNKNOWN");
4050 }
4051 
4052 void
4053 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4054 {
4055 	struct cam_eb *bus;
4056 	struct cam_et *target, *next_target;
4057 	struct cam_ed *device, *next_device;
4058 
4059 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4060 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4061 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4062 
4063 	/*
4064 	 * Most async events come from a CAM interrupt context.  In
4065 	 * a few cases, the error recovery code at the peripheral layer,
4066 	 * which may run from our SWI or a process context, may signal
4067 	 * deferred events with a call to xpt_async.
4068 	 */
4069 
4070 	bus = path->bus;
4071 
4072 	if (async_code == AC_BUS_RESET) {
4073 		/* Update our notion of when the last reset occurred */
4074 		microtime(&bus->last_reset);
4075 	}
4076 
4077 	for (target = TAILQ_FIRST(&bus->et_entries);
4078 	     target != NULL;
4079 	     target = next_target) {
4080 
4081 		next_target = TAILQ_NEXT(target, links);
4082 
4083 		if (path->target != target
4084 		 && path->target->target_id != CAM_TARGET_WILDCARD
4085 		 && target->target_id != CAM_TARGET_WILDCARD)
4086 			continue;
4087 
4088 		if (async_code == AC_SENT_BDR) {
4089 			/* Update our notion of when the last reset occurred */
4090 			microtime(&path->target->last_reset);
4091 		}
4092 
4093 		for (device = TAILQ_FIRST(&target->ed_entries);
4094 		     device != NULL;
4095 		     device = next_device) {
4096 
4097 			next_device = TAILQ_NEXT(device, links);
4098 
4099 			if (path->device != device
4100 			 && path->device->lun_id != CAM_LUN_WILDCARD
4101 			 && device->lun_id != CAM_LUN_WILDCARD)
4102 				continue;
4103 			/*
4104 			 * The async callback could free the device.
4105 			 * If it is a broadcast async, it doesn't hold
4106 			 * device reference, so take our own reference.
4107 			 */
4108 			xpt_acquire_device(device);
4109 			(*(bus->xport->async))(async_code, bus,
4110 					       target, device,
4111 					       async_arg);
4112 
4113 			xpt_async_bcast(&device->asyncs, async_code,
4114 					path, async_arg);
4115 			xpt_release_device(device);
4116 		}
4117 	}
4118 
4119 	/*
4120 	 * If this wasn't a fully wildcarded async, tell all
4121 	 * clients that want all async events.
4122 	 */
4123 	if (bus != xpt_periph->path->bus)
4124 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4125 				path, async_arg);
4126 }
4127 
4128 static void
4129 xpt_async_bcast(struct async_list *async_head,
4130 		u_int32_t async_code,
4131 		struct cam_path *path, void *async_arg)
4132 {
4133 	struct async_node *cur_entry;
4134 
4135 	cur_entry = SLIST_FIRST(async_head);
4136 	while (cur_entry != NULL) {
4137 		struct async_node *next_entry;
4138 		/*
4139 		 * Grab the next list entry before we call the current
4140 		 * entry's callback.  This is because the callback function
4141 		 * can delete its async callback entry.
