1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 52 #ifdef PC98 53 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_sim.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_sim.h> 62 #include <cam/cam_xpt_periph.h> 63 #include <cam/cam_debug.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 #include <machine/stdarg.h> /* for xpt_print below */ 69 #include "opt_cam.h" 70 71 /* Datastructures internal to the xpt layer */ 72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 73 74 /* Object for defering XPT actions to a taskqueue */ 75 struct xpt_task { 76 struct task task; 77 void *data1; 78 uintptr_t data2; 79 }; 80 81 /* 82 * Definition of an async handler callback block. These are used to add 83 * SIMs and peripherals to the async callback lists. 84 */ 85 struct async_node { 86 SLIST_ENTRY(async_node) links; 87 u_int32_t event_enable; /* Async Event enables */ 88 void (*callback)(void *arg, u_int32_t code, 89 struct cam_path *path, void *args); 90 void *callback_arg; 91 }; 92 93 SLIST_HEAD(async_list, async_node); 94 SLIST_HEAD(periph_list, cam_periph); 95 96 /* 97 * This is the maximum number of high powered commands (e.g. start unit) 98 * that can be outstanding at a particular time. 99 */ 100 #ifndef CAM_MAX_HIGHPOWER 101 #define CAM_MAX_HIGHPOWER 4 102 #endif 103 104 /* 105 * Structure for queueing a device in a run queue. 106 * There is one run queue for allocating new ccbs, 107 * and another for sending ccbs to the controller. 108 */ 109 struct cam_ed_qinfo { 110 cam_pinfo pinfo; 111 struct cam_ed *device; 112 }; 113 114 /* 115 * The CAM EDT (Existing Device Table) contains the device information for 116 * all devices for all busses in the system. The table contains a 117 * cam_ed structure for each device on the bus. 118 */ 119 struct cam_ed { 120 TAILQ_ENTRY(cam_ed) links; 121 struct cam_ed_qinfo alloc_ccb_entry; 122 struct cam_ed_qinfo send_ccb_entry; 123 struct cam_et *target; 124 struct cam_sim *sim; 125 lun_id_t lun_id; 126 struct camq drvq; /* 127 * Queue of type drivers wanting to do 128 * work on this device. 129 */ 130 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 131 struct async_list asyncs; /* Async callback info for this B/T/L */ 132 struct periph_list periphs; /* All attached devices */ 133 u_int generation; /* Generation number */ 134 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 135 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 136 /* Storage for the inquiry data */ 137 cam_proto protocol; 138 u_int protocol_version; 139 cam_xport transport; 140 u_int transport_version; 141 struct scsi_inquiry_data inq_data; 142 u_int8_t inq_flags; /* 143 * Current settings for inquiry flags. 144 * This allows us to override settings 145 * like disconnection and tagged 146 * queuing for a device. 147 */ 148 u_int8_t queue_flags; /* Queue flags from the control page */ 149 u_int8_t serial_num_len; 150 u_int8_t *serial_num; 151 u_int32_t qfrozen_cnt; 152 u_int32_t flags; 153 #define CAM_DEV_UNCONFIGURED 0x01 154 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 155 #define CAM_DEV_REL_ON_COMPLETE 0x04 156 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 157 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 158 #define CAM_DEV_TAG_AFTER_COUNT 0x20 159 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 160 #define CAM_DEV_IN_DV 0x80 161 #define CAM_DEV_DV_HIT_BOTTOM 0x100 162 u_int32_t tag_delay_count; 163 #define CAM_TAG_DELAY_COUNT 5 164 u_int32_t tag_saved_openings; 165 u_int32_t refcount; 166 struct callout callout; 167 }; 168 169 /* 170 * Each target is represented by an ET (Existing Target). These 171 * entries are created when a target is successfully probed with an 172 * identify, and removed when a device fails to respond after a number 173 * of retries, or a bus rescan finds the device missing. 174 */ 175 struct cam_et { 176 TAILQ_HEAD(, cam_ed) ed_entries; 177 TAILQ_ENTRY(cam_et) links; 178 struct cam_eb *bus; 179 target_id_t target_id; 180 u_int32_t refcount; 181 u_int generation; 182 struct timeval last_reset; 183 }; 184 185 /* 186 * Each bus is represented by an EB (Existing Bus). These entries 187 * are created by calls to xpt_bus_register and deleted by calls to 188 * xpt_bus_deregister. 189 */ 190 struct cam_eb { 191 TAILQ_HEAD(, cam_et) et_entries; 192 TAILQ_ENTRY(cam_eb) links; 193 path_id_t path_id; 194 struct cam_sim *sim; 195 struct timeval last_reset; 196 u_int32_t flags; 197 #define CAM_EB_RUNQ_SCHEDULED 0x01 198 u_int32_t refcount; 199 u_int generation; 200 device_t parent_dev; 201 }; 202 203 struct cam_path { 204 struct cam_periph *periph; 205 struct cam_eb *bus; 206 struct cam_et *target; 207 struct cam_ed *device; 208 }; 209 210 struct xpt_quirk_entry { 211 struct scsi_inquiry_pattern inq_pat; 212 u_int8_t quirks; 213 #define CAM_QUIRK_NOLUNS 0x01 214 #define CAM_QUIRK_NOSERIAL 0x02 215 #define CAM_QUIRK_HILUNS 0x04 216 #define CAM_QUIRK_NOHILUNS 0x08 217 u_int mintags; 218 u_int maxtags; 219 }; 220 221 static int cam_srch_hi = 0; 222 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 223 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 224 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 225 sysctl_cam_search_luns, "I", 226 "allow search above LUN 7 for SCSI3 and greater devices"); 227 228 #define CAM_SCSI2_MAXLUN 8 229 /* 230 * If we're not quirked to search <= the first 8 luns 231 * and we are either quirked to search above lun 8, 232 * or we're > SCSI-2 and we've enabled hilun searching, 233 * or we're > SCSI-2 and the last lun was a success, 234 * we can look for luns above lun 8. 235 */ 236 #define CAN_SRCH_HI_SPARSE(dv) \ 237 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 238 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 239 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 240 241 #define CAN_SRCH_HI_DENSE(dv) \ 242 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 243 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 244 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 245 246 typedef enum { 247 XPT_FLAG_OPEN = 0x01 248 } xpt_flags; 249 250 struct xpt_softc { 251 xpt_flags flags; 252 u_int32_t xpt_generation; 253 254 /* number of high powered commands that can go through right now */ 255 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 256 int num_highpower; 257 258 /* queue for handling async rescan requests. */ 259 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 260 261 /* Registered busses */ 262 TAILQ_HEAD(,cam_eb) xpt_busses; 263 u_int bus_generation; 264 265 struct intr_config_hook *xpt_config_hook; 266 267 struct mtx xpt_topo_lock; 268 struct mtx xpt_lock; 269 }; 270 271 static const char quantum[] = "QUANTUM"; 272 static const char sony[] = "SONY"; 273 static const char west_digital[] = "WDIGTL"; 274 static const char samsung[] = "SAMSUNG"; 275 static const char seagate[] = "SEAGATE"; 276 static const char microp[] = "MICROP"; 277 278 static struct xpt_quirk_entry xpt_quirk_table[] = 279 { 280 { 281 /* Reports QUEUE FULL for temporary resource shortages */ 282 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 283 /*quirks*/0, /*mintags*/24, /*maxtags*/32 284 }, 285 { 286 /* Reports QUEUE FULL for temporary resource shortages */ 287 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 288 /*quirks*/0, /*mintags*/24, /*maxtags*/32 289 }, 290 { 291 /* Reports QUEUE FULL for temporary resource shortages */ 292 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 293 /*quirks*/0, /*mintags*/24, /*maxtags*/32 294 }, 295 { 296 /* Broken tagged queuing drive */ 297 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 298 /*quirks*/0, /*mintags*/0, /*maxtags*/0 299 }, 300 { 301 /* Broken tagged queuing drive */ 302 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 303 /*quirks*/0, /*mintags*/0, /*maxtags*/0 304 }, 305 { 306 /* Broken tagged queuing drive */ 307 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 308 /*quirks*/0, /*mintags*/0, /*maxtags*/0 309 }, 310 { 311 /* 312 * Unfortunately, the Quantum Atlas III has the same 313 * problem as the Atlas II drives above. 314 * Reported by: "Johan Granlund" <johan@granlund.nu> 315 * 316 * For future reference, the drive with the problem was: 317 * QUANTUM QM39100TD-SW N1B0 318 * 319 * It's possible that Quantum will fix the problem in later 320 * firmware revisions. If that happens, the quirk entry 321 * will need to be made specific to the firmware revisions 322 * with the problem. 323 * 324 */ 325 /* Reports QUEUE FULL for temporary resource shortages */ 326 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 327 /*quirks*/0, /*mintags*/24, /*maxtags*/32 328 }, 329 { 330 /* 331 * 18 Gig Atlas III, same problem as the 9G version. 332 * Reported by: Andre Albsmeier 333 * <andre.albsmeier@mchp.siemens.de> 334 * 335 * For future reference, the drive with the problem was: 336 * QUANTUM QM318000TD-S N491 337 */ 338 /* Reports QUEUE FULL for temporary resource shortages */ 339 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 340 /*quirks*/0, /*mintags*/24, /*maxtags*/32 341 }, 342 { 343 /* 344 * Broken tagged queuing drive 345 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 346 * and: Martin Renters <martin@tdc.on.ca> 347 */ 348 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 349 /*quirks*/0, /*mintags*/0, /*maxtags*/0 350 }, 351 /* 352 * The Seagate Medalist Pro drives have very poor write 353 * performance with anything more than 2 tags. 354 * 355 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 356 * Drive: <SEAGATE ST36530N 1444> 357 * 358 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 359 * Drive: <SEAGATE ST34520W 1281> 360 * 361 * No one has actually reported that the 9G version 362 * (ST39140*) of the Medalist Pro has the same problem, but 363 * we're assuming that it does because the 4G and 6.5G 364 * versions of the drive are broken. 365 */ 366 { 367 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 368 /*quirks*/0, /*mintags*/2, /*maxtags*/2 369 }, 370 { 371 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 372 /*quirks*/0, /*mintags*/2, /*maxtags*/2 373 }, 374 { 375 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 376 /*quirks*/0, /*mintags*/2, /*maxtags*/2 377 }, 378 { 379 /* 380 * Slow when tagged queueing is enabled. Write performance 381 * steadily drops off with more and more concurrent 382 * transactions. Best sequential write performance with 383 * tagged queueing turned off and write caching turned on. 384 * 385 * PR: kern/10398 386 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 387 * Drive: DCAS-34330 w/ "S65A" firmware. 388 * 389 * The drive with the problem had the "S65A" firmware 390 * revision, and has also been reported (by Stephen J. 391 * Roznowski <sjr@home.net>) for a drive with the "S61A" 392 * firmware revision. 393 * 394 * Although no one has reported problems with the 2 gig 395 * version of the DCAS drive, the assumption is that it 396 * has the same problems as the 4 gig version. Therefore 397 * this quirk entries disables tagged queueing for all 398 * DCAS drives. 399 */ 400 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 401 /*quirks*/0, /*mintags*/0, /*maxtags*/0 402 }, 403 { 404 /* Broken tagged queuing drive */ 405 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 406 /*quirks*/0, /*mintags*/0, /*maxtags*/0 407 }, 408 { 409 /* Broken tagged queuing drive */ 410 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 411 /*quirks*/0, /*mintags*/0, /*maxtags*/0 412 }, 413 { 414 /* This does not support other than LUN 0 */ 415 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" }, 416 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 417 }, 418 { 419 /* 420 * Broken tagged queuing drive. 