xref: /freebsd/sys/cam/cam_xpt.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/md5.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 
52 #ifdef PC98
53 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_sim.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_sim.h>
62 #include <cam/cam_xpt_periph.h>
63 #include <cam/cam_debug.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 #include <machine/stdarg.h>	/* for xpt_print below */
69 #include "opt_cam.h"
70 
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
73 
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 	struct task	task;
77 	void		*data1;
78 	uintptr_t	data2;
79 };
80 
81 /*
82  * Definition of an async handler callback block.  These are used to add
83  * SIMs and peripherals to the async callback lists.
84  */
85 struct async_node {
86 	SLIST_ENTRY(async_node)	links;
87 	u_int32_t	event_enable;	/* Async Event enables */
88 	void		(*callback)(void *arg, u_int32_t code,
89 				    struct cam_path *path, void *args);
90 	void		*callback_arg;
91 };
92 
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
95 
96 /*
97  * This is the maximum number of high powered commands (e.g. start unit)
98  * that can be outstanding at a particular time.
99  */
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER  4
102 #endif
103 
104 /*
105  * Structure for queueing a device in a run queue.
106  * There is one run queue for allocating new ccbs,
107  * and another for sending ccbs to the controller.
108  */
109 struct cam_ed_qinfo {
110 	cam_pinfo pinfo;
111 	struct	  cam_ed *device;
112 };
113 
114 /*
115  * The CAM EDT (Existing Device Table) contains the device information for
116  * all devices for all busses in the system.  The table contains a
117  * cam_ed structure for each device on the bus.
118  */
119 struct cam_ed {
120 	TAILQ_ENTRY(cam_ed) links;
121 	struct	cam_ed_qinfo alloc_ccb_entry;
122 	struct	cam_ed_qinfo send_ccb_entry;
123 	struct	cam_et	 *target;
124 	struct	cam_sim  *sim;
125 	lun_id_t	 lun_id;
126 	struct	camq drvq;		/*
127 					 * Queue of type drivers wanting to do
128 					 * work on this device.
129 					 */
130 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
131 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
132 	struct	periph_list periphs;	/* All attached devices */
133 	u_int	generation;		/* Generation number */
134 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
135 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
136 					/* Storage for the inquiry data */
137 	cam_proto	 protocol;
138 	u_int		 protocol_version;
139 	cam_xport	 transport;
140 	u_int		 transport_version;
141 	struct		 scsi_inquiry_data inq_data;
142 	u_int8_t	 inq_flags;	/*
143 					 * Current settings for inquiry flags.
144 					 * This allows us to override settings
145 					 * like disconnection and tagged
146 					 * queuing for a device.
147 					 */
148 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
149 	u_int8_t	 serial_num_len;
150 	u_int8_t	*serial_num;
151 	u_int32_t	 qfrozen_cnt;
152 	u_int32_t	 flags;
153 #define CAM_DEV_UNCONFIGURED	 	0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
155 #define CAM_DEV_REL_ON_COMPLETE		0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
158 #define CAM_DEV_TAG_AFTER_COUNT		0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
160 #define	CAM_DEV_IN_DV			0x80
161 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
162 	u_int32_t	 tag_delay_count;
163 #define	CAM_TAG_DELAY_COUNT		5
164 	u_int32_t	 tag_saved_openings;
165 	u_int32_t	 refcount;
166 	struct callout	 callout;
167 };
168 
169 /*
170  * Each target is represented by an ET (Existing Target).  These
171  * entries are created when a target is successfully probed with an
172  * identify, and removed when a device fails to respond after a number
173  * of retries, or a bus rescan finds the device missing.
174  */
175 struct cam_et {
176 	TAILQ_HEAD(, cam_ed) ed_entries;
177 	TAILQ_ENTRY(cam_et) links;
178 	struct	cam_eb	*bus;
179 	target_id_t	target_id;
180 	u_int32_t	refcount;
181 	u_int		generation;
182 	struct		timeval last_reset;
183 };
184 
185 /*
186  * Each bus is represented by an EB (Existing Bus).  These entries
187  * are created by calls to xpt_bus_register and deleted by calls to
188  * xpt_bus_deregister.
189  */
190 struct cam_eb {
191 	TAILQ_HEAD(, cam_et) et_entries;
192 	TAILQ_ENTRY(cam_eb)  links;
193 	path_id_t	     path_id;
194 	struct cam_sim	     *sim;
195 	struct timeval	     last_reset;
196 	u_int32_t	     flags;
197 #define	CAM_EB_RUNQ_SCHEDULED	0x01
198 	u_int32_t	     refcount;
199 	u_int		     generation;
200 	device_t	     parent_dev;
201 };
202 
203 struct cam_path {
204 	struct cam_periph *periph;
205 	struct cam_eb	  *bus;
206 	struct cam_et	  *target;
207 	struct cam_ed	  *device;
208 };
209 
210 struct xpt_quirk_entry {
211 	struct scsi_inquiry_pattern inq_pat;
212 	u_int8_t quirks;
213 #define	CAM_QUIRK_NOLUNS	0x01
214 #define	CAM_QUIRK_NOSERIAL	0x02
215 #define	CAM_QUIRK_HILUNS	0x04
216 #define	CAM_QUIRK_NOHILUNS	0x08
217 	u_int mintags;
218 	u_int maxtags;
219 };
220 
221 static int cam_srch_hi = 0;
222 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
223 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
224 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
225     sysctl_cam_search_luns, "I",
226     "allow search above LUN 7 for SCSI3 and greater devices");
227 
228 #define	CAM_SCSI2_MAXLUN	8
229 /*
230  * If we're not quirked to search <= the first 8 luns
231  * and we are either quirked to search above lun 8,
232  * or we're > SCSI-2 and we've enabled hilun searching,
233  * or we're > SCSI-2 and the last lun was a success,
234  * we can look for luns above lun 8.
235  */
236 #define	CAN_SRCH_HI_SPARSE(dv)				\
237   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
238   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
239   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
240 
241 #define	CAN_SRCH_HI_DENSE(dv)				\
242   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
243   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
244   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
245 
246 typedef enum {
247 	XPT_FLAG_OPEN		= 0x01
248 } xpt_flags;
249 
250 struct xpt_softc {
251 	xpt_flags		flags;
252 	u_int32_t		xpt_generation;
253 
254 	/* number of high powered commands that can go through right now */
255 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
256 	int			num_highpower;
257 
258 	/* queue for handling async rescan requests. */
259 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
260 
261 	/* Registered busses */
262 	TAILQ_HEAD(,cam_eb)	xpt_busses;
263 	u_int			bus_generation;
264 
265 	struct intr_config_hook	*xpt_config_hook;
266 
267 	struct mtx		xpt_topo_lock;
268 	struct mtx		xpt_lock;
269 };
270 
271 static const char quantum[] = "QUANTUM";
272 static const char sony[] = "SONY";
273 static const char west_digital[] = "WDIGTL";
274 static const char samsung[] = "SAMSUNG";
275 static const char seagate[] = "SEAGATE";
276 static const char microp[] = "MICROP";
277 
278 static struct xpt_quirk_entry xpt_quirk_table[] =
279 {
280 	{
281 		/* Reports QUEUE FULL for temporary resource shortages */
282 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
283 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
284 	},
285 	{
286 		/* Reports QUEUE FULL for temporary resource shortages */
287 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
288 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
289 	},
290 	{
291 		/* Reports QUEUE FULL for temporary resource shortages */
292 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
293 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
294 	},
295 	{
296 		/* Broken tagged queuing drive */
297 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
298 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
299 	},
300 	{
301 		/* Broken tagged queuing drive */
302 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
303 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
304 	},
305 	{
306 		/* Broken tagged queuing drive */
307 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
308 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
309 	},
310 	{
311 		/*
312 		 * Unfortunately, the Quantum Atlas III has the same
313 		 * problem as the Atlas II drives above.
314 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
315 		 *
316 		 * For future reference, the drive with the problem was:
317 		 * QUANTUM QM39100TD-SW N1B0
318 		 *
319 		 * It's possible that Quantum will fix the problem in later
320 		 * firmware revisions.  If that happens, the quirk entry
321 		 * will need to be made specific to the firmware revisions
322 		 * with the problem.
323 		 *
324 		 */
325 		/* Reports QUEUE FULL for temporary resource shortages */
326 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
327 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
328 	},
329 	{
330 		/*
331 		 * 18 Gig Atlas III, same problem as the 9G version.
332 		 * Reported by: Andre Albsmeier
333 		 *		<andre.albsmeier@mchp.siemens.de>
334 		 *
335 		 * For future reference, the drive with the problem was:
336 		 * QUANTUM QM318000TD-S N491
337 		 */
338 		/* Reports QUEUE FULL for temporary resource shortages */
339 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
340 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
341 	},
342 	{
343 		/*
344 		 * Broken tagged queuing drive
345 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
346 		 *         and: Martin Renters <martin@tdc.on.ca>
347 		 */
348 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
349 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
350 	},
351 		/*
352 		 * The Seagate Medalist Pro drives have very poor write
353 		 * performance with anything more than 2 tags.
354 		 *
355 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
356 		 * Drive:  <SEAGATE ST36530N 1444>
357 		 *
358 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
359 		 * Drive:  <SEAGATE ST34520W 1281>
360 		 *
361 		 * No one has actually reported that the 9G version
362 		 * (ST39140*) of the Medalist Pro has the same problem, but
363 		 * we're assuming that it does because the 4G and 6.5G
364 		 * versions of the drive are broken.
365 		 */
366 	{
367 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
368 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
369 	},
370 	{
371 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
372 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
373 	},
374 	{
375 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
376 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
377 	},
378 	{
379 		/*
380 		 * Slow when tagged queueing is enabled.  Write performance
381 		 * steadily drops off with more and more concurrent
382 		 * transactions.  Best sequential write performance with
383 		 * tagged queueing turned off and write caching turned on.
384 		 *
385 		 * PR:  kern/10398
386 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
387 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
388 		 *
389 		 * The drive with the problem had the "S65A" firmware
390 		 * revision, and has also been reported (by Stephen J.
391 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
392 		 * firmware revision.
393 		 *
394 		 * Although no one has reported problems with the 2 gig
395 		 * version of the DCAS drive, the assumption is that it
396 		 * has the same problems as the 4 gig version.  Therefore
397 		 * this quirk entries disables tagged queueing for all
398 		 * DCAS drives.
399 		 */
400 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
401 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
402 	},
403 	{
404 		/* Broken tagged queuing drive */
405 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
406 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
407 	},
408 	{
409 		/* Broken tagged queuing drive */
410 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
411 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
412 	},
413 	{
414 		/* This does not support other than LUN 0 */
415 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
416 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
417 	},
418 	{
419 		/*
420 		 * Broken tagged queuing drive.
421 		 * Submitted by:
422 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
423 		 * in PR kern/9535
424 		 */
425 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
426 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
427 	},
428         {
429 		/*
430 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
431 		 * 8MB/sec.)
432 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
433 		 * Best performance with these drives is achieved with
434 		 * tagged queueing turned off, and write caching turned on.
435 		 */
436 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
437 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
438         },
439         {
440 		/*
441 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
442 		 * 8MB/sec.)
443 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
444 		 * Best performance with these drives is achieved with
445 		 * tagged queueing turned off, and write caching turned on.
446 		 */
447 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
448 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
449         },
450 	{
451 		/*
452 		 * Doesn't handle queue full condition correctly,
453 		 * so we need to limit maxtags to what the device
454 		 * can handle instead of determining this automatically.
455 		 */
456 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
457 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
458 	},
459 	{
460 		/* Really only one LUN */
461 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
462 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
463 	},
464 	{
465 		/* I can't believe we need a quirk for DPT volumes. */
466 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
467 		CAM_QUIRK_NOLUNS,
468 		/*mintags*/0, /*maxtags*/255
469 	},
470 	{
471 		/*
472 		 * Many Sony CDROM drives don't like multi-LUN probing.
473 		 */
474 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
475 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
476 	},
477 	{
478 		/*
479 		 * This drive doesn't like multiple LUN probing.
480 		 * Submitted by:  Parag Patel <parag@cgt.com>
481 		 */
482 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
483 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
484 	},
485 	{
486 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
487 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
488 	},
489 	{
490 		/*
491 		 * The 8200 doesn't like multi-lun probing, and probably
492 		 * don't like serial number requests either.
493 		 */
494 		{
495 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
496 			"EXB-8200*", "*"
497 		},
498 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 	},
500 	{
501 		/*
502 		 * Let's try the same as above, but for a drive that says
503 		 * it's an IPL-6860 but is actually an EXB 8200.
504 		 */
505 		{
506 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
507 			"IPL-6860*", "*"
508 		},
509 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
510 	},
511 	{
512 		/*
513 		 * These Hitachi drives don't like multi-lun probing.
514 		 * The PR submitter has a DK319H, but says that the Linux
515 		 * kernel has a similar work-around for the DK312 and DK314,
516 		 * so all DK31* drives are quirked here.
517 		 * PR:            misc/18793
518 		 * Submitted by:  Paul Haddad <paul@pth.com>
519 		 */
520 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
521 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
522 	},
523 	{
524 		/*
525 		 * The Hitachi CJ series with J8A8 firmware apparantly has
526 		 * problems with tagged commands.
527 		 * PR: 23536
528 		 * Reported by: amagai@nue.org
529 		 */
530 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
531 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
532 	},
533 	{
534 		/*
535 		 * These are the large storage arrays.
536 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
537 		 */
538 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
539 		CAM_QUIRK_HILUNS, 2, 1024
540 	},
541 	{
542 		/*
543 		 * This old revision of the TDC3600 is also SCSI-1, and
544 		 * hangs upon serial number probing.
545 		 */
546 		{
547 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
548 			" TDC 3600", "U07:"
549 		},
550 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
551 	},
552 	{
553 		/*
554 		 * Would repond to all LUNs if asked for.
555 		 */
556 		{
557 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
558 			"CP150", "*"
559 		},
560 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
561 	},
562 	{
563 		/*
564 		 * Would repond to all LUNs if asked for.
565 		 */
566 		{
567 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
568 			"96X2*", "*"
569 		},
570 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
571 	},
572 	{
573 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
574 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
575 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
576 	},
577 	{
578 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
579 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
580 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
581 	},
582 	{
583 		/* TeraSolutions special settings for TRC-22 RAID */
584 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
585 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
586 	},
587 	{
588 		/* Veritas Storage Appliance */
589 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
590 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
591 	},
592 	{
593 		/*
594 		 * Would respond to all LUNs.  Device type and removable
595 		 * flag are jumper-selectable.
596 		 */
597 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
598 		  "Tahiti 1", "*"
599 		},
600 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
601 	},
602 	{
603 		/* EasyRAID E5A aka. areca ARC-6010 */
604 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
605 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
606 	},
607 	{
608 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
609 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
610 	},
611 	{
612 		/* Default tagged queuing parameters for all devices */
613 		{
614 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
615 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
616 		},
617 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
618 	},
619 };
620 
621 static const int xpt_quirk_table_size =
622 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
623 
624 typedef enum {
625 	DM_RET_COPY		= 0x01,
626 	DM_RET_FLAG_MASK	= 0x0f,
627 	DM_RET_NONE		= 0x00,
628 	DM_RET_STOP		= 0x10,
629 	DM_RET_DESCEND		= 0x20,
630 	DM_RET_ERROR		= 0x30,
631 	DM_RET_ACTION_MASK	= 0xf0
632 } dev_match_ret;
633 
634 typedef enum {
635 	XPT_DEPTH_BUS,
636 	XPT_DEPTH_TARGET,
637 	XPT_DEPTH_DEVICE,
638 	XPT_DEPTH_PERIPH
639 } xpt_traverse_depth;
640 
641 struct xpt_traverse_config {
642 	xpt_traverse_depth	depth;
643 	void			*tr_func;
644 	void			*tr_arg;
645 };
646 
647 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
648 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
649 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
650 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
651 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
652 
653 /* Transport layer configuration information */
654 static struct xpt_softc xsoftc;
655 
656 /* Queues for our software interrupt handler */
657 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
658 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
659 static cam_simq_t cam_simq;
660 static struct mtx cam_simq_lock;
661 
662 /* Pointers to software interrupt handlers */
663 static void *cambio_ih;
664 
665 struct cam_periph *xpt_periph;
666 
667 static periph_init_t xpt_periph_init;
668 
669 static periph_init_t probe_periph_init;
670 
671 static struct periph_driver xpt_driver =
672 {
673 	xpt_periph_init, "xpt",
674 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
675 };
676 
677 static struct periph_driver probe_driver =
678 {
679 	probe_periph_init, "probe",
680 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
681 };
682 
683 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
684 PERIPHDRIVER_DECLARE(probe, probe_driver);
685 
686 
687 static d_open_t xptopen;
688 static d_close_t xptclose;
689 static d_ioctl_t xptioctl;
690 
691 static struct cdevsw xpt_cdevsw = {
692 	.d_version =	D_VERSION,
693 	.d_flags =	0,
694 	.d_open =	xptopen,
695 	.d_close =	xptclose,
696 	.d_ioctl =	xptioctl,
697 	.d_name =	"xpt",
698 };
699 
700 
701 /* Storage for debugging datastructures */
702 #ifdef	CAMDEBUG
703 struct cam_path *cam_dpath;
704 u_int32_t cam_dflags;
705 u_int32_t cam_debug_delay;
706 #endif
707 
708 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
709 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
710 #endif
711 
712 /*
713  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
714  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
715  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
716  */
717 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
718     || defined(CAM_DEBUG_LUN)
719 #ifdef CAMDEBUG
720 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
721     || !defined(CAM_DEBUG_LUN)
722 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
723         and CAM_DEBUG_LUN"
724 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
725 #else /* !CAMDEBUG */
726 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
727 #endif /* CAMDEBUG */
728 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
729 
730 /* Our boot-time initialization hook */
731 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
732 
733 static moduledata_t cam_moduledata = {
734 	"cam",
735 	cam_module_event_handler,
736 	NULL
737 };
738 
739 static int	xpt_init(void *);
740 
741 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
742 MODULE_VERSION(cam, 1);
743 
744 
745 static cam_status	xpt_compile_path(struct cam_path *new_path,
746 					 struct cam_periph *perph,
747 					 path_id_t path_id,
748 					 target_id_t target_id,
749 					 lun_id_t lun_id);
750 
751 static void		xpt_release_path(struct cam_path *path);
752 
753 static void		xpt_async_bcast(struct async_list *async_head,
754 					u_int32_t async_code,
755 					struct cam_path *path,
756 					void *async_arg);
757 static void		xpt_dev_async(u_int32_t async_code,
758 				      struct cam_eb *bus,
759 				      struct cam_et *target,
760 				      struct cam_ed *device,
761 				      void *async_arg);
762 static path_id_t xptnextfreepathid(void);
763 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
764 static union ccb *xpt_get_ccb(struct cam_ed *device);
765 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
766 				  u_int32_t new_priority);
767 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
768 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
769 static timeout_t xpt_release_devq_timeout;
770 static void	 xpt_release_simq_timeout(void *arg) __unused;
771 static void	 xpt_release_bus(struct cam_eb *bus);
772 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
773 					 int run_queue);
774 static struct cam_et*
775 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
776 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
777 static struct cam_ed*
778 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
779 				  lun_id_t lun_id);
780 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
781 				    struct cam_ed *device);
782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
783 static struct cam_eb*
784 		 xpt_find_bus(path_id_t path_id);
785 static struct cam_et*
786 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
787 static struct cam_ed*
788 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
789 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
790 static void	 xpt_scan_lun(struct cam_periph *periph,
791 			      struct cam_path *path, cam_flags flags,
792 			      union ccb *ccb);
793 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
794 static xpt_busfunc_t	xptconfigbuscountfunc;
795 static xpt_busfunc_t	xptconfigfunc;
796 static void	 xpt_config(void *arg);
797 static xpt_devicefunc_t xptpassannouncefunc;
798 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
799 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
800 static void	 xptpoll(struct cam_sim *sim);
801 static void	 camisr(void *);
802 static void	 camisr_runqueue(void *);
803 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
804 				    u_int num_patterns, struct cam_eb *bus);
805 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
806 				       u_int num_patterns,
807 				       struct cam_ed *device);
808 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
809 				       u_int num_patterns,
810 				       struct cam_periph *periph);
811 static xpt_busfunc_t	xptedtbusfunc;
812 static xpt_targetfunc_t	xptedttargetfunc;
813 static xpt_devicefunc_t	xptedtdevicefunc;
814 static xpt_periphfunc_t	xptedtperiphfunc;
815 static xpt_pdrvfunc_t	xptplistpdrvfunc;
816 static xpt_periphfunc_t	xptplistperiphfunc;
817 static int		xptedtmatch(struct ccb_dev_match *cdm);
818 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
819 static int		xptbustraverse(struct cam_eb *start_bus,
820 				       xpt_busfunc_t *tr_func, void *arg);
821 static int		xpttargettraverse(struct cam_eb *bus,
822 					  struct cam_et *start_target,
823 					  xpt_targetfunc_t *tr_func, void *arg);
824 static int		xptdevicetraverse(struct cam_et *target,
825 					  struct cam_ed *start_device,
826 					  xpt_devicefunc_t *tr_func, void *arg);
827 static int		xptperiphtraverse(struct cam_ed *device,
828 					  struct cam_periph *start_periph,
829 					  xpt_periphfunc_t *tr_func, void *arg);
830 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
831 					xpt_pdrvfunc_t *tr_func, void *arg);
832 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
833 					    struct cam_periph *start_periph,
834 					    xpt_periphfunc_t *tr_func,
835 					    void *arg);
836 static xpt_busfunc_t	xptdefbusfunc;
837 static xpt_targetfunc_t	xptdeftargetfunc;
838 static xpt_devicefunc_t	xptdefdevicefunc;
839 static xpt_periphfunc_t	xptdefperiphfunc;
840 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
841 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
842 					    void *arg);
843 static xpt_devicefunc_t	xptsetasyncfunc;
844 static xpt_busfunc_t	xptsetasyncbusfunc;
845 static cam_status	xptregister(struct cam_periph *periph,
846 				    void *arg);
847 static cam_status	proberegister(struct cam_periph *periph,
848 				      void *arg);
849 static void	 probeschedule(struct cam_periph *probe_periph);
850 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
851 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
852 static int       proberequestbackoff(struct cam_periph *periph,
853 				     struct cam_ed *device);
854 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
855 static void	 probecleanup(struct cam_periph *periph);
856 static void	 xpt_find_quirk(struct cam_ed *device);
857 static void	 xpt_devise_transport(struct cam_path *path);
858 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
859 					   struct cam_ed *device,
860 					   int async_update);
861 static void	 xpt_toggle_tags(struct cam_path *path);
862 static void	 xpt_start_tags(struct cam_path *path);
863 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
864 					    struct cam_ed *dev);
865 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
866 					   struct cam_ed *dev);
867 static __inline int periph_is_queued(struct cam_periph *periph);
868 static __inline int device_is_alloc_queued(struct cam_ed *device);
869 static __inline int device_is_send_queued(struct cam_ed *device);
870 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
871 
872 static __inline int
873 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
874 {
875 	int retval;
876 
877 	if (dev->ccbq.devq_openings > 0) {
878 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
879 			cam_ccbq_resize(&dev->ccbq,
880 					dev->ccbq.dev_openings
881 					+ dev->ccbq.dev_active);
882 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
883 		}
884 		/*
885 		 * The priority of a device waiting for CCB resources
886 		 * is that of the the highest priority peripheral driver
887 		 * enqueued.
888 		 */
889 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
890 					  &dev->alloc_ccb_entry.pinfo,
891 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
892 	} else {
893 		retval = 0;
894 	}
895 
896 	return (retval);
897 }
898 
899 static __inline int
900 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
901 {
902 	int	retval;
903 
904 	if (dev->ccbq.dev_openings > 0) {
905 		/*
906 		 * The priority of a device waiting for controller
907 		 * resources is that of the the highest priority CCB
908 		 * enqueued.
909 		 */
910 		retval =
911 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
912 				     &dev->send_ccb_entry.pinfo,
913 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
914 	} else {
915 		retval = 0;
916 	}
917 	return (retval);
918 }
919 
920 static __inline int
921 periph_is_queued(struct cam_periph *periph)
922 {
923 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
924 }
925 
926 static __inline int
927 device_is_alloc_queued(struct cam_ed *device)
928 {
929 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
930 }
931 
932 static __inline int
933 device_is_send_queued(struct cam_ed *device)
934 {
935 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
936 }
937 
938 static __inline int
939 dev_allocq_is_runnable(struct cam_devq *devq)
940 {
941 	/*
942 	 * Have work to do.
943 	 * Have space to do more work.
944 	 * Allowed to do work.
945 	 */
946 	return ((devq->alloc_queue.qfrozen_cnt == 0)
947 	     && (devq->alloc_queue.entries > 0)
948 	     && (devq->alloc_openings > 0));
949 }
950 
951 static void
952 xpt_periph_init()
953 {
954 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
955 }
956 
957 static void
958 probe_periph_init()
959 {
960 }
961 
962 
963 static void
964 xptdone(struct cam_periph *periph, union ccb *done_ccb)
965 {
966 	/* Caller will release the CCB */
967 	wakeup(&done_ccb->ccb_h.cbfcnp);
968 }
969 
970 static int
971 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
972 {
973 
974 	/*
975 	 * Only allow read-write access.
976 	 */
977 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
978 		return(EPERM);
979 
980 	/*
981 	 * We don't allow nonblocking access.
982 	 */
983 	if ((flags & O_NONBLOCK) != 0) {
984 		printf("%s: can't do nonblocking access\n", devtoname(dev));
985 		return(ENODEV);
986 	}
987 
988 	/* Mark ourselves open */
989 	mtx_lock(&xsoftc.xpt_lock);
990 	xsoftc.flags |= XPT_FLAG_OPEN;
991 	mtx_unlock(&xsoftc.xpt_lock);
992 
993 	return(0);
994 }
995 
996 static int
997 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
998 {
999 
1000 	/* Mark ourselves closed */
1001 	mtx_lock(&xsoftc.xpt_lock);
1002 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1003 	mtx_unlock(&xsoftc.xpt_lock);
1004 
1005 	return(0);
1006 }
1007 
1008 /*
1009  * Don't automatically grab the xpt softc lock here even though this is going
1010  * through the xpt device.  The xpt device is really just a back door for
1011  * accessing other devices and SIMs, so the right thing to do is to grab
1012  * the appropriate SIM lock once the bus/SIM is located.
1013  */
1014 static int
1015 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1016 {
1017 	int error;
1018 
1019 	error = 0;
1020 
1021 	switch(cmd) {
1022 	/*
1023 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1024 	 * to accept CCB types that don't quite make sense to send through a
1025 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
1026 	 * in the CAM spec.
1027 	 */
1028 	case CAMIOCOMMAND: {
1029 		union ccb *ccb;
1030 		union ccb *inccb;
1031 		struct cam_eb *bus;
1032 
1033 		inccb = (union ccb *)addr;
1034 
1035 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1036 		if (bus == NULL) {
1037 			error = EINVAL;
1038 			break;
1039 		}
1040 
1041 		switch(inccb->ccb_h.func_code) {
1042 		case XPT_SCAN_BUS:
1043 		case XPT_RESET_BUS:
1044 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1045 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1046 				error = EINVAL;
1047 				break;
1048 			}
1049 			/* FALLTHROUGH */
1050 		case XPT_PATH_INQ:
1051 		case XPT_ENG_INQ:
1052 		case XPT_SCAN_LUN:
1053 
1054 			ccb = xpt_alloc_ccb();
1055 
1056 			CAM_SIM_LOCK(bus->sim);
1057 
1058 			/*
1059 			 * Create a path using the bus, target, and lun the
1060 			 * user passed in.