4142 		 */
4143 		next_entry = SLIST_NEXT(cur_entry, links);
4144 		if ((cur_entry->event_enable & async_code) != 0)
4145 			cur_entry->callback(cur_entry->callback_arg,
4146 					    async_code, path,
4147 					    async_arg);
4148 		cur_entry = next_entry;
4149 	}
4150 }
4151 
4152 static void
4153 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4154 		      struct cam_et *target, struct cam_ed *device,
4155 		      void *async_arg)
4156 {
4157 	printf("%s called\n", __func__);
4158 }
4159 
4160 u_int32_t
4161 xpt_freeze_devq(struct cam_path *path, u_int count)
4162 {
4163 	struct cam_ed *dev = path->device;
4164 
4165 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4166 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq() %u->%u\n",
4167 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4168 	dev->ccbq.queue.qfrozen_cnt += count;
4169 	/* Remove frozen device from sendq. */
4170 	if (device_is_queued(dev)) {
4171 		camq_remove(&dev->sim->devq->send_queue,
4172 		    dev->devq_entry.pinfo.index);
4173 	}
4174 	return (dev->ccbq.queue.qfrozen_cnt);
4175 }
4176 
4177 u_int32_t
4178 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4179 {
4180 
4181 	mtx_assert(sim->mtx, MA_OWNED);
4182 	sim->devq->send_queue.qfrozen_cnt += count;
4183 	return (sim->devq->send_queue.qfrozen_cnt);
4184 }
4185 
4186 static void
4187 xpt_release_devq_timeout(void *arg)
4188 {
4189 	struct cam_ed *device;
4190 
4191 	device = (struct cam_ed *)arg;
4192 	CAM_DEBUG_DEV(device, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4193 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4194 }
4195 
4196 void
4197 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4198 {
4199 
4200 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4201 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4202 	    count, run_queue));
4203 	xpt_release_devq_device(path->device, count, run_queue);
4204 }
4205 
4206 void
4207 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4208 {
4209 
4210 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4211 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4212 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4213 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4214 #ifdef INVARIANTS
4215 		printf("xpt_release_devq(): requested %u > present %u\n",
4216 		    count, dev->ccbq.queue.qfrozen_cnt);
4217 #endif
4218 		count = dev->ccbq.queue.qfrozen_cnt;
4219 	}
4220 	dev->ccbq.queue.qfrozen_cnt -= count;
4221 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4222 		/*
4223 		 * No longer need to wait for a successful
4224 		 * command completion.
4225 		 */
4226 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4227 		/*
4228 		 * Remove any timeouts that might be scheduled
4229 		 * to release this queue.
4230 		 */
4231 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4232 			callout_stop(&dev->callout);
4233 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4234 		}
4235 		xpt_run_dev_allocq(dev);
4236 		if (run_queue == 0)
4237 			return;
4238 		/*
4239 		 * Now that we are unfrozen schedule the
4240 		 * device so any pending transactions are
4241 		 * run.
4242 		 */
4243 		if (xpt_schedule_devq(dev->sim->devq, dev))
4244 			xpt_run_devq(dev->sim->devq);
4245 	}
4246 }
4247 
4248 void
4249 xpt_release_simq(struct cam_sim *sim, int run_queue)
4250 {
4251 	struct	camq *sendq;
4252 
4253 	mtx_assert(sim->mtx, MA_OWNED);
4254 	sendq = &(sim->devq->send_queue);
4255 	if (sendq->qfrozen_cnt <= 0) {
4256 #ifdef INVARIANTS
4257 		printf("xpt_release_simq: requested 1 > present %u\n",
4258 		    sendq->qfrozen_cnt);
4259 #endif
4260 	} else
4261 		sendq->qfrozen_cnt--;
4262 	if (sendq->qfrozen_cnt == 0) {
4263 		/*
4264 		 * If there is a timeout scheduled to release this
4265 		 * sim queue, remove it.  The queue frozen count is
4266 		 * already at 0.
4267 		 */
4268 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4269 			callout_stop(&sim->callout);
4270 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4271 		}
4272 		if (run_queue) {
4273 			/*
4274 			 * Now that we are unfrozen run the send queue.
4275 			 */
4276 			xpt_run_devq(sim->devq);
4277 		}
4278 	}
4279 }
4280 
4281 /*
4282  * XXX Appears to be unused.
4283  */
4284 static void
4285 xpt_release_simq_timeout(void *arg)
4286 {
4287 	struct cam_sim *sim;
4288 
4289 	sim = (struct cam_sim *)arg;
4290 	xpt_release_simq(sim, /* run_queue */ TRUE);
4291 }
4292 
4293 void
4294 xpt_done(union ccb *done_ccb)
4295 {
4296 	struct cam_sim *sim;
4297 	int	first;
4298 
4299 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4300 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4301 		/*
4302 		 * Queue up the request for handling by our SWI handler
4303 		 * any of the "non-immediate" type of ccbs.