421 * Submitted by: 422 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 423 * in PR kern/9535 424 */ 425 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 426 /*quirks*/0, /*mintags*/0, /*maxtags*/0 427 }, 428 { 429 /* 430 * Slow when tagged queueing is enabled. (1.5MB/sec versus 431 * 8MB/sec.) 432 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 433 * Best performance with these drives is achieved with 434 * tagged queueing turned off, and write caching turned on. 435 */ 436 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 437 /*quirks*/0, /*mintags*/0, /*maxtags*/0 438 }, 439 { 440 /* 441 * Slow when tagged queueing is enabled. (1.5MB/sec versus 442 * 8MB/sec.) 443 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 444 * Best performance with these drives is achieved with 445 * tagged queueing turned off, and write caching turned on. 446 */ 447 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 448 /*quirks*/0, /*mintags*/0, /*maxtags*/0 449 }, 450 { 451 /* 452 * Doesn't handle queue full condition correctly, 453 * so we need to limit maxtags to what the device 454 * can handle instead of determining this automatically. 455 */ 456 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 457 /*quirks*/0, /*mintags*/2, /*maxtags*/32 458 }, 459 { 460 /* Really only one LUN */ 461 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 462 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 463 }, 464 { 465 /* I can't believe we need a quirk for DPT volumes. */ 466 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 467 CAM_QUIRK_NOLUNS, 468 /*mintags*/0, /*maxtags*/255 469 }, 470 { 471 /* 472 * Many Sony CDROM drives don't like multi-LUN probing. 473 */ 474 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 475 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 476 }, 477 { 478 /* 479 * This drive doesn't like multiple LUN probing. 480 * Submitted by: Parag Patel <parag@cgt.com> 481 */ 482 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 483 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 484 }, 485 { 486 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 487 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 488 }, 489 { 490 /* 491 * The 8200 doesn't like multi-lun probing, and probably 492 * don't like serial number requests either. 493 */ 494 { 495 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 496 "EXB-8200*", "*" 497 }, 498 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 499 }, 500 { 501 /* 502 * Let's try the same as above, but for a drive that says 503 * it's an IPL-6860 but is actually an EXB 8200. 504 */ 505 { 506 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 507 "IPL-6860*", "*" 508 }, 509 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 510 }, 511 { 512 /* 513 * These Hitachi drives don't like multi-lun probing. 514 * The PR submitter has a DK319H, but says that the Linux 515 * kernel has a similar work-around for the DK312 and DK314, 516 * so all DK31* drives are quirked here. 517 * PR: misc/18793 518 * Submitted by: Paul Haddad <paul@pth.com> 519 */ 520 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 521 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 522 }, 523 { 524 /* 525 * The Hitachi CJ series with J8A8 firmware apparantly has 526 * problems with tagged commands. 527 * PR: 23536 528 * Reported by: amagai@nue.org 529 */ 530 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 531 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 532 }, 533 { 534 /* 535 * These are the large storage arrays. 536 * Submitted by: William Carrel <william.carrel@infospace.com> 537 */ 538 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 539 CAM_QUIRK_HILUNS, 2, 1024 540 }, 541 { 542 /* 543 * This old revision of the TDC3600 is also SCSI-1, and 544 * hangs upon serial number probing. 545 */ 546 { 547 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 548 " TDC 3600", "U07:" 549 }, 550 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 551 }, 552 { 553 /* 554 * Would repond to all LUNs if asked for. 555 */ 556 { 557 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 558 "CP150", "*" 559 }, 560 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 561 }, 562 { 563 /* 564 * Would repond to all LUNs if asked for. 565 */ 566 { 567 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 568 "96X2*", "*" 569 }, 570 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 571 }, 572 { 573 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 574 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 575 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 576 }, 577 { 578 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 579 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 580 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 581 }, 582 { 583 /* TeraSolutions special settings for TRC-22 RAID */ 584 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 585 /*quirks*/0, /*mintags*/55, /*maxtags*/255 586 }, 587 { 588 /* Veritas Storage Appliance */ 589 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 590 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 591 }, 592 { 593 /* 594 * Would respond to all LUNs. Device type and removable 595 * flag are jumper-selectable. 596 */ 597 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 598 "Tahiti 1", "*" 599 }, 600 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 601 }, 602 { 603 /* EasyRAID E5A aka. areca ARC-6010 */ 604 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 605 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 606 }, 607 { 608 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" }, 609 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 610 }, 611 { 612 /* Default tagged queuing parameters for all devices */ 613 { 614 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 615 /*vendor*/"*", /*product*/"*", /*revision*/"*" 616 }, 617 /*quirks*/0, /*mintags*/2, /*maxtags*/255 618 }, 619 }; 620 621 static const int xpt_quirk_table_size = 622 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 623 624 typedef enum { 625 DM_RET_COPY = 0x01, 626 DM_RET_FLAG_MASK = 0x0f, 627 DM_RET_NONE = 0x00, 628 DM_RET_STOP = 0x10, 629 DM_RET_DESCEND = 0x20, 630 DM_RET_ERROR = 0x30, 631 DM_RET_ACTION_MASK = 0xf0 632 } dev_match_ret; 633 634 typedef enum { 635 XPT_DEPTH_BUS, 636 XPT_DEPTH_TARGET, 637 XPT_DEPTH_DEVICE, 638 XPT_DEPTH_PERIPH 639 } xpt_traverse_depth; 640 641 struct xpt_traverse_config { 642 xpt_traverse_depth depth; 643 void *tr_func; 644 void *tr_arg; 645 }; 646 647 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 648 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 649 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 650 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 651 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 652 653 /* Transport layer configuration information */ 654 static struct xpt_softc xsoftc; 655 656 /* Queues for our software interrupt handler */ 657 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 658 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 659 static cam_simq_t cam_simq; 660 static struct mtx cam_simq_lock; 661 662 /* Pointers to software interrupt handlers */ 663 static void *cambio_ih; 664 665 struct cam_periph *xpt_periph; 666 667 static periph_init_t xpt_periph_init; 668 669 static periph_init_t probe_periph_init; 670 671 static struct periph_driver xpt_driver = 672 { 673 xpt_periph_init, "xpt", 674 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 675 }; 676 677 static struct periph_driver probe_driver = 678 { 679 probe_periph_init, "probe", 680 TAILQ_HEAD_INITIALIZER(probe_driver.units) 681 }; 682 683 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 684 PERIPHDRIVER_DECLARE(probe, probe_driver); 685 686 687 static d_open_t xptopen; 688 static d_close_t xptclose; 689 static d_ioctl_t xptioctl; 690 691 static struct cdevsw xpt_cdevsw = { 692 .d_version = D_VERSION, 693 .d_flags = 0, 694 .d_open = xptopen, 695 .d_close = xptclose, 696 .d_ioctl = xptioctl, 697 .d_name = "xpt", 698 }; 699 700 701 /* Storage for debugging datastructures */ 702 #ifdef CAMDEBUG 703 struct cam_path *cam_dpath; 704 u_int32_t cam_dflags; 705 u_int32_t cam_debug_delay; 706 #endif 707 708 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 709 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 710 #endif 711 712 /* 713 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 714 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 715 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 716 */ 717 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 718 || defined(CAM_DEBUG_LUN) 719 #ifdef CAMDEBUG 720 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 721 || !defined(CAM_DEBUG_LUN) 722 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 723 and CAM_DEBUG_LUN" 724 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 725 #else /* !CAMDEBUG */ 726 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 727 #endif /* CAMDEBUG */ 728 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 729 730 /* Our boot-time initialization hook */ 731 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 732 733 static moduledata_t cam_moduledata = { 734 "cam", 735 cam_module_event_handler, 736 NULL 737 }; 738 739 static int xpt_init(void *); 740 741 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 742 MODULE_VERSION(cam, 1); 743 744 745 static cam_status xpt_compile_path(struct cam_path *new_path, 746 struct cam_periph *perph, 747 path_id_t path_id, 748 target_id_t target_id, 749 lun_id_t lun_id); 750 751 static void xpt_release_path(struct cam_path *path); 752 753 static void xpt_async_bcast(struct async_list *async_head, 754 u_int32_t async_code, 755 struct cam_path *path, 756 void *async_arg); 757 static void xpt_dev_async(u_int32_t async_code, 758 struct cam_eb *bus, 759 struct cam_et *target, 760 struct cam_ed *device, 761 void *async_arg); 762 static path_id_t xptnextfreepathid(void); 763 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 764 static union ccb *xpt_get_ccb(struct cam_ed *device); 765 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 766 u_int32_t new_priority); 767 static void xpt_run_dev_allocq(struct cam_eb *bus); 768 static void xpt_run_dev_sendq(struct cam_eb *bus); 769 static timeout_t xpt_release_devq_timeout; 770 static void xpt_release_simq_timeout(void *arg) __unused; 771 static void xpt_release_bus(struct cam_eb *bus); 772 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 773 int run_queue); 774 static struct cam_et* 775 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 776 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 777 static struct cam_ed* 778 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 779 lun_id_t lun_id); 780 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 781 struct cam_ed *device); 782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 783 static struct cam_eb* 784 xpt_find_bus(path_id_t path_id); 785 static struct cam_et* 786 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 787 static struct cam_ed* 788 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 789 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 790 static void xpt_scan_lun(struct cam_periph *periph, 791 struct cam_path *path, cam_flags flags, 792 union ccb *ccb); 793 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 794 static xpt_busfunc_t xptconfigbuscountfunc; 795 static xpt_busfunc_t xptconfigfunc; 796 static void xpt_config(void *arg); 797 static xpt_devicefunc_t xptpassannouncefunc; 798 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 799 