1061 			 */
1062 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1063 					    inccb->ccb_h.path_id,
1064 					    inccb->ccb_h.target_id,
1065 					    inccb->ccb_h.target_lun) !=
1066 					    CAM_REQ_CMP){
1067 				error = EINVAL;
1068 				CAM_SIM_UNLOCK(bus->sim);
1069 				xpt_free_ccb(ccb);
1070 				break;
1071 			}
1072 			/* Ensure all of our fields are correct */
1073 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1074 				      inccb->ccb_h.pinfo.priority);
1075 			xpt_merge_ccb(ccb, inccb);
1076 			ccb->ccb_h.cbfcnp = xptdone;
1077 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1078 			bcopy(ccb, inccb, sizeof(union ccb));
1079 			xpt_free_path(ccb->ccb_h.path);
1080 			xpt_free_ccb(ccb);
1081 			CAM_SIM_UNLOCK(bus->sim);
1082 			break;
1083 
1084 		case XPT_DEBUG: {
1085 			union ccb ccb;
1086 
1087 			/*
1088 			 * This is an immediate CCB, so it's okay to
1089 			 * allocate it on the stack.
1090 			 */
1091 
1092 			CAM_SIM_LOCK(bus->sim);
1093 
1094 			/*
1095 			 * Create a path using the bus, target, and lun the
1096 			 * user passed in.
1097 			 */
1098 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1099 					    inccb->ccb_h.path_id,
1100 					    inccb->ccb_h.target_id,
1101 					    inccb->ccb_h.target_lun) !=
1102 					    CAM_REQ_CMP){
1103 				error = EINVAL;
1104 				CAM_SIM_UNLOCK(bus->sim);
1105 				break;
1106 			}
1107 			/* Ensure all of our fields are correct */
1108 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1109 				      inccb->ccb_h.pinfo.priority);
1110 			xpt_merge_ccb(&ccb, inccb);
1111 			ccb.ccb_h.cbfcnp = xptdone;
1112 			xpt_action(&ccb);
1113 			CAM_SIM_UNLOCK(bus->sim);
1114 			bcopy(&ccb, inccb, sizeof(union ccb));
1115 			xpt_free_path(ccb.ccb_h.path);
1116 			break;
1117 
1118 		}
1119 		case XPT_DEV_MATCH: {
1120 			struct cam_periph_map_info mapinfo;
1121 			struct cam_path *old_path;
1122 
1123 			/*
1124 			 * We can't deal with physical addresses for this
1125 			 * type of transaction.
1126 			 */
1127 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1128 				error = EINVAL;
1129 				break;
1130 			}
1131 
1132 			/*
1133 			 * Save this in case the caller had it set to
1134 			 * something in particular.
1135 			 */
1136 			old_path = inccb->ccb_h.path;
1137 
1138 			/*
1139 			 * We really don't need a path for the matching
1140 			 * code.  The path is needed because of the
1141 			 * debugging statements in xpt_action().  They
1142 			 * assume that the CCB has a valid path.
1143 			 */
1144 			inccb->ccb_h.path = xpt_periph->path;
1145 
1146 			bzero(&mapinfo, sizeof(mapinfo));
1147 
1148 			/*
1149 			 * Map the pattern and match buffers into kernel
1150 			 * virtual address space.
1151 			 */
1152 			error = cam_periph_mapmem(inccb, &mapinfo);
1153 
1154 			if (error) {
1155 				inccb->ccb_h.path = old_path;
1156 				break;
1157 			}
1158 
1159 			/*
1160 			 * This is an immediate CCB, we can send it on directly.
1161 			 */
1162 			xpt_action(inccb);
1163 
1164 			/*
1165 			 * Map the buffers back into user space.
1166 			 */
1167 			cam_periph_unmapmem(inccb, &mapinfo);
1168 
1169 			inccb->ccb_h.path = old_path;
1170 
1171 			error = 0;
1172 			break;
1173 		}
1174 		default:
1175 			error = ENOTSUP;
1176 			break;
1177 		}
1178 		xpt_release_bus(bus);
1179 		break;
1180 	}
1181 	/*
1182 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1183 	 * with the periphal driver name and unit name filled in.  The other
1184 	 * fields don't really matter as input.  The passthrough driver name
1185 	 * ("pass"), and unit number are passed back in the ccb.  The current
1186 	 * device generation number, and the index into the device peripheral
1187 	 * driver list, and the status are also passed back.  Note that
1188 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1189 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1190 	 * (or rather should be) impossible for the device peripheral driver
1191 	 * list to change since we look at the whole thing in one pass, and
1192 	 * we do it with lock protection.
1193 	 *
1194 	 */
1195 	case CAMGETPASSTHRU: {
1196 		union ccb *ccb;
1197 		struct cam_periph *periph;
1198 		struct periph_driver **p_drv;
1199 		char   *name;
1200 		u_int unit;
1201 		u_int cur_generation;
1202 		int base_periph_found;
1203 		int splbreaknum;
1204 
1205 		ccb = (union ccb *)addr;
1206 		unit = ccb->cgdl.unit_number;
1207 		name = ccb->cgdl.periph_name;
1208 		/*
1209 		 * Every 100 devices, we want to drop our lock protection to
1210 		 * give the software interrupt handler a chance to run.
1211 		 * Most systems won't run into this check, but this should
1212 		 * avoid starvation in the software interrupt handler in
1213 		 * large systems.
1214 		 */
1215 		splbreaknum = 100;
1216 
1217 		ccb = (union ccb *)addr;
1218 
1219 		base_periph_found = 0;
1220 
1221 		/*
1222 		 * Sanity check -- make sure we don't get a null peripheral
1223 		 * driver name.
1224 		 */
1225 		if (*ccb->cgdl.periph_name == '\0') {
1226 			error = EINVAL;
1227 			break;
1228 		}
1229 
1230 		/* Keep the list from changing while we traverse it */
1231 		mtx_lock(&xsoftc.xpt_topo_lock);
1232 ptstartover:
1233 		cur_generation = xsoftc.xpt_generation;
1234 
1235 		/* first find our driver in the list of drivers */
1236 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
1237 			if (strcmp((*p_drv)->driver_name, name) == 0)
1238 				break;
1239 
1240 		if (*p_drv == NULL) {
1241 			mtx_unlock(&xsoftc.xpt_topo_lock);
1242 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1243 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1244 			*ccb->cgdl.periph_name = '\0';
1245 			ccb->cgdl.unit_number = 0;
1246 			error = ENOENT;
1247 			break;
1248 		}
1249 
1250 		/*
1251 		 * Run through every peripheral instance of this driver
1252 		 * and check to see whether it matches the unit passed
1253 		 * in by the user.  If it does, get out of the loops and
1254 		 * find the passthrough driver associated with that
1255 		 * peripheral driver.
1256 		 */
1257 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1258 		     periph = TAILQ_NEXT(periph, unit_links)) {
1259 
1260 			if (periph->unit_number == unit) {
1261 				break;
1262 			} else if (--splbreaknum == 0) {
1263 				mtx_unlock(&xsoftc.xpt_topo_lock);
1264 				mtx_lock(&xsoftc.xpt_topo_lock);
1265 				splbreaknum = 100;
1266 				if (cur_generation != xsoftc.xpt_generation)
1267 				       goto ptstartover;
1268 			}
1269 		}
1270 		/*
1271 		 * If we found the peripheral driver that the user passed
1272 		 * in, go through all of the peripheral drivers for that
1273 		 * particular device and look for a passthrough driver.
1274 		 */
1275 		if (periph != NULL) {
1276 			struct cam_ed *device;
1277 			int i;
1278 
1279 			base_periph_found = 1;
1280 			device = periph->path->device;
1281 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1282 			     periph != NULL;
1283 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1284 				/*
1285 				 * Check to see whether we have a
1286 				 * passthrough device or not.
1287 				 */
1288 				if (strcmp(periph->periph_name, "pass") == 0) {
1289 					/*
1290 					 * Fill in the getdevlist fields.
1291 					 */
1292 					strcpy(ccb->cgdl.periph_name,
1293 					       periph->periph_name);
1294 					ccb->cgdl.unit_number =
1295 						periph->unit_number;
1296 					if (SLIST_NEXT(periph, periph_links))
1297 						ccb->cgdl.status =
1298 							CAM_GDEVLIST_MORE_DEVS;
1299 					else
1300 						ccb->cgdl.status =
1301 						       CAM_GDEVLIST_LAST_DEVICE;
1302 					ccb->cgdl.generation =
1303 						device->generation;
1304 					ccb->cgdl.index = i;
1305 					/*
1306 					 * Fill in some CCB header fields
1307 					 * that the user may want.
1308 					 */
1309 					ccb->ccb_h.path_id =
1310 						periph->path->bus->path_id;
1311 					ccb->ccb_h.target_id =
1312 						periph->path->target->target_id;
1313 					ccb->ccb_h.target_lun =
1314 						periph->path->device->lun_id;
1315 					ccb->ccb_h.status = CAM_REQ_CMP;
1316 					break;
1317 				}
1318 			}
1319 		}
1320 
1321 		/*
1322 		 * If the periph is null here, one of two things has
1323 		 * happened.  The first possibility is that we couldn't
1324 		 * find the unit number of the particular peripheral driver
1325 		 * that the user is asking about.  e.g. the user asks for
1326 		 * the passthrough driver for "da11".  We find the list of
1327 		 * "da" peripherals all right, but there is no unit 11.
1328 		 * The other possibility is that we went through the list
1329 		 * of peripheral drivers attached to the device structure,
1330 		 * but didn't find one with the name "pass".  Either way,
1331 		 * we return ENOENT, since we couldn't find something.
1332 		 */
1333 		if (periph == NULL) {
1334 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1335 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1336 			*ccb->cgdl.periph_name = '\0';
1337 			ccb->cgdl.unit_number = 0;
1338 			error = ENOENT;
1339 			/*
1340 			 * It is unfortunate that this is even necessary,
1341 			 * but there are many, many clueless users out there.
1342 			 * If this is true, the user is looking for the
1343 			 * passthrough driver, but doesn't have one in his
1344 			 * kernel.
1345 			 */
1346 			if (base_periph_found == 1) {
1347 				printf("xptioctl: pass driver is not in the "
1348 				       "kernel\n");
1349 				printf("xptioctl: put \"device pass\" in "
1350 				       "your kernel config file\n");
1351 			}
1352 		}
1353 		mtx_unlock(&xsoftc.xpt_topo_lock);
1354 		break;
1355 		}
1356 	default:
1357 		error = ENOTTY;
1358 		break;
1359 	}
1360 
1361 	return(error);
1362 }
1363 
1364 static int
1365 cam_module_event_handler(module_t mod, int what, void *arg)
1366 {
1367 	int error;
1368 
1369 	switch (what) {
1370 	case MOD_LOAD:
1371 		if ((error = xpt_init(NULL)) != 0)
1372 			return (error);
1373 		break;
1374 	case MOD_UNLOAD:
1375 		return EBUSY;
1376 	default:
1377 		return EOPNOTSUPP;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 /* thread to handle bus rescans */
1384 static void
1385 xpt_scanner_thread(void *dummy)
1386 {
1387 	cam_isrq_t	queue;
1388 	union ccb	*ccb;
1389 	struct cam_sim	*sim;
1390 
1391 	for (;;) {
1392 		/*
1393 		 * Wait for a rescan request to come in.  When it does, splice
1394 		 * it onto a queue from local storage so that the xpt lock
1395 		 * doesn't need to be held while the requests are being
1396 		 * processed.
1397 		 */
1398 		xpt_lock_buses();
1399 		msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
1400 		    "ccb_scanq", 0);
1401 		TAILQ_INIT(&queue);
1402 		TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
1403 		xpt_unlock_buses();
1404 
1405 		while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
1406 			TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
1407 
1408 			sim = ccb->ccb_h.path->bus->sim;
1409 			CAM_SIM_LOCK(sim);
1410 
1411 			ccb->ccb_h.func_code = XPT_SCAN_BUS;
1412 			ccb->ccb_h.cbfcnp = xptdone;
1413 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
1414 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1415 			xpt_free_path(ccb->ccb_h.path);
1416 			xpt_free_ccb(ccb);
1417 			CAM_SIM_UNLOCK(sim);
1418 		}
1419 	}
1420 }
1421 
1422 void
1423 xpt_rescan(union ccb *ccb)
1424 {
1425 	struct ccb_hdr *hdr;
1426 
1427 	/*
1428 	 * Don't make duplicate entries for the same paths.
1429 	 */
1430 	xpt_lock_buses();
1431 	TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
1432 		if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
1433 			xpt_unlock_buses();
1434 			xpt_print(ccb->ccb_h.path, "rescan already queued\n");
1435 			xpt_free_path(ccb->ccb_h.path);
1436 			xpt_free_ccb(ccb);
1437 			return;
1438 		}
1439 	}
1440 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1441 	wakeup(&xsoftc.ccb_scanq);
1442 	xpt_unlock_buses();
1443 }
1444 
1445 /* Functions accessed by the peripheral drivers */
1446 static int
1447 xpt_init(void *dummy)
1448 {
1449 	struct cam_sim *xpt_sim;
1450 	struct cam_path *path;
1451 	struct cam_devq *devq;
1452 	cam_status status;
1453 
1454 	TAILQ_INIT(&xsoftc.xpt_busses);
1455 	TAILQ_INIT(&cam_simq);
1456 	TAILQ_INIT(&xsoftc.ccb_scanq);
1457 	STAILQ_INIT(&xsoftc.highpowerq);
1458 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1459 
1460 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
1461 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
1462 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
1463 
1464 	/*
1465 	 * The xpt layer is, itself, the equivelent of a SIM.
1466 	 * Allow 16 ccbs in the ccb pool for it.  This should
1467 	 * give decent parallelism when we probe busses and
1468 	 * perform other XPT functions.
1469 	 */
1470 	devq = cam_simq_alloc(16);
1471 	xpt_sim = cam_sim_alloc(xptaction,
1472 				xptpoll,
1473 				"xpt",
1474 				/*softc*/NULL,
1475 				/*unit*/0,
1476 				/*mtx*/&xsoftc.xpt_lock,
1477 				/*max_dev_transactions*/0,
1478 				/*max_tagged_dev_transactions*/0,
1479 				devq);
1480 	if (xpt_sim == NULL)
1481 		return (ENOMEM);
1482 
1483 	xpt_sim->max_ccbs = 16;
1484 
1485 	mtx_lock(&xsoftc.xpt_lock);
1486 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
1487 		printf("xpt_init: xpt_bus_register failed with status %#x,"
1488 		       " failing attach\n", status);
1489 		return (EINVAL);
1490 	}
1491 
1492 	/*
1493 	 * Looking at the XPT from the SIM layer, the XPT is
1494 	 * the equivelent of a peripheral driver.  Allocate
1495 	 * a peripheral driver entry for us.
1496 	 */
1497 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1498 				      CAM_TARGET_WILDCARD,
1499 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1500 		printf("xpt_init: xpt_create_path failed with status %#x,"
1501 		       " failing attach\n", status);
1502 		return (EINVAL);
1503 	}
1504 
1505 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1506 			 path, NULL, 0, xpt_sim);
1507 	xpt_free_path(path);
1508 	mtx_unlock(&xsoftc.xpt_lock);
1509 
1510 	/*
1511 	 * Register a callback for when interrupts are enabled.
1512 	 */
1513 	xsoftc.xpt_config_hook =
1514 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1515 					      M_CAMXPT, M_NOWAIT | M_ZERO);
1516 	if (xsoftc.xpt_config_hook == NULL) {
1517 		printf("xpt_init: Cannot malloc config hook "
1518 		       "- failing attach\n");
1519 		return (ENOMEM);
1520 	}
1521 
1522 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1523 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1524 		free (xsoftc.xpt_config_hook, M_CAMXPT);
1525 		printf("xpt_init: config_intrhook_establish failed "
1526 		       "- failing attach\n");
1527 	}
1528 
1529 	/* fire up rescan thread */
1530 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
1531 		printf("xpt_init: failed to create rescan thread\n");
1532 	}
1533 	/* Install our software interrupt handlers */
1534 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
1535 
1536 	return (0);
1537 }
1538 
1539 static cam_status
1540 xptregister(struct cam_periph *periph, void *arg)
1541 {
1542 	struct cam_sim *xpt_sim;
1543 
1544 	if (periph == NULL) {
1545 		printf("xptregister: periph was NULL!!\n");
1546 		return(CAM_REQ_CMP_ERR);
1547 	}
1548 
1549 	xpt_sim = (struct cam_sim *)arg;
1550 	xpt_sim->softc = periph;
1551 	xpt_periph = periph;
1552 	periph->softc = NULL;
1553 
1554 	return(CAM_REQ_CMP);
1555 }
1556 
1557 int32_t
1558 xpt_add_periph(struct cam_periph *periph)
1559 {
1560 	struct cam_ed *device;
1561 	int32_t	 status;
1562 	struct periph_list *periph_head;
1563 
1564 	mtx_assert(periph->sim->mtx, MA_OWNED);
1565 
1566 	device = periph->path->device;
1567 
1568 	periph_head = &device->periphs;
1569 
1570 	status = CAM_REQ_CMP;
1571 
1572 	if (device != NULL) {
1573 		/*
1574 		 * Make room for this peripheral
1575 		 * so it will fit in the queue
1576 		 * when it's scheduled to run
1577 		 */
1578 		status = camq_resize(&device->drvq,
1579 				     device->drvq.array_size + 1);
1580 
1581 		device->generation++;
1582 
1583 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1584 	}
1585 
1586 	mtx_lock(&xsoftc.xpt_topo_lock);
1587 	xsoftc.xpt_generation++;
1588 	mtx_unlock(&xsoftc.xpt_topo_lock);
1589 
1590 	return (status);
1591 }
1592 
1593 void
1594 xpt_remove_periph(struct cam_periph *periph)
1595 {
1596 	struct cam_ed *device;
1597 
1598 	mtx_assert(periph->sim->mtx, MA_OWNED);
1599 
1600 	device = periph->path->device;
1601 
1602 	if (device != NULL) {
1603 		struct periph_list *periph_head;
1604 
1605 		periph_head = &device->periphs;
1606 
1607 		/* Release the slot for this peripheral */
1608 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1609 
1610 		device->generation++;
1611 
1612 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1613 	}
1614 
1615 	mtx_lock(&xsoftc.xpt_topo_lock);
1616 	xsoftc.xpt_generation++;
1617 	mtx_unlock(&xsoftc.xpt_topo_lock);
1618 }
1619 
1620 
1621 void
1622 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1623 {
1624 	struct	ccb_pathinq cpi;
1625 	struct	ccb_trans_settings cts;
1626 	struct	cam_path *path;
1627 	u_int	speed;
1628 	u_int	freq;
1629 	u_int	mb;
1630 
1631 	mtx_assert(periph->sim->mtx, MA_OWNED);
1632 
1633 	path = periph->path;
1634 	/*
1635 	 * To ensure that this is printed in one piece,
1636 	 * mask out CAM interrupts.
1637 	 */
1638 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1639 	       periph->periph_name, periph->unit_number,
1640 	       path->bus->sim->sim_name,
1641 	       path->bus->sim->unit_number,
1642 	       path->bus->sim->bus_id,
1643 	       path->target->target_id,
1644 	       path->device->lun_id);
1645 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1646 	scsi_print_inquiry(&path->device->inq_data);
1647 	if (bootverbose && path->device->serial_num_len > 0) {
1648 		/* Don't wrap the screen  - print only the first 60 chars */
1649 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1650 		       periph->unit_number, path->device->serial_num);
1651 	}
1652 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1653 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1654 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1655 	xpt_action((union ccb*)&cts);
1656 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1657 		return;
1658 	}
1659 
1660 	/* Ask the SIM for its base transfer speed */
1661 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1662 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1663 	xpt_action((union ccb *)&cpi);
1664 
1665 	speed = cpi.base_transfer_speed;
1666 	freq = 0;
1667 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1668 		struct	ccb_trans_settings_spi *spi;
1669 
1670 		spi = &cts.xport_specific.spi;
1671 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1672 		  && spi->sync_offset != 0) {
1673 			freq = scsi_calc_syncsrate(spi->sync_period);
1674 			speed = freq;
1675 		}
1676 
1677 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1678 			speed *= (0x01 << spi->bus_width);
1679 	}
1680 
1681 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1682 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1683 		if (fc->valid & CTS_FC_VALID_SPEED) {
1684 			speed = fc->bitrate;
1685 		}
1686 	}
1687 
1688 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1689 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1690 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1691 			speed = sas->bitrate;
1692 		}
1693 	}
1694 
1695 	mb = speed / 1000;
1696 	if (mb > 0)
1697 		printf("%s%d: %d.%03dMB/s transfers",
1698 		       periph->periph_name, periph->unit_number,
1699 		       mb, speed % 1000);
1700 	else
1701 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1702 		       periph->unit_number, speed);
1703 	/* Report additional information about SPI connections */
1704 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1705 		struct	ccb_trans_settings_spi *spi;
1706 
1707 		spi = &cts.xport_specific.spi;
1708 		if (freq != 0) {
1709 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1710 			       freq % 1000,
1711 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1712 			     ? " DT" : "",
1713 			       spi->sync_offset);
1714 		}
1715 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1716 		 && spi->bus_width > 0) {
1717 			if (freq != 0) {
1718 				printf(", ");
1719 			} else {
1720 				printf(" (");
1721 			}
1722 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1723 		} else if (freq != 0) {
1724 			printf(")");
1725 		}
1726 	}
1727 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1728 		struct	ccb_trans_settings_fc *fc;
1729 
1730 		fc = &cts.xport_specific.fc;
1731 		if (fc->valid & CTS_FC_VALID_WWNN)
1732 			printf(" WWNN 0x%llx", (long long) fc->wwnn);
1733 		if (fc->valid & CTS_FC_VALID_WWPN)
1734 			printf(" WWPN 0x%llx", (long long) fc->wwpn);
1735 		if (fc->valid & CTS_FC_VALID_PORT)
1736 			printf(" PortID 0x%x", fc->port);
1737 	}
1738 
1739 	if (path->device->inq_flags & SID_CmdQue
1740 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1741 		printf("\n%s%d: Command Queueing Enabled",
1742 		       periph->periph_name, periph->unit_number);
1743 	}
1744 	printf("\n");
1745 
1746 	/*
1747 	 * We only want to print the caller's announce string if they've
1748 	 * passed one in..
1749 	 */
1750 	if (announce_string != NULL)
1751 		printf("%s%d: %s\n", periph->periph_name,
1752 		       periph->unit_number, announce_string);
1753 }
1754 
1755 static dev_match_ret
1756 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1757 	    struct cam_eb *bus)
1758 {
1759 	dev_match_ret retval;
1760 	int i;
1761 
1762 	retval = DM_RET_NONE;
1763 
1764 	/*
1765 	 * If we aren't given something to match against, that's an error.
1766 	 */
1767 	if (bus == NULL)
1768 		return(DM_RET_ERROR);
1769 
1770 	/*
1771 	 * If there are no match entries, then this bus matches no
1772 	 * matter what.
1773 	 */
1774 	if ((patterns == NULL) || (num_patterns == 0))
1775 		return(DM_RET_DESCEND | DM_RET_COPY);
1776 
1777 	for (i = 0; i < num_patterns; i++) {
1778 		struct bus_match_pattern *cur_pattern;
1779 
1780 		/*
1781 		 * If the pattern in question isn't for a bus node, we
1782 		 * aren't interested.  However, we do indicate to the
1783 		 * calling routine that we should continue descending the
1784 		 * tree, since the user wants to match against lower-level
1785 		 * EDT elements.
1786 		 */
1787 		if (patterns[i].type != DEV_MATCH_BUS) {
1788 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1789 				retval |= DM_RET_DESCEND;
1790 			continue;
1791 		}
1792 
1793 		cur_pattern = &patterns[i].pattern.bus_pattern;
1794 
1795 		/*
1796 		 * If they want to match any bus node, we give them any
1797 		 * device node.
1798 		 */
1799 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1800 			/* set the copy flag */
1801 			retval |= DM_RET_COPY;
1802 
1803 			/*
1804 			 * If we've already decided on an action, go ahead
1805 			 * and return.
1806 			 */
1807 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1808 				return(retval);
1809 		}
1810 
1811 		/*
1812 		 * Not sure why someone would do this...
1813 		 */
1814 		if (cur_pattern->flags == BUS_MATCH_NONE)
1815 			continue;
1816 
1817 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1818 		 && (cur_pattern->path_id != bus->path_id))
1819 			continue;
1820 
1821 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1822 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1823 			continue;
1824 
1825 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1826 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1827 			continue;
1828 
1829 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1830 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1831 			     DEV_IDLEN) != 0))
1832 			continue;
1833 
1834 		/*
1835 		 * If we get to this point, the user definitely wants
1836 		 * information on this bus.  So tell the caller to copy the
1837 		 * data out.
1838 		 */
1839 		retval |= DM_RET_COPY;
1840 
1841 		/*
1842 		 * If the return action has been set to descend, then we
1843 		 * know that we've already seen a non-bus matching
1844 		 * expression, therefore we need to further descend the tree.
1845 		 * This won't change by continuing around the loop, so we
1846 		 * go ahead and return.  If we haven't seen a non-bus
1847 		 * matching expression, we keep going around the loop until
1848 		 * we exhaust the matching expressions.  We'll set the stop
1849 		 * flag once we fall out of the loop.
1850 		 */
1851 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1852 			return(retval);
1853 	}
1854 
1855 	/*
1856 	 * If the return action hasn't been set to descend yet, that means
1857 	 * we haven't seen anything other than bus matching patterns.  So
1858 	 * tell the caller to stop descending the tree -- the user doesn't
1859 	 * want to match against lower level tree elements.
1860 	 */
1861 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1862 		retval |= DM_RET_STOP;
1863 
1864 	return(retval);
1865 }
1866 
1867 static dev_match_ret
1868 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1869 	       struct cam_ed *device)
1870 {
1871 	dev_match_ret retval;
1872 	int i;
1873 
1874 	retval = DM_RET_NONE;
1875 
1876 	/*
1877 	 * If we aren't given something to match against, that's an error.
1878 	 */
1879 	if (device == NULL)
1880 		return(DM_RET_ERROR);
1881 
1882 	/*
1883 	 * If there are no match entries, then this device matches no
1884 	 * matter what.
1885 	 */
1886 	if ((patterns == NULL) || (num_patterns == 0))
1887 		return(DM_RET_DESCEND | DM_RET_COPY);
1888 
1889 	for (i = 0; i < num_patterns; i++) {
1890 		struct device_match_pattern *cur_pattern;
1891 
1892 		/*
1893 		 * If the pattern in question isn't for a device node, we
1894 		 * aren't interested.
1895 		 */
1896 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1897 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1898 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1899 				retval |= DM_RET_DESCEND;
1900 			continue;
1901 		}
1902 
1903 		cur_pattern = &patterns[i].pattern.device_pattern;
1904 
1905 		/*
1906 		 * If they want to match any device node, we give them any
1907 		 * device node.
1908 		 */
1909 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1910 			/* set the copy flag */
1911 			retval |= DM_RET_COPY;
1912 
1913 
1914 			/*
1915 			 * If we've already decided on an action, go ahead
1916 			 * and return.
1917 			 */
1918 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1919 				return(retval);
1920 		}
1921 
1922 		/*
1923 		 * Not sure why someone would do this...