4304 		 */
4305 		sim = done_ccb->ccb_h.path->bus->sim;
4306 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4307 		    sim_links.tqe);
4308 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4309 		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4310 		    CAM_SIM_BATCH)) == 0) {
4311 			mtx_lock(&cam_simq_lock);
4312 			first = TAILQ_EMPTY(&cam_simq);
4313 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4314 			mtx_unlock(&cam_simq_lock);
4315 			sim->flags |= CAM_SIM_ON_DONEQ;
4316 			if (first)
4317 				swi_sched(cambio_ih, 0);
4318 		}
4319 	}
4320 }
4321 
4322 void
4323 xpt_batch_start(struct cam_sim *sim)
4324 {
4325 
4326 	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4327 	sim->flags |= CAM_SIM_BATCH;
4328 }
4329 
4330 void
4331 xpt_batch_done(struct cam_sim *sim)
4332 {
4333 
4334 	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4335 	sim->flags &= ~CAM_SIM_BATCH;
4336 	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4337 	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4338 		camisr_runqueue(sim);
4339 }
4340 
4341 union ccb *
4342 xpt_alloc_ccb()
4343 {
4344 	union ccb *new_ccb;
4345 
4346 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4347 	return (new_ccb);
4348 }
4349 
4350 union ccb *
4351 xpt_alloc_ccb_nowait()
4352 {
4353 	union ccb *new_ccb;
4354 
4355 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4356 	return (new_ccb);
4357 }
4358 
4359 void
4360 xpt_free_ccb(union ccb *free_ccb)
4361 {
4362 	free(free_ccb, M_CAMCCB);
4363 }
4364 
4365 
4366 
4367 /* Private XPT functions */
4368 
4369 /*
4370  * Get a CAM control block for the caller. Charge the structure to the device
4371  * referenced by the path.  If the this device has no 'credits' then the
4372  * device already has the maximum number of outstanding operations under way
4373  * and we return NULL. If we don't have sufficient resources to allocate more
4374  * ccbs, we also return NULL.
4375  */
4376 static union ccb *
4377 xpt_get_ccb(struct cam_ed *device)
4378 {
4379 	union ccb *new_ccb;
4380 	struct cam_sim *sim;
4381 
4382 	sim = device->sim;
4383 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4384 		new_ccb = xpt_alloc_ccb_nowait();
4385                 if (new_ccb == NULL) {
4386 			return (NULL);
4387 		}
4388 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4389 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4390 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4391 				  xpt_links.sle);
4392 		sim->ccb_count++;
4393 	}
4394 	cam_ccbq_take_opening(&device->ccbq);
4395 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4396 	return (new_ccb);
4397 }
4398 
4399 static void
4400 xpt_release_bus(struct cam_eb *bus)
4401 {
4402 
4403 	xpt_lock_buses();
4404 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4405 	if (--bus->refcount > 0) {
4406 		xpt_unlock_buses();
4407 		return;
4408 	}
4409 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4410 	    ("refcount is zero, but target list is not empty"));
4411 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4412 	xsoftc.bus_generation++;
4413 	xpt_unlock_buses();
4414 	cam_sim_release(bus->sim);
4415 	free(bus, M_CAMXPT);
4416 }
4417 
4418 static struct cam_et *
4419 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4420 {
4421 	struct cam_et *cur_target, *target;
4422 
4423 	mtx_assert(bus->sim->mtx, MA_OWNED);
4424 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4425 					 M_NOWAIT|M_ZERO);
4426 	if (target == NULL)
4427 		return (NULL);
4428 
4429 	TAILQ_INIT(&target->ed_entries);
4430 	target->bus = bus;
4431 	target->target_id = target_id;
4432 	target->refcount = 1;
4433 	target->generation = 0;
4434 	target->luns = NULL;
4435 	timevalclear(&target->last_reset);
4436 	/*
4437 	 * Hold a reference to our parent bus so it
4438 	 * will not go away before we do.