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 800 static void xptpoll(struct cam_sim *sim); 801 static void camisr(void *); 802 static void camisr_runqueue(void *); 803 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 804 u_int num_patterns, struct cam_eb *bus); 805 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 806 u_int num_patterns, 807 struct cam_ed *device); 808 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 809 u_int num_patterns, 810 struct cam_periph *periph); 811 static xpt_busfunc_t xptedtbusfunc; 812 static xpt_targetfunc_t xptedttargetfunc; 813 static xpt_devicefunc_t xptedtdevicefunc; 814 static xpt_periphfunc_t xptedtperiphfunc; 815 static xpt_pdrvfunc_t xptplistpdrvfunc; 816 static xpt_periphfunc_t xptplistperiphfunc; 817 static int xptedtmatch(struct ccb_dev_match *cdm); 818 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 819 static int xptbustraverse(struct cam_eb *start_bus, 820 xpt_busfunc_t *tr_func, void *arg); 821 static int xpttargettraverse(struct cam_eb *bus, 822 struct cam_et *start_target, 823 xpt_targetfunc_t *tr_func, void *arg); 824 static int xptdevicetraverse(struct cam_et *target, 825 struct cam_ed *start_device, 826 xpt_devicefunc_t *tr_func, void *arg); 827 static int xptperiphtraverse(struct cam_ed *device, 828 struct cam_periph *start_periph, 829 xpt_periphfunc_t *tr_func, void *arg); 830 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 831 xpt_pdrvfunc_t *tr_func, void *arg); 832 static int xptpdperiphtraverse(struct periph_driver **pdrv, 833 struct cam_periph *start_periph, 834 xpt_periphfunc_t *tr_func, 835 void *arg); 836 static xpt_busfunc_t xptdefbusfunc; 837 static xpt_targetfunc_t xptdeftargetfunc; 838 static xpt_devicefunc_t xptdefdevicefunc; 839 static xpt_periphfunc_t xptdefperiphfunc; 840 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 841 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 842 void *arg); 843 static xpt_devicefunc_t xptsetasyncfunc; 844 static xpt_busfunc_t xptsetasyncbusfunc; 845 static cam_status xptregister(struct cam_periph *periph, 846 void *arg); 847 static cam_status proberegister(struct cam_periph *periph, 848 void *arg); 849 static void probeschedule(struct cam_periph *probe_periph); 850 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 851 static void proberequestdefaultnegotiation(struct cam_periph *periph); 852 static int proberequestbackoff(struct cam_periph *periph, 853 struct cam_ed *device); 854 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 855 static void probecleanup(struct cam_periph *periph); 856 static void xpt_find_quirk(struct cam_ed *device); 857 static void xpt_devise_transport(struct cam_path *path); 858 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 859 struct cam_ed *device, 860 int async_update); 861 static void xpt_toggle_tags(struct cam_path *path); 862 static void xpt_start_tags(struct cam_path *path); 863 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 864 struct cam_ed *dev); 865 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 866 struct cam_ed *dev); 867 static __inline int periph_is_queued(struct cam_periph *periph); 868 static __inline int device_is_alloc_queued(struct cam_ed *device); 869 static __inline int device_is_send_queued(struct cam_ed *device); 870 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 871 872 static __inline int 873 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 874 { 875 int retval; 876 877 if (dev->ccbq.devq_openings > 0) { 878 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 879 cam_ccbq_resize(&dev->ccbq, 880 dev->ccbq.dev_openings 881 + dev->ccbq.dev_active); 882 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 883 } 884 /* 885 * The priority of a device waiting for CCB resources 886 * is that of the the highest priority peripheral driver 887 * enqueued. 888 */ 889 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 890 &dev->alloc_ccb_entry.pinfo, 891 CAMQ_GET_HEAD(&dev->drvq)->priority); 892 } else { 893 retval = 0; 894 } 895 896 return (retval); 897 } 898 899 static __inline int 900 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 901 { 902 int retval; 903 904 if (dev->ccbq.dev_openings > 0) { 905 /* 906 * The priority of a device waiting for controller 907 * resources is that of the the highest priority CCB 908 * enqueued. 909 */ 910 retval = 911 xpt_schedule_dev(&bus->sim->devq->send_queue, 912 &dev->send_ccb_entry.pinfo, 913 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 914 } else { 915 retval = 0; 916 } 917 return (retval); 918 } 919 920 static __inline int 921 periph_is_queued(struct cam_periph *periph) 922 { 923 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 924 } 925 926 static __inline int 927 device_is_alloc_queued(struct cam_ed *device) 928 { 929 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 930 } 931 932 static __inline int 933 device_is_send_queued(struct cam_ed *device) 934 { 935 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 936 } 937 938 static __inline int 939 dev_allocq_is_runnable(struct cam_devq *devq) 940 { 941 /* 942 * Have work to do. 943 * Have space to do more work. 944 * Allowed to do work. 945 */ 946 return ((devq->alloc_queue.qfrozen_cnt == 0) 947 && (devq->alloc_queue.entries > 0) 948 && (devq->alloc_openings > 0)); 949 } 950 951 static void 952 xpt_periph_init() 953 { 954 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 955 } 956 957 static void 958 probe_periph_init() 959 { 960 } 961 962 963 static void 964 xptdone(struct cam_periph *periph, union ccb *done_ccb) 965 { 966 /* Caller will release the CCB */ 967 wakeup(&done_ccb->ccb_h.cbfcnp); 968 } 969 970 static int 971 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 972 { 973 974 /* 975 * Only allow read-write access. 976 */ 977 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 978 return(EPERM); 979 980 /* 981 * We don't allow nonblocking access. 982 */ 983 if ((flags & O_NONBLOCK) != 0) { 984 printf("%s: can't do nonblocking access\n", devtoname(dev)); 985 return(ENODEV); 986 } 987 988 /* Mark ourselves open */ 989 mtx_lock(&xsoftc.xpt_lock); 990 xsoftc.flags |= XPT_FLAG_OPEN; 991 mtx_unlock(&xsoftc.xpt_lock); 992 993 return(0); 994 } 995 996 static int 997 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 998 { 999 1000 /* Mark ourselves closed */ 1001 mtx_lock(&xsoftc.xpt_lock); 1002 xsoftc.flags &= ~XPT_FLAG_OPEN; 1003 mtx_unlock(&xsoftc.xpt_lock); 1004 1005 return(0); 1006 } 1007 1008 /* 1009 * Don't automatically grab the xpt softc lock here even though this is going 1010 * through the xpt device. The xpt device is really just a back door for 1011 * accessing other devices and SIMs, so the right thing to do is to grab 1012 * the appropriate SIM lock once the bus/SIM is located. 1013 */ 1014 static int 1015 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1016 { 1017 int error; 1018 1019 error = 0; 1020 1021 switch(cmd) { 1022 /* 1023 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1024 * to accept CCB types that don't quite make sense to send through a 1025 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1026 * in the CAM spec. 1027 */ 1028 case CAMIOCOMMAND: { 1029 union ccb *ccb; 1030 union ccb *inccb; 1031 struct cam_eb *bus; 1032 1033 inccb = (union ccb *)addr; 1034 1035 bus = xpt_find_bus(inccb->ccb_h.path_id); 1036 if (bus == NULL) { 1037 error = EINVAL; 1038 break; 1039 } 1040 1041 switch(inccb->ccb_h.func_code) { 1042 case XPT_SCAN_BUS: 1043 case XPT_RESET_BUS: 1044 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1045 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1046 error = EINVAL; 1047 break; 1048 } 1049 /* FALLTHROUGH */ 1050 case XPT_PATH_INQ: 1051 case XPT_ENG_INQ: 1052 case XPT_SCAN_LUN: 1053 1054 ccb = xpt_alloc_ccb(); 1055 1056 CAM_SIM_LOCK(bus->sim); 1057 1058 /* 1059 * Create a path using the bus, target, and lun the 1060 * user passed in. 1061 */ 1062 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1063 inccb->ccb_h.path_id, 1064 inccb->ccb_h.target_id, 1065 inccb->ccb_h.target_lun) != 1066 CAM_REQ_CMP){ 1067 error = EINVAL; 1068 CAM_SIM_UNLOCK(bus->sim); 1069 xpt_free_ccb(ccb); 1070 break; 1071 } 1072 /* Ensure all of our fields are correct */ 1073 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1074 inccb->ccb_h.pinfo.priority); 1075 xpt_merge_ccb(ccb, inccb); 1076 ccb->ccb_h.cbfcnp = xptdone; 1077 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1078 bcopy(ccb, inccb, sizeof(union ccb)); 1079 xpt_free_path(ccb->ccb_h.path); 1080 xpt_free_ccb(ccb); 1081 CAM_SIM_UNLOCK(bus->sim); 1082 break; 1083 1084 case XPT_DEBUG: { 1085 union ccb ccb; 1086 1087 /* 1088 * This is an immediate CCB, so it's okay to 1089 * allocate it on the stack. 1090 */ 1091 1092 CAM_SIM_LOCK(bus->sim); 1093 1094 /* 1095 * Create a path using the bus, target, and lun the 1096 * user passed in. 1097 */ 1098 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1099 inccb->ccb_h.path_id, 1100 inccb->ccb_h.target_id, 1101 inccb->ccb_h.target_lun) != 1102 CAM_REQ_CMP){ 1103 error = EINVAL; 1104 CAM_SIM_UNLOCK(bus->sim); 1105 break; 1106 } 1107 /* Ensure all of our fields are correct */ 1108 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1109 inccb->ccb_h.pinfo.priority); 1110 xpt_merge_ccb(&ccb, inccb); 1111 ccb.ccb_h.cbfcnp = xptdone; 1112 xpt_action(&ccb); 1113 CAM_SIM_UNLOCK(bus->sim); 1114 bcopy(&ccb, inccb, sizeof(union ccb)); 1115 xpt_free_path(ccb.ccb_h.path); 1116 break; 1117 1118 } 1119 case XPT_DEV_MATCH: { 1120 struct cam_periph_map_info mapinfo; 1121 struct cam_path *old_path; 1122 1123 /* 1124 * We can't deal with physical addresses for this 1125 * type of transaction. 1126 */ 1127 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1128 error = EINVAL; 1129 break; 1130 } 1131 1132 /* 1133 * Save this in case the caller had it set to 1134 * something in particular. 1135 */ 1136 old_path = inccb->ccb_h.path; 1137 1138 /* 1139 * We really don't need a path for the matching 1140 * code. The path is needed because of the 1141 * debugging statements in xpt_action(). They 1142 * assume that the CCB has a valid path. 1143 */ 1144 inccb->ccb_h.path = xpt_periph->path; 1145 1146 bzero(&mapinfo, sizeof(mapinfo)); 1147 1148 /* 1149 * Map the pattern and match buffers into kernel 1150 * virtual address space. 1151 */ 1152 error = cam_periph_mapmem(inccb, &mapinfo); 1153 1154 if (error) { 1155 inccb->ccb_h.path = old_path; 1156 break; 1157 } 1158 1159 /* 1160 * This is an immediate CCB, we can send it on directly. 1161 */ 1162 xpt_action(inccb); 1163 1164 /* 1165 * Map the buffers back into user space. 1166 */ 1167 cam_periph_unmapmem(inccb, &mapinfo); 1168 1169 inccb->ccb_h.path = old_path; 1170 1171 error = 0; 1172 break; 1173 } 1174 default: 1175 error = ENOTSUP; 1176 break; 1177 } 1178 xpt_release_bus(bus); 1179 break; 1180 } 1181 /* 1182 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1183 * with the periphal driver name and unit name filled in. The other 1184 * fields don't really matter as input. The passthrough driver name 1185 * ("pass"), and unit number are passed back in the ccb. The current 1186 * device generation number, and the index into the device peripheral 1187 * driver list, and the status are also passed back. Note that 1188 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1189 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1190 * (or rather should be) impossible for the device peripheral driver 1191 * list to change since we look at the whole thing in one pass, and 1192 * we do it with lock protection. 