xref: /freebsd/sys/cam/cam_xpt.c (revision 3ef51c5fb9163f2aafb1c14729e06a8bf0c4d113)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_queue.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_xpt_internal.h>
60 #include <cam/cam_debug.h>
61 
62 #include <cam/scsi/scsi_all.h>
63 #include <cam/scsi/scsi_message.h>
64 #include <cam/scsi/scsi_pass.h>
65 
66 #include <machine/md_var.h>	/* geometry translation */
67 #include <machine/stdarg.h>	/* for xpt_print below */
68 
69 #include "opt_cam.h"
70 
71 /*
72  * This is the maximum number of high powered commands (e.g. start unit)
73  * that can be outstanding at a particular time.
74  */
75 #ifndef CAM_MAX_HIGHPOWER
76 #define CAM_MAX_HIGHPOWER  4
77 #endif
78 
79 /* Datastructures internal to the xpt layer */
80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
81 
82 /* Object for defering XPT actions to a taskqueue */
83 struct xpt_task {
84 	struct task	task;
85 	void		*data1;
86 	uintptr_t	data2;
87 };
88 
89 typedef enum {
90 	XPT_FLAG_OPEN		= 0x01
91 } xpt_flags;
92 
93 struct xpt_softc {
94 	xpt_flags		flags;
95 	u_int32_t		xpt_generation;
96 
97 	/* number of high powered commands that can go through right now */
98 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
99 	int			num_highpower;
100 
101 	/* queue for handling async rescan requests. */
102 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
103 	int buses_to_config;
104 	int buses_config_done;
105 
106 	/* Registered busses */
107 	TAILQ_HEAD(,cam_eb)	xpt_busses;
108 	u_int			bus_generation;
109 
110 	struct intr_config_hook	*xpt_config_hook;
111 
112 	int			boot_delay;
113 	struct callout 		boot_callout;
114 
115 	struct mtx		xpt_topo_lock;
116 	struct mtx		xpt_lock;
117 };
118 
119 typedef enum {
120 	DM_RET_COPY		= 0x01,
121 	DM_RET_FLAG_MASK	= 0x0f,
122 	DM_RET_NONE		= 0x00,
123 	DM_RET_STOP		= 0x10,
124 	DM_RET_DESCEND		= 0x20,
125 	DM_RET_ERROR		= 0x30,
126 	DM_RET_ACTION_MASK	= 0xf0
127 } dev_match_ret;
128 
129 typedef enum {
130 	XPT_DEPTH_BUS,
131 	XPT_DEPTH_TARGET,
132 	XPT_DEPTH_DEVICE,
133 	XPT_DEPTH_PERIPH
134 } xpt_traverse_depth;
135 
136 struct xpt_traverse_config {
137 	xpt_traverse_depth	depth;
138 	void			*tr_func;
139 	void			*tr_arg;
140 };
141 
142 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
143 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
144 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
145 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
146 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
147 
148 /* Transport layer configuration information */
149 static struct xpt_softc xsoftc;
150 
151 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
152 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
153            &xsoftc.boot_delay, 0, "Bus registration wait time");
154 
155 /* Queues for our software interrupt handler */
156 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
157 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
158 static cam_simq_t cam_simq;
159 static struct mtx cam_simq_lock;
160 
161 /* Pointers to software interrupt handlers */
162 static void *cambio_ih;
163 
164 struct cam_periph *xpt_periph;
165 
166 static periph_init_t xpt_periph_init;
167 
168 static struct periph_driver xpt_driver =
169 {
170 	xpt_periph_init, "xpt",
171 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
172 	CAM_PERIPH_DRV_EARLY
173 };
174 
175 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
176 
177 static d_open_t xptopen;
178 static d_close_t xptclose;
179 static d_ioctl_t xptioctl;
180 
181 static struct cdevsw xpt_cdevsw = {
182 	.d_version =	D_VERSION,
183 	.d_flags =	0,
184 	.d_open =	xptopen,
185 	.d_close =	xptclose,
186 	.d_ioctl =	xptioctl,
187 	.d_name =	"xpt",
188 };
189 
190 /* Storage for debugging datastructures */
191 #ifdef	CAMDEBUG
192 struct cam_path *cam_dpath;
193 #ifdef	CAM_DEBUG_FLAGS
194 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
195 #else
196 u_int32_t cam_dflags = CAM_DEBUG_NONE;
197 #endif
198 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
199 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
200 	&cam_dflags, 0, "Cam Debug Flags");
201 u_int32_t cam_debug_delay;
202 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
203 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
204 	&cam_debug_delay, 0, "Cam Debug Flags");
205 #endif
206 
207 /* Our boot-time initialization hook */
208 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
209 
210 static moduledata_t cam_moduledata = {
211 	"cam",
212 	cam_module_event_handler,
213 	NULL
214 };
215 
216 static int	xpt_init(void *);
217 
218 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
219 MODULE_VERSION(cam, 1);
220 
221 
222 static void		xpt_async_bcast(struct async_list *async_head,
223 					u_int32_t async_code,
224 					struct cam_path *path,
225 					void *async_arg);
226 static path_id_t xptnextfreepathid(void);
227 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
228 static union ccb *xpt_get_ccb(struct cam_ed *device);
229 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
230 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
231 static timeout_t xpt_release_devq_timeout;
232 static void	 xpt_release_simq_timeout(void *arg) __unused;
233 static void	 xpt_release_bus(struct cam_eb *bus);
234 static void	 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
235 		    u_int count, int run_queue);
236 static struct cam_et*
237 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
238 static void	 xpt_release_target(struct cam_et *target);
239 static struct cam_eb*
240 		 xpt_find_bus(path_id_t path_id);
241 static struct cam_et*
242 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
243 static struct cam_ed*
244 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
245 static void	 xpt_config(void *arg);
246 static xpt_devicefunc_t xptpassannouncefunc;
247 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
248 static void	 xptpoll(struct cam_sim *sim);
249 static void	 camisr(void *);
250 static void	 camisr_runqueue(void *);
251 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
252 				    u_int num_patterns, struct cam_eb *bus);
253 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
254 				       u_int num_patterns,
255 				       struct cam_ed *device);
256 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
257 				       u_int num_patterns,
258 				       struct cam_periph *periph);
259 static xpt_busfunc_t	xptedtbusfunc;
260 static xpt_targetfunc_t	xptedttargetfunc;
261 static xpt_devicefunc_t	xptedtdevicefunc;
262 static xpt_periphfunc_t	xptedtperiphfunc;
263 static xpt_pdrvfunc_t	xptplistpdrvfunc;
264 static xpt_periphfunc_t	xptplistperiphfunc;
265 static int		xptedtmatch(struct ccb_dev_match *cdm);
266 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
267 static int		xptbustraverse(struct cam_eb *start_bus,
268 				       xpt_busfunc_t *tr_func, void *arg);
269 static int		xpttargettraverse(struct cam_eb *bus,
270 					  struct cam_et *start_target,
271 					  xpt_targetfunc_t *tr_func, void *arg);
272 static int		xptdevicetraverse(struct cam_et *target,
273 					  struct cam_ed *start_device,
274 					  xpt_devicefunc_t *tr_func, void *arg);
275 static int		xptperiphtraverse(struct cam_ed *device,
276 					  struct cam_periph *start_periph,
277 					  xpt_periphfunc_t *tr_func, void *arg);
278 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
279 					xpt_pdrvfunc_t *tr_func, void *arg);
280 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
281 					    struct cam_periph *start_periph,
282 					    xpt_periphfunc_t *tr_func,
283 					    void *arg);
284 static xpt_busfunc_t	xptdefbusfunc;
285 static xpt_targetfunc_t	xptdeftargetfunc;
286 static xpt_devicefunc_t	xptdefdevicefunc;
287 static xpt_periphfunc_t	xptdefperiphfunc;
288 static void		xpt_finishconfig_task(void *context, int pending);
289 static void		xpt_dev_async_default(u_int32_t async_code,
290 					      struct cam_eb *bus,
291 					      struct cam_et *target,
292 					      struct cam_ed *device,
293 					      void *async_arg);
294 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
295 						 struct cam_et *target,
296 						 lun_id_t lun_id);
297 static xpt_devicefunc_t	xptsetasyncfunc;
298 static xpt_busfunc_t	xptsetasyncbusfunc;
299 static cam_status	xptregister(struct cam_periph *periph,
300 				    void *arg);
301 static __inline int periph_is_queued(struct cam_periph *periph);
302 static __inline int device_is_alloc_queued(struct cam_ed *device);
303 static __inline int device_is_send_queued(struct cam_ed *device);
304 
305 static __inline int
306 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
307 {
308 	int retval;
309 
310 	if ((dev->drvq.entries > 0) &&
311 	    (dev->ccbq.devq_openings > 0) &&
312 	    (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
313 		CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
314 		/*
315 		 * The priority of a device waiting for CCB resources
316 		 * is that of the highest priority peripheral driver
317 		 * enqueued.
318 		 */
319 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
320 					  &dev->alloc_ccb_entry.pinfo,
321 					  CAMQ_GET_PRIO(&dev->drvq));
322 	} else {
323 		retval = 0;
324 	}
325 
326 	return (retval);
327 }
328 
329 static __inline int
330 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
331 {
332 	int	retval;
333 
334 	if ((dev->ccbq.queue.entries > 0) &&
335 	    (dev->ccbq.dev_openings > 0) &&
336 	    (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
337 		/*
338 		 * The priority of a device waiting for controller
339 		 * resources is that of the highest priority CCB
340 		 * enqueued.
341 		 */
342 		retval =
343 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
344 				     &dev->send_ccb_entry.pinfo,
345 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
346 	} else {
347 		retval = 0;
348 	}
349 	return (retval);
350 }
351 
352 static __inline int
353 periph_is_queued(struct cam_periph *periph)
354 {
355 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
356 }
357 
358 static __inline int
359 device_is_alloc_queued(struct cam_ed *device)
360 {
361 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
362 }
363 
364 static __inline int
365 device_is_send_queued(struct cam_ed *device)
366 {
367 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
368 }
369 
370 static void
371 xpt_periph_init()
372 {
373 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
374 }
375 
376 static void
377 xptdone(struct cam_periph *periph, union ccb *done_ccb)
378 {
379 	/* Caller will release the CCB */
380 	wakeup(&done_ccb->ccb_h.cbfcnp);
381 }
382 
383 static int
384 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
385 {
386 
387 	/*
388 	 * Only allow read-write access.
389 	 */
390 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
391 		return(EPERM);
392 
393 	/*
394 	 * We don't allow nonblocking access.
395 	 */
396 	if ((flags & O_NONBLOCK) != 0) {
397 		printf("%s: can't do nonblocking access\n", devtoname(dev));
398 		return(ENODEV);
399 	}
400 
401 	/* Mark ourselves open */
402 	mtx_lock(&xsoftc.xpt_lock);
403 	xsoftc.flags |= XPT_FLAG_OPEN;
404 	mtx_unlock(&xsoftc.xpt_lock);
405 
406 	return(0);
407 }
408 
409 static int
410 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
411 {
412 
413 	/* Mark ourselves closed */
414 	mtx_lock(&xsoftc.xpt_lock);
415 	xsoftc.flags &= ~XPT_FLAG_OPEN;
416 	mtx_unlock(&xsoftc.xpt_lock);
417 
418 	return(0);
419 }
420 
421 /*
422  * Don't automatically grab the xpt softc lock here even though this is going
423  * through the xpt device.  The xpt device is really just a back door for
424  * accessing other devices and SIMs, so the right thing to do is to grab
425  * the appropriate SIM lock once the bus/SIM is located.
426  */
427 static int
428 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
429 {
430 	int error;
431 
432 	error = 0;
433 
434 	switch(cmd) {
435 	/*
436 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
437 	 * to accept CCB types that don't quite make sense to send through a
438 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
439 	 * in the CAM spec.
440 	 */
441 	case CAMIOCOMMAND: {
442 		union ccb *ccb;
443 		union ccb *inccb;
444 		struct cam_eb *bus;
445 
446 		inccb = (union ccb *)addr;
447 
448 		bus = xpt_find_bus(inccb->ccb_h.path_id);
449 		if (bus == NULL)
450 			return (EINVAL);
451 
452 		switch (inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
456 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
457 				xpt_release_bus(bus);
458 				return (EINVAL);
459 			}
460 			break;
461 		case XPT_SCAN_TGT:
462 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
463 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
464 				xpt_release_bus(bus);
465 				return (EINVAL);
466 			}
467 			break;
468 		default:
469 			break;
470 		}
471 
472 		switch(inccb->ccb_h.func_code) {
473 		case XPT_SCAN_BUS:
474 		case XPT_RESET_BUS:
475 		case XPT_PATH_INQ:
476 		case XPT_ENG_INQ:
477 		case XPT_SCAN_LUN:
478 		case XPT_SCAN_TGT:
479 
480 			ccb = xpt_alloc_ccb();
481 
482 			CAM_SIM_LOCK(bus->sim);
483 
484 			/*
485 			 * Create a path using the bus, target, and lun the
486 			 * user passed in.
487 			 */
488 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
489 					    inccb->ccb_h.path_id,
490 					    inccb->ccb_h.target_id,
491 					    inccb->ccb_h.target_lun) !=
492 					    CAM_REQ_CMP){
493 				error = EINVAL;
494 				CAM_SIM_UNLOCK(bus->sim);
495 				xpt_free_ccb(ccb);
496 				break;
497 			}
498 			/* Ensure all of our fields are correct */
499 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
500 				      inccb->ccb_h.pinfo.priority);
501 			xpt_merge_ccb(ccb, inccb);
502 			ccb->ccb_h.cbfcnp = xptdone;
503 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
504 			bcopy(ccb, inccb, sizeof(union ccb));
505 			xpt_free_path(ccb->ccb_h.path);
506 			xpt_free_ccb(ccb);
507 			CAM_SIM_UNLOCK(bus->sim);
508 			break;
509 
510 		case XPT_DEBUG: {
511 			union ccb ccb;
512 
513 			/*
514 			 * This is an immediate CCB, so it's okay to
515 			 * allocate it on the stack.
516 			 */
517 
518 			CAM_SIM_LOCK(bus->sim);
519 
520 			/*
521 			 * Create a path using the bus, target, and lun the
522 			 * user passed in.
523 			 */
524 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
525 					    inccb->ccb_h.path_id,
526 					    inccb->ccb_h.target_id,
527 					    inccb->ccb_h.target_lun) !=
528 					    CAM_REQ_CMP){
529 				error = EINVAL;
530 				CAM_SIM_UNLOCK(bus->sim);
531 				break;
532 			}
533 			/* Ensure all of our fields are correct */
534 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
535 				      inccb->ccb_h.pinfo.priority);
536 			xpt_merge_ccb(&ccb, inccb);
537 			ccb.ccb_h.cbfcnp = xptdone;
538 			xpt_action(&ccb);
539 			CAM_SIM_UNLOCK(bus->sim);
540 			bcopy(&ccb, inccb, sizeof(union ccb));
541 			xpt_free_path(ccb.ccb_h.path);
542 			break;
543 
544 		}
545 		case XPT_DEV_MATCH: {
546 			struct cam_periph_map_info mapinfo;
547 			struct cam_path *old_path;
548 
549 			/*
550 			 * We can't deal with physical addresses for this
551 			 * type of transaction.
552 			 */
553 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
554 				error = EINVAL;
555 				break;
556 			}
557 
558 			/*
559 			 * Save this in case the caller had it set to
560 			 * something in particular.
561 			 */
562 			old_path = inccb->ccb_h.path;
563 
564 			/*
565 			 * We really don't need a path for the matching
566 			 * code.  The path is needed because of the
567 			 * debugging statements in xpt_action().  They
568 			 * assume that the CCB has a valid path.
569 			 */
570 			inccb->ccb_h.path = xpt_periph->path;
571 
572 			bzero(&mapinfo, sizeof(mapinfo));
573 
574 			/*
575 			 * Map the pattern and match buffers into kernel
576 			 * virtual address space.
577 			 */
578 			error = cam_periph_mapmem(inccb, &mapinfo);
579 
580 			if (error) {
581 				inccb->ccb_h.path = old_path;
582 				break;
583 			}
584 
585 			/*
586 			 * This is an immediate CCB, we can send it on directly.
587 			 */
588 			xpt_action(inccb);
589 
590 			/*
591 			 * Map the buffers back into user space.
592 			 */
593 			cam_periph_unmapmem(inccb, &mapinfo);
594 
595 			inccb->ccb_h.path = old_path;
596 
597 			error = 0;
598 			break;
599 		}
600 		default:
601 			error = ENOTSUP;
602 			break;
603 		}
604 		xpt_release_bus(bus);
605 		break;
606 	}
607 	/*
608 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
609 	 * with the periphal driver name and unit name filled in.  The other
610 	 * fields don't really matter as input.  The passthrough driver name
611 	 * ("pass"), and unit number are passed back in the ccb.  The current
612 	 * device generation number, and the index into the device peripheral
613 	 * driver list, and the status are also passed back.  Note that
614 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
615 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
616 	 * (or rather should be) impossible for the device peripheral driver
617 	 * list to change since we look at the whole thing in one pass, and
618 	 * we do it with lock protection.
619 	 *
620 	 */
621 	case CAMGETPASSTHRU: {
622 		union ccb *ccb;
623 		struct cam_periph *periph;
624 		struct periph_driver **p_drv;
625 		char   *name;
626 		u_int unit;
627 		u_int cur_generation;
628 		int base_periph_found;
629 		int splbreaknum;
630 
631 		ccb = (union ccb *)addr;
632 		unit = ccb->cgdl.unit_number;
633 		name = ccb->cgdl.periph_name;
634 		/*
635 		 * Every 100 devices, we want to drop our lock protection to
636 		 * give the software interrupt handler a chance to run.
637 		 * Most systems won't run into this check, but this should
638 		 * avoid starvation in the software interrupt handler in
639 		 * large systems.
640 		 */
641 		splbreaknum = 100;
642 
643 		ccb = (union ccb *)addr;
644 
645 		base_periph_found = 0;
646 
647 		/*
648 		 * Sanity check -- make sure we don't get a null peripheral
649 		 * driver name.
650 		 */
651 		if (*ccb->cgdl.periph_name == '\0') {
652 			error = EINVAL;
653 			break;
654 		}
655 
656 		/* Keep the list from changing while we traverse it */
657 		mtx_lock(&xsoftc.xpt_topo_lock);
658 ptstartover:
659 		cur_generation = xsoftc.xpt_generation;
660 
661 		/* first find our driver in the list of drivers */
662 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
663 			if (strcmp((*p_drv)->driver_name, name) == 0)
664 				break;
665 
666 		if (*p_drv == NULL) {
667 			mtx_unlock(&xsoftc.xpt_topo_lock);
668 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
669 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
670 			*ccb->cgdl.periph_name = '\0';
671 			ccb->cgdl.unit_number = 0;
672 			error = ENOENT;
673 			break;
674 		}
675 
676 		/*
677 		 * Run through every peripheral instance of this driver
678 		 * and check to see whether it matches the unit passed
679 		 * in by the user.  If it does, get out of the loops and
680 		 * find the passthrough driver associated with that
681 		 * peripheral driver.
