1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_sim.h> 56 #include <cam/cam_xpt.h> 57 #include <cam/cam_xpt_sim.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_xpt_internal.h> 60 #include <cam/cam_debug.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 #include <machine/md_var.h> /* geometry translation */ 67 #include <machine/stdarg.h> /* for xpt_print below */ 68 69 #include "opt_cam.h" 70 71 /* 72 * This is the maximum number of high powered commands (e.g. start unit) 73 * that can be outstanding at a particular time. 74 */ 75 #ifndef CAM_MAX_HIGHPOWER 76 #define CAM_MAX_HIGHPOWER 4 77 #endif 78 79 /* Datastructures internal to the xpt layer */ 80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 81 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 82 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 83 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 84 85 /* Object for defering XPT actions to a taskqueue */ 86 struct xpt_task { 87 struct task task; 88 void *data1; 89 uintptr_t data2; 90 }; 91 92 typedef enum { 93 XPT_FLAG_OPEN = 0x01 94 } xpt_flags; 95 96 struct xpt_softc { 97 xpt_flags flags; 98 u_int32_t xpt_generation; 99 100 /* number of high powered commands that can go through right now */ 101 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* Registered busses */ 110 TAILQ_HEAD(,cam_eb) xpt_busses; 111 u_int bus_generation; 112 113 struct intr_config_hook *xpt_config_hook; 114 115 int boot_delay; 116 struct callout boot_callout; 117 118 struct mtx xpt_topo_lock; 119 struct mtx xpt_lock; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 156 &xsoftc.boot_delay, 0, "Bus registration wait time"); 157 158 /* Queues for our software interrupt handler */ 159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 161 static cam_simq_t cam_simq; 162 static struct mtx cam_simq_lock; 163 164 /* Pointers to software interrupt handlers */ 165 static void *cambio_ih; 166 167 struct cam_periph *xpt_periph; 168 169 static periph_init_t xpt_periph_init; 170 171 static struct periph_driver xpt_driver = 172 { 173 xpt_periph_init, "xpt", 174 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 175 CAM_PERIPH_DRV_EARLY 176 }; 177 178 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 179 180 static d_open_t xptopen; 181 static d_close_t xptclose; 182 static d_ioctl_t xptioctl; 183 184 static struct cdevsw xpt_cdevsw = { 185 .d_version = D_VERSION, 186 .d_flags = 0, 187 .d_open = xptopen, 188 .d_close = xptclose, 189 .d_ioctl = xptioctl, 190 .d_name = "xpt", 191 }; 192 193 /* Storage for debugging datastructures */ 194 struct cam_path *cam_dpath; 195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 196 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 197 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 198 &cam_dflags, 0, "Enabled debug flags"); 199 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 200 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 202 &cam_debug_delay, 0, "Delay in us after each debug message"); 203 204 /* Our boot-time initialization hook */ 205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 206 207 static moduledata_t cam_moduledata = { 208 "cam", 209 cam_module_event_handler, 210 NULL 211 }; 212 213 static int xpt_init(void *); 214 215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 216 MODULE_VERSION(cam, 1); 217 218 219 static void xpt_async_bcast(struct async_list *async_head, 220 u_int32_t async_code, 221 struct cam_path *path, 222 void *async_arg); 223 static path_id_t xptnextfreepathid(void); 224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 225 static union ccb *xpt_get_ccb(struct cam_ed *device); 226 static void xpt_run_dev_allocq(struct cam_ed *device); 227 static void xpt_run_devq(struct cam_devq *devq); 228 static timeout_t xpt_release_devq_timeout; 229 static void xpt_release_simq_timeout(void *arg) __unused; 230 static void xpt_release_bus(struct cam_eb *bus); 231 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 232 int run_queue); 233 static struct cam_et* 234 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 235 static void xpt_release_target(struct cam_et *target); 236 static struct cam_eb* 237 xpt_find_bus(path_id_t path_id); 238 static struct cam_et* 239 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 240 static struct cam_ed* 241 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 242 static void xpt_config(void *arg); 243 static xpt_devicefunc_t xptpassannouncefunc; 244 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 245 static void xptpoll(struct cam_sim *sim); 246 static void camisr(void *); 247 static void camisr_runqueue(void *); 248 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 249 u_int num_patterns, struct cam_eb *bus); 250 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 251 u_int num_patterns, 252 struct cam_ed *device); 253 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 254 u_int num_patterns, 255 struct cam_periph *periph); 256 static xpt_busfunc_t xptedtbusfunc; 257 static xpt_targetfunc_t xptedttargetfunc; 258 static xpt_devicefunc_t xptedtdevicefunc; 259 static xpt_periphfunc_t xptedtperiphfunc; 260 static xpt_pdrvfunc_t xptplistpdrvfunc; 261 static xpt_periphfunc_t xptplistperiphfunc; 262 static int xptedtmatch(struct ccb_dev_match *cdm); 263 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 264 static int xptbustraverse(struct cam_eb *start_bus, 265 xpt_busfunc_t *tr_func, void *arg); 266 static int xpttargettraverse(struct cam_eb *bus, 267 struct cam_et *start_target, 268 xpt_targetfunc_t *tr_func, void *arg); 269 static int xptdevicetraverse(struct cam_et *target, 270 struct cam_ed *start_device, 271 xpt_devicefunc_t *tr_func, void *arg); 272 static int xptperiphtraverse(struct cam_ed *device, 273 struct cam_periph *start_periph, 274 xpt_periphfunc_t *tr_func, void *arg); 275 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 276 xpt_pdrvfunc_t *tr_func, void *arg); 277 static int xptpdperiphtraverse(struct periph_driver **pdrv, 278 struct cam_periph *start_periph, 279 xpt_periphfunc_t *tr_func, 280 void *arg); 281 static xpt_busfunc_t xptdefbusfunc; 282 static xpt_targetfunc_t xptdeftargetfunc; 283 static xpt_devicefunc_t xptdefdevicefunc; 284 static xpt_periphfunc_t xptdefperiphfunc; 285 static void xpt_finishconfig_task(void *context, int pending); 286 static void xpt_dev_async_default(u_int32_t async_code, 287 struct cam_eb *bus, 288 struct cam_et *target, 289 struct cam_ed *device, 290 void *async_arg); 291 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 292 struct cam_et *target, 293 lun_id_t lun_id); 294 static xpt_devicefunc_t xptsetasyncfunc; 295 static xpt_busfunc_t xptsetasyncbusfunc; 296 static cam_status xptregister(struct cam_periph *periph, 297 void *arg); 298 static __inline int periph_is_queued(struct cam_periph *periph); 299 static __inline int device_is_queued(struct cam_ed *device); 300 301 static __inline int 302 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 303 { 304 int retval; 305 306 if ((dev->ccbq.queue.entries > 0) && 307 (dev->ccbq.dev_openings > 0) && 308 (dev->ccbq.queue.qfrozen_cnt == 0)) { 309 /* 310 * The priority of a device waiting for controller 311 * resources is that of the highest priority CCB 312 * enqueued. 313 */ 314 retval = 315 xpt_schedule_dev(&devq->send_queue, 316 &dev->devq_entry.pinfo, 317 CAMQ_GET_PRIO(&dev->ccbq.queue)); 318 } else { 319 retval = 0; 320 } 321 return (retval); 322 } 323 324 static __inline int 325 periph_is_queued(struct cam_periph *periph) 326 { 327 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 328 } 329 330 static __inline int 331 device_is_queued(struct cam_ed *device) 332 { 333 return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX); 334 } 335 336 static void 337 xpt_periph_init() 338 { 339 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 340 } 341 342 static void 343 xptdone(struct cam_periph *periph, union ccb *done_ccb) 344 { 345 /* Caller will release the CCB */ 346 wakeup(&done_ccb->ccb_h.cbfcnp); 347 } 348 349 static int 350 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 351 { 352 353 /* 354 * Only allow read-write access. 355 */ 356 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 357 return(EPERM); 358 359 /* 360 * We don't allow nonblocking access. 361 */ 362 if ((flags & O_NONBLOCK) != 0) { 363 printf("%s: can't do nonblocking access\n", devtoname(dev)); 364 return(ENODEV); 365 } 366 367 /* Mark ourselves open */ 368 mtx_lock(&xsoftc.xpt_lock); 369 xsoftc.flags |= XPT_FLAG_OPEN; 370 mtx_unlock(&xsoftc.xpt_lock); 371 372 return(0); 373 } 374 375 static int 376 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 377 { 378 379 /* Mark ourselves closed */ 380 mtx_lock(&xsoftc.xpt_lock); 381 xsoftc.flags &= ~XPT_FLAG_OPEN; 382 mtx_unlock(&xsoftc.xpt_lock); 383 384 return(0); 385 } 386 387 /* 388 * Don't automatically grab the xpt softc lock here even though this is going 389 * through the xpt device. The xpt device is really just a back door for 390 * accessing other devices and SIMs, so the right thing to do is to grab 391 * the appropriate SIM lock once the bus/SIM is located. 392 */ 393 static int 394 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 395 { 396 int error; 397 398 error = 0; 399 400 switch(cmd) { 401 /* 402 * For the transport layer CAMIOCOMMAND ioctl, we really only want 403 * to accept CCB types that don't quite make sense to send through a 404 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 405 * in the CAM spec. 406 */ 407 case CAMIOCOMMAND: { 408 union ccb *ccb; 409 union ccb *inccb; 410 struct cam_eb *bus; 411 412 inccb = (union ccb *)addr; 413 414 bus = xpt_find_bus(inccb->ccb_h.path_id); 415 if (bus == NULL) 416 return (EINVAL); 417 418 switch (inccb->ccb_h.func_code) { 419 case XPT_SCAN_BUS: 420 case XPT_RESET_BUS: 421 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 422 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 423 xpt_release_bus(bus); 424 return (EINVAL); 425 } 426 break; 427 case XPT_SCAN_TGT: 428 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 429 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 430 xpt_release_bus(bus); 431 return (EINVAL); 432 } 433 break; 434 default: 435 break; 436 } 437 438 switch(inccb->ccb_h.func_code) { 439 case XPT_SCAN_BUS: 440 case XPT_RESET_BUS: 441 case XPT_PATH_INQ: 442 case XPT_ENG_INQ: 443 case XPT_SCAN_LUN: 444 case XPT_SCAN_TGT: 445 446 ccb = xpt_alloc_ccb(); 447 448 CAM_SIM_LOCK(bus->sim); 449 450 /* 451 * Create a path using the bus, target, and lun the 452 * user passed in. 453 */ 454 if (xpt_create_path(&ccb->ccb_h.path, NULL, 455 inccb->ccb_h.path_id, 456 inccb->ccb_h.target_id, 457 inccb->ccb_h.target_lun) != 458 CAM_REQ_CMP){ 459 error = EINVAL; 460 CAM_SIM_UNLOCK(bus->sim); 461 xpt_free_ccb(ccb); 462 break; 463 } 464 /* Ensure all of our fields are correct */ 465 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 466 inccb->ccb_h.pinfo.priority); 467 xpt_merge_ccb(ccb, inccb); 468 ccb->ccb_h.cbfcnp = xptdone; 469 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 470 bcopy(ccb, inccb, sizeof(union ccb)); 471 xpt_free_path(ccb->ccb_h.path); 472 xpt_free_ccb(ccb); 473 CAM_SIM_UNLOCK(bus->sim); 474 break; 475 476 case XPT_DEBUG: { 477 union ccb ccb; 478 479 /* 480 * This is an immediate CCB, so it's okay to 481 * allocate it on the stack. 482 */ 483 484 CAM_SIM_LOCK(bus->sim); 485 486 /* 487 * Create a path using the bus, target, and lun the 488 * user passed in. 489 */ 490 if (xpt_create_path(&ccb.ccb_h.path, NULL, 491 inccb->ccb_h.path_id, 492 inccb->ccb_h.target_id, 493 inccb->ccb_h.target_lun) != 494 CAM_REQ_CMP){ 495 error = EINVAL; 496 CAM_SIM_UNLOCK(bus->sim); 497 break; 498 } 499 /* Ensure all of our fields are correct */ 500 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 501 inccb->ccb_h.pinfo.priority); 502 xpt_merge_ccb(&ccb, inccb); 503 ccb.ccb_h.cbfcnp = xptdone; 504 xpt_action(&ccb); 505 bcopy(&ccb, inccb, sizeof(union ccb)); 506 xpt_free_path(ccb.ccb_h.path); 507 CAM_SIM_UNLOCK(bus->sim); 508 break; 509 510 } 511 case XPT_DEV_MATCH: { 512 struct cam_periph_map_info mapinfo; 513 struct cam_path *old_path; 514 515 /* 516 * We can't deal with physical addresses for this 517 * type of transaction. 518 */ 519 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 520 CAM_DATA_VADDR) { 521 error = EINVAL; 522 break; 523 } 524 525 /* 526 * Save this in case the caller had it set to 527 * something in particular. 528 */ 529 old_path = inccb->ccb_h.path; 530 531 /* 532 * We really don't need a path for the matching 533 * code. The path is needed because of the 534 * debugging statements in xpt_action(). They 535 * assume that the CCB has a valid path. 536 */ 537 inccb->ccb_h.path = xpt_periph->path; 538 539 bzero(&mapinfo, sizeof(mapinfo)); 540 541 /* 542 * Map the pattern and match buffers into kernel 543 * virtual address space. 544 */ 545 error = cam_periph_mapmem(inccb, &mapinfo); 546 547 if (error) { 548 inccb->ccb_h.path = old_path; 549 break; 550 } 551 552 /* 553 * This is an immediate CCB, we can send it on directly. 554 */ 555 CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path)); 556 xpt_action(inccb); 557 CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path)); 558 559 /* 560 * Map the buffers back into user space. 561 */ 562 cam_periph_unmapmem(inccb, &mapinfo); 563 564 inccb->ccb_h.path = old_path; 565 566 error = 0; 567 break; 568 } 569 default: 570 error = ENOTSUP; 571 break; 572 } 573 xpt_release_bus(bus); 574 break; 575 } 576 /* 577 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 578 * with the periphal driver name and unit name filled in. The other 579 * fields don't really matter as input. The passthrough driver name 580 * ("pass"), and unit number are passed back in the ccb. The current 581 * device generation number, and the index into the device peripheral 582 * driver list, and the status are also passed back. Note that 583 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 584 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 585 * (or rather should be) impossible for the device peripheral driver 586 * list to change since we look at the whole thing in one pass, and 587 * we do it with lock protection. 588 * 589 */ 590 case CAMGETPASSTHRU: { 591 union ccb *ccb; 592 struct cam_periph *periph; 593 struct periph_driver **p_drv; 594 char *name; 595 u_int unit; 596 u_int cur_generation; 597 int base_periph_found; 598 int splbreaknum; 599 600 ccb = (union ccb *)addr; 601 unit = ccb->cgdl.unit_number; 602 name = ccb->cgdl.periph_name; 603 /* 604 * Every 100 devices, we want to drop our lock protection to 605 * give the software interrupt handler a chance to run. 606 * Most systems won't run into this check, but this should 607 * avoid starvation in the software interrupt handler in 608 * large systems. 609 */ 610 splbreaknum = 100; 611 612 ccb = (union ccb *)addr; 613 614 base_periph_found = 0; 615 616 /* 617 * Sanity check -- make sure we don't get a null peripheral 618 * driver name. 619 */ 620 if (*ccb->cgdl.periph_name == '\0') { 621 error = EINVAL; 622 break; 623 } 624 625 /* Keep the list from changing while we traverse it */ 626 xpt_lock_buses(); 627 ptstartover: 628 cur_generation = xsoftc.xpt_generation; 629 630 /* first find our driver in the list of drivers */ 631 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 632 if (strcmp((*p_drv)->driver_name, name) == 0) 633 break; 634 635 if (*p_drv == NULL) { 636 xpt_unlock_buses(); 637 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 638 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 639 *ccb->cgdl.periph_name = '\0'; 640 ccb->cgdl.unit_number = 0; 641 error = ENOENT; 642 break; 643 } 644 645 /* 646 * Run through every peripheral instance of this driver 647 * and check to see whether it matches the unit passed 648 * in by the user. If it does, get out of the loops and 649 * find the passthrough driver associated with that 650 * peripheral driver. 651 */ 652 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 653 periph = TAILQ_NEXT(periph, unit_links)) { 654 655 if (periph->unit_number == unit) { 656 break; 657 } else if (--splbreaknum == 0) { 658 xpt_unlock_buses(); 659 xpt_lock_buses(); 660 splbreaknum = 100; 661 if (cur_generation != xsoftc.xpt_generation) 662 goto ptstartover; 663 } 664 } 665 /* 666 * If we found the peripheral driver that the user passed 667 * in, go through all of the peripheral drivers for that 668 * particular device and look for a passthrough driver. 669 */ 670 if (periph != NULL) { 671 struct cam_ed *device; 672 int i; 673 674 base_periph_found = 1; 675 device = periph->path->device; 676 for (i = 0, periph = SLIST_FIRST(&device->periphs); 677 periph != NULL; 678 periph = SLIST_NEXT(periph, periph_links), i++) { 679 /* 680 * Check to see whether we have a 681 * passthrough device or not. 682 */ 683 if (strcmp(periph->periph_name, "pass") == 0) { 684 /* 685 * Fill in the getdevlist fields. 686 */ 687 strcpy(ccb->cgdl.periph_name, 688 periph->periph_name); 689 ccb->cgdl.unit_number = 690 periph->unit_number; 691 if (SLIST_NEXT(periph, periph_links)) 692 ccb->cgdl.status = 693 CAM_GDEVLIST_MORE_DEVS; 694 else 695 ccb->cgdl.status = 696 CAM_GDEVLIST_LAST_DEVICE; 697 ccb->cgdl.generation = 698 device->generation; 699 ccb->cgdl.index = i; 700 /* 701 * Fill in some CCB header fields 702 * that the user may want. 703 */ 704 ccb->ccb_h.path_id = 705 periph->path->bus->path_id; 706 ccb->ccb_h.target_id = 707 periph->path->target->target_id; 708 ccb->ccb_h.target_lun = 709 periph->path->device->lun_id; 710 ccb->ccb_h.status = CAM_REQ_CMP; 711 break; 712 } 713 } 714 } 715 716 /* 717 * If the periph is null here, one of two things has 718 * happened. The first possibility is that we couldn't 719 * find the unit number of the particular peripheral driver 720 * that the user is asking about. e.g. the user asks for 721 * the passthrough driver for "da11". We find the list of 722 * "da" peripherals all right, but there is no unit 11. 