4439 	 */
4440 	xpt_lock_buses();
4441 	bus->refcount++;
4442 	xpt_unlock_buses();
4443 
4444 	/* Insertion sort into our bus's target list */
4445 	cur_target = TAILQ_FIRST(&bus->et_entries);
4446 	while (cur_target != NULL && cur_target->target_id < target_id)
4447 		cur_target = TAILQ_NEXT(cur_target, links);
4448 	if (cur_target != NULL) {
4449 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4450 	} else {
4451 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4452 	}
4453 	bus->generation++;
4454 	return (target);
4455 }
4456 
4457 static void
4458 xpt_release_target(struct cam_et *target)
4459 {
4460 
4461 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4462 	if (--target->refcount > 0)
4463 		return;
4464 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4465 	    ("refcount is zero, but device list is not empty"));
4466 	TAILQ_REMOVE(&target->bus->et_entries, target, links);
4467 	target->bus->generation++;
4468 	xpt_release_bus(target->bus);
4469 	if (target->luns)
4470 		free(target->luns, M_CAMXPT);
4471 	free(target, M_CAMXPT);
4472 }
4473 
4474 static struct cam_ed *
4475 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4476 			 lun_id_t lun_id)
4477 {
4478 	struct cam_ed *device;
4479 
4480 	device = xpt_alloc_device(bus, target, lun_id);
4481 	if (device == NULL)
4482 		return (NULL);
4483 
4484 	device->mintags = 1;
4485 	device->maxtags = 1;
4486 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4487 	return (device);
4488 }
4489 
4490 struct cam_ed *
4491 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4492 {
4493 	struct cam_ed	*cur_device, *device;
4494 	struct cam_devq	*devq;
4495 	cam_status status;
4496 
4497 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4498 	/* Make space for us in the device queue on our bus */
4499 	devq = bus->sim->devq;
4500 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4501 	if (status != CAM_REQ_CMP)
4502 		return (NULL);
4503 
4504 	device = (struct cam_ed *)malloc(sizeof(*device),
4505 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4506 	if (device == NULL)
4507 		return (NULL);
4508 
4509 	cam_init_pinfo(&device->devq_entry.pinfo);
4510 	device->devq_entry.device = device;
4511 	device->target = target;
4512 	device->lun_id = lun_id;
4513 	device->sim = bus->sim;
4514 	/* Initialize our queues */
4515 	if (camq_init(&device->drvq, 0) != 0) {
4516 		free(device, M_CAMDEV);
4517 		return (NULL);
4518 	}
4519 	if (cam_ccbq_init(&device->ccbq,
4520 			  bus->sim->max_dev_openings) != 0) {
4521 		camq_fini(&device->drvq);
4522 		free(device, M_CAMDEV);
4523 		return (NULL);
4524 	}
4525 	SLIST_INIT(&device->asyncs);
4526 	SLIST_INIT(&device->periphs);
4527 	device->generation = 0;
4528 	device->flags = CAM_DEV_UNCONFIGURED;
4529 	device->tag_delay_count = 0;
4530 	device->tag_saved_openings = 0;
4531 	device->refcount = 1;
4532 	callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4533 
4534 	cur_device = TAILQ_FIRST(&target->ed_entries);
4535 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4536 		cur_device = TAILQ_NEXT(cur_device, links);
4537 	if (cur_device != NULL)
4538 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4539 	else
4540 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4541 	target->refcount++;
4542 	target->generation++;
4543 	return (device);
4544 }
4545 
4546 void
4547 xpt_acquire_device(struct cam_ed *device)
4548 {
4549 
4550 	mtx_assert(device->sim->mtx, MA_OWNED);
4551 	device->refcount++;
4552 }
4553 
4554 void
4555 xpt_release_device(struct cam_ed *device)
4556 {
4557 	struct cam_devq *devq;
4558 
4559 	mtx_assert(device->sim->mtx, MA_OWNED);
4560 	if (--device->refcount > 0)
4561 		return;
4562 
4563 	KASSERT(SLIST_EMPTY(&device->periphs),
4564 	    ("refcount is zero, but periphs list is not empty"));
4565 	if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4566 		panic("Removing device while still queued for ccbs");
4567 
4568 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4569 		callout_stop(&device->callout);
4570 
4571 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4572 	device->target->generation++;
4573 	device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4574 	/* Release our slot in the devq */
4575 	devq = device->target->bus->sim->devq;
4576 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4577 	camq_fini(&device->drvq);
4578 	cam_ccbq_fini(&device->ccbq);
4579 	/*
4580 	 * Free allocated memory.  free(9) does nothing if the
4581 	 * supplied pointer is NULL, so it is safe to call without
4582 	 * checking.