1924 		 */
1925 		if (cur_pattern->flags == DEV_MATCH_NONE)
1926 			continue;
1927 
1928 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1929 		 && (cur_pattern->path_id != device->target->bus->path_id))
1930 			continue;
1931 
1932 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1933 		 && (cur_pattern->target_id != device->target->target_id))
1934 			continue;
1935 
1936 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1937 		 && (cur_pattern->target_lun != device->lun_id))
1938 			continue;
1939 
1940 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1941 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1942 				    (caddr_t)&cur_pattern->inq_pat,
1943 				    1, sizeof(cur_pattern->inq_pat),
1944 				    scsi_static_inquiry_match) == NULL))
1945 			continue;
1946 
1947 		/*
1948 		 * If we get to this point, the user definitely wants
1949 		 * information on this device.  So tell the caller to copy
1950 		 * the data out.
1951 		 */
1952 		retval |= DM_RET_COPY;
1953 
1954 		/*
1955 		 * If the return action has been set to descend, then we
1956 		 * know that we've already seen a peripheral matching
1957 		 * expression, therefore we need to further descend the tree.
1958 		 * This won't change by continuing around the loop, so we
1959 		 * go ahead and return.  If we haven't seen a peripheral
1960 		 * matching expression, we keep going around the loop until
1961 		 * we exhaust the matching expressions.  We'll set the stop
1962 		 * flag once we fall out of the loop.
1963 		 */
1964 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1965 			return(retval);
1966 	}
1967 
1968 	/*
1969 	 * If the return action hasn't been set to descend yet, that means
1970 	 * we haven't seen any peripheral matching patterns.  So tell the
1971 	 * caller to stop descending the tree -- the user doesn't want to
1972 	 * match against lower level tree elements.
1973 	 */
1974 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1975 		retval |= DM_RET_STOP;
1976 
1977 	return(retval);
1978 }
1979 
1980 /*
1981  * Match a single peripheral against any number of match patterns.
1982  */
1983 static dev_match_ret
1984 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1985 	       struct cam_periph *periph)
1986 {
1987 	dev_match_ret retval;
1988 	int i;
1989 
1990 	/*
1991 	 * If we aren't given something to match against, that's an error.
1992 	 */
1993 	if (periph == NULL)
1994 		return(DM_RET_ERROR);
1995 
1996 	/*
1997 	 * If there are no match entries, then this peripheral matches no
1998 	 * matter what.
1999 	 */
2000 	if ((patterns == NULL) || (num_patterns == 0))
2001 		return(DM_RET_STOP | DM_RET_COPY);
2002 
2003 	/*
2004 	 * There aren't any nodes below a peripheral node, so there's no
2005 	 * reason to descend the tree any further.
2006 	 */
2007 	retval = DM_RET_STOP;
2008 
2009 	for (i = 0; i < num_patterns; i++) {
2010 		struct periph_match_pattern *cur_pattern;
2011 
2012 		/*
2013 		 * If the pattern in question isn't for a peripheral, we
2014 		 * aren't interested.
2015 		 */
2016 		if (patterns[i].type != DEV_MATCH_PERIPH)
2017 			continue;
2018 
2019 		cur_pattern = &patterns[i].pattern.periph_pattern;
2020 
2021 		/*
2022 		 * If they want to match on anything, then we will do so.
2023 		 */
2024 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2025 			/* set the copy flag */
2026 			retval |= DM_RET_COPY;
2027 
2028 			/*
2029 			 * We've already set the return action to stop,
2030 			 * since there are no nodes below peripherals in
2031 			 * the tree.
2032 			 */
2033 			return(retval);
2034 		}
2035 
2036 		/*
2037 		 * Not sure why someone would do this...
2038 		 */
2039 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2040 			continue;
2041 
2042 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2043 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2044 			continue;
2045 
2046 		/*
2047 		 * For the target and lun id's, we have to make sure the
2048 		 * target and lun pointers aren't NULL.  The xpt peripheral
2049 		 * has a wildcard target and device.
2050 		 */
2051 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2052 		 && ((periph->path->target == NULL)
2053 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2054 			continue;
2055 
2056 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2057 		 && ((periph->path->device == NULL)
2058 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2059 			continue;
2060 
2061 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2062 		 && (cur_pattern->unit_number != periph->unit_number))
2063 			continue;
2064 
2065 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2066 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2067 			     DEV_IDLEN) != 0))
2068 			continue;
2069 
2070 		/*
2071 		 * If we get to this point, the user definitely wants
2072 		 * information on this peripheral.  So tell the caller to
2073 		 * copy the data out.
2074 		 */
2075 		retval |= DM_RET_COPY;
2076 
2077 		/*
2078 		 * The return action has already been set to stop, since
2079 		 * peripherals don't have any nodes below them in the EDT.
2080 		 */
2081 		return(retval);
2082 	}
2083 
2084 	/*
2085 	 * If we get to this point, the peripheral that was passed in
2086 	 * doesn't match any of the patterns.
2087 	 */
2088 	return(retval);
2089 }
2090 
2091 static int
2092 xptedtbusfunc(struct cam_eb *bus, void *arg)
2093 {
2094 	struct ccb_dev_match *cdm;
2095 	dev_match_ret retval;
2096 
2097 	cdm = (struct ccb_dev_match *)arg;
2098 
2099 	/*
2100 	 * If our position is for something deeper in the tree, that means
2101 	 * that we've already seen this node.  So, we keep going down.
2102 	 */
2103 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2104 	 && (cdm->pos.cookie.bus == bus)
2105 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2106 	 && (cdm->pos.cookie.target != NULL))
2107 		retval = DM_RET_DESCEND;
2108 	else
2109 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2110 
2111 	/*
2112 	 * If we got an error, bail out of the search.
2113 	 */
2114 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2115 		cdm->status = CAM_DEV_MATCH_ERROR;
2116 		return(0);
2117 	}
2118 
2119 	/*
2120 	 * If the copy flag is set, copy this bus out.
2121 	 */
2122 	if (retval & DM_RET_COPY) {
2123 		int spaceleft, j;
2124 
2125 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2126 			sizeof(struct dev_match_result));
2127 
2128 		/*
2129 		 * If we don't have enough space to put in another
2130 		 * match result, save our position and tell the
2131 		 * user there are more devices to check.
2132 		 */
2133 		if (spaceleft < sizeof(struct dev_match_result)) {
2134 			bzero(&cdm->pos, sizeof(cdm->pos));
2135 			cdm->pos.position_type =
2136 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2137 
2138 			cdm->pos.cookie.bus = bus;
2139 			cdm->pos.generations[CAM_BUS_GENERATION]=
2140 				xsoftc.bus_generation;
2141 			cdm->status = CAM_DEV_MATCH_MORE;
2142 			return(0);
2143 		}
2144 		j = cdm->num_matches;
2145 		cdm->num_matches++;
2146 		cdm->matches[j].type = DEV_MATCH_BUS;
2147 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2148 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2149 		cdm->matches[j].result.bus_result.unit_number =
2150 			bus->sim->unit_number;
2151 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2152 			bus->sim->sim_name, DEV_IDLEN);
2153 	}
2154 
2155 	/*
2156 	 * If the user is only interested in busses, there's no
2157 	 * reason to descend to the next level in the tree.
2158 	 */
2159 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2160 		return(1);
2161 
2162 	/*
2163 	 * If there is a target generation recorded, check it to
2164 	 * make sure the target list hasn't changed.
2165 	 */
2166 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2167 	 && (bus == cdm->pos.cookie.bus)
2168 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2169 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2170 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2171 	     bus->generation)) {
2172 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2173 		return(0);
2174 	}
2175 
2176 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2177 	 && (cdm->pos.cookie.bus == bus)
2178 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2179 	 && (cdm->pos.cookie.target != NULL))
2180 		return(xpttargettraverse(bus,
2181 					(struct cam_et *)cdm->pos.cookie.target,
2182 					 xptedttargetfunc, arg));
2183 	else
2184 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2185 }
2186 
2187 static int
2188 xptedttargetfunc(struct cam_et *target, void *arg)
2189 {
2190 	struct ccb_dev_match *cdm;
2191 
2192 	cdm = (struct ccb_dev_match *)arg;
2193 
2194 	/*
2195 	 * If there is a device list generation recorded, check it to
2196 	 * make sure the device list hasn't changed.
2197 	 */
2198 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2199 	 && (cdm->pos.cookie.bus == target->bus)
2200 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2201 	 && (cdm->pos.cookie.target == target)
2202 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2203 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2204 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2205 	     target->generation)) {
2206 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2207 		return(0);
2208 	}
2209 
2210 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2211 	 && (cdm->pos.cookie.bus == target->bus)
2212 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2213 	 && (cdm->pos.cookie.target == target)
2214 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2215 	 && (cdm->pos.cookie.device != NULL))
2216 		return(xptdevicetraverse(target,
2217 					(struct cam_ed *)cdm->pos.cookie.device,
2218 					 xptedtdevicefunc, arg));
2219 	else
2220 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2221 }
2222 
2223 static int
2224 xptedtdevicefunc(struct cam_ed *device, void *arg)
2225 {
2226 
2227 	struct ccb_dev_match *cdm;
2228 	dev_match_ret retval;
2229 
2230 	cdm = (struct ccb_dev_match *)arg;
2231 
2232 	/*
2233 	 * If our position is for something deeper in the tree, that means
2234 	 * that we've already seen this node.  So, we keep going down.
2235 	 */
2236 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2237 	 && (cdm->pos.cookie.device == device)
2238 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2239 	 && (cdm->pos.cookie.periph != NULL))
2240 		retval = DM_RET_DESCEND;
2241 	else
2242 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2243 					device);
2244 
2245 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2246 		cdm->status = CAM_DEV_MATCH_ERROR;
2247 		return(0);
2248 	}
2249 
2250 	/*
2251 	 * If the copy flag is set, copy this device out.
2252 	 */
2253 	if (retval & DM_RET_COPY) {
2254 		int spaceleft, j;
2255 
2256 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2257 			sizeof(struct dev_match_result));
2258 
2259 		/*
2260 		 * If we don't have enough space to put in another
2261 		 * match result, save our position and tell the
2262 		 * user there are more devices to check.
2263 		 */
2264 		if (spaceleft < sizeof(struct dev_match_result)) {
2265 			bzero(&cdm->pos, sizeof(cdm->pos));
2266 			cdm->pos.position_type =
2267 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2268 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2269 
2270 			cdm->pos.cookie.bus = device->target->bus;
2271 			cdm->pos.generations[CAM_BUS_GENERATION]=
2272 				xsoftc.bus_generation;
2273 			cdm->pos.cookie.target = device->target;
2274 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2275 				device->target->bus->generation;
2276 			cdm->pos.cookie.device = device;
2277 			cdm->pos.generations[CAM_DEV_GENERATION] =
2278 				device->target->generation;
2279 			cdm->status = CAM_DEV_MATCH_MORE;
2280 			return(0);
2281 		}
2282 		j = cdm->num_matches;
2283 		cdm->num_matches++;
2284 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2285 		cdm->matches[j].result.device_result.path_id =
2286 			device->target->bus->path_id;
2287 		cdm->matches[j].result.device_result.target_id =
2288 			device->target->target_id;
2289 		cdm->matches[j].result.device_result.target_lun =
2290 			device->lun_id;
2291 		bcopy(&device->inq_data,
2292 		      &cdm->matches[j].result.device_result.inq_data,
2293 		      sizeof(struct scsi_inquiry_data));
2294 
2295 		/* Let the user know whether this device is unconfigured */
2296 		if (device->flags & CAM_DEV_UNCONFIGURED)
2297 			cdm->matches[j].result.device_result.flags =
2298 				DEV_RESULT_UNCONFIGURED;
2299 		else
2300 			cdm->matches[j].result.device_result.flags =
2301 				DEV_RESULT_NOFLAG;
2302 	}
2303 
2304 	/*
2305 	 * If the user isn't interested in peripherals, don't descend
2306 	 * the tree any further.
2307 	 */
2308 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2309 		return(1);
2310 
2311 	/*
2312 	 * If there is a peripheral list generation recorded, make sure
2313 	 * it hasn't changed.
2314 	 */
2315 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2316 	 && (device->target->bus == cdm->pos.cookie.bus)
2317 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2318 	 && (device->target == cdm->pos.cookie.target)
2319 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2320 	 && (device == cdm->pos.cookie.device)
2321 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2322 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2323 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2324 	     device->generation)){
2325 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2326 		return(0);
2327 	}
2328 
2329 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2330 	 && (cdm->pos.cookie.bus == device->target->bus)
2331 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2332 	 && (cdm->pos.cookie.target == device->target)
2333 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2334 	 && (cdm->pos.cookie.device == device)
2335 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2336 	 && (cdm->pos.cookie.periph != NULL))
2337 		return(xptperiphtraverse(device,
2338 				(struct cam_periph *)cdm->pos.cookie.periph,
2339 				xptedtperiphfunc, arg));
2340 	else
2341 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2342 }
2343 
2344 static int
2345 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2346 {
2347 	struct ccb_dev_match *cdm;
2348 	dev_match_ret retval;
2349 
2350 	cdm = (struct ccb_dev_match *)arg;
2351 
2352 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2353 
2354 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2355 		cdm->status = CAM_DEV_MATCH_ERROR;
2356 		return(0);
2357 	}
2358 
2359 	/*
2360 	 * If the copy flag is set, copy this peripheral out.
2361 	 */
2362 	if (retval & DM_RET_COPY) {
2363 		int spaceleft, j;
2364 
2365 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2366 			sizeof(struct dev_match_result));
2367 
2368 		/*
2369 		 * If we don't have enough space to put in another
2370 		 * match result, save our position and tell the
2371 		 * user there are more devices to check.
2372 		 */
2373 		if (spaceleft < sizeof(struct dev_match_result)) {
2374 			bzero(&cdm->pos, sizeof(cdm->pos));
2375 			cdm->pos.position_type =
2376 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2377 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2378 				CAM_DEV_POS_PERIPH;
2379 
2380 			cdm->pos.cookie.bus = periph->path->bus;
2381 			cdm->pos.generations[CAM_BUS_GENERATION]=
2382 				xsoftc.bus_generation;
2383 			cdm->pos.cookie.target = periph->path->target;
2384 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2385 				periph->path->bus->generation;
2386 			cdm->pos.cookie.device = periph->path->device;
2387 			cdm->pos.generations[CAM_DEV_GENERATION] =
2388 				periph->path->target->generation;
2389 			cdm->pos.cookie.periph = periph;
2390 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2391 				periph->path->device->generation;
2392 			cdm->status = CAM_DEV_MATCH_MORE;
2393 			return(0);
2394 		}
2395 
2396 		j = cdm->num_matches;
2397 		cdm->num_matches++;
2398 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2399 		cdm->matches[j].result.periph_result.path_id =
2400 			periph->path->bus->path_id;
2401 		cdm->matches[j].result.periph_result.target_id =
2402 			periph->path->target->target_id;
2403 		cdm->matches[j].result.periph_result.target_lun =
2404 			periph->path->device->lun_id;
2405 		cdm->matches[j].result.periph_result.unit_number =
2406 			periph->unit_number;
2407 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2408 			periph->periph_name, DEV_IDLEN);
2409 	}
2410 
2411 	return(1);
2412 }
2413 
2414 static int
2415 xptedtmatch(struct ccb_dev_match *cdm)
2416 {
2417 	int ret;
2418 
2419 	cdm->num_matches = 0;
2420 
2421 	/*
2422 	 * Check the bus list generation.  If it has changed, the user
2423 	 * needs to reset everything and start over.
2424 	 */
2425 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2426 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2427 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2428 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2429 		return(0);
2430 	}
2431 
2432 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2433 	 && (cdm->pos.cookie.bus != NULL))
2434 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2435 				     xptedtbusfunc, cdm);
2436 	else
2437 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2438 
2439 	/*
2440 	 * If we get back 0, that means that we had to stop before fully
2441 	 * traversing the EDT.  It also means that one of the subroutines
2442 	 * has set the status field to the proper value.  If we get back 1,
2443 	 * we've fully traversed the EDT and copied out any matching entries.
2444 	 */
2445 	if (ret == 1)
2446 		cdm->status = CAM_DEV_MATCH_LAST;
2447 
2448 	return(ret);
2449 }
2450 
2451 static int
2452 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2453 {
2454 	struct ccb_dev_match *cdm;
2455 
2456 	cdm = (struct ccb_dev_match *)arg;
2457 
2458 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2459 	 && (cdm->pos.cookie.pdrv == pdrv)
2460 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2461 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2462 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2463 	     (*pdrv)->generation)) {
2464 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2465 		return(0);
2466 	}
2467 
2468 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2469 	 && (cdm->pos.cookie.pdrv == pdrv)
2470 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2471 	 && (cdm->pos.cookie.periph != NULL))
2472 		return(xptpdperiphtraverse(pdrv,
2473 				(struct cam_periph *)cdm->pos.cookie.periph,
2474 				xptplistperiphfunc, arg));
2475 	else
2476 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2477 }
2478 
2479 static int
2480 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2481 {
2482 	struct ccb_dev_match *cdm;
2483 	dev_match_ret retval;
2484 
2485 	cdm = (struct ccb_dev_match *)arg;
2486 
2487 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2488 
2489 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2490 		cdm->status = CAM_DEV_MATCH_ERROR;
2491 		return(0);
2492 	}
2493 
2494 	/*
2495 	 * If the copy flag is set, copy this peripheral out.
2496 	 */
2497 	if (retval & DM_RET_COPY) {
2498 		int spaceleft, j;
2499 
2500 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2501 			sizeof(struct dev_match_result));
2502 
2503 		/*
2504 		 * If we don't have enough space to put in another
2505 		 * match result, save our position and tell the
2506 		 * user there are more devices to check.
2507 		 */
2508 		if (spaceleft < sizeof(struct dev_match_result)) {
2509 			struct periph_driver **pdrv;
2510 
2511 			pdrv = NULL;
2512 			bzero(&cdm->pos, sizeof(cdm->pos));
2513 			cdm->pos.position_type =
2514 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2515 				CAM_DEV_POS_PERIPH;
2516 
2517 			/*
2518 			 * This may look a bit non-sensical, but it is
2519 			 * actually quite logical.  There are very few
2520 			 * peripheral drivers, and bloating every peripheral
2521 			 * structure with a pointer back to its parent
2522 			 * peripheral driver linker set entry would cost
2523 			 * more in the long run than doing this quick lookup.
2524 			 */
2525 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2526 				if (strcmp((*pdrv)->driver_name,
2527 				    periph->periph_name) == 0)
2528 					break;
2529 			}
2530 
2531 			if (*pdrv == NULL) {
2532 				cdm->status = CAM_DEV_MATCH_ERROR;
2533 				return(0);
2534 			}
2535 
2536 			cdm->pos.cookie.pdrv = pdrv;
2537 			/*
2538 			 * The periph generation slot does double duty, as
2539 			 * does the periph pointer slot.  They are used for
2540 			 * both edt and pdrv lookups and positioning.
2541 			 */
2542 			cdm->pos.cookie.periph = periph;
2543 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2544 				(*pdrv)->generation;
2545 			cdm->status = CAM_DEV_MATCH_MORE;
2546 			return(0);
2547 		}
2548 
2549 		j = cdm->num_matches;
2550 		cdm->num_matches++;
2551 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2552 		cdm->matches[j].result.periph_result.path_id =
2553 			periph->path->bus->path_id;
2554 
2555 		/*
2556 		 * The transport layer peripheral doesn't have a target or
2557 		 * lun.
2558 		 */
2559 		if (periph->path->target)
2560 			cdm->matches[j].result.periph_result.target_id =
2561 				periph->path->target->target_id;
2562 		else
2563 			cdm->matches[j].result.periph_result.target_id = -1;
2564 
2565 		if (periph->path->device)
2566 			cdm->matches[j].result.periph_result.target_lun =
2567 				periph->path->device->lun_id;
2568 		else
2569 			cdm->matches[j].result.periph_result.target_lun = -1;
2570 
2571 		cdm->matches[j].result.periph_result.unit_number =
2572 			periph->unit_number;
2573 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2574 			periph->periph_name, DEV_IDLEN);
2575 	}
2576 
2577 	return(1);
2578 }
2579 
2580 static int
2581 xptperiphlistmatch(struct ccb_dev_match *cdm)
2582 {
2583 	int ret;
2584 
2585 	cdm->num_matches = 0;
2586 
2587 	/*
2588 	 * At this point in the edt traversal function, we check the bus
2589 	 * list generation to make sure that no busses have been added or
2590 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2591 	 * For the peripheral driver list traversal function, however, we
2592 	 * don't have to worry about new peripheral driver types coming or
2593 	 * going; they're in a linker set, and therefore can't change
2594 	 * without a recompile.
2595 	 */
2596 
2597 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2598 	 && (cdm->pos.cookie.pdrv != NULL))
2599 		ret = xptpdrvtraverse(
2600 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2601 				xptplistpdrvfunc, cdm);
2602 	else
2603 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2604 
2605 	/*
2606 	 * If we get back 0, that means that we had to stop before fully
2607 	 * traversing the peripheral driver tree.  It also means that one of
2608 	 * the subroutines has set the status field to the proper value.  If
2609 	 * we get back 1, we've fully traversed the EDT and copied out any
2610 	 * matching entries.
2611 	 */
2612 	if (ret == 1)
2613 		cdm->status = CAM_DEV_MATCH_LAST;
2614 
2615 	return(ret);
2616 }
2617 
2618 static int
2619 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2620 {
2621 	struct cam_eb *bus, *next_bus;
2622 	int retval;
2623 
2624 	retval = 1;
2625 
2626 	mtx_lock(&xsoftc.xpt_topo_lock);
2627 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2628 	     bus != NULL;
2629 	     bus = next_bus) {
2630 		next_bus = TAILQ_NEXT(bus, links);
2631 
2632 		mtx_unlock(&xsoftc.xpt_topo_lock);
2633 		CAM_SIM_LOCK(bus->sim);
2634 		retval = tr_func(bus, arg);
2635 		CAM_SIM_UNLOCK(bus->sim);
2636 		if (retval == 0)
2637 			return(retval);
2638 		mtx_lock(&xsoftc.xpt_topo_lock);
2639 	}
2640 	mtx_unlock(&xsoftc.xpt_topo_lock);
2641 
2642 	return(retval);
2643 }
2644 
2645 int
2646 xpt_sim_opened(struct cam_sim *sim)
2647 {
2648 	struct cam_eb *bus;
2649 	struct cam_et *target;
2650 	struct cam_ed *device;
2651 	struct cam_periph *periph;
2652 
2653 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2654 	mtx_assert(sim->mtx, MA_OWNED);
2655 
2656 	mtx_lock(&xsoftc.xpt_topo_lock);
2657 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2658 		if (bus->sim != sim)
2659 			continue;
2660 
2661 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2662 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2663 				SLIST_FOREACH(periph, &device->periphs,
2664 				    periph_links) {
2665 					if (periph->refcount > 0) {
2666 						mtx_unlock(&xsoftc.xpt_topo_lock);
2667 						return (1);
2668 					}
2669 				}
2670 			}
2671 		}
2672 	}
2673 
2674 	mtx_unlock(&xsoftc.xpt_topo_lock);
2675 	return (0);
2676 }
2677 
2678 static int
2679 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2680 		  xpt_targetfunc_t *tr_func, void *arg)
2681 {
2682 	struct cam_et *target, *next_target;
2683 	int retval;
2684 
2685 	retval = 1;
2686 	for (target = (start_target ? start_target :
2687 		       TAILQ_FIRST(&bus->et_entries));
2688 	     target != NULL; target = next_target) {
2689 
2690 		next_target = TAILQ_NEXT(target, links);
2691 
2692 		retval = tr_func(target, arg);
2693 
2694 		if (retval == 0)
2695 			return(retval);
2696 	}
2697 
2698 	return(retval);
2699 }
2700 
2701 static int
2702 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2703 		  xpt_devicefunc_t *tr_func, void *arg)
2704 {
2705 	struct cam_ed *device, *next_device;
2706 	int retval;
2707 
2708 	retval = 1;
2709 	for (device = (start_device ? start_device :
2710 		       TAILQ_FIRST(&target->ed_entries));
2711 	     device != NULL;
2712 	     device = next_device) {
2713 
2714 		next_device = TAILQ_NEXT(device, links);
2715 
2716 		retval = tr_func(device, arg);
2717 
2718 		if (retval == 0)
2719 			return(retval);
2720 	}
2721 
2722 	return(retval);
2723 }
2724 
2725 static int
2726 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2727 		  xpt_periphfunc_t *tr_func, void *arg)
2728 {
2729 	struct cam_periph *periph, *next_periph;
2730 	int retval;
2731 
2732 	retval = 1;
2733 
2734 	for (periph = (start_periph ? start_periph :
2735 		       SLIST_FIRST(&device->periphs));
2736 	     periph != NULL;
2737 	     periph = next_periph) {
2738 
2739 		next_periph = SLIST_NEXT(periph, periph_links);
2740 
2741 		retval = tr_func(periph, arg);
2742 		if (retval == 0)
2743 			return(retval);
2744 	}
2745 
2746 	return(retval);
2747 }
2748 
2749 static int
2750 xptpdrvtraverse(struct periph_driver **start_pdrv,
2751 		xpt_pdrvfunc_t *tr_func, void *arg)
2752 {
2753 	struct periph_driver **pdrv;
2754 	int retval;
2755 
2756 	retval = 1;
2757 
2758 	/*
2759 	 * We don't traverse the peripheral driver list like we do the
2760 	 * other lists, because it is a linker set, and therefore cannot be
2761 	 * changed during runtime.  If the peripheral driver list is ever
2762 	 * re-done to be something other than a linker set (i.e. it can
2763 	 * change while the system is running), the list traversal should
2764 	 * be modified to work like the other traversal functions.
2765 	 */
2766 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2767 	     *pdrv != NULL; pdrv++) {
2768 		retval = tr_func(pdrv, arg);
2769 
2770 		if (retval == 0)
2771 			return(retval);
2772 	}
2773 
2774 	return(retval);
2775 }
2776 
2777 static int
2778 xptpdperiphtraverse(struct periph_driver **pdrv,
2779 		    struct cam_periph *start_periph,
2780 		    xpt_periphfunc_t *tr_func, void *arg)
2781 {
2782 	struct cam_periph *periph, *next_periph;
2783 	int retval;
2784 
2785 	retval = 1;
2786 
2787 	for (periph = (start_periph ? start_periph :
2788 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2789 	     periph = next_periph) {
2790 
2791 		next_periph = TAILQ_NEXT(periph, unit_links);
2792 
2793 		retval = tr_func(periph, arg);
2794 		if (retval == 0)
2795 			return(retval);
2796 	}
2797 	return(retval);
2798 }
2799 
2800 static int
2801 xptdefbusfunc(struct cam_eb *bus, void *arg)
2802 {
2803 	struct xpt_traverse_config *tr_config;
2804 
2805 	tr_config = (struct xpt_traverse_config *)arg;
2806 
2807 	if (tr_config->depth == XPT_DEPTH_BUS) {
2808 		xpt_busfunc_t *tr_func;
2809 
2810 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2811 
2812 		return(tr_func(bus, tr_config->tr_arg));
2813 	} else
2814 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2815 }
2816 
2817 static int
2818 xptdeftargetfunc(struct cam_et *target, void *arg)
2819 {
2820 	struct xpt_traverse_config *tr_config;
2821 
2822 	tr_config = (struct xpt_traverse_config *)arg;
2823 
2824 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2825 		xpt_targetfunc_t *tr_func;
2826 
2827 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2828 
2829 		return(tr_func(target, tr_config->tr_arg));
2830 	} else
2831 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2832 }
2833 
2834 static int
2835 xptdefdevicefunc(struct cam_ed *device, void *arg)
2836 {
2837 	struct xpt_traverse_config *tr_config;
2838 
2839 	tr_config = (struct xpt_traverse_config *)arg;
2840 
2841 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2842 		xpt_devicefunc_t *tr_func;
2843 
2844 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2845 
2846 		return(tr_func(device, tr_config->tr_arg));
2847 	} else
2848 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2849 }
2850 
2851 static int
2852 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2853 {
2854 	struct xpt_traverse_config *tr_config;
2855 	xpt_periphfunc_t *tr_func;
2856 
2857 	tr_config = (struct xpt_traverse_config *)arg;
2858 
2859 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2860 
2861 	/*
2862 	 * Unlike the other default functions, we don't check for depth
2863 	 * here.  The peripheral driver level is the last level in the EDT,
2864 	 * so if we're here, we should execute the function in question.