682 		 */
683 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
684 		     periph = TAILQ_NEXT(periph, unit_links)) {
685 
686 			if (periph->unit_number == unit) {
687 				break;
688 			} else if (--splbreaknum == 0) {
689 				mtx_unlock(&xsoftc.xpt_topo_lock);
690 				mtx_lock(&xsoftc.xpt_topo_lock);
691 				splbreaknum = 100;
692 				if (cur_generation != xsoftc.xpt_generation)
693 				       goto ptstartover;
694 			}
695 		}
696 		/*
697 		 * If we found the peripheral driver that the user passed
698 		 * in, go through all of the peripheral drivers for that
699 		 * particular device and look for a passthrough driver.
700 		 */
701 		if (periph != NULL) {
702 			struct cam_ed *device;
703 			int i;
704 
705 			base_periph_found = 1;
706 			device = periph->path->device;
707 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
708 			     periph != NULL;
709 			     periph = SLIST_NEXT(periph, periph_links), i++) {
710 				/*
711 				 * Check to see whether we have a
712 				 * passthrough device or not.
713 				 */
714 				if (strcmp(periph->periph_name, "pass") == 0) {
715 					/*
716 					 * Fill in the getdevlist fields.
717 					 */
718 					strcpy(ccb->cgdl.periph_name,
719 					       periph->periph_name);
720 					ccb->cgdl.unit_number =
721 						periph->unit_number;
722 					if (SLIST_NEXT(periph, periph_links))
723 						ccb->cgdl.status =
724 							CAM_GDEVLIST_MORE_DEVS;
725 					else
726 						ccb->cgdl.status =
727 						       CAM_GDEVLIST_LAST_DEVICE;
728 					ccb->cgdl.generation =
729 						device->generation;
730 					ccb->cgdl.index = i;
731 					/*
732 					 * Fill in some CCB header fields
733 					 * that the user may want.
734 					 */
735 					ccb->ccb_h.path_id =
736 						periph->path->bus->path_id;
737 					ccb->ccb_h.target_id =
738 						periph->path->target->target_id;
739 					ccb->ccb_h.target_lun =
740 						periph->path->device->lun_id;
741 					ccb->ccb_h.status = CAM_REQ_CMP;
742 					break;
743 				}
744 			}
745 		}
746 
747 		/*
748 		 * If the periph is null here, one of two things has
749 		 * happened.  The first possibility is that we couldn't
750 		 * find the unit number of the particular peripheral driver
751 		 * that the user is asking about.  e.g. the user asks for
752 		 * the passthrough driver for "da11".  We find the list of
753 		 * "da" peripherals all right, but there is no unit 11.
754 		 * The other possibility is that we went through the list
755 		 * of peripheral drivers attached to the device structure,
756 		 * but didn't find one with the name "pass".  Either way,
757 		 * we return ENOENT, since we couldn't find something.
758 		 */
759 		if (periph == NULL) {
760 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
761 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
762 			*ccb->cgdl.periph_name = '\0';
763 			ccb->cgdl.unit_number = 0;
764 			error = ENOENT;
765 			/*
766 			 * It is unfortunate that this is even necessary,
767 			 * but there are many, many clueless users out there.
768 			 * If this is true, the user is looking for the
769 			 * passthrough driver, but doesn't have one in his
770 			 * kernel.
771 			 */
772 			if (base_periph_found == 1) {
773 				printf("xptioctl: pass driver is not in the "
774 				       "kernel\n");
775 				printf("xptioctl: put \"device pass\" in "
776 				       "your kernel config file\n");
777 			}
778 		}
779 		mtx_unlock(&xsoftc.xpt_topo_lock);
780 		break;
781 		}
782 	default:
783 		error = ENOTTY;
784 		break;
785 	}
786 
787 	return(error);
788 }
789 
790 static int
791 cam_module_event_handler(module_t mod, int what, void *arg)
792 {
793 	int error;
794 
795 	switch (what) {
796 	case MOD_LOAD:
797 		if ((error = xpt_init(NULL)) != 0)
798 			return (error);
799 		break;
800 	case MOD_UNLOAD:
801 		return EBUSY;
802 	default:
803 		return EOPNOTSUPP;
804 	}
805 
806 	return 0;
807 }
808 
809 static void
810 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
811 {
812 
813 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
814 		xpt_free_path(done_ccb->ccb_h.path);
815 		xpt_free_ccb(done_ccb);
816 	} else {
817 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
818 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
819 	}
820 	xpt_release_boot();
821 }
822 
823 /* thread to handle bus rescans */
824 static void
825 xpt_scanner_thread(void *dummy)
826 {
827 	union ccb	*ccb;
828 	struct cam_sim	*sim;
829 
830 	xpt_lock_buses();
831 	for (;;) {
832 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
833 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
834 			       "ccb_scanq", 0);
835 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
836 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
837 			xpt_unlock_buses();
838 
839 			sim = ccb->ccb_h.path->bus->sim;
840 			CAM_SIM_LOCK(sim);
841 			xpt_action(ccb);
842 			CAM_SIM_UNLOCK(sim);
843 
844 			xpt_lock_buses();
845 		}
846 	}
847 }
848 
849 void
850 xpt_rescan(union ccb *ccb)
851 {
852 	struct ccb_hdr *hdr;
853 
854 	/* Prepare request */
855 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
856 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
857 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
858 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
859 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
860 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
861 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
862 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
863 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
864 	else {
865 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
866 		xpt_free_path(ccb->ccb_h.path);
867 		xpt_free_ccb(ccb);
868 		return;
869 	}
870 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
871 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
872 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
873 	/* Don't make duplicate entries for the same paths. */
874 	xpt_lock_buses();
875 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
876 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
877 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
878 				wakeup(&xsoftc.ccb_scanq);
879 				xpt_unlock_buses();
880 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
881 				xpt_free_path(ccb->ccb_h.path);
882 				xpt_free_ccb(ccb);
883 				return;
884 			}
885 		}
886 	}
887 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
888 	xsoftc.buses_to_config++;
889 	wakeup(&xsoftc.ccb_scanq);
890 	xpt_unlock_buses();
891 }
892 
893 /* Functions accessed by the peripheral drivers */
894 static int
895 xpt_init(void *dummy)
896 {
897 	struct cam_sim *xpt_sim;
898 	struct cam_path *path;
899 	struct cam_devq *devq;
900 	cam_status status;
901 
902 	TAILQ_INIT(&xsoftc.xpt_busses);
903 	TAILQ_INIT(&cam_simq);
904 	TAILQ_INIT(&xsoftc.ccb_scanq);
905 	STAILQ_INIT(&xsoftc.highpowerq);
906 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
907 
908 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
909 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
910 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
911 
912 	/*
913 	 * The xpt layer is, itself, the equivelent of a SIM.
914 	 * Allow 16 ccbs in the ccb pool for it.  This should
915 	 * give decent parallelism when we probe busses and
916 	 * perform other XPT functions.
917 	 */
918 	devq = cam_simq_alloc(16);
919 	xpt_sim = cam_sim_alloc(xptaction,
920 				xptpoll,
921 				"xpt",
922 				/*softc*/NULL,
923 				/*unit*/0,
924 				/*mtx*/&xsoftc.xpt_lock,
925 				/*max_dev_transactions*/0,
926 				/*max_tagged_dev_transactions*/0,
927 				devq);
928 	if (xpt_sim == NULL)
929 		return (ENOMEM);
930 
931 	mtx_lock(&xsoftc.xpt_lock);
932 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
933 		mtx_unlock(&xsoftc.xpt_lock);
934 		printf("xpt_init: xpt_bus_register failed with status %#x,"
935 		       " failing attach\n", status);
936 		return (EINVAL);
937 	}
938 
939 	/*
940 	 * Looking at the XPT from the SIM layer, the XPT is
941 	 * the equivelent of a peripheral driver.  Allocate
942 	 * a peripheral driver entry for us.
943 	 */
944 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
945 				      CAM_TARGET_WILDCARD,
946 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
947 		mtx_unlock(&xsoftc.xpt_lock);
948 		printf("xpt_init: xpt_create_path failed with status %#x,"
949 		       " failing attach\n", status);
950 		return (EINVAL);
951 	}
952 
953 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
954 			 path, NULL, 0, xpt_sim);
955 	xpt_free_path(path);
956 	mtx_unlock(&xsoftc.xpt_lock);
957 	/* Install our software interrupt handlers */
958 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
959 	/*
960 	 * Register a callback for when interrupts are enabled.
961 	 */
962 	xsoftc.xpt_config_hook =
963 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
964 					      M_CAMXPT, M_NOWAIT | M_ZERO);
965 	if (xsoftc.xpt_config_hook == NULL) {
966 		printf("xpt_init: Cannot malloc config hook "
967 		       "- failing attach\n");
968 		return (ENOMEM);
969 	}
970 	xsoftc.xpt_config_hook->ich_func = xpt_config;
971 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
972 		free (xsoftc.xpt_config_hook, M_CAMXPT);
973 		printf("xpt_init: config_intrhook_establish failed "
974 		       "- failing attach\n");
975 	}
976 
977 	return (0);
978 }
979 
980 static cam_status
981 xptregister(struct cam_periph *periph, void *arg)
982 {
983 	struct cam_sim *xpt_sim;
984 
985 	if (periph == NULL) {
986 		printf("xptregister: periph was NULL!!\n");
987 		return(CAM_REQ_CMP_ERR);
988 	}
989 
990 	xpt_sim = (struct cam_sim *)arg;
991 	xpt_sim->softc = periph;
992 	xpt_periph = periph;
993 	periph->softc = NULL;
994 
995 	return(CAM_REQ_CMP);
996 }
997 
998 int32_t
999 xpt_add_periph(struct cam_periph *periph)
1000 {
1001 	struct cam_ed *device;
1002 	int32_t	 status;
1003 	struct periph_list *periph_head;
1004 
1005 	mtx_assert(periph->sim->mtx, MA_OWNED);
1006 
1007 	device = periph->path->device;
1008 
1009 	periph_head = &device->periphs;
1010 
1011 	status = CAM_REQ_CMP;
1012 
1013 	if (device != NULL) {
1014 		/*
1015 		 * Make room for this peripheral
1016 		 * so it will fit in the queue
1017 		 * when it's scheduled to run
1018 		 */
1019 		status = camq_resize(&device->drvq,
1020 				     device->drvq.array_size + 1);
1021 
1022 		device->generation++;
1023 
1024 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1025 	}
1026 
1027 	mtx_lock(&xsoftc.xpt_topo_lock);
1028 	xsoftc.xpt_generation++;
1029 	mtx_unlock(&xsoftc.xpt_topo_lock);
1030 
1031 	return (status);
1032 }
1033 
1034 void
1035 xpt_remove_periph(struct cam_periph *periph)
1036 {
1037 	struct cam_ed *device;
1038 
1039 	mtx_assert(periph->sim->mtx, MA_OWNED);
1040 
1041 	device = periph->path->device;
1042 
1043 	if (device != NULL) {
1044 		struct periph_list *periph_head;
1045 
1046 		periph_head = &device->periphs;
1047 
1048 		/* Release the slot for this peripheral */
1049 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1050 
1051 		device->generation++;
1052 
1053 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1054 	}
1055 
1056 	mtx_lock(&xsoftc.xpt_topo_lock);
1057 	xsoftc.xpt_generation++;
1058 	mtx_unlock(&xsoftc.xpt_topo_lock);
1059 }
1060 
1061 
1062 void
1063 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1064 {
1065 	struct	cam_path *path = periph->path;
1066 
1067 	mtx_assert(periph->sim->mtx, MA_OWNED);
1068 
1069 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1070 	       periph->periph_name, periph->unit_number,
1071 	       path->bus->sim->sim_name,
1072 	       path->bus->sim->unit_number,
1073 	       path->bus->sim->bus_id,
1074 	       path->bus->path_id,
1075 	       path->target->target_id,
1076 	       path->device->lun_id);
1077 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1078 	if (path->device->protocol == PROTO_SCSI)
1079 		scsi_print_inquiry(&path->device->inq_data);
1080 	else if (path->device->protocol == PROTO_ATA ||
1081 	    path->device->protocol == PROTO_SATAPM)
1082 		ata_print_ident(&path->device->ident_data);
1083 	else
1084 		printf("Unknown protocol device\n");
1085 	if (bootverbose && path->device->serial_num_len > 0) {
1086 		/* Don't wrap the screen  - print only the first 60 chars */
1087 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1088 		       periph->unit_number, path->device->serial_num);
1089 	}
1090 	/* Announce transport details. */
1091 	(*(path->bus->xport->announce))(periph);
1092 	/* Announce command queueing. */
1093 	if (path->device->inq_flags & SID_CmdQue
1094 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1095 		printf("%s%d: Command Queueing enabled\n",
1096 		       periph->periph_name, periph->unit_number);
1097 	}
1098 	/* Announce caller's details if they've passed in. */
1099 	if (announce_string != NULL)
1100 		printf("%s%d: %s\n", periph->periph_name,
1101 		       periph->unit_number, announce_string);
1102 }
1103 
1104 int
1105 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1106 {
1107 	int ret = -1;
1108 	struct ccb_dev_advinfo cdai;
1109 
1110 	memset(&cdai, 0, sizeof(cdai));
1111 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1112 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1113 	cdai.bufsiz = len;
1114 
1115 	if (!strcmp(attr, "GEOM::ident"))
1116 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1117 	else if (!strcmp(attr, "GEOM::physpath"))
1118 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1119 	else
1120 		goto out;
1121 
1122 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1123 	if (cdai.buf == NULL) {
1124 		ret = ENOMEM;
1125 		goto out;
1126 	}
1127 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1128 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1129 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1130 	if (cdai.provsiz == 0)
1131 		goto out;
1132 	ret = 0;
1133 	if (strlcpy(buf, cdai.buf, len) >= len)
1134 		ret = EFAULT;
1135 
1136 out:
1137 	if (cdai.buf != NULL)
1138 		free(cdai.buf, M_CAMXPT);
1139 	return ret;
1140 }
1141 
1142 static dev_match_ret
1143 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1144 	    struct cam_eb *bus)
1145 {
1146 	dev_match_ret retval;
1147 	int i;
1148 
1149 	retval = DM_RET_NONE;
1150 
1151 	/*
1152 	 * If we aren't given something to match against, that's an error.
1153 	 */
1154 	if (bus == NULL)
1155 		return(DM_RET_ERROR);
1156 
1157 	/*
1158 	 * If there are no match entries, then this bus matches no
1159 	 * matter what.
1160 	 */
1161 	if ((patterns == NULL) || (num_patterns == 0))
1162 		return(DM_RET_DESCEND | DM_RET_COPY);
1163 
1164 	for (i = 0; i < num_patterns; i++) {
1165 		struct bus_match_pattern *cur_pattern;
1166 
1167 		/*
1168 		 * If the pattern in question isn't for a bus node, we
1169 		 * aren't interested.  However, we do indicate to the
1170 		 * calling routine that we should continue descending the
1171 		 * tree, since the user wants to match against lower-level
1172 		 * EDT elements.
1173 		 */
1174 		if (patterns[i].type != DEV_MATCH_BUS) {
1175 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1176 				retval |= DM_RET_DESCEND;
1177 			continue;
1178 		}
1179 
1180 		cur_pattern = &patterns[i].pattern.bus_pattern;
1181 
1182 		/*
1183 		 * If they want to match any bus node, we give them any
1184 		 * device node.
1185 		 */
1186 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1187 			/* set the copy flag */
1188 			retval |= DM_RET_COPY;
1189 
1190 			/*
1191 			 * If we've already decided on an action, go ahead
1192 			 * and return.
1193 			 */
1194 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1195 				return(retval);
1196 		}
1197 
1198 		/*
1199 		 * Not sure why someone would do this...
1200 		 */
1201 		if (cur_pattern->flags == BUS_MATCH_NONE)
1202 			continue;
1203 
1204 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1205 		 && (cur_pattern->path_id != bus->path_id))
1206 			continue;
1207 
1208 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1209 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1210 			continue;
1211 
1212 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1213 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1214 			continue;
1215 
1216 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1217 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1218 			     DEV_IDLEN) != 0))
1219 			continue;
1220 
1221 		/*
1222 		 * If we get to this point, the user definitely wants
1223 		 * information on this bus.  So tell the caller to copy the
1224 		 * data out.
1225 		 */
1226 		retval |= DM_RET_COPY;
1227 
1228 		/*
1229 		 * If the return action has been set to descend, then we
1230 		 * know that we've already seen a non-bus matching
1231 		 * expression, therefore we need to further descend the tree.
1232 		 * This won't change by continuing around the loop, so we
1233 		 * go ahead and return.  If we haven't seen a non-bus
1234 		 * matching expression, we keep going around the loop until
1235 		 * we exhaust the matching expressions.  We'll set the stop
1236 		 * flag once we fall out of the loop.
1237 		 */
1238 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1239 			return(retval);
1240 	}
1241 
1242 	/*
1243 	 * If the return action hasn't been set to descend yet, that means
1244 	 * we haven't seen anything other than bus matching patterns.  So
1245 	 * tell the caller to stop descending the tree -- the user doesn't
1246 	 * want to match against lower level tree elements.
1247 	 */
1248 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1249 		retval |= DM_RET_STOP;
1250 
1251 	return(retval);
1252 }
1253 
1254 static dev_match_ret
1255 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1256 	       struct cam_ed *device)
1257 {
1258 	dev_match_ret retval;
1259 	int i;
1260 
1261 	retval = DM_RET_NONE;
1262 
1263 	/*
1264 	 * If we aren't given something to match against, that's an error.
1265 	 */
1266 	if (device == NULL)
1267 		return(DM_RET_ERROR);
1268 
1269 	/*
1270 	 * If there are no match entries, then this device matches no
1271 	 * matter what.
1272 	 */
1273 	if ((patterns == NULL) || (num_patterns == 0))
1274 		return(DM_RET_DESCEND | DM_RET_COPY);
1275 
1276 	for (i = 0; i < num_patterns; i++) {
1277 		struct device_match_pattern *cur_pattern;
1278 		struct scsi_vpd_device_id *device_id_page;
1279 
1280 		/*
1281 		 * If the pattern in question isn't for a device node, we
1282 		 * aren't interested.
1283 		 */
1284 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1285 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1286 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1287 				retval |= DM_RET_DESCEND;
1288 			continue;
1289 		}
1290 
1291 		cur_pattern = &patterns[i].pattern.device_pattern;
1292 
1293 		/* Error out if mutually exclusive options are specified. */
1294 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1295 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1296 			return(DM_RET_ERROR);
1297 
1298 		/*
1299 		 * If they want to match any device node, we give them any
1300 		 * device node.
1301 		 */
1302 		if (cur_pattern->flags == DEV_MATCH_ANY)
1303 			goto copy_dev_node;
1304 
1305 		/*
1306 		 * Not sure why someone would do this...