723 * The other possibility is that we went through the list 724 * of peripheral drivers attached to the device structure, 725 * but didn't find one with the name "pass". Either way, 726 * we return ENOENT, since we couldn't find something. 727 */ 728 if (periph == NULL) { 729 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 730 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 731 *ccb->cgdl.periph_name = '\0'; 732 ccb->cgdl.unit_number = 0; 733 error = ENOENT; 734 /* 735 * It is unfortunate that this is even necessary, 736 * but there are many, many clueless users out there. 737 * If this is true, the user is looking for the 738 * passthrough driver, but doesn't have one in his 739 * kernel. 740 */ 741 if (base_periph_found == 1) { 742 printf("xptioctl: pass driver is not in the " 743 "kernel\n"); 744 printf("xptioctl: put \"device pass\" in " 745 "your kernel config file\n"); 746 } 747 } 748 xpt_unlock_buses(); 749 break; 750 } 751 default: 752 error = ENOTTY; 753 break; 754 } 755 756 return(error); 757 } 758 759 static int 760 cam_module_event_handler(module_t mod, int what, void *arg) 761 { 762 int error; 763 764 switch (what) { 765 case MOD_LOAD: 766 if ((error = xpt_init(NULL)) != 0) 767 return (error); 768 break; 769 case MOD_UNLOAD: 770 return EBUSY; 771 default: 772 return EOPNOTSUPP; 773 } 774 775 return 0; 776 } 777 778 static void 779 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 780 { 781 782 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 783 xpt_free_path(done_ccb->ccb_h.path); 784 xpt_free_ccb(done_ccb); 785 } else { 786 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 787 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 788 } 789 xpt_release_boot(); 790 } 791 792 /* thread to handle bus rescans */ 793 static void 794 xpt_scanner_thread(void *dummy) 795 { 796 union ccb *ccb; 797 struct cam_sim *sim; 798 799 xpt_lock_buses(); 800 for (;;) { 801 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 802 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 803 "ccb_scanq", 0); 804 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 805 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 806 xpt_unlock_buses(); 807 808 sim = ccb->ccb_h.path->bus->sim; 809 CAM_SIM_LOCK(sim); 810 xpt_action(ccb); 811 CAM_SIM_UNLOCK(sim); 812 813 xpt_lock_buses(); 814 } 815 } 816 } 817 818 void 819 xpt_rescan(union ccb *ccb) 820 { 821 struct ccb_hdr *hdr; 822 823 /* Prepare request */ 824 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 825 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 826 ccb->ccb_h.func_code = XPT_SCAN_BUS; 827 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 828 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 829 ccb->ccb_h.func_code = XPT_SCAN_TGT; 830 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 831 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 832 ccb->ccb_h.func_code = XPT_SCAN_LUN; 833 else { 834 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 835 xpt_free_path(ccb->ccb_h.path); 836 xpt_free_ccb(ccb); 837 return; 838 } 839 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 840 ccb->ccb_h.cbfcnp = xpt_rescan_done; 841 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 842 /* Don't make duplicate entries for the same paths. */ 843 xpt_lock_buses(); 844 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 845 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 846 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 847 wakeup(&xsoftc.ccb_scanq); 848 xpt_unlock_buses(); 849 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 850 xpt_free_path(ccb->ccb_h.path); 851 xpt_free_ccb(ccb); 852 return; 853 } 854 } 855 } 856 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 857 xsoftc.buses_to_config++; 858 wakeup(&xsoftc.ccb_scanq); 859 xpt_unlock_buses(); 860 } 861 862 /* Functions accessed by the peripheral drivers */ 863 static int 864 xpt_init(void *dummy) 865 { 866 struct cam_sim *xpt_sim; 867 struct cam_path *path; 868 struct cam_devq *devq; 869 cam_status status; 870 871 TAILQ_INIT(&xsoftc.xpt_busses); 872 TAILQ_INIT(&cam_simq); 873 TAILQ_INIT(&xsoftc.ccb_scanq); 874 STAILQ_INIT(&xsoftc.highpowerq); 875 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 876 877 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 878 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 879 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 880 881 #ifdef CAM_BOOT_DELAY 882 /* 883 * Override this value at compile time to assist our users 884 * who don't use loader to boot a kernel. 885 */ 886 xsoftc.boot_delay = CAM_BOOT_DELAY; 887 #endif 888 /* 889 * The xpt layer is, itself, the equivelent of a SIM. 890 * Allow 16 ccbs in the ccb pool for it. This should 891 * give decent parallelism when we probe busses and 892 * perform other XPT functions. 893 */ 894 devq = cam_simq_alloc(16); 895 xpt_sim = cam_sim_alloc(xptaction, 896 xptpoll, 897 "xpt", 898 /*softc*/NULL, 899 /*unit*/0, 900 /*mtx*/&xsoftc.xpt_lock, 901 /*max_dev_transactions*/0, 902 /*max_tagged_dev_transactions*/0, 903 devq); 904 if (xpt_sim == NULL) 905 return (ENOMEM); 906 907 mtx_lock(&xsoftc.xpt_lock); 908 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 909 mtx_unlock(&xsoftc.xpt_lock); 910 printf("xpt_init: xpt_bus_register failed with status %#x," 911 " failing attach\n", status); 912 return (EINVAL); 913 } 914 915 /* 916 * Looking at the XPT from the SIM layer, the XPT is 917 * the equivelent of a peripheral driver. Allocate 918 * a peripheral driver entry for us. 919 */ 920 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 921 CAM_TARGET_WILDCARD, 922 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 923 mtx_unlock(&xsoftc.xpt_lock); 924 printf("xpt_init: xpt_create_path failed with status %#x," 925 " failing attach\n", status); 926 return (EINVAL); 927 } 928 929 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 930 path, NULL, 0, xpt_sim); 931 xpt_free_path(path); 932 mtx_unlock(&xsoftc.xpt_lock); 933 /* Install our software interrupt handlers */ 934 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 935 /* 936 * Register a callback for when interrupts are enabled. 937 */ 938 xsoftc.xpt_config_hook = 939 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 940 M_CAMXPT, M_NOWAIT | M_ZERO); 941 if (xsoftc.xpt_config_hook == NULL) { 942 printf("xpt_init: Cannot malloc config hook " 943 "- failing attach\n"); 944 return (ENOMEM); 945 } 946 xsoftc.xpt_config_hook->ich_func = xpt_config; 947 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 948 free (xsoftc.xpt_config_hook, M_CAMXPT); 949 printf("xpt_init: config_intrhook_establish failed " 950 "- failing attach\n"); 951 } 952 953 return (0); 954 } 955 956 static cam_status 957 xptregister(struct cam_periph *periph, void *arg) 958 { 959 struct cam_sim *xpt_sim; 960 961 if (periph == NULL) { 962 printf("xptregister: periph was NULL!!\n"); 963 return(CAM_REQ_CMP_ERR); 964 } 965 966 xpt_sim = (struct cam_sim *)arg; 967 xpt_sim->softc = periph; 968 xpt_periph = periph; 969 periph->softc = NULL; 970 971 return(CAM_REQ_CMP); 972 } 973 974 int32_t 975 xpt_add_periph(struct cam_periph *periph) 976 { 977 struct cam_ed *device; 978 int32_t status; 979 struct periph_list *periph_head; 980 981 mtx_assert(periph->sim->mtx, MA_OWNED); 982 983 device = periph->path->device; 984 985 periph_head = &device->periphs; 986 987 status = CAM_REQ_CMP; 988 989 if (device != NULL) { 990 /* 991 * Make room for this peripheral 992 * so it will fit in the queue 993 * when it's scheduled to run 994 */ 995 status = camq_resize(&device->drvq, 996 device->drvq.array_size + 1); 997 998 device->generation++; 999 1000 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1001 } 1002 1003 xpt_lock_buses(); 1004 xsoftc.xpt_generation++; 1005 xpt_unlock_buses(); 1006 1007 return (status); 1008 } 1009 1010 void 1011 xpt_remove_periph(struct cam_periph *periph, int topology_lock_held) 1012 { 1013 struct cam_ed *device; 1014 1015 mtx_assert(periph->sim->mtx, MA_OWNED); 1016 1017 device = periph->path->device; 1018 1019 if (device != NULL) { 1020 struct periph_list *periph_head; 1021 1022 periph_head = &device->periphs; 1023 1024 /* Release the slot for this peripheral */ 1025 camq_resize(&device->drvq, device->drvq.array_size - 1); 1026 1027 device->generation++; 1028 1029 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1030 } 1031 1032 if (topology_lock_held == 0) 1033 xpt_lock_buses(); 1034 1035 xsoftc.xpt_generation++; 1036 1037 if (topology_lock_held == 0) 1038 xpt_unlock_buses(); 1039 } 1040 1041 1042 void 1043 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1044 { 1045 struct cam_path *path = periph->path; 1046 1047 mtx_assert(periph->sim->mtx, MA_OWNED); 1048 1049 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1050 periph->periph_name, periph->unit_number, 1051 path->bus->sim->sim_name, 1052 path->bus->sim->unit_number, 1053 path->bus->sim->bus_id, 1054 path->bus->path_id, 1055 path->target->target_id, 1056 path->device->lun_id); 1057 printf("%s%d: ", periph->periph_name, periph->unit_number); 1058 if (path->device->protocol == PROTO_SCSI) 1059 scsi_print_inquiry(&path->device->inq_data); 1060 else if (path->device->protocol == PROTO_ATA || 1061 path->device->protocol == PROTO_SATAPM) 1062 ata_print_ident(&path->device->ident_data); 1063 else if (path->device->protocol == PROTO_SEMB) 1064 semb_print_ident( 1065 (struct sep_identify_data *)&path->device->ident_data); 1066 else 1067 printf("Unknown protocol device\n"); 1068 if (bootverbose && path->device->serial_num_len > 0) { 1069 /* Don't wrap the screen - print only the first 60 chars */ 1070 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1071 periph->unit_number, path->device->serial_num); 1072 } 1073 /* Announce transport details. */ 1074 (*(path->bus->xport->announce))(periph); 1075 /* Announce command queueing. */ 1076 if (path->device->inq_flags & SID_CmdQue 1077 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1078 printf("%s%d: Command Queueing enabled\n", 1079 periph->periph_name, periph->unit_number); 1080 } 1081 /* Announce caller's details if they've passed in. */ 1082 if (announce_string != NULL) 1083 printf("%s%d: %s\n", periph->periph_name, 1084 periph->unit_number, announce_string); 1085 } 1086 1087 void 1088 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1089 { 1090 if (quirks != 0) { 1091 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1092 periph->unit_number, quirks, bit_string); 1093 } 1094 } 1095 1096 int 1097 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1098 { 1099 int ret = -1; 1100 struct ccb_dev_advinfo cdai; 1101 1102 mtx_assert(path->bus->sim->mtx, MA_OWNED); 1103 1104 memset(&cdai, 0, sizeof(cdai)); 1105 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1106 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1107 cdai.bufsiz = len; 1108 1109 if (!strcmp(attr, "GEOM::ident")) 1110 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1111 else if (!strcmp(attr, "GEOM::physpath")) 1112 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1113 else 1114 goto out; 1115 1116 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1117 if (cdai.buf == NULL) { 1118 ret = ENOMEM; 1119 goto out; 1120 } 1121 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1122 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1123 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1124 if (cdai.provsiz == 0) 1125 goto out; 1126 ret = 0; 1127 if (strlcpy(buf, cdai.buf, len) >= len) 1128 ret = EFAULT; 1129 1130 out: 1131 if (cdai.buf != NULL) 1132 free(cdai.buf, M_CAMXPT); 1133 return ret; 1134 } 1135 1136 static dev_match_ret 1137 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1138 struct cam_eb *bus) 1139 { 1140 dev_match_ret retval; 1141 int i; 1142 1143 retval = DM_RET_NONE; 1144 1145 /* 1146 * If we aren't given something to match against, that's an error. 1147 */ 1148 if (bus == NULL) 1149 return(DM_RET_ERROR); 1150 1151 /* 1152 * If there are no match entries, then this bus matches no 1153 * matter what. 1154 */ 1155 if ((patterns == NULL) || (num_patterns == 0)) 1156 return(DM_RET_DESCEND | DM_RET_COPY); 1157 1158 for (i = 0; i < num_patterns; i++) { 1159 struct bus_match_pattern *cur_pattern; 1160 1161 /* 1162 * If the pattern in question isn't for a bus node, we 1163 * aren't interested. However, we do indicate to the 1164 * calling routine that we should continue descending the 1165 * tree, since the user wants to match against lower-level 1166 * EDT elements. 1167 */ 1168 if (patterns[i].type != DEV_MATCH_BUS) { 1169 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1170 retval |= DM_RET_DESCEND; 1171 continue; 1172 } 1173 1174 cur_pattern = &patterns[i].pattern.bus_pattern; 1175 1176 /* 1177 * If they want to match any bus node, we give them any 1178 * device node. 1179 */ 1180 if (cur_pattern->flags == BUS_MATCH_ANY) { 1181 /* set the copy flag */ 1182 retval |= DM_RET_COPY; 1183 1184 /* 1185 * If we've already decided on an action, go ahead 1186 * and return. 1187 */ 1188 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1189 return(retval); 1190 } 1191 1192 /* 1193 * Not sure why someone would do this... 1194 */ 1195 if (cur_pattern->flags == BUS_MATCH_NONE) 1196 continue; 1197 1198 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1199 && (cur_pattern->path_id != bus->path_id)) 1200 continue; 1201 1202 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1203 && (cur_pattern->bus_id != bus->sim->bus_id)) 1204 continue; 1205 1206 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1207 && (cur_pattern->unit_number != bus->sim->unit_number)) 1208 continue; 1209 1210 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1211 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1212 DEV_IDLEN) != 0)) 1213 continue; 1214 1215 /* 1216 * If we get to this point, the user definitely wants 1217 * information on this bus. So tell the caller to copy the 1218 * data out. 1219 */ 1220 retval |= DM_RET_COPY; 1221 1222 /* 1223 * If the return action has been set to descend, then we 1224 * know that we've already seen a non-bus matching 1225 * expression, therefore we need to further descend the tree. 1226 * This won't change by continuing around the loop, so we 1227 * go ahead and return. If we haven't seen a non-bus 1228 * matching expression, we keep going around the loop until 1229 * we exhaust the matching expressions. We'll set the stop 1230 * flag once we fall out of the loop. 1231 */ 1232 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1233 return(retval); 1234 } 1235 1236 /* 1237 * If the return action hasn't been set to descend yet, that means 1238 * we haven't seen anything other than bus matching patterns. So 1239 * tell the caller to stop descending the tree -- the user doesn't 1240 * want to match against lower level tree elements. 1241 */ 1242 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1243 retval |= DM_RET_STOP; 1244 1245 return(retval); 1246 } 1247 1248 static dev_match_ret 1249 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1250 struct cam_ed *device) 1251 { 1252 dev_match_ret retval; 1253 int i; 1254 1255 retval = DM_RET_NONE; 1256 1257 /* 1258 * If we aren't given something to match against, that's an error. 1259 */ 1260 if (device == NULL) 1261 return(DM_RET_ERROR); 1262 1263 /* 1264 * If there are no match entries, then this device matches no 1265 * matter what. 1266 */ 1267 if ((patterns == NULL) || (num_patterns == 0)) 1268 return(DM_RET_DESCEND | DM_RET_COPY); 1269 1270 for (i = 0; i < num_patterns; i++) { 1271 struct device_match_pattern *cur_pattern; 1272 struct scsi_vpd_device_id *device_id_page; 1273 1274 /* 1275 * If the pattern in question isn't for a device node, we 1276 * aren't interested. 