2865 	 */
2866 	return(tr_func(periph, tr_config->tr_arg));
2867 }
2868 
2869 /*
2870  * Execute the given function for every bus in the EDT.
2871  */
2872 static int
2873 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2874 {
2875 	struct xpt_traverse_config tr_config;
2876 
2877 	tr_config.depth = XPT_DEPTH_BUS;
2878 	tr_config.tr_func = tr_func;
2879 	tr_config.tr_arg = arg;
2880 
2881 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2882 }
2883 
2884 /*
2885  * Execute the given function for every device in the EDT.
2886  */
2887 static int
2888 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2889 {
2890 	struct xpt_traverse_config tr_config;
2891 
2892 	tr_config.depth = XPT_DEPTH_DEVICE;
2893 	tr_config.tr_func = tr_func;
2894 	tr_config.tr_arg = arg;
2895 
2896 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2897 }
2898 
2899 static int
2900 xptsetasyncfunc(struct cam_ed *device, void *arg)
2901 {
2902 	struct cam_path path;
2903 	struct ccb_getdev cgd;
2904 	struct async_node *cur_entry;
2905 
2906 	cur_entry = (struct async_node *)arg;
2907 
2908 	/*
2909 	 * Don't report unconfigured devices (Wildcard devs,
2910 	 * devices only for target mode, device instances
2911 	 * that have been invalidated but are waiting for
2912 	 * their last reference count to be released).
2913 	 */
2914 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2915 		return (1);
2916 
2917 	xpt_compile_path(&path,
2918 			 NULL,
2919 			 device->target->bus->path_id,
2920 			 device->target->target_id,
2921 			 device->lun_id);
2922 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2923 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2924 	xpt_action((union ccb *)&cgd);
2925 	cur_entry->callback(cur_entry->callback_arg,
2926 			    AC_FOUND_DEVICE,
2927 			    &path, &cgd);
2928 	xpt_release_path(&path);
2929 
2930 	return(1);
2931 }
2932 
2933 static int
2934 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2935 {
2936 	struct cam_path path;
2937 	struct ccb_pathinq cpi;
2938 	struct async_node *cur_entry;
2939 
2940 	cur_entry = (struct async_node *)arg;
2941 
2942 	xpt_compile_path(&path, /*periph*/NULL,
2943 			 bus->sim->path_id,
2944 			 CAM_TARGET_WILDCARD,
2945 			 CAM_LUN_WILDCARD);
2946 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2947 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2948 	xpt_action((union ccb *)&cpi);
2949 	cur_entry->callback(cur_entry->callback_arg,
2950 			    AC_PATH_REGISTERED,
2951 			    &path, &cpi);
2952 	xpt_release_path(&path);
2953 
2954 	return(1);
2955 }
2956 
2957 static void
2958 xpt_action_sasync_cb(void *context, int pending)
2959 {
2960 	struct async_node *cur_entry;
2961 	struct xpt_task *task;
2962 	uint32_t added;
2963 
2964 	task = (struct xpt_task *)context;
2965 	cur_entry = (struct async_node *)task->data1;
2966 	added = task->data2;
2967 
2968 	if ((added & AC_FOUND_DEVICE) != 0) {
2969 		/*
2970 		 * Get this peripheral up to date with all
2971 		 * the currently existing devices.
2972 		 */
2973 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2974 	}
2975 	if ((added & AC_PATH_REGISTERED) != 0) {
2976 		/*
2977 		 * Get this peripheral up to date with all
2978 		 * the currently existing busses.
2979 		 */
2980 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2981 	}
2982 
2983 	free(task, M_CAMXPT);
2984 }
2985 
2986 void
2987 xpt_action(union ccb *start_ccb)
2988 {
2989 
2990 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2991 
2992 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2993 
2994 	switch (start_ccb->ccb_h.func_code) {
2995 	case XPT_SCSI_IO:
2996 	{
2997 		struct cam_ed *device;
2998 #ifdef CAMDEBUG
2999 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3000 		struct cam_path *path;
3001 
3002 		path = start_ccb->ccb_h.path;
3003 #endif
3004 
3005 		/*
3006 		 * For the sake of compatibility with SCSI-1
3007 		 * devices that may not understand the identify
3008 		 * message, we include lun information in the
3009 		 * second byte of all commands.  SCSI-1 specifies
3010 		 * that luns are a 3 bit value and reserves only 3
3011 		 * bits for lun information in the CDB.  Later
3012 		 * revisions of the SCSI spec allow for more than 8
3013 		 * luns, but have deprecated lun information in the
3014 		 * CDB.  So, if the lun won't fit, we must omit.
3015 		 *
3016 		 * Also be aware that during initial probing for devices,
3017 		 * the inquiry information is unknown but initialized to 0.
3018 		 * This means that this code will be exercised while probing
3019 		 * devices with an ANSI revision greater than 2.
3020 		 */
3021 		device = start_ccb->ccb_h.path->device;
3022 		if (device->protocol_version <= SCSI_REV_2
3023 		 && start_ccb->ccb_h.target_lun < 8
3024 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
3025 
3026 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
3027 			    start_ccb->ccb_h.target_lun << 5;
3028 		}
3029 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3030 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3031 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3032 			  	       &path->device->inq_data),
3033 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3034 					  cdb_str, sizeof(cdb_str))));
3035 	}
3036 	/* FALLTHROUGH */
3037 	case XPT_TARGET_IO:
3038 	case XPT_CONT_TARGET_IO:
3039 		start_ccb->csio.sense_resid = 0;
3040 		start_ccb->csio.resid = 0;
3041 		/* FALLTHROUGH */
3042 	case XPT_RESET_DEV:
3043 	case XPT_ENG_EXEC:
3044 	{
3045 		struct cam_path *path;
3046 		int runq;
3047 
3048 		path = start_ccb->ccb_h.path;
3049 
3050 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3051 		if (path->device->qfrozen_cnt == 0)
3052 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3053 		else
3054 			runq = 0;
3055 		if (runq != 0)
3056 			xpt_run_dev_sendq(path->bus);
3057 		break;
3058 	}
3059 	case XPT_SET_TRAN_SETTINGS:
3060 	{
3061 		xpt_set_transfer_settings(&start_ccb->cts,
3062 					  start_ccb->ccb_h.path->device,
3063 					  /*async_update*/FALSE);
3064 		break;
3065 	}
3066 	case XPT_CALC_GEOMETRY:
3067 	{
3068 		struct cam_sim *sim;
3069 
3070 		/* Filter out garbage */
3071 		if (start_ccb->ccg.block_size == 0
3072 		 || start_ccb->ccg.volume_size == 0) {
3073 			start_ccb->ccg.cylinders = 0;
3074 			start_ccb->ccg.heads = 0;
3075 			start_ccb->ccg.secs_per_track = 0;
3076 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3077 			break;
3078 		}
3079 #ifdef PC98
3080 		/*
3081 		 * In a PC-98 system, geometry translation depens on
3082 		 * the "real" device geometry obtained from mode page 4.
3083 		 * SCSI geometry translation is performed in the
3084 		 * initialization routine of the SCSI BIOS and the result
3085 		 * stored in host memory.  If the translation is available
3086 		 * in host memory, use it.  If not, rely on the default
3087 		 * translation the device driver performs.
3088 		 */
3089 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
3090 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3091 			break;
3092 		}
3093 #endif
3094 		sim = start_ccb->ccb_h.path->bus->sim;
3095 		(*(sim->sim_action))(sim, start_ccb);
3096 		break;
3097 	}
3098 	case XPT_ABORT:
3099 	{
3100 		union ccb* abort_ccb;
3101 
3102 		abort_ccb = start_ccb->cab.abort_ccb;
3103 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3104 
3105 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3106 				struct cam_ccbq *ccbq;
3107 
3108 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3109 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3110 				abort_ccb->ccb_h.status =
3111 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3112 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3113 				xpt_done(abort_ccb);
3114 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3115 				break;
3116 			}
3117 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3118 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3119 				/*
3120 				 * We've caught this ccb en route to
3121 				 * the SIM.  Flag it for abort and the
3122 				 * SIM will do so just before starting
3123 				 * real work on the CCB.
3124 				 */
3125 				abort_ccb->ccb_h.status =
3126 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3127 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3128 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3129 				break;
3130 			}
3131 		}
3132 		if (XPT_FC_IS_QUEUED(abort_ccb)
3133 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3134 			/*
3135 			 * It's already completed but waiting
3136 			 * for our SWI to get to it.
3137 			 */
3138 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3139 			break;
3140 		}
3141 		/*
3142 		 * If we weren't able to take care of the abort request
3143 		 * in the XPT, pass the request down to the SIM for processing.
3144 		 */
3145 	}
3146 	/* FALLTHROUGH */
3147 	case XPT_ACCEPT_TARGET_IO:
3148 	case XPT_EN_LUN:
3149 	case XPT_IMMED_NOTIFY:
3150 	case XPT_NOTIFY_ACK:
3151 	case XPT_GET_TRAN_SETTINGS:
3152 	case XPT_RESET_BUS:
3153 	{
3154 		struct cam_sim *sim;
3155 
3156 		sim = start_ccb->ccb_h.path->bus->sim;
3157 		(*(sim->sim_action))(sim, start_ccb);
3158 		break;
3159 	}
3160 	case XPT_PATH_INQ:
3161 	{
3162 		struct cam_sim *sim;
3163 
3164 		sim = start_ccb->ccb_h.path->bus->sim;
3165 		(*(sim->sim_action))(sim, start_ccb);
3166 		break;
3167 	}
3168 	case XPT_PATH_STATS:
3169 		start_ccb->cpis.last_reset =
3170 			start_ccb->ccb_h.path->bus->last_reset;
3171 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3172 		break;
3173 	case XPT_GDEV_TYPE:
3174 	{
3175 		struct cam_ed *dev;
3176 
3177 		dev = start_ccb->ccb_h.path->device;
3178 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3179 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3180 		} else {
3181 			struct ccb_getdev *cgd;
3182 			struct cam_eb *bus;
3183 			struct cam_et *tar;
3184 
3185 			cgd = &start_ccb->cgd;
3186 			bus = cgd->ccb_h.path->bus;
3187 			tar = cgd->ccb_h.path->target;
3188 			cgd->inq_data = dev->inq_data;
3189 			cgd->ccb_h.status = CAM_REQ_CMP;
3190 			cgd->serial_num_len = dev->serial_num_len;
3191 			if ((dev->serial_num_len > 0)
3192 			 && (dev->serial_num != NULL))
3193 				bcopy(dev->serial_num, cgd->serial_num,
3194 				      dev->serial_num_len);
3195 		}
3196 		break;
3197 	}
3198 	case XPT_GDEV_STATS:
3199 	{
3200 		struct cam_ed *dev;
3201 
3202 		dev = start_ccb->ccb_h.path->device;
3203 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3204 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3205 		} else {
3206 			struct ccb_getdevstats *cgds;
3207 			struct cam_eb *bus;
3208 			struct cam_et *tar;
3209 
3210 			cgds = &start_ccb->cgds;
3211 			bus = cgds->ccb_h.path->bus;
3212 			tar = cgds->ccb_h.path->target;
3213 			cgds->dev_openings = dev->ccbq.dev_openings;
3214 			cgds->dev_active = dev->ccbq.dev_active;
3215 			cgds->devq_openings = dev->ccbq.devq_openings;
3216 			cgds->devq_queued = dev->ccbq.queue.entries;
3217 			cgds->held = dev->ccbq.held;
3218 			cgds->last_reset = tar->last_reset;
3219 			cgds->maxtags = dev->quirk->maxtags;
3220 			cgds->mintags = dev->quirk->mintags;
3221 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3222 				cgds->last_reset = bus->last_reset;
3223 			cgds->ccb_h.status = CAM_REQ_CMP;
3224 		}
3225 		break;
3226 	}
3227 	case XPT_GDEVLIST:
3228 	{
3229 		struct cam_periph	*nperiph;
3230 		struct periph_list	*periph_head;
3231 		struct ccb_getdevlist	*cgdl;
3232 		u_int			i;
3233 		struct cam_ed		*device;
3234 		int			found;
3235 
3236 
3237 		found = 0;
3238 
3239 		/*
3240 		 * Don't want anyone mucking with our data.
3241 		 */
3242 		device = start_ccb->ccb_h.path->device;
3243 		periph_head = &device->periphs;
3244 		cgdl = &start_ccb->cgdl;
3245 
3246 		/*
3247 		 * Check and see if the list has changed since the user
3248 		 * last requested a list member.  If so, tell them that the
3249 		 * list has changed, and therefore they need to start over
3250 		 * from the beginning.
3251 		 */
3252 		if ((cgdl->index != 0) &&
3253 		    (cgdl->generation != device->generation)) {
3254 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3255 			break;
3256 		}
3257 
3258 		/*
3259 		 * Traverse the list of peripherals and attempt to find
3260 		 * the requested peripheral.
3261 		 */
3262 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3263 		     (nperiph != NULL) && (i <= cgdl->index);
3264 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3265 			if (i == cgdl->index) {
3266 				strncpy(cgdl->periph_name,
3267 					nperiph->periph_name,
3268 					DEV_IDLEN);
3269 				cgdl->unit_number = nperiph->unit_number;
3270 				found = 1;
3271 			}
3272 		}
3273 		if (found == 0) {
3274 			cgdl->status = CAM_GDEVLIST_ERROR;
3275 			break;
3276 		}
3277 
3278 		if (nperiph == NULL)
3279 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3280 		else
3281 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3282 
3283 		cgdl->index++;
3284 		cgdl->generation = device->generation;
3285 
3286 		cgdl->ccb_h.status = CAM_REQ_CMP;
3287 		break;
3288 	}
3289 	case XPT_DEV_MATCH:
3290 	{
3291 		dev_pos_type position_type;
3292 		struct ccb_dev_match *cdm;
3293 
3294 		cdm = &start_ccb->cdm;
3295 
3296 		/*
3297 		 * There are two ways of getting at information in the EDT.
3298 		 * The first way is via the primary EDT tree.  It starts
3299 		 * with a list of busses, then a list of targets on a bus,
3300 		 * then devices/luns on a target, and then peripherals on a
3301 		 * device/lun.  The "other" way is by the peripheral driver
3302 		 * lists.  The peripheral driver lists are organized by
3303 		 * peripheral driver.  (obviously)  So it makes sense to
3304 		 * use the peripheral driver list if the user is looking
3305 		 * for something like "da1", or all "da" devices.  If the
3306 		 * user is looking for something on a particular bus/target
3307 		 * or lun, it's generally better to go through the EDT tree.
3308 		 */
3309 
3310 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3311 			position_type = cdm->pos.position_type;
3312 		else {
3313 			u_int i;
3314 
3315 			position_type = CAM_DEV_POS_NONE;
3316 
3317 			for (i = 0; i < cdm->num_patterns; i++) {
3318 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3319 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3320 					position_type = CAM_DEV_POS_EDT;
3321 					break;
3322 				}
3323 			}
3324 
3325 			if (cdm->num_patterns == 0)
3326 				position_type = CAM_DEV_POS_EDT;
3327 			else if (position_type == CAM_DEV_POS_NONE)
3328 				position_type = CAM_DEV_POS_PDRV;
3329 		}
3330 
3331 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3332 		case CAM_DEV_POS_EDT:
3333 			xptedtmatch(cdm);
3334 			break;
3335 		case CAM_DEV_POS_PDRV:
3336 			xptperiphlistmatch(cdm);
3337 			break;
3338 		default:
3339 			cdm->status = CAM_DEV_MATCH_ERROR;
3340 			break;
3341 		}
3342 
3343 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3344 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3345 		else
3346 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3347 
3348 		break;
3349 	}
3350 	case XPT_SASYNC_CB:
3351 	{
3352 		struct ccb_setasync *csa;
3353 		struct async_node *cur_entry;
3354 		struct async_list *async_head;
3355 		u_int32_t added;
3356 
3357 		csa = &start_ccb->csa;
3358 		added = csa->event_enable;
3359 		async_head = &csa->ccb_h.path->device->asyncs;
3360 
3361 		/*
3362 		 * If there is already an entry for us, simply
3363 		 * update it.
3364 		 */
3365 		cur_entry = SLIST_FIRST(async_head);
3366 		while (cur_entry != NULL) {
3367 			if ((cur_entry->callback_arg == csa->callback_arg)
3368 			 && (cur_entry->callback == csa->callback))
3369 				break;
3370 			cur_entry = SLIST_NEXT(cur_entry, links);
3371 		}
3372 
3373 		if (cur_entry != NULL) {
3374 		 	/*
3375 			 * If the request has no flags set,
3376 			 * remove the entry.
3377 			 */
3378 			added &= ~cur_entry->event_enable;
3379 			if (csa->event_enable == 0) {
3380 				SLIST_REMOVE(async_head, cur_entry,
3381 					     async_node, links);
3382 				csa->ccb_h.path->device->refcount--;
3383 				free(cur_entry, M_CAMXPT);
3384 			} else {
3385 				cur_entry->event_enable = csa->event_enable;
3386 			}
3387 		} else {
3388 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3389 					   M_NOWAIT);
3390 			if (cur_entry == NULL) {
3391 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3392 				break;
3393 			}
3394 			cur_entry->event_enable = csa->event_enable;
3395 			cur_entry->callback_arg = csa->callback_arg;
3396 			cur_entry->callback = csa->callback;
3397 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3398 			csa->ccb_h.path->device->refcount++;
3399 		}
3400 
3401 		/*
3402 		 * Need to decouple this operation via a taqskqueue so that
3403 		 * the locking doesn't become a mess.
3404 		 */
3405 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3406 			struct xpt_task *task;
3407 
3408 			task = malloc(sizeof(struct xpt_task), M_CAMXPT,
3409 				      M_NOWAIT);
3410 			if (task == NULL) {
3411 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3412 				break;
3413 			}
3414 
3415 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3416 			task->data1 = cur_entry;
3417 			task->data2 = added;
3418 			taskqueue_enqueue(taskqueue_thread, &task->task);
3419 		}
3420 
3421 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3422 		break;
3423 	}
3424 	case XPT_REL_SIMQ:
3425 	{
3426 		struct ccb_relsim *crs;
3427 		struct cam_ed *dev;
3428 
3429 		crs = &start_ccb->crs;
3430 		dev = crs->ccb_h.path->device;
3431 		if (dev == NULL) {
3432 
3433 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3434 			break;
3435 		}
3436 
3437 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3438 
3439  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3440 				/* Don't ever go below one opening */
3441 				if (crs->openings > 0) {
3442 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3443 							    crs->openings);
3444 
3445 					if (bootverbose) {
3446 						xpt_print(crs->ccb_h.path,
3447 						    "tagged openings now %d\n",
3448 						    crs->openings);
3449 					}
3450 				}
3451 			}
3452 		}
3453 
3454 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3455 
3456 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3457 
3458 				/*
3459 				 * Just extend the old timeout and decrement
3460 				 * the freeze count so that a single timeout
3461 				 * is sufficient for releasing the queue.
3462 				 */
3463 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3464 				callout_stop(&dev->callout);
3465 			} else {
3466 
3467 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3468 			}
3469 
3470 			callout_reset(&dev->callout,
3471 			    (crs->release_timeout * hz) / 1000,
3472 			    xpt_release_devq_timeout, dev);
3473 
3474 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3475 
3476 		}
3477 
3478 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3479 
3480 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3481 				/*
3482 				 * Decrement the freeze count so that a single
3483 				 * completion is still sufficient to unfreeze
3484 				 * the queue.
3485 				 */
3486 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3487 			} else {
3488 
3489 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3490 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3491 			}
3492 		}
3493 
3494 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3495 
3496 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3497 			 || (dev->ccbq.dev_active == 0)) {
3498 
3499 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3500 			} else {
3501 
3502 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3503 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3504 			}
3505 		}
3506 
3507 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3508 
3509 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3510 					 /*run_queue*/TRUE);
3511 		}
3512 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3513 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3514 		break;
3515 	}
3516 	case XPT_SCAN_BUS:
3517 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3518 		break;
3519 	case XPT_SCAN_LUN:
3520 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3521 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3522 			     start_ccb);
3523 		break;
3524 	case XPT_DEBUG: {
3525 #ifdef CAMDEBUG
3526 #ifdef CAM_DEBUG_DELAY
3527 		cam_debug_delay = CAM_DEBUG_DELAY;
3528 #endif
3529 		cam_dflags = start_ccb->cdbg.flags;
3530 		if (cam_dpath != NULL) {
3531 			xpt_free_path(cam_dpath);
3532 			cam_dpath = NULL;
3533 		}
3534 
3535 		if (cam_dflags != CAM_DEBUG_NONE) {
3536 			if (xpt_create_path(&cam_dpath, xpt_periph,
3537 					    start_ccb->ccb_h.path_id,
3538 					    start_ccb->ccb_h.target_id,
3539 					    start_ccb->ccb_h.target_lun) !=
3540 					    CAM_REQ_CMP) {
3541 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3542 				cam_dflags = CAM_DEBUG_NONE;
3543 			} else {
3544 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3545 				xpt_print(cam_dpath, "debugging flags now %x\n",
3546 				    cam_dflags);
3547 			}
3548 		} else {
3549 			cam_dpath = NULL;
3550 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3551 		}
3552 #else /* !CAMDEBUG */
3553 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3554 #endif /* CAMDEBUG */
3555 		break;
3556 	}
3557 	case XPT_NOOP:
3558 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3559 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3560 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3561 		break;
3562 	default:
3563 	case XPT_SDEV_TYPE:
3564 	case XPT_TERM_IO:
3565 	case XPT_ENG_INQ:
3566 		/* XXX Implement */
3567 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3568 		break;
3569 	}
3570 }
3571 
3572 void
3573 xpt_polled_action(union ccb *start_ccb)
3574 {
3575 	u_int32_t timeout;
3576 	struct	  cam_sim *sim;
3577 	struct	  cam_devq *devq;
3578 	struct	  cam_ed *dev;
3579 
3580 
3581 	timeout = start_ccb->ccb_h.timeout;
3582 	sim = start_ccb->ccb_h.path->bus->sim;
3583 	devq = sim->devq;
3584 	dev = start_ccb->ccb_h.path->device;
3585 
3586 	mtx_assert(sim->mtx, MA_OWNED);
3587 
3588 	/*
3589 	 * Steal an opening so that no other queued requests
3590 	 * can get it before us while we simulate interrupts.
3591 	 */
3592 	dev->ccbq.devq_openings--;
3593 	dev->ccbq.dev_openings--;
3594 
3595 	while(((devq != NULL && devq->send_openings <= 0) ||
3596 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3597 		DELAY(1000);
3598 		(*(sim->sim_poll))(sim);
3599 		camisr_runqueue(&sim->sim_doneq);
3600 	}
3601 
3602 	dev->ccbq.devq_openings++;
3603 	dev->ccbq.dev_openings++;
3604 
3605 	if (timeout != 0) {
3606 		xpt_action(start_ccb);
3607 		while(--timeout > 0) {
3608 			(*(sim->sim_poll))(sim);
3609 			camisr_runqueue(&sim->sim_doneq);
3610 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3611 			    != CAM_REQ_INPROG)
3612 				break;
3613 			DELAY(1000);
3614 		}
3615 		if (timeout == 0) {
3616 			/*
3617 			 * XXX Is it worth adding a sim_timeout entry
3618 			 * point so we can attempt recovery?  If
3619 			 * this is only used for dumps, I don't think
3620 			 * it is.
3621 			 */
3622 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3623 		}
3624 	} else {
3625 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3626 	}
3627 }
3628 
3629 /*
3630  * Schedule a peripheral driver to receive a ccb when it's
3631  * target device has space for more transactions.
3632  */
3633 void
3634 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3635 {
3636 	struct cam_ed *device;
3637 	int runq;
3638 
3639 	mtx_assert(perph->sim->mtx, MA_OWNED);
3640 
3641 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3642 	device = perph->path->device;
3643 	if (periph_is_queued(perph)) {
3644 		/* Simply reorder based on new priority */
3645 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3646 			  ("   change priority to %d\n", new_priority));
3647 		if (new_priority < perph->pinfo.priority) {
3648 			camq_change_priority(&device->drvq,
3649 					     perph->pinfo.index,
3650 					     new_priority);
3651 		}
3652 		runq = 0;
3653 	} else {
3654 		/* New entry on the queue */
3655 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3656 			  ("   added periph to queue\n"));
3657 		perph->pinfo.priority = new_priority;
3658 		perph->pinfo.generation = ++device->drvq.generation;
3659 		camq_insert(&device->drvq, &perph->pinfo);
3660 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3661 	}
3662 	if (runq != 0) {
3663 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3664 			  ("   calling xpt_run_devq\n"));
3665 		xpt_run_dev_allocq(perph->path->bus);
3666 	}
3667 }
3668 
3669 
3670 /*
3671  * Schedule a device to run on a given queue.
3672  * If the device was inserted as a new entry on the queue,
3673  * return 1 meaning the device queue should be run. If we
3674  * were already queued, implying someone else has already
3675  * started the queue, return 0 so the caller doesn't attempt
3676  * to run the queue.
3677  */
3678 static int
3679 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3680 		 u_int32_t new_priority)
3681 {
3682 	int retval;
3683 	u_int32_t old_priority;
3684 
3685 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3686 
3687 	old_priority = pinfo->priority;
3688 
3689 	/*
3690 	 * Are we already queued?
3691 	 */
3692 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3693 		/* Simply reorder based on new priority */
3694 		if (new_priority < old_priority) {
3695 			camq_change_priority(queue, pinfo->index,
3696 					     new_priority);
3697 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3698 					("changed priority to %d\n",
3699 					 new_priority));
3700 		}
3701 		retval = 0;
3702 	} else {
3703 		/* New entry on the queue */
3704 		if (new_priority < old_priority)
3705 			pinfo->priority = new_priority;
3706 
3707 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3708 				("Inserting onto queue\n"));
3709 		pinfo->generation = ++queue->generation;
3710 		camq_insert(queue, pinfo);
3711 		retval = 1;
3712 	}
3713 	return (retval);
3714 }
3715 
3716 static void
3717 xpt_run_dev_allocq(struct cam_eb *bus)
3718 {
3719 	struct	cam_devq *devq;
3720 
3721 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3722 	devq = bus->sim->devq;
3723 
3724 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3725 			("   qfrozen_cnt == 0x%x, entries == %d, "
3726 			 "openings == %d, active == %d\n",
3727 			 devq->alloc_queue.qfrozen_cnt,
3728 			 devq->alloc_queue.entries,
3729 			 devq->alloc_openings,
3730 			 devq->alloc_active));
3731 
3732 	devq->alloc_queue.qfrozen_cnt++;
3733 	while ((devq->alloc_queue.entries > 0)
3734 	    && (devq->alloc_openings > 0)
3735 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3736 		struct	cam_ed_qinfo *qinfo;
3737 		struct	cam_ed *device;
3738 		union	ccb *work_ccb;
3739 		struct	cam_periph *drv;
3740 		struct	camq *drvq;
3741 
3742 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3743 							   CAMQ_HEAD);
3744 		device = qinfo->device;
3745 
3746 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3747 				("running device %p\n", device));
3748 
3749 		drvq = &device->drvq;
3750 
3751 #ifdef CAMDEBUG
3752 		if (drvq->entries <= 0) {
3753 			panic("xpt_run_dev_allocq: "
3754 			      "Device on queue without any work to do");
3755 		}
3756 #endif
3757 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3758 			devq->alloc_openings--;
3759 			devq->alloc_active++;
3760 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3761 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3762 				      drv->pinfo.priority);
3763 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3764 					("calling periph start\n"));
3765 			drv->periph_start(drv, work_ccb);
3766 		} else {
3767 			/*
3768 			 * Malloc failure in alloc_ccb
3769 			 */
3770 			/*
3771 			 * XXX add us to a list to be run from free_ccb
3772 			 * if we don't have any ccbs active on this
3773 			 * device queue otherwise we may never get run
3774 			 * again.