1307 		 */
1308 		if (cur_pattern->flags == DEV_MATCH_NONE)
1309 			continue;
1310 
1311 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1312 		 && (cur_pattern->path_id != device->target->bus->path_id))
1313 			continue;
1314 
1315 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1316 		 && (cur_pattern->target_id != device->target->target_id))
1317 			continue;
1318 
1319 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1320 		 && (cur_pattern->target_lun != device->lun_id))
1321 			continue;
1322 
1323 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1324 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1325 				    (caddr_t)&cur_pattern->data.inq_pat,
1326 				    1, sizeof(cur_pattern->data.inq_pat),
1327 				    scsi_static_inquiry_match) == NULL))
1328 			continue;
1329 
1330 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1331 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1332 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1333 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1334 				      device->device_id_len
1335 				    - SVPD_DEVICE_ID_HDR_LEN,
1336 				      cur_pattern->data.devid_pat.id,
1337 				      cur_pattern->data.devid_pat.id_len) != 0))
1338 			continue;
1339 
1340 copy_dev_node:
1341 		/*
1342 		 * If we get to this point, the user definitely wants
1343 		 * information on this device.  So tell the caller to copy
1344 		 * the data out.
1345 		 */
1346 		retval |= DM_RET_COPY;
1347 
1348 		/*
1349 		 * If the return action has been set to descend, then we
1350 		 * know that we've already seen a peripheral matching
1351 		 * expression, therefore we need to further descend the tree.
1352 		 * This won't change by continuing around the loop, so we
1353 		 * go ahead and return.  If we haven't seen a peripheral
1354 		 * matching expression, we keep going around the loop until
1355 		 * we exhaust the matching expressions.  We'll set the stop
1356 		 * flag once we fall out of the loop.
1357 		 */
1358 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1359 			return(retval);
1360 	}
1361 
1362 	/*
1363 	 * If the return action hasn't been set to descend yet, that means
1364 	 * we haven't seen any peripheral matching patterns.  So tell the
1365 	 * caller to stop descending the tree -- the user doesn't want to
1366 	 * match against lower level tree elements.
1367 	 */
1368 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1369 		retval |= DM_RET_STOP;
1370 
1371 	return(retval);
1372 }
1373 
1374 /*
1375  * Match a single peripheral against any number of match patterns.
1376  */
1377 static dev_match_ret
1378 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1379 	       struct cam_periph *periph)
1380 {
1381 	dev_match_ret retval;
1382 	int i;
1383 
1384 	/*
1385 	 * If we aren't given something to match against, that's an error.
1386 	 */
1387 	if (periph == NULL)
1388 		return(DM_RET_ERROR);
1389 
1390 	/*
1391 	 * If there are no match entries, then this peripheral matches no
1392 	 * matter what.
1393 	 */
1394 	if ((patterns == NULL) || (num_patterns == 0))
1395 		return(DM_RET_STOP | DM_RET_COPY);
1396 
1397 	/*
1398 	 * There aren't any nodes below a peripheral node, so there's no
1399 	 * reason to descend the tree any further.
1400 	 */
1401 	retval = DM_RET_STOP;
1402 
1403 	for (i = 0; i < num_patterns; i++) {
1404 		struct periph_match_pattern *cur_pattern;
1405 
1406 		/*
1407 		 * If the pattern in question isn't for a peripheral, we
1408 		 * aren't interested.
1409 		 */
1410 		if (patterns[i].type != DEV_MATCH_PERIPH)
1411 			continue;
1412 
1413 		cur_pattern = &patterns[i].pattern.periph_pattern;
1414 
1415 		/*
1416 		 * If they want to match on anything, then we will do so.
1417 		 */
1418 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1419 			/* set the copy flag */
1420 			retval |= DM_RET_COPY;
1421 
1422 			/*
1423 			 * We've already set the return action to stop,
1424 			 * since there are no nodes below peripherals in
1425 			 * the tree.
1426 			 */
1427 			return(retval);
1428 		}
1429 
1430 		/*
1431 		 * Not sure why someone would do this...
1432 		 */
1433 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1434 			continue;
1435 
1436 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1437 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1438 			continue;
1439 
1440 		/*
1441 		 * For the target and lun id's, we have to make sure the
1442 		 * target and lun pointers aren't NULL.  The xpt peripheral
1443 		 * has a wildcard target and device.
1444 		 */
1445 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1446 		 && ((periph->path->target == NULL)
1447 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1448 			continue;
1449 
1450 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1451 		 && ((periph->path->device == NULL)
1452 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1453 			continue;
1454 
1455 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1456 		 && (cur_pattern->unit_number != periph->unit_number))
1457 			continue;
1458 
1459 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1460 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1461 			     DEV_IDLEN) != 0))
1462 			continue;
1463 
1464 		/*
1465 		 * If we get to this point, the user definitely wants
1466 		 * information on this peripheral.  So tell the caller to
1467 		 * copy the data out.
1468 		 */
1469 		retval |= DM_RET_COPY;
1470 
1471 		/*
1472 		 * The return action has already been set to stop, since
1473 		 * peripherals don't have any nodes below them in the EDT.
1474 		 */
1475 		return(retval);
1476 	}
1477 
1478 	/*
1479 	 * If we get to this point, the peripheral that was passed in
1480 	 * doesn't match any of the patterns.
1481 	 */
1482 	return(retval);
1483 }
1484 
1485 static int
1486 xptedtbusfunc(struct cam_eb *bus, void *arg)
1487 {
1488 	struct ccb_dev_match *cdm;
1489 	dev_match_ret retval;
1490 
1491 	cdm = (struct ccb_dev_match *)arg;
1492 
1493 	/*
1494 	 * If our position is for something deeper in the tree, that means
1495 	 * that we've already seen this node.  So, we keep going down.
1496 	 */
1497 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1498 	 && (cdm->pos.cookie.bus == bus)
1499 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1500 	 && (cdm->pos.cookie.target != NULL))
1501 		retval = DM_RET_DESCEND;
1502 	else
1503 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1504 
1505 	/*
1506 	 * If we got an error, bail out of the search.
1507 	 */
1508 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1509 		cdm->status = CAM_DEV_MATCH_ERROR;
1510 		return(0);
1511 	}
1512 
1513 	/*
1514 	 * If the copy flag is set, copy this bus out.
1515 	 */
1516 	if (retval & DM_RET_COPY) {
1517 		int spaceleft, j;
1518 
1519 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1520 			sizeof(struct dev_match_result));
1521 
1522 		/*
1523 		 * If we don't have enough space to put in another
1524 		 * match result, save our position and tell the
1525 		 * user there are more devices to check.
1526 		 */
1527 		if (spaceleft < sizeof(struct dev_match_result)) {
1528 			bzero(&cdm->pos, sizeof(cdm->pos));
1529 			cdm->pos.position_type =
1530 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1531 
1532 			cdm->pos.cookie.bus = bus;
1533 			cdm->pos.generations[CAM_BUS_GENERATION]=
1534 				xsoftc.bus_generation;
1535 			cdm->status = CAM_DEV_MATCH_MORE;
1536 			return(0);
1537 		}
1538 		j = cdm->num_matches;
1539 		cdm->num_matches++;
1540 		cdm->matches[j].type = DEV_MATCH_BUS;
1541 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1542 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1543 		cdm->matches[j].result.bus_result.unit_number =
1544 			bus->sim->unit_number;
1545 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1546 			bus->sim->sim_name, DEV_IDLEN);
1547 	}
1548 
1549 	/*
1550 	 * If the user is only interested in busses, there's no
1551 	 * reason to descend to the next level in the tree.
1552 	 */
1553 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1554 		return(1);
1555 
1556 	/*
1557 	 * If there is a target generation recorded, check it to
1558 	 * make sure the target list hasn't changed.
1559 	 */
1560 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1561 	 && (bus == cdm->pos.cookie.bus)
1562 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1563 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1564 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1565 	     bus->generation)) {
1566 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1567 		return(0);
1568 	}
1569 
1570 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1571 	 && (cdm->pos.cookie.bus == bus)
1572 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1573 	 && (cdm->pos.cookie.target != NULL))
1574 		return(xpttargettraverse(bus,
1575 					(struct cam_et *)cdm->pos.cookie.target,
1576 					 xptedttargetfunc, arg));
1577 	else
1578 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1579 }
1580 
1581 static int
1582 xptedttargetfunc(struct cam_et *target, void *arg)
1583 {
1584 	struct ccb_dev_match *cdm;
1585 
1586 	cdm = (struct ccb_dev_match *)arg;
1587 
1588 	/*
1589 	 * If there is a device list generation recorded, check it to
1590 	 * make sure the device list hasn't changed.
1591 	 */
1592 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1593 	 && (cdm->pos.cookie.bus == target->bus)
1594 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1595 	 && (cdm->pos.cookie.target == target)
1596 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1597 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1598 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1599 	     target->generation)) {
1600 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1601 		return(0);
1602 	}
1603 
1604 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1605 	 && (cdm->pos.cookie.bus == target->bus)
1606 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1607 	 && (cdm->pos.cookie.target == target)
1608 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1609 	 && (cdm->pos.cookie.device != NULL))
1610 		return(xptdevicetraverse(target,
1611 					(struct cam_ed *)cdm->pos.cookie.device,
1612 					 xptedtdevicefunc, arg));
1613 	else
1614 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1615 }
1616 
1617 static int
1618 xptedtdevicefunc(struct cam_ed *device, void *arg)
1619 {
1620 
1621 	struct ccb_dev_match *cdm;
1622 	dev_match_ret retval;
1623 
1624 	cdm = (struct ccb_dev_match *)arg;
1625 
1626 	/*
1627 	 * If our position is for something deeper in the tree, that means
1628 	 * that we've already seen this node.  So, we keep going down.
1629 	 */
1630 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1631 	 && (cdm->pos.cookie.device == device)
1632 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1633 	 && (cdm->pos.cookie.periph != NULL))
1634 		retval = DM_RET_DESCEND;
1635 	else
1636 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1637 					device);
1638 
1639 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1640 		cdm->status = CAM_DEV_MATCH_ERROR;
1641 		return(0);
1642 	}
1643 
1644 	/*
1645 	 * If the copy flag is set, copy this device out.
1646 	 */
1647 	if (retval & DM_RET_COPY) {
1648 		int spaceleft, j;
1649 
1650 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1651 			sizeof(struct dev_match_result));
1652 
1653 		/*
1654 		 * If we don't have enough space to put in another
1655 		 * match result, save our position and tell the
1656 		 * user there are more devices to check.
1657 		 */
1658 		if (spaceleft < sizeof(struct dev_match_result)) {
1659 			bzero(&cdm->pos, sizeof(cdm->pos));
1660 			cdm->pos.position_type =
1661 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1662 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1663 
1664 			cdm->pos.cookie.bus = device->target->bus;
1665 			cdm->pos.generations[CAM_BUS_GENERATION]=
1666 				xsoftc.bus_generation;
1667 			cdm->pos.cookie.target = device->target;
1668 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1669 				device->target->bus->generation;
1670 			cdm->pos.cookie.device = device;
1671 			cdm->pos.generations[CAM_DEV_GENERATION] =
1672 				device->target->generation;
1673 			cdm->status = CAM_DEV_MATCH_MORE;
1674 			return(0);
1675 		}
1676 		j = cdm->num_matches;
1677 		cdm->num_matches++;
1678 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1679 		cdm->matches[j].result.device_result.path_id =
1680 			device->target->bus->path_id;
1681 		cdm->matches[j].result.device_result.target_id =
1682 			device->target->target_id;
1683 		cdm->matches[j].result.device_result.target_lun =
1684 			device->lun_id;
1685 		cdm->matches[j].result.device_result.protocol =
1686 			device->protocol;
1687 		bcopy(&device->inq_data,
1688 		      &cdm->matches[j].result.device_result.inq_data,
1689 		      sizeof(struct scsi_inquiry_data));
1690 		bcopy(&device->ident_data,
1691 		      &cdm->matches[j].result.device_result.ident_data,
1692 		      sizeof(struct ata_params));
1693 
1694 		/* Let the user know whether this device is unconfigured */
1695 		if (device->flags & CAM_DEV_UNCONFIGURED)
1696 			cdm->matches[j].result.device_result.flags =
1697 				DEV_RESULT_UNCONFIGURED;
1698 		else
1699 			cdm->matches[j].result.device_result.flags =
1700 				DEV_RESULT_NOFLAG;
1701 	}
1702 
1703 	/*
1704 	 * If the user isn't interested in peripherals, don't descend
1705 	 * the tree any further.
1706 	 */
1707 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1708 		return(1);
1709 
1710 	/*
1711 	 * If there is a peripheral list generation recorded, make sure
1712 	 * it hasn't changed.
1713 	 */
1714 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1715 	 && (device->target->bus == cdm->pos.cookie.bus)
1716 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1717 	 && (device->target == cdm->pos.cookie.target)
1718 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1719 	 && (device == cdm->pos.cookie.device)
1720 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1721 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1722 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1723 	     device->generation)){
1724 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1725 		return(0);
1726 	}
1727 
1728 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1729 	 && (cdm->pos.cookie.bus == device->target->bus)
1730 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1731 	 && (cdm->pos.cookie.target == device->target)
1732 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1733 	 && (cdm->pos.cookie.device == device)
1734 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1735 	 && (cdm->pos.cookie.periph != NULL))
1736 		return(xptperiphtraverse(device,
1737 				(struct cam_periph *)cdm->pos.cookie.periph,
1738 				xptedtperiphfunc, arg));
1739 	else
1740 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1741 }
1742 
1743 static int
1744 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1745 {
1746 	struct ccb_dev_match *cdm;
1747 	dev_match_ret retval;
1748 
1749 	cdm = (struct ccb_dev_match *)arg;
1750 
1751 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1752 
1753 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1754 		cdm->status = CAM_DEV_MATCH_ERROR;
1755 		return(0);
1756 	}
1757 
1758 	/*
1759 	 * If the copy flag is set, copy this peripheral out.
1760 	 */
1761 	if (retval & DM_RET_COPY) {
1762 		int spaceleft, j;
1763 
1764 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1765 			sizeof(struct dev_match_result));
1766 
1767 		/*
1768 		 * If we don't have enough space to put in another
1769 		 * match result, save our position and tell the
1770 		 * user there are more devices to check.
1771 		 */
1772 		if (spaceleft < sizeof(struct dev_match_result)) {
1773 			bzero(&cdm->pos, sizeof(cdm->pos));
1774 			cdm->pos.position_type =
1775 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1776 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1777 				CAM_DEV_POS_PERIPH;
1778 
1779 			cdm->pos.cookie.bus = periph->path->bus;
1780 			cdm->pos.generations[CAM_BUS_GENERATION]=
1781 				xsoftc.bus_generation;
1782 			cdm->pos.cookie.target = periph->path->target;
1783 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1784 				periph->path->bus->generation;
1785 			cdm->pos.cookie.device = periph->path->device;
1786 			cdm->pos.generations[CAM_DEV_GENERATION] =
1787 				periph->path->target->generation;
1788 			cdm->pos.cookie.periph = periph;
1789 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1790 				periph->path->device->generation;
1791 			cdm->status = CAM_DEV_MATCH_MORE;
1792 			return(0);
1793 		}
1794 
1795 		j = cdm->num_matches;
1796 		cdm->num_matches++;
1797 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1798 		cdm->matches[j].result.periph_result.path_id =
1799 			periph->path->bus->path_id;
1800 		cdm->matches[j].result.periph_result.target_id =
1801 			periph->path->target->target_id;
1802 		cdm->matches[j].result.periph_result.target_lun =
1803 			periph->path->device->lun_id;
1804 		cdm->matches[j].result.periph_result.unit_number =
1805 			periph->unit_number;
1806 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1807 			periph->periph_name, DEV_IDLEN);
1808 	}
1809 
1810 	return(1);
1811 }
1812 
1813 static int
1814 xptedtmatch(struct ccb_dev_match *cdm)
1815 {
1816 	int ret;
1817 
1818 	cdm->num_matches = 0;
1819 
1820 	/*
1821 	 * Check the bus list generation.  If it has changed, the user
1822 	 * needs to reset everything and start over.
1823 	 */
1824 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1825 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1826 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1827 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1828 		return(0);
1829 	}
1830 
1831 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1832 	 && (cdm->pos.cookie.bus != NULL))
1833 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1834 				     xptedtbusfunc, cdm);
1835 	else
1836 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1837 
1838 	/*
1839 	 * If we get back 0, that means that we had to stop before fully
1840 	 * traversing the EDT.  It also means that one of the subroutines
1841 	 * has set the status field to the proper value.  If we get back 1,
1842 	 * we've fully traversed the EDT and copied out any matching entries.
1843 	 */
1844 	if (ret == 1)
1845 		cdm->status = CAM_DEV_MATCH_LAST;
1846 
1847 	return(ret);
1848 }
1849 
1850 static int
1851 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1852 {
1853 	struct ccb_dev_match *cdm;
1854 
1855 	cdm = (struct ccb_dev_match *)arg;
1856 
1857 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1858 	 && (cdm->pos.cookie.pdrv == pdrv)
1859 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1860 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1861 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1862 	     (*pdrv)->generation)) {
1863 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1864 		return(0);
1865 	}
1866 
1867 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1868 	 && (cdm->pos.cookie.pdrv == pdrv)
1869 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1870 	 && (cdm->pos.cookie.periph != NULL))
1871 		return(xptpdperiphtraverse(pdrv,
1872 				(struct cam_periph *)cdm->pos.cookie.periph,
1873 				xptplistperiphfunc, arg));
1874 	else
1875 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1876 }
1877 
1878 static int
1879 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1880 {
1881 	struct ccb_dev_match *cdm;
1882 	dev_match_ret retval;
1883 
1884 	cdm = (struct ccb_dev_match *)arg;
1885 
1886 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1887 
1888 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1889 		cdm->status = CAM_DEV_MATCH_ERROR;
1890 		return(0);
1891 	}
1892 
1893 	/*
1894 	 * If the copy flag is set, copy this peripheral out.
1895 	 */
1896 	if (retval & DM_RET_COPY) {
1897 		int spaceleft, j;
1898 
1899 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1900 			sizeof(struct dev_match_result));
1901 
1902 		/*
1903 		 * If we don't have enough space to put in another
1904 		 * match result, save our position and tell the
1905 		 * user there are more devices to check.
1906 		 */
1907 		if (spaceleft < sizeof(struct dev_match_result)) {
1908 			struct periph_driver **pdrv;
1909 
1910 			pdrv = NULL;
1911 			bzero(&cdm->pos, sizeof(cdm->pos));
1912 			cdm->pos.position_type =
1913 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1914 				CAM_DEV_POS_PERIPH;
1915 
1916 			/*
1917 			 * This may look a bit non-sensical, but it is
1918 			 * actually quite logical.  There are very few
1919 			 * peripheral drivers, and bloating every peripheral
1920 			 * structure with a pointer back to its parent
1921 			 * peripheral driver linker set entry would cost
1922 			 * more in the long run than doing this quick lookup.
1923 			 */
1924 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1925 				if (strcmp((*pdrv)->driver_name,
1926 				    periph->periph_name) == 0)
1927 					break;
1928 			}
1929 
1930 			if (*pdrv == NULL) {
1931 				cdm->status = CAM_DEV_MATCH_ERROR;
1932 				return(0);
1933 			}
1934 
1935 			cdm->pos.cookie.pdrv = pdrv;
1936 			/*
1937 			 * The periph generation slot does double duty, as
1938 			 * does the periph pointer slot.  They are used for
1939 			 * both edt and pdrv lookups and positioning.