1193 * 1194 */ 1195 case CAMGETPASSTHRU: { 1196 union ccb *ccb; 1197 struct cam_periph *periph; 1198 struct periph_driver **p_drv; 1199 char *name; 1200 u_int unit; 1201 u_int cur_generation; 1202 int base_periph_found; 1203 int splbreaknum; 1204 1205 ccb = (union ccb *)addr; 1206 unit = ccb->cgdl.unit_number; 1207 name = ccb->cgdl.periph_name; 1208 /* 1209 * Every 100 devices, we want to drop our lock protection to 1210 * give the software interrupt handler a chance to run. 1211 * Most systems won't run into this check, but this should 1212 * avoid starvation in the software interrupt handler in 1213 * large systems. 1214 */ 1215 splbreaknum = 100; 1216 1217 ccb = (union ccb *)addr; 1218 1219 base_periph_found = 0; 1220 1221 /* 1222 * Sanity check -- make sure we don't get a null peripheral 1223 * driver name. 1224 */ 1225 if (*ccb->cgdl.periph_name == '\0') { 1226 error = EINVAL; 1227 break; 1228 } 1229 1230 /* Keep the list from changing while we traverse it */ 1231 mtx_lock(&xsoftc.xpt_topo_lock); 1232 ptstartover: 1233 cur_generation = xsoftc.xpt_generation; 1234 1235 /* first find our driver in the list of drivers */ 1236 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1237 if (strcmp((*p_drv)->driver_name, name) == 0) 1238 break; 1239 1240 if (*p_drv == NULL) { 1241 mtx_unlock(&xsoftc.xpt_topo_lock); 1242 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1243 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1244 *ccb->cgdl.periph_name = '\0'; 1245 ccb->cgdl.unit_number = 0; 1246 error = ENOENT; 1247 break; 1248 } 1249 1250 /* 1251 * Run through every peripheral instance of this driver 1252 * and check to see whether it matches the unit passed 1253 * in by the user. If it does, get out of the loops and 1254 * find the passthrough driver associated with that 1255 * peripheral driver. 1256 */ 1257 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1258 periph = TAILQ_NEXT(periph, unit_links)) { 1259 1260 if (periph->unit_number == unit) { 1261 break; 1262 } else if (--splbreaknum == 0) { 1263 mtx_unlock(&xsoftc.xpt_topo_lock); 1264 mtx_lock(&xsoftc.xpt_topo_lock); 1265 splbreaknum = 100; 1266 if (cur_generation != xsoftc.xpt_generation) 1267 goto ptstartover; 1268 } 1269 } 1270 /* 1271 * If we found the peripheral driver that the user passed 1272 * in, go through all of the peripheral drivers for that 1273 * particular device and look for a passthrough driver. 1274 */ 1275 if (periph != NULL) { 1276 struct cam_ed *device; 1277 int i; 1278 1279 base_periph_found = 1; 1280 device = periph->path->device; 1281 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1282 periph != NULL; 1283 periph = SLIST_NEXT(periph, periph_links), i++) { 1284 /* 1285 * Check to see whether we have a 1286 * passthrough device or not. 1287 */ 1288 if (strcmp(periph->periph_name, "pass") == 0) { 1289 /* 1290 * Fill in the getdevlist fields. 1291 */ 1292 strcpy(ccb->cgdl.periph_name, 1293 periph->periph_name); 1294 ccb->cgdl.unit_number = 1295 periph->unit_number; 1296 if (SLIST_NEXT(periph, periph_links)) 1297 ccb->cgdl.status = 1298 CAM_GDEVLIST_MORE_DEVS; 1299 else 1300 ccb->cgdl.status = 1301 CAM_GDEVLIST_LAST_DEVICE; 1302 ccb->cgdl.generation = 1303 device->generation; 1304 ccb->cgdl.index = i; 1305 /* 1306 * Fill in some CCB header fields 1307 * that the user may want. 1308 */ 1309 ccb->ccb_h.path_id = 1310 periph->path->bus->path_id; 1311 ccb->ccb_h.target_id = 1312 periph->path->target->target_id; 1313 ccb->ccb_h.target_lun = 1314 periph->path->device->lun_id; 1315 ccb->ccb_h.status = CAM_REQ_CMP; 1316 break; 1317 } 1318 } 1319 } 1320 1321 /* 1322 * If the periph is null here, one of two things has 1323 * happened. The first possibility is that we couldn't 1324 * find the unit number of the particular peripheral driver 1325 * that the user is asking about. e.g. the user asks for 1326 * the passthrough driver for "da11". We find the list of 1327 * "da" peripherals all right, but there is no unit 11. 1328 * The other possibility is that we went through the list 1329 * of peripheral drivers attached to the device structure, 1330 * but didn't find one with the name "pass". Either way, 1331 * we return ENOENT, since we couldn't find something. 1332 */ 1333 if (periph == NULL) { 1334 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1335 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1336 *ccb->cgdl.periph_name = '\0'; 1337 ccb->cgdl.unit_number = 0; 1338 error = ENOENT; 1339 /* 1340 * It is unfortunate that this is even necessary, 1341 * but there are many, many clueless users out there. 1342 * If this is true, the user is looking for the 1343 * passthrough driver, but doesn't have one in his 1344 * kernel. 1345 */ 1346 if (base_periph_found == 1) { 1347 printf("xptioctl: pass driver is not in the " 1348 "kernel\n"); 1349 printf("xptioctl: put \"device pass\" in " 1350 "your kernel config file\n"); 1351 } 1352 } 1353 mtx_unlock(&xsoftc.xpt_topo_lock); 1354 break; 1355 } 1356 default: 1357 error = ENOTTY; 1358 break; 1359 } 1360 1361 return(error); 1362 } 1363 1364 static int 1365 cam_module_event_handler(module_t mod, int what, void *arg) 1366 { 1367 int error; 1368 1369 switch (what) { 1370 case MOD_LOAD: 1371 if ((error = xpt_init(NULL)) != 0) 1372 return (error); 1373 break; 1374 case MOD_UNLOAD: 1375 return EBUSY; 1376 default: 1377 return EOPNOTSUPP; 1378 } 1379 1380 return 0; 1381 } 1382 1383 /* thread to handle bus rescans */ 1384 static void 1385 xpt_scanner_thread(void *dummy) 1386 { 1387 cam_isrq_t queue; 1388 union ccb *ccb; 1389 struct cam_sim *sim; 1390 1391 for (;;) { 1392 /* 1393 * Wait for a rescan request to come in. When it does, splice 1394 * it onto a queue from local storage so that the xpt lock 1395 * doesn't need to be held while the requests are being 1396 * processed. 1397 */ 1398 xpt_lock_buses(); 1399 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 1400 "ccb_scanq", 0); 1401 TAILQ_INIT(&queue); 1402 TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe); 1403 xpt_unlock_buses(); 1404 1405 while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) { 1406 TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe); 1407 1408 sim = ccb->ccb_h.path->bus->sim; 1409 CAM_SIM_LOCK(sim); 1410 1411 ccb->ccb_h.func_code = XPT_SCAN_BUS; 1412 ccb->ccb_h.cbfcnp = xptdone; 1413 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5); 1414 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1415 xpt_free_path(ccb->ccb_h.path); 1416 xpt_free_ccb(ccb); 1417 CAM_SIM_UNLOCK(sim); 1418 } 1419 } 1420 } 1421 1422 void 1423 xpt_rescan(union ccb *ccb) 1424 { 1425 struct ccb_hdr *hdr; 1426 1427 /* 1428 * Don't make duplicate entries for the same paths. 1429 */ 1430 xpt_lock_buses(); 1431 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 1432 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 1433 xpt_unlock_buses(); 1434 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 1435 xpt_free_path(ccb->ccb_h.path); 1436 xpt_free_ccb(ccb); 1437 return; 1438 } 1439 } 1440 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 1441 wakeup(&xsoftc.ccb_scanq); 1442 xpt_unlock_buses(); 1443 } 1444 1445 /* Functions accessed by the peripheral drivers */ 1446 static int 1447 xpt_init(void *dummy) 1448 { 1449 struct cam_sim *xpt_sim; 1450 struct cam_path *path; 1451 struct cam_devq *devq; 1452 cam_status status; 1453 1454 TAILQ_INIT(&xsoftc.xpt_busses); 1455 TAILQ_INIT(&cam_simq); 1456 TAILQ_INIT(&xsoftc.ccb_scanq); 1457 STAILQ_INIT(&xsoftc.highpowerq); 1458 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 1459 1460 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 1461 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 1462 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 1463 1464 /* 1465 * The xpt layer is, itself, the equivelent of a SIM. 1466 * Allow 16 ccbs in the ccb pool for it. This should 1467 * give decent parallelism when we probe busses and 1468 * perform other XPT functions. 1469 */ 1470 devq = cam_simq_alloc(16); 1471 xpt_sim = cam_sim_alloc(xptaction, 1472 xptpoll, 1473 "xpt", 1474 /*softc*/NULL, 1475 /*unit*/0, 1476 /*mtx*/&xsoftc.xpt_lock, 1477 /*max_dev_transactions*/0, 1478 /*max_tagged_dev_transactions*/0, 1479 devq); 1480 if (xpt_sim == NULL) 1481 return (ENOMEM); 1482 1483 xpt_sim->max_ccbs = 16; 1484 1485 mtx_lock(&xsoftc.xpt_lock); 1486 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 1487 printf("xpt_init: xpt_bus_register failed with status %#x," 1488 " failing attach\n", status); 1489 return (EINVAL); 1490 } 1491 1492 /* 1493 * Looking at the XPT from the SIM layer, the XPT is 1494 * the equivelent of a peripheral driver. Allocate 1495 * a peripheral driver entry for us. 1496 */ 1497 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1498 CAM_TARGET_WILDCARD, 1499 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1500 printf("xpt_init: xpt_create_path failed with status %#x," 1501 " failing attach\n", status); 1502 return (EINVAL); 1503 } 1504 1505 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1506 path, NULL, 0, xpt_sim); 1507 xpt_free_path(path); 1508 mtx_unlock(&xsoftc.xpt_lock); 1509 1510 /* 1511 * Register a callback for when interrupts are enabled. 1512 */ 1513 xsoftc.xpt_config_hook = 1514 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1515 M_CAMXPT, M_NOWAIT | M_ZERO); 1516 if (xsoftc.xpt_config_hook == NULL) { 1517 printf("xpt_init: Cannot malloc config hook " 1518 "- failing attach\n"); 1519 return (ENOMEM); 1520 } 1521 1522 xsoftc.xpt_config_hook->ich_func = xpt_config; 1523 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 1524 free (xsoftc.xpt_config_hook, M_CAMXPT); 1525 printf("xpt_init: config_intrhook_establish failed " 1526 "- failing attach\n"); 1527 } 1528 1529 /* fire up rescan thread */ 1530 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 1531 printf("xpt_init: failed to create rescan thread\n"); 1532 } 1533 /* Install our software interrupt handlers */ 1534 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 1535 1536 return (0); 1537 } 1538 1539 static cam_status 1540 xptregister(struct cam_periph *periph, void *arg) 1541 { 1542 struct cam_sim *xpt_sim; 1543 1544 if (periph == NULL) { 1545 printf("xptregister: periph was NULL!!\n"); 1546 return(CAM_REQ_CMP_ERR); 1547 } 1548 1549 xpt_sim = (struct cam_sim *)arg; 1550 xpt_sim->softc = periph; 1551 xpt_periph = periph; 1552 periph->softc = NULL; 1553 1554 return(CAM_REQ_CMP); 1555 } 1556 1557 int32_t 1558 xpt_add_periph(struct cam_periph *periph) 1559 { 1560 struct cam_ed *device; 1561 int32_t status; 1562 struct periph_list *periph_head; 1563 1564 mtx_assert(periph->sim->mtx, MA_OWNED); 1565 1566 device = periph->path->device; 1567 1568 periph_head = &device->periphs; 1569 1570 status = CAM_REQ_CMP; 1571 1572 if (device != NULL) { 1573 /* 1574 * Make room for this peripheral 1575 * so it will fit in the queue 1576 * when it's scheduled to run 1577 */ 1578 status = camq_resize(&device->drvq, 1579 device->drvq.array_size + 1); 1580 1581 device->generation++; 1582 1583 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1584 } 1585 1586 mtx_lock(&xsoftc.xpt_topo_lock); 1587 xsoftc.xpt_generation++; 1588 mtx_unlock(&xsoftc.xpt_topo_lock); 1589 1590 return (status); 1591 } 1592 1593 void 1594 xpt_remove_periph(struct cam_periph *periph) 1595 { 1596 struct cam_ed *device; 1597 1598 mtx_assert(periph->sim->mtx, MA_OWNED); 1599 1600 device = periph->path->device; 1601 1602 if (device != NULL) { 1603 struct periph_list *periph_head; 1604 1605 periph_head = &device->periphs; 1606 1607 /* Release the slot for this peripheral */ 1608 camq_resize(&device->drvq, device->drvq.array_size - 1); 1609 1610 device->generation++; 1611 1612 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1613 } 1614 1615 mtx_lock(&xsoftc.xpt_topo_lock); 1616 xsoftc.xpt_generation++; 1617 mtx_unlock(&xsoftc.xpt_topo_lock); 1618 } 1619 1620 1621 void 1622 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1623 { 1624 struct ccb_pathinq cpi; 1625 struct ccb_trans_settings cts; 1626 struct cam_path *path; 1627 u_int speed; 1628 u_int freq; 1629 u_int mb; 1630 1631 mtx_assert(periph->sim->mtx, MA_OWNED); 1632 1633 path = periph->path; 1634 /* 1635 * To ensure that this is printed in one piece, 1636 * mask out CAM interrupts. 