3775 			 */
3776 			break;
3777 		}
3778 
3779 		if (drvq->entries > 0) {
3780 			/* We have more work.  Attempt to reschedule */
3781 			xpt_schedule_dev_allocq(bus, device);
3782 		}
3783 	}
3784 	devq->alloc_queue.qfrozen_cnt--;
3785 }
3786 
3787 static void
3788 xpt_run_dev_sendq(struct cam_eb *bus)
3789 {
3790 	struct	cam_devq *devq;
3791 
3792 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3793 
3794 	devq = bus->sim->devq;
3795 
3796 	devq->send_queue.qfrozen_cnt++;
3797 	while ((devq->send_queue.entries > 0)
3798 	    && (devq->send_openings > 0)) {
3799 		struct	cam_ed_qinfo *qinfo;
3800 		struct	cam_ed *device;
3801 		union ccb *work_ccb;
3802 		struct	cam_sim *sim;
3803 
3804 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3805 			break;
3806 		}
3807 
3808 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3809 							   CAMQ_HEAD);
3810 		device = qinfo->device;
3811 
3812 		/*
3813 		 * If the device has been "frozen", don't attempt
3814 		 * to run it.
3815 		 */
3816 		if (device->qfrozen_cnt > 0) {
3817 			continue;
3818 		}
3819 
3820 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3821 				("running device %p\n", device));
3822 
3823 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3824 		if (work_ccb == NULL) {
3825 			printf("device on run queue with no ccbs???\n");
3826 			continue;
3827 		}
3828 
3829 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3830 
3831 			mtx_lock(&xsoftc.xpt_lock);
3832 		 	if (xsoftc.num_highpower <= 0) {
3833 				/*
3834 				 * We got a high power command, but we
3835 				 * don't have any available slots.  Freeze
3836 				 * the device queue until we have a slot
3837 				 * available.
3838 				 */
3839 				device->qfrozen_cnt++;
3840 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3841 						   &work_ccb->ccb_h,
3842 						   xpt_links.stqe);
3843 
3844 				mtx_unlock(&xsoftc.xpt_lock);
3845 				continue;
3846 			} else {
3847 				/*
3848 				 * Consume a high power slot while
3849 				 * this ccb runs.
3850 				 */
3851 				xsoftc.num_highpower--;
3852 			}
3853 			mtx_unlock(&xsoftc.xpt_lock);
3854 		}
3855 		devq->active_dev = device;
3856 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3857 
3858 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3859 
3860 		devq->send_openings--;
3861 		devq->send_active++;
3862 
3863 		if (device->ccbq.queue.entries > 0)
3864 			xpt_schedule_dev_sendq(bus, device);
3865 
3866 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3867 			/*
3868 			 * The client wants to freeze the queue
3869 			 * after this CCB is sent.
3870 			 */
3871 			device->qfrozen_cnt++;
3872 		}
3873 
3874 		/* In Target mode, the peripheral driver knows best... */
3875 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3876 			if ((device->inq_flags & SID_CmdQue) != 0
3877 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3878 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3879 			else
3880 				/*
3881 				 * Clear this in case of a retried CCB that
3882 				 * failed due to a rejected tag.
3883 				 */
3884 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3885 		}
3886 
3887 		/*
3888 		 * Device queues can be shared among multiple sim instances
3889 		 * that reside on different busses.  Use the SIM in the queue
3890 		 * CCB's path, rather than the one in the bus that was passed
3891 		 * into this function.
3892 		 */
3893 		sim = work_ccb->ccb_h.path->bus->sim;
3894 		(*(sim->sim_action))(sim, work_ccb);
3895 
3896 		devq->active_dev = NULL;
3897 	}
3898 	devq->send_queue.qfrozen_cnt--;
3899 }
3900 
3901 /*
3902  * This function merges stuff from the slave ccb into the master ccb, while
3903  * keeping important fields in the master ccb constant.
3904  */
3905 void
3906 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3907 {
3908 
3909 	/*
3910 	 * Pull fields that are valid for peripheral drivers to set
3911 	 * into the master CCB along with the CCB "payload".
3912 	 */
3913 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3914 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3915 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3916 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3917 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3918 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3919 }
3920 
3921 void
3922 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3923 {
3924 
3925 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3926 	ccb_h->pinfo.priority = priority;
3927 	ccb_h->path = path;
3928 	ccb_h->path_id = path->bus->path_id;
3929 	if (path->target)
3930 		ccb_h->target_id = path->target->target_id;
3931 	else
3932 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3933 	if (path->device) {
3934 		ccb_h->target_lun = path->device->lun_id;
3935 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3936 	} else {
3937 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3938 	}
3939 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3940 	ccb_h->flags = 0;
3941 }
3942 
3943 /* Path manipulation functions */
3944 cam_status
3945 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3946 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3947 {
3948 	struct	   cam_path *path;
3949 	cam_status status;
3950 
3951 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3952 
3953 	if (path == NULL) {
3954 		status = CAM_RESRC_UNAVAIL;
3955 		return(status);
3956 	}
3957 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3958 	if (status != CAM_REQ_CMP) {
3959 		free(path, M_CAMXPT);
3960 		path = NULL;
3961 	}
3962 	*new_path_ptr = path;
3963 	return (status);
3964 }
3965 
3966 cam_status
3967 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3968 			 struct cam_periph *periph, path_id_t path_id,
3969 			 target_id_t target_id, lun_id_t lun_id)
3970 {
3971 	struct	   cam_path *path;
3972 	struct	   cam_eb *bus = NULL;
3973 	cam_status status;
3974 	int	   need_unlock = 0;
3975 
3976 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3977 
3978 	if (path_id != CAM_BUS_WILDCARD) {
3979 		bus = xpt_find_bus(path_id);
3980 		if (bus != NULL) {
3981 			need_unlock = 1;
3982 			CAM_SIM_LOCK(bus->sim);
3983 		}
3984 	}
3985 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3986 	if (need_unlock)
3987 		CAM_SIM_UNLOCK(bus->sim);
3988 	if (status != CAM_REQ_CMP) {
3989 		free(path, M_CAMXPT);
3990 		path = NULL;
3991 	}
3992 	*new_path_ptr = path;
3993 	return (status);
3994 }
3995 
3996 static cam_status
3997 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3998 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3999 {
4000 	struct	     cam_eb *bus;
4001 	struct	     cam_et *target;
4002 	struct	     cam_ed *device;
4003 	cam_status   status;
4004 
4005 	status = CAM_REQ_CMP;	/* Completed without error */
4006 	target = NULL;		/* Wildcarded */
4007 	device = NULL;		/* Wildcarded */
4008 
4009 	/*
4010 	 * We will potentially modify the EDT, so block interrupts
4011 	 * that may attempt to create cam paths.
4012 	 */
4013 	bus = xpt_find_bus(path_id);
4014 	if (bus == NULL) {
4015 		status = CAM_PATH_INVALID;
4016 	} else {
4017 		target = xpt_find_target(bus, target_id);
4018 		if (target == NULL) {
4019 			/* Create one */
4020 			struct cam_et *new_target;
4021 
4022 			new_target = xpt_alloc_target(bus, target_id);
4023 			if (new_target == NULL) {
4024 				status = CAM_RESRC_UNAVAIL;
4025 			} else {
4026 				target = new_target;
4027 			}
4028 		}
4029 		if (target != NULL) {
4030 			device = xpt_find_device(target, lun_id);
4031 			if (device == NULL) {
4032 				/* Create one */
4033 				struct cam_ed *new_device;
4034 
4035 				new_device = xpt_alloc_device(bus,
4036 							      target,
4037 							      lun_id);
4038 				if (new_device == NULL) {
4039 					status = CAM_RESRC_UNAVAIL;
4040 				} else {
4041 					device = new_device;
4042 				}
4043 			}
4044 		}
4045 	}
4046 
4047 	/*
4048 	 * Only touch the user's data if we are successful.
4049 	 */
4050 	if (status == CAM_REQ_CMP) {
4051 		new_path->periph = perph;
4052 		new_path->bus = bus;
4053 		new_path->target = target;
4054 		new_path->device = device;
4055 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4056 	} else {
4057 		if (device != NULL)
4058 			xpt_release_device(bus, target, device);
4059 		if (target != NULL)
4060 			xpt_release_target(bus, target);
4061 		if (bus != NULL)
4062 			xpt_release_bus(bus);
4063 	}
4064 	return (status);
4065 }
4066 
4067 static void
4068 xpt_release_path(struct cam_path *path)
4069 {
4070 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4071 	if (path->device != NULL) {
4072 		xpt_release_device(path->bus, path->target, path->device);
4073 		path->device = NULL;
4074 	}
4075 	if (path->target != NULL) {
4076 		xpt_release_target(path->bus, path->target);
4077 		path->target = NULL;
4078 	}
4079 	if (path->bus != NULL) {
4080 		xpt_release_bus(path->bus);
4081 		path->bus = NULL;
4082 	}
4083 }
4084 
4085 void
4086 xpt_free_path(struct cam_path *path)
4087 {
4088 
4089 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4090 	xpt_release_path(path);
4091 	free(path, M_CAMXPT);
4092 }
4093 
4094 
4095 /*
4096  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4097  * in path1, 2 for match with wildcards in path2.
4098  */
4099 int
4100 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4101 {
4102 	int retval = 0;
4103 
4104 	if (path1->bus != path2->bus) {
4105 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4106 			retval = 1;
4107 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4108 			retval = 2;
4109 		else
4110 			return (-1);
4111 	}
4112 	if (path1->target != path2->target) {
4113 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4114 			if (retval == 0)
4115 				retval = 1;
4116 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4117 			retval = 2;
4118 		else
4119 			return (-1);
4120 	}
4121 	if (path1->device != path2->device) {
4122 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4123 			if (retval == 0)
4124 				retval = 1;
4125 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4126 			retval = 2;
4127 		else
4128 			return (-1);
4129 	}
4130 	return (retval);
4131 }
4132 
4133 void
4134 xpt_print_path(struct cam_path *path)
4135 {
4136 
4137 	if (path == NULL)
4138 		printf("(nopath): ");
4139 	else {
4140 		if (path->periph != NULL)
4141 			printf("(%s%d:", path->periph->periph_name,
4142 			       path->periph->unit_number);
4143 		else
4144 			printf("(noperiph:");
4145 
4146 		if (path->bus != NULL)
4147 			printf("%s%d:%d:", path->bus->sim->sim_name,
4148 			       path->bus->sim->unit_number,
4149 			       path->bus->sim->bus_id);
4150 		else
4151 			printf("nobus:");
4152 
4153 		if (path->target != NULL)
4154 			printf("%d:", path->target->target_id);
4155 		else
4156 			printf("X:");
4157 
4158 		if (path->device != NULL)
4159 			printf("%d): ", path->device->lun_id);
4160 		else
4161 			printf("X): ");
4162 	}
4163 }
4164 
4165 void
4166 xpt_print(struct cam_path *path, const char *fmt, ...)
4167 {
4168 	va_list ap;
4169 	xpt_print_path(path);
4170 	va_start(ap, fmt);
4171 	vprintf(fmt, ap);
4172 	va_end(ap);
4173 }
4174 
4175 int
4176 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4177 {
4178 	struct sbuf sb;
4179 
4180 #ifdef INVARIANTS
4181 	if (path != NULL && path->bus != NULL)
4182 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
4183 #endif
4184 
4185 	sbuf_new(&sb, str, str_len, 0);
4186 
4187 	if (path == NULL)
4188 		sbuf_printf(&sb, "(nopath): ");
4189 	else {
4190 		if (path->periph != NULL)
4191 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4192 				    path->periph->unit_number);
4193 		else
4194 			sbuf_printf(&sb, "(noperiph:");
4195 
4196 		if (path->bus != NULL)
4197 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4198 				    path->bus->sim->unit_number,
4199 				    path->bus->sim->bus_id);
4200 		else
4201 			sbuf_printf(&sb, "nobus:");
4202 
4203 		if (path->target != NULL)
4204 			sbuf_printf(&sb, "%d:", path->target->target_id);
4205 		else
4206 			sbuf_printf(&sb, "X:");
4207 
4208 		if (path->device != NULL)
4209 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4210 		else
4211 			sbuf_printf(&sb, "X): ");
4212 	}
4213 	sbuf_finish(&sb);
4214 
4215 	return(sbuf_len(&sb));
4216 }
4217 
4218 path_id_t
4219 xpt_path_path_id(struct cam_path *path)
4220 {
4221 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4222 
4223 	return(path->bus->path_id);
4224 }
4225 
4226 target_id_t
4227 xpt_path_target_id(struct cam_path *path)
4228 {
4229 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4230 
4231 	if (path->target != NULL)
4232 		return (path->target->target_id);
4233 	else
4234 		return (CAM_TARGET_WILDCARD);
4235 }
4236 
4237 lun_id_t
4238 xpt_path_lun_id(struct cam_path *path)
4239 {
4240 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4241 
4242 	if (path->device != NULL)
4243 		return (path->device->lun_id);
4244 	else
4245 		return (CAM_LUN_WILDCARD);
4246 }
4247 
4248 struct cam_sim *
4249 xpt_path_sim(struct cam_path *path)
4250 {
4251 
4252 	return (path->bus->sim);
4253 }
4254 
4255 struct cam_periph*
4256 xpt_path_periph(struct cam_path *path)
4257 {
4258 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4259 
4260 	return (path->periph);
4261 }
4262 
4263 /*
4264  * Release a CAM control block for the caller.  Remit the cost of the structure
4265  * to the device referenced by the path.  If the this device had no 'credits'
4266  * and peripheral drivers have registered async callbacks for this notification
4267  * call them now.
4268  */
4269 void
4270 xpt_release_ccb(union ccb *free_ccb)
4271 {
4272 	struct	 cam_path *path;
4273 	struct	 cam_ed *device;
4274 	struct	 cam_eb *bus;
4275 	struct   cam_sim *sim;
4276 
4277 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4278 	path = free_ccb->ccb_h.path;
4279 	device = path->device;
4280 	bus = path->bus;
4281 	sim = bus->sim;
4282 
4283 	mtx_assert(sim->mtx, MA_OWNED);
4284 
4285 	cam_ccbq_release_opening(&device->ccbq);
4286 	if (sim->ccb_count > sim->max_ccbs) {
4287 		xpt_free_ccb(free_ccb);
4288 		sim->ccb_count--;
4289 	} else {
4290 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4291 		    xpt_links.sle);
4292 	}
4293 	if (sim->devq == NULL) {
4294 		return;
4295 	}
4296 	sim->devq->alloc_openings++;
4297 	sim->devq->alloc_active--;
4298 	/* XXX Turn this into an inline function - xpt_run_device?? */
4299 	if ((device_is_alloc_queued(device) == 0)
4300 	 && (device->drvq.entries > 0)) {
4301 		xpt_schedule_dev_allocq(bus, device);
4302 	}
4303 	if (dev_allocq_is_runnable(sim->devq))
4304 		xpt_run_dev_allocq(bus);
4305 }
4306 
4307 /* Functions accessed by SIM drivers */
4308 
4309 /*
4310  * A sim structure, listing the SIM entry points and instance
4311  * identification info is passed to xpt_bus_register to hook the SIM
4312  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4313  * for this new bus and places it in the array of busses and assigns
4314  * it a path_id.  The path_id may be influenced by "hard wiring"
4315  * information specified by the user.  Once interrupt services are
4316  * available, the bus will be probed.
4317  */
4318 int32_t
4319 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4320 {
4321 	struct cam_eb *new_bus;
4322 	struct cam_eb *old_bus;
4323 	struct ccb_pathinq cpi;
4324 
4325 	mtx_assert(sim->mtx, MA_OWNED);
4326 
4327 	sim->bus_id = bus;
4328 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4329 					  M_CAMXPT, M_NOWAIT);
4330 	if (new_bus == NULL) {
4331 		/* Couldn't satisfy request */
4332 		return (CAM_RESRC_UNAVAIL);
4333 	}
4334 
4335 	if (strcmp(sim->sim_name, "xpt") != 0) {
4336 
4337 		sim->path_id =
4338 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4339 	}
4340 
4341 	TAILQ_INIT(&new_bus->et_entries);
4342 	new_bus->path_id = sim->path_id;
4343 	cam_sim_hold(sim);
4344 	new_bus->sim = sim;
4345 	timevalclear(&new_bus->last_reset);
4346 	new_bus->flags = 0;
4347 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4348 	new_bus->generation = 0;
4349 	mtx_lock(&xsoftc.xpt_topo_lock);
4350 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4351 	while (old_bus != NULL
4352 	    && old_bus->path_id < new_bus->path_id)
4353 		old_bus = TAILQ_NEXT(old_bus, links);
4354 	if (old_bus != NULL)
4355 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4356 	else
4357 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4358 	xsoftc.bus_generation++;
4359 	mtx_unlock(&xsoftc.xpt_topo_lock);
4360 
4361 	/* Notify interested parties */
4362 	if (sim->path_id != CAM_XPT_PATH_ID) {
4363 		struct cam_path path;
4364 
4365 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4366 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4367 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4368 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4369 		xpt_action((union ccb *)&cpi);
4370 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4371 		xpt_release_path(&path);
4372 	}
4373 	return (CAM_SUCCESS);
4374 }
4375 
4376 int32_t
4377 xpt_bus_deregister(path_id_t pathid)
4378 {
4379 	struct cam_path bus_path;
4380 	cam_status status;
4381 
4382 	status = xpt_compile_path(&bus_path, NULL, pathid,
4383 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4384 	if (status != CAM_REQ_CMP)
4385 		return (status);
4386 
4387 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4388 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4389 
4390 	/* Release the reference count held while registered. */
4391 	xpt_release_bus(bus_path.bus);
4392 	xpt_release_path(&bus_path);
4393 
4394 	return (CAM_REQ_CMP);
4395 }
4396 
4397 static path_id_t
4398 xptnextfreepathid(void)
4399 {
4400 	struct cam_eb *bus;
4401 	path_id_t pathid;
4402 	const char *strval;
4403 
4404 	pathid = 0;
4405 	mtx_lock(&xsoftc.xpt_topo_lock);
4406 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4407 retry:
4408 	/* Find an unoccupied pathid */
4409 	while (bus != NULL && bus->path_id <= pathid) {
4410 		if (bus->path_id == pathid)
4411 			pathid++;
4412 		bus = TAILQ_NEXT(bus, links);
4413 	}
4414 	mtx_unlock(&xsoftc.xpt_topo_lock);
4415 
4416 	/*
4417 	 * Ensure that this pathid is not reserved for
4418 	 * a bus that may be registered in the future.
4419 	 */
4420 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4421 		++pathid;
4422 		/* Start the search over */
4423 		mtx_lock(&xsoftc.xpt_topo_lock);
4424 		goto retry;
4425 	}
4426 	return (pathid);
4427 }
4428 
4429 static path_id_t
4430 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4431 {
4432 	path_id_t pathid;
4433 	int i, dunit, val;
4434 	char buf[32];
4435 	const char *dname;
4436 
4437 	pathid = CAM_XPT_PATH_ID;
4438 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4439 	i = 0;
4440 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4441 		if (strcmp(dname, "scbus")) {
4442 			/* Avoid a bit of foot shooting. */
4443 			continue;
4444 		}
4445 		if (dunit < 0)		/* unwired?! */
4446 			continue;
4447 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4448 			if (sim_bus == val) {
4449 				pathid = dunit;
4450 				break;
4451 			}
4452 		} else if (sim_bus == 0) {
4453 			/* Unspecified matches bus 0 */
4454 			pathid = dunit;
4455 			break;
4456 		} else {
4457 			printf("Ambiguous scbus configuration for %s%d "
4458 			       "bus %d, cannot wire down.  The kernel "
4459 			       "config entry for scbus%d should "
4460 			       "specify a controller bus.\n"
4461 			       "Scbus will be assigned dynamically.\n",
4462 			       sim_name, sim_unit, sim_bus, dunit);
4463 			break;
4464 		}
4465 	}
4466 
4467 	if (pathid == CAM_XPT_PATH_ID)
4468 		pathid = xptnextfreepathid();
4469 	return (pathid);
4470 }
4471 
4472 void
4473 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4474 {
4475 	struct cam_eb *bus;
4476 	struct cam_et *target, *next_target;
4477 	struct cam_ed *device, *next_device;
4478 
4479 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4480 
4481 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4482 
4483 	/*
4484 	 * Most async events come from a CAM interrupt context.  In
4485 	 * a few cases, the error recovery code at the peripheral layer,
4486 	 * which may run from our SWI or a process context, may signal
4487 	 * deferred events with a call to xpt_async.
4488 	 */
4489 
4490 	bus = path->bus;
4491 
4492 	if (async_code == AC_BUS_RESET) {
4493 		/* Update our notion of when the last reset occurred */
4494 		microtime(&bus->last_reset);
4495 	}
4496 
4497 	for (target = TAILQ_FIRST(&bus->et_entries);
4498 	     target != NULL;
4499 	     target = next_target) {
4500 
4501 		next_target = TAILQ_NEXT(target, links);
4502 
4503 		if (path->target != target
4504 		 && path->target->target_id != CAM_TARGET_WILDCARD
4505 		 && target->target_id != CAM_TARGET_WILDCARD)
4506 			continue;
4507 
4508 		if (async_code == AC_SENT_BDR) {
4509 			/* Update our notion of when the last reset occurred */
4510 			microtime(&path->target->last_reset);
4511 		}
4512 
4513 		for (device = TAILQ_FIRST(&target->ed_entries);
4514 		     device != NULL;
4515 		     device = next_device) {
4516 
4517 			next_device = TAILQ_NEXT(device, links);
4518 
4519 			if (path->device != device
4520 			 && path->device->lun_id != CAM_LUN_WILDCARD
4521 			 && device->lun_id != CAM_LUN_WILDCARD)
4522 				continue;
4523 
4524 			xpt_dev_async(async_code, bus, target,
4525 				      device, async_arg);
4526 
4527 			xpt_async_bcast(&device->asyncs, async_code,
4528 					path, async_arg);
4529 		}
4530 	}
4531 
4532 	/*
4533 	 * If this wasn't a fully wildcarded async, tell all
4534 	 * clients that want all async events.
4535 	 */
4536 	if (bus != xpt_periph->path->bus)
4537 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4538 				path, async_arg);
4539 }
4540 
4541 static void
4542 xpt_async_bcast(struct async_list *async_head,
4543 		u_int32_t async_code,
4544 		struct cam_path *path, void *async_arg)
4545 {
4546 	struct async_node *cur_entry;
4547 
4548 	cur_entry = SLIST_FIRST(async_head);
4549 	while (cur_entry != NULL) {
4550 		struct async_node *next_entry;
4551 		/*
4552 		 * Grab the next list entry before we call the current
4553 		 * entry's callback.  This is because the callback function
4554 		 * can delete its async callback entry.
4555 		 */
4556 		next_entry = SLIST_NEXT(cur_entry, links);
4557 		if ((cur_entry->event_enable & async_code) != 0)
4558 			cur_entry->callback(cur_entry->callback_arg,
4559 					    async_code, path,
4560 					    async_arg);
4561 		cur_entry = next_entry;
4562 	}
4563 }
4564 
4565 /*
4566  * Handle any per-device event notifications that require action by the XPT.
4567  */
4568 static void
4569 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4570 	      struct cam_ed *device, void *async_arg)
4571 {
4572 	cam_status status;
4573 	struct cam_path newpath;
4574 
4575 	/*
4576 	 * We only need to handle events for real devices.
4577 	 */
4578 	if (target->target_id == CAM_TARGET_WILDCARD
4579 	 || device->lun_id == CAM_LUN_WILDCARD)
4580 		return;
4581 
4582 	/*
4583 	 * We need our own path with wildcards expanded to
4584 	 * handle certain types of events.
4585 	 */
4586 	if ((async_code == AC_SENT_BDR)
4587 	 || (async_code == AC_BUS_RESET)
4588 	 || (async_code == AC_INQ_CHANGED))
4589 		status = xpt_compile_path(&newpath, NULL,
4590 					  bus->path_id,
4591 					  target->target_id,
4592 					  device->lun_id);
4593 	else
4594 		status = CAM_REQ_CMP_ERR;
4595 
4596 	if (status == CAM_REQ_CMP) {
4597 
4598 		/*
4599 		 * Allow transfer negotiation to occur in a
4600 		 * tag free environment.
4601 		 */
4602 		if (async_code == AC_SENT_BDR
4603 		 || async_code == AC_BUS_RESET)
4604 			xpt_toggle_tags(&newpath);
4605 
4606 		if (async_code == AC_INQ_CHANGED) {
4607 			/*
4608 			 * We've sent a start unit command, or
4609 			 * something similar to a device that
4610 			 * may have caused its inquiry data to
4611 			 * change. So we re-scan the device to
4612 			 * refresh the inquiry data for it.
4613 			 */
4614 			xpt_scan_lun(newpath.periph, &newpath,
4615 				     CAM_EXPECT_INQ_CHANGE, NULL);
4616 		}
4617 		xpt_release_path(&newpath);
4618 	} else if (async_code == AC_LOST_DEVICE) {
4619 		device->flags |= CAM_DEV_UNCONFIGURED;
4620 	} else if (async_code == AC_TRANSFER_NEG) {
4621 		struct ccb_trans_settings *settings;
4622 
4623 		settings = (struct ccb_trans_settings *)async_arg;
4624 		xpt_set_transfer_settings(settings, device,
4625 					  /*async_update*/TRUE);
4626 	}
4627 }
4628 
4629 u_int32_t
4630 xpt_freeze_devq(struct cam_path *path, u_int count)
4631 {
4632 	struct ccb_hdr *ccbh;
4633 
4634 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4635 
4636 	path->device->qfrozen_cnt += count;
4637 
4638 	/*
4639 	 * Mark the last CCB in the queue as needing
4640 	 * to be requeued if the driver hasn't
4641 	 * changed it's state yet.  This fixes a race
4642 	 * where a ccb is just about to be queued to
4643 	 * a controller driver when it's interrupt routine
4644 	 * freezes the queue.  To completly close the
4645 	 * hole, controller drives must check to see
4646 	 * if a ccb's status is still CAM_REQ_INPROG
4647 	 * just before they queue
4648 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4649 	 * an example.