1277 */ 1278 if (patterns[i].type != DEV_MATCH_DEVICE) { 1279 if ((patterns[i].type == DEV_MATCH_PERIPH) 1280 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1281 retval |= DM_RET_DESCEND; 1282 continue; 1283 } 1284 1285 cur_pattern = &patterns[i].pattern.device_pattern; 1286 1287 /* Error out if mutually exclusive options are specified. */ 1288 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1289 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1290 return(DM_RET_ERROR); 1291 1292 /* 1293 * If they want to match any device node, we give them any 1294 * device node. 1295 */ 1296 if (cur_pattern->flags == DEV_MATCH_ANY) 1297 goto copy_dev_node; 1298 1299 /* 1300 * Not sure why someone would do this... 1301 */ 1302 if (cur_pattern->flags == DEV_MATCH_NONE) 1303 continue; 1304 1305 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1306 && (cur_pattern->path_id != device->target->bus->path_id)) 1307 continue; 1308 1309 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1310 && (cur_pattern->target_id != device->target->target_id)) 1311 continue; 1312 1313 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1314 && (cur_pattern->target_lun != device->lun_id)) 1315 continue; 1316 1317 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1318 && (cam_quirkmatch((caddr_t)&device->inq_data, 1319 (caddr_t)&cur_pattern->data.inq_pat, 1320 1, sizeof(cur_pattern->data.inq_pat), 1321 scsi_static_inquiry_match) == NULL)) 1322 continue; 1323 1324 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1325 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1326 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1327 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1328 device->device_id_len 1329 - SVPD_DEVICE_ID_HDR_LEN, 1330 cur_pattern->data.devid_pat.id, 1331 cur_pattern->data.devid_pat.id_len) != 0)) 1332 continue; 1333 1334 copy_dev_node: 1335 /* 1336 * If we get to this point, the user definitely wants 1337 * information on this device. So tell the caller to copy 1338 * the data out. 1339 */ 1340 retval |= DM_RET_COPY; 1341 1342 /* 1343 * If the return action has been set to descend, then we 1344 * know that we've already seen a peripheral matching 1345 * expression, therefore we need to further descend the tree. 1346 * This won't change by continuing around the loop, so we 1347 * go ahead and return. If we haven't seen a peripheral 1348 * matching expression, we keep going around the loop until 1349 * we exhaust the matching expressions. We'll set the stop 1350 * flag once we fall out of the loop. 1351 */ 1352 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1353 return(retval); 1354 } 1355 1356 /* 1357 * If the return action hasn't been set to descend yet, that means 1358 * we haven't seen any peripheral matching patterns. So tell the 1359 * caller to stop descending the tree -- the user doesn't want to 1360 * match against lower level tree elements. 1361 */ 1362 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1363 retval |= DM_RET_STOP; 1364 1365 return(retval); 1366 } 1367 1368 /* 1369 * Match a single peripheral against any number of match patterns. 1370 */ 1371 static dev_match_ret 1372 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1373 struct cam_periph *periph) 1374 { 1375 dev_match_ret retval; 1376 int i; 1377 1378 /* 1379 * If we aren't given something to match against, that's an error. 1380 */ 1381 if (periph == NULL) 1382 return(DM_RET_ERROR); 1383 1384 /* 1385 * If there are no match entries, then this peripheral matches no 1386 * matter what. 1387 */ 1388 if ((patterns == NULL) || (num_patterns == 0)) 1389 return(DM_RET_STOP | DM_RET_COPY); 1390 1391 /* 1392 * There aren't any nodes below a peripheral node, so there's no 1393 * reason to descend the tree any further. 1394 */ 1395 retval = DM_RET_STOP; 1396 1397 for (i = 0; i < num_patterns; i++) { 1398 struct periph_match_pattern *cur_pattern; 1399 1400 /* 1401 * If the pattern in question isn't for a peripheral, we 1402 * aren't interested. 1403 */ 1404 if (patterns[i].type != DEV_MATCH_PERIPH) 1405 continue; 1406 1407 cur_pattern = &patterns[i].pattern.periph_pattern; 1408 1409 /* 1410 * If they want to match on anything, then we will do so. 1411 */ 1412 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1413 /* set the copy flag */ 1414 retval |= DM_RET_COPY; 1415 1416 /* 1417 * We've already set the return action to stop, 1418 * since there are no nodes below peripherals in 1419 * the tree. 1420 */ 1421 return(retval); 1422 } 1423 1424 /* 1425 * Not sure why someone would do this... 1426 */ 1427 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1428 continue; 1429 1430 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1431 && (cur_pattern->path_id != periph->path->bus->path_id)) 1432 continue; 1433 1434 /* 1435 * For the target and lun id's, we have to make sure the 1436 * target and lun pointers aren't NULL. The xpt peripheral 1437 * has a wildcard target and device. 1438 */ 1439 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1440 && ((periph->path->target == NULL) 1441 ||(cur_pattern->target_id != periph->path->target->target_id))) 1442 continue; 1443 1444 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1445 && ((periph->path->device == NULL) 1446 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1447 continue; 1448 1449 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1450 && (cur_pattern->unit_number != periph->unit_number)) 1451 continue; 1452 1453 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1454 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1455 DEV_IDLEN) != 0)) 1456 continue; 1457 1458 /* 1459 * If we get to this point, the user definitely wants 1460 * information on this peripheral. So tell the caller to 1461 * copy the data out. 1462 */ 1463 retval |= DM_RET_COPY; 1464 1465 /* 1466 * The return action has already been set to stop, since 1467 * peripherals don't have any nodes below them in the EDT. 1468 */ 1469 return(retval); 1470 } 1471 1472 /* 1473 * If we get to this point, the peripheral that was passed in 1474 * doesn't match any of the patterns. 1475 */ 1476 return(retval); 1477 } 1478 1479 static int 1480 xptedtbusfunc(struct cam_eb *bus, void *arg) 1481 { 1482 struct ccb_dev_match *cdm; 1483 dev_match_ret retval; 1484 1485 cdm = (struct ccb_dev_match *)arg; 1486 1487 /* 1488 * If our position is for something deeper in the tree, that means 1489 * that we've already seen this node. So, we keep going down. 1490 */ 1491 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1492 && (cdm->pos.cookie.bus == bus) 1493 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1494 && (cdm->pos.cookie.target != NULL)) 1495 retval = DM_RET_DESCEND; 1496 else 1497 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1498 1499 /* 1500 * If we got an error, bail out of the search. 1501 */ 1502 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1503 cdm->status = CAM_DEV_MATCH_ERROR; 1504 return(0); 1505 } 1506 1507 /* 1508 * If the copy flag is set, copy this bus out. 1509 */ 1510 if (retval & DM_RET_COPY) { 1511 int spaceleft, j; 1512 1513 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1514 sizeof(struct dev_match_result)); 1515 1516 /* 1517 * If we don't have enough space to put in another 1518 * match result, save our position and tell the 1519 * user there are more devices to check. 1520 */ 1521 if (spaceleft < sizeof(struct dev_match_result)) { 1522 bzero(&cdm->pos, sizeof(cdm->pos)); 1523 cdm->pos.position_type = 1524 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1525 1526 cdm->pos.cookie.bus = bus; 1527 cdm->pos.generations[CAM_BUS_GENERATION]= 1528 xsoftc.bus_generation; 1529 cdm->status = CAM_DEV_MATCH_MORE; 1530 return(0); 1531 } 1532 j = cdm->num_matches; 1533 cdm->num_matches++; 1534 cdm->matches[j].type = DEV_MATCH_BUS; 1535 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1536 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1537 cdm->matches[j].result.bus_result.unit_number = 1538 bus->sim->unit_number; 1539 strncpy(cdm->matches[j].result.bus_result.dev_name, 1540 bus->sim->sim_name, DEV_IDLEN); 1541 } 1542 1543 /* 1544 * If the user is only interested in busses, there's no 1545 * reason to descend to the next level in the tree. 1546 */ 1547 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1548 return(1); 1549 1550 /* 1551 * If there is a target generation recorded, check it to 1552 * make sure the target list hasn't changed. 1553 */ 1554 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1555 && (bus == cdm->pos.cookie.bus) 1556 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1557 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1558 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1559 bus->generation)) { 1560 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1561 return(0); 1562 } 1563 1564 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1565 && (cdm->pos.cookie.bus == bus) 1566 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1567 && (cdm->pos.cookie.target != NULL)) 1568 return(xpttargettraverse(bus, 1569 (struct cam_et *)cdm->pos.cookie.target, 1570 xptedttargetfunc, arg)); 1571 else 1572 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1573 } 1574 1575 static int 1576 xptedttargetfunc(struct cam_et *target, void *arg) 1577 { 1578 struct ccb_dev_match *cdm; 1579 1580 cdm = (struct ccb_dev_match *)arg; 1581 1582 /* 1583 * If there is a device list generation recorded, check it to 1584 * make sure the device list hasn't changed. 1585 */ 1586 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1587 && (cdm->pos.cookie.bus == target->bus) 1588 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1589 && (cdm->pos.cookie.target == target) 1590 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1591 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1592 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1593 target->generation)) { 1594 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1595 return(0); 1596 } 1597 1598 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1599 && (cdm->pos.cookie.bus == target->bus) 1600 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1601 && (cdm->pos.cookie.target == target) 1602 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1603 && (cdm->pos.cookie.device != NULL)) 1604 return(xptdevicetraverse(target, 1605 (struct cam_ed *)cdm->pos.cookie.device, 1606 xptedtdevicefunc, arg)); 1607 else 1608 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1609 } 1610 1611 static int 1612 xptedtdevicefunc(struct cam_ed *device, void *arg) 1613 { 1614 1615 struct ccb_dev_match *cdm; 1616 dev_match_ret retval; 1617 1618 cdm = (struct ccb_dev_match *)arg; 1619 1620 /* 1621 * If our position is for something deeper in the tree, that means 1622 * that we've already seen this node. So, we keep going down. 1623 */ 1624 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1625 && (cdm->pos.cookie.device == device) 1626 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1627 && (cdm->pos.cookie.periph != NULL)) 1628 retval = DM_RET_DESCEND; 1629 else 1630 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1631 device); 1632 1633 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1634 cdm->status = CAM_DEV_MATCH_ERROR; 1635 return(0); 1636 } 1637 1638 /* 1639 * If the copy flag is set, copy this device out. 1640 */ 1641 if (retval & DM_RET_COPY) { 1642 int spaceleft, j; 1643 1644 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1645 sizeof(struct dev_match_result)); 1646 1647 /* 1648 * If we don't have enough space to put in another 1649 * match result, save our position and tell the 1650 * user there are more devices to check. 1651 */ 1652 if (spaceleft < sizeof(struct dev_match_result)) { 1653 bzero(&cdm->pos, sizeof(cdm->pos)); 1654 cdm->pos.position_type = 1655 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1656 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1657 1658 cdm->pos.cookie.bus = device->target->bus; 1659 cdm->pos.generations[CAM_BUS_GENERATION]= 1660 xsoftc.bus_generation; 1661 cdm->pos.cookie.target = device->target; 1662 cdm->pos.generations[CAM_TARGET_GENERATION] = 1663 device->target->bus->generation; 1664 cdm->pos.cookie.device = device; 1665 cdm->pos.generations[CAM_DEV_GENERATION] = 1666 device->target->generation; 1667 cdm->status = CAM_DEV_MATCH_MORE; 1668 return(0); 1669 } 1670 j = cdm->num_matches; 1671 cdm->num_matches++; 1672 cdm->matches[j].type = DEV_MATCH_DEVICE; 1673 cdm->matches[j].result.device_result.path_id = 1674 device->target->bus->path_id; 1675 cdm->matches[j].result.device_result.target_id = 1676 device->target->target_id; 1677 cdm->matches[j].result.device_result.target_lun = 1678 device->lun_id; 1679 cdm->matches[j].result.device_result.protocol = 1680 device->protocol; 1681 bcopy(&device->inq_data, 1682 &cdm->matches[j].result.device_result.inq_data, 1683 sizeof(struct scsi_inquiry_data)); 1684 bcopy(&device->ident_data, 1685 &cdm->matches[j].result.device_result.ident_data, 1686 sizeof(struct ata_params)); 1687 1688 /* Let the user know whether this device is unconfigured */ 1689 if (device->flags & CAM_DEV_UNCONFIGURED) 1690 cdm->matches[j].result.device_result.flags = 1691 DEV_RESULT_UNCONFIGURED; 1692 else 1693 cdm->matches[j].result.device_result.flags = 1694 DEV_RESULT_NOFLAG; 1695 } 1696 1697 /* 1698 * If the user isn't interested in peripherals, don't descend 1699 * the tree any further. 1700 */ 1701 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1702 return(1); 1703 1704 /* 1705 * If there is a peripheral list generation recorded, make sure 1706 * it hasn't changed. 1707 */ 1708 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1709 && (device->target->bus == cdm->pos.cookie.bus) 1710 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1711 && (device->target == cdm->pos.cookie.target) 1712 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1713 && (device == cdm->pos.cookie.device) 1714 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1715 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1716 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1717 device->generation)){ 1718 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1719 return(0); 1720 } 1721 1722 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1723 && (cdm->pos.cookie.bus == device->target->bus) 1724 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1725 && (cdm->pos.cookie.target == device->target) 1726 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1727 && (cdm->pos.cookie.device == device) 1728 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1729 && (cdm->pos.cookie.periph != NULL)) 1730 return(xptperiphtraverse(device, 1731 (struct cam_periph *)cdm->pos.cookie.periph, 1732 xptedtperiphfunc, arg)); 1733 else 1734 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1735 } 1736 1737 static int 1738 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1739 { 1740 struct ccb_dev_match *cdm; 1741 dev_match_ret retval; 1742 1743 cdm = (struct ccb_dev_match *)arg; 1744 1745 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1746 1747 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1748 cdm->status = CAM_DEV_MATCH_ERROR; 1749 return(0); 1750 } 1751 1752 /* 1753 * If the copy flag is set, copy this peripheral out. 1754 */ 1755 if (retval & DM_RET_COPY) { 1756 int spaceleft, j; 1757 1758 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1759 sizeof(struct dev_match_result)); 1760 1761 /* 1762 * If we don't have enough space to put in another 1763 * match result, save our position and tell the 1764 * user there are more devices to check. 1765 */ 1766 if (spaceleft < sizeof(struct dev_match_result)) { 1767 bzero(&cdm->pos, sizeof(cdm->pos)); 1768 cdm->pos.position_type = 1769 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1770 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1771 CAM_DEV_POS_PERIPH; 1772 1773 cdm->pos.cookie.bus = periph->path->bus; 1774 cdm->pos.generations[CAM_BUS_GENERATION]= 1775 xsoftc.bus_generation; 1776 cdm->pos.cookie.target = periph->path->target; 1777 cdm->pos.generations[CAM_TARGET_GENERATION] = 1778 periph->path->bus->generation; 1779 cdm->pos.cookie.device = periph->path->device; 1780 cdm->pos.generations[CAM_DEV_GENERATION] = 1781 periph->path->target->generation; 1782 cdm->pos.cookie.periph = periph; 1783 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1784 periph->path->device->generation; 1785 cdm->status = CAM_DEV_MATCH_MORE; 1786 return(0); 1787 } 1788 1789 j = cdm->num_matches; 1790 cdm->num_matches++; 1791 cdm->matches[j].type = DEV_MATCH_PERIPH; 1792 cdm->matches[j].result.periph_result.path_id = 1793 periph->path->bus->path_id; 1794 cdm->matches[j].result.periph_result.target_id = 1795 periph->path->target->target_id; 1796 cdm->matches[j].result.periph_result.target_lun = 1797 periph->path->device->lun_id; 1798 cdm->matches[j].result.periph_result.unit_number = 1799 periph->unit_number; 1800 strncpy(cdm->matches[j].result.periph_result.periph_name, 1801 periph->periph_name, DEV_IDLEN); 1802 } 1803 1804 return(1); 1805 } 1806 1807 static int 1808 xptedtmatch(struct ccb_dev_match *cdm) 1809 { 1810 int ret; 1811 1812 cdm->num_matches = 0; 1813 1814 /* 1815 * Check the bus list generation. If it has changed, the user 1816 * needs to reset everything and start over. 1817 */ 1818 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1819 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1820 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1821 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1822 return(0); 1823 } 1824 1825 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1826 && (cdm->pos.cookie.bus != NULL)) 1827 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1828 xptedtbusfunc, cdm); 1829 else 1830 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1831 1832 /* 1833 * If we get back 0, that means that we had to stop before fully 1834 * traversing the EDT. It also means that one of the subroutines 1835 * has set the status field to the proper value. If we get back 1, 1836 * we've fully traversed the EDT and copied out any matching entries. 