1637 */ 1638 printf("%s%d at %s%d bus %d target %d lun %d\n", 1639 periph->periph_name, periph->unit_number, 1640 path->bus->sim->sim_name, 1641 path->bus->sim->unit_number, 1642 path->bus->sim->bus_id, 1643 path->target->target_id, 1644 path->device->lun_id); 1645 printf("%s%d: ", periph->periph_name, periph->unit_number); 1646 scsi_print_inquiry(&path->device->inq_data); 1647 if (bootverbose && path->device->serial_num_len > 0) { 1648 /* Don't wrap the screen - print only the first 60 chars */ 1649 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1650 periph->unit_number, path->device->serial_num); 1651 } 1652 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1653 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1654 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1655 xpt_action((union ccb*)&cts); 1656 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1657 return; 1658 } 1659 1660 /* Ask the SIM for its base transfer speed */ 1661 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1662 cpi.ccb_h.func_code = XPT_PATH_INQ; 1663 xpt_action((union ccb *)&cpi); 1664 1665 speed = cpi.base_transfer_speed; 1666 freq = 0; 1667 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1668 struct ccb_trans_settings_spi *spi; 1669 1670 spi = &cts.xport_specific.spi; 1671 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1672 && spi->sync_offset != 0) { 1673 freq = scsi_calc_syncsrate(spi->sync_period); 1674 speed = freq; 1675 } 1676 1677 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1678 speed *= (0x01 << spi->bus_width); 1679 } 1680 1681 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1682 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1683 if (fc->valid & CTS_FC_VALID_SPEED) { 1684 speed = fc->bitrate; 1685 } 1686 } 1687 1688 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1689 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; 1690 if (sas->valid & CTS_SAS_VALID_SPEED) { 1691 speed = sas->bitrate; 1692 } 1693 } 1694 1695 mb = speed / 1000; 1696 if (mb > 0) 1697 printf("%s%d: %d.%03dMB/s transfers", 1698 periph->periph_name, periph->unit_number, 1699 mb, speed % 1000); 1700 else 1701 printf("%s%d: %dKB/s transfers", periph->periph_name, 1702 periph->unit_number, speed); 1703 /* Report additional information about SPI connections */ 1704 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1705 struct ccb_trans_settings_spi *spi; 1706 1707 spi = &cts.xport_specific.spi; 1708 if (freq != 0) { 1709 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1710 freq % 1000, 1711 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1712 ? " DT" : "", 1713 spi->sync_offset); 1714 } 1715 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1716 && spi->bus_width > 0) { 1717 if (freq != 0) { 1718 printf(", "); 1719 } else { 1720 printf(" ("); 1721 } 1722 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1723 } else if (freq != 0) { 1724 printf(")"); 1725 } 1726 } 1727 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1728 struct ccb_trans_settings_fc *fc; 1729 1730 fc = &cts.xport_specific.fc; 1731 if (fc->valid & CTS_FC_VALID_WWNN) 1732 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1733 if (fc->valid & CTS_FC_VALID_WWPN) 1734 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1735 if (fc->valid & CTS_FC_VALID_PORT) 1736 printf(" PortID 0x%x", fc->port); 1737 } 1738 1739 if (path->device->inq_flags & SID_CmdQue 1740 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1741 printf("\n%s%d: Command Queueing Enabled", 1742 periph->periph_name, periph->unit_number); 1743 } 1744 printf("\n"); 1745 1746 /* 1747 * We only want to print the caller's announce string if they've 1748 * passed one in.. 1749 */ 1750 if (announce_string != NULL) 1751 printf("%s%d: %s\n", periph->periph_name, 1752 periph->unit_number, announce_string); 1753 } 1754 1755 static dev_match_ret 1756 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1757 struct cam_eb *bus) 1758 { 1759 dev_match_ret retval; 1760 int i; 1761 1762 retval = DM_RET_NONE; 1763 1764 /* 1765 * If we aren't given something to match against, that's an error. 1766 */ 1767 if (bus == NULL) 1768 return(DM_RET_ERROR); 1769 1770 /* 1771 * If there are no match entries, then this bus matches no 1772 * matter what. 1773 */ 1774 if ((patterns == NULL) || (num_patterns == 0)) 1775 return(DM_RET_DESCEND | DM_RET_COPY); 1776 1777 for (i = 0; i < num_patterns; i++) { 1778 struct bus_match_pattern *cur_pattern; 1779 1780 /* 1781 * If the pattern in question isn't for a bus node, we 1782 * aren't interested. However, we do indicate to the 1783 * calling routine that we should continue descending the 1784 * tree, since the user wants to match against lower-level 1785 * EDT elements. 1786 */ 1787 if (patterns[i].type != DEV_MATCH_BUS) { 1788 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1789 retval |= DM_RET_DESCEND; 1790 continue; 1791 } 1792 1793 cur_pattern = &patterns[i].pattern.bus_pattern; 1794 1795 /* 1796 * If they want to match any bus node, we give them any 1797 * device node. 1798 */ 1799 if (cur_pattern->flags == BUS_MATCH_ANY) { 1800 /* set the copy flag */ 1801 retval |= DM_RET_COPY; 1802 1803 /* 1804 * If we've already decided on an action, go ahead 1805 * and return. 1806 */ 1807 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1808 return(retval); 1809 } 1810 1811 /* 1812 * Not sure why someone would do this... 1813 */ 1814 if (cur_pattern->flags == BUS_MATCH_NONE) 1815 continue; 1816 1817 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1818 && (cur_pattern->path_id != bus->path_id)) 1819 continue; 1820 1821 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1822 && (cur_pattern->bus_id != bus->sim->bus_id)) 1823 continue; 1824 1825 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1826 && (cur_pattern->unit_number != bus->sim->unit_number)) 1827 continue; 1828 1829 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1830 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1831 DEV_IDLEN) != 0)) 1832 continue; 1833 1834 /* 1835 * If we get to this point, the user definitely wants 1836 * information on this bus. So tell the caller to copy the 1837 * data out. 1838 */ 1839 retval |= DM_RET_COPY; 1840 1841 /* 1842 * If the return action has been set to descend, then we 1843 * know that we've already seen a non-bus matching 1844 * expression, therefore we need to further descend the tree. 1845 * This won't change by continuing around the loop, so we 1846 * go ahead and return. If we haven't seen a non-bus 1847 * matching expression, we keep going around the loop until 1848 * we exhaust the matching expressions. We'll set the stop 1849 * flag once we fall out of the loop. 1850 */ 1851 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1852 return(retval); 1853 } 1854 1855 /* 1856 * If the return action hasn't been set to descend yet, that means 1857 * we haven't seen anything other than bus matching patterns. So 1858 * tell the caller to stop descending the tree -- the user doesn't 1859 * want to match against lower level tree elements. 1860 */ 1861 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1862 retval |= DM_RET_STOP; 1863 1864 return(retval); 1865 } 1866 1867 static dev_match_ret 1868 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1869 struct cam_ed *device) 1870 { 1871 dev_match_ret retval; 1872 int i; 1873 1874 retval = DM_RET_NONE; 1875 1876 /* 1877 * If we aren't given something to match against, that's an error. 1878 */ 1879 if (device == NULL) 1880 return(DM_RET_ERROR); 1881 1882 /* 1883 * If there are no match entries, then this device matches no 1884 * matter what. 1885 */ 1886 if ((patterns == NULL) || (num_patterns == 0)) 1887 return(DM_RET_DESCEND | DM_RET_COPY); 1888 1889 for (i = 0; i < num_patterns; i++) { 1890 struct device_match_pattern *cur_pattern; 1891 1892 /* 1893 * If the pattern in question isn't for a device node, we 1894 * aren't interested. 1895 */ 1896 if (patterns[i].type != DEV_MATCH_DEVICE) { 1897 if ((patterns[i].type == DEV_MATCH_PERIPH) 1898 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1899 retval |= DM_RET_DESCEND; 1900 continue; 1901 } 1902 1903 cur_pattern = &patterns[i].pattern.device_pattern; 1904 1905 /* 1906 * If they want to match any device node, we give them any 1907 * device node. 1908 */ 1909 if (cur_pattern->flags == DEV_MATCH_ANY) { 1910 /* set the copy flag */ 1911 retval |= DM_RET_COPY; 1912 1913 1914 /* 1915 * If we've already decided on an action, go ahead 1916 * and return. 1917 */ 1918 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1919 return(retval); 1920 } 1921 1922 /* 1923 * Not sure why someone would do this... 1924 */ 1925 if (cur_pattern->flags == DEV_MATCH_NONE) 1926 continue; 1927 1928 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1929 && (cur_pattern->path_id != device->target->bus->path_id)) 1930 continue; 1931 1932 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1933 && (cur_pattern->target_id != device->target->target_id)) 1934 continue; 1935 1936 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1937 && (cur_pattern->target_lun != device->lun_id)) 1938 continue; 1939 1940 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1941 && (cam_quirkmatch((caddr_t)&device->inq_data, 1942 (caddr_t)&cur_pattern->inq_pat, 1943 1, sizeof(cur_pattern->inq_pat), 1944 scsi_static_inquiry_match) == NULL)) 1945 continue; 1946 1947 /* 1948 * If we get to this point, the user definitely wants 1949 * information on this device. So tell the caller to copy 1950 * the data out. 1951 */ 1952 retval |= DM_RET_COPY; 1953 1954 /* 1955 * If the return action has been set to descend, then we 1956 * know that we've already seen a peripheral matching 1957 * expression, therefore we need to further descend the tree. 1958 * This won't change by continuing around the loop, so we 1959 * go ahead and return. If we haven't seen a peripheral 1960 * matching expression, we keep going around the loop until 1961 * we exhaust the matching expressions. We'll set the stop 1962 * flag once we fall out of the loop. 1963 */ 1964 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1965 return(retval); 1966 } 1967 1968 /* 1969 * If the return action hasn't been set to descend yet, that means 1970 * we haven't seen any peripheral matching patterns. So tell the 1971 * caller to stop descending the tree -- the user doesn't want to 1972 * match against lower level tree elements. 1973 */ 1974 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1975 retval |= DM_RET_STOP; 1976 1977 return(retval); 1978 } 1979 1980 /* 1981 * Match a single peripheral against any number of match patterns. 1982 */ 1983 static dev_match_ret 1984 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1985 struct cam_periph *periph) 1986 { 1987 dev_match_ret retval; 1988 int i; 1989 1990 /* 1991 * If we aren't given something to match against, that's an error. 1992 */ 1993 if (periph == NULL) 1994 return(DM_RET_ERROR); 1995 1996 /* 1997 * If there are no match entries, then this peripheral matches no 1998 * matter what. 1999 */ 2000 if ((patterns == NULL) || (num_patterns == 0)) 2001 return(DM_RET_STOP | DM_RET_COPY); 2002 2003 /* 2004 * There aren't any nodes below a peripheral node, so there's no 2005 * reason to descend the tree any further. 