1940 			 */
1941 			cdm->pos.cookie.periph = periph;
1942 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1943 				(*pdrv)->generation;
1944 			cdm->status = CAM_DEV_MATCH_MORE;
1945 			return(0);
1946 		}
1947 
1948 		j = cdm->num_matches;
1949 		cdm->num_matches++;
1950 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1951 		cdm->matches[j].result.periph_result.path_id =
1952 			periph->path->bus->path_id;
1953 
1954 		/*
1955 		 * The transport layer peripheral doesn't have a target or
1956 		 * lun.
1957 		 */
1958 		if (periph->path->target)
1959 			cdm->matches[j].result.periph_result.target_id =
1960 				periph->path->target->target_id;
1961 		else
1962 			cdm->matches[j].result.periph_result.target_id = -1;
1963 
1964 		if (periph->path->device)
1965 			cdm->matches[j].result.periph_result.target_lun =
1966 				periph->path->device->lun_id;
1967 		else
1968 			cdm->matches[j].result.periph_result.target_lun = -1;
1969 
1970 		cdm->matches[j].result.periph_result.unit_number =
1971 			periph->unit_number;
1972 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1973 			periph->periph_name, DEV_IDLEN);
1974 	}
1975 
1976 	return(1);
1977 }
1978 
1979 static int
1980 xptperiphlistmatch(struct ccb_dev_match *cdm)
1981 {
1982 	int ret;
1983 
1984 	cdm->num_matches = 0;
1985 
1986 	/*
1987 	 * At this point in the edt traversal function, we check the bus
1988 	 * list generation to make sure that no busses have been added or
1989 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1990 	 * For the peripheral driver list traversal function, however, we
1991 	 * don't have to worry about new peripheral driver types coming or
1992 	 * going; they're in a linker set, and therefore can't change
1993 	 * without a recompile.
1994 	 */
1995 
1996 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1997 	 && (cdm->pos.cookie.pdrv != NULL))
1998 		ret = xptpdrvtraverse(
1999 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2000 				xptplistpdrvfunc, cdm);
2001 	else
2002 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2003 
2004 	/*
2005 	 * If we get back 0, that means that we had to stop before fully
2006 	 * traversing the peripheral driver tree.  It also means that one of
2007 	 * the subroutines has set the status field to the proper value.  If
2008 	 * we get back 1, we've fully traversed the EDT and copied out any
2009 	 * matching entries.
2010 	 */
2011 	if (ret == 1)
2012 		cdm->status = CAM_DEV_MATCH_LAST;
2013 
2014 	return(ret);
2015 }
2016 
2017 static int
2018 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2019 {
2020 	struct cam_eb *bus, *next_bus;
2021 	int retval;
2022 
2023 	retval = 1;
2024 
2025 	mtx_lock(&xsoftc.xpt_topo_lock);
2026 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2027 	     bus != NULL;
2028 	     bus = next_bus) {
2029 
2030 		bus->refcount++;
2031 
2032 		/*
2033 		 * XXX The locking here is obviously very complex.  We
2034 		 * should work to simplify it.
2035 		 */
2036 		mtx_unlock(&xsoftc.xpt_topo_lock);
2037 		CAM_SIM_LOCK(bus->sim);
2038 		retval = tr_func(bus, arg);
2039 		CAM_SIM_UNLOCK(bus->sim);
2040 
2041 		mtx_lock(&xsoftc.xpt_topo_lock);
2042 		next_bus = TAILQ_NEXT(bus, links);
2043 		mtx_unlock(&xsoftc.xpt_topo_lock);
2044 
2045 		xpt_release_bus(bus);
2046 
2047 		if (retval == 0)
2048 			return(retval);
2049 		mtx_lock(&xsoftc.xpt_topo_lock);
2050 	}
2051 	mtx_unlock(&xsoftc.xpt_topo_lock);
2052 
2053 	return(retval);
2054 }
2055 
2056 int
2057 xpt_sim_opened(struct cam_sim *sim)
2058 {
2059 	struct cam_eb *bus;
2060 	struct cam_et *target;
2061 	struct cam_ed *device;
2062 	struct cam_periph *periph;
2063 
2064 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2065 	mtx_assert(sim->mtx, MA_OWNED);
2066 
2067 	mtx_lock(&xsoftc.xpt_topo_lock);
2068 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2069 		if (bus->sim != sim)
2070 			continue;
2071 
2072 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2073 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2074 				SLIST_FOREACH(periph, &device->periphs,
2075 				    periph_links) {
2076 					if (periph->refcount > 0) {
2077 						mtx_unlock(&xsoftc.xpt_topo_lock);
2078 						return (1);
2079 					}
2080 				}
2081 			}
2082 		}
2083 	}
2084 
2085 	mtx_unlock(&xsoftc.xpt_topo_lock);
2086 	return (0);
2087 }
2088 
2089 static int
2090 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2091 		  xpt_targetfunc_t *tr_func, void *arg)
2092 {
2093 	struct cam_et *target, *next_target;
2094 	int retval;
2095 
2096 	retval = 1;
2097 	for (target = (start_target ? start_target :
2098 		       TAILQ_FIRST(&bus->et_entries));
2099 	     target != NULL; target = next_target) {
2100 
2101 		target->refcount++;
2102 
2103 		retval = tr_func(target, arg);
2104 
2105 		next_target = TAILQ_NEXT(target, links);
2106 
2107 		xpt_release_target(target);
2108 
2109 		if (retval == 0)
2110 			return(retval);
2111 	}
2112 
2113 	return(retval);
2114 }
2115 
2116 static int
2117 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2118 		  xpt_devicefunc_t *tr_func, void *arg)
2119 {
2120 	struct cam_ed *device, *next_device;
2121 	int retval;
2122 
2123 	retval = 1;
2124 	for (device = (start_device ? start_device :
2125 		       TAILQ_FIRST(&target->ed_entries));
2126 	     device != NULL;
2127 	     device = next_device) {
2128 
2129 		/*
2130 		 * Hold a reference so the current device does not go away
2131 		 * on us.
2132 		 */
2133 		device->refcount++;
2134 
2135 		retval = tr_func(device, arg);
2136 
2137 		/*
2138 		 * Grab our next pointer before we release the current
2139 		 * device.
2140 		 */
2141 		next_device = TAILQ_NEXT(device, links);
2142 
2143 		xpt_release_device(device);
2144 
2145 		if (retval == 0)
2146 			return(retval);
2147 	}
2148 
2149 	return(retval);
2150 }
2151 
2152 static int
2153 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2154 		  xpt_periphfunc_t *tr_func, void *arg)
2155 {
2156 	struct cam_periph *periph, *next_periph;
2157 	int retval;
2158 
2159 	retval = 1;
2160 
2161 	xpt_lock_buses();
2162 	for (periph = (start_periph ? start_periph :
2163 		       SLIST_FIRST(&device->periphs));
2164 	     periph != NULL;
2165 	     periph = next_periph) {
2166 
2167 
2168 		/*
2169 		 * In this case, we want to show peripherals that have been
2170 		 * invalidated, but not peripherals that are scheduled to
2171 		 * be freed.  So instead of calling cam_periph_acquire(),
2172 		 * which will fail if the periph has been invalidated, we
2173 		 * just check for the free flag here.  If it is free, we
2174 		 * skip to the next periph.
2175 		 */
2176 		if (periph->flags & CAM_PERIPH_FREE) {
2177 			next_periph = SLIST_NEXT(periph, periph_links);
2178 			continue;
2179 		}
2180 
2181 		/*
2182 		 * Acquire a reference to this periph while we call the
2183 		 * traversal function, so it can't go away.
2184 		 */
2185 		periph->refcount++;
2186 
2187 		xpt_unlock_buses();
2188 
2189 		retval = tr_func(periph, arg);
2190 
2191 		/*
2192 		 * We need the lock for list traversal.
2193 		 */
2194 		xpt_lock_buses();
2195 
2196 		/*
2197 		 * Grab the next peripheral before we release this one, so
2198 		 * our next pointer is still valid.
2199 		 */
2200 		next_periph = SLIST_NEXT(periph, periph_links);
2201 
2202 		cam_periph_release_locked_buses(periph);
2203 
2204 		if (retval == 0)
2205 			goto bailout_done;
2206 	}
2207 
2208 bailout_done:
2209 
2210 	xpt_unlock_buses();
2211 
2212 	return(retval);
2213 }
2214 
2215 static int
2216 xptpdrvtraverse(struct periph_driver **start_pdrv,
2217 		xpt_pdrvfunc_t *tr_func, void *arg)
2218 {
2219 	struct periph_driver **pdrv;
2220 	int retval;
2221 
2222 	retval = 1;
2223 
2224 	/*
2225 	 * We don't traverse the peripheral driver list like we do the
2226 	 * other lists, because it is a linker set, and therefore cannot be
2227 	 * changed during runtime.  If the peripheral driver list is ever
2228 	 * re-done to be something other than a linker set (i.e. it can
2229 	 * change while the system is running), the list traversal should
2230 	 * be modified to work like the other traversal functions.
2231 	 */
2232 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2233 	     *pdrv != NULL; pdrv++) {
2234 		retval = tr_func(pdrv, arg);
2235 
2236 		if (retval == 0)
2237 			return(retval);
2238 	}
2239 
2240 	return(retval);
2241 }
2242 
2243 static int
2244 xptpdperiphtraverse(struct periph_driver **pdrv,
2245 		    struct cam_periph *start_periph,
2246 		    xpt_periphfunc_t *tr_func, void *arg)
2247 {
2248 	struct cam_periph *periph, *next_periph;
2249 	int retval;
2250 
2251 	retval = 1;
2252 
2253 	xpt_lock_buses();
2254 	for (periph = (start_periph ? start_periph :
2255 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2256 	     periph = next_periph) {
2257 
2258 
2259 		/*
2260 		 * In this case, we want to show peripherals that have been
2261 		 * invalidated, but not peripherals that are scheduled to
2262 		 * be freed.  So instead of calling cam_periph_acquire(),
2263 		 * which will fail if the periph has been invalidated, we
2264 		 * just check for the free flag here.  If it is free, we
2265 		 * skip to the next periph.
2266 		 */
2267 		if (periph->flags & CAM_PERIPH_FREE) {
2268 			next_periph = TAILQ_NEXT(periph, unit_links);
2269 			continue;
2270 		}
2271 
2272 		/*
2273 		 * Acquire a reference to this periph while we call the
2274 		 * traversal function, so it can't go away.
2275 		 */
2276 		periph->refcount++;
2277 
2278 		/*
2279 		 * XXX KDM we have the toplogy lock here, but in
2280 		 * xptperiphtraverse(), we drop it before calling the
2281 		 * traversal function.  Which is correct?
2282 		 */
2283 		retval = tr_func(periph, arg);
2284 
2285 		/*
2286 		 * Grab the next peripheral before we release this one, so
2287 		 * our next pointer is still valid.
2288 		 */
2289 		next_periph = TAILQ_NEXT(periph, unit_links);
2290 
2291 		cam_periph_release_locked_buses(periph);
2292 
2293 		if (retval == 0)
2294 			goto bailout_done;
2295 	}
2296 bailout_done:
2297 
2298 	xpt_unlock_buses();
2299 
2300 	return(retval);
2301 }
2302 
2303 static int
2304 xptdefbusfunc(struct cam_eb *bus, void *arg)
2305 {
2306 	struct xpt_traverse_config *tr_config;
2307 
2308 	tr_config = (struct xpt_traverse_config *)arg;
2309 
2310 	if (tr_config->depth == XPT_DEPTH_BUS) {
2311 		xpt_busfunc_t *tr_func;
2312 
2313 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2314 
2315 		return(tr_func(bus, tr_config->tr_arg));
2316 	} else
2317 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2318 }
2319 
2320 static int
2321 xptdeftargetfunc(struct cam_et *target, void *arg)
2322 {
2323 	struct xpt_traverse_config *tr_config;
2324 
2325 	tr_config = (struct xpt_traverse_config *)arg;
2326 
2327 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2328 		xpt_targetfunc_t *tr_func;
2329 
2330 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2331 
2332 		return(tr_func(target, tr_config->tr_arg));
2333 	} else
2334 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2335 }
2336 
2337 static int
2338 xptdefdevicefunc(struct cam_ed *device, void *arg)
2339 {
2340 	struct xpt_traverse_config *tr_config;
2341 
2342 	tr_config = (struct xpt_traverse_config *)arg;
2343 
2344 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2345 		xpt_devicefunc_t *tr_func;
2346 
2347 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2348 
2349 		return(tr_func(device, tr_config->tr_arg));
2350 	} else
2351 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2352 }
2353 
2354 static int
2355 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2356 {
2357 	struct xpt_traverse_config *tr_config;
2358 	xpt_periphfunc_t *tr_func;
2359 
2360 	tr_config = (struct xpt_traverse_config *)arg;
2361 
2362 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2363 
2364 	/*
2365 	 * Unlike the other default functions, we don't check for depth
2366 	 * here.  The peripheral driver level is the last level in the EDT,
2367 	 * so if we're here, we should execute the function in question.
2368 	 */
2369 	return(tr_func(periph, tr_config->tr_arg));
2370 }
2371 
2372 /*
2373  * Execute the given function for every bus in the EDT.
2374  */
2375 static int
2376 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2377 {
2378 	struct xpt_traverse_config tr_config;
2379 
2380 	tr_config.depth = XPT_DEPTH_BUS;
2381 	tr_config.tr_func = tr_func;
2382 	tr_config.tr_arg = arg;
2383 
2384 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2385 }
2386 
2387 /*
2388  * Execute the given function for every device in the EDT.
2389  */
2390 static int
2391 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2392 {
2393 	struct xpt_traverse_config tr_config;
2394 
2395 	tr_config.depth = XPT_DEPTH_DEVICE;
2396 	tr_config.tr_func = tr_func;
2397 	tr_config.tr_arg = arg;
2398 
2399 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2400 }
2401 
2402 static int
2403 xptsetasyncfunc(struct cam_ed *device, void *arg)
2404 {
2405 	struct cam_path path;
2406 	struct ccb_getdev cgd;
2407 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2408 
2409 	/*
2410 	 * Don't report unconfigured devices (Wildcard devs,
2411 	 * devices only for target mode, device instances
2412 	 * that have been invalidated but are waiting for
2413 	 * their last reference count to be released).
2414 	 */
2415 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2416 		return (1);
2417 
2418 	xpt_compile_path(&path,
2419 			 NULL,
2420 			 device->target->bus->path_id,
2421 			 device->target->target_id,
2422 			 device->lun_id);
2423 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2424 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2425 	xpt_action((union ccb *)&cgd);
2426 	csa->callback(csa->callback_arg,
2427 			    AC_FOUND_DEVICE,
2428 			    &path, &cgd);
2429 	xpt_release_path(&path);
2430 
2431 	return(1);
2432 }
2433 
2434 static int
2435 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2436 {
2437 	struct cam_path path;
2438 	struct ccb_pathinq cpi;
2439 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2440 
2441 	xpt_compile_path(&path, /*periph*/NULL,
2442 			 bus->sim->path_id,
2443 			 CAM_TARGET_WILDCARD,
2444 			 CAM_LUN_WILDCARD);
2445 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2446 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2447 	xpt_action((union ccb *)&cpi);
2448 	csa->callback(csa->callback_arg,
2449 			    AC_PATH_REGISTERED,
2450 			    &path, &cpi);
2451 	xpt_release_path(&path);
2452 
2453 	return(1);
2454 }
2455 
2456 void
2457 xpt_action(union ccb *start_ccb)
2458 {
2459 
2460 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2461 
2462 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2463 	/* Compatibility for RL-unaware code. */
2464 	if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2465 	    start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2466 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2467 }
2468 
2469 void
2470 xpt_action_default(union ccb *start_ccb)
2471 {
2472 #ifdef CAMDEBUG
2473 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2474 #endif
2475 	struct cam_path *path;
2476 
2477 	path = start_ccb->ccb_h.path;
2478 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2479 
2480 	switch (start_ccb->ccb_h.func_code) {
2481 	case XPT_SCSI_IO:
2482 	{
2483 		struct cam_ed *device;
2484 
2485 		/*
2486 		 * For the sake of compatibility with SCSI-1
2487 		 * devices that may not understand the identify
2488 		 * message, we include lun information in the
2489 		 * second byte of all commands.  SCSI-1 specifies
2490 		 * that luns are a 3 bit value and reserves only 3
2491 		 * bits for lun information in the CDB.  Later
2492 		 * revisions of the SCSI spec allow for more than 8
2493 		 * luns, but have deprecated lun information in the
2494 		 * CDB.  So, if the lun won't fit, we must omit.
2495 		 *
2496 		 * Also be aware that during initial probing for devices,
2497 		 * the inquiry information is unknown but initialized to 0.
2498 		 * This means that this code will be exercised while probing
2499 		 * devices with an ANSI revision greater than 2.
2500 		 */
2501 		device = path->device;
2502 		if (device->protocol_version <= SCSI_REV_2
2503 		 && start_ccb->ccb_h.target_lun < 8
2504 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2505 
2506 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2507 			    start_ccb->ccb_h.target_lun << 5;
2508 		}
2509 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2510 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2511 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2512 			  	       &path->device->inq_data),
2513 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2514 					  cdb_str, sizeof(cdb_str))));
2515 	}
2516 	/* FALLTHROUGH */
2517 	case XPT_TARGET_IO:
2518 	case XPT_CONT_TARGET_IO:
2519 		start_ccb->csio.sense_resid = 0;
2520 		start_ccb->csio.resid = 0;
2521 		/* FALLTHROUGH */
2522 	case XPT_ATA_IO:
2523 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2524 			start_ccb->ataio.resid = 0;
2525 			CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n",
2526 			    ata_op_string(&start_ccb->ataio.cmd),
2527 			    ata_cmd_string(&start_ccb->ataio.cmd,
2528 					  cdb_str, sizeof(cdb_str))));
2529 		}
2530 		/* FALLTHROUGH */
2531 	case XPT_RESET_DEV:
2532 	case XPT_ENG_EXEC:
2533 	case XPT_SMP_IO:
2534 	{
2535 		int frozen;
2536 
2537 		frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2538 		path->device->sim->devq->alloc_openings += frozen;
2539 		if (frozen > 0)
2540 			xpt_run_dev_allocq(path->bus);
2541 		if (xpt_schedule_dev_sendq(path->bus, path->device))
2542 			xpt_run_dev_sendq(path->bus);
2543 		break;
2544 	}
2545 	case XPT_CALC_GEOMETRY:
2546 	{
2547 		struct cam_sim *sim;
2548 
2549 		/* Filter out garbage */
2550 		if (start_ccb->ccg.block_size == 0
2551 		 || start_ccb->ccg.volume_size == 0) {
2552 			start_ccb->ccg.cylinders = 0;
2553 			start_ccb->ccg.heads = 0;
2554 			start_ccb->ccg.secs_per_track = 0;
2555 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2556 			break;
2557 		}
2558 #if defined(PC98) || defined(__sparc64__)
2559 		/*
2560 		 * In a PC-98 system, geometry translation depens on
2561 		 * the "real" device geometry obtained from mode page 4.