1837 */ 1838 if (ret == 1) 1839 cdm->status = CAM_DEV_MATCH_LAST; 1840 1841 return(ret); 1842 } 1843 1844 static int 1845 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1846 { 1847 struct ccb_dev_match *cdm; 1848 1849 cdm = (struct ccb_dev_match *)arg; 1850 1851 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1852 && (cdm->pos.cookie.pdrv == pdrv) 1853 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1854 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1855 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1856 (*pdrv)->generation)) { 1857 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1858 return(0); 1859 } 1860 1861 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1862 && (cdm->pos.cookie.pdrv == pdrv) 1863 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1864 && (cdm->pos.cookie.periph != NULL)) 1865 return(xptpdperiphtraverse(pdrv, 1866 (struct cam_periph *)cdm->pos.cookie.periph, 1867 xptplistperiphfunc, arg)); 1868 else 1869 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1870 } 1871 1872 static int 1873 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1874 { 1875 struct ccb_dev_match *cdm; 1876 dev_match_ret retval; 1877 1878 cdm = (struct ccb_dev_match *)arg; 1879 1880 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1881 1882 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1883 cdm->status = CAM_DEV_MATCH_ERROR; 1884 return(0); 1885 } 1886 1887 /* 1888 * If the copy flag is set, copy this peripheral out. 1889 */ 1890 if (retval & DM_RET_COPY) { 1891 int spaceleft, j; 1892 1893 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1894 sizeof(struct dev_match_result)); 1895 1896 /* 1897 * If we don't have enough space to put in another 1898 * match result, save our position and tell the 1899 * user there are more devices to check. 1900 */ 1901 if (spaceleft < sizeof(struct dev_match_result)) { 1902 struct periph_driver **pdrv; 1903 1904 pdrv = NULL; 1905 bzero(&cdm->pos, sizeof(cdm->pos)); 1906 cdm->pos.position_type = 1907 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1908 CAM_DEV_POS_PERIPH; 1909 1910 /* 1911 * This may look a bit non-sensical, but it is 1912 * actually quite logical. There are very few 1913 * peripheral drivers, and bloating every peripheral 1914 * structure with a pointer back to its parent 1915 * peripheral driver linker set entry would cost 1916 * more in the long run than doing this quick lookup. 1917 */ 1918 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1919 if (strcmp((*pdrv)->driver_name, 1920 periph->periph_name) == 0) 1921 break; 1922 } 1923 1924 if (*pdrv == NULL) { 1925 cdm->status = CAM_DEV_MATCH_ERROR; 1926 return(0); 1927 } 1928 1929 cdm->pos.cookie.pdrv = pdrv; 1930 /* 1931 * The periph generation slot does double duty, as 1932 * does the periph pointer slot. They are used for 1933 * both edt and pdrv lookups and positioning. 1934 */ 1935 cdm->pos.cookie.periph = periph; 1936 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1937 (*pdrv)->generation; 1938 cdm->status = CAM_DEV_MATCH_MORE; 1939 return(0); 1940 } 1941 1942 j = cdm->num_matches; 1943 cdm->num_matches++; 1944 cdm->matches[j].type = DEV_MATCH_PERIPH; 1945 cdm->matches[j].result.periph_result.path_id = 1946 periph->path->bus->path_id; 1947 1948 /* 1949 * The transport layer peripheral doesn't have a target or 1950 * lun. 1951 */ 1952 if (periph->path->target) 1953 cdm->matches[j].result.periph_result.target_id = 1954 periph->path->target->target_id; 1955 else 1956 cdm->matches[j].result.periph_result.target_id = -1; 1957 1958 if (periph->path->device) 1959 cdm->matches[j].result.periph_result.target_lun = 1960 periph->path->device->lun_id; 1961 else 1962 cdm->matches[j].result.periph_result.target_lun = -1; 1963 1964 cdm->matches[j].result.periph_result.unit_number = 1965 periph->unit_number; 1966 strncpy(cdm->matches[j].result.periph_result.periph_name, 1967 periph->periph_name, DEV_IDLEN); 1968 } 1969 1970 return(1); 1971 } 1972 1973 static int 1974 xptperiphlistmatch(struct ccb_dev_match *cdm) 1975 { 1976 int ret; 1977 1978 cdm->num_matches = 0; 1979 1980 /* 1981 * At this point in the edt traversal function, we check the bus 1982 * list generation to make sure that no busses have been added or 1983 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1984 * For the peripheral driver list traversal function, however, we 1985 * don't have to worry about new peripheral driver types coming or 1986 * going; they're in a linker set, and therefore can't change 1987 * without a recompile. 1988 */ 1989 1990 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1991 && (cdm->pos.cookie.pdrv != NULL)) 1992 ret = xptpdrvtraverse( 1993 (struct periph_driver **)cdm->pos.cookie.pdrv, 1994 xptplistpdrvfunc, cdm); 1995 else 1996 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 1997 1998 /* 1999 * If we get back 0, that means that we had to stop before fully 2000 * traversing the peripheral driver tree. It also means that one of 2001 * the subroutines has set the status field to the proper value. If 2002 * we get back 1, we've fully traversed the EDT and copied out any 2003 * matching entries. 2004 */ 2005 if (ret == 1) 2006 cdm->status = CAM_DEV_MATCH_LAST; 2007 2008 return(ret); 2009 } 2010 2011 static int 2012 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2013 { 2014 struct cam_eb *bus, *next_bus; 2015 int retval; 2016 2017 retval = 1; 2018 2019 xpt_lock_buses(); 2020 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2021 bus != NULL; 2022 bus = next_bus) { 2023 2024 bus->refcount++; 2025 2026 /* 2027 * XXX The locking here is obviously very complex. We 2028 * should work to simplify it. 2029 */ 2030 xpt_unlock_buses(); 2031 CAM_SIM_LOCK(bus->sim); 2032 retval = tr_func(bus, arg); 2033 CAM_SIM_UNLOCK(bus->sim); 2034 2035 xpt_lock_buses(); 2036 next_bus = TAILQ_NEXT(bus, links); 2037 xpt_unlock_buses(); 2038 2039 xpt_release_bus(bus); 2040 2041 if (retval == 0) 2042 return(retval); 2043 xpt_lock_buses(); 2044 } 2045 xpt_unlock_buses(); 2046 2047 return(retval); 2048 } 2049 2050 static int 2051 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2052 xpt_targetfunc_t *tr_func, void *arg) 2053 { 2054 struct cam_et *target, *next_target; 2055 int retval; 2056 2057 mtx_assert(bus->sim->mtx, MA_OWNED); 2058 retval = 1; 2059 for (target = (start_target ? start_target : 2060 TAILQ_FIRST(&bus->et_entries)); 2061 target != NULL; target = next_target) { 2062 2063 target->refcount++; 2064 2065 retval = tr_func(target, arg); 2066 2067 next_target = TAILQ_NEXT(target, links); 2068 2069 xpt_release_target(target); 2070 2071 if (retval == 0) 2072 return(retval); 2073 } 2074 2075 return(retval); 2076 } 2077 2078 static int 2079 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2080 xpt_devicefunc_t *tr_func, void *arg) 2081 { 2082 struct cam_ed *device, *next_device; 2083 int retval; 2084 2085 mtx_assert(target->bus->sim->mtx, MA_OWNED); 2086 retval = 1; 2087 for (device = (start_device ? start_device : 2088 TAILQ_FIRST(&target->ed_entries)); 2089 device != NULL; 2090 device = next_device) { 2091 2092 /* 2093 * Hold a reference so the current device does not go away 2094 * on us. 2095 */ 2096 device->refcount++; 2097 2098 retval = tr_func(device, arg); 2099 2100 /* 2101 * Grab our next pointer before we release the current 2102 * device. 2103 */ 2104 next_device = TAILQ_NEXT(device, links); 2105 2106 xpt_release_device(device); 2107 2108 if (retval == 0) 2109 return(retval); 2110 } 2111 2112 return(retval); 2113 } 2114 2115 static int 2116 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2117 xpt_periphfunc_t *tr_func, void *arg) 2118 { 2119 struct cam_periph *periph, *next_periph; 2120 int retval; 2121 2122 retval = 1; 2123 2124 mtx_assert(device->sim->mtx, MA_OWNED); 2125 xpt_lock_buses(); 2126 for (periph = (start_periph ? start_periph : 2127 SLIST_FIRST(&device->periphs)); 2128 periph != NULL; 2129 periph = next_periph) { 2130 2131 2132 /* 2133 * In this case, we want to show peripherals that have been 2134 * invalidated, but not peripherals that are scheduled to 2135 * be freed. So instead of calling cam_periph_acquire(), 2136 * which will fail if the periph has been invalidated, we 2137 * just check for the free flag here. If it is in the 2138 * process of being freed, we skip to the next periph. 2139 */ 2140 if (periph->flags & CAM_PERIPH_FREE) { 2141 next_periph = SLIST_NEXT(periph, periph_links); 2142 continue; 2143 } 2144 2145 /* 2146 * Acquire a reference to this periph while we call the 2147 * traversal function, so it can't go away. 2148 */ 2149 periph->refcount++; 2150 2151 retval = tr_func(periph, arg); 2152 2153 /* 2154 * Grab the next peripheral before we release this one, so 2155 * our next pointer is still valid. 2156 */ 2157 next_periph = SLIST_NEXT(periph, periph_links); 2158 2159 cam_periph_release_locked_buses(periph); 2160 2161 if (retval == 0) 2162 goto bailout_done; 2163 } 2164 2165 bailout_done: 2166 2167 xpt_unlock_buses(); 2168 2169 return(retval); 2170 } 2171 2172 static int 2173 xptpdrvtraverse(struct periph_driver **start_pdrv, 2174 xpt_pdrvfunc_t *tr_func, void *arg) 2175 { 2176 struct periph_driver **pdrv; 2177 int retval; 2178 2179 retval = 1; 2180 2181 /* 2182 * We don't traverse the peripheral driver list like we do the 2183 * other lists, because it is a linker set, and therefore cannot be 2184 * changed during runtime. If the peripheral driver list is ever 2185 * re-done to be something other than a linker set (i.e. it can 2186 * change while the system is running), the list traversal should 2187 * be modified to work like the other traversal functions. 2188 */ 2189 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2190 *pdrv != NULL; pdrv++) { 2191 retval = tr_func(pdrv, arg); 2192 2193 if (retval == 0) 2194 return(retval); 2195 } 2196 2197 return(retval); 2198 } 2199 2200 static int 2201 xptpdperiphtraverse(struct periph_driver **pdrv, 2202 struct cam_periph *start_periph, 2203 xpt_periphfunc_t *tr_func, void *arg) 2204 { 2205 struct cam_periph *periph, *next_periph; 2206 struct cam_sim *sim; 2207 int retval; 2208 2209 retval = 1; 2210 2211 xpt_lock_buses(); 2212 for (periph = (start_periph ? start_periph : 2213 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2214 periph = next_periph) { 2215 2216 2217 /* 2218 * In this case, we want to show peripherals that have been 2219 * invalidated, but not peripherals that are scheduled to 2220 * be freed. So instead of calling cam_periph_acquire(), 2221 * which will fail if the periph has been invalidated, we 2222 * just check for the free flag here. If it is free, we 2223 * skip to the next periph. 2224 */ 2225 if (periph->flags & CAM_PERIPH_FREE) { 2226 next_periph = TAILQ_NEXT(periph, unit_links); 2227 continue; 2228 } 2229 2230 /* 2231 * Acquire a reference to this periph while we call the 2232 * traversal function, so it can't go away. 2233 */ 2234 periph->refcount++; 2235 sim = periph->sim; 2236 xpt_unlock_buses(); 2237 CAM_SIM_LOCK(sim); 2238 xpt_lock_buses(); 2239 retval = tr_func(periph, arg); 2240 2241 /* 2242 * Grab the next peripheral before we release this one, so 2243 * our next pointer is still valid. 2244 */ 2245 next_periph = TAILQ_NEXT(periph, unit_links); 2246 2247 cam_periph_release_locked_buses(periph); 2248 CAM_SIM_UNLOCK(sim); 2249 2250 if (retval == 0) 2251 goto bailout_done; 2252 } 2253 bailout_done: 2254 2255 xpt_unlock_buses(); 2256 2257 return(retval); 2258 } 2259 2260 static int 2261 xptdefbusfunc(struct cam_eb *bus, void *arg) 2262 { 2263 struct xpt_traverse_config *tr_config; 2264 2265 tr_config = (struct xpt_traverse_config *)arg; 2266 2267 if (tr_config->depth == XPT_DEPTH_BUS) { 2268 xpt_busfunc_t *tr_func; 2269 2270 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2271 2272 return(tr_func(bus, tr_config->tr_arg)); 2273 } else 2274 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2275 } 2276 2277 static int 2278 xptdeftargetfunc(struct cam_et *target, void *arg) 2279 { 2280 struct xpt_traverse_config *tr_config; 2281 2282 tr_config = (struct xpt_traverse_config *)arg; 2283 2284 if (tr_config->depth == XPT_DEPTH_TARGET) { 2285 xpt_targetfunc_t *tr_func; 2286 2287 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2288 2289 return(tr_func(target, tr_config->tr_arg)); 2290 } else 2291 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2292 } 2293 2294 static int 2295 xptdefdevicefunc(struct cam_ed *device, void *arg) 2296 { 2297 struct xpt_traverse_config *tr_config; 2298 2299 tr_config = (struct xpt_traverse_config *)arg; 2300 2301 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2302 xpt_devicefunc_t *tr_func; 2303 2304 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2305 2306 return(tr_func(device, tr_config->tr_arg)); 2307 } else 2308 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2309 } 2310 2311 static int 2312 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2313 { 2314 struct xpt_traverse_config *tr_config; 2315 xpt_periphfunc_t *tr_func; 2316 2317 tr_config = (struct xpt_traverse_config *)arg; 2318 2319 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2320 2321 /* 2322 * Unlike the other default functions, we don't check for depth 2323 * here. The peripheral driver level is the last level in the EDT, 2324 * so if we're here, we should execute the function in question. 2325 */ 2326 return(tr_func(periph, tr_config->tr_arg)); 2327 } 2328 2329 /* 2330 * Execute the given function for every bus in the EDT. 2331 */ 2332 static int 2333 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2334 { 2335 struct xpt_traverse_config tr_config; 2336 2337 tr_config.depth = XPT_DEPTH_BUS; 2338 tr_config.tr_func = tr_func; 2339 tr_config.tr_arg = arg; 2340 2341 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2342 } 2343 2344 /* 2345 * Execute the given function for every device in the EDT. 2346 */ 2347 static int 2348 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2349 { 2350 struct xpt_traverse_config tr_config; 2351 2352 tr_config.depth = XPT_DEPTH_DEVICE; 2353 tr_config.tr_func = tr_func; 2354 tr_config.tr_arg = arg; 2355 2356 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2357 } 2358 2359 static int 2360 xptsetasyncfunc(struct cam_ed *device, void *arg) 2361 { 2362 struct cam_path path; 2363 struct ccb_getdev cgd; 2364 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2365 2366 /* 2367 * Don't report unconfigured devices (Wildcard devs, 2368 * devices only for target mode, device instances 2369 * that have been invalidated but are waiting for 2370 * their last reference count to be released). 2371 */ 2372 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2373 return (1); 2374 2375 xpt_compile_path(&path, 2376 NULL, 2377 device->target->bus->path_id, 2378 device->target->target_id, 2379 device->lun_id); 2380 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2381 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2382 xpt_action((union ccb *)&cgd); 2383 csa->callback(csa->callback_arg, 2384 AC_FOUND_DEVICE, 2385 &path, &cgd); 2386 xpt_release_path(&path); 2387 2388 return(1); 2389 } 2390 2391 static int 2392 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2393 { 2394 struct cam_path path; 2395 struct ccb_pathinq cpi; 2396 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2397 2398 xpt_compile_path(&path, /*periph*/NULL, 2399 bus->sim->path_id, 2400 CAM_TARGET_WILDCARD, 2401 CAM_LUN_WILDCARD); 2402 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2403 cpi.ccb_h.func_code = XPT_PATH_INQ; 2404 xpt_action((union ccb *)&cpi); 2405 csa->callback(csa->callback_arg, 2406 AC_PATH_REGISTERED, 2407 &path, &cpi); 2408 xpt_release_path(&path); 2409 2410 return(1); 2411 } 2412 2413 void 2414 xpt_action(union ccb *start_ccb) 2415 { 2416 2417 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2418 2419 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2420 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2421 } 2422 2423 void 2424 xpt_action_default(union ccb *start_ccb) 2425 { 2426 struct cam_path *path; 2427 2428 path = start_ccb->ccb_h.path; 2429 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2430 2431 switch (start_ccb->ccb_h.func_code) { 2432 case XPT_SCSI_IO: 2433 { 2434 struct cam_ed *device; 2435 2436 /* 2437 * For the sake of compatibility with SCSI-1 2438 * devices that may not understand the identify 2439 * message, we include lun information in the 2440 * second byte of all commands. SCSI-1 specifies 2441 * that luns are a 3 bit value and reserves only 3 2442 * bits for lun information in the CDB. Later 2443 * revisions of the SCSI spec allow for more than 8 2444 * luns, but have deprecated lun information in the 2445 * CDB. So, if the lun won't fit, we must omit. 2446 * 2447 * Also be aware that during initial probing for devices, 2448 * the inquiry information is unknown but initialized to 0. 2449 * This means that this code will be exercised while probing 2450 * devices with an ANSI revision greater than 2. 2451 */ 2452 device = path->device; 2453 if (device->protocol_version <= SCSI_REV_2 2454 && start_ccb->ccb_h.target_lun < 8 2455 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2456 2457 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2458 start_ccb->ccb_h.target_lun << 5; 2459 } 2460 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2461 } 2462 /* FALLTHROUGH */ 2463 case XPT_TARGET_IO: 2464 case XPT_CONT_TARGET_IO: 2465 start_ccb->csio.sense_resid = 0; 2466 start_ccb->csio.resid = 0; 2467 /* FALLTHROUGH */ 2468 case XPT_ATA_IO: 2469 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2470 start_ccb->ataio.resid = 0; 2471 /* FALLTHROUGH */ 2472 case XPT_RESET_DEV: 2473 case XPT_ENG_EXEC: 2474 case XPT_SMP_IO: 2475 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2476 if (xpt_schedule_devq(path->bus->sim->devq, path->device)) 2477 xpt_run_devq(path->bus->sim->devq); 2478 break; 2479 case XPT_CALC_GEOMETRY: 2480 { 2481 struct cam_sim *sim; 2482 2483 /* Filter out garbage */ 2484 if (start_ccb->ccg.block_size == 0 2485 || start_ccb->ccg.volume_size == 0) { 2486 start_ccb->ccg.cylinders = 0; 2487 start_ccb->ccg.heads = 0; 2488 start_ccb->ccg.secs_per_track = 0; 2489 start_ccb->ccb_h.status = CAM_REQ_CMP; 2490 break; 2491 } 2492 #if defined(PC98) || defined(__sparc64__) 2493 /* 2494 * In a PC-98 system, geometry translation depens on 2495 * the "real" device geometry obtained from mode page 4. 