2006 */ 2007 retval = DM_RET_STOP; 2008 2009 for (i = 0; i < num_patterns; i++) { 2010 struct periph_match_pattern *cur_pattern; 2011 2012 /* 2013 * If the pattern in question isn't for a peripheral, we 2014 * aren't interested. 2015 */ 2016 if (patterns[i].type != DEV_MATCH_PERIPH) 2017 continue; 2018 2019 cur_pattern = &patterns[i].pattern.periph_pattern; 2020 2021 /* 2022 * If they want to match on anything, then we will do so. 2023 */ 2024 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2025 /* set the copy flag */ 2026 retval |= DM_RET_COPY; 2027 2028 /* 2029 * We've already set the return action to stop, 2030 * since there are no nodes below peripherals in 2031 * the tree. 2032 */ 2033 return(retval); 2034 } 2035 2036 /* 2037 * Not sure why someone would do this... 2038 */ 2039 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2040 continue; 2041 2042 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2043 && (cur_pattern->path_id != periph->path->bus->path_id)) 2044 continue; 2045 2046 /* 2047 * For the target and lun id's, we have to make sure the 2048 * target and lun pointers aren't NULL. The xpt peripheral 2049 * has a wildcard target and device. 2050 */ 2051 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2052 && ((periph->path->target == NULL) 2053 ||(cur_pattern->target_id != periph->path->target->target_id))) 2054 continue; 2055 2056 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2057 && ((periph->path->device == NULL) 2058 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2059 continue; 2060 2061 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2062 && (cur_pattern->unit_number != periph->unit_number)) 2063 continue; 2064 2065 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2066 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2067 DEV_IDLEN) != 0)) 2068 continue; 2069 2070 /* 2071 * If we get to this point, the user definitely wants 2072 * information on this peripheral. So tell the caller to 2073 * copy the data out. 2074 */ 2075 retval |= DM_RET_COPY; 2076 2077 /* 2078 * The return action has already been set to stop, since 2079 * peripherals don't have any nodes below them in the EDT. 2080 */ 2081 return(retval); 2082 } 2083 2084 /* 2085 * If we get to this point, the peripheral that was passed in 2086 * doesn't match any of the patterns. 2087 */ 2088 return(retval); 2089 } 2090 2091 static int 2092 xptedtbusfunc(struct cam_eb *bus, void *arg) 2093 { 2094 struct ccb_dev_match *cdm; 2095 dev_match_ret retval; 2096 2097 cdm = (struct ccb_dev_match *)arg; 2098 2099 /* 2100 * If our position is for something deeper in the tree, that means 2101 * that we've already seen this node. So, we keep going down. 2102 */ 2103 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2104 && (cdm->pos.cookie.bus == bus) 2105 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2106 && (cdm->pos.cookie.target != NULL)) 2107 retval = DM_RET_DESCEND; 2108 else 2109 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2110 2111 /* 2112 * If we got an error, bail out of the search. 2113 */ 2114 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2115 cdm->status = CAM_DEV_MATCH_ERROR; 2116 return(0); 2117 } 2118 2119 /* 2120 * If the copy flag is set, copy this bus out. 2121 */ 2122 if (retval & DM_RET_COPY) { 2123 int spaceleft, j; 2124 2125 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2126 sizeof(struct dev_match_result)); 2127 2128 /* 2129 * If we don't have enough space to put in another 2130 * match result, save our position and tell the 2131 * user there are more devices to check. 2132 */ 2133 if (spaceleft < sizeof(struct dev_match_result)) { 2134 bzero(&cdm->pos, sizeof(cdm->pos)); 2135 cdm->pos.position_type = 2136 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2137 2138 cdm->pos.cookie.bus = bus; 2139 cdm->pos.generations[CAM_BUS_GENERATION]= 2140 xsoftc.bus_generation; 2141 cdm->status = CAM_DEV_MATCH_MORE; 2142 return(0); 2143 } 2144 j = cdm->num_matches; 2145 cdm->num_matches++; 2146 cdm->matches[j].type = DEV_MATCH_BUS; 2147 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2148 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2149 cdm->matches[j].result.bus_result.unit_number = 2150 bus->sim->unit_number; 2151 strncpy(cdm->matches[j].result.bus_result.dev_name, 2152 bus->sim->sim_name, DEV_IDLEN); 2153 } 2154 2155 /* 2156 * If the user is only interested in busses, there's no 2157 * reason to descend to the next level in the tree. 2158 */ 2159 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2160 return(1); 2161 2162 /* 2163 * If there is a target generation recorded, check it to 2164 * make sure the target list hasn't changed. 2165 */ 2166 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2167 && (bus == cdm->pos.cookie.bus) 2168 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2169 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2170 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2171 bus->generation)) { 2172 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2173 return(0); 2174 } 2175 2176 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2177 && (cdm->pos.cookie.bus == bus) 2178 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2179 && (cdm->pos.cookie.target != NULL)) 2180 return(xpttargettraverse(bus, 2181 (struct cam_et *)cdm->pos.cookie.target, 2182 xptedttargetfunc, arg)); 2183 else 2184 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2185 } 2186 2187 static int 2188 xptedttargetfunc(struct cam_et *target, void *arg) 2189 { 2190 struct ccb_dev_match *cdm; 2191 2192 cdm = (struct ccb_dev_match *)arg; 2193 2194 /* 2195 * If there is a device list generation recorded, check it to 2196 * make sure the device list hasn't changed. 2197 */ 2198 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2199 && (cdm->pos.cookie.bus == target->bus) 2200 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2201 && (cdm->pos.cookie.target == target) 2202 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2203 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2204 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2205 target->generation)) { 2206 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2207 return(0); 2208 } 2209 2210 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2211 && (cdm->pos.cookie.bus == target->bus) 2212 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2213 && (cdm->pos.cookie.target == target) 2214 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2215 && (cdm->pos.cookie.device != NULL)) 2216 return(xptdevicetraverse(target, 2217 (struct cam_ed *)cdm->pos.cookie.device, 2218 xptedtdevicefunc, arg)); 2219 else 2220 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2221 } 2222 2223 static int 2224 xptedtdevicefunc(struct cam_ed *device, void *arg) 2225 { 2226 2227 struct ccb_dev_match *cdm; 2228 dev_match_ret retval; 2229 2230 cdm = (struct ccb_dev_match *)arg; 2231 2232 /* 2233 * If our position is for something deeper in the tree, that means 2234 * that we've already seen this node. So, we keep going down. 2235 */ 2236 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2237 && (cdm->pos.cookie.device == device) 2238 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2239 && (cdm->pos.cookie.periph != NULL)) 2240 retval = DM_RET_DESCEND; 2241 else 2242 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2243 device); 2244 2245 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2246 cdm->status = CAM_DEV_MATCH_ERROR; 2247 return(0); 2248 } 2249 2250 /* 2251 * If the copy flag is set, copy this device out. 2252 */ 2253 if (retval & DM_RET_COPY) { 2254 int spaceleft, j; 2255 2256 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2257 sizeof(struct dev_match_result)); 2258 2259 /* 2260 * If we don't have enough space to put in another 2261 * match result, save our position and tell the 2262 * user there are more devices to check. 2263 */ 2264 if (spaceleft < sizeof(struct dev_match_result)) { 2265 bzero(&cdm->pos, sizeof(cdm->pos)); 2266 cdm->pos.position_type = 2267 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2268 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2269 2270 cdm->pos.cookie.bus = device->target->bus; 2271 cdm->pos.generations[CAM_BUS_GENERATION]= 2272 xsoftc.bus_generation; 2273 cdm->pos.cookie.target = device->target; 2274 cdm->pos.generations[CAM_TARGET_GENERATION] = 2275 device->target->bus->generation; 2276 cdm->pos.cookie.device = device; 2277 cdm->pos.generations[CAM_DEV_GENERATION] = 2278 device->target->generation; 2279 cdm->status = CAM_DEV_MATCH_MORE; 2280 return(0); 2281 } 2282 j = cdm->num_matches; 2283 cdm->num_matches++; 2284 cdm->matches[j].type = DEV_MATCH_DEVICE; 2285 cdm->matches[j].result.device_result.path_id = 2286 device->target->bus->path_id; 2287 cdm->matches[j].result.device_result.target_id = 2288 device->target->target_id; 2289 cdm->matches[j].result.device_result.target_lun = 2290 device->lun_id; 2291 bcopy(&device->inq_data, 2292 &cdm->matches[j].result.device_result.inq_data, 2293 sizeof(struct scsi_inquiry_data)); 2294 2295 /* Let the user know whether this device is unconfigured */ 2296 if (device->flags & CAM_DEV_UNCONFIGURED) 2297 cdm->matches[j].result.device_result.flags = 2298 DEV_RESULT_UNCONFIGURED; 2299 else 2300 cdm->matches[j].result.device_result.flags = 2301 DEV_RESULT_NOFLAG; 2302 } 2303 2304 /* 2305 * If the user isn't interested in peripherals, don't descend 2306 * the tree any further. 2307 */ 2308 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2309 return(1); 2310 2311 /* 2312 * If there is a peripheral list generation recorded, make sure 2313 * it hasn't changed. 2314 */ 2315 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2316 && (device->target->bus == cdm->pos.cookie.bus) 2317 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2318 && (device->target == cdm->pos.cookie.target) 2319 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2320 && (device == cdm->pos.cookie.device) 2321 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2322 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2323 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2324 device->generation)){ 2325 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2326 return(0); 2327 } 2328 2329 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2330 && (cdm->pos.cookie.bus == device->target->bus) 2331 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2332 && (cdm->pos.cookie.target == device->target) 2333 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2334 && (cdm->pos.cookie.device == device) 2335 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2336 && (cdm->pos.cookie.periph != NULL)) 2337 return(xptperiphtraverse(device, 2338 (struct cam_periph *)cdm->pos.cookie.periph, 2339 xptedtperiphfunc, arg)); 2340 else 2341 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2342 } 2343 2344 static int 2345 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2346 { 2347 struct ccb_dev_match *cdm; 2348 dev_match_ret retval; 2349 2350 cdm = (struct ccb_dev_match *)arg; 2351 2352 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2353 2354 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2355 cdm->status = CAM_DEV_MATCH_ERROR; 2356 return(0); 2357 } 2358 2359 /* 2360 * If the copy flag is set, copy this peripheral out. 2361 */ 2362 if (retval & DM_RET_COPY) { 2363 int spaceleft, j; 2364 2365 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2366 sizeof(struct dev_match_result)); 2367 2368 /* 2369 * If we don't have enough space to put in another 2370 * match result, save our position and tell the 2371 * user there are more devices to check. 