2562 		 * SCSI geometry translation is performed in the
2563 		 * initialization routine of the SCSI BIOS and the result
2564 		 * stored in host memory.  If the translation is available
2565 		 * in host memory, use it.  If not, rely on the default
2566 		 * translation the device driver performs.
2567 		 * For sparc64, we may need adjust the geometry of large
2568 		 * disks in order to fit the limitations of the 16-bit
2569 		 * fields of the VTOC8 disk label.
2570 		 */
2571 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2572 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2573 			break;
2574 		}
2575 #endif
2576 		sim = path->bus->sim;
2577 		(*(sim->sim_action))(sim, start_ccb);
2578 		break;
2579 	}
2580 	case XPT_ABORT:
2581 	{
2582 		union ccb* abort_ccb;
2583 
2584 		abort_ccb = start_ccb->cab.abort_ccb;
2585 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2586 
2587 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2588 				struct cam_ccbq *ccbq;
2589 				struct cam_ed *device;
2590 
2591 				device = abort_ccb->ccb_h.path->device;
2592 				ccbq = &device->ccbq;
2593 				device->sim->devq->alloc_openings -=
2594 				    cam_ccbq_remove_ccb(ccbq, abort_ccb);
2595 				abort_ccb->ccb_h.status =
2596 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2597 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2598 				xpt_done(abort_ccb);
2599 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2600 				break;
2601 			}
2602 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2603 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2604 				/*
2605 				 * We've caught this ccb en route to
2606 				 * the SIM.  Flag it for abort and the
2607 				 * SIM will do so just before starting
2608 				 * real work on the CCB.
2609 				 */
2610 				abort_ccb->ccb_h.status =
2611 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2612 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2613 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2614 				break;
2615 			}
2616 		}
2617 		if (XPT_FC_IS_QUEUED(abort_ccb)
2618 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2619 			/*
2620 			 * It's already completed but waiting
2621 			 * for our SWI to get to it.
2622 			 */
2623 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2624 			break;
2625 		}
2626 		/*
2627 		 * If we weren't able to take care of the abort request
2628 		 * in the XPT, pass the request down to the SIM for processing.
2629 		 */
2630 	}
2631 	/* FALLTHROUGH */
2632 	case XPT_ACCEPT_TARGET_IO:
2633 	case XPT_EN_LUN:
2634 	case XPT_IMMED_NOTIFY:
2635 	case XPT_NOTIFY_ACK:
2636 	case XPT_RESET_BUS:
2637 	case XPT_IMMEDIATE_NOTIFY:
2638 	case XPT_NOTIFY_ACKNOWLEDGE:
2639 	case XPT_GET_SIM_KNOB:
2640 	case XPT_SET_SIM_KNOB:
2641 	{
2642 		struct cam_sim *sim;
2643 
2644 		sim = path->bus->sim;
2645 		(*(sim->sim_action))(sim, start_ccb);
2646 		break;
2647 	}
2648 	case XPT_PATH_INQ:
2649 	{
2650 		struct cam_sim *sim;
2651 
2652 		sim = path->bus->sim;
2653 		(*(sim->sim_action))(sim, start_ccb);
2654 		break;
2655 	}
2656 	case XPT_PATH_STATS:
2657 		start_ccb->cpis.last_reset = path->bus->last_reset;
2658 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2659 		break;
2660 	case XPT_GDEV_TYPE:
2661 	{
2662 		struct cam_ed *dev;
2663 
2664 		dev = path->device;
2665 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2666 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2667 		} else {
2668 			struct ccb_getdev *cgd;
2669 
2670 			cgd = &start_ccb->cgd;
2671 			cgd->protocol = dev->protocol;
2672 			cgd->inq_data = dev->inq_data;
2673 			cgd->ident_data = dev->ident_data;
2674 			cgd->inq_flags = dev->inq_flags;
2675 			cgd->ccb_h.status = CAM_REQ_CMP;
2676 			cgd->serial_num_len = dev->serial_num_len;
2677 			if ((dev->serial_num_len > 0)
2678 			 && (dev->serial_num != NULL))
2679 				bcopy(dev->serial_num, cgd->serial_num,
2680 				      dev->serial_num_len);
2681 		}
2682 		break;
2683 	}
2684 	case XPT_GDEV_STATS:
2685 	{
2686 		struct cam_ed *dev;
2687 
2688 		dev = path->device;
2689 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2690 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2691 		} else {
2692 			struct ccb_getdevstats *cgds;
2693 			struct cam_eb *bus;
2694 			struct cam_et *tar;
2695 
2696 			cgds = &start_ccb->cgds;
2697 			bus = path->bus;
2698 			tar = path->target;
2699 			cgds->dev_openings = dev->ccbq.dev_openings;
2700 			cgds->dev_active = dev->ccbq.dev_active;
2701 			cgds->devq_openings = dev->ccbq.devq_openings;
2702 			cgds->devq_queued = dev->ccbq.queue.entries;
2703 			cgds->held = dev->ccbq.held;
2704 			cgds->last_reset = tar->last_reset;
2705 			cgds->maxtags = dev->maxtags;
2706 			cgds->mintags = dev->mintags;
2707 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2708 				cgds->last_reset = bus->last_reset;
2709 			cgds->ccb_h.status = CAM_REQ_CMP;
2710 		}
2711 		break;
2712 	}
2713 	case XPT_GDEVLIST:
2714 	{
2715 		struct cam_periph	*nperiph;
2716 		struct periph_list	*periph_head;
2717 		struct ccb_getdevlist	*cgdl;
2718 		u_int			i;
2719 		struct cam_ed		*device;
2720 		int			found;
2721 
2722 
2723 		found = 0;
2724 
2725 		/*
2726 		 * Don't want anyone mucking with our data.
2727 		 */
2728 		device = path->device;
2729 		periph_head = &device->periphs;
2730 		cgdl = &start_ccb->cgdl;
2731 
2732 		/*
2733 		 * Check and see if the list has changed since the user
2734 		 * last requested a list member.  If so, tell them that the
2735 		 * list has changed, and therefore they need to start over
2736 		 * from the beginning.
2737 		 */
2738 		if ((cgdl->index != 0) &&
2739 		    (cgdl->generation != device->generation)) {
2740 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2741 			break;
2742 		}
2743 
2744 		/*
2745 		 * Traverse the list of peripherals and attempt to find
2746 		 * the requested peripheral.
2747 		 */
2748 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2749 		     (nperiph != NULL) && (i <= cgdl->index);
2750 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2751 			if (i == cgdl->index) {
2752 				strncpy(cgdl->periph_name,
2753 					nperiph->periph_name,
2754 					DEV_IDLEN);
2755 				cgdl->unit_number = nperiph->unit_number;
2756 				found = 1;
2757 			}
2758 		}
2759 		if (found == 0) {
2760 			cgdl->status = CAM_GDEVLIST_ERROR;
2761 			break;
2762 		}
2763 
2764 		if (nperiph == NULL)
2765 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2766 		else
2767 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2768 
2769 		cgdl->index++;
2770 		cgdl->generation = device->generation;
2771 
2772 		cgdl->ccb_h.status = CAM_REQ_CMP;
2773 		break;
2774 	}
2775 	case XPT_DEV_MATCH:
2776 	{
2777 		dev_pos_type position_type;
2778 		struct ccb_dev_match *cdm;
2779 
2780 		cdm = &start_ccb->cdm;
2781 
2782 		/*
2783 		 * There are two ways of getting at information in the EDT.
2784 		 * The first way is via the primary EDT tree.  It starts
2785 		 * with a list of busses, then a list of targets on a bus,
2786 		 * then devices/luns on a target, and then peripherals on a
2787 		 * device/lun.  The "other" way is by the peripheral driver
2788 		 * lists.  The peripheral driver lists are organized by
2789 		 * peripheral driver.  (obviously)  So it makes sense to
2790 		 * use the peripheral driver list if the user is looking
2791 		 * for something like "da1", or all "da" devices.  If the
2792 		 * user is looking for something on a particular bus/target
2793 		 * or lun, it's generally better to go through the EDT tree.
2794 		 */
2795 
2796 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2797 			position_type = cdm->pos.position_type;
2798 		else {
2799 			u_int i;
2800 
2801 			position_type = CAM_DEV_POS_NONE;
2802 
2803 			for (i = 0; i < cdm->num_patterns; i++) {
2804 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2805 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2806 					position_type = CAM_DEV_POS_EDT;
2807 					break;
2808 				}
2809 			}
2810 
2811 			if (cdm->num_patterns == 0)
2812 				position_type = CAM_DEV_POS_EDT;
2813 			else if (position_type == CAM_DEV_POS_NONE)
2814 				position_type = CAM_DEV_POS_PDRV;
2815 		}
2816 
2817 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2818 		case CAM_DEV_POS_EDT:
2819 			xptedtmatch(cdm);
2820 			break;
2821 		case CAM_DEV_POS_PDRV:
2822 			xptperiphlistmatch(cdm);
2823 			break;
2824 		default:
2825 			cdm->status = CAM_DEV_MATCH_ERROR;
2826 			break;
2827 		}
2828 
2829 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2830 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2831 		else
2832 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2833 
2834 		break;
2835 	}
2836 	case XPT_SASYNC_CB:
2837 	{
2838 		struct ccb_setasync *csa;
2839 		struct async_node *cur_entry;
2840 		struct async_list *async_head;
2841 		u_int32_t added;
2842 
2843 		csa = &start_ccb->csa;
2844 		added = csa->event_enable;
2845 		async_head = &path->device->asyncs;
2846 
2847 		/*
2848 		 * If there is already an entry for us, simply
2849 		 * update it.
2850 		 */
2851 		cur_entry = SLIST_FIRST(async_head);
2852 		while (cur_entry != NULL) {
2853 			if ((cur_entry->callback_arg == csa->callback_arg)
2854 			 && (cur_entry->callback == csa->callback))
2855 				break;
2856 			cur_entry = SLIST_NEXT(cur_entry, links);
2857 		}
2858 
2859 		if (cur_entry != NULL) {
2860 		 	/*
2861 			 * If the request has no flags set,
2862 			 * remove the entry.
2863 			 */
2864 			added &= ~cur_entry->event_enable;
2865 			if (csa->event_enable == 0) {
2866 				SLIST_REMOVE(async_head, cur_entry,
2867 					     async_node, links);
2868 				xpt_release_device(path->device);
2869 				free(cur_entry, M_CAMXPT);
2870 			} else {
2871 				cur_entry->event_enable = csa->event_enable;
2872 			}
2873 			csa->event_enable = added;
2874 		} else {
2875 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2876 					   M_NOWAIT);
2877 			if (cur_entry == NULL) {
2878 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2879 				break;
2880 			}
2881 			cur_entry->event_enable = csa->event_enable;
2882 			cur_entry->callback_arg = csa->callback_arg;
2883 			cur_entry->callback = csa->callback;
2884 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2885 			xpt_acquire_device(path->device);
2886 		}
2887 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2888 		break;
2889 	}
2890 	case XPT_REL_SIMQ:
2891 	{
2892 		struct ccb_relsim *crs;
2893 		struct cam_ed *dev;
2894 
2895 		crs = &start_ccb->crs;
2896 		dev = path->device;
2897 		if (dev == NULL) {
2898 
2899 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2900 			break;
2901 		}
2902 
2903 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2904 
2905  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2906 				/* Don't ever go below one opening */
2907 				if (crs->openings > 0) {
2908 					xpt_dev_ccbq_resize(path,
2909 							    crs->openings);
2910 
2911 					if (bootverbose) {
2912 						xpt_print(path,
2913 						    "tagged openings now %d\n",
2914 						    crs->openings);
2915 					}
2916 				}
2917 			}
2918 		}
2919 
2920 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2921 
2922 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2923 
2924 				/*
2925 				 * Just extend the old timeout and decrement
2926 				 * the freeze count so that a single timeout
2927 				 * is sufficient for releasing the queue.
2928 				 */
2929 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2930 				callout_stop(&dev->callout);
2931 			} else {
2932 
2933 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2934 			}
2935 
2936 			callout_reset(&dev->callout,
2937 			    (crs->release_timeout * hz) / 1000,
2938 			    xpt_release_devq_timeout, dev);
2939 
2940 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2941 
2942 		}
2943 
2944 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2945 
2946 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2947 				/*
2948 				 * Decrement the freeze count so that a single
2949 				 * completion is still sufficient to unfreeze
2950 				 * the queue.
2951 				 */
2952 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2953 			} else {
2954 
2955 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2956 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2957 			}
2958 		}
2959 
2960 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2961 
2962 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2963 			 || (dev->ccbq.dev_active == 0)) {
2964 
2965 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2966 			} else {
2967 
2968 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2969 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2970 			}
2971 		}
2972 
2973 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2974 			xpt_release_devq_rl(path, /*runlevel*/
2975 			    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2976 				crs->release_timeout : 0,
2977 			    /*count*/1, /*run_queue*/TRUE);
2978 		}
2979 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2980 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2981 		break;
2982 	}
2983 	case XPT_DEBUG: {
2984 #ifdef CAMDEBUG
2985 #ifdef CAM_DEBUG_DELAY
2986 		cam_debug_delay = CAM_DEBUG_DELAY;
2987 #endif
2988 		cam_dflags = start_ccb->cdbg.flags;
2989 		if (cam_dpath != NULL) {
2990 			xpt_free_path(cam_dpath);
2991 			cam_dpath = NULL;
2992 		}
2993 
2994 		if (cam_dflags != CAM_DEBUG_NONE) {
2995 			if (xpt_create_path(&cam_dpath, xpt_periph,
2996 					    start_ccb->ccb_h.path_id,
2997 					    start_ccb->ccb_h.target_id,
2998 					    start_ccb->ccb_h.target_lun) !=
2999 					    CAM_REQ_CMP) {
3000 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3001 				cam_dflags = CAM_DEBUG_NONE;
3002 			} else {
3003 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3004 				xpt_print(cam_dpath, "debugging flags now %x\n",
3005 				    cam_dflags);
3006 			}
3007 		} else {
3008 			cam_dpath = NULL;
3009 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3010 		}
3011 #else /* !CAMDEBUG */
3012 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3013 #endif /* CAMDEBUG */
3014 		break;
3015 	}
3016 	case XPT_FREEZE_QUEUE:
3017 	{
3018 		struct ccb_relsim *crs = &start_ccb->crs;
3019 
3020 		xpt_freeze_devq_rl(path, /*runlevel*/
3021 		    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
3022 		    crs->release_timeout : 0, /*count*/1);
3023 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3024 		break;
3025 	}
3026 	case XPT_NOOP:
3027 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3028 			xpt_freeze_devq(path, 1);
3029 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3030 		break;
3031 	default:
3032 	case XPT_SDEV_TYPE:
3033 	case XPT_TERM_IO:
3034 	case XPT_ENG_INQ:
3035 		/* XXX Implement */
3036 		printf("%s: CCB type %#x not supported\n", __func__,
3037 		       start_ccb->ccb_h.func_code);
3038 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3039 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3040 			xpt_done(start_ccb);
3041 		}
3042 		break;
3043 	}
3044 }
3045 
3046 void
3047 xpt_polled_action(union ccb *start_ccb)
3048 {
3049 	u_int32_t timeout;
3050 	struct	  cam_sim *sim;
3051 	struct	  cam_devq *devq;
3052 	struct	  cam_ed *dev;
3053 
3054 
3055 	timeout = start_ccb->ccb_h.timeout * 10;
3056 	sim = start_ccb->ccb_h.path->bus->sim;
3057 	devq = sim->devq;
3058 	dev = start_ccb->ccb_h.path->device;
3059 
3060 	mtx_assert(sim->mtx, MA_OWNED);
3061 
3062 	/* Don't use ISR for this SIM while polling. */
3063 	sim->flags |= CAM_SIM_POLLED;
3064 
3065 	/*
3066 	 * Steal an opening so that no other queued requests
3067 	 * can get it before us while we simulate interrupts.
3068 	 */
3069 	dev->ccbq.devq_openings--;
3070 	dev->ccbq.dev_openings--;
3071 
3072 	while(((devq != NULL && devq->send_openings <= 0) ||
3073 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3074 		DELAY(100);
3075 		(*(sim->sim_poll))(sim);
3076 		camisr_runqueue(&sim->sim_doneq);
3077 	}
3078 
3079 	dev->ccbq.devq_openings++;
3080 	dev->ccbq.dev_openings++;
3081 
3082 	if (timeout != 0) {
3083 		xpt_action(start_ccb);
3084 		while(--timeout > 0) {
3085 			(*(sim->sim_poll))(sim);
3086 			camisr_runqueue(&sim->sim_doneq);
3087 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3088 			    != CAM_REQ_INPROG)
3089 				break;
3090 			DELAY(100);
3091 		}
3092 		if (timeout == 0) {
3093 			/*
3094 			 * XXX Is it worth adding a sim_timeout entry
3095 			 * point so we can attempt recovery?  If
3096 			 * this is only used for dumps, I don't think
3097 			 * it is.
3098 			 */
3099 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3100 		}
3101 	} else {
3102 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3103 	}
3104 
3105 	/* We will use CAM ISR for this SIM again. */
3106 	sim->flags &= ~CAM_SIM_POLLED;
3107 }
3108 
3109 /*
3110  * Schedule a peripheral driver to receive a ccb when it's
3111  * target device has space for more transactions.
3112  */
3113 void
3114 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3115 {
3116 	struct cam_ed *device;
3117 	int runq = 0;
3118 
3119 	mtx_assert(perph->sim->mtx, MA_OWNED);
3120 
3121 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3122 	device = perph->path->device;
3123 	if (periph_is_queued(perph)) {
3124 		/* Simply reorder based on new priority */
3125 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3126 			  ("   change priority to %d\n", new_priority));
3127 		if (new_priority < perph->pinfo.priority) {
3128 			camq_change_priority(&device->drvq,
3129 					     perph->pinfo.index,
3130 					     new_priority);
3131 			runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3132 		}
3133 	} else {
3134 		/* New entry on the queue */
3135 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3136 			  ("   added periph to queue\n"));
3137 		perph->pinfo.priority = new_priority;
3138 		perph->pinfo.generation = ++device->drvq.generation;
3139 		camq_insert(&device->drvq, &perph->pinfo);
3140 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3141 	}
3142 	if (runq != 0) {
3143 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3144 			  ("   calling xpt_run_devq\n"));
3145 		xpt_run_dev_allocq(perph->path->bus);
3146 	}
3147 }
3148 
3149 
3150 /*
3151  * Schedule a device to run on a given queue.
3152  * If the device was inserted as a new entry on the queue,
3153  * return 1 meaning the device queue should be run. If we
3154  * were already queued, implying someone else has already
3155  * started the queue, return 0 so the caller doesn't attempt
3156  * to run the queue.
3157  */
3158 int
3159 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3160 		 u_int32_t new_priority)
3161 {
3162 	int retval;
3163 	u_int32_t old_priority;
3164 
3165 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3166 
3167 	old_priority = pinfo->priority;
3168 
3169 	/*
3170 	 * Are we already queued?