2496 * SCSI geometry translation is performed in the 2497 * initialization routine of the SCSI BIOS and the result 2498 * stored in host memory. If the translation is available 2499 * in host memory, use it. If not, rely on the default 2500 * translation the device driver performs. 2501 * For sparc64, we may need adjust the geometry of large 2502 * disks in order to fit the limitations of the 16-bit 2503 * fields of the VTOC8 disk label. 2504 */ 2505 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2506 start_ccb->ccb_h.status = CAM_REQ_CMP; 2507 break; 2508 } 2509 #endif 2510 sim = path->bus->sim; 2511 (*(sim->sim_action))(sim, start_ccb); 2512 break; 2513 } 2514 case XPT_ABORT: 2515 { 2516 union ccb* abort_ccb; 2517 2518 abort_ccb = start_ccb->cab.abort_ccb; 2519 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2520 2521 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2522 struct cam_ccbq *ccbq; 2523 struct cam_ed *device; 2524 2525 device = abort_ccb->ccb_h.path->device; 2526 ccbq = &device->ccbq; 2527 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2528 abort_ccb->ccb_h.status = 2529 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2530 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2531 xpt_done(abort_ccb); 2532 start_ccb->ccb_h.status = CAM_REQ_CMP; 2533 break; 2534 } 2535 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2536 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2537 /* 2538 * We've caught this ccb en route to 2539 * the SIM. Flag it for abort and the 2540 * SIM will do so just before starting 2541 * real work on the CCB. 2542 */ 2543 abort_ccb->ccb_h.status = 2544 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2545 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2546 start_ccb->ccb_h.status = CAM_REQ_CMP; 2547 break; 2548 } 2549 } 2550 if (XPT_FC_IS_QUEUED(abort_ccb) 2551 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2552 /* 2553 * It's already completed but waiting 2554 * for our SWI to get to it. 2555 */ 2556 start_ccb->ccb_h.status = CAM_UA_ABORT; 2557 break; 2558 } 2559 /* 2560 * If we weren't able to take care of the abort request 2561 * in the XPT, pass the request down to the SIM for processing. 2562 */ 2563 } 2564 /* FALLTHROUGH */ 2565 case XPT_ACCEPT_TARGET_IO: 2566 case XPT_EN_LUN: 2567 case XPT_IMMED_NOTIFY: 2568 case XPT_NOTIFY_ACK: 2569 case XPT_RESET_BUS: 2570 case XPT_IMMEDIATE_NOTIFY: 2571 case XPT_NOTIFY_ACKNOWLEDGE: 2572 case XPT_GET_SIM_KNOB: 2573 case XPT_SET_SIM_KNOB: 2574 { 2575 struct cam_sim *sim; 2576 2577 sim = path->bus->sim; 2578 (*(sim->sim_action))(sim, start_ccb); 2579 break; 2580 } 2581 case XPT_PATH_INQ: 2582 { 2583 struct cam_sim *sim; 2584 2585 sim = path->bus->sim; 2586 (*(sim->sim_action))(sim, start_ccb); 2587 break; 2588 } 2589 case XPT_PATH_STATS: 2590 start_ccb->cpis.last_reset = path->bus->last_reset; 2591 start_ccb->ccb_h.status = CAM_REQ_CMP; 2592 break; 2593 case XPT_GDEV_TYPE: 2594 { 2595 struct cam_ed *dev; 2596 2597 dev = path->device; 2598 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2599 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2600 } else { 2601 struct ccb_getdev *cgd; 2602 2603 cgd = &start_ccb->cgd; 2604 cgd->protocol = dev->protocol; 2605 cgd->inq_data = dev->inq_data; 2606 cgd->ident_data = dev->ident_data; 2607 cgd->inq_flags = dev->inq_flags; 2608 cgd->ccb_h.status = CAM_REQ_CMP; 2609 cgd->serial_num_len = dev->serial_num_len; 2610 if ((dev->serial_num_len > 0) 2611 && (dev->serial_num != NULL)) 2612 bcopy(dev->serial_num, cgd->serial_num, 2613 dev->serial_num_len); 2614 } 2615 break; 2616 } 2617 case XPT_GDEV_STATS: 2618 { 2619 struct cam_ed *dev; 2620 2621 dev = path->device; 2622 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2623 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2624 } else { 2625 struct ccb_getdevstats *cgds; 2626 struct cam_eb *bus; 2627 struct cam_et *tar; 2628 2629 cgds = &start_ccb->cgds; 2630 bus = path->bus; 2631 tar = path->target; 2632 cgds->dev_openings = dev->ccbq.dev_openings; 2633 cgds->dev_active = dev->ccbq.dev_active; 2634 cgds->devq_openings = dev->ccbq.devq_openings; 2635 cgds->devq_queued = dev->ccbq.queue.entries; 2636 cgds->held = dev->ccbq.held; 2637 cgds->last_reset = tar->last_reset; 2638 cgds->maxtags = dev->maxtags; 2639 cgds->mintags = dev->mintags; 2640 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2641 cgds->last_reset = bus->last_reset; 2642 cgds->ccb_h.status = CAM_REQ_CMP; 2643 } 2644 break; 2645 } 2646 case XPT_GDEVLIST: 2647 { 2648 struct cam_periph *nperiph; 2649 struct periph_list *periph_head; 2650 struct ccb_getdevlist *cgdl; 2651 u_int i; 2652 struct cam_ed *device; 2653 int found; 2654 2655 2656 found = 0; 2657 2658 /* 2659 * Don't want anyone mucking with our data. 2660 */ 2661 device = path->device; 2662 periph_head = &device->periphs; 2663 cgdl = &start_ccb->cgdl; 2664 2665 /* 2666 * Check and see if the list has changed since the user 2667 * last requested a list member. If so, tell them that the 2668 * list has changed, and therefore they need to start over 2669 * from the beginning. 2670 */ 2671 if ((cgdl->index != 0) && 2672 (cgdl->generation != device->generation)) { 2673 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2674 break; 2675 } 2676 2677 /* 2678 * Traverse the list of peripherals and attempt to find 2679 * the requested peripheral. 2680 */ 2681 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2682 (nperiph != NULL) && (i <= cgdl->index); 2683 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2684 if (i == cgdl->index) { 2685 strncpy(cgdl->periph_name, 2686 nperiph->periph_name, 2687 DEV_IDLEN); 2688 cgdl->unit_number = nperiph->unit_number; 2689 found = 1; 2690 } 2691 } 2692 if (found == 0) { 2693 cgdl->status = CAM_GDEVLIST_ERROR; 2694 break; 2695 } 2696 2697 if (nperiph == NULL) 2698 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2699 else 2700 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2701 2702 cgdl->index++; 2703 cgdl->generation = device->generation; 2704 2705 cgdl->ccb_h.status = CAM_REQ_CMP; 2706 break; 2707 } 2708 case XPT_DEV_MATCH: 2709 { 2710 dev_pos_type position_type; 2711 struct ccb_dev_match *cdm; 2712 2713 cdm = &start_ccb->cdm; 2714 2715 /* 2716 * There are two ways of getting at information in the EDT. 2717 * The first way is via the primary EDT tree. It starts 2718 * with a list of busses, then a list of targets on a bus, 2719 * then devices/luns on a target, and then peripherals on a 2720 * device/lun. The "other" way is by the peripheral driver 2721 * lists. The peripheral driver lists are organized by 2722 * peripheral driver. (obviously) So it makes sense to 2723 * use the peripheral driver list if the user is looking 2724 * for something like "da1", or all "da" devices. If the 2725 * user is looking for something on a particular bus/target 2726 * or lun, it's generally better to go through the EDT tree. 2727 */ 2728 2729 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2730 position_type = cdm->pos.position_type; 2731 else { 2732 u_int i; 2733 2734 position_type = CAM_DEV_POS_NONE; 2735 2736 for (i = 0; i < cdm->num_patterns; i++) { 2737 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2738 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2739 position_type = CAM_DEV_POS_EDT; 2740 break; 2741 } 2742 } 2743 2744 if (cdm->num_patterns == 0) 2745 position_type = CAM_DEV_POS_EDT; 2746 else if (position_type == CAM_DEV_POS_NONE) 2747 position_type = CAM_DEV_POS_PDRV; 2748 } 2749 2750 /* 2751 * Note that we drop the SIM lock here, because the EDT 2752 * traversal code needs to do its own locking. 2753 */ 2754 CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path)); 2755 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2756 case CAM_DEV_POS_EDT: 2757 xptedtmatch(cdm); 2758 break; 2759 case CAM_DEV_POS_PDRV: 2760 xptperiphlistmatch(cdm); 2761 break; 2762 default: 2763 cdm->status = CAM_DEV_MATCH_ERROR; 2764 break; 2765 } 2766 CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path)); 2767 2768 if (cdm->status == CAM_DEV_MATCH_ERROR) 2769 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2770 else 2771 start_ccb->ccb_h.status = CAM_REQ_CMP; 2772 2773 break; 2774 } 2775 case XPT_SASYNC_CB: 2776 { 2777 struct ccb_setasync *csa; 2778 struct async_node *cur_entry; 2779 struct async_list *async_head; 2780 u_int32_t added; 2781 2782 csa = &start_ccb->csa; 2783 added = csa->event_enable; 2784 async_head = &path->device->asyncs; 2785 2786 /* 2787 * If there is already an entry for us, simply 2788 * update it. 2789 */ 2790 cur_entry = SLIST_FIRST(async_head); 2791 while (cur_entry != NULL) { 2792 if ((cur_entry->callback_arg == csa->callback_arg) 2793 && (cur_entry->callback == csa->callback)) 2794 break; 2795 cur_entry = SLIST_NEXT(cur_entry, links); 2796 } 2797 2798 if (cur_entry != NULL) { 2799 /* 2800 * If the request has no flags set, 2801 * remove the entry. 2802 */ 2803 added &= ~cur_entry->event_enable; 2804 if (csa->event_enable == 0) { 2805 SLIST_REMOVE(async_head, cur_entry, 2806 async_node, links); 2807 xpt_release_device(path->device); 2808 free(cur_entry, M_CAMXPT); 2809 } else { 2810 cur_entry->event_enable = csa->event_enable; 2811 } 2812 csa->event_enable = added; 2813 } else { 2814 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2815 M_NOWAIT); 2816 if (cur_entry == NULL) { 2817 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2818 break; 2819 } 2820 cur_entry->event_enable = csa->event_enable; 2821 cur_entry->callback_arg = csa->callback_arg; 2822 cur_entry->callback = csa->callback; 2823 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2824 xpt_acquire_device(path->device); 2825 } 2826 start_ccb->ccb_h.status = CAM_REQ_CMP; 2827 break; 2828 } 2829 case XPT_REL_SIMQ: 2830 { 2831 struct ccb_relsim *crs; 2832 struct cam_ed *dev; 2833 2834 crs = &start_ccb->crs; 2835 dev = path->device; 2836 if (dev == NULL) { 2837 2838 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2839 break; 2840 } 2841 2842 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2843 2844 /* Don't ever go below one opening */ 2845 if (crs->openings > 0) { 2846 xpt_dev_ccbq_resize(path, crs->openings); 2847 if (bootverbose) { 2848 xpt_print(path, 2849 "number of openings is now %d\n", 2850 crs->openings); 2851 } 2852 } 2853 } 2854 2855 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2856 2857 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2858 2859 /* 2860 * Just extend the old timeout and decrement 2861 * the freeze count so that a single timeout 2862 * is sufficient for releasing the queue. 2863 */ 2864 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2865 callout_stop(&dev->callout); 2866 } else { 2867 2868 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2869 } 2870 2871 callout_reset(&dev->callout, 2872 (crs->release_timeout * hz) / 1000, 2873 xpt_release_devq_timeout, dev); 2874 2875 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2876 2877 } 2878 2879 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2880 2881 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2882 /* 2883 * Decrement the freeze count so that a single 2884 * completion is still sufficient to unfreeze 2885 * the queue. 2886 */ 2887 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2888 } else { 2889 2890 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2891 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2892 } 2893 } 2894 2895 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2896 2897 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2898 || (dev->ccbq.dev_active == 0)) { 2899 2900 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2901 } else { 2902 2903 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2904 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2905 } 2906 } 2907 2908 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2909 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2910 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2911 start_ccb->ccb_h.status = CAM_REQ_CMP; 2912 break; 2913 } 2914 case XPT_DEBUG: { 2915 struct cam_path *oldpath; 2916 struct cam_sim *oldsim; 2917 2918 /* Check that all request bits are supported. */ 2919 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2920 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2921 break; 2922 } 2923 2924 cam_dflags = CAM_DEBUG_NONE; 2925 if (cam_dpath != NULL) { 2926 /* To release the old path we must hold proper lock. */ 2927 oldpath = cam_dpath; 2928 cam_dpath = NULL; 2929 oldsim = xpt_path_sim(oldpath); 2930 CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2931 CAM_SIM_LOCK(oldsim); 2932 xpt_free_path(oldpath); 2933 CAM_SIM_UNLOCK(oldsim); 2934 CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2935 } 2936 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2937 if (xpt_create_path(&cam_dpath, NULL, 2938 start_ccb->ccb_h.path_id, 2939 start_ccb->ccb_h.target_id, 2940 start_ccb->ccb_h.target_lun) != 2941 CAM_REQ_CMP) { 2942 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2943 } else { 2944 cam_dflags = start_ccb->cdbg.flags; 2945 start_ccb->ccb_h.status = CAM_REQ_CMP; 2946 xpt_print(cam_dpath, "debugging flags now %x\n", 2947 cam_dflags); 2948 } 2949 } else 2950 start_ccb->ccb_h.status = CAM_REQ_CMP; 2951 break; 2952 } 2953 case XPT_NOOP: 2954 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2955 xpt_freeze_devq(path, 1); 2956 start_ccb->ccb_h.status = CAM_REQ_CMP; 2957 break; 2958 default: 2959 case XPT_SDEV_TYPE: 2960 case XPT_TERM_IO: 2961 case XPT_ENG_INQ: 2962 /* XXX Implement */ 2963 printf("%s: CCB type %#x not supported\n", __func__, 2964 start_ccb->ccb_h.func_code); 2965 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2966 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2967 xpt_done(start_ccb); 2968 } 2969 break; 2970 } 2971 } 2972 2973 void 2974 xpt_polled_action(union ccb *start_ccb) 2975 { 2976 u_int32_t timeout; 2977 struct cam_sim *sim; 2978 struct cam_devq *devq; 2979 struct cam_ed *dev; 2980 2981 2982 timeout = start_ccb->ccb_h.timeout * 10; 2983 sim = start_ccb->ccb_h.path->bus->sim; 2984 devq = sim->devq; 2985 dev = start_ccb->ccb_h.path->device; 2986 2987 mtx_assert(sim->mtx, MA_OWNED); 2988 2989 /* Don't use ISR for this SIM while polling. */ 2990 sim->flags |= CAM_SIM_POLLED; 2991 2992 /* 2993 * Steal an opening so that no other queued requests 2994 * can get it before us while we simulate interrupts. 2995 */ 2996 dev->ccbq.devq_openings--; 2997 dev->ccbq.dev_openings--; 2998 2999 while(((devq != NULL && devq->send_openings <= 0) || 3000 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3001 DELAY(100); 3002 (*(sim->sim_poll))(sim); 3003 camisr_runqueue(&sim->sim_doneq); 3004 } 3005 3006 dev->ccbq.devq_openings++; 3007 dev->ccbq.dev_openings++; 3008 3009 if (timeout != 0) { 3010 xpt_action(start_ccb); 3011 while(--timeout > 0) { 3012 (*(sim->sim_poll))(sim); 3013 camisr_runqueue(&sim->sim_doneq); 3014 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3015 != CAM_REQ_INPROG) 3016 break; 3017 DELAY(100); 3018 } 3019 if (timeout == 0) { 3020 /* 3021 * XXX Is it worth adding a sim_timeout entry 3022 * point so we can attempt recovery? If 3023 * this is only used for dumps, I don't think 3024 * it is. 3025 */ 3026 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3027 } 3028 } else { 3029 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3030 } 3031 3032 /* We will use CAM ISR for this SIM again. */ 3033 sim->flags &= ~CAM_SIM_POLLED; 3034 } 3035 3036 /* 3037 * Schedule a peripheral driver to receive a ccb when it's 3038 * target device has space for more transactions. 3039 */ 3040 void 3041 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3042 { 3043 struct cam_ed *device; 3044 int runq = 0; 3045 3046 mtx_assert(perph->sim->mtx, MA_OWNED); 3047 3048 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3049 device = perph->path->device; 3050 if (periph_is_queued(perph)) { 3051 /* Simply reorder based on new priority */ 3052 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3053 (" change priority to %d\n", new_priority)); 3054 if (new_priority < perph->pinfo.priority) { 3055 camq_change_priority(&device->drvq, 3056 perph->pinfo.index, 3057 new_priority); 3058 runq = 1; 3059 } 3060 } else { 3061 /* New entry on the queue */ 3062 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3063 (" added periph to queue\n")); 3064 perph->pinfo.priority = new_priority; 3065 perph->pinfo.generation = ++device->drvq.generation; 3066 camq_insert(&device->drvq, &perph->pinfo); 3067 runq = 1; 3068 } 3069 if (runq != 0) { 3070 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3071 (" calling xpt_run_dev_allocq\n")); 3072 xpt_run_dev_allocq(device); 3073 } 3074 } 3075 3076 3077 /* 3078 * Schedule a device to run on a given queue. 3079 * If the device was inserted as a new entry on the queue, 3080 * return 1 meaning the device queue should be run. If we 3081 * were already queued, implying someone else has already 3082 * started the queue, return 0 so the caller doesn't attempt 3083 * to run the queue. 3084 */ 3085 int 3086 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3087 u_int32_t new_priority) 3088 { 3089 int retval; 3090 u_int32_t old_priority; 3091 3092 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3093 3094 old_priority = pinfo->priority; 3095 3096 /* 3097 * Are we already queued? 