4583 	 */
4584 	free(device->supported_vpds, M_CAMXPT);
4585 	free(device->device_id, M_CAMXPT);
4586 	free(device->physpath, M_CAMXPT);
4587 	free(device->rcap_buf, M_CAMXPT);
4588 	free(device->serial_num, M_CAMXPT);
4589 
4590 	xpt_release_target(device->target);
4591 	free(device, M_CAMDEV);
4592 }
4593 
4594 u_int32_t
4595 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4596 {
4597 	int	diff;
4598 	int	result;
4599 	struct	cam_ed *dev;
4600 
4601 	dev = path->device;
4602 
4603 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4604 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4605 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4606 	 || (dev->inq_flags & SID_CmdQue) != 0)
4607 		dev->tag_saved_openings = newopenings;
4608 	/* Adjust the global limit */
4609 	dev->sim->max_ccbs += diff;
4610 	return (result);
4611 }
4612 
4613 static struct cam_eb *
4614 xpt_find_bus(path_id_t path_id)
4615 {
4616 	struct cam_eb *bus;
4617 
4618 	xpt_lock_buses();
4619 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4620 	     bus != NULL;
4621 	     bus = TAILQ_NEXT(bus, links)) {
4622 		if (bus->path_id == path_id) {
4623 			bus->refcount++;
4624 			break;
4625 		}
4626 	}
4627 	xpt_unlock_buses();
4628 	return (bus);
4629 }
4630 
4631 static struct cam_et *
4632 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4633 {
4634 	struct cam_et *target;
4635 
4636 	mtx_assert(bus->sim->mtx, MA_OWNED);
4637 	for (target = TAILQ_FIRST(&bus->et_entries);
4638 	     target != NULL;
4639 	     target = TAILQ_NEXT(target, links)) {
4640 		if (target->target_id == target_id) {
4641 			target->refcount++;
4642 			break;
4643 		}
4644 	}
4645 	return (target);
4646 }
4647 
4648 static struct cam_ed *
4649 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4650 {
4651 	struct cam_ed *device;
4652 
4653 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4654 	for (device = TAILQ_FIRST(&target->ed_entries);
4655 	     device != NULL;
4656 	     device = TAILQ_NEXT(device, links)) {
4657 		if (device->lun_id == lun_id) {
4658 			device->refcount++;
4659 			break;
4660 		}
4661 	}
4662 	return (device);
4663 }
4664 
4665 void
4666 xpt_start_tags(struct cam_path *path)
4667 {
4668 	struct ccb_relsim crs;
4669 	struct cam_ed *device;
4670 	struct cam_sim *sim;
4671 	int    newopenings;
4672 
4673 	device = path->device;
4674 	sim = path->bus->sim;
4675 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4676 	xpt_freeze_devq(path, /*count*/1);
4677 	device->inq_flags |= SID_CmdQue;
4678 	if (device->tag_saved_openings != 0)
4679 		newopenings = device->tag_saved_openings;
4680 	else
4681 		newopenings = min(device->maxtags,
4682 				  sim->max_tagged_dev_openings);
4683 	xpt_dev_ccbq_resize(path, newopenings);
4684 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4685 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4686 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4687 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4688 	crs.openings
4689 	    = crs.release_timeout
4690 	    = crs.qfrozen_cnt
4691 	    = 0;
4692 	xpt_action((union ccb *)&crs);
4693 }
4694 
4695 void
4696 xpt_stop_tags(struct cam_path *path)
4697 {
4698 	struct ccb_relsim crs;
4699 	struct cam_ed *device;
4700 	struct cam_sim *sim;
4701 
4702 	device = path->device;
4703 	sim = path->bus->sim;
4704 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4705 	device->tag_delay_count = 0;