3171 	 */
3172 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3173 		/* Simply reorder based on new priority */
3174 		if (new_priority < old_priority) {
3175 			camq_change_priority(queue, pinfo->index,
3176 					     new_priority);
3177 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3178 					("changed priority to %d\n",
3179 					 new_priority));
3180 			retval = 1;
3181 		} else
3182 			retval = 0;
3183 	} else {
3184 		/* New entry on the queue */
3185 		if (new_priority < old_priority)
3186 			pinfo->priority = new_priority;
3187 
3188 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3189 				("Inserting onto queue\n"));
3190 		pinfo->generation = ++queue->generation;
3191 		camq_insert(queue, pinfo);
3192 		retval = 1;
3193 	}
3194 	return (retval);
3195 }
3196 
3197 static void
3198 xpt_run_dev_allocq(struct cam_eb *bus)
3199 {
3200 	struct	cam_devq *devq;
3201 
3202 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3203 	devq = bus->sim->devq;
3204 
3205 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3206 			("   qfrozen_cnt == 0x%x, entries == %d, "
3207 			 "openings == %d, active == %d\n",
3208 			 devq->alloc_queue.qfrozen_cnt[0],
3209 			 devq->alloc_queue.entries,
3210 			 devq->alloc_openings,
3211 			 devq->alloc_active));
3212 
3213 	devq->alloc_queue.qfrozen_cnt[0]++;
3214 	while ((devq->alloc_queue.entries > 0)
3215 	    && (devq->alloc_openings > 0)
3216 	    && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3217 		struct	cam_ed_qinfo *qinfo;
3218 		struct	cam_ed *device;
3219 		union	ccb *work_ccb;
3220 		struct	cam_periph *drv;
3221 		struct	camq *drvq;
3222 
3223 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3224 							   CAMQ_HEAD);
3225 		device = qinfo->device;
3226 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3227 				("running device %p\n", device));
3228 
3229 		drvq = &device->drvq;
3230 
3231 #ifdef CAMDEBUG
3232 		if (drvq->entries <= 0) {
3233 			panic("xpt_run_dev_allocq: "
3234 			      "Device on queue without any work to do");
3235 		}
3236 #endif
3237 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3238 			devq->alloc_openings--;
3239 			devq->alloc_active++;
3240 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3241 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3242 				      drv->pinfo.priority);
3243 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3244 					("calling periph start\n"));
3245 			drv->periph_start(drv, work_ccb);
3246 		} else {
3247 			/*
3248 			 * Malloc failure in alloc_ccb
3249 			 */
3250 			/*
3251 			 * XXX add us to a list to be run from free_ccb
3252 			 * if we don't have any ccbs active on this
3253 			 * device queue otherwise we may never get run
3254 			 * again.
3255 			 */
3256 			break;
3257 		}
3258 
3259 		/* We may have more work. Attempt to reschedule. */
3260 		xpt_schedule_dev_allocq(bus, device);
3261 	}
3262 	devq->alloc_queue.qfrozen_cnt[0]--;
3263 }
3264 
3265 static void
3266 xpt_run_dev_sendq(struct cam_eb *bus)
3267 {
3268 	struct	cam_devq *devq;
3269 
3270 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3271 
3272 	devq = bus->sim->devq;
3273 
3274 	devq->send_queue.qfrozen_cnt[0]++;
3275 	while ((devq->send_queue.entries > 0)
3276 	    && (devq->send_openings > 0)
3277 	    && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3278 		struct	cam_ed_qinfo *qinfo;
3279 		struct	cam_ed *device;
3280 		union ccb *work_ccb;
3281 		struct	cam_sim *sim;
3282 
3283 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3284 							   CAMQ_HEAD);
3285 		device = qinfo->device;
3286 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3287 				("running device %p\n", device));
3288 
3289 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3290 		if (work_ccb == NULL) {
3291 			printf("device on run queue with no ccbs???\n");
3292 			continue;
3293 		}
3294 
3295 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3296 
3297 			mtx_lock(&xsoftc.xpt_lock);
3298 		 	if (xsoftc.num_highpower <= 0) {
3299 				/*
3300 				 * We got a high power command, but we
3301 				 * don't have any available slots.  Freeze
3302 				 * the device queue until we have a slot
3303 				 * available.
3304 				 */
3305 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3306 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3307 						   &work_ccb->ccb_h,
3308 						   xpt_links.stqe);
3309 
3310 				mtx_unlock(&xsoftc.xpt_lock);
3311 				continue;
3312 			} else {
3313 				/*
3314 				 * Consume a high power slot while
3315 				 * this ccb runs.
3316 				 */
3317 				xsoftc.num_highpower--;
3318 			}
3319 			mtx_unlock(&xsoftc.xpt_lock);
3320 		}
3321 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3322 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3323 
3324 		devq->send_openings--;
3325 		devq->send_active++;
3326 
3327 		xpt_schedule_dev_sendq(bus, device);
3328 
3329 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3330 			/*
3331 			 * The client wants to freeze the queue
3332 			 * after this CCB is sent.
3333 			 */
3334 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3335 		}
3336 
3337 		/* In Target mode, the peripheral driver knows best... */
3338 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3339 			if ((device->inq_flags & SID_CmdQue) != 0
3340 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3341 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3342 			else
3343 				/*
3344 				 * Clear this in case of a retried CCB that
3345 				 * failed due to a rejected tag.
3346 				 */
3347 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3348 		}
3349 
3350 		/*
3351 		 * Device queues can be shared among multiple sim instances
3352 		 * that reside on different busses.  Use the SIM in the queue
3353 		 * CCB's path, rather than the one in the bus that was passed
3354 		 * into this function.
3355 		 */
3356 		sim = work_ccb->ccb_h.path->bus->sim;
3357 		(*(sim->sim_action))(sim, work_ccb);
3358 	}
3359 	devq->send_queue.qfrozen_cnt[0]--;
3360 }
3361 
3362 /*
3363  * This function merges stuff from the slave ccb into the master ccb, while
3364  * keeping important fields in the master ccb constant.
3365  */
3366 void
3367 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3368 {
3369 
3370 	/*
3371 	 * Pull fields that are valid for peripheral drivers to set
3372 	 * into the master CCB along with the CCB "payload".
3373 	 */
3374 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3375 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3376 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3377 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3378 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3379 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3380 }
3381 
3382 void
3383 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3384 {
3385 
3386 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3387 	ccb_h->pinfo.priority = priority;
3388 	ccb_h->path = path;
3389 	ccb_h->path_id = path->bus->path_id;
3390 	if (path->target)
3391 		ccb_h->target_id = path->target->target_id;
3392 	else
3393 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3394 	if (path->device) {
3395 		ccb_h->target_lun = path->device->lun_id;
3396 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3397 	} else {
3398 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3399 	}
3400 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3401 	ccb_h->flags = 0;
3402 }
3403 
3404 /* Path manipulation functions */
3405 cam_status
3406 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3407 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3408 {
3409 	struct	   cam_path *path;
3410 	cam_status status;
3411 
3412 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3413 
3414 	if (path == NULL) {
3415 		status = CAM_RESRC_UNAVAIL;
3416 		return(status);
3417 	}
3418 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3419 	if (status != CAM_REQ_CMP) {
3420 		free(path, M_CAMXPT);
3421 		path = NULL;
3422 	}
3423 	*new_path_ptr = path;
3424 	return (status);
3425 }
3426 
3427 cam_status
3428 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3429 			 struct cam_periph *periph, path_id_t path_id,
3430 			 target_id_t target_id, lun_id_t lun_id)
3431 {
3432 	struct	   cam_path *path;
3433 	struct	   cam_eb *bus = NULL;
3434 	cam_status status;
3435 	int	   need_unlock = 0;
3436 
3437 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3438 
3439 	if (path_id != CAM_BUS_WILDCARD) {
3440 		bus = xpt_find_bus(path_id);
3441 		if (bus != NULL) {
3442 			need_unlock = 1;
3443 			CAM_SIM_LOCK(bus->sim);
3444 		}
3445 	}
3446 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3447 	if (need_unlock) {
3448 		CAM_SIM_UNLOCK(bus->sim);
3449 		xpt_release_bus(bus);
3450 	}
3451 	if (status != CAM_REQ_CMP) {
3452 		free(path, M_CAMXPT);
3453 		path = NULL;
3454 	}
3455 	*new_path_ptr = path;
3456 	return (status);
3457 }
3458 
3459 cam_status
3460 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3461 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3462 {
3463 	struct	     cam_eb *bus;
3464 	struct	     cam_et *target;
3465 	struct	     cam_ed *device;
3466 	cam_status   status;
3467 
3468 	status = CAM_REQ_CMP;	/* Completed without error */
3469 	target = NULL;		/* Wildcarded */
3470 	device = NULL;		/* Wildcarded */
3471 
3472 	/*
3473 	 * We will potentially modify the EDT, so block interrupts
3474 	 * that may attempt to create cam paths.
3475 	 */
3476 	bus = xpt_find_bus(path_id);
3477 	if (bus == NULL) {
3478 		status = CAM_PATH_INVALID;
3479 	} else {
3480 		target = xpt_find_target(bus, target_id);
3481 		if (target == NULL) {
3482 			/* Create one */
3483 			struct cam_et *new_target;
3484 
3485 			new_target = xpt_alloc_target(bus, target_id);
3486 			if (new_target == NULL) {
3487 				status = CAM_RESRC_UNAVAIL;
3488 			} else {
3489 				target = new_target;
3490 			}
3491 		}
3492 		if (target != NULL) {
3493 			device = xpt_find_device(target, lun_id);
3494 			if (device == NULL) {
3495 				/* Create one */
3496 				struct cam_ed *new_device;
3497 
3498 				new_device =
3499 				    (*(bus->xport->alloc_device))(bus,
3500 								      target,
3501 								      lun_id);
3502 				if (new_device == NULL) {
3503 					status = CAM_RESRC_UNAVAIL;
3504 				} else {
3505 					device = new_device;
3506 				}
3507 			}
3508 		}
3509 	}
3510 
3511 	/*
3512 	 * Only touch the user's data if we are successful.
3513 	 */
3514 	if (status == CAM_REQ_CMP) {
3515 		new_path->periph = perph;
3516 		new_path->bus = bus;
3517 		new_path->target = target;
3518 		new_path->device = device;
3519 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3520 	} else {
3521 		if (device != NULL)
3522 			xpt_release_device(device);
3523 		if (target != NULL)
3524 			xpt_release_target(target);
3525 		if (bus != NULL)
3526 			xpt_release_bus(bus);
3527 	}
3528 	return (status);
3529 }
3530 
3531 void
3532 xpt_release_path(struct cam_path *path)
3533 {
3534 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3535 	if (path->device != NULL) {
3536 		xpt_release_device(path->device);
3537 		path->device = NULL;
3538 	}
3539 	if (path->target != NULL) {
3540 		xpt_release_target(path->target);
3541 		path->target = NULL;
3542 	}
3543 	if (path->bus != NULL) {
3544 		xpt_release_bus(path->bus);
3545 		path->bus = NULL;
3546 	}
3547 }
3548 
3549 void
3550 xpt_free_path(struct cam_path *path)
3551 {
3552 
3553 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3554 	xpt_release_path(path);
3555 	free(path, M_CAMXPT);
3556 }
3557 
3558 void
3559 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3560     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3561 {
3562 
3563 	mtx_lock(&xsoftc.xpt_topo_lock);
3564 	if (bus_ref) {
3565 		if (path->bus)
3566 			*bus_ref = path->bus->refcount;
3567 		else
3568 			*bus_ref = 0;
3569 	}
3570 	mtx_unlock(&xsoftc.xpt_topo_lock);
3571 	if (periph_ref) {
3572 		if (path->periph)
3573 			*periph_ref = path->periph->refcount;
3574 		else
3575 			*periph_ref = 0;
3576 	}
3577 	if (target_ref) {
3578 		if (path->target)
3579 			*target_ref = path->target->refcount;
3580 		else
3581 			*target_ref = 0;
3582 	}
3583 	if (device_ref) {
3584 		if (path->device)
3585 			*device_ref = path->device->refcount;
3586 		else
3587 			*device_ref = 0;
3588 	}
3589 }
3590 
3591 /*
3592  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3593  * in path1, 2 for match with wildcards in path2.
3594  */
3595 int
3596 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3597 {
3598 	int retval = 0;
3599 
3600 	if (path1->bus != path2->bus) {
3601 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3602 			retval = 1;
3603 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3604 			retval = 2;
3605 		else
3606 			return (-1);
3607 	}
3608 	if (path1->target != path2->target) {
3609 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3610 			if (retval == 0)
3611 				retval = 1;
3612 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3613 			retval = 2;
3614 		else
3615 			return (-1);
3616 	}
3617 	if (path1->device != path2->device) {
3618 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3619 			if (retval == 0)
3620 				retval = 1;
3621 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3622 			retval = 2;
3623 		else
3624 			return (-1);
3625 	}
3626 	return (retval);
3627 }
3628 
3629 void
3630 xpt_print_path(struct cam_path *path)
3631 {
3632 
3633 	if (path == NULL)
3634 		printf("(nopath): ");
3635 	else {
3636 		if (path->periph != NULL)
3637 			printf("(%s%d:", path->periph->periph_name,
3638 			       path->periph->unit_number);
3639 		else
3640 			printf("(noperiph:");
3641 
3642 		if (path->bus != NULL)
3643 			printf("%s%d:%d:", path->bus->sim->sim_name,
3644 			       path->bus->sim->unit_number,
3645 			       path->bus->sim->bus_id);
3646 		else
3647 			printf("nobus:");
3648 
3649 		if (path->target != NULL)
3650 			printf("%d:", path->target->target_id);
3651 		else
3652 			printf("X:");
3653 
3654 		if (path->device != NULL)
3655 			printf("%d): ", path->device->lun_id);
3656 		else
3657 			printf("X): ");
3658 	}
3659 }
3660 
3661 void
3662 xpt_print(struct cam_path *path, const char *fmt, ...)
3663 {
3664 	va_list ap;
3665 	xpt_print_path(path);
3666 	va_start(ap, fmt);
3667 	vprintf(fmt, ap);
3668 	va_end(ap);
3669 }
3670 
3671 int
3672 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3673 {
3674 	struct sbuf sb;
3675 
3676 #ifdef INVARIANTS
3677 	if (path != NULL && path->bus != NULL)
3678 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3679 #endif
3680 
3681 	sbuf_new(&sb, str, str_len, 0);
3682 
3683 	if (path == NULL)
3684 		sbuf_printf(&sb, "(nopath): ");
3685 	else {
3686 		if (path->periph != NULL)
3687 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3688 				    path->periph->unit_number);
3689 		else
3690 			sbuf_printf(&sb, "(noperiph:");
3691 
3692 		if (path->bus != NULL)
3693 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3694 				    path->bus->sim->unit_number,
3695 				    path->bus->sim->bus_id);
3696 		else
3697 			sbuf_printf(&sb, "nobus:");
3698 
3699 		if (path->target != NULL)
3700 			sbuf_printf(&sb, "%d:", path->target->target_id);
3701 		else
3702 			sbuf_printf(&sb, "X:");
3703 
3704 		if (path->device != NULL)
3705 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3706 		else
3707 			sbuf_printf(&sb, "X): ");
3708 	}
3709 	sbuf_finish(&sb);
3710 
3711 	return(sbuf_len(&sb));
3712 }
3713 
3714 path_id_t
3715 xpt_path_path_id(struct cam_path *path)
3716 {
3717 	return(path->bus->path_id);
3718 }
3719 
3720 target_id_t
3721 xpt_path_target_id(struct cam_path *path)
3722 {
3723 	if (path->target != NULL)
3724 		return (path->target->target_id);
3725 	else
3726 		return (CAM_TARGET_WILDCARD);
3727 }
3728 
3729 lun_id_t
3730 xpt_path_lun_id(struct cam_path *path)
3731 {
3732 	if (path->device != NULL)
3733 		return (path->device->lun_id);
3734 	else
3735 		return (CAM_LUN_WILDCARD);
3736 }
3737 
3738 struct cam_sim *
3739 xpt_path_sim(struct cam_path *path)
3740 {
3741 
3742 	return (path->bus->sim);
3743 }
3744 
3745 struct cam_periph*
3746 xpt_path_periph(struct cam_path *path)
3747 {
3748 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3749 
3750 	return (path->periph);
3751 }
3752 
3753 int
3754 xpt_path_legacy_ata_id(struct cam_path *path)
3755 {
3756 	struct cam_eb *bus;
3757 	int bus_id;
3758 
3759 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3760 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3761 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3762 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3763 		return (-1);
3764 
3765 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3766 	    path->bus->sim->unit_number < 2) {
3767 		bus_id = path->bus->sim->unit_number;
3768 	} else {
3769 		bus_id = 2;
3770 		xpt_lock_buses();
3771 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3772 			if (bus == path->bus)
3773 				break;
3774 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3775 			     bus->sim->unit_number >= 2) ||
3776 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3777 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3778 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3779 				bus_id++;
3780 		}
3781 		xpt_unlock_buses();
3782 	}
3783 	if (path->target != NULL) {
3784 		if (path->target->target_id < 2)
3785 			return (bus_id * 2 + path->target->target_id);
3786 		else
3787 			return (-1);
3788 	} else
3789 		return (bus_id * 2);
3790 }
3791 
3792 /*
3793  * Release a CAM control block for the caller.  Remit the cost of the structure
3794  * to the device referenced by the path.  If the this device had no 'credits'
3795  * and peripheral drivers have registered async callbacks for this notification
3796  * call them now.
3797  */
3798 void
3799 xpt_release_ccb(union ccb *free_ccb)
3800 {
3801 	struct	 cam_path *path;
3802 	struct	 cam_ed *device;
3803 	struct	 cam_eb *bus;
3804 	struct   cam_sim *sim;
3805 
3806 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3807 	path = free_ccb->ccb_h.path;
3808 	device = path->device;
3809 	bus = path->bus;
3810 	sim = bus->sim;
3811 
3812 	mtx_assert(sim->mtx, MA_OWNED);
3813 
3814 	cam_ccbq_release_opening(&device->ccbq);
3815 	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3816 		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3817 		cam_ccbq_resize(&device->ccbq,
3818 		    device->ccbq.dev_openings + device->ccbq.dev_active);
3819 	}
3820 	if (sim->ccb_count > sim->max_ccbs) {
3821 		xpt_free_ccb(free_ccb);
3822 		sim->ccb_count--;
3823 	} else {
3824 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3825 		    xpt_links.sle);
3826 	}
3827 	if (sim->devq == NULL) {
3828 		return;
3829 	}
3830 	sim->devq->alloc_openings++;
3831 	sim->devq->alloc_active--;
3832 	if (device_is_alloc_queued(device) == 0)
3833 		xpt_schedule_dev_allocq(bus, device);
3834 	xpt_run_dev_allocq(bus);
3835 }
3836 
3837 /* Functions accessed by SIM drivers */
3838 
3839 static struct xpt_xport xport_default = {
3840 	.alloc_device = xpt_alloc_device_default,
3841 	.action = xpt_action_default,
3842 	.async = xpt_dev_async_default,
3843 };
3844 
3845 /*
3846  * A sim structure, listing the SIM entry points and instance
3847  * identification info is passed to xpt_bus_register to hook the SIM
3848  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3849  * for this new bus and places it in the array of busses and assigns
3850  * it a path_id.  The path_id may be influenced by "hard wiring"
3851  * information specified by the user.  Once interrupt services are
3852  * available, the bus will be probed.