3098 */ 3099 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3100 /* Simply reorder based on new priority */ 3101 if (new_priority < old_priority) { 3102 camq_change_priority(queue, pinfo->index, 3103 new_priority); 3104 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3105 ("changed priority to %d\n", 3106 new_priority)); 3107 retval = 1; 3108 } else 3109 retval = 0; 3110 } else { 3111 /* New entry on the queue */ 3112 if (new_priority < old_priority) 3113 pinfo->priority = new_priority; 3114 3115 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3116 ("Inserting onto queue\n")); 3117 pinfo->generation = ++queue->generation; 3118 camq_insert(queue, pinfo); 3119 retval = 1; 3120 } 3121 return (retval); 3122 } 3123 3124 static void 3125 xpt_run_dev_allocq(struct cam_ed *device) 3126 { 3127 struct camq *drvq; 3128 3129 if (device->ccbq.devq_allocating) 3130 return; 3131 device->ccbq.devq_allocating = 1; 3132 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device)); 3133 drvq = &device->drvq; 3134 while ((drvq->entries > 0) && 3135 (device->ccbq.devq_openings > 0 || 3136 CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) && 3137 (device->ccbq.queue.qfrozen_cnt == 0)) { 3138 union ccb *work_ccb; 3139 struct cam_periph *drv; 3140 3141 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: " 3142 "Device on queue without any work to do")); 3143 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3144 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3145 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3146 drv->pinfo.priority); 3147 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3148 ("calling periph start\n")); 3149 drv->periph_start(drv, work_ccb); 3150 } else { 3151 /* 3152 * Malloc failure in alloc_ccb 3153 */ 3154 /* 3155 * XXX add us to a list to be run from free_ccb 3156 * if we don't have any ccbs active on this 3157 * device queue otherwise we may never get run 3158 * again. 3159 */ 3160 break; 3161 } 3162 } 3163 device->ccbq.devq_allocating = 0; 3164 } 3165 3166 static void 3167 xpt_run_devq(struct cam_devq *devq) 3168 { 3169 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3170 3171 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3172 3173 devq->send_queue.qfrozen_cnt++; 3174 while ((devq->send_queue.entries > 0) 3175 && (devq->send_openings > 0) 3176 && (devq->send_queue.qfrozen_cnt <= 1)) { 3177 struct cam_ed_qinfo *qinfo; 3178 struct cam_ed *device; 3179 union ccb *work_ccb; 3180 struct cam_sim *sim; 3181 3182 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3183 CAMQ_HEAD); 3184 device = qinfo->device; 3185 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3186 ("running device %p\n", device)); 3187 3188 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3189 if (work_ccb == NULL) { 3190 printf("device on run queue with no ccbs???\n"); 3191 continue; 3192 } 3193 3194 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3195 3196 mtx_lock(&xsoftc.xpt_lock); 3197 if (xsoftc.num_highpower <= 0) { 3198 /* 3199 * We got a high power command, but we 3200 * don't have any available slots. Freeze 3201 * the device queue until we have a slot 3202 * available. 3203 */ 3204 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3205 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3206 &work_ccb->ccb_h, 3207 xpt_links.stqe); 3208 3209 mtx_unlock(&xsoftc.xpt_lock); 3210 continue; 3211 } else { 3212 /* 3213 * Consume a high power slot while 3214 * this ccb runs. 3215 */ 3216 xsoftc.num_highpower--; 3217 } 3218 mtx_unlock(&xsoftc.xpt_lock); 3219 } 3220 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3221 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3222 3223 devq->send_openings--; 3224 devq->send_active++; 3225 3226 xpt_schedule_devq(devq, device); 3227 3228 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3229 /* 3230 * The client wants to freeze the queue 3231 * after this CCB is sent. 3232 */ 3233 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3234 } 3235 3236 /* In Target mode, the peripheral driver knows best... */ 3237 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3238 if ((device->inq_flags & SID_CmdQue) != 0 3239 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3240 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3241 else 3242 /* 3243 * Clear this in case of a retried CCB that 3244 * failed due to a rejected tag. 3245 */ 3246 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3247 } 3248 3249 switch (work_ccb->ccb_h.func_code) { 3250 case XPT_SCSI_IO: 3251 CAM_DEBUG(work_ccb->ccb_h.path, 3252 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3253 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3254 &device->inq_data), 3255 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3256 cdb_str, sizeof(cdb_str)))); 3257 break; 3258 case XPT_ATA_IO: 3259 CAM_DEBUG(work_ccb->ccb_h.path, 3260 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3261 ata_op_string(&work_ccb->ataio.cmd), 3262 ata_cmd_string(&work_ccb->ataio.cmd, 3263 cdb_str, sizeof(cdb_str)))); 3264 break; 3265 default: 3266 break; 3267 } 3268 3269 /* 3270 * Device queues can be shared among multiple sim instances 3271 * that reside on different busses. Use the SIM in the queue 3272 * CCB's path, rather than the one in the bus that was passed 3273 * into this function. 3274 */ 3275 sim = work_ccb->ccb_h.path->bus->sim; 3276 (*(sim->sim_action))(sim, work_ccb); 3277 } 3278 devq->send_queue.qfrozen_cnt--; 3279 } 3280 3281 /* 3282 * This function merges stuff from the slave ccb into the master ccb, while 3283 * keeping important fields in the master ccb constant. 3284 */ 3285 void 3286 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3287 { 3288 3289 /* 3290 * Pull fields that are valid for peripheral drivers to set 3291 * into the master CCB along with the CCB "payload". 3292 */ 3293 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3294 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3295 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3296 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3297 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3298 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3299 } 3300 3301 void 3302 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3303 { 3304 3305 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3306 ccb_h->pinfo.priority = priority; 3307 ccb_h->path = path; 3308 ccb_h->path_id = path->bus->path_id; 3309 if (path->target) 3310 ccb_h->target_id = path->target->target_id; 3311 else 3312 ccb_h->target_id = CAM_TARGET_WILDCARD; 3313 if (path->device) { 3314 ccb_h->target_lun = path->device->lun_id; 3315 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3316 } else { 3317 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3318 } 3319 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3320 ccb_h->flags = 0; 3321 } 3322 3323 /* Path manipulation functions */ 3324 cam_status 3325 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3326 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3327 { 3328 struct cam_path *path; 3329 cam_status status; 3330 3331 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3332 3333 if (path == NULL) { 3334 status = CAM_RESRC_UNAVAIL; 3335 return(status); 3336 } 3337 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3338 if (status != CAM_REQ_CMP) { 3339 free(path, M_CAMPATH); 3340 path = NULL; 3341 } 3342 *new_path_ptr = path; 3343 return (status); 3344 } 3345 3346 cam_status 3347 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3348 struct cam_periph *periph, path_id_t path_id, 3349 target_id_t target_id, lun_id_t lun_id) 3350 { 3351 struct cam_path *path; 3352 struct cam_eb *bus = NULL; 3353 cam_status status; 3354 3355 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK); 3356 3357 bus = xpt_find_bus(path_id); 3358 if (bus != NULL) 3359 CAM_SIM_LOCK(bus->sim); 3360 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3361 if (bus != NULL) { 3362 CAM_SIM_UNLOCK(bus->sim); 3363 xpt_release_bus(bus); 3364 } 3365 if (status != CAM_REQ_CMP) { 3366 free(path, M_CAMPATH); 3367 path = NULL; 3368 } 3369 *new_path_ptr = path; 3370 return (status); 3371 } 3372 3373 cam_status 3374 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3375 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3376 { 3377 struct cam_eb *bus; 3378 struct cam_et *target; 3379 struct cam_ed *device; 3380 cam_status status; 3381 3382 status = CAM_REQ_CMP; /* Completed without error */ 3383 target = NULL; /* Wildcarded */ 3384 device = NULL; /* Wildcarded */ 3385 3386 /* 3387 * We will potentially modify the EDT, so block interrupts 3388 * that may attempt to create cam paths. 3389 */ 3390 bus = xpt_find_bus(path_id); 3391 if (bus == NULL) { 3392 status = CAM_PATH_INVALID; 3393 } else { 3394 target = xpt_find_target(bus, target_id); 3395 if (target == NULL) { 3396 /* Create one */ 3397 struct cam_et *new_target; 3398 3399 new_target = xpt_alloc_target(bus, target_id); 3400 if (new_target == NULL) { 3401 status = CAM_RESRC_UNAVAIL; 3402 } else { 3403 target = new_target; 3404 } 3405 } 3406 if (target != NULL) { 3407 device = xpt_find_device(target, lun_id); 3408 if (device == NULL) { 3409 /* Create one */ 3410 struct cam_ed *new_device; 3411 3412 new_device = 3413 (*(bus->xport->alloc_device))(bus, 3414 target, 3415 lun_id); 3416 if (new_device == NULL) { 3417 status = CAM_RESRC_UNAVAIL; 3418 } else { 3419 device = new_device; 3420 } 3421 } 3422 } 3423 } 3424 3425 /* 3426 * Only touch the user's data if we are successful. 3427 */ 3428 if (status == CAM_REQ_CMP) { 3429 new_path->periph = perph; 3430 new_path->bus = bus; 3431 new_path->target = target; 3432 new_path->device = device; 3433 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3434 } else { 3435 if (device != NULL) 3436 xpt_release_device(device); 3437 if (target != NULL) 3438 xpt_release_target(target); 3439 if (bus != NULL) 3440 xpt_release_bus(bus); 3441 } 3442 return (status); 3443 } 3444 3445 void 3446 xpt_release_path(struct cam_path *path) 3447 { 3448 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3449 if (path->device != NULL) { 3450 xpt_release_device(path->device); 3451 path->device = NULL; 3452 } 3453 if (path->target != NULL) { 3454 xpt_release_target(path->target); 3455 path->target = NULL; 3456 } 3457 if (path->bus != NULL) { 3458 xpt_release_bus(path->bus); 3459 path->bus = NULL; 3460 } 3461 } 3462 3463 void 3464 xpt_free_path(struct cam_path *path) 3465 { 3466 3467 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3468 xpt_release_path(path); 3469 free(path, M_CAMPATH); 3470 } 3471 3472 void 3473 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3474 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3475 { 3476 3477 xpt_lock_buses(); 3478 if (bus_ref) { 3479 if (path->bus) 3480 *bus_ref = path->bus->refcount; 3481 else 3482 *bus_ref = 0; 3483 } 3484 if (periph_ref) { 3485 if (path->periph) 3486 *periph_ref = path->periph->refcount; 3487 else 3488 *periph_ref = 0; 3489 } 3490 xpt_unlock_buses(); 3491 if (target_ref) { 3492 if (path->target) 3493 *target_ref = path->target->refcount; 3494 else 3495 *target_ref = 0; 3496 } 3497 if (device_ref) { 3498 if (path->device) 3499 *device_ref = path->device->refcount; 3500 else 3501 *device_ref = 0; 3502 } 3503 } 3504 3505 /* 3506 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3507 * in path1, 2 for match with wildcards in path2. 3508 */ 3509 int 3510 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3511 { 3512 int retval = 0; 3513 3514 if (path1->bus != path2->bus) { 3515 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3516 retval = 1; 3517 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3518 retval = 2; 3519 else 3520 return (-1); 3521 } 3522 if (path1->target != path2->target) { 3523 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3524 if (retval == 0) 3525 retval = 1; 3526 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3527 retval = 2; 3528 else 3529 return (-1); 3530 } 3531 if (path1->device != path2->device) { 3532 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3533 if (retval == 0) 3534 retval = 1; 3535 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3536 retval = 2; 3537 else 3538 return (-1); 3539 } 3540 return (retval); 3541 } 3542 3543 void 3544 xpt_print_path(struct cam_path *path) 3545 { 3546 3547 if (path == NULL) 3548 printf("(nopath): "); 3549 else { 3550 if (path->periph != NULL) 3551 printf("(%s%d:", path->periph->periph_name, 3552 path->periph->unit_number); 3553 else 3554 printf("(noperiph:"); 3555 3556 if (path->bus != NULL) 3557 printf("%s%d:%d:", path->bus->sim->sim_name, 3558 path->bus->sim->unit_number, 3559 path->bus->sim->bus_id); 3560 else 3561 printf("nobus:"); 3562 3563 if (path->target != NULL) 3564 printf("%d:", path->target->target_id); 3565 else 3566 printf("X:"); 3567 3568 if (path->device != NULL) 3569 printf("%d): ", path->device->lun_id); 3570 else 3571 printf("X): "); 3572 } 3573 } 3574 3575 void 3576 xpt_print(struct cam_path *path, const char *fmt, ...) 3577 { 3578 va_list ap; 3579 xpt_print_path(path); 3580 va_start(ap, fmt); 3581 vprintf(fmt, ap); 3582 va_end(ap); 3583 } 3584 3585 int 3586 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3587 { 3588 struct sbuf sb; 3589 3590 #ifdef INVARIANTS 3591 if (path != NULL && path->bus != NULL) 3592 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3593 #endif 3594 3595 sbuf_new(&sb, str, str_len, 0); 3596 3597 if (path == NULL) 3598 sbuf_printf(&sb, "(nopath): "); 3599 else { 3600 if (path->periph != NULL) 3601 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3602 path->periph->unit_number); 3603 else 3604 sbuf_printf(&sb, "(noperiph:"); 3605 3606 if (path->bus != NULL) 3607 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3608 path->bus->sim->unit_number, 3609 path->bus->sim->bus_id); 3610 else 3611 sbuf_printf(&sb, "nobus:"); 3612 3613 if (path->target != NULL) 3614 sbuf_printf(&sb, "%d:", path->target->target_id); 3615 else 3616 sbuf_printf(&sb, "X:"); 3617 3618 if (path->device != NULL) 3619 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3620 else 3621 sbuf_printf(&sb, "X): "); 3622 } 3623 sbuf_finish(&sb); 3624 3625 return(sbuf_len(&sb)); 3626 } 3627 3628 path_id_t 3629 xpt_path_path_id(struct cam_path *path) 3630 { 3631 return(path->bus->path_id); 3632 } 3633 3634 target_id_t 3635 xpt_path_target_id(struct cam_path *path) 3636 { 3637 if (path->target != NULL) 3638 return (path->target->target_id); 3639 else 3640 return (CAM_TARGET_WILDCARD); 3641 } 3642 3643 lun_id_t 3644 xpt_path_lun_id(struct cam_path *path) 3645 { 3646 if (path->device != NULL) 3647 return (path->device->lun_id); 3648 else 3649 return (CAM_LUN_WILDCARD); 3650 } 3651 3652 struct cam_sim * 3653 xpt_path_sim(struct cam_path *path) 3654 { 3655 3656 return (path->bus->sim); 3657 } 3658 3659 struct cam_periph* 3660 xpt_path_periph(struct cam_path *path) 3661 { 3662 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3663 3664 return (path->periph); 3665 } 3666 3667 int 3668 xpt_path_legacy_ata_id(struct cam_path *path) 3669 { 3670 struct cam_eb *bus; 3671 int bus_id; 3672 3673 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3674 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3675 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3676 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3677 return (-1); 3678 3679 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3680 path->bus->sim->unit_number < 2) { 3681 bus_id = path->bus->sim->unit_number; 3682 } else { 3683 bus_id = 2; 3684 xpt_lock_buses(); 3685 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3686 if (bus == path->bus) 3687 break; 3688 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3689 bus->sim->unit_number >= 2) || 3690 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3691 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3692 strcmp(bus->sim->sim_name, "siisch") == 0) 3693 bus_id++; 3694 } 3695 xpt_unlock_buses(); 3696 } 3697 if (path->target != NULL) { 3698 if (path->target->target_id < 2) 3699 return (bus_id * 2 + path->target->target_id); 3700 else 3701 return (-1); 3702 } else 3703 return (bus_id * 2); 3704 } 3705 3706 /* 3707 * Release a CAM control block for the caller. Remit the cost of the structure 3708 * to the device referenced by the path. If the this device had no 'credits' 3709 * and peripheral drivers have registered async callbacks for this notification 3710 * call them now. 3711 */ 3712 void 3713 xpt_release_ccb(union ccb *free_ccb) 3714 { 3715 struct cam_path *path; 3716 struct cam_ed *device; 3717 struct cam_eb *bus; 3718 struct cam_sim *sim; 3719 3720 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3721 path = free_ccb->ccb_h.path; 3722 device = path->device; 3723 bus = path->bus; 3724 sim = bus->sim; 3725 3726 mtx_assert(sim->mtx, MA_OWNED); 3727 3728 cam_ccbq_release_opening(&device->ccbq); 3729 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3730 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3731 cam_ccbq_resize(&device->ccbq, 3732 device->ccbq.dev_openings + device->ccbq.dev_active); 3733 } 3734 if (sim->ccb_count > sim->max_ccbs) { 3735 xpt_free_ccb(free_ccb); 3736 sim->ccb_count--; 3737 } else { 3738 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3739 xpt_links.sle); 3740 } 3741 xpt_run_dev_allocq(device); 3742 } 3743 3744 /* Functions accessed by SIM drivers */ 3745 3746 static struct xpt_xport xport_default = { 3747 .alloc_device = xpt_alloc_device_default, 3748 .action = xpt_action_default, 3749 .async = xpt_dev_async_default, 3750 }; 3751 3752 /* 3753 * A sim structure, listing the SIM entry points and instance 3754 * identification info is passed to xpt_bus_register to hook the SIM 3755 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3756 * for this new bus and places it in the array of busses and assigns 3757 * it a path_id. The path_id may be influenced by "hard wiring" 3758 * information specified by the user. Once interrupt services are 3759 * available, the bus will be probed. 