2372 */ 2373 if (spaceleft < sizeof(struct dev_match_result)) { 2374 bzero(&cdm->pos, sizeof(cdm->pos)); 2375 cdm->pos.position_type = 2376 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2377 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2378 CAM_DEV_POS_PERIPH; 2379 2380 cdm->pos.cookie.bus = periph->path->bus; 2381 cdm->pos.generations[CAM_BUS_GENERATION]= 2382 xsoftc.bus_generation; 2383 cdm->pos.cookie.target = periph->path->target; 2384 cdm->pos.generations[CAM_TARGET_GENERATION] = 2385 periph->path->bus->generation; 2386 cdm->pos.cookie.device = periph->path->device; 2387 cdm->pos.generations[CAM_DEV_GENERATION] = 2388 periph->path->target->generation; 2389 cdm->pos.cookie.periph = periph; 2390 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2391 periph->path->device->generation; 2392 cdm->status = CAM_DEV_MATCH_MORE; 2393 return(0); 2394 } 2395 2396 j = cdm->num_matches; 2397 cdm->num_matches++; 2398 cdm->matches[j].type = DEV_MATCH_PERIPH; 2399 cdm->matches[j].result.periph_result.path_id = 2400 periph->path->bus->path_id; 2401 cdm->matches[j].result.periph_result.target_id = 2402 periph->path->target->target_id; 2403 cdm->matches[j].result.periph_result.target_lun = 2404 periph->path->device->lun_id; 2405 cdm->matches[j].result.periph_result.unit_number = 2406 periph->unit_number; 2407 strncpy(cdm->matches[j].result.periph_result.periph_name, 2408 periph->periph_name, DEV_IDLEN); 2409 } 2410 2411 return(1); 2412 } 2413 2414 static int 2415 xptedtmatch(struct ccb_dev_match *cdm) 2416 { 2417 int ret; 2418 2419 cdm->num_matches = 0; 2420 2421 /* 2422 * Check the bus list generation. If it has changed, the user 2423 * needs to reset everything and start over. 2424 */ 2425 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2426 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2427 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 2428 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2429 return(0); 2430 } 2431 2432 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2433 && (cdm->pos.cookie.bus != NULL)) 2434 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2435 xptedtbusfunc, cdm); 2436 else 2437 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2438 2439 /* 2440 * If we get back 0, that means that we had to stop before fully 2441 * traversing the EDT. It also means that one of the subroutines 2442 * has set the status field to the proper value. If we get back 1, 2443 * we've fully traversed the EDT and copied out any matching entries. 2444 */ 2445 if (ret == 1) 2446 cdm->status = CAM_DEV_MATCH_LAST; 2447 2448 return(ret); 2449 } 2450 2451 static int 2452 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2453 { 2454 struct ccb_dev_match *cdm; 2455 2456 cdm = (struct ccb_dev_match *)arg; 2457 2458 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2459 && (cdm->pos.cookie.pdrv == pdrv) 2460 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2461 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2462 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2463 (*pdrv)->generation)) { 2464 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2465 return(0); 2466 } 2467 2468 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2469 && (cdm->pos.cookie.pdrv == pdrv) 2470 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2471 && (cdm->pos.cookie.periph != NULL)) 2472 return(xptpdperiphtraverse(pdrv, 2473 (struct cam_periph *)cdm->pos.cookie.periph, 2474 xptplistperiphfunc, arg)); 2475 else 2476 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2477 } 2478 2479 static int 2480 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2481 { 2482 struct ccb_dev_match *cdm; 2483 dev_match_ret retval; 2484 2485 cdm = (struct ccb_dev_match *)arg; 2486 2487 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2488 2489 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2490 cdm->status = CAM_DEV_MATCH_ERROR; 2491 return(0); 2492 } 2493 2494 /* 2495 * If the copy flag is set, copy this peripheral out. 2496 */ 2497 if (retval & DM_RET_COPY) { 2498 int spaceleft, j; 2499 2500 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2501 sizeof(struct dev_match_result)); 2502 2503 /* 2504 * If we don't have enough space to put in another 2505 * match result, save our position and tell the 2506 * user there are more devices to check. 2507 */ 2508 if (spaceleft < sizeof(struct dev_match_result)) { 2509 struct periph_driver **pdrv; 2510 2511 pdrv = NULL; 2512 bzero(&cdm->pos, sizeof(cdm->pos)); 2513 cdm->pos.position_type = 2514 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2515 CAM_DEV_POS_PERIPH; 2516 2517 /* 2518 * This may look a bit non-sensical, but it is 2519 * actually quite logical. There are very few 2520 * peripheral drivers, and bloating every peripheral 2521 * structure with a pointer back to its parent 2522 * peripheral driver linker set entry would cost 2523 * more in the long run than doing this quick lookup. 2524 */ 2525 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2526 if (strcmp((*pdrv)->driver_name, 2527 periph->periph_name) == 0) 2528 break; 2529 } 2530 2531 if (*pdrv == NULL) { 2532 cdm->status = CAM_DEV_MATCH_ERROR; 2533 return(0); 2534 } 2535 2536 cdm->pos.cookie.pdrv = pdrv; 2537 /* 2538 * The periph generation slot does double duty, as 2539 * does the periph pointer slot. They are used for 2540 * both edt and pdrv lookups and positioning. 2541 */ 2542 cdm->pos.cookie.periph = periph; 2543 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2544 (*pdrv)->generation; 2545 cdm->status = CAM_DEV_MATCH_MORE; 2546 return(0); 2547 } 2548 2549 j = cdm->num_matches; 2550 cdm->num_matches++; 2551 cdm->matches[j].type = DEV_MATCH_PERIPH; 2552 cdm->matches[j].result.periph_result.path_id = 2553 periph->path->bus->path_id; 2554 2555 /* 2556 * The transport layer peripheral doesn't have a target or 2557 * lun. 2558 */ 2559 if (periph->path->target) 2560 cdm->matches[j].result.periph_result.target_id = 2561 periph->path->target->target_id; 2562 else 2563 cdm->matches[j].result.periph_result.target_id = -1; 2564 2565 if (periph->path->device) 2566 cdm->matches[j].result.periph_result.target_lun = 2567 periph->path->device->lun_id; 2568 else 2569 cdm->matches[j].result.periph_result.target_lun = -1; 2570 2571 cdm->matches[j].result.periph_result.unit_number = 2572 periph->unit_number; 2573 strncpy(cdm->matches[j].result.periph_result.periph_name, 2574 periph->periph_name, DEV_IDLEN); 2575 } 2576 2577 return(1); 2578 } 2579 2580 static int 2581 xptperiphlistmatch(struct ccb_dev_match *cdm) 2582 { 2583 int ret; 2584 2585 cdm->num_matches = 0; 2586 2587 /* 2588 * At this point in the edt traversal function, we check the bus 2589 * list generation to make sure that no busses have been added or 2590 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2591 * For the peripheral driver list traversal function, however, we 2592 * don't have to worry about new peripheral driver types coming or 2593 * going; they're in a linker set, and therefore can't change 2594 * without a recompile. 2595 */ 2596 2597 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2598 && (cdm->pos.cookie.pdrv != NULL)) 2599 ret = xptpdrvtraverse( 2600 (struct periph_driver **)cdm->pos.cookie.pdrv, 2601 xptplistpdrvfunc, cdm); 2602 else 2603 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2604 2605 /* 2606 * If we get back 0, that means that we had to stop before fully 2607 * traversing the peripheral driver tree. It also means that one of 2608 * the subroutines has set the status field to the proper value. If 2609 * we get back 1, we've fully traversed the EDT and copied out any 2610 * matching entries. 2611 */ 2612 if (ret == 1) 2613 cdm->status = CAM_DEV_MATCH_LAST; 2614 2615 return(ret); 2616 } 2617 2618 static int 2619 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2620 { 2621 struct cam_eb *bus, *next_bus; 2622 int retval; 2623 2624 retval = 1; 2625 2626 mtx_lock(&xsoftc.xpt_topo_lock); 2627 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2628 bus != NULL; 2629 bus = next_bus) { 2630 next_bus = TAILQ_NEXT(bus, links); 2631 2632 mtx_unlock(&xsoftc.xpt_topo_lock); 2633 CAM_SIM_LOCK(bus->sim); 2634 retval = tr_func(bus, arg); 2635 CAM_SIM_UNLOCK(bus->sim); 2636 if (retval == 0) 2637 return(retval); 2638 mtx_lock(&xsoftc.xpt_topo_lock); 2639 } 2640 mtx_unlock(&xsoftc.xpt_topo_lock); 2641 2642 return(retval); 2643 } 2644 2645 int 2646 xpt_sim_opened(struct cam_sim *sim) 2647 { 2648 struct cam_eb *bus; 2649 struct cam_et *target; 2650 struct cam_ed *device; 2651 struct cam_periph *periph; 2652 2653 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1")); 2654 mtx_assert(sim->mtx, MA_OWNED); 2655 2656 mtx_lock(&xsoftc.xpt_topo_lock); 2657 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 2658 if (bus->sim != sim) 2659 continue; 2660 2661 TAILQ_FOREACH(target, &bus->et_entries, links) { 2662 TAILQ_FOREACH(device, &target->ed_entries, links) { 2663 SLIST_FOREACH(periph, &device->periphs, 2664 periph_links) { 2665 if (periph->refcount > 0) { 2666 mtx_unlock(&xsoftc.xpt_topo_lock); 2667 return (1); 2668 } 2669 } 2670 } 2671 } 2672 } 2673 2674 mtx_unlock(&xsoftc.xpt_topo_lock); 2675 return (0); 2676 } 2677 2678 static int 2679 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2680 xpt_targetfunc_t *tr_func, void *arg) 2681 { 2682 struct cam_et *target, *next_target; 2683 int retval; 2684 2685 retval = 1; 2686 for (target = (start_target ? start_target : 2687 TAILQ_FIRST(&bus->et_entries)); 2688 target != NULL; target = next_target) { 2689 2690 next_target = TAILQ_NEXT(target, links); 2691 2692 retval = tr_func(target, arg); 2693 2694 if (retval == 0) 2695 return(retval); 2696 } 2697 2698 return(retval); 2699 } 2700 2701 static int 2702 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2703 xpt_devicefunc_t *tr_func, void *arg) 2704 { 2705 struct cam_ed *device, *next_device; 2706 int retval; 2707 2708 retval = 1; 2709 for (device = (start_device ? start_device : 2710 TAILQ_FIRST(&target->ed_entries)); 2711 device != NULL; 2712 device = next_device) { 2713 2714 next_device = TAILQ_NEXT(device, links); 2715 2716 retval = tr_func(device, arg); 2717 2718 if (retval == 0) 2719 return(retval); 2720 } 2721 2722 return(retval); 2723 } 2724 2725 static int 2726 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2727 xpt_periphfunc_t *tr_func, void *arg) 2728 { 2729 struct cam_periph *periph, *next_periph; 2730 int retval; 2731 2732 retval = 1; 2733 2734 for (periph = (start_periph ? start_periph : 2735 SLIST_FIRST(&device->periphs)); 2736 periph != NULL; 2737 periph = next_periph) { 2738 2739 next_periph = SLIST_NEXT(periph, periph_links); 2740 2741 retval = tr_func(periph, arg); 2742 if (retval == 0) 2743 return(retval); 2744 } 2745 2746 return(retval); 2747 } 2748 2749 static int 2750 xptpdrvtraverse(struct periph_driver **start_pdrv, 2751 xpt_pdrvfunc_t *tr_func, void *arg) 2752 { 2753 struct periph_driver **pdrv; 2754 int retval; 2755 2756 retval = 1; 2757 2758 /* 2759 * We don't traverse the peripheral driver list like we do the 2760 * other lists, because it is a linker set, and therefore cannot be 2761 * changed during runtime. If the peripheral driver list is ever 2762 * re-done to be something other than a linker set (i.e. it can 2763 * change while the system is running), the list traversal should 2764 * be modified to work like the other traversal functions. 