3853  */
3854 int32_t
3855 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3856 {
3857 	struct cam_eb *new_bus;
3858 	struct cam_eb *old_bus;
3859 	struct ccb_pathinq cpi;
3860 	struct cam_path *path;
3861 	cam_status status;
3862 
3863 	mtx_assert(sim->mtx, MA_OWNED);
3864 
3865 	sim->bus_id = bus;
3866 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3867 					  M_CAMXPT, M_NOWAIT);
3868 	if (new_bus == NULL) {
3869 		/* Couldn't satisfy request */
3870 		return (CAM_RESRC_UNAVAIL);
3871 	}
3872 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3873 	if (path == NULL) {
3874 		free(new_bus, M_CAMXPT);
3875 		return (CAM_RESRC_UNAVAIL);
3876 	}
3877 
3878 	if (strcmp(sim->sim_name, "xpt") != 0) {
3879 		sim->path_id =
3880 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3881 	}
3882 
3883 	TAILQ_INIT(&new_bus->et_entries);
3884 	new_bus->path_id = sim->path_id;
3885 	cam_sim_hold(sim);
3886 	new_bus->sim = sim;
3887 	timevalclear(&new_bus->last_reset);
3888 	new_bus->flags = 0;
3889 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3890 	new_bus->generation = 0;
3891 
3892 	mtx_lock(&xsoftc.xpt_topo_lock);
3893 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3894 	while (old_bus != NULL
3895 	    && old_bus->path_id < new_bus->path_id)
3896 		old_bus = TAILQ_NEXT(old_bus, links);
3897 	if (old_bus != NULL)
3898 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3899 	else
3900 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3901 	xsoftc.bus_generation++;
3902 	mtx_unlock(&xsoftc.xpt_topo_lock);
3903 
3904 	/*
3905 	 * Set a default transport so that a PATH_INQ can be issued to
3906 	 * the SIM.  This will then allow for probing and attaching of
3907 	 * a more appropriate transport.
3908 	 */
3909 	new_bus->xport = &xport_default;
3910 
3911 	status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3912 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3913 	if (status != CAM_REQ_CMP)
3914 		printf("xpt_compile_path returned %d\n", status);
3915 
3916 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3917 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3918 	xpt_action((union ccb *)&cpi);
3919 
3920 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3921 		switch (cpi.transport) {
3922 		case XPORT_SPI:
3923 		case XPORT_SAS:
3924 		case XPORT_FC:
3925 		case XPORT_USB:
3926 		case XPORT_ISCSI:
3927 		case XPORT_PPB:
3928 			new_bus->xport = scsi_get_xport();
3929 			break;
3930 		case XPORT_ATA:
3931 		case XPORT_SATA:
3932 			new_bus->xport = ata_get_xport();
3933 			break;
3934 		default:
3935 			new_bus->xport = &xport_default;
3936 			break;
3937 		}
3938 	}
3939 
3940 	/* Notify interested parties */
3941 	if (sim->path_id != CAM_XPT_PATH_ID) {
3942 		union	ccb *scan_ccb;
3943 
3944 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3945 		/* Initiate bus rescan. */
3946 		scan_ccb = xpt_alloc_ccb_nowait();
3947 		scan_ccb->ccb_h.path = path;
3948 		scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3949 		scan_ccb->crcn.flags = 0;
3950 		xpt_rescan(scan_ccb);
3951 	} else
3952 		xpt_free_path(path);
3953 	return (CAM_SUCCESS);
3954 }
3955 
3956 int32_t
3957 xpt_bus_deregister(path_id_t pathid)
3958 {
3959 	struct cam_path bus_path;
3960 	cam_status status;
3961 
3962 	status = xpt_compile_path(&bus_path, NULL, pathid,
3963 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3964 	if (status != CAM_REQ_CMP)
3965 		return (status);
3966 
3967 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3968 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3969 
3970 	/* Release the reference count held while registered. */
3971 	xpt_release_bus(bus_path.bus);
3972 	xpt_release_path(&bus_path);
3973 
3974 	return (CAM_REQ_CMP);
3975 }
3976 
3977 static path_id_t
3978 xptnextfreepathid(void)
3979 {
3980 	struct cam_eb *bus;
3981 	path_id_t pathid;
3982 	const char *strval;
3983 
3984 	pathid = 0;
3985 	mtx_lock(&xsoftc.xpt_topo_lock);
3986 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3987 retry:
3988 	/* Find an unoccupied pathid */
3989 	while (bus != NULL && bus->path_id <= pathid) {
3990 		if (bus->path_id == pathid)
3991 			pathid++;
3992 		bus = TAILQ_NEXT(bus, links);
3993 	}
3994 	mtx_unlock(&xsoftc.xpt_topo_lock);
3995 
3996 	/*
3997 	 * Ensure that this pathid is not reserved for
3998 	 * a bus that may be registered in the future.
3999 	 */
4000 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4001 		++pathid;
4002 		/* Start the search over */
4003 		mtx_lock(&xsoftc.xpt_topo_lock);
4004 		goto retry;
4005 	}
4006 	return (pathid);
4007 }
4008 
4009 static path_id_t
4010 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4011 {
4012 	path_id_t pathid;
4013 	int i, dunit, val;
4014 	char buf[32];
4015 	const char *dname;
4016 
4017 	pathid = CAM_XPT_PATH_ID;
4018 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4019 	i = 0;
4020 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4021 		if (strcmp(dname, "scbus")) {
4022 			/* Avoid a bit of foot shooting. */
4023 			continue;
4024 		}
4025 		if (dunit < 0)		/* unwired?! */
4026 			continue;
4027 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4028 			if (sim_bus == val) {
4029 				pathid = dunit;
4030 				break;
4031 			}
4032 		} else if (sim_bus == 0) {
4033 			/* Unspecified matches bus 0 */
4034 			pathid = dunit;
4035 			break;
4036 		} else {
4037 			printf("Ambiguous scbus configuration for %s%d "
4038 			       "bus %d, cannot wire down.  The kernel "
4039 			       "config entry for scbus%d should "
4040 			       "specify a controller bus.\n"
4041 			       "Scbus will be assigned dynamically.\n",
4042 			       sim_name, sim_unit, sim_bus, dunit);
4043 			break;
4044 		}
4045 	}
4046 
4047 	if (pathid == CAM_XPT_PATH_ID)
4048 		pathid = xptnextfreepathid();
4049 	return (pathid);
4050 }
4051 
4052 void
4053 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4054 {
4055 	struct cam_eb *bus;
4056 	struct cam_et *target, *next_target;
4057 	struct cam_ed *device, *next_device;
4058 
4059 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4060 
4061 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4062 
4063 	/*
4064 	 * Most async events come from a CAM interrupt context.  In
4065 	 * a few cases, the error recovery code at the peripheral layer,
4066 	 * which may run from our SWI or a process context, may signal
4067 	 * deferred events with a call to xpt_async.
4068 	 */
4069 
4070 	bus = path->bus;
4071 
4072 	if (async_code == AC_BUS_RESET) {
4073 		/* Update our notion of when the last reset occurred */
4074 		microtime(&bus->last_reset);
4075 	}
4076 
4077 	for (target = TAILQ_FIRST(&bus->et_entries);
4078 	     target != NULL;
4079 	     target = next_target) {
4080 
4081 		next_target = TAILQ_NEXT(target, links);
4082 
4083 		if (path->target != target
4084 		 && path->target->target_id != CAM_TARGET_WILDCARD
4085 		 && target->target_id != CAM_TARGET_WILDCARD)
4086 			continue;
4087 
4088 		if (async_code == AC_SENT_BDR) {
4089 			/* Update our notion of when the last reset occurred */
4090 			microtime(&path->target->last_reset);
4091 		}
4092 
4093 		for (device = TAILQ_FIRST(&target->ed_entries);
4094 		     device != NULL;
4095 		     device = next_device) {
4096 
4097 			next_device = TAILQ_NEXT(device, links);
4098 
4099 			if (path->device != device
4100 			 && path->device->lun_id != CAM_LUN_WILDCARD
4101 			 && device->lun_id != CAM_LUN_WILDCARD)
4102 				continue;
4103 			/*
4104 			 * The async callback could free the device.
4105 			 * If it is a broadcast async, it doesn't hold
4106 			 * device reference, so take our own reference.
4107 			 */
4108 			xpt_acquire_device(device);
4109 			(*(bus->xport->async))(async_code, bus,
4110 					       target, device,
4111 					       async_arg);
4112 
4113 			xpt_async_bcast(&device->asyncs, async_code,
4114 					path, async_arg);
4115 			xpt_release_device(device);
4116 		}
4117 	}
4118 
4119 	/*
4120 	 * If this wasn't a fully wildcarded async, tell all
4121 	 * clients that want all async events.
4122 	 */
4123 	if (bus != xpt_periph->path->bus)
4124 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4125 				path, async_arg);
4126 }
4127 
4128 static void
4129 xpt_async_bcast(struct async_list *async_head,
4130 		u_int32_t async_code,
4131 		struct cam_path *path, void *async_arg)
4132 {
4133 	struct async_node *cur_entry;
4134 
4135 	cur_entry = SLIST_FIRST(async_head);
4136 	while (cur_entry != NULL) {
4137 		struct async_node *next_entry;
4138 		/*
4139 		 * Grab the next list entry before we call the current
4140 		 * entry's callback.  This is because the callback function
4141 		 * can delete its async callback entry.
4142 		 */
4143 		next_entry = SLIST_NEXT(cur_entry, links);
4144 		if ((cur_entry->event_enable & async_code) != 0)
4145 			cur_entry->callback(cur_entry->callback_arg,
4146 					    async_code, path,
4147 					    async_arg);
4148 		cur_entry = next_entry;
4149 	}
4150 }
4151 
4152 static void
4153 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4154 		      struct cam_et *target, struct cam_ed *device,
4155 		      void *async_arg)
4156 {
4157 	printf("%s called\n", __func__);
4158 }
4159 
4160 u_int32_t
4161 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
4162 {
4163 	struct cam_ed *dev = path->device;
4164 
4165 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4166 	dev->sim->devq->alloc_openings +=
4167 	    cam_ccbq_freeze(&dev->ccbq, rl, count);
4168 	/* Remove frozen device from allocq. */
4169 	if (device_is_alloc_queued(dev) &&
4170 	    cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4171 	     CAMQ_GET_PRIO(&dev->drvq)))) {
4172 		camq_remove(&dev->sim->devq->alloc_queue,
4173 		    dev->alloc_ccb_entry.pinfo.index);
4174 	}
4175 	/* Remove frozen device from sendq. */
4176 	if (device_is_send_queued(dev) &&
4177 	    cam_ccbq_frozen_top(&dev->ccbq)) {
4178 		camq_remove(&dev->sim->devq->send_queue,
4179 		    dev->send_ccb_entry.pinfo.index);
4180 	}
4181 	return (dev->ccbq.queue.qfrozen_cnt[rl]);
4182 }
4183 
4184 u_int32_t
4185 xpt_freeze_devq(struct cam_path *path, u_int count)
4186 {
4187 
4188 	return (xpt_freeze_devq_rl(path, 0, count));
4189 }
4190 
4191 u_int32_t
4192 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4193 {
4194 
4195 	mtx_assert(sim->mtx, MA_OWNED);
4196 	sim->devq->send_queue.qfrozen_cnt[0] += count;
4197 	return (sim->devq->send_queue.qfrozen_cnt[0]);
4198 }
4199 
4200 static void
4201 xpt_release_devq_timeout(void *arg)
4202 {
4203 	struct cam_ed *device;
4204 
4205 	device = (struct cam_ed *)arg;
4206 
4207 	xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
4208 }
4209 
4210 void
4211 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4212 {
4213 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4214 
4215 	xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4216 }
4217 
4218 void
4219 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4220 {
4221 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4222 
4223 	xpt_release_devq_device(path->device, rl, count, run_queue);
4224 }
4225 
4226 static void
4227 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4228 {
4229 
4230 	if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4231 #ifdef INVARIANTS
4232 		printf("xpt_release_devq(%d): requested %u > present %u\n",
4233 		    rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4234 #endif
4235 		count = dev->ccbq.queue.qfrozen_cnt[rl];
4236 	}
4237 	dev->sim->devq->alloc_openings -=
4238 	    cam_ccbq_release(&dev->ccbq, rl, count);
4239 	if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4240 	    CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4241 		if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4242 			xpt_run_dev_allocq(dev->target->bus);
4243 	}
4244 	if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4245 		/*
4246 		 * No longer need to wait for a successful
4247 		 * command completion.
4248 		 */
4249 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4250 		/*
4251 		 * Remove any timeouts that might be scheduled
4252 		 * to release this queue.
4253 		 */
4254 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4255 			callout_stop(&dev->callout);
4256 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4257 		}
4258 		if (run_queue == 0)
4259 			return;
4260 		/*
4261 		 * Now that we are unfrozen schedule the
4262 		 * device so any pending transactions are
4263 		 * run.
4264 		 */
4265 		if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4266 			xpt_run_dev_sendq(dev->target->bus);
4267 	}
4268 }
4269 
4270 void
4271 xpt_release_simq(struct cam_sim *sim, int run_queue)
4272 {
4273 	struct	camq *sendq;
4274 
4275 	mtx_assert(sim->mtx, MA_OWNED);
4276 	sendq = &(sim->devq->send_queue);
4277 	if (sendq->qfrozen_cnt[0] <= 0) {
4278 #ifdef INVARIANTS
4279 		printf("xpt_release_simq: requested 1 > present %u\n",
4280 		    sendq->qfrozen_cnt[0]);
4281 #endif
4282 	} else
4283 		sendq->qfrozen_cnt[0]--;
4284 	if (sendq->qfrozen_cnt[0] == 0) {
4285 		/*
4286 		 * If there is a timeout scheduled to release this
4287 		 * sim queue, remove it.  The queue frozen count is
4288 		 * already at 0.
4289 		 */
4290 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4291 			callout_stop(&sim->callout);
4292 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4293 		}
4294 		if (run_queue) {
4295 			struct cam_eb *bus;
4296 
4297 			/*
4298 			 * Now that we are unfrozen run the send queue.
4299 			 */
4300 			bus = xpt_find_bus(sim->path_id);
4301 			xpt_run_dev_sendq(bus);
4302 			xpt_release_bus(bus);
4303 		}
4304 	}
4305 }
4306 
4307 /*
4308  * XXX Appears to be unused.
4309  */
4310 static void
4311 xpt_release_simq_timeout(void *arg)
4312 {
4313 	struct cam_sim *sim;
4314 
4315 	sim = (struct cam_sim *)arg;
4316 	xpt_release_simq(sim, /* run_queue */ TRUE);
4317 }
4318 
4319 void
4320 xpt_done(union ccb *done_ccb)
4321 {
4322 	struct cam_sim *sim;
4323 	int	first;
4324 
4325 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4326 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4327 		/*
4328 		 * Queue up the request for handling by our SWI handler
4329 		 * any of the "non-immediate" type of ccbs.
4330 		 */
4331 		sim = done_ccb->ccb_h.path->bus->sim;
4332 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4333 		    sim_links.tqe);
4334 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4335 		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED)) == 0) {
4336 			mtx_lock(&cam_simq_lock);
4337 			first = TAILQ_EMPTY(&cam_simq);
4338 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4339 			mtx_unlock(&cam_simq_lock);
4340 			sim->flags |= CAM_SIM_ON_DONEQ;
4341 			if (first)
4342 				swi_sched(cambio_ih, 0);
4343 		}
4344 	}
4345 }
4346 
4347 union ccb *
4348 xpt_alloc_ccb()
4349 {
4350 	union ccb *new_ccb;
4351 
4352 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4353 	return (new_ccb);
4354 }
4355 
4356 union ccb *
4357 xpt_alloc_ccb_nowait()
4358 {
4359 	union ccb *new_ccb;
4360 
4361 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4362 	return (new_ccb);
4363 }
4364 
4365 void
4366 xpt_free_ccb(union ccb *free_ccb)
4367 {
4368 	free(free_ccb, M_CAMXPT);
4369 }
4370 
4371 
4372 
4373 /* Private XPT functions */
4374 
4375 /*
4376  * Get a CAM control block for the caller. Charge the structure to the device
4377  * referenced by the path.  If the this device has no 'credits' then the
4378  * device already has the maximum number of outstanding operations under way
4379  * and we return NULL. If we don't have sufficient resources to allocate more
4380  * ccbs, we also return NULL.
4381  */
4382 static union ccb *
4383 xpt_get_ccb(struct cam_ed *device)
4384 {
4385 	union ccb *new_ccb;
4386 	struct cam_sim *sim;
4387 
4388 	sim = device->sim;
4389 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4390 		new_ccb = xpt_alloc_ccb_nowait();
4391                 if (new_ccb == NULL) {
4392 			return (NULL);
4393 		}
4394 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4395 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4396 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4397 				  xpt_links.sle);
4398 		sim->ccb_count++;
4399 	}
4400 	cam_ccbq_take_opening(&device->ccbq);
4401 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4402 	return (new_ccb);
4403 }
4404 
4405 static void
4406 xpt_release_bus(struct cam_eb *bus)
4407 {
4408 
4409 	mtx_lock(&xsoftc.xpt_topo_lock);
4410 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4411 	if ((--bus->refcount == 0)
4412 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4413 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4414 		xsoftc.bus_generation++;
4415 		mtx_unlock(&xsoftc.xpt_topo_lock);
4416 		cam_sim_release(bus->sim);
4417 		free(bus, M_CAMXPT);
4418 	} else
4419 		mtx_unlock(&xsoftc.xpt_topo_lock);
4420 }
4421 
4422 static struct cam_et *
4423 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4424 {
4425 	struct cam_et *target;
4426 
4427 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4428 					 M_NOWAIT|M_ZERO);
4429 	if (target != NULL) {
4430 		struct cam_et *cur_target;
4431 
4432 		TAILQ_INIT(&target->ed_entries);
4433 		target->bus = bus;
4434 		target->target_id = target_id;
4435 		target->refcount = 1;
4436 		target->generation = 0;
4437 		target->luns = NULL;
4438 		timevalclear(&target->last_reset);
4439 		/*
4440 		 * Hold a reference to our parent bus so it
4441 		 * will not go away before we do.