3760 */ 3761 int32_t 3762 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3763 { 3764 struct cam_eb *new_bus; 3765 struct cam_eb *old_bus; 3766 struct ccb_pathinq cpi; 3767 struct cam_path *path; 3768 cam_status status; 3769 3770 mtx_assert(sim->mtx, MA_OWNED); 3771 3772 sim->bus_id = bus; 3773 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3774 M_CAMXPT, M_NOWAIT); 3775 if (new_bus == NULL) { 3776 /* Couldn't satisfy request */ 3777 return (CAM_RESRC_UNAVAIL); 3778 } 3779 if (strcmp(sim->sim_name, "xpt") != 0) { 3780 sim->path_id = 3781 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3782 } 3783 3784 TAILQ_INIT(&new_bus->et_entries); 3785 new_bus->path_id = sim->path_id; 3786 cam_sim_hold(sim); 3787 new_bus->sim = sim; 3788 timevalclear(&new_bus->last_reset); 3789 new_bus->flags = 0; 3790 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3791 new_bus->generation = 0; 3792 3793 xpt_lock_buses(); 3794 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3795 while (old_bus != NULL 3796 && old_bus->path_id < new_bus->path_id) 3797 old_bus = TAILQ_NEXT(old_bus, links); 3798 if (old_bus != NULL) 3799 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3800 else 3801 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3802 xsoftc.bus_generation++; 3803 xpt_unlock_buses(); 3804 3805 /* 3806 * Set a default transport so that a PATH_INQ can be issued to 3807 * the SIM. This will then allow for probing and attaching of 3808 * a more appropriate transport. 3809 */ 3810 new_bus->xport = &xport_default; 3811 3812 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3813 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3814 if (status != CAM_REQ_CMP) { 3815 xpt_release_bus(new_bus); 3816 free(path, M_CAMXPT); 3817 return (CAM_RESRC_UNAVAIL); 3818 } 3819 3820 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3821 cpi.ccb_h.func_code = XPT_PATH_INQ; 3822 xpt_action((union ccb *)&cpi); 3823 3824 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3825 switch (cpi.transport) { 3826 case XPORT_SPI: 3827 case XPORT_SAS: 3828 case XPORT_FC: 3829 case XPORT_USB: 3830 case XPORT_ISCSI: 3831 case XPORT_PPB: 3832 new_bus->xport = scsi_get_xport(); 3833 break; 3834 case XPORT_ATA: 3835 case XPORT_SATA: 3836 new_bus->xport = ata_get_xport(); 3837 break; 3838 default: 3839 new_bus->xport = &xport_default; 3840 break; 3841 } 3842 } 3843 3844 /* Notify interested parties */ 3845 if (sim->path_id != CAM_XPT_PATH_ID) { 3846 union ccb *scan_ccb; 3847 3848 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3849 /* Initiate bus rescan. */ 3850 scan_ccb = xpt_alloc_ccb_nowait(); 3851 scan_ccb->ccb_h.path = path; 3852 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3853 scan_ccb->crcn.flags = 0; 3854 xpt_rescan(scan_ccb); 3855 } else 3856 xpt_free_path(path); 3857 return (CAM_SUCCESS); 3858 } 3859 3860 int32_t 3861 xpt_bus_deregister(path_id_t pathid) 3862 { 3863 struct cam_path bus_path; 3864 cam_status status; 3865 3866 status = xpt_compile_path(&bus_path, NULL, pathid, 3867 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3868 if (status != CAM_REQ_CMP) 3869 return (status); 3870 3871 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3872 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3873 3874 /* Release the reference count held while registered. */ 3875 xpt_release_bus(bus_path.bus); 3876 xpt_release_path(&bus_path); 3877 3878 return (CAM_REQ_CMP); 3879 } 3880 3881 static path_id_t 3882 xptnextfreepathid(void) 3883 { 3884 struct cam_eb *bus; 3885 path_id_t pathid; 3886 const char *strval; 3887 3888 pathid = 0; 3889 xpt_lock_buses(); 3890 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3891 retry: 3892 /* Find an unoccupied pathid */ 3893 while (bus != NULL && bus->path_id <= pathid) { 3894 if (bus->path_id == pathid) 3895 pathid++; 3896 bus = TAILQ_NEXT(bus, links); 3897 } 3898 xpt_unlock_buses(); 3899 3900 /* 3901 * Ensure that this pathid is not reserved for 3902 * a bus that may be registered in the future. 3903 */ 3904 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3905 ++pathid; 3906 /* Start the search over */ 3907 xpt_lock_buses(); 3908 goto retry; 3909 } 3910 return (pathid); 3911 } 3912 3913 static path_id_t 3914 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3915 { 3916 path_id_t pathid; 3917 int i, dunit, val; 3918 char buf[32]; 3919 const char *dname; 3920 3921 pathid = CAM_XPT_PATH_ID; 3922 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3923 i = 0; 3924 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3925 if (strcmp(dname, "scbus")) { 3926 /* Avoid a bit of foot shooting. */ 3927 continue; 3928 } 3929 if (dunit < 0) /* unwired?! */ 3930 continue; 3931 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3932 if (sim_bus == val) { 3933 pathid = dunit; 3934 break; 3935 } 3936 } else if (sim_bus == 0) { 3937 /* Unspecified matches bus 0 */ 3938 pathid = dunit; 3939 break; 3940 } else { 3941 printf("Ambiguous scbus configuration for %s%d " 3942 "bus %d, cannot wire down. The kernel " 3943 "config entry for scbus%d should " 3944 "specify a controller bus.\n" 3945 "Scbus will be assigned dynamically.\n", 3946 sim_name, sim_unit, sim_bus, dunit); 3947 break; 3948 } 3949 } 3950 3951 if (pathid == CAM_XPT_PATH_ID) 3952 pathid = xptnextfreepathid(); 3953 return (pathid); 3954 } 3955 3956 static const char * 3957 xpt_async_string(u_int32_t async_code) 3958 { 3959 3960 switch (async_code) { 3961 case AC_BUS_RESET: return ("AC_BUS_RESET"); 3962 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 3963 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 3964 case AC_SENT_BDR: return ("AC_SENT_BDR"); 3965 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 3966 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 3967 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 3968 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 3969 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 3970 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 3971 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 3972 case AC_CONTRACT: return ("AC_CONTRACT"); 3973 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 3974 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 3975 } 3976 return ("AC_UNKNOWN"); 3977 } 3978 3979 void 3980 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 3981 { 3982 struct cam_eb *bus; 3983 struct cam_et *target, *next_target; 3984 struct cam_ed *device, *next_device; 3985 3986 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3987 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 3988 ("xpt_async(%s)\n", xpt_async_string(async_code))); 3989 3990 /* 3991 * Most async events come from a CAM interrupt context. In 3992 * a few cases, the error recovery code at the peripheral layer, 3993 * which may run from our SWI or a process context, may signal 3994 * deferred events with a call to xpt_async. 3995 */ 3996 3997 bus = path->bus; 3998 3999 if (async_code == AC_BUS_RESET) { 4000 /* Update our notion of when the last reset occurred */ 4001 microtime(&bus->last_reset); 4002 } 4003 4004 for (target = TAILQ_FIRST(&bus->et_entries); 4005 target != NULL; 4006 target = next_target) { 4007 4008 next_target = TAILQ_NEXT(target, links); 4009 4010 if (path->target != target 4011 && path->target->target_id != CAM_TARGET_WILDCARD 4012 && target->target_id != CAM_TARGET_WILDCARD) 4013 continue; 4014 4015 if (async_code == AC_SENT_BDR) { 4016 /* Update our notion of when the last reset occurred */ 4017 microtime(&path->target->last_reset); 4018 } 4019 4020 for (device = TAILQ_FIRST(&target->ed_entries); 4021 device != NULL; 4022 device = next_device) { 4023 4024 next_device = TAILQ_NEXT(device, links); 4025 4026 if (path->device != device 4027 && path->device->lun_id != CAM_LUN_WILDCARD 4028 && device->lun_id != CAM_LUN_WILDCARD) 4029 continue; 4030 /* 4031 * The async callback could free the device. 4032 * If it is a broadcast async, it doesn't hold 4033 * device reference, so take our own reference. 4034 */ 4035 xpt_acquire_device(device); 4036 (*(bus->xport->async))(async_code, bus, 4037 target, device, 4038 async_arg); 4039 4040 xpt_async_bcast(&device->asyncs, async_code, 4041 path, async_arg); 4042 xpt_release_device(device); 4043 } 4044 } 4045 4046 /* 4047 * If this wasn't a fully wildcarded async, tell all 4048 * clients that want all async events. 4049 */ 4050 if (bus != xpt_periph->path->bus) 4051 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4052 path, async_arg); 4053 } 4054 4055 static void 4056 xpt_async_bcast(struct async_list *async_head, 4057 u_int32_t async_code, 4058 struct cam_path *path, void *async_arg) 4059 { 4060 struct async_node *cur_entry; 4061 4062 cur_entry = SLIST_FIRST(async_head); 4063 while (cur_entry != NULL) { 4064 struct async_node *next_entry; 4065 /* 4066 * Grab the next list entry before we call the current 4067 * entry's callback. This is because the callback function 4068 * can delete its async callback entry. 4069 */ 4070 next_entry = SLIST_NEXT(cur_entry, links); 4071 if ((cur_entry->event_enable & async_code) != 0) 4072 cur_entry->callback(cur_entry->callback_arg, 4073 async_code, path, 4074 async_arg); 4075 cur_entry = next_entry; 4076 } 4077 } 4078 4079 static void 4080 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4081 struct cam_et *target, struct cam_ed *device, 4082 void *async_arg) 4083 { 4084 printf("%s called\n", __func__); 4085 } 4086 4087 u_int32_t 4088 xpt_freeze_devq(struct cam_path *path, u_int count) 4089 { 4090 struct cam_ed *dev = path->device; 4091 4092 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4093 dev->ccbq.queue.qfrozen_cnt += count; 4094 /* Remove frozen device from sendq. */ 4095 if (device_is_queued(dev)) { 4096 camq_remove(&dev->sim->devq->send_queue, 4097 dev->devq_entry.pinfo.index); 4098 } 4099 return (dev->ccbq.queue.qfrozen_cnt); 4100 } 4101 4102 u_int32_t 4103 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4104 { 4105 4106 mtx_assert(sim->mtx, MA_OWNED); 4107 sim->devq->send_queue.qfrozen_cnt += count; 4108 return (sim->devq->send_queue.qfrozen_cnt); 4109 } 4110 4111 static void 4112 xpt_release_devq_timeout(void *arg) 4113 { 4114 struct cam_ed *device; 4115 4116 device = (struct cam_ed *)arg; 4117 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4118 } 4119 4120 void 4121 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4122 { 4123 4124 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4125 xpt_release_devq_device(path->device, count, run_queue); 4126 } 4127 4128 void 4129 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4130 { 4131 4132 if (count > dev->ccbq.queue.qfrozen_cnt) { 4133 #ifdef INVARIANTS 4134 printf("xpt_release_devq(): requested %u > present %u\n", 4135 count, dev->ccbq.queue.qfrozen_cnt); 4136 #endif 4137 count = dev->ccbq.queue.qfrozen_cnt; 4138 } 4139 dev->ccbq.queue.qfrozen_cnt -= count; 4140 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4141 /* 4142 * No longer need to wait for a successful 4143 * command completion. 4144 */ 4145 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4146 /* 4147 * Remove any timeouts that might be scheduled 4148 * to release this queue. 4149 */ 4150 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4151 callout_stop(&dev->callout); 4152 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4153 } 4154 xpt_run_dev_allocq(dev); 4155 if (run_queue == 0) 4156 return; 4157 /* 4158 * Now that we are unfrozen schedule the 4159 * device so any pending transactions are 4160 * run. 4161 */ 4162 if (xpt_schedule_devq(dev->sim->devq, dev)) 4163 xpt_run_devq(dev->sim->devq); 4164 } 4165 } 4166 4167 void 4168 xpt_release_simq(struct cam_sim *sim, int run_queue) 4169 { 4170 struct camq *sendq; 4171 4172 mtx_assert(sim->mtx, MA_OWNED); 4173 sendq = &(sim->devq->send_queue); 4174 if (sendq->qfrozen_cnt <= 0) { 4175 #ifdef INVARIANTS 4176 printf("xpt_release_simq: requested 1 > present %u\n", 4177 sendq->qfrozen_cnt); 4178 #endif 4179 } else 4180 sendq->qfrozen_cnt--; 4181 if (sendq->qfrozen_cnt == 0) { 4182 /* 4183 * If there is a timeout scheduled to release this 4184 * sim queue, remove it. The queue frozen count is 4185 * already at 0. 4186 */ 4187 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4188 callout_stop(&sim->callout); 4189 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4190 } 4191 if (run_queue) { 4192 /* 4193 * Now that we are unfrozen run the send queue. 4194 */ 4195 xpt_run_devq(sim->devq); 4196 } 4197 } 4198 } 4199 4200 /* 4201 * XXX Appears to be unused. 4202 */ 4203 static void 4204 xpt_release_simq_timeout(void *arg) 4205 { 4206 struct cam_sim *sim; 4207 4208 sim = (struct cam_sim *)arg; 4209 xpt_release_simq(sim, /* run_queue */ TRUE); 4210 } 4211 4212 void 4213 xpt_done(union ccb *done_ccb) 4214 { 4215 struct cam_sim *sim; 4216 int first; 4217 4218 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4219 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4220 /* 4221 * Queue up the request for handling by our SWI handler 4222 * any of the "non-immediate" type of ccbs. 4223 */ 4224 sim = done_ccb->ccb_h.path->bus->sim; 4225 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4226 sim_links.tqe); 4227 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4228 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED | 4229 CAM_SIM_BATCH)) == 0) { 4230 mtx_lock(&cam_simq_lock); 4231 first = TAILQ_EMPTY(&cam_simq); 4232 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4233 mtx_unlock(&cam_simq_lock); 4234 sim->flags |= CAM_SIM_ON_DONEQ; 4235 if (first) 4236 swi_sched(cambio_ih, 0); 4237 } 4238 } 4239 } 4240 4241 void 4242 xpt_batch_start(struct cam_sim *sim) 4243 { 4244 4245 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set")); 4246 sim->flags |= CAM_SIM_BATCH; 4247 } 4248 4249 void 4250 xpt_batch_done(struct cam_sim *sim) 4251 { 4252 4253 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set")); 4254 sim->flags &= ~CAM_SIM_BATCH; 4255 if (!TAILQ_EMPTY(&sim->sim_doneq) && 4256 (sim->flags & CAM_SIM_ON_DONEQ) == 0) 4257 camisr_runqueue(&sim->sim_doneq); 4258 } 4259 4260 union ccb * 4261 xpt_alloc_ccb() 4262 { 4263 union ccb *new_ccb; 4264 4265 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4266 return (new_ccb); 4267 } 4268 4269 union ccb * 4270 xpt_alloc_ccb_nowait() 4271 { 4272 union ccb *new_ccb; 4273 4274 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4275 return (new_ccb); 4276 } 4277 4278 void 4279 xpt_free_ccb(union ccb *free_ccb) 4280 { 4281 free(free_ccb, M_CAMCCB); 4282 } 4283 4284 4285 4286 /* Private XPT functions */ 4287 4288 /* 4289 * Get a CAM control block for the caller. Charge the structure to the device 4290 * referenced by the path. If the this device has no 'credits' then the 4291 * device already has the maximum number of outstanding operations under way 4292 * and we return NULL. If we don't have sufficient resources to allocate more 4293 * ccbs, we also return NULL. 4294 */ 4295 static union ccb * 4296 xpt_get_ccb(struct cam_ed *device) 4297 { 4298 union ccb *new_ccb; 4299 struct cam_sim *sim; 4300 4301 sim = device->sim; 4302 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4303 new_ccb = xpt_alloc_ccb_nowait(); 4304 if (new_ccb == NULL) { 4305 return (NULL); 4306 } 4307 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4308 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4309 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4310 xpt_links.sle); 4311 sim->ccb_count++; 4312 } 4313 cam_ccbq_take_opening(&device->ccbq); 4314 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4315 return (new_ccb); 4316 } 4317 4318 static void 4319 xpt_release_bus(struct cam_eb *bus) 4320 { 4321 4322 xpt_lock_buses(); 4323 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4324 if (--bus->refcount > 0) { 4325 xpt_unlock_buses(); 4326 return; 4327 } 4328 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4329 ("refcount is zero, but target list is not empty")); 4330 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4331 xsoftc.bus_generation++; 4332 xpt_unlock_buses(); 4333 cam_sim_release(bus->sim); 4334 free(bus, M_CAMXPT); 4335 } 4336 4337 static struct cam_et * 4338 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4339 { 4340 struct cam_et *cur_target, *target; 4341 4342 mtx_assert(bus->sim->mtx, MA_OWNED); 4343 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4344 M_NOWAIT|M_ZERO); 4345 if (target == NULL) 4346 return (NULL); 4347 4348 TAILQ_INIT(&target->ed_entries); 4349 target->bus = bus; 4350 target->target_id = target_id; 4351 target->refcount = 1; 4352 target->generation = 0; 4353 target->luns = NULL; 4354 timevalclear(&target->last_reset); 4355 /* 4356 * Hold a reference to our parent bus so it 4357 * will not go away before we do. 4358 */ 4359 xpt_lock_buses(); 4360 bus->refcount++; 4361 xpt_unlock_buses(); 4362 4363 /* Insertion sort into our bus's target list */ 4364 