4706 	xpt_freeze_devq(path, /*count*/1);
4707 	device->inq_flags &= ~SID_CmdQue;
4708 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4709 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4710 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4711 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4712 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4713 	crs.openings
4714 	    = crs.release_timeout
4715 	    = crs.qfrozen_cnt
4716 	    = 0;
4717 	xpt_action((union ccb *)&crs);
4718 }
4719 
4720 static void
4721 xpt_boot_delay(void *arg)
4722 {
4723 
4724 	xpt_release_boot();
4725 }
4726 
4727 static void
4728 xpt_config(void *arg)
4729 {
4730 	/*
4731 	 * Now that interrupts are enabled, go find our devices
4732 	 */
4733 
4734 	/* Setup debugging path */
4735 	if (cam_dflags != CAM_DEBUG_NONE) {
4736 		if (xpt_create_path_unlocked(&cam_dpath, NULL,
4737 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4738 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4739 			printf("xpt_config: xpt_create_path() failed for debug"
4740 			       " target %d:%d:%d, debugging disabled\n",
4741 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4742 			cam_dflags = CAM_DEBUG_NONE;
4743 		}
4744 	} else
4745 		cam_dpath = NULL;
4746 
4747 	periphdriver_init(1);
4748 	xpt_hold_boot();
4749 	callout_init(&xsoftc.boot_callout, 1);
4750 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4751 	    xpt_boot_delay, NULL);
4752 	/* Fire up rescan thread. */
4753 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4754 		printf("xpt_config: failed to create rescan thread.\n");
4755 	}
4756 }
4757 
4758 void
4759 xpt_hold_boot(void)
4760 {
4761 	xpt_lock_buses();
4762 	xsoftc.buses_to_config++;
4763 	xpt_unlock_buses();
4764 }
4765 
4766 void
4767 xpt_release_boot(void)
4768 {
4769 	xpt_lock_buses();
4770 	xsoftc.buses_to_config--;
4771 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4772 		struct	xpt_task *task;
4773 
4774 		xsoftc.buses_config_done = 1;
4775 		xpt_unlock_buses();
4776 		/* Call manually because we don't have any busses */
4777 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4778 		if (task != NULL) {
4779 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4780 			taskqueue_enqueue(taskqueue_thread, &task->task);
4781 		}
4782 	} else
4783 		xpt_unlock_buses();
4784 }
4785 
4786 /*
4787  * If the given device only has one peripheral attached to it, and if that
4788  * peripheral is the passthrough driver, announce it.  This insures that the
4789  * user sees some sort of announcement for every peripheral in their system.
4790  */
4791 static int
4792 xptpassannouncefunc(struct cam_ed *device, void *arg)
4793 {
4794 	struct cam_periph *periph;
4795 	int i;
4796 
4797 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4798 	     periph = SLIST_NEXT(periph, periph_links), i++);
4799 
4800 	periph = SLIST_FIRST(&device->periphs);
4801 	if ((i == 1)
4802 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4803 		xpt_announce_periph(periph, NULL);
4804 
4805 	return(1);
4806 }
4807 
4808 static void
4809 xpt_finishconfig_task(void *context, int pending)
4810 {
4811 
4812 	periphdriver_init(2);
4813 	/*
4814 	 * Check for devices with no "standard" peripheral driver
4815 	 * attached.  For any devices like that, announce the
4816 	 * passthrough driver so the user will see something.