4650 	 */
4651 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4652 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4653 		ccbh->status = CAM_REQUEUE_REQ;
4654 	return (path->device->qfrozen_cnt);
4655 }
4656 
4657 u_int32_t
4658 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4659 {
4660 	mtx_assert(sim->mtx, MA_OWNED);
4661 
4662 	sim->devq->send_queue.qfrozen_cnt += count;
4663 	if (sim->devq->active_dev != NULL) {
4664 		struct ccb_hdr *ccbh;
4665 
4666 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4667 				  ccb_hdr_tailq);
4668 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4669 			ccbh->status = CAM_REQUEUE_REQ;
4670 	}
4671 	return (sim->devq->send_queue.qfrozen_cnt);
4672 }
4673 
4674 static void
4675 xpt_release_devq_timeout(void *arg)
4676 {
4677 	struct cam_ed *device;
4678 
4679 	device = (struct cam_ed *)arg;
4680 
4681 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4682 }
4683 
4684 void
4685 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4686 {
4687 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4688 
4689 	xpt_release_devq_device(path->device, count, run_queue);
4690 }
4691 
4692 static void
4693 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4694 {
4695 	int	rundevq;
4696 
4697 	rundevq = 0;
4698 	if (dev->qfrozen_cnt > 0) {
4699 
4700 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4701 		dev->qfrozen_cnt -= count;
4702 		if (dev->qfrozen_cnt == 0) {
4703 
4704 			/*
4705 			 * No longer need to wait for a successful
4706 			 * command completion.
4707 			 */
4708 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4709 
4710 			/*
4711 			 * Remove any timeouts that might be scheduled
4712 			 * to release this queue.
4713 			 */
4714 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4715 				callout_stop(&dev->callout);
4716 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4717 			}
4718 
4719 			/*
4720 			 * Now that we are unfrozen schedule the
4721 			 * device so any pending transactions are
4722 			 * run.
4723 			 */
4724 			if ((dev->ccbq.queue.entries > 0)
4725 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4726 			 && (run_queue != 0)) {
4727 				rundevq = 1;
4728 			}
4729 		}
4730 	}
4731 	if (rundevq != 0)
4732 		xpt_run_dev_sendq(dev->target->bus);
4733 }
4734 
4735 void
4736 xpt_release_simq(struct cam_sim *sim, int run_queue)
4737 {
4738 	struct	camq *sendq;
4739 
4740 	mtx_assert(sim->mtx, MA_OWNED);
4741 
4742 	sendq = &(sim->devq->send_queue);
4743 	if (sendq->qfrozen_cnt > 0) {
4744 
4745 		sendq->qfrozen_cnt--;
4746 		if (sendq->qfrozen_cnt == 0) {
4747 			struct cam_eb *bus;
4748 
4749 			/*
4750 			 * If there is a timeout scheduled to release this
4751 			 * sim queue, remove it.  The queue frozen count is
4752 			 * already at 0.
4753 			 */
4754 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4755 				callout_stop(&sim->callout);
4756 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4757 			}
4758 			bus = xpt_find_bus(sim->path_id);
4759 
4760 			if (run_queue) {
4761 				/*
4762 				 * Now that we are unfrozen run the send queue.
4763 				 */
4764 				xpt_run_dev_sendq(bus);
4765 			}
4766 			xpt_release_bus(bus);
4767 		}
4768 	}
4769 }
4770 
4771 /*
4772  * XXX Appears to be unused.
4773  */
4774 static void
4775 xpt_release_simq_timeout(void *arg)
4776 {
4777 	struct cam_sim *sim;
4778 
4779 	sim = (struct cam_sim *)arg;
4780 	xpt_release_simq(sim, /* run_queue */ TRUE);
4781 }
4782 
4783 void
4784 xpt_done(union ccb *done_ccb)
4785 {
4786 	struct cam_sim *sim;
4787 
4788 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4789 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4790 		/*
4791 		 * Queue up the request for handling by our SWI handler
4792 		 * any of the "non-immediate" type of ccbs.
4793 		 */
4794 		sim = done_ccb->ccb_h.path->bus->sim;
4795 		switch (done_ccb->ccb_h.path->periph->type) {
4796 		case CAM_PERIPH_BIO:
4797 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4798 					  sim_links.tqe);
4799 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4800 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4801 				mtx_lock(&cam_simq_lock);
4802 				TAILQ_INSERT_TAIL(&cam_simq, sim,
4803 						  links);
4804 				sim->flags |= CAM_SIM_ON_DONEQ;
4805 				mtx_unlock(&cam_simq_lock);
4806 			}
4807 			if ((done_ccb->ccb_h.path->periph->flags &
4808 			    CAM_PERIPH_POLLED) == 0)
4809 				swi_sched(cambio_ih, 0);
4810 			break;
4811 		default:
4812 			panic("unknown periph type %d",
4813 			    done_ccb->ccb_h.path->periph->type);
4814 		}
4815 	}
4816 }
4817 
4818 union ccb *
4819 xpt_alloc_ccb()
4820 {
4821 	union ccb *new_ccb;
4822 
4823 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4824 	return (new_ccb);
4825 }
4826 
4827 union ccb *
4828 xpt_alloc_ccb_nowait()
4829 {
4830 	union ccb *new_ccb;
4831 
4832 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4833 	return (new_ccb);
4834 }
4835 
4836 void
4837 xpt_free_ccb(union ccb *free_ccb)
4838 {
4839 	free(free_ccb, M_CAMXPT);
4840 }
4841 
4842 
4843 
4844 /* Private XPT functions */
4845 
4846 /*
4847  * Get a CAM control block for the caller. Charge the structure to the device
4848  * referenced by the path.  If the this device has no 'credits' then the
4849  * device already has the maximum number of outstanding operations under way
4850  * and we return NULL. If we don't have sufficient resources to allocate more
4851  * ccbs, we also return NULL.
4852  */
4853 static union ccb *
4854 xpt_get_ccb(struct cam_ed *device)
4855 {
4856 	union ccb *new_ccb;
4857 	struct cam_sim *sim;
4858 
4859 	sim = device->sim;
4860 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4861 		new_ccb = xpt_alloc_ccb_nowait();
4862                 if (new_ccb == NULL) {
4863 			return (NULL);
4864 		}
4865 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4866 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4867 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4868 				  xpt_links.sle);
4869 		sim->ccb_count++;
4870 	}
4871 	cam_ccbq_take_opening(&device->ccbq);
4872 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4873 	return (new_ccb);
4874 }
4875 
4876 static void
4877 xpt_release_bus(struct cam_eb *bus)
4878 {
4879 
4880 	if ((--bus->refcount == 0)
4881 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4882 		mtx_lock(&xsoftc.xpt_topo_lock);
4883 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4884 		xsoftc.bus_generation++;
4885 		mtx_unlock(&xsoftc.xpt_topo_lock);
4886 		cam_sim_release(bus->sim);
4887 		free(bus, M_CAMXPT);
4888 	}
4889 }
4890 
4891 static struct cam_et *
4892 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4893 {
4894 	struct cam_et *target;
4895 
4896 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4897 	if (target != NULL) {
4898 		struct cam_et *cur_target;
4899 
4900 		TAILQ_INIT(&target->ed_entries);
4901 		target->bus = bus;
4902 		target->target_id = target_id;
4903 		target->refcount = 1;
4904 		target->generation = 0;
4905 		timevalclear(&target->last_reset);
4906 		/*
4907 		 * Hold a reference to our parent bus so it
4908 		 * will not go away before we do.
4909 		 */
4910 		bus->refcount++;
4911 
4912 		/* Insertion sort into our bus's target list */
4913 		cur_target = TAILQ_FIRST(&bus->et_entries);
4914 		while (cur_target != NULL && cur_target->target_id < target_id)
4915 			cur_target = TAILQ_NEXT(cur_target, links);
4916 
4917 		if (cur_target != NULL) {
4918 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4919 		} else {
4920 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4921 		}
4922 		bus->generation++;
4923 	}
4924 	return (target);
4925 }
4926 
4927 static void
4928 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4929 {
4930 
4931 	if ((--target->refcount == 0)
4932 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4933 		TAILQ_REMOVE(&bus->et_entries, target, links);
4934 		bus->generation++;
4935 		free(target, M_CAMXPT);
4936 		xpt_release_bus(bus);
4937 	}
4938 }
4939 
4940 static struct cam_ed *
4941 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4942 {
4943 	struct	   cam_path path;
4944 	struct	   cam_ed *device;
4945 	struct	   cam_devq *devq;
4946 	cam_status status;
4947 
4948 	/* Make space for us in the device queue on our bus */
4949 	devq = bus->sim->devq;
4950 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4951 
4952 	if (status != CAM_REQ_CMP) {
4953 		device = NULL;
4954 	} else {
4955 		device = (struct cam_ed *)malloc(sizeof(*device),
4956 						 M_CAMXPT, M_NOWAIT);
4957 	}
4958 
4959 	if (device != NULL) {
4960 		struct cam_ed *cur_device;
4961 
4962 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4963 		device->alloc_ccb_entry.device = device;
4964 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4965 		device->send_ccb_entry.device = device;
4966 		device->target = target;
4967 		device->lun_id = lun_id;
4968 		device->sim = bus->sim;
4969 		/* Initialize our queues */
4970 		if (camq_init(&device->drvq, 0) != 0) {
4971 			free(device, M_CAMXPT);
4972 			return (NULL);
4973 		}
4974 		if (cam_ccbq_init(&device->ccbq,
4975 				  bus->sim->max_dev_openings) != 0) {
4976 			camq_fini(&device->drvq);
4977 			free(device, M_CAMXPT);
4978 			return (NULL);
4979 		}
4980 		SLIST_INIT(&device->asyncs);
4981 		SLIST_INIT(&device->periphs);
4982 		device->generation = 0;
4983 		device->owner = NULL;
4984 		/*
4985 		 * Take the default quirk entry until we have inquiry
4986 		 * data and can determine a better quirk to use.
4987 		 */
4988 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4989 		bzero(&device->inq_data, sizeof(device->inq_data));
4990 		device->inq_flags = 0;
4991 		device->queue_flags = 0;
4992 		device->serial_num = NULL;
4993 		device->serial_num_len = 0;
4994 		device->qfrozen_cnt = 0;
4995 		device->flags = CAM_DEV_UNCONFIGURED;
4996 		device->tag_delay_count = 0;
4997 		device->tag_saved_openings = 0;
4998 		device->refcount = 1;
4999 		if (bus->sim->flags & CAM_SIM_MPSAFE)
5000 			callout_init_mtx(&device->callout, bus->sim->mtx, 0);
5001 		else
5002 			callout_init_mtx(&device->callout, &Giant, 0);
5003 
5004 		/*
5005 		 * Hold a reference to our parent target so it
5006 		 * will not go away before we do.
5007 		 */
5008 		target->refcount++;
5009 
5010 		/*
5011 		 * XXX should be limited by number of CCBs this bus can
5012 		 * do.
5013 		 */
5014 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5015 		/* Insertion sort into our target's device list */
5016 		cur_device = TAILQ_FIRST(&target->ed_entries);
5017 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5018 			cur_device = TAILQ_NEXT(cur_device, links);
5019 		if (cur_device != NULL) {
5020 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5021 		} else {
5022 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5023 		}
5024 		target->generation++;
5025 		if (lun_id != CAM_LUN_WILDCARD) {
5026 			xpt_compile_path(&path,
5027 					 NULL,
5028 					 bus->path_id,
5029 					 target->target_id,
5030 					 lun_id);
5031 			xpt_devise_transport(&path);
5032 			xpt_release_path(&path);
5033 		}
5034 	}
5035 	return (device);
5036 }
5037 
5038 static void
5039 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5040 		   struct cam_ed *device)
5041 {
5042 
5043 	if ((--device->refcount == 0)
5044 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
5045 		struct cam_devq *devq;
5046 
5047 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5048 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5049 			panic("Removing device while still queued for ccbs");
5050 
5051 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
5052 				callout_stop(&device->callout);
5053 
5054 		TAILQ_REMOVE(&target->ed_entries, device,links);
5055 		target->generation++;
5056 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5057 		/* Release our slot in the devq */
5058 		devq = bus->sim->devq;
5059 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5060 		camq_fini(&device->drvq);
5061 		camq_fini(&device->ccbq.queue);
5062 		free(device, M_CAMXPT);
5063 		xpt_release_target(bus, target);
5064 	}
5065 }
5066 
5067 static u_int32_t
5068 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5069 {
5070 	int	diff;
5071 	int	result;
5072 	struct	cam_ed *dev;
5073 
5074 	dev = path->device;
5075 
5076 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5077 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5078 	if (result == CAM_REQ_CMP && (diff < 0)) {
5079 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5080 	}
5081 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5082 	 || (dev->inq_flags & SID_CmdQue) != 0)
5083 		dev->tag_saved_openings = newopenings;
5084 	/* Adjust the global limit */
5085 	dev->sim->max_ccbs += diff;
5086 	return (result);
5087 }
5088 
5089 static struct cam_eb *
5090 xpt_find_bus(path_id_t path_id)
5091 {
5092 	struct cam_eb *bus;
5093 
5094 	mtx_lock(&xsoftc.xpt_topo_lock);
5095 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5096 	     bus != NULL;
5097 	     bus = TAILQ_NEXT(bus, links)) {
5098 		if (bus->path_id == path_id) {
5099 			bus->refcount++;
5100 			break;
5101 		}
5102 	}
5103 	mtx_unlock(&xsoftc.xpt_topo_lock);
5104 	return (bus);
5105 }
5106 
5107 static struct cam_et *
5108 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5109 {
5110 	struct cam_et *target;
5111 
5112 	for (target = TAILQ_FIRST(&bus->et_entries);
5113 	     target != NULL;
5114 	     target = TAILQ_NEXT(target, links)) {
5115 		if (target->target_id == target_id) {
5116 			target->refcount++;
5117 			break;
5118 		}
5119 	}
5120 	return (target);
5121 }
5122 
5123 static struct cam_ed *
5124 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5125 {
5126 	struct cam_ed *device;
5127 
5128 	for (device = TAILQ_FIRST(&target->ed_entries);
5129 	     device != NULL;
5130 	     device = TAILQ_NEXT(device, links)) {
5131 		if (device->lun_id == lun_id) {
5132 			device->refcount++;
5133 			break;
5134 		}
5135 	}
5136 	return (device);
5137 }
5138 
5139 typedef struct {
5140 	union	ccb *request_ccb;
5141 	struct 	ccb_pathinq *cpi;
5142 	int	counter;
5143 } xpt_scan_bus_info;
5144 
5145 /*
5146  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5147  * As the scan progresses, xpt_scan_bus is used as the
5148  * callback on completion function.
5149  */
5150 static void
5151 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5152 {
5153 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5154 		  ("xpt_scan_bus\n"));
5155 	switch (request_ccb->ccb_h.func_code) {
5156 	case XPT_SCAN_BUS:
5157 	{
5158 		xpt_scan_bus_info *scan_info;
5159 		union	ccb *work_ccb;
5160 		struct	cam_path *path;
5161 		u_int	i;
5162 		u_int	max_target;
5163 		u_int	initiator_id;
5164 
5165 		/* Find out the characteristics of the bus */
5166 		work_ccb = xpt_alloc_ccb_nowait();
5167 		if (work_ccb == NULL) {
5168 			request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
5169 			xpt_done(request_ccb);
5170 			return;
5171 		}
5172 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5173 			      request_ccb->ccb_h.pinfo.priority);
5174 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5175 		xpt_action(work_ccb);
5176 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5177 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5178 			xpt_free_ccb(work_ccb);
5179 			xpt_done(request_ccb);
5180 			return;
5181 		}
5182 
5183 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5184 			/*
5185 			 * Can't scan the bus on an adapter that
5186 			 * cannot perform the initiator role.
5187 			 */
5188 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5189 			xpt_free_ccb(work_ccb);
5190 			xpt_done(request_ccb);
5191 			return;
5192 		}
5193 
5194 		/* Save some state for use while we probe for devices */
5195 		scan_info = (xpt_scan_bus_info *)
5196 		    malloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_NOWAIT);
5197 		if (scan_info == NULL) {
5198 			request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
5199 			xpt_done(request_ccb);
5200 			return;
5201 		}
5202 		scan_info->request_ccb = request_ccb;
5203 		scan_info->cpi = &work_ccb->cpi;
5204 
5205 		/* Cache on our stack so we can work asynchronously */
5206 		max_target = scan_info->cpi->max_target;
5207 		initiator_id = scan_info->cpi->initiator_id;
5208 
5209 
5210 		/*
5211 		 * We can scan all targets in parallel, or do it sequentially.
5212 		 */
5213 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5214 			max_target = 0;
5215 			scan_info->counter = 0;
5216 		} else {
5217 			scan_info->counter = scan_info->cpi->max_target + 1;
5218 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5219 				scan_info->counter--;
5220 			}
5221 		}
5222 
5223 		for (i = 0; i <= max_target; i++) {
5224 			cam_status status;
5225 			if (i == initiator_id)
5226 				continue;
5227 
5228 			status = xpt_create_path(&path, xpt_periph,
5229 						 request_ccb->ccb_h.path_id,
5230 						 i, 0);
5231 			if (status != CAM_REQ_CMP) {
5232 				printf("xpt_scan_bus: xpt_create_path failed"
5233 				       " with status %#x, bus scan halted\n",
5234 				       status);
5235 				free(scan_info, M_CAMXPT);
5236 				request_ccb->ccb_h.status = status;
5237 				xpt_free_ccb(work_ccb);
5238 				xpt_done(request_ccb);
5239 				break;
5240 			}
5241 			work_ccb = xpt_alloc_ccb_nowait();
5242 			if (work_ccb == NULL) {
5243 				free(scan_info, M_CAMXPT);
5244 				xpt_free_path(path);
5245 				request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
5246 				xpt_done(request_ccb);
5247 				break;
5248 			}
5249 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5250 				      request_ccb->ccb_h.pinfo.priority);
5251 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5252 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5253 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5254 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5255 			xpt_action(work_ccb);
5256 		}
5257 		break;
5258 	}
5259 	case XPT_SCAN_LUN:
5260 	{
5261 		cam_status status;
5262 		struct cam_path *path;
5263 		xpt_scan_bus_info *scan_info;
5264 		path_id_t path_id;
5265 		target_id_t target_id;
5266 		lun_id_t lun_id;
5267 
5268 		/* Reuse the same CCB to query if a device was really found */
5269 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5270 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5271 			      request_ccb->ccb_h.pinfo.priority);
5272 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5273 
5274 		path_id = request_ccb->ccb_h.path_id;
5275 		target_id = request_ccb->ccb_h.target_id;
5276 		lun_id = request_ccb->ccb_h.target_lun;
5277 		xpt_action(request_ccb);
5278 
5279 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5280 			struct cam_ed *device;
5281 			struct cam_et *target;
5282 			int phl;
5283 
5284 			/*
5285 			 * If we already probed lun 0 successfully, or
5286 			 * we have additional configured luns on this
5287 			 * target that might have "gone away", go onto
5288 			 * the next lun.
5289 			 */
5290 			target = request_ccb->ccb_h.path->target;
5291 			/*
5292 			 * We may touch devices that we don't
5293 			 * hold references too, so ensure they
5294 			 * don't disappear out from under us.
5295 			 * The target above is referenced by the
5296 			 * path in the request ccb.
5297 			 */
5298 			phl = 0;
5299 			device = TAILQ_FIRST(&target->ed_entries);
5300 			if (device != NULL) {
5301 				phl = CAN_SRCH_HI_SPARSE(device);
5302 				if (device->lun_id == 0)
5303 					device = TAILQ_NEXT(device, links);
5304 			}
5305 			if ((lun_id != 0) || (device != NULL)) {
5306 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5307 					lun_id++;
5308 			}
5309 		} else {
5310 			struct cam_ed *device;
5311 
5312 			device = request_ccb->ccb_h.path->device;
5313 
5314 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5315 				/* Try the next lun */
5316 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5317 				  || CAN_SRCH_HI_DENSE(device))
5318 					lun_id++;
5319 			}
5320 		}
5321 
5322 		/*
5323 		 * Free the current request path- we're done with it.
5324 		 */
5325 		xpt_free_path(request_ccb->ccb_h.path);
5326 
5327 		/*
5328 		 * Check to see if we scan any further luns.
5329 		 */
5330 		if (lun_id == request_ccb->ccb_h.target_lun
5331                  || lun_id > scan_info->cpi->max_lun) {
5332 			int done;
5333 
5334  hop_again:
5335 			done = 0;
5336 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5337 				scan_info->counter++;
5338 				if (scan_info->counter ==
5339 				    scan_info->cpi->initiator_id) {
5340 					scan_info->counter++;
5341 				}
5342 				if (scan_info->counter >=
5343 				    scan_info->cpi->max_target+1) {
5344 					done = 1;
5345 				}
5346 			} else {
5347 				scan_info->counter--;
5348 				if (scan_info->counter == 0) {
5349 					done = 1;
5350 				}
5351 			}
5352 			if (done) {
5353 				xpt_free_ccb(request_ccb);
5354 				xpt_free_ccb((union ccb *)scan_info->cpi);
5355 				request_ccb = scan_info->request_ccb;
5356 				free(scan_info, M_CAMXPT);
5357 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5358 				xpt_done(request_ccb);
5359 				break;
5360 			}
5361 
5362 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5363 				break;
5364 			}
5365 			status = xpt_create_path(&path, xpt_periph,
5366 			    scan_info->request_ccb->ccb_h.path_id,
5367 			    scan_info->counter, 0);
5368 			if (status != CAM_REQ_CMP) {
5369 				printf("xpt_scan_bus: xpt_create_path failed"
5370 				    " with status %#x, bus scan halted\n",
5371 			       	    status);
5372 				xpt_free_ccb(request_ccb);
5373 				xpt_free_ccb((union ccb *)scan_info->cpi);
5374 				request_ccb = scan_info->request_ccb;
5375 				free(scan_info, M_CAMXPT);
5376 				request_ccb->ccb_h.status = status;
5377 				xpt_done(request_ccb);
5378 				break;
5379 			}
5380 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5381 			    request_ccb->ccb_h.pinfo.priority);
5382 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5383 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5384 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5385 			request_ccb->crcn.flags =
5386 			    scan_info->request_ccb->crcn.flags;
5387 		} else {
5388 			status = xpt_create_path(&path, xpt_periph,
5389 						 path_id, target_id, lun_id);
5390 			if (status != CAM_REQ_CMP) {
5391 				printf("xpt_scan_bus: xpt_create_path failed "
5392 				       "with status %#x, halting LUN scan\n",
5393 			 	       status);
5394 				goto hop_again;
5395 			}
5396 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5397 				      request_ccb->ccb_h.pinfo.priority);
5398 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5399 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5400 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5401 			request_ccb->crcn.flags =
5402 				scan_info->request_ccb->crcn.flags;
5403 		}
5404 		xpt_action(request_ccb);
5405 		break;
5406 	}
5407 	default:
5408 		break;
5409 	}
5410 }
5411 
5412 typedef enum {
5413 	PROBE_TUR,
5414 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5415 	PROBE_FULL_INQUIRY,
5416 	PROBE_MODE_SENSE,
5417 	PROBE_SERIAL_NUM_0,
5418 	PROBE_SERIAL_NUM_1,
5419 	PROBE_TUR_FOR_NEGOTIATION,
5420 	PROBE_INQUIRY_BASIC_DV1,
5421 	PROBE_INQUIRY_BASIC_DV2,
5422 	PROBE_DV_EXIT,
5423 	PROBE_INVALID
5424 } probe_action;
5425 
5426 static char *probe_action_text[] = {
5427 	"PROBE_TUR",
5428 	"PROBE_INQUIRY",
5429 	"PROBE_FULL_INQUIRY",
5430 	"PROBE_MODE_SENSE",
5431 	"PROBE_SERIAL_NUM_0",
5432 	"PROBE_SERIAL_NUM_1",
5433 	"PROBE_TUR_FOR_NEGOTIATION",
5434 	"PROBE_INQUIRY_BASIC_DV1",
5435 	"PROBE_INQUIRY_BASIC_DV2",
5436 	"PROBE_DV_EXIT",
5437 	"PROBE_INVALID"
5438 };
5439 
5440 #define PROBE_SET_ACTION(softc, newaction)	\
5441 do {									\
5442 	char **text;							\
5443 	text = probe_action_text;					\
5444 	CAM_DEBUG((softc)->periph->path, CAM_DEBUG_INFO,		\
5445 	    ("Probe %s to %s\n", text[(softc)->action],			\
5446 	    text[(newaction)]));					\
5447 	(softc)->action = (newaction);					\
5448 } while(0)
5449 
5450 typedef enum {
5451 	PROBE_INQUIRY_CKSUM	= 0x01,
5452 	PROBE_SERIAL_CKSUM	= 0x02,
5453 	PROBE_NO_ANNOUNCE	= 0x04
5454 } probe_flags;
5455 
5456 typedef struct {
5457 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5458 	probe_action	action;
5459 	union ccb	saved_ccb;
5460 	probe_flags	flags;
5461 	MD5_CTX		context;
5462 	u_int8_t	digest[16];
5463 	struct cam_periph *periph;
5464 } probe_softc;
5465 
5466 static void
5467 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5468 	     cam_flags flags, union ccb *request_ccb)
5469 {
5470 	struct ccb_pathinq cpi;
5471 	cam_status status;
5472 	struct cam_path *new_path;
5473 	struct cam_periph *old_periph;
5474 
5475 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5476 		  ("xpt_scan_lun\n"));
5477 
5478 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5479 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5480 	xpt_action((union ccb *)&cpi);
5481 
5482 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5483 		if (request_ccb != NULL) {
5484 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5485 			xpt_done(request_ccb);
5486 		}
5487 		return;
5488 	}
5489 
5490 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5491 		/*
5492 		 * Can't scan the bus on an adapter that
5493 		 * cannot perform the initiator role.
5494 		 */
5495 		if (request_ccb != NULL) {
5496 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5497 			xpt_done(request_ccb);
5498 		}
5499 		return;
5500 	}
5501 
5502 	if (request_ccb == NULL) {
5503 		request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT);
5504 		if (request_ccb == NULL) {
5505 			xpt_print(path, "xpt_scan_lun: can't allocate CCB, "
5506 			    "can't continue\n");
5507 			return;
5508 		}
5509 		new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT);
5510 		if (new_path == NULL) {
5511 			xpt_print(path, "xpt_scan_lun: can't allocate path, "
5512 			    "can't continue\n");
5513 			free(request_ccb, M_CAMXPT);
5514 			return;
5515 		}
5516 		status = xpt_compile_path(new_path, xpt_periph,
5517 					  path->bus->path_id,
5518 					  path->target->target_id,
5519 					  path->device->lun_id);
5520 
5521 		if (status != CAM_REQ_CMP) {
5522 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5523 			    "can't continue\n");
5524 			free(request_ccb, M_CAMXPT);
5525 			free(new_path, M_CAMXPT);
5526 			return;
5527 		}
5528 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5529 		request_ccb->ccb_h.cbfcnp = xptscandone;
5530 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5531 		request_ccb->crcn.flags = flags;
5532 	}
5533 
5534 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5535 		probe_softc *softc;
5536 
5537 		softc = (probe_softc *)old_periph->softc;
5538 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5539 				  periph_links.tqe);
5540 	} else {
5541 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5542 					  probestart, "probe",
5543 					  CAM_PERIPH_BIO,
5544 					  request_ccb->ccb_h.path, NULL, 0,
5545 					  request_ccb);
5546 
5547 		if (status != CAM_REQ_CMP) {
5548 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5549 			    "returned an error, can't continue probe\n");
5550 			request_ccb->ccb_h.status = status;
5551 			xpt_done(request_ccb);
5552 		}
5553 	}
5554 }
5555 
5556 static void
5557 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5558 {
5559 	xpt_release_path(done_ccb->ccb_h.path);
5560 	free(done_ccb->ccb_h.path, M_CAMXPT);
5561 	free(done_ccb, M_CAMXPT);
5562 }
5563 
5564 static cam_status
5565 proberegister(struct cam_periph *periph, void *arg)
5566 {
5567 	union ccb *request_ccb;	/* CCB representing the probe request */
5568 	cam_status status;
5569 	probe_softc *softc;
5570 
5571 	request_ccb = (union ccb *)arg;
5572 	if (periph == NULL) {
5573 		printf("proberegister: periph was NULL!!\n");
5574 		return(CAM_REQ_CMP_ERR);
5575 	}
5576 
5577 	if (request_ccb == NULL) {
5578 		printf("proberegister: no probe CCB, "
5579 		       "can't register device\n");
5580 		return(CAM_REQ_CMP_ERR);
5581 	}
5582 
5583 	softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT);
5584 
5585 	if (softc == NULL) {
5586 		printf("proberegister: Unable to probe new device. "
5587 		       "Unable to allocate softc\n");
5588 		return(CAM_REQ_CMP_ERR);
5589 	}
5590 	TAILQ_INIT(&softc->request_ccbs);
5591 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5592 			  periph_links.tqe);
5593 	softc->flags = 0;
5594 	periph->softc = softc;
5595 	softc->periph = periph;
5596 	softc->action = PROBE_INVALID;
5597 	status = cam_periph_acquire(periph);
5598 	if (status != CAM_REQ_CMP) {
5599 		return (status);
5600 	}
5601 
5602 
5603 	/*
5604 	 * Ensure we've waited at least a bus settle
5605 	 * delay before attempting to probe the device.