cur_target = TAILQ_FIRST(&bus->et_entries); 4365 while (cur_target != NULL && cur_target->target_id < target_id) 4366 cur_target = TAILQ_NEXT(cur_target, links); 4367 if (cur_target != NULL) { 4368 TAILQ_INSERT_BEFORE(cur_target, target, links); 4369 } else { 4370 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4371 } 4372 bus->generation++; 4373 return (target); 4374 } 4375 4376 static void 4377 xpt_release_target(struct cam_et *target) 4378 { 4379 4380 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4381 if (--target->refcount > 0) 4382 return; 4383 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4384 ("refcount is zero, but device list is not empty")); 4385 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4386 target->bus->generation++; 4387 xpt_release_bus(target->bus); 4388 if (target->luns) 4389 free(target->luns, M_CAMXPT); 4390 free(target, M_CAMXPT); 4391 } 4392 4393 static struct cam_ed * 4394 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4395 lun_id_t lun_id) 4396 { 4397 struct cam_ed *device; 4398 4399 device = xpt_alloc_device(bus, target, lun_id); 4400 if (device == NULL) 4401 return (NULL); 4402 4403 device->mintags = 1; 4404 device->maxtags = 1; 4405 bus->sim->max_ccbs += device->ccbq.devq_openings; 4406 return (device); 4407 } 4408 4409 struct cam_ed * 4410 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4411 { 4412 struct cam_ed *cur_device, *device; 4413 struct cam_devq *devq; 4414 cam_status status; 4415 4416 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4417 /* Make space for us in the device queue on our bus */ 4418 devq = bus->sim->devq; 4419 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4420 if (status != CAM_REQ_CMP) 4421 return (NULL); 4422 4423 device = (struct cam_ed *)malloc(sizeof(*device), 4424 M_CAMDEV, M_NOWAIT|M_ZERO); 4425 if (device == NULL) 4426 return (NULL); 4427 4428 cam_init_pinfo(&device->devq_entry.pinfo); 4429 device->devq_entry.device = device; 4430 device->target = target; 4431 device->lun_id = lun_id; 4432 device->sim = bus->sim; 4433 /* Initialize our queues */ 4434 if (camq_init(&device->drvq, 0) != 0) { 4435 free(device, M_CAMDEV); 4436 return (NULL); 4437 } 4438 if (cam_ccbq_init(&device->ccbq, 4439 bus->sim->max_dev_openings) != 0) { 4440 camq_fini(&device->drvq); 4441 free(device, M_CAMDEV); 4442 return (NULL); 4443 } 4444 SLIST_INIT(&device->asyncs); 4445 SLIST_INIT(&device->periphs); 4446 device->generation = 0; 4447 device->flags = CAM_DEV_UNCONFIGURED; 4448 device->tag_delay_count = 0; 4449 device->tag_saved_openings = 0; 4450 device->refcount = 1; 4451 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4452 4453 cur_device = TAILQ_FIRST(&target->ed_entries); 4454 while (cur_device != NULL && cur_device->lun_id < lun_id) 4455 cur_device = TAILQ_NEXT(cur_device, links); 4456 if (cur_device != NULL) 4457 TAILQ_INSERT_BEFORE(cur_device, device, links); 4458 else 4459 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4460 target->refcount++; 4461 target->generation++; 4462 return (device); 4463 } 4464 4465 void 4466 xpt_acquire_device(struct cam_ed *device) 4467 { 4468 4469 mtx_assert(device->sim->mtx, MA_OWNED); 4470 device->refcount++; 4471 } 4472 4473 void 4474 xpt_release_device(struct cam_ed *device) 4475 { 4476 struct cam_devq *devq; 4477 4478 mtx_assert(device->sim->mtx, MA_OWNED); 4479 if (--device->refcount > 0) 4480 return; 4481 4482 KASSERT(SLIST_EMPTY(&device->periphs), 4483 ("refcount is zero, but periphs list is not empty")); 4484 if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4485 panic("Removing device while still queued for ccbs"); 4486 4487 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4488 callout_stop(&device->callout); 4489 4490 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4491 device->target->generation++; 4492 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4493 /* Release our slot in the devq */ 4494 devq = device->target->bus->sim->devq; 4495 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4496 camq_fini(&device->drvq); 4497 cam_ccbq_fini(&device->ccbq); 4498 /* 4499 * Free allocated memory. free(9) does nothing if the 4500 * supplied pointer is NULL, so it is safe to call without 4501 * checking. 4502 */ 4503 free(device->supported_vpds, M_CAMXPT); 4504 free(device->device_id, M_CAMXPT); 4505 free(device->physpath, M_CAMXPT); 4506 free(device->rcap_buf, M_CAMXPT); 4507 free(device->serial_num, M_CAMXPT); 4508 4509 xpt_release_target(device->target); 4510 free(device, M_CAMDEV); 4511 } 4512 4513 u_int32_t 4514 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4515 { 4516 int diff; 4517 int result; 4518 struct cam_ed *dev; 4519 4520 dev = path->device; 4521 4522 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4523 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4524 if (result == CAM_REQ_CMP && (diff < 0)) { 4525 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4526 } 4527 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4528 || (dev->inq_flags & SID_CmdQue) != 0) 4529 dev->tag_saved_openings = newopenings; 4530 /* Adjust the global limit */ 4531 dev->sim->max_ccbs += diff; 4532 return (result); 4533 } 4534 4535 static struct cam_eb * 4536 xpt_find_bus(path_id_t path_id) 4537 { 4538 struct cam_eb *bus; 4539 4540 xpt_lock_buses(); 4541 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4542 bus != NULL; 4543 bus = TAILQ_NEXT(bus, links)) { 4544 if (bus->path_id == path_id) { 4545 bus->refcount++; 4546 break; 4547 } 4548 } 4549 xpt_unlock_buses(); 4550 return (bus); 4551 } 4552 4553 static struct cam_et * 4554 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4555 { 4556 struct cam_et *target; 4557 4558 mtx_assert(bus->sim->mtx, MA_OWNED); 4559 for (target = TAILQ_FIRST(&bus->et_entries); 4560 target != NULL; 4561 target = TAILQ_NEXT(target, links)) { 4562 if (target->target_id == target_id) { 4563 target->refcount++; 4564 break; 4565 } 4566 } 4567 return (target); 4568 } 4569 4570 static struct cam_ed * 4571 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4572 { 4573 struct cam_ed *device; 4574 4575 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4576 for (device = TAILQ_FIRST(&target->ed_entries); 4577 device != NULL; 4578 device = TAILQ_NEXT(device, links)) { 4579 if (device->lun_id == lun_id) { 4580 device->refcount++; 4581 break; 4582 } 4583 } 4584 return (device); 4585 } 4586 4587 void 4588 xpt_start_tags(struct cam_path *path) 4589 { 4590 struct ccb_relsim crs; 4591 struct cam_ed *device; 4592 struct cam_sim *sim; 4593 int newopenings; 4594 4595 device = path->device; 4596 sim = path->bus->sim; 4597 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4598 xpt_freeze_devq(path, /*count*/1); 4599 device->inq_flags |= SID_CmdQue; 4600 if (device->tag_saved_openings != 0) 4601 newopenings = device->tag_saved_openings; 4602 else 4603 newopenings = min(device->maxtags, 4604 sim->max_tagged_dev_openings); 4605 xpt_dev_ccbq_resize(path, newopenings); 4606 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4607 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4608 crs.ccb_h.func_code = XPT_REL_SIMQ; 4609 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4610 crs.openings 4611 = crs.release_timeout 4612 = crs.qfrozen_cnt 4613 = 0; 4614 xpt_action((union ccb *)&crs); 4615 } 4616 4617 void 4618 xpt_stop_tags(struct cam_path *path) 4619 { 4620 struct ccb_relsim crs; 4621 struct cam_ed *device; 4622 struct cam_sim *sim; 4623 4624 device = path->device; 4625 sim = path->bus->sim; 4626 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4627 device->tag_delay_count = 0; 4628 xpt_freeze_devq(path, /*count*/1); 4629 device->inq_flags &= ~SID_CmdQue; 4630 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4631 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4632 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4633 crs.ccb_h.func_code = XPT_REL_SIMQ; 4634 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4635 crs.openings 4636 = crs.release_timeout 4637 = crs.qfrozen_cnt 4638 = 0; 4639 xpt_action((union ccb *)&crs); 4640 } 4641 4642 static void 4643 xpt_boot_delay(void *arg) 4644 { 4645 4646 xpt_release_boot(); 4647 } 4648 4649 static void 4650 xpt_config(void *arg) 4651 { 4652 /* 4653 * Now that interrupts are enabled, go find our devices 4654 */ 4655 4656 /* Setup debugging path */ 4657 if (cam_dflags != CAM_DEBUG_NONE) { 4658 if (xpt_create_path_unlocked(&cam_dpath, NULL, 4659 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4660 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4661 printf("xpt_config: xpt_create_path() failed for debug" 4662 " target %d:%d:%d, debugging disabled\n", 4663 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4664 cam_dflags = CAM_DEBUG_NONE; 4665 } 4666 } else 4667 cam_dpath = NULL; 4668 4669 periphdriver_init(1); 4670 xpt_hold_boot(); 4671 callout_init(&xsoftc.boot_callout, 1); 4672 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4673 xpt_boot_delay, NULL); 4674 /* Fire up rescan thread. */ 4675 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4676 printf("xpt_config: failed to create rescan thread.\n"); 4677 } 4678 } 4679 4680 void 4681 xpt_hold_boot(void) 4682 { 4683 xpt_lock_buses(); 4684 xsoftc.buses_to_config++; 4685 xpt_unlock_buses(); 4686 } 4687 4688 void 4689 xpt_release_boot(void) 4690 { 4691 xpt_lock_buses(); 4692 xsoftc.buses_to_config--; 4693 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4694 struct xpt_task *task; 4695 4696 xsoftc.buses_config_done = 1; 4697 xpt_unlock_buses(); 4698 /* Call manually because we don't have any busses */ 4699 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4700 if (task != NULL) { 4701 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4702 taskqueue_enqueue(taskqueue_thread, &task->task); 4703 } 4704 } else 4705 xpt_unlock_buses(); 4706 } 4707 4708 /* 4709 * If the given device only has one peripheral attached to it, and if that 4710 * peripheral is the passthrough driver, announce it. This insures that the 4711 * user sees some sort of announcement for every peripheral in their system. 4712 */ 4713 static int 4714 xptpassannouncefunc(struct cam_ed *device, void *arg) 4715 { 4716 struct cam_periph *periph; 4717 int i; 4718 4719 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4720 periph = SLIST_NEXT(periph, periph_links), i++); 4721 4722 periph = SLIST_FIRST(&device->periphs); 4723 if ((i == 1) 4724 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4725 xpt_announce_periph(periph, NULL); 4726 4727 return(1); 4728 } 4729 4730 static void 4731 xpt_finishconfig_task(void *context, int pending) 4732 { 4733 4734 periphdriver_init(2); 4735 /* 4736 * Check for devices with no "standard" peripheral driver 4737 * attached. For any devices like that, announce the 4738 * passthrough driver so the user will see something. 4739 */ 4740 if (!bootverbose) 4741 xpt_for_all_devices(xptpassannouncefunc, NULL); 4742 4743 /* Release our hook so that the boot can continue. */ 4744 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4745 free(xsoftc.xpt_config_hook, M_CAMXPT); 4746 xsoftc.xpt_config_hook = NULL; 4747 4748 free(context, M_CAMXPT); 4749 } 4750 4751 cam_status 4752 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4753 struct cam_path *path) 4754 { 4755 struct ccb_setasync csa; 4756 cam_status status; 4757 int xptpath = 0; 4758 4759 if (path == NULL) { 4760 mtx_lock(&xsoftc.xpt_lock); 4761 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4762 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4763 if (status != CAM_REQ_CMP) { 4764 mtx_unlock(&xsoftc.xpt_lock); 4765 return (status); 4766 } 4767 xptpath = 1; 4768 } 4769 4770 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4771 csa.ccb_h.func_code = XPT_SASYNC_CB; 4772 csa.event_enable = event; 4773 csa.callback = cbfunc; 4774 csa.callback_arg = cbarg; 4775 xpt_action((union ccb *)&csa); 4776 status = csa.ccb_h.status; 4777 4778 if (xptpath) { 4779 xpt_free_path(path); 4780 mtx_unlock(&xsoftc.xpt_lock); 4781 } 4782 4783 if ((status == CAM_REQ_CMP) && 4784 (csa.event_enable & AC_FOUND_DEVICE)) { 4785 /* 4786 * Get this peripheral up to date with all 4787 * the currently existing devices. 4788 */ 4789 xpt_for_all_devices(xptsetasyncfunc, &csa); 4790 } 4791 if ((status == CAM_REQ_CMP) && 4792 (csa.event_enable & AC_PATH_REGISTERED)) { 4793 /* 4794 * Get this peripheral up to date with all 4795 * the currently existing busses. 4796 */ 4797 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4798 } 4799 4800 return (status); 4801 } 4802 4803 static void 4804 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4805 { 4806 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4807 4808 switch (work_ccb->ccb_h.func_code) { 4809 /* Common cases first */ 4810 case XPT_PATH_INQ: /* Path routing inquiry */ 4811 { 4812 struct ccb_pathinq *cpi; 4813 4814 cpi = &work_ccb->cpi; 4815 cpi->version_num = 1; /* XXX??? */ 4816 cpi->hba_inquiry = 0; 4817 cpi->target_sprt = 0; 4818 cpi->hba_misc = 0; 4819 cpi->hba_eng_cnt = 0; 4820 cpi->max_target = 0; 4821 cpi->max_lun = 0; 4822 cpi->initiator_id = 0; 4823 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4824 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4825 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4826 cpi->unit_number = sim->unit_number; 4827 cpi->bus_id = sim->bus_id; 4828 cpi->base_transfer_speed = 0; 4829 cpi->protocol = PROTO_UNSPECIFIED; 4830 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4831 cpi->transport = XPORT_UNSPECIFIED; 4832 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4833 cpi->ccb_h.status = CAM_REQ_CMP; 4834 xpt_done(work_ccb); 4835 break; 4836 } 4837 default: 4838 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4839 xpt_done(work_ccb); 4840 break; 4841 } 4842 } 4843 4844 /* 4845 * The xpt as a "controller" has no interrupt sources, so polling 4846 * is a no-op. 4847 */ 4848 static void 4849 xptpoll(struct cam_sim *sim) 4850 { 4851 } 4852 4853 void 4854 xpt_lock_buses(void) 4855 { 4856 mtx_lock(&xsoftc.xpt_topo_lock); 4857 } 4858 4859 void 4860 xpt_unlock_buses(void) 4861 { 4862 mtx_unlock(&xsoftc.xpt_topo_lock); 4863 } 4864 4865 static void 4866 camisr(void *dummy) 4867 { 4868 cam_simq_t queue; 4869 struct cam_sim *sim; 4870 4871 mtx_lock(&cam_simq_lock); 4872 TAILQ_INIT(&queue); 4873 while (!TAILQ_EMPTY(&cam_simq)) { 4874 TAILQ_CONCAT(&queue, &cam_simq, links); 4875 mtx_unlock(&cam_simq_lock); 4876 4877 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4878 TAILQ_REMOVE(&queue, sim, links); 4879 CAM_SIM_LOCK(sim); 4880 camisr_runqueue(&sim->sim_doneq); 4881 sim->flags &= ~CAM_SIM_ON_DONEQ; 4882 CAM_SIM_UNLOCK(sim); 4883 } 4884 mtx_lock(&cam_simq_lock); 4885 } 4886 mtx_unlock(&cam_simq_lock); 4887 } 4888 4889 static void 4890 camisr_runqueue(void *V_queue) 4891 { 4892 cam_isrq_t *queue = V_queue; 4893 struct ccb_hdr *ccb_h; 4894 4895 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 4896 int runq; 4897 4898 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 4899 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4900 4901 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 4902 ("camisr\n")); 4903 4904 runq = FALSE; 4905 4906 if (ccb_h->flags & CAM_HIGH_POWER) { 4907 struct highpowerlist *hphead; 4908 union ccb *send_ccb; 4909 4910 mtx_lock(&xsoftc.xpt_lock); 4911 hphead = &xsoftc.highpowerq; 4912 4913 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 4914 4915 /* 4916 * Increment the count since this command is done. 4917 */ 4918 xsoftc.num_highpower++; 4919 4920 /* 4921 * Any high powered commands queued up? 4922 */ 4923 if (send_ccb != NULL) { 4924 4925 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 4926 mtx_unlock(&xsoftc.xpt_lock); 4927 4928 xpt_release_devq(send_ccb->ccb_h.path, 4929 /*count*/1, /*runqueue*/TRUE); 4930 } else 4931 mtx_unlock(&xsoftc.xpt_lock); 4932 } 4933 4934 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 4935 struct cam_ed *dev; 4936 4937 dev = ccb_h->path->device; 4938 4939 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 4940 ccb_h->path->bus->sim->devq->send_active--; 4941 ccb_h->path->bus->sim->devq->send_openings++; 4942 runq = TRUE; 4943 4944 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 4945 && (dev->ccbq.dev_active == 0))) { 4946 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 4947 xpt_release_devq(ccb_h->path, /*count*/1, 4948 /*run_queue*/FALSE); 4949 } 4950 4951 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 4952 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 4953 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4954 xpt_release_devq(ccb_h->path, /*count*/1, 4955 /*run_queue*/FALSE); 4956 } 4957 4958 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4959 && (--dev->tag_delay_count == 0)) 4960 xpt_start_tags(ccb_h->path); 4961 if (!device_is_queued(dev)) { 4962 (void)xpt_schedule_devq( 4963 ccb_h->path->bus->sim->devq, dev); 4964 } 4965 } 4966 4967 if (ccb_h->status & CAM_RELEASE_SIMQ) { 4968 xpt_release_simq(ccb_h->path->bus->sim, 4969 /*run_queue*/TRUE); 4970 ccb_h->status &= ~CAM_RELEASE_SIMQ; 4971 runq = FALSE; 4972 } 4973 4974 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 4975 && (ccb_h->status & CAM_DEV_QFRZN)) { 4976 xpt_release_devq(ccb_h->path, /*count*/1, 4977 /*run_queue*/TRUE); 4978 ccb_h->status &= ~CAM_DEV_QFRZN; 4979 } else if (runq) { 4980 xpt_run_devq(ccb_h->path->bus->sim->devq); 4981 } 4982 4983 /* Call the peripheral driver's callback */ 4984 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 4985 } 4986 } 4987