4817 	 */
4818 	if (!bootverbose)
4819 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4820 
4821 	/* Release our hook so that the boot can continue. */
4822 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4823 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4824 	xsoftc.xpt_config_hook = NULL;
4825 
4826 	free(context, M_CAMXPT);
4827 }
4828 
4829 cam_status
4830 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4831 		   struct cam_path *path)
4832 {
4833 	struct ccb_setasync csa;
4834 	cam_status status;
4835 	int xptpath = 0;
4836 
4837 	if (path == NULL) {
4838 		mtx_lock(&xsoftc.xpt_lock);
4839 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4840 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4841 		if (status != CAM_REQ_CMP) {
4842 			mtx_unlock(&xsoftc.xpt_lock);
4843 			return (status);
4844 		}
4845 		xptpath = 1;
4846 	}
4847 
4848 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4849 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4850 	csa.event_enable = event;
4851 	csa.callback = cbfunc;
4852 	csa.callback_arg = cbarg;
4853 	xpt_action((union ccb *)&csa);
4854 	status = csa.ccb_h.status;
4855 
4856 	if (xptpath) {
4857 		xpt_free_path(path);
4858 		mtx_unlock(&xsoftc.xpt_lock);
4859 	}
4860 
4861 	if ((status == CAM_REQ_CMP) &&
4862 	    (csa.event_enable & AC_FOUND_DEVICE)) {
4863 		/*
4864 		 * Get this peripheral up to date with all
4865 		 * the currently existing devices.
4866 		 */
4867 		xpt_for_all_devices(xptsetasyncfunc, &csa);
4868 	}
4869 	if ((status == CAM_REQ_CMP) &&
4870 	    (csa.event_enable & AC_PATH_REGISTERED)) {
4871 		/*
4872 		 * Get this peripheral up to date with all
4873 		 * the currently existing busses.
4874 		 */
4875 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4876 	}
4877 
4878 	return (status);
4879 }
4880 
4881 static void
4882 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4883 {
4884 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4885 
4886 	switch (work_ccb->ccb_h.func_code) {
4887 	/* Common cases first */
4888 	case XPT_PATH_INQ:		/* Path routing inquiry */
4889 	{
4890 		struct ccb_pathinq *cpi;
4891 
4892 		cpi = &work_ccb->cpi;
4893 		cpi->version_num = 1; /* XXX??? */
4894 		cpi->hba_inquiry = 0;
4895 		cpi->target_sprt = 0;
4896 		cpi->hba_misc = 0;
4897 		cpi->hba_eng_cnt = 0;
4898 		cpi->max_target = 0;
4899 		cpi->max_lun = 0;
4900 		cpi->initiator_id = 0;
4901 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4902 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4903 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4904 		cpi->unit_number = sim->unit_number;
4905 		cpi->bus_id = sim->bus_id;
4906 		cpi->base_transfer_speed = 0;
4907 		cpi->protocol = PROTO_UNSPECIFIED;
4908 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4909 		cpi->transport = XPORT_UNSPECIFIED;
4910 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4911 		cpi->ccb_h.status = CAM_REQ_CMP;
4912 		xpt_done(work_ccb);
4913 		break;
4914 	}
4915 	default:
4916 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4917 		xpt_done(work_ccb);
4918 		break;
4919 	}
4920 }
4921 
4922 /*
4923  * The xpt as a "controller" has no interrupt sources, so polling
4924  * is a no-op.