5606 	 * For HBAs that don't do bus resets, this won't make a difference.
5607 	 */
5608 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5609 				      scsi_delay);
5610 	probeschedule(periph);
5611 	return(CAM_REQ_CMP);
5612 }
5613 
5614 static void
5615 probeschedule(struct cam_periph *periph)
5616 {
5617 	struct ccb_pathinq cpi;
5618 	union ccb *ccb;
5619 	probe_softc *softc;
5620 
5621 	softc = (probe_softc *)periph->softc;
5622 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5623 
5624 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5625 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5626 	xpt_action((union ccb *)&cpi);
5627 
5628 	/*
5629 	 * If a device has gone away and another device, or the same one,
5630 	 * is back in the same place, it should have a unit attention
5631 	 * condition pending.  It will not report the unit attention in
5632 	 * response to an inquiry, which may leave invalid transfer
5633 	 * negotiations in effect.  The TUR will reveal the unit attention
5634 	 * condition.  Only send the TUR for lun 0, since some devices
5635 	 * will get confused by commands other than inquiry to non-existent
5636 	 * luns.  If you think a device has gone away start your scan from
5637 	 * lun 0.  This will insure that any bogus transfer settings are
5638 	 * invalidated.
5639 	 *
5640 	 * If we haven't seen the device before and the controller supports
5641 	 * some kind of transfer negotiation, negotiate with the first
5642 	 * sent command if no bus reset was performed at startup.  This
5643 	 * ensures that the device is not confused by transfer negotiation
5644 	 * settings left over by loader or BIOS action.
5645 	 */
5646 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5647 	 && (ccb->ccb_h.target_lun == 0)) {
5648 		PROBE_SET_ACTION(softc, PROBE_TUR);
5649 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5650 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5651 		proberequestdefaultnegotiation(periph);
5652 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5653 	} else {
5654 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5655 	}
5656 
5657 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5658 		softc->flags |= PROBE_NO_ANNOUNCE;
5659 	else
5660 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5661 
5662 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5663 }
5664 
5665 static void
5666 probestart(struct cam_periph *periph, union ccb *start_ccb)
5667 {
5668 	/* Probe the device that our peripheral driver points to */
5669 	struct ccb_scsiio *csio;
5670 	probe_softc *softc;
5671 
5672 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5673 
5674 	softc = (probe_softc *)periph->softc;
5675 	csio = &start_ccb->csio;
5676 
5677 	switch (softc->action) {
5678 	case PROBE_TUR:
5679 	case PROBE_TUR_FOR_NEGOTIATION:
5680 	case PROBE_DV_EXIT:
5681 	{
5682 		scsi_test_unit_ready(csio,
5683 				     /*retries*/10,
5684 				     probedone,
5685 				     MSG_SIMPLE_Q_TAG,
5686 				     SSD_FULL_SIZE,
5687 				     /*timeout*/60000);
5688 		break;
5689 	}
5690 	case PROBE_INQUIRY:
5691 	case PROBE_FULL_INQUIRY:
5692 	case PROBE_INQUIRY_BASIC_DV1:
5693 	case PROBE_INQUIRY_BASIC_DV2:
5694 	{
5695 		u_int inquiry_len;
5696 		struct scsi_inquiry_data *inq_buf;
5697 
5698 		inq_buf = &periph->path->device->inq_data;
5699 
5700 		/*
5701 		 * If the device is currently configured, we calculate an
5702 		 * MD5 checksum of the inquiry data, and if the serial number
5703 		 * length is greater than 0, add the serial number data
5704 		 * into the checksum as well.  Once the inquiry and the
5705 		 * serial number check finish, we attempt to figure out
5706 		 * whether we still have the same device.
5707 		 */
5708 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5709 
5710 			MD5Init(&softc->context);
5711 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5712 				  sizeof(struct scsi_inquiry_data));
5713 			softc->flags |= PROBE_INQUIRY_CKSUM;
5714 			if (periph->path->device->serial_num_len > 0) {
5715 				MD5Update(&softc->context,
5716 					  periph->path->device->serial_num,
5717 					  periph->path->device->serial_num_len);
5718 				softc->flags |= PROBE_SERIAL_CKSUM;
5719 			}
5720 			MD5Final(softc->digest, &softc->context);
5721 		}
5722 
5723 		if (softc->action == PROBE_INQUIRY)
5724 			inquiry_len = SHORT_INQUIRY_LENGTH;
5725 		else
5726 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5727 
5728 		/*
5729 		 * Some parallel SCSI devices fail to send an
5730 		 * ignore wide residue message when dealing with
5731 		 * odd length inquiry requests.  Round up to be
5732 		 * safe.
5733 		 */
5734 		inquiry_len = roundup2(inquiry_len, 2);
5735 
5736 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5737 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5738 			inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT);
5739 		}
5740 		if (inq_buf == NULL) {
5741 			xpt_print(periph->path, "malloc failure- skipping Basic"
5742 			    "Domain Validation\n");
5743 			PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
5744 			scsi_test_unit_ready(csio,
5745 					     /*retries*/4,
5746 					     probedone,
5747 					     MSG_SIMPLE_Q_TAG,
5748 					     SSD_FULL_SIZE,
5749 					     /*timeout*/60000);
5750 			break;
5751 		}
5752 		scsi_inquiry(csio,
5753 			     /*retries*/4,
5754 			     probedone,
5755 			     MSG_SIMPLE_Q_TAG,
5756 			     (u_int8_t *)inq_buf,
5757 			     inquiry_len,
5758 			     /*evpd*/FALSE,
5759 			     /*page_code*/0,
5760 			     SSD_MIN_SIZE,
5761 			     /*timeout*/60 * 1000);
5762 		break;
5763 	}
5764 	case PROBE_MODE_SENSE:
5765 	{
5766 		void  *mode_buf;
5767 		int    mode_buf_len;
5768 
5769 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5770 			     + sizeof(struct scsi_mode_blk_desc)
5771 			     + sizeof(struct scsi_control_page);
5772 		mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT);
5773 		if (mode_buf != NULL) {
5774 	                scsi_mode_sense(csio,
5775 					/*retries*/4,
5776 					probedone,
5777 					MSG_SIMPLE_Q_TAG,
5778 					/*dbd*/FALSE,
5779 					SMS_PAGE_CTRL_CURRENT,
5780 					SMS_CONTROL_MODE_PAGE,
5781 					mode_buf,
5782 					mode_buf_len,
5783 					SSD_FULL_SIZE,
5784 					/*timeout*/60000);
5785 			break;
5786 		}
5787 		xpt_print(periph->path, "Unable to mode sense control page - "
5788 		    "malloc failure\n");
5789 		PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
5790 	}
5791 	/* FALLTHROUGH */
5792 	case PROBE_SERIAL_NUM_0:
5793 	{
5794 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5795 		struct cam_ed *device;
5796 
5797 		device = periph->path->device;
5798 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5799 			vpd_list = malloc(sizeof(*vpd_list), M_CAMXPT,
5800 			    M_NOWAIT | M_ZERO);
5801 		}
5802 
5803 		if (vpd_list != NULL) {
5804 			scsi_inquiry(csio,
5805 				     /*retries*/4,
5806 				     probedone,
5807 				     MSG_SIMPLE_Q_TAG,
5808 				     (u_int8_t *)vpd_list,
5809 				     sizeof(*vpd_list),
5810 				     /*evpd*/TRUE,
5811 				     SVPD_SUPPORTED_PAGE_LIST,
5812 				     SSD_MIN_SIZE,
5813 				     /*timeout*/60 * 1000);
5814 			break;
5815 		}
5816 		/*
5817 		 * We'll have to do without, let our probedone
5818 		 * routine finish up for us.
5819 		 */
5820 		start_ccb->csio.data_ptr = NULL;
5821 		probedone(periph, start_ccb);
5822 		return;
5823 	}
5824 	case PROBE_SERIAL_NUM_1:
5825 	{
5826 		struct scsi_vpd_unit_serial_number *serial_buf;
5827 		struct cam_ed* device;
5828 
5829 		serial_buf = NULL;
5830 		device = periph->path->device;
5831 		device->serial_num = NULL;
5832 		device->serial_num_len = 0;
5833 
5834 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5835 			malloc(sizeof(*serial_buf), M_CAMXPT, M_NOWAIT|M_ZERO);
5836 
5837 		if (serial_buf != NULL) {
5838 			scsi_inquiry(csio,
5839 				     /*retries*/4,
5840 				     probedone,
5841 				     MSG_SIMPLE_Q_TAG,
5842 				     (u_int8_t *)serial_buf,
5843 				     sizeof(*serial_buf),
5844 				     /*evpd*/TRUE,
5845 				     SVPD_UNIT_SERIAL_NUMBER,
5846 				     SSD_MIN_SIZE,
5847 				     /*timeout*/60 * 1000);
5848 			break;
5849 		}
5850 		/*
5851 		 * We'll have to do without, let our probedone
5852 		 * routine finish up for us.
5853 		 */
5854 		start_ccb->csio.data_ptr = NULL;
5855 		probedone(periph, start_ccb);
5856 		return;
5857 	}
5858 	case PROBE_INVALID:
5859 		CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO,
5860 		    ("probestart: invalid action state\n"));
5861 	default:
5862 		break;
5863 	}
5864 	xpt_action(start_ccb);
5865 }
5866 
5867 static void
5868 proberequestdefaultnegotiation(struct cam_periph *periph)
5869 {
5870 	struct ccb_trans_settings cts;
5871 
5872 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5873 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5874 	cts.type = CTS_TYPE_USER_SETTINGS;
5875 	xpt_action((union ccb *)&cts);
5876 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5877 		return;
5878 	}
5879 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5880 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5881 	xpt_action((union ccb *)&cts);
5882 }
5883 
5884 /*
5885  * Backoff Negotiation Code- only pertinent for SPI devices.
5886  */
5887 static int
5888 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5889 {
5890 	struct ccb_trans_settings cts;
5891 	struct ccb_trans_settings_spi *spi;
5892 
5893 	memset(&cts, 0, sizeof (cts));
5894 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5895 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5896 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5897 	xpt_action((union ccb *)&cts);
5898 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5899 		if (bootverbose) {
5900 			xpt_print(periph->path,
5901 			    "failed to get current device settings\n");
5902 		}
5903 		return (0);
5904 	}
5905 	if (cts.transport != XPORT_SPI) {
5906 		if (bootverbose) {
5907 			xpt_print(periph->path, "not SPI transport\n");
5908 		}
5909 		return (0);
5910 	}
5911 	spi = &cts.xport_specific.spi;
5912 
5913 	/*
5914 	 * We cannot renegotiate sync rate if we don't have one.
5915 	 */
5916 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5917 		if (bootverbose) {
5918 			xpt_print(periph->path, "no sync rate known\n");
5919 		}
5920 		return (0);
5921 	}
5922 
5923 	/*
5924 	 * We'll assert that we don't have to touch PPR options- the
5925 	 * SIM will see what we do with period and offset and adjust
5926 	 * the PPR options as appropriate.
5927 	 */
5928 
5929 	/*
5930 	 * A sync rate with unknown or zero offset is nonsensical.
5931 	 * A sync period of zero means Async.
5932 	 */
5933 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5934 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5935 		if (bootverbose) {
5936 			xpt_print(periph->path, "no sync rate available\n");
5937 		}
5938 		return (0);
5939 	}
5940 
5941 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5942 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5943 		    ("hit async: giving up on DV\n"));
5944 		return (0);
5945 	}
5946 
5947 
5948 	/*
5949 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5950 	 * We don't try to remember 'last' settings to see if the SIM actually
5951 	 * gets into the speed we want to set. We check on the SIM telling
5952 	 * us that a requested speed is bad, but otherwise don't try and
5953 	 * check the speed due to the asynchronous and handshake nature
5954 	 * of speed setting.
5955 	 */
5956 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5957 	for (;;) {
5958 		spi->sync_period++;
5959 		if (spi->sync_period >= 0xf) {
5960 			spi->sync_period = 0;
5961 			spi->sync_offset = 0;
5962 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5963 			    ("setting to async for DV\n"));
5964 			/*
5965 			 * Once we hit async, we don't want to try
5966 			 * any more settings.
5967 			 */
5968 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5969 		} else if (bootverbose) {
5970 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5971 			    ("DV: period 0x%x\n", spi->sync_period));
5972 			printf("setting period to 0x%x\n", spi->sync_period);
5973 		}
5974 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5975 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5976 		xpt_action((union ccb *)&cts);
5977 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5978 			break;
5979 		}
5980 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5981 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5982 		if (spi->sync_period == 0) {
5983 			return (0);
5984 		}
5985 	}
5986 	return (1);
5987 }
5988 
5989 static void
5990 probedone(struct cam_periph *periph, union ccb *done_ccb)
5991 {
5992 	probe_softc *softc;
5993 	struct cam_path *path;
5994 	u_int32_t  priority;
5995 
5996 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5997 
5998 	softc = (probe_softc *)periph->softc;
5999 	path = done_ccb->ccb_h.path;
6000 	priority = done_ccb->ccb_h.pinfo.priority;
6001 
6002 	switch (softc->action) {
6003 	case PROBE_TUR:
6004 	{
6005 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6006 
6007 			if (cam_periph_error(done_ccb, 0,
6008 					     SF_NO_PRINT, NULL) == ERESTART)
6009 				return;
6010 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6011 				/* Don't wedge the queue */
6012 				xpt_release_devq(done_ccb->ccb_h.path,
6013 						 /*count*/1,
6014 						 /*run_queue*/TRUE);
6015 		}
6016 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
6017 		xpt_release_ccb(done_ccb);
6018 		xpt_schedule(periph, priority);
6019 		return;
6020 	}
6021 	case PROBE_INQUIRY:
6022 	case PROBE_FULL_INQUIRY:
6023 	{
6024 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6025 			struct scsi_inquiry_data *inq_buf;
6026 			u_int8_t periph_qual;
6027 
6028 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6029 			inq_buf = &path->device->inq_data;
6030 
6031 			periph_qual = SID_QUAL(inq_buf);
6032 
6033 			switch(periph_qual) {
6034 			case SID_QUAL_LU_CONNECTED:
6035 			{
6036 				u_int8_t len;
6037 
6038 				/*
6039 				 * We conservatively request only
6040 				 * SHORT_INQUIRY_LEN bytes of inquiry
6041 				 * information during our first try
6042 				 * at sending an INQUIRY. If the device
6043 				 * has more information to give,
6044 				 * perform a second request specifying
6045 				 * the amount of information the device
6046 				 * is willing to give.
6047 				 */
6048 				len = inq_buf->additional_length
6049 				    + offsetof(struct scsi_inquiry_data,
6050                                                additional_length) + 1;
6051 				if (softc->action == PROBE_INQUIRY
6052 				    && len > SHORT_INQUIRY_LENGTH) {
6053 					PROBE_SET_ACTION(softc, PROBE_FULL_INQUIRY);
6054 					xpt_release_ccb(done_ccb);
6055 					xpt_schedule(periph, priority);
6056 					return;
6057 				}
6058 
6059 				xpt_find_quirk(path->device);
6060 
6061 				xpt_devise_transport(path);
6062 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6063 					PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
6064 				else
6065 					PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6066 
6067 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6068 
6069 				xpt_release_ccb(done_ccb);
6070 				xpt_schedule(periph, priority);
6071 				return;
6072 			}
6073 			default:
6074 				break;
6075 			}
6076 		} else if (cam_periph_error(done_ccb, 0,
6077 					    done_ccb->ccb_h.target_lun > 0
6078 					    ? SF_RETRY_UA|SF_QUIET_IR
6079 					    : SF_RETRY_UA,
6080 					    &softc->saved_ccb) == ERESTART) {
6081 			return;
6082 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6083 			/* Don't wedge the queue */
6084 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6085 					 /*run_queue*/TRUE);
6086 		}
6087 		/*
6088 		 * If we get to this point, we got an error status back
6089 		 * from the inquiry and the error status doesn't require
6090 		 * automatically retrying the command.  Therefore, the
6091 		 * inquiry failed.  If we had inquiry information before
6092 		 * for this device, but this latest inquiry command failed,
6093 		 * the device has probably gone away.  If this device isn't
6094 		 * already marked unconfigured, notify the peripheral
6095 		 * drivers that this device is no more.
6096 		 */
6097 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
6098 			/* Send the async notification. */
6099 			xpt_async(AC_LOST_DEVICE, path, NULL);
6100 
6101 		xpt_release_ccb(done_ccb);
6102 		break;
6103 	}
6104 	case PROBE_MODE_SENSE:
6105 	{
6106 		struct ccb_scsiio *csio;
6107 		struct scsi_mode_header_6 *mode_hdr;
6108 
6109 		csio = &done_ccb->csio;
6110 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6111 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6112 			struct scsi_control_page *page;
6113 			u_int8_t *offset;
6114 
6115 			offset = ((u_int8_t *)&mode_hdr[1])
6116 			    + mode_hdr->blk_desc_len;
6117 			page = (struct scsi_control_page *)offset;
6118 			path->device->queue_flags = page->queue_flags;
6119 		} else if (cam_periph_error(done_ccb, 0,
6120 					    SF_RETRY_UA|SF_NO_PRINT,
6121 					    &softc->saved_ccb) == ERESTART) {
6122 			return;
6123 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6124 			/* Don't wedge the queue */
6125 			xpt_release_devq(done_ccb->ccb_h.path,
6126 					 /*count*/1, /*run_queue*/TRUE);
6127 		}
6128 		xpt_release_ccb(done_ccb);
6129 		free(mode_hdr, M_CAMXPT);
6130 		PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6131 		xpt_schedule(periph, priority);
6132 		return;
6133 	}
6134 	case PROBE_SERIAL_NUM_0:
6135 	{
6136 		struct ccb_scsiio *csio;
6137 		struct scsi_vpd_supported_page_list *page_list;
6138 		int length, serialnum_supported, i;
6139 
6140 		serialnum_supported = 0;
6141 		csio = &done_ccb->csio;
6142 		page_list =
6143 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6144 
6145 		if (page_list == NULL) {
6146 			/*
6147 			 * Don't process the command as it was never sent
6148 			 */
6149 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6150 		    && (page_list->length > 0)) {
6151 			length = min(page_list->length,
6152 			    SVPD_SUPPORTED_PAGES_SIZE);
6153 			for (i = 0; i < length; i++) {
6154 				if (page_list->list[i] ==
6155 				    SVPD_UNIT_SERIAL_NUMBER) {
6156 					serialnum_supported = 1;
6157 					break;
6158 				}
6159 			}
6160 		} else if (cam_periph_error(done_ccb, 0,
6161 					    SF_RETRY_UA|SF_NO_PRINT,
6162 					    &softc->saved_ccb) == ERESTART) {
6163 			return;
6164 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6165 			/* Don't wedge the queue */
6166 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6167 					 /*run_queue*/TRUE);
6168 		}
6169 
6170 		if (page_list != NULL)
6171 			free(page_list, M_DEVBUF);
6172 
6173 		if (serialnum_supported) {
6174 			xpt_release_ccb(done_ccb);
6175 			PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_1);
6176 			xpt_schedule(periph, priority);
6177 			return;
6178 		}
6179 
6180 		csio->data_ptr = NULL;
6181 		/* FALLTHROUGH */
6182 	}
6183 
6184 	case PROBE_SERIAL_NUM_1:
6185 	{
6186 		struct ccb_scsiio *csio;
6187 		struct scsi_vpd_unit_serial_number *serial_buf;
6188 		u_int32_t  priority;
6189 		int changed;
6190 		int have_serialnum;
6191 
6192 		changed = 1;
6193 		have_serialnum = 0;
6194 		csio = &done_ccb->csio;
6195 		priority = done_ccb->ccb_h.pinfo.priority;
6196 		serial_buf =
6197 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6198 
6199 		/* Clean up from previous instance of this device */
6200 		if (path->device->serial_num != NULL) {
6201 			free(path->device->serial_num, M_CAMXPT);
6202 			path->device->serial_num = NULL;
6203 			path->device->serial_num_len = 0;
6204 		}
6205 
6206 		if (serial_buf == NULL) {
6207 			/*
6208 			 * Don't process the command as it was never sent
6209 			 */
6210 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6211 			&& (serial_buf->length > 0)) {
6212 
6213 			have_serialnum = 1;
6214 			path->device->serial_num =
6215 				(u_int8_t *)malloc((serial_buf->length + 1),
6216 						   M_CAMXPT, M_NOWAIT);
6217 			if (path->device->serial_num != NULL) {
6218 				bcopy(serial_buf->serial_num,
6219 				      path->device->serial_num,
6220 				      serial_buf->length);
6221 				path->device->serial_num_len =
6222 				    serial_buf->length;
6223 				path->device->serial_num[serial_buf->length]
6224 				    = '\0';
6225 			}
6226 		} else if (cam_periph_error(done_ccb, 0,
6227 					    SF_RETRY_UA|SF_NO_PRINT,
6228 					    &softc->saved_ccb) == ERESTART) {
6229 			return;
6230 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6231 			/* Don't wedge the queue */
6232 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6233 					 /*run_queue*/TRUE);
6234 		}
6235 
6236 		/*
6237 		 * Let's see if we have seen this device before.
6238 		 */
6239 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6240 			MD5_CTX context;
6241 			u_int8_t digest[16];
6242 
6243 			MD5Init(&context);
6244 
6245 			MD5Update(&context,
6246 				  (unsigned char *)&path->device->inq_data,
6247 				  sizeof(struct scsi_inquiry_data));
6248 
6249 			if (have_serialnum)
6250 				MD5Update(&context, serial_buf->serial_num,
6251 					  serial_buf->length);
6252 
6253 			MD5Final(digest, &context);
6254 			if (bcmp(softc->digest, digest, 16) == 0)
6255 				changed = 0;
6256 
6257 			/*
6258 			 * XXX Do we need to do a TUR in order to ensure
6259 			 *     that the device really hasn't changed???
6260 			 */
6261 			if ((changed != 0)
6262 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6263 				xpt_async(AC_LOST_DEVICE, path, NULL);
6264 		}
6265 		if (serial_buf != NULL)
6266 			free(serial_buf, M_CAMXPT);
6267 
6268 		if (changed != 0) {
6269 			/*
6270 			 * Now that we have all the necessary
6271 			 * information to safely perform transfer
6272 			 * negotiations... Controllers don't perform
6273 			 * any negotiation or tagged queuing until
6274 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6275 			 * received.  So, on a new device, just retrieve
6276 			 * the user settings, and set them as the current
6277 			 * settings to set the device up.
6278 			 */
6279 			proberequestdefaultnegotiation(periph);
6280 			xpt_release_ccb(done_ccb);
6281 
6282 			/*
6283 			 * Perform a TUR to allow the controller to
6284 			 * perform any necessary transfer negotiation.
6285 			 */
6286 			PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6287 			xpt_schedule(periph, priority);
6288 			return;
6289 		}
6290 		xpt_release_ccb(done_ccb);
6291 		break;
6292 	}
6293 	case PROBE_TUR_FOR_NEGOTIATION:
6294 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6295 			DELAY(500000);
6296 			if (cam_periph_error(done_ccb, 0, SF_RETRY_UA,
6297 			    NULL) == ERESTART)
6298 				return;
6299 		}
6300 	/* FALLTHROUGH */
6301 	case PROBE_DV_EXIT:
6302 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6303 			/* Don't wedge the queue */
6304 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6305 					 /*run_queue*/TRUE);
6306 		}
6307 		/*
6308 		 * Do Domain Validation for lun 0 on devices that claim
6309 		 * to support Synchronous Transfer modes.
6310 		 */
6311 	 	if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6312 		 && done_ccb->ccb_h.target_lun == 0
6313 		 && (path->device->inq_data.flags & SID_Sync) != 0
6314                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6315 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6316 			    ("Begin Domain Validation\n"));
6317 			path->device->flags |= CAM_DEV_IN_DV;
6318 			xpt_release_ccb(done_ccb);
6319 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1);
6320 			xpt_schedule(periph, priority);
6321 			return;
6322 		}
6323 		if (softc->action == PROBE_DV_EXIT) {
6324 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6325 			    ("Leave Domain Validation\n"));
6326 		}
6327 		path->device->flags &=
6328 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6329 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6330 			/* Inform the XPT that a new device has been found */
6331 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6332 			xpt_action(done_ccb);
6333 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6334 				  done_ccb);
6335 		}
6336 		xpt_release_ccb(done_ccb);
6337 		break;
6338 	case PROBE_INQUIRY_BASIC_DV1:
6339 	case PROBE_INQUIRY_BASIC_DV2:
6340 	{
6341 		struct scsi_inquiry_data *nbuf;
6342 		struct ccb_scsiio *csio;
6343 
6344 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6345 			/* Don't wedge the queue */
6346 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6347 					 /*run_queue*/TRUE);
6348 		}
6349 		csio = &done_ccb->csio;
6350 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6351 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6352 			xpt_print(path,
6353 			    "inquiry data fails comparison at DV%d step\n",
6354 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6355 			if (proberequestbackoff(periph, path->device)) {
6356 				path->device->flags &= ~CAM_DEV_IN_DV;
6357 				PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6358 			} else {
6359 				/* give up */
6360 				PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
6361 			}
6362 			free(nbuf, M_CAMXPT);
6363 			xpt_release_ccb(done_ccb);
6364 			xpt_schedule(periph, priority);
6365 			return;
6366 		}
6367 		free(nbuf, M_CAMXPT);
6368 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6369 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2);
6370 			xpt_release_ccb(done_ccb);
6371 			xpt_schedule(periph, priority);
6372 			return;
6373 		}
6374 		if (softc->action == PROBE_INQUIRY_BASIC_DV2) {
6375 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6376 			    ("Leave Domain Validation Successfully\n"));
6377 		}
6378 		path->device->flags &=
6379 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6380 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6381 			/* Inform the XPT that a new device has been found */
6382 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6383 			xpt_action(done_ccb);
6384 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6385 				  done_ccb);
6386 		}
6387 		xpt_release_ccb(done_ccb);
6388 		break;
6389 	}
6390 	case PROBE_INVALID:
6391 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_INFO,
6392 		    ("probedone: invalid action state\n"));
6393 	default:
6394 		break;
6395 	}
6396 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6397 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6398 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6399 	xpt_done(done_ccb);
6400 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6401 		cam_periph_invalidate(periph);
6402 		cam_periph_release_locked(periph);
6403 	} else {
6404 		probeschedule(periph);
6405 	}
6406 }
6407 
6408 static void
6409 probecleanup(struct cam_periph *periph)
6410 {
6411 	free(periph->softc, M_CAMXPT);
6412 }
6413 
6414 static void
6415 xpt_find_quirk(struct cam_ed *device)
6416 {
6417 	caddr_t	match;
6418 
6419 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6420 			       (caddr_t)xpt_quirk_table,
6421 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6422 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6423 
6424 	if (match == NULL)
6425 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6426 
6427 	device->quirk = (struct xpt_quirk_entry *)match;
6428 }
6429 
6430 static int
6431 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6432 {
6433 	int error, bool;
6434 
6435 	bool = cam_srch_hi;
6436 	error = sysctl_handle_int(oidp, &bool, 0, req);
6437 	if (error != 0 || req->newptr == NULL)
6438 		return (error);
6439 	if (bool == 0 || bool == 1) {
6440 		cam_srch_hi = bool;
6441 		return (0);
6442 	} else {
6443 		return (EINVAL);
6444 	}
6445 }
6446 
6447 
6448 static void
6449 xpt_devise_transport(struct cam_path *path)
6450 {
6451 	struct ccb_pathinq cpi;
6452 	struct ccb_trans_settings cts;
6453 	struct scsi_inquiry_data *inq_buf;
6454 
6455 	/* Get transport information from the SIM */
6456 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6457 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6458 	xpt_action((union ccb *)&cpi);
6459 
6460 	inq_buf = NULL;
6461 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6462 		inq_buf = &path->device->inq_data;
6463 	path->device->protocol = PROTO_SCSI;
6464 	path->device->protocol_version =
6465 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6466 	path->device->transport = cpi.transport;
6467 	path->device->transport_version = cpi.transport_version;
6468 
6469 	/*
6470 	 * Any device not using SPI3 features should
6471 	 * be considered SPI2 or lower.