4442 		 */
4443 		mtx_lock(&xsoftc.xpt_topo_lock);
4444 		bus->refcount++;
4445 		mtx_unlock(&xsoftc.xpt_topo_lock);
4446 
4447 		/* Insertion sort into our bus's target list */
4448 		cur_target = TAILQ_FIRST(&bus->et_entries);
4449 		while (cur_target != NULL && cur_target->target_id < target_id)
4450 			cur_target = TAILQ_NEXT(cur_target, links);
4451 
4452 		if (cur_target != NULL) {
4453 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4454 		} else {
4455 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4456 		}
4457 		bus->generation++;
4458 	}
4459 	return (target);
4460 }
4461 
4462 static void
4463 xpt_release_target(struct cam_et *target)
4464 {
4465 
4466 	if (target->refcount == 1) {
4467 		if (TAILQ_FIRST(&target->ed_entries) == NULL) {
4468 			TAILQ_REMOVE(&target->bus->et_entries, target, links);
4469 			target->bus->generation++;
4470 			xpt_release_bus(target->bus);
4471 			if (target->luns)
4472 				free(target->luns, M_CAMXPT);
4473 			free(target, M_CAMXPT);
4474 		}
4475 	} else
4476 		target->refcount--;
4477 }
4478 
4479 static struct cam_ed *
4480 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4481 			 lun_id_t lun_id)
4482 {
4483 	struct cam_ed *device, *cur_device;
4484 
4485 	device = xpt_alloc_device(bus, target, lun_id);
4486 	if (device == NULL)
4487 		return (NULL);
4488 
4489 	device->mintags = 1;
4490 	device->maxtags = 1;
4491 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4492 	cur_device = TAILQ_FIRST(&target->ed_entries);
4493 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4494 		cur_device = TAILQ_NEXT(cur_device, links);
4495 	if (cur_device != NULL) {
4496 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4497 	} else {
4498 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4499 	}
4500 	target->generation++;
4501 
4502 	return (device);
4503 }
4504 
4505 struct cam_ed *
4506 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4507 {
4508 	struct	   cam_ed *device;
4509 	struct	   cam_devq *devq;
4510 	cam_status status;
4511 
4512 	/* Make space for us in the device queue on our bus */
4513 	devq = bus->sim->devq;
4514 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4515 
4516 	if (status != CAM_REQ_CMP) {
4517 		device = NULL;
4518 	} else {
4519 		device = (struct cam_ed *)malloc(sizeof(*device),
4520 						 M_CAMXPT, M_NOWAIT|M_ZERO);
4521 	}
4522 
4523 	if (device != NULL) {
4524 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4525 		device->alloc_ccb_entry.device = device;
4526 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4527 		device->send_ccb_entry.device = device;
4528 		device->target = target;
4529 		device->lun_id = lun_id;
4530 		device->sim = bus->sim;
4531 		/* Initialize our queues */
4532 		if (camq_init(&device->drvq, 0) != 0) {
4533 			free(device, M_CAMXPT);
4534 			return (NULL);
4535 		}
4536 		if (cam_ccbq_init(&device->ccbq,
4537 				  bus->sim->max_dev_openings) != 0) {
4538 			camq_fini(&device->drvq);
4539 			free(device, M_CAMXPT);
4540 			return (NULL);
4541 		}
4542 		SLIST_INIT(&device->asyncs);
4543 		SLIST_INIT(&device->periphs);
4544 		device->generation = 0;
4545 		device->owner = NULL;
4546 		device->flags = CAM_DEV_UNCONFIGURED;
4547 		device->tag_delay_count = 0;
4548 		device->tag_saved_openings = 0;
4549 		device->refcount = 1;
4550 		callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4551 
4552 		/*
4553 		 * Hold a reference to our parent target so it
4554 		 * will not go away before we do.
4555 		 */
4556 		target->refcount++;
4557 
4558 	}
4559 	return (device);
4560 }
4561 
4562 void
4563 xpt_acquire_device(struct cam_ed *device)
4564 {
4565 
4566 	device->refcount++;
4567 }
4568 
4569 void
4570 xpt_release_device(struct cam_ed *device)
4571 {
4572 
4573 	if (device->refcount == 1) {
4574 		struct cam_devq *devq;
4575 
4576 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4577 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4578 			panic("Removing device while still queued for ccbs");
4579 
4580 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4581 			callout_stop(&device->callout);
4582 
4583 		TAILQ_REMOVE(&device->target->ed_entries, device,links);
4584 		device->target->generation++;
4585 		device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4586 		/* Release our slot in the devq */
4587 		devq = device->target->bus->sim->devq;
4588 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4589 		camq_fini(&device->drvq);
4590 		cam_ccbq_fini(&device->ccbq);
4591 		/*
4592 		 * Free allocated memory.  free(9) does nothing if the
4593 		 * supplied pointer is NULL, so it is safe to call without
4594 		 * checking.
4595 		 */
4596 		free(device->supported_vpds, M_CAMXPT);
4597 		free(device->device_id, M_CAMXPT);
4598 		free(device->physpath, M_CAMXPT);
4599 		free(device->rcap_buf, M_CAMXPT);
4600 		free(device->serial_num, M_CAMXPT);
4601 
4602 		xpt_release_target(device->target);
4603 		free(device, M_CAMXPT);
4604 	} else
4605 		device->refcount--;
4606 }
4607 
4608 u_int32_t
4609 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4610 {
4611 	int	diff;
4612 	int	result;
4613 	struct	cam_ed *dev;
4614 
4615 	dev = path->device;
4616 
4617 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4618 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4619 	if (result == CAM_REQ_CMP && (diff < 0)) {
4620 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4621 	}
4622 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4623 	 || (dev->inq_flags & SID_CmdQue) != 0)
4624 		dev->tag_saved_openings = newopenings;
4625 	/* Adjust the global limit */
4626 	dev->sim->max_ccbs += diff;
4627 	return (result);
4628 }
4629 
4630 static struct cam_eb *
4631 xpt_find_bus(path_id_t path_id)
4632 {
4633 	struct cam_eb *bus;
4634 
4635 	mtx_lock(&xsoftc.xpt_topo_lock);
4636 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4637 	     bus != NULL;
4638 	     bus = TAILQ_NEXT(bus, links)) {
4639 		if (bus->path_id == path_id) {
4640 			bus->refcount++;
4641 			break;
4642 		}
4643 	}
4644 	mtx_unlock(&xsoftc.xpt_topo_lock);
4645 	return (bus);
4646 }
4647 
4648 static struct cam_et *
4649 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4650 {
4651 	struct cam_et *target;
4652 
4653 	for (target = TAILQ_FIRST(&bus->et_entries);
4654 	     target != NULL;
4655 	     target = TAILQ_NEXT(target, links)) {
4656 		if (target->target_id == target_id) {
4657 			target->refcount++;
4658 			break;
4659 		}
4660 	}
4661 	return (target);
4662 }
4663 
4664 static struct cam_ed *
4665 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4666 {
4667 	struct cam_ed *device;
4668 
4669 	for (device = TAILQ_FIRST(&target->ed_entries);
4670 	     device != NULL;
4671 	     device = TAILQ_NEXT(device, links)) {
4672 		if (device->lun_id == lun_id) {
4673 			device->refcount++;
4674 			break;
4675 		}
4676 	}
4677 	return (device);
4678 }
4679 
4680 void
4681 xpt_start_tags(struct cam_path *path)
4682 {
4683 	struct ccb_relsim crs;
4684 	struct cam_ed *device;
4685 	struct cam_sim *sim;
4686 	int    newopenings;
4687 
4688 	device = path->device;
4689 	sim = path->bus->sim;
4690 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4691 	xpt_freeze_devq(path, /*count*/1);
4692 	device->inq_flags |= SID_CmdQue;
4693 	if (device->tag_saved_openings != 0)
4694 		newopenings = device->tag_saved_openings;
4695 	else
4696 		newopenings = min(device->maxtags,
4697 				  sim->max_tagged_dev_openings);
4698 	xpt_dev_ccbq_resize(path, newopenings);
4699 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4700 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4701 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4702 	crs.openings
4703 	    = crs.release_timeout
4704 	    = crs.qfrozen_cnt
4705 	    = 0;
4706 	xpt_action((union ccb *)&crs);
4707 }
4708 
4709 void
4710 xpt_stop_tags(struct cam_path *path)
4711 {
4712 	struct ccb_relsim crs;
4713 	struct cam_ed *device;
4714 	struct cam_sim *sim;
4715 
4716 	device = path->device;
4717 	sim = path->bus->sim;
4718 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4719 	device->tag_delay_count = 0;
4720 	xpt_freeze_devq(path, /*count*/1);
4721 	device->inq_flags &= ~SID_CmdQue;
4722 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4723 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4724 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4725 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4726 	crs.openings
4727 	    = crs.release_timeout
4728 	    = crs.qfrozen_cnt
4729 	    = 0;
4730 	xpt_action((union ccb *)&crs);
4731 }
4732 
4733 static void
4734 xpt_boot_delay(void *arg)
4735 {
4736 
4737 	xpt_release_boot();
4738 }
4739 
4740 static void
4741 xpt_config(void *arg)
4742 {
4743 	/*
4744 	 * Now that interrupts are enabled, go find our devices
4745 	 */
4746 
4747 #ifdef CAMDEBUG
4748 	/* Setup debugging flags and path */
4749 #ifdef CAM_DEBUG_BUS
4750 	if (cam_dflags != CAM_DEBUG_NONE) {
4751 		/*
4752 		 * Locking is specifically omitted here.  No SIMs have
4753 		 * registered yet, so xpt_create_path will only be searching
4754 		 * empty lists of targets and devices.
4755 		 */
4756 		if (xpt_create_path(&cam_dpath, xpt_periph,
4757 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4758 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4759 			printf("xpt_config: xpt_create_path() failed for debug"
4760 			       " target %d:%d:%d, debugging disabled\n",
4761 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4762 			cam_dflags = CAM_DEBUG_NONE;
4763 		}
4764 	} else
4765 		cam_dpath = NULL;
4766 #else /* !CAM_DEBUG_BUS */
4767 	cam_dpath = NULL;
4768 #endif /* CAM_DEBUG_BUS */
4769 #endif /* CAMDEBUG */
4770 
4771 	periphdriver_init(1);
4772 	xpt_hold_boot();
4773 	callout_init(&xsoftc.boot_callout, 1);
4774 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4775 	    xpt_boot_delay, NULL);
4776 	/* Fire up rescan thread. */
4777 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4778 		printf("xpt_config: failed to create rescan thread.\n");
4779 	}
4780 }
4781 
4782 void
4783 xpt_hold_boot(void)
4784 {
4785 	xpt_lock_buses();
4786 	xsoftc.buses_to_config++;
4787 	xpt_unlock_buses();
4788 }
4789 
4790 void
4791 xpt_release_boot(void)
4792 {
4793 	xpt_lock_buses();
4794 	xsoftc.buses_to_config--;
4795 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4796 		struct	xpt_task *task;
4797 
4798 		xsoftc.buses_config_done = 1;
4799 		xpt_unlock_buses();
4800 		/* Call manually because we don't have any busses */
4801 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4802 		if (task != NULL) {
4803 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4804 			taskqueue_enqueue(taskqueue_thread, &task->task);
4805 		}
4806 	} else
4807 		xpt_unlock_buses();
4808 }
4809 
4810 /*
4811  * If the given device only has one peripheral attached to it, and if that
4812  * peripheral is the passthrough driver, announce it.  This insures that the
4813  * user sees some sort of announcement for every peripheral in their system.
4814  */
4815 static int
4816 xptpassannouncefunc(struct cam_ed *device, void *arg)
4817 {
4818 	struct cam_periph *periph;
4819 	int i;
4820 
4821 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4822 	     periph = SLIST_NEXT(periph, periph_links), i++);
4823 
4824 	periph = SLIST_FIRST(&device->periphs);
4825 	if ((i == 1)
4826 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4827 		xpt_announce_periph(periph, NULL);
4828 
4829 	return(1);
4830 }
4831 
4832 static void
4833 xpt_finishconfig_task(void *context, int pending)
4834 {
4835 
4836 	periphdriver_init(2);
4837 	/*
4838 	 * Check for devices with no "standard" peripheral driver
4839 	 * attached.  For any devices like that, announce the
4840 	 * passthrough driver so the user will see something.
4841 	 */
4842 	xpt_for_all_devices(xptpassannouncefunc, NULL);
4843 
4844 	/* Release our hook so that the boot can continue. */
4845 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4846 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4847 	xsoftc.xpt_config_hook = NULL;
4848 
4849 	free(context, M_CAMXPT);
4850 }
4851 
4852 cam_status
4853 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4854 		   struct cam_path *path)
4855 {
4856 	struct ccb_setasync csa;
4857 	cam_status status;
4858 	int xptpath = 0;
4859 
4860 	if (path == NULL) {
4861 		mtx_lock(&xsoftc.xpt_lock);
4862 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4863 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4864 		if (status != CAM_REQ_CMP) {
4865 			mtx_unlock(&xsoftc.xpt_lock);
4866 			return (status);
4867 		}
4868 		xptpath = 1;
4869 	}
4870 
4871 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4872 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4873 	csa.event_enable = event;
4874 	csa.callback = cbfunc;
4875 	csa.callback_arg = cbarg;
4876 	xpt_action((union ccb *)&csa);
4877 	status = csa.ccb_h.status;
4878 
4879 	if (xptpath) {
4880 		xpt_free_path(path);
4881 		mtx_unlock(&xsoftc.xpt_lock);
4882 	}
4883 
4884 	if ((status == CAM_REQ_CMP) &&
4885 	    (csa.event_enable & AC_FOUND_DEVICE)) {
4886 		/*
4887 		 * Get this peripheral up to date with all
4888 		 * the currently existing devices.
4889 		 */
4890 		xpt_for_all_devices(xptsetasyncfunc, &csa);
4891 	}
4892 	if ((status == CAM_REQ_CMP) &&
4893 	    (csa.event_enable & AC_PATH_REGISTERED)) {
4894 		/*
4895 		 * Get this peripheral up to date with all
4896 		 * the currently existing busses.
4897 		 */
4898 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4899 	}
4900 
4901 	return (status);
4902 }
4903 
4904 static void
4905 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4906 {
4907 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4908 
4909 	switch (work_ccb->ccb_h.func_code) {
4910 	/* Common cases first */
4911 	case XPT_PATH_INQ:		/* Path routing inquiry */
4912 	{
4913 		struct ccb_pathinq *cpi;
4914 
4915 		cpi = &work_ccb->cpi;
4916 		cpi->version_num = 1; /* XXX??? */
4917 		cpi->hba_inquiry = 0;
4918 		cpi->target_sprt = 0;
4919 		cpi->hba_misc = 0;
4920 		cpi->hba_eng_cnt = 0;
4921 		cpi->max_target = 0;
4922 		cpi->max_lun = 0;
4923 		cpi->initiator_id = 0;
4924 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4925 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4926 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4927 		cpi->unit_number = sim->unit_number;
4928 		cpi->bus_id = sim->bus_id;
4929 		cpi->base_transfer_speed = 0;
4930 		cpi->protocol = PROTO_UNSPECIFIED;
4931 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4932 		cpi->transport = XPORT_UNSPECIFIED;
4933 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4934 		cpi->ccb_h.status = CAM_REQ_CMP;
4935 		xpt_done(work_ccb);
4936 		break;
4937 	}
4938 	default:
4939 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4940 		xpt_done(work_ccb);
4941 		break;
4942 	}
4943 }
4944 
4945 /*
4946  * The xpt as a "controller" has no interrupt sources, so polling
4947  * is a no-op.
4948  */
4949 static void
4950 xptpoll(struct cam_sim *sim)
4951 {
4952 }
4953 
4954 void
4955 xpt_lock_buses(void)
4956 {
4957 	mtx_lock(&xsoftc.xpt_topo_lock);
4958 }
4959 
4960 void
4961 xpt_unlock_buses(void)
4962 {
4963 	mtx_unlock(&xsoftc.xpt_topo_lock);
4964 }
4965 
4966 static void
4967 camisr(void *dummy)
4968 {
4969 	cam_simq_t queue;
4970 	struct cam_sim *sim;
4971 
4972 	mtx_lock(&cam_simq_lock);
4973 	TAILQ_INIT(&queue);
4974 	while (!TAILQ_EMPTY(&cam_simq)) {
4975 		TAILQ_CONCAT(&queue, &cam_simq, links);
4976 		mtx_unlock(&cam_simq_lock);
4977 
4978 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4979 			TAILQ_REMOVE(&queue, sim, links);
4980 			CAM_SIM_LOCK(sim);
4981 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4982 			camisr_runqueue(&sim->sim_doneq);
4983 			CAM_SIM_UNLOCK(sim);
4984 		}
4985 		mtx_lock(&cam_simq_lock);
4986 	}
4987 	mtx_unlock(&cam_simq_lock);
4988 }
4989 
4990 static void
4991 camisr_runqueue(void *V_queue)
4992 {
4993 	cam_isrq_t *queue = V_queue;
4994 	struct	ccb_hdr *ccb_h;
4995 
4996 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4997 		int	runq;
4998 
4999 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
5000 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5001 
5002 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
5003 			  ("camisr\n"));
5004 
5005 		runq = FALSE;
5006 
5007 		if (ccb_h->flags & CAM_HIGH_POWER) {
5008 			struct highpowerlist	*hphead;
5009 			union ccb		*send_ccb;
5010 
5011 			mtx_lock(&xsoftc.xpt_lock);
5012 			hphead = &xsoftc.highpowerq;
5013 
5014 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
5015 
5016 			/*
5017 			 * Increment the count since this command is done.
5018 			 */
5019 			xsoftc.num_highpower++;
5020 
5021 			/*
5022 			 * Any high powered commands queued up?
5023 			 */
5024 			if (send_ccb != NULL) {
5025 
5026 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
5027 				mtx_unlock(&xsoftc.xpt_lock);
5028 
5029 				xpt_release_devq(send_ccb->ccb_h.path,
5030 						 /*count*/1, /*runqueue*/TRUE);
5031 			} else
5032 				mtx_unlock(&xsoftc.xpt_lock);
5033 		}
5034 
5035 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5036 			struct cam_ed *dev;
5037 
5038 			dev = ccb_h->path->device;
5039 
5040 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5041 			ccb_h->path->bus->sim->devq->send_active--;
5042 			ccb_h->path->bus->sim->devq->send_openings++;
5043 			runq = TRUE;
5044 
5045 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5046 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
5047 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5048 			  && (dev->ccbq.dev_active == 0))) {
5049 				xpt_release_devq(ccb_h->path, /*count*/1,
5050 						 /*run_queue*/FALSE);
5051 			}
5052 
5053 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5054 			 && (--dev->tag_delay_count == 0))
5055 				xpt_start_tags(ccb_h->path);
5056 			if (!device_is_send_queued(dev)) {
5057 				(void)xpt_schedule_dev_sendq(ccb_h->path->bus,
5058 							     dev);
5059 			}
5060 		}
5061 
5062 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5063 			xpt_release_simq(ccb_h->path->bus->sim,
5064 					 /*run_queue*/TRUE);
5065 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5066 			runq = FALSE;
5067 		}
5068 
5069 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5070 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5071 			xpt_release_devq(ccb_h->path, /*count*/1,
5072 					 /*run_queue*/TRUE);
5073 			ccb_h->status &= ~CAM_DEV_QFRZN;
5074 		} else if (runq) {
5075 			xpt_run_dev_sendq(ccb_h->path->bus);
5076 		}
5077 
5078 		/* Call the peripheral driver's callback */
5079 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5080 	}
5081 }
5082