4925  */
4926 static void
4927 xptpoll(struct cam_sim *sim)
4928 {
4929 }
4930 
4931 void
4932 xpt_lock_buses(void)
4933 {
4934 	mtx_lock(&xsoftc.xpt_topo_lock);
4935 }
4936 
4937 void
4938 xpt_unlock_buses(void)
4939 {
4940 	mtx_unlock(&xsoftc.xpt_topo_lock);
4941 }
4942 
4943 static void
4944 camisr(void *dummy)
4945 {
4946 	cam_simq_t queue;
4947 	struct cam_sim *sim;
4948 
4949 	mtx_lock(&cam_simq_lock);
4950 	TAILQ_INIT(&queue);
4951 	while (!TAILQ_EMPTY(&cam_simq)) {
4952 		TAILQ_CONCAT(&queue, &cam_simq, links);
4953 		mtx_unlock(&cam_simq_lock);
4954 
4955 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4956 			TAILQ_REMOVE(&queue, sim, links);
4957 			CAM_SIM_LOCK(sim);
4958 			camisr_runqueue(sim);
4959 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4960 			CAM_SIM_UNLOCK(sim);
4961 		}
4962 		mtx_lock(&cam_simq_lock);
4963 	}
4964 	mtx_unlock(&cam_simq_lock);
4965 }
4966 
4967 static void
4968 camisr_runqueue(struct cam_sim *sim)
4969 {
4970 	struct	ccb_hdr *ccb_h;
4971 
4972 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
4973 		int	runq;
4974 
4975 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
4976 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4977 
4978 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4979 			  ("camisr\n"));
4980 
4981 		runq = FALSE;
4982 
4983 		if (ccb_h->flags & CAM_HIGH_POWER) {
4984 			struct highpowerlist	*hphead;
4985 			struct cam_ed		*device;
4986 
4987 			mtx_lock(&xsoftc.xpt_lock);
4988 			hphead = &xsoftc.highpowerq;
4989 
4990 			device = STAILQ_FIRST(hphead);
4991 
4992 			/*
4993 			 * Increment the count since this command is done.
4994 			 */
4995 			xsoftc.num_highpower++;
4996 
4997 			/*
4998 			 * Any high powered commands queued up?
4999 			 */
5000 			if (device != NULL) {
5001 
5002 				STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5003 				mtx_unlock(&xsoftc.xpt_lock);
5004 
5005 				xpt_release_devq_device(device,
5006 						 /*count*/1, /*runqueue*/TRUE);
5007 			} else
5008 				mtx_unlock(&xsoftc.xpt_lock);
5009 		}
5010 
5011 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5012 			struct cam_ed *dev;
5013 
5014 			dev = ccb_h->path->device;
5015 
5016 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5017 			sim->devq->send_active--;
5018 			sim->devq->send_openings++;
5019 			runq = TRUE;
5020 
5021 			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5022 			  && (dev->ccbq.dev_active == 0))) {
5023 				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5024 				xpt_release_devq(ccb_h->path, /*count*/1,
5025 						 /*run_queue*/FALSE);
5026 			}
5027 
5028 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5029 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5030 				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5031 				xpt_release_devq(ccb_h->path, /*count*/1,
5032 						 /*run_queue*/FALSE);
5033 			}
5034 
5035 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5036 			 && (--dev->tag_delay_count == 0))
5037 				xpt_start_tags(ccb_h->path);
5038 			if (!device_is_queued(dev)) {
5039 				(void)xpt_schedule_devq(sim->devq, dev);
5040 			}
5041 		}
5042 
5043 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5044 			xpt_release_simq(sim, /*run_queue*/TRUE);
5045 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5046 			runq = FALSE;
5047 		}
5048 
5049 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5050 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5051 			xpt_release_devq(ccb_h->path, /*count*/1,
5052 					 /*run_queue*/TRUE);
5053 			ccb_h->status &= ~CAM_DEV_QFRZN;
5054 		} else if (runq) {
5055 			xpt_run_devq(sim->devq);
5056 		}
5057 
5058 		/* Call the peripheral driver's callback */
5059 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5060 	}
5061 }
5062