6472 	 */
6473 	if (inq_buf != NULL) {
6474 		if (path->device->transport == XPORT_SPI
6475 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6476 		 && path->device->transport_version > 2)
6477 			path->device->transport_version = 2;
6478 	} else {
6479 		struct cam_ed* otherdev;
6480 
6481 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6482 		     otherdev != NULL;
6483 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6484 			if (otherdev != path->device)
6485 				break;
6486 		}
6487 
6488 		if (otherdev != NULL) {
6489 			/*
6490 			 * Initially assume the same versioning as
6491 			 * prior luns for this target.
6492 			 */
6493 			path->device->protocol_version =
6494 			    otherdev->protocol_version;
6495 			path->device->transport_version =
6496 			    otherdev->transport_version;
6497 		} else {
6498 			/* Until we know better, opt for safty */
6499 			path->device->protocol_version = 2;
6500 			if (path->device->transport == XPORT_SPI)
6501 				path->device->transport_version = 2;
6502 			else
6503 				path->device->transport_version = 0;
6504 		}
6505 	}
6506 
6507 	/*
6508 	 * XXX
6509 	 * For a device compliant with SPC-2 we should be able
6510 	 * to determine the transport version supported by
6511 	 * scrutinizing the version descriptors in the
6512 	 * inquiry buffer.
6513 	 */
6514 
6515 	/* Tell the controller what we think */
6516 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6517 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6518 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6519 	cts.transport = path->device->transport;
6520 	cts.transport_version = path->device->transport_version;
6521 	cts.protocol = path->device->protocol;
6522 	cts.protocol_version = path->device->protocol_version;
6523 	cts.proto_specific.valid = 0;
6524 	cts.xport_specific.valid = 0;
6525 	xpt_action((union ccb *)&cts);
6526 }
6527 
6528 static void
6529 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6530 			  int async_update)
6531 {
6532 	struct	ccb_pathinq cpi;
6533 	struct	ccb_trans_settings cur_cts;
6534 	struct	ccb_trans_settings_scsi *scsi;
6535 	struct	ccb_trans_settings_scsi *cur_scsi;
6536 	struct	cam_sim *sim;
6537 	struct	scsi_inquiry_data *inq_data;
6538 
6539 	if (device == NULL) {
6540 		cts->ccb_h.status = CAM_PATH_INVALID;
6541 		xpt_done((union ccb *)cts);
6542 		return;
6543 	}
6544 
6545 	if (cts->protocol == PROTO_UNKNOWN
6546 	 || cts->protocol == PROTO_UNSPECIFIED) {
6547 		cts->protocol = device->protocol;
6548 		cts->protocol_version = device->protocol_version;
6549 	}
6550 
6551 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6552 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6553 		cts->protocol_version = device->protocol_version;
6554 
6555 	if (cts->protocol != device->protocol) {
6556 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6557 		       cts->protocol, device->protocol);
6558 		cts->protocol = device->protocol;
6559 	}
6560 
6561 	if (cts->protocol_version > device->protocol_version) {
6562 		if (bootverbose) {
6563 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6564 			    "Version from %d to %d?\n", cts->protocol_version,
6565 			    device->protocol_version);
6566 		}
6567 		cts->protocol_version = device->protocol_version;
6568 	}
6569 
6570 	if (cts->transport == XPORT_UNKNOWN
6571 	 || cts->transport == XPORT_UNSPECIFIED) {
6572 		cts->transport = device->transport;
6573 		cts->transport_version = device->transport_version;
6574 	}
6575 
6576 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6577 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6578 		cts->transport_version = device->transport_version;
6579 
6580 	if (cts->transport != device->transport) {
6581 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6582 		    cts->transport, device->transport);
6583 		cts->transport = device->transport;
6584 	}
6585 
6586 	if (cts->transport_version > device->transport_version) {
6587 		if (bootverbose) {
6588 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6589 			    "Version from %d to %d?\n", cts->transport_version,
6590 			    device->transport_version);
6591 		}
6592 		cts->transport_version = device->transport_version;
6593 	}
6594 
6595 	sim = cts->ccb_h.path->bus->sim;
6596 
6597 	/*
6598 	 * Nothing more of interest to do unless
6599 	 * this is a device connected via the
6600 	 * SCSI protocol.
6601 	 */
6602 	if (cts->protocol != PROTO_SCSI) {
6603 		if (async_update == FALSE)
6604 			(*(sim->sim_action))(sim, (union ccb *)cts);
6605 		return;
6606 	}
6607 
6608 	inq_data = &device->inq_data;
6609 	scsi = &cts->proto_specific.scsi;
6610 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6611 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6612 	xpt_action((union ccb *)&cpi);
6613 
6614 	/* SCSI specific sanity checking */
6615 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6616 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6617 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6618 	 || (device->quirk->mintags == 0)) {
6619 		/*
6620 		 * Can't tag on hardware that doesn't support tags,
6621 		 * doesn't have it enabled, or has broken tag support.
6622 		 */
6623 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6624 	}
6625 
6626 	if (async_update == FALSE) {
6627 		/*
6628 		 * Perform sanity checking against what the
6629 		 * controller and device can do.
6630 		 */
6631 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6632 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6633 		cur_cts.type = cts->type;
6634 		xpt_action((union ccb *)&cur_cts);
6635 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6636 			return;
6637 		}
6638 		cur_scsi = &cur_cts.proto_specific.scsi;
6639 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6640 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6641 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6642 		}
6643 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6644 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6645 	}
6646 
6647 	/* SPI specific sanity checking */
6648 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6649 		u_int spi3caps;
6650 		struct ccb_trans_settings_spi *spi;
6651 		struct ccb_trans_settings_spi *cur_spi;
6652 
6653 		spi = &cts->xport_specific.spi;
6654 
6655 		cur_spi = &cur_cts.xport_specific.spi;
6656 
6657 		/* Fill in any gaps in what the user gave us */
6658 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6659 			spi->sync_period = cur_spi->sync_period;
6660 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6661 			spi->sync_period = 0;
6662 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6663 			spi->sync_offset = cur_spi->sync_offset;
6664 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6665 			spi->sync_offset = 0;
6666 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6667 			spi->ppr_options = cur_spi->ppr_options;
6668 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6669 			spi->ppr_options = 0;
6670 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6671 			spi->bus_width = cur_spi->bus_width;
6672 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6673 			spi->bus_width = 0;
6674 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6675 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6676 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6677 		}
6678 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6679 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6680 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6681 		  && (inq_data->flags & SID_Sync) == 0
6682 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6683 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) {
6684 			/* Force async */
6685 			spi->sync_period = 0;
6686 			spi->sync_offset = 0;
6687 		}
6688 
6689 		switch (spi->bus_width) {
6690 		case MSG_EXT_WDTR_BUS_32_BIT:
6691 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6692 			  || (inq_data->flags & SID_WBus32) != 0
6693 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6694 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6695 				break;
6696 			/* Fall Through to 16-bit */
6697 		case MSG_EXT_WDTR_BUS_16_BIT:
6698 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6699 			  || (inq_data->flags & SID_WBus16) != 0
6700 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6701 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6702 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6703 				break;
6704 			}
6705 			/* Fall Through to 8-bit */
6706 		default: /* New bus width?? */
6707 		case MSG_EXT_WDTR_BUS_8_BIT:
6708 			/* All targets can do this */
6709 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6710 			break;
6711 		}
6712 
6713 		spi3caps = cpi.xport_specific.spi.ppr_options;
6714 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6715 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6716 			spi3caps &= inq_data->spi3data;
6717 
6718 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6719 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6720 
6721 		if ((spi3caps & SID_SPI_IUS) == 0)
6722 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6723 
6724 		if ((spi3caps & SID_SPI_QAS) == 0)
6725 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6726 
6727 		/* No SPI Transfer settings are allowed unless we are wide */
6728 		if (spi->bus_width == 0)
6729 			spi->ppr_options = 0;
6730 
6731 		if ((spi->valid & CTS_SPI_VALID_DISC)
6732 		 && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) {
6733 			/*
6734 			 * Can't tag queue without disconnection.
6735 			 */
6736 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6737 			scsi->valid |= CTS_SCSI_VALID_TQ;
6738 		}
6739 
6740 		/*
6741 		 * If we are currently performing tagged transactions to
6742 		 * this device and want to change its negotiation parameters,
6743 		 * go non-tagged for a bit to give the controller a chance to
6744 		 * negotiate unhampered by tag messages.
6745 		 */
6746 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6747 		 && (device->inq_flags & SID_CmdQue) != 0
6748 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6749 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6750 				   CTS_SPI_VALID_SYNC_OFFSET|
6751 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6752 			xpt_toggle_tags(cts->ccb_h.path);
6753 	}
6754 
6755 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6756 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6757 		int device_tagenb;
6758 
6759 		/*
6760 		 * If we are transitioning from tags to no-tags or
6761 		 * vice-versa, we need to carefully freeze and restart
6762 		 * the queue so that we don't overlap tagged and non-tagged
6763 		 * commands.  We also temporarily stop tags if there is
6764 		 * a change in transfer negotiation settings to allow
6765 		 * "tag-less" negotiation.
6766 		 */
6767 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6768 		 || (device->inq_flags & SID_CmdQue) != 0)
6769 			device_tagenb = TRUE;
6770 		else
6771 			device_tagenb = FALSE;
6772 
6773 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6774 		  && device_tagenb == FALSE)
6775 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6776 		  && device_tagenb == TRUE)) {
6777 
6778 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6779 				/*
6780 				 * Delay change to use tags until after a
6781 				 * few commands have gone to this device so
6782 				 * the controller has time to perform transfer
6783 				 * negotiations without tagged messages getting
6784 				 * in the way.
6785 				 */
6786 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6787 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6788 			} else {
6789 				struct ccb_relsim crs;
6790 
6791 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6792 		  		device->inq_flags &= ~SID_CmdQue;
6793 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6794 						    sim->max_dev_openings);
6795 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6796 				device->tag_delay_count = 0;
6797 
6798 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6799 					      /*priority*/1);
6800 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6801 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6802 				crs.openings
6803 				    = crs.release_timeout
6804 				    = crs.qfrozen_cnt
6805 				    = 0;
6806 				xpt_action((union ccb *)&crs);
6807 			}
6808 		}
6809 	}
6810 	if (async_update == FALSE)
6811 		(*(sim->sim_action))(sim, (union ccb *)cts);
6812 }
6813 
6814 
6815 static void
6816 xpt_toggle_tags(struct cam_path *path)
6817 {
6818 	struct cam_ed *dev;
6819 
6820 	/*
6821 	 * Give controllers a chance to renegotiate
6822 	 * before starting tag operations.  We
6823 	 * "toggle" tagged queuing off then on
6824 	 * which causes the tag enable command delay
6825 	 * counter to come into effect.
6826 	 */
6827 	dev = path->device;
6828 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6829 	 || ((dev->inq_flags & SID_CmdQue) != 0
6830  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6831 		struct ccb_trans_settings cts;
6832 
6833 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6834 		cts.protocol = PROTO_SCSI;
6835 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6836 		cts.transport = XPORT_UNSPECIFIED;
6837 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6838 		cts.proto_specific.scsi.flags = 0;
6839 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6840 		xpt_set_transfer_settings(&cts, path->device,
6841 					  /*async_update*/TRUE);
6842 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6843 		xpt_set_transfer_settings(&cts, path->device,
6844 					  /*async_update*/TRUE);
6845 	}
6846 }
6847 
6848 static void
6849 xpt_start_tags(struct cam_path *path)
6850 {
6851 	struct ccb_relsim crs;
6852 	struct cam_ed *device;
6853 	struct cam_sim *sim;
6854 	int    newopenings;
6855 
6856 	device = path->device;
6857 	sim = path->bus->sim;
6858 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6859 	xpt_freeze_devq(path, /*count*/1);
6860 	device->inq_flags |= SID_CmdQue;
6861 	if (device->tag_saved_openings != 0)
6862 		newopenings = device->tag_saved_openings;
6863 	else
6864 		newopenings = min(device->quirk->maxtags,
6865 				  sim->max_tagged_dev_openings);
6866 	xpt_dev_ccbq_resize(path, newopenings);
6867 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6868 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6869 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6870 	crs.openings
6871 	    = crs.release_timeout
6872 	    = crs.qfrozen_cnt
6873 	    = 0;
6874 	xpt_action((union ccb *)&crs);
6875 }
6876 
6877 static int busses_to_config;
6878 static int busses_to_reset;
6879 
6880 static int
6881 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6882 {
6883 
6884 	mtx_assert(bus->sim->mtx, MA_OWNED);
6885 
6886 	if (bus->path_id != CAM_XPT_PATH_ID) {
6887 		struct cam_path path;
6888 		struct ccb_pathinq cpi;
6889 		int can_negotiate;
6890 
6891 		busses_to_config++;
6892 		xpt_compile_path(&path, NULL, bus->path_id,
6893 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6894 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6895 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6896 		xpt_action((union ccb *)&cpi);
6897 		can_negotiate = cpi.hba_inquiry;
6898 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6899 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6900 		 && can_negotiate)
6901 			busses_to_reset++;
6902 		xpt_release_path(&path);
6903 	}
6904 
6905 	return(1);
6906 }
6907 
6908 static int
6909 xptconfigfunc(struct cam_eb *bus, void *arg)
6910 {
6911 	struct	cam_path *path;
6912 	union	ccb *work_ccb;
6913 
6914 	mtx_assert(bus->sim->mtx, MA_OWNED);
6915 
6916 	if (bus->path_id != CAM_XPT_PATH_ID) {
6917 		cam_status status;
6918 		int can_negotiate;
6919 
6920 		work_ccb = xpt_alloc_ccb_nowait();
6921 		if (work_ccb == NULL) {
6922 			busses_to_config--;
6923 			xpt_finishconfig(xpt_periph, NULL);
6924 			return(0);
6925 		}
6926 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6927 					      CAM_TARGET_WILDCARD,
6928 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6929 			printf("xptconfigfunc: xpt_create_path failed with "
6930 			       "status %#x for bus %d\n", status, bus->path_id);
6931 			printf("xptconfigfunc: halting bus configuration\n");
6932 			xpt_free_ccb(work_ccb);
6933 			busses_to_config--;
6934 			xpt_finishconfig(xpt_periph, NULL);
6935 			return(0);
6936 		}
6937 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6938 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6939 		xpt_action(work_ccb);
6940 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6941 			printf("xptconfigfunc: CPI failed on bus %d "
6942 			       "with status %d\n", bus->path_id,
6943 			       work_ccb->ccb_h.status);
6944 			xpt_finishconfig(xpt_periph, work_ccb);
6945 			return(1);
6946 		}
6947 
6948 		can_negotiate = work_ccb->cpi.hba_inquiry;
6949 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6950 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6951 		 && (can_negotiate != 0)) {
6952 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6953 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6954 			work_ccb->ccb_h.cbfcnp = NULL;
6955 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6956 				  ("Resetting Bus\n"));
6957 			xpt_action(work_ccb);
6958 			xpt_finishconfig(xpt_periph, work_ccb);
6959 		} else {
6960 			/* Act as though we performed a successful BUS RESET */
6961 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6962 			xpt_finishconfig(xpt_periph, work_ccb);
6963 		}
6964 	}
6965 
6966 	return(1);
6967 }
6968 
6969 static void
6970 xpt_config(void *arg)
6971 {
6972 	/*
6973 	 * Now that interrupts are enabled, go find our devices
6974 	 */
6975 
6976 #ifdef CAMDEBUG
6977 	/* Setup debugging flags and path */
6978 #ifdef CAM_DEBUG_FLAGS
6979 	cam_dflags = CAM_DEBUG_FLAGS;
6980 #else /* !CAM_DEBUG_FLAGS */
6981 	cam_dflags = CAM_DEBUG_NONE;
6982 #endif /* CAM_DEBUG_FLAGS */
6983 #ifdef CAM_DEBUG_BUS
6984 	if (cam_dflags != CAM_DEBUG_NONE) {
6985 		/*
6986 		 * Locking is specifically omitted here.  No SIMs have
6987 		 * registered yet, so xpt_create_path will only be searching
6988 		 * empty lists of targets and devices.
6989 		 */
6990 		if (xpt_create_path(&cam_dpath, xpt_periph,
6991 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6992 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6993 			printf("xpt_config: xpt_create_path() failed for debug"
6994 			       " target %d:%d:%d, debugging disabled\n",
6995 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6996 			cam_dflags = CAM_DEBUG_NONE;
6997 		}
6998 	} else
6999 		cam_dpath = NULL;
7000 #else /* !CAM_DEBUG_BUS */
7001 	cam_dpath = NULL;
7002 #endif /* CAM_DEBUG_BUS */
7003 #endif /* CAMDEBUG */
7004 
7005 	/*
7006 	 * Scan all installed busses.
7007 	 */
7008 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7009 
7010 	if (busses_to_config == 0) {
7011 		/* Call manually because we don't have any busses */
7012 		xpt_finishconfig(xpt_periph, NULL);
7013 	} else  {
7014 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
7015 			printf("Waiting %d seconds for SCSI "
7016 			       "devices to settle\n", scsi_delay/1000);
7017 		}
7018 		xpt_for_all_busses(xptconfigfunc, NULL);
7019 	}
7020 }
7021 
7022 /*
7023  * If the given device only has one peripheral attached to it, and if that
7024  * peripheral is the passthrough driver, announce it.  This insures that the
7025  * user sees some sort of announcement for every peripheral in their system.
7026  */
7027 static int
7028 xptpassannouncefunc(struct cam_ed *device, void *arg)
7029 {
7030 	struct cam_periph *periph;
7031 	int i;
7032 
7033 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7034 	     periph = SLIST_NEXT(periph, periph_links), i++);
7035 
7036 	periph = SLIST_FIRST(&device->periphs);
7037 	if ((i == 1)
7038 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7039 		xpt_announce_periph(periph, NULL);
7040 
7041 	return(1);
7042 }
7043 
7044 static void
7045 xpt_finishconfig_task(void *context, int pending)
7046 {
7047 	struct	periph_driver **p_drv;
7048 	int	i;
7049 
7050 	if (busses_to_config == 0) {
7051 		/* Register all the peripheral drivers */
7052 		/* XXX This will have to change when we have loadable modules */
7053 		p_drv = periph_drivers;
7054 		for (i = 0; p_drv[i] != NULL; i++) {
7055 			(*p_drv[i]->init)();
7056 		}
7057 
7058 		/*
7059 		 * Check for devices with no "standard" peripheral driver
7060 		 * attached.  For any devices like that, announce the
7061 		 * passthrough driver so the user will see something.
7062 		 */
7063 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7064 
7065 		/* Release our hook so that the boot can continue. */
7066 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7067 		free(xsoftc.xpt_config_hook, M_CAMXPT);
7068 		xsoftc.xpt_config_hook = NULL;
7069 	}
7070 
7071 	free(context, M_CAMXPT);
7072 }
7073 
7074 static void
7075 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7076 {
7077 	struct	xpt_task *task;
7078 
7079 	if (done_ccb != NULL) {
7080 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
7081 			  ("xpt_finishconfig\n"));
7082 		switch(done_ccb->ccb_h.func_code) {
7083 		case XPT_RESET_BUS:
7084 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7085 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7086 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7087 				done_ccb->crcn.flags = 0;
7088 				xpt_action(done_ccb);
7089 				return;
7090 			}
7091 			/* FALLTHROUGH */
7092 		case XPT_SCAN_BUS:
7093 		default:
7094 			xpt_free_path(done_ccb->ccb_h.path);
7095 			busses_to_config--;
7096 			break;
7097 		}
7098 	}
7099 
7100 	if (busses_to_config == 0) {
7101 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
7102 		if (task != NULL) {
7103 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7104 			taskqueue_enqueue(taskqueue_thread, &task->task);
7105 		}
7106 	}
7107 
7108 	if (done_ccb != NULL)
7109 		xpt_free_ccb(done_ccb);
7110 }
7111 
7112 cam_status
7113 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7114 		   struct cam_path *path)
7115 {
7116 	struct ccb_setasync csa;
7117 	cam_status status;
7118 	int xptpath = 0;
7119 
7120 	if (path == NULL) {
7121 		mtx_lock(&xsoftc.xpt_lock);
7122 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7123 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7124 		if (status != CAM_REQ_CMP) {
7125 			mtx_unlock(&xsoftc.xpt_lock);
7126 			return (status);
7127 		}
7128 		xptpath = 1;
7129 	}
7130 
7131 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7132 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7133 	csa.event_enable = event;
7134 	csa.callback = cbfunc;
7135 	csa.callback_arg = cbarg;
7136 	xpt_action((union ccb *)&csa);
7137 	status = csa.ccb_h.status;
7138 	if (xptpath) {
7139 		xpt_free_path(path);
7140 		mtx_unlock(&xsoftc.xpt_lock);
7141 	}
7142 	return (status);
7143 }
7144 
7145 static void
7146 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7147 {
7148 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7149 
7150 	switch (work_ccb->ccb_h.func_code) {
7151 	/* Common cases first */
7152 	case XPT_PATH_INQ:		/* Path routing inquiry */
7153 	{
7154 		struct ccb_pathinq *cpi;
7155 
7156 		cpi = &work_ccb->cpi;
7157 		cpi->version_num = 1; /* XXX??? */
7158 		cpi->hba_inquiry = 0;
7159 		cpi->target_sprt = 0;
7160 		cpi->hba_misc = 0;
7161 		cpi->hba_eng_cnt = 0;
7162 		cpi->max_target = 0;
7163 		cpi->max_lun = 0;
7164 		cpi->initiator_id = 0;
7165 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7166 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7167 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7168 		cpi->unit_number = sim->unit_number;
7169 		cpi->bus_id = sim->bus_id;
7170 		cpi->base_transfer_speed = 0;
7171 		cpi->protocol = PROTO_UNSPECIFIED;
7172 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7173 		cpi->transport = XPORT_UNSPECIFIED;
7174 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7175 		cpi->ccb_h.status = CAM_REQ_CMP;
7176 		xpt_done(work_ccb);
7177 		break;
7178 	}
7179 	default:
7180 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7181 		xpt_done(work_ccb);
7182 		break;
7183 	}
7184 }
7185 
7186 /*
7187  * The xpt as a "controller" has no interrupt sources, so polling
7188  * is a no-op.
7189  */
7190 static void
7191 xptpoll(struct cam_sim *sim)
7192 {
7193 }
7194 
7195 void
7196 xpt_lock_buses(void)
7197 {
7198 	mtx_lock(&xsoftc.xpt_topo_lock);
7199 }
7200 
7201 void
7202 xpt_unlock_buses(void)
7203 {
7204 	mtx_unlock(&xsoftc.xpt_topo_lock);
7205 }
7206 
7207 static void
7208 camisr(void *dummy)
7209 {
7210 	cam_simq_t queue;
7211 	struct cam_sim *sim;
7212 
7213 	mtx_lock(&cam_simq_lock);
7214 	TAILQ_INIT(&queue);
7215 	TAILQ_CONCAT(&queue, &cam_simq, links);
7216 	mtx_unlock(&cam_simq_lock);
7217 
7218 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7219 		TAILQ_REMOVE(&queue, sim, links);
7220 		CAM_SIM_LOCK(sim);
7221 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7222 		camisr_runqueue(&sim->sim_doneq);
7223 		CAM_SIM_UNLOCK(sim);
7224 	}
7225 }
7226 
7227 static void
7228 camisr_runqueue(void *V_queue)
7229 {
7230 	cam_isrq_t *queue = V_queue;
7231 	struct	ccb_hdr *ccb_h;
7232 
7233 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
7234 		int	runq;
7235 
7236 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
7237 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7238 
7239 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7240 			  ("camisr\n"));
7241 
7242 		runq = FALSE;
7243 
7244 		if (ccb_h->flags & CAM_HIGH_POWER) {
7245 			struct highpowerlist	*hphead;
7246 			union ccb		*send_ccb;
7247 
7248 			mtx_lock(&xsoftc.xpt_lock);
7249 			hphead = &xsoftc.highpowerq;
7250 
7251 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7252 
7253 			/*
7254 			 * Increment the count since this command is done.
7255 			 */
7256 			xsoftc.num_highpower++;
7257 
7258 			/*
7259 			 * Any high powered commands queued up?
7260 			 */
7261 			if (send_ccb != NULL) {
7262 
7263 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7264 				mtx_unlock(&xsoftc.xpt_lock);
7265 
7266 				xpt_release_devq(send_ccb->ccb_h.path,
7267 						 /*count*/1, /*runqueue*/TRUE);
7268 			} else
7269 				mtx_unlock(&xsoftc.xpt_lock);
7270 		}
7271 
7272 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7273 			struct cam_ed *dev;
7274 
7275 			dev = ccb_h->path->device;
7276 
7277 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7278 			ccb_h->path->bus->sim->devq->send_active--;
7279 			ccb_h->path->bus->sim->devq->send_openings++;
7280 
7281 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7282 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7283 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7284 			  && (dev->ccbq.dev_active == 0))) {
7285 
7286 				xpt_release_devq(ccb_h->path, /*count*/1,
7287 						 /*run_queue*/TRUE);
7288 			}
7289 
7290 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7291 			 && (--dev->tag_delay_count == 0))
7292 				xpt_start_tags(ccb_h->path);
7293 
7294 			if ((dev->ccbq.queue.entries > 0)
7295 			 && (dev->qfrozen_cnt == 0)
7296 			 && (device_is_send_queued(dev) == 0)) {
7297 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7298 							      dev);
7299 			}
7300 		}
7301 
7302 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7303 			xpt_release_simq(ccb_h->path->bus->sim,
7304 					 /*run_queue*/TRUE);
7305 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7306 			runq = FALSE;
7307 		}
7308 
7309 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7310 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7311 			xpt_release_devq(ccb_h->path, /*count*/1,
7312 					 /*run_queue*/TRUE);
7313 			ccb_h->status &= ~CAM_DEV_QFRZN;
7314 		} else if (runq) {
7315 			xpt_run_dev_sendq(ccb_h->path->bus);
7316 		}
7317 
7318 		/* Call the peripheral driver's callback */
7319 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7320 	}
7321 }
7322 
7323