2765 */ 2766 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2767 *pdrv != NULL; pdrv++) { 2768 retval = tr_func(pdrv, arg); 2769 2770 if (retval == 0) 2771 return(retval); 2772 } 2773 2774 return(retval); 2775 } 2776 2777 static int 2778 xptpdperiphtraverse(struct periph_driver **pdrv, 2779 struct cam_periph *start_periph, 2780 xpt_periphfunc_t *tr_func, void *arg) 2781 { 2782 struct cam_periph *periph, *next_periph; 2783 int retval; 2784 2785 retval = 1; 2786 2787 for (periph = (start_periph ? start_periph : 2788 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2789 periph = next_periph) { 2790 2791 next_periph = TAILQ_NEXT(periph, unit_links); 2792 2793 retval = tr_func(periph, arg); 2794 if (retval == 0) 2795 return(retval); 2796 } 2797 return(retval); 2798 } 2799 2800 static int 2801 xptdefbusfunc(struct cam_eb *bus, void *arg) 2802 { 2803 struct xpt_traverse_config *tr_config; 2804 2805 tr_config = (struct xpt_traverse_config *)arg; 2806 2807 if (tr_config->depth == XPT_DEPTH_BUS) { 2808 xpt_busfunc_t *tr_func; 2809 2810 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2811 2812 return(tr_func(bus, tr_config->tr_arg)); 2813 } else 2814 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2815 } 2816 2817 static int 2818 xptdeftargetfunc(struct cam_et *target, void *arg) 2819 { 2820 struct xpt_traverse_config *tr_config; 2821 2822 tr_config = (struct xpt_traverse_config *)arg; 2823 2824 if (tr_config->depth == XPT_DEPTH_TARGET) { 2825 xpt_targetfunc_t *tr_func; 2826 2827 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2828 2829 return(tr_func(target, tr_config->tr_arg)); 2830 } else 2831 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2832 } 2833 2834 static int 2835 xptdefdevicefunc(struct cam_ed *device, void *arg) 2836 { 2837 struct xpt_traverse_config *tr_config; 2838 2839 tr_config = (struct xpt_traverse_config *)arg; 2840 2841 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2842 xpt_devicefunc_t *tr_func; 2843 2844 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2845 2846 return(tr_func(device, tr_config->tr_arg)); 2847 } else 2848 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2849 } 2850 2851 static int 2852 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2853 { 2854 struct xpt_traverse_config *tr_config; 2855 xpt_periphfunc_t *tr_func; 2856 2857 tr_config = (struct xpt_traverse_config *)arg; 2858 2859 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2860 2861 /* 2862 * Unlike the other default functions, we don't check for depth 2863 * here. The peripheral driver level is the last level in the EDT, 2864 * so if we're here, we should execute the function in question. 2865 */ 2866 return(tr_func(periph, tr_config->tr_arg)); 2867 } 2868 2869 /* 2870 * Execute the given function for every bus in the EDT. 2871 */ 2872 static int 2873 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2874 { 2875 struct xpt_traverse_config tr_config; 2876 2877 tr_config.depth = XPT_DEPTH_BUS; 2878 tr_config.tr_func = tr_func; 2879 tr_config.tr_arg = arg; 2880 2881 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2882 } 2883 2884 /* 2885 * Execute the given function for every device in the EDT. 2886 */ 2887 static int 2888 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2889 { 2890 struct xpt_traverse_config tr_config; 2891 2892 tr_config.depth = XPT_DEPTH_DEVICE; 2893 tr_config.tr_func = tr_func; 2894 tr_config.tr_arg = arg; 2895 2896 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2897 } 2898 2899 static int 2900 xptsetasyncfunc(struct cam_ed *device, void *arg) 2901 { 2902 struct cam_path path; 2903 struct ccb_getdev cgd; 2904 struct async_node *cur_entry; 2905 2906 cur_entry = (struct async_node *)arg; 2907 2908 /* 2909 * Don't report unconfigured devices (Wildcard devs, 2910 * devices only for target mode, device instances 2911 * that have been invalidated but are waiting for 2912 * their last reference count to be released). 2913 */ 2914 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2915 return (1); 2916 2917 xpt_compile_path(&path, 2918 NULL, 2919 device->target->bus->path_id, 2920 device->target->target_id, 2921 device->lun_id); 2922 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2923 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2924 xpt_action((union ccb *)&cgd); 2925 cur_entry->callback(cur_entry->callback_arg, 2926 AC_FOUND_DEVICE, 2927 &path, &cgd); 2928 xpt_release_path(&path); 2929 2930 return(1); 2931 } 2932 2933 static int 2934 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2935 { 2936 struct cam_path path; 2937 struct ccb_pathinq cpi; 2938 struct async_node *cur_entry; 2939 2940 cur_entry = (struct async_node *)arg; 2941 2942 xpt_compile_path(&path, /*periph*/NULL, 2943 bus->sim->path_id, 2944 CAM_TARGET_WILDCARD, 2945 CAM_LUN_WILDCARD); 2946 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2947 cpi.ccb_h.func_code = XPT_PATH_INQ; 2948 xpt_action((union ccb *)&cpi); 2949 cur_entry->callback(cur_entry->callback_arg, 2950 AC_PATH_REGISTERED, 2951 &path, &cpi); 2952 xpt_release_path(&path); 2953 2954 return(1); 2955 } 2956 2957 static void 2958 xpt_action_sasync_cb(void *context, int pending) 2959 { 2960 struct async_node *cur_entry; 2961 struct xpt_task *task; 2962 uint32_t added; 2963 2964 task = (struct xpt_task *)context; 2965 cur_entry = (struct async_node *)task->data1; 2966 added = task->data2; 2967 2968 if ((added & AC_FOUND_DEVICE) != 0) { 2969 /* 2970 * Get this peripheral up to date with all 2971 * the currently existing devices. 2972 */ 2973 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 2974 } 2975 if ((added & AC_PATH_REGISTERED) != 0) { 2976 /* 2977 * Get this peripheral up to date with all 2978 * the currently existing busses. 2979 */ 2980 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 2981 } 2982 2983 free(task, M_CAMXPT); 2984 } 2985 2986 void 2987 xpt_action(union ccb *start_ccb) 2988 { 2989 2990 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2991 2992 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2993 2994 switch (start_ccb->ccb_h.func_code) { 2995 case XPT_SCSI_IO: 2996 { 2997 struct cam_ed *device; 2998 #ifdef CAMDEBUG 2999 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3000 struct cam_path *path; 3001 3002 path = start_ccb->ccb_h.path; 3003 #endif 3004 3005 /* 3006 * For the sake of compatibility with SCSI-1 3007 * devices that may not understand the identify 3008 * message, we include lun information in the 3009 * second byte of all commands. SCSI-1 specifies 3010 * that luns are a 3 bit value and reserves only 3 3011 * bits for lun information in the CDB. Later 3012 * revisions of the SCSI spec allow for more than 8 3013 * luns, but have deprecated lun information in the 3014 * CDB. So, if the lun won't fit, we must omit. 3015 * 3016 * Also be aware that during initial probing for devices, 3017 * the inquiry information is unknown but initialized to 0. 3018 * This means that this code will be exercised while probing 3019 * devices with an ANSI revision greater than 2. 3020 */ 3021 device = start_ccb->ccb_h.path->device; 3022 if (device->protocol_version <= SCSI_REV_2 3023 && start_ccb->ccb_h.target_lun < 8 3024 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3025 3026 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3027 start_ccb->ccb_h.target_lun << 5; 3028 } 3029 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3030 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3031 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3032 &path->device->inq_data), 3033 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3034 cdb_str, sizeof(cdb_str)))); 3035 } 3036 /* FALLTHROUGH */ 3037 case XPT_TARGET_IO: 3038 case XPT_CONT_TARGET_IO: 3039 start_ccb->csio.sense_resid = 0; 3040 start_ccb->csio.resid = 0; 3041 /* FALLTHROUGH */ 3042 case XPT_RESET_DEV: 3043 case XPT_ENG_EXEC: 3044 { 3045 struct cam_path *path; 3046 int runq; 3047 3048 path = start_ccb->ccb_h.path; 3049 3050 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3051 if (path->device->qfrozen_cnt == 0) 3052 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3053 else 3054 runq = 0; 3055 if (runq != 0) 3056 xpt_run_dev_sendq(path->bus); 3057 break; 3058 } 3059 case XPT_SET_TRAN_SETTINGS: 3060 { 3061 xpt_set_transfer_settings(&start_ccb->cts, 3062 start_ccb->ccb_h.path->device, 3063 /*async_update*/FALSE); 3064 break; 3065 } 3066 case XPT_CALC_GEOMETRY: 3067 { 3068 struct cam_sim *sim; 3069 3070 /* Filter out garbage */ 3071 if (start_ccb->ccg.block_size == 0 3072 || start_ccb->ccg.volume_size == 0) { 3073 start_ccb->ccg.cylinders = 0; 3074 start_ccb->ccg.heads = 0; 3075 start_ccb->ccg.secs_per_track = 0; 3076 start_ccb->ccb_h.status = CAM_REQ_CMP; 3077 break; 3078 } 3079 #ifdef PC98 3080 /* 3081 * In a PC-98 system, geometry translation depens on 3082 * the "real" device geometry obtained from mode page 4. 3083 * SCSI geometry translation is performed in the 3084 * initialization routine of the SCSI BIOS and the result 3085 * stored in host memory. If the translation is available 3086 * in host memory, use it. If not, rely on the default 3087 * translation the device driver performs. 3088 */ 3089 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3090 start_ccb->ccb_h.status = CAM_REQ_CMP; 3091 break; 3092 } 3093 #endif 3094 sim = start_ccb->ccb_h.path->bus->sim; 3095 (*(sim->sim_action))(sim, start_ccb); 3096 break; 3097 } 3098 case XPT_ABORT: 3099 { 3100 union ccb* abort_ccb; 3101 3102 abort_ccb = start_ccb->cab.abort_ccb; 3103 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3104 3105 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3106 struct cam_ccbq *ccbq; 3107 3108 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3109 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3110 abort_ccb->ccb_h.status = 3111 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3112 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3113 xpt_done(abort_ccb); 3114 start_ccb->ccb_h.status = CAM_REQ_CMP; 3115 break; 3116 } 3117 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3118 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3119 /* 3120 * We've caught this ccb en route to 3121 * the SIM. Flag it for abort and the 3122 * SIM will do so just before starting 3123 * real work on the CCB. 3124 */ 3125 abort_ccb->ccb_h.status = 3126 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3127 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3128 start_ccb->ccb_h.status = CAM_REQ_CMP; 3129 break; 3130 } 3131 } 3132 if (XPT_FC_IS_QUEUED(abort_ccb) 3133 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3134 /* 3135 * It's already completed but waiting 3136 * for our SWI to get to it. 3137 */ 3138 start_ccb->ccb_h.status = CAM_UA_ABORT; 3139 break; 3140 } 3141 /* 3142 * If we weren't able to take care of the abort request 3143 * in the XPT, pass the request down to the SIM for processing. 3144 */ 3145 } 3146 /* FALLTHROUGH */ 3147 case XPT_ACCEPT_TARGET_IO: 3148 case XPT_EN_LUN: 3149 case XPT_IMMED_NOTIFY: 3150 case XPT_NOTIFY_ACK: 3151 case XPT_GET_TRAN_SETTINGS: 3152 case XPT_RESET_BUS: 3153 { 3154 struct cam_sim *sim; 3155 3156 sim = start_ccb->ccb_h.path->bus->sim; 3157 (*(sim->sim_action))(sim, start_ccb); 3158 break; 3159 } 3160 case XPT_PATH_INQ: 3161 { 3162 struct cam_sim *sim; 3163 3164 sim = start_ccb->ccb_h.path->bus->sim; 3165 (*(sim->sim_action))(sim, start_ccb); 3166 break; 3167 } 3168 case XPT_PATH_STATS: 3169 start_ccb->cpis.last_reset = 3170 start_ccb->ccb_h.path->bus->last_reset; 3171 start_ccb->ccb_h.status = CAM_REQ_CMP; 3172 break; 3173 case XPT_GDEV_TYPE: 3174 { 3175 struct cam_ed *dev; 3176 3177 dev = start_ccb->ccb_h.path->device; 3178 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3179 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3180 } else { 3181 struct ccb_getdev *cgd; 3182 struct cam_eb *bus; 3183 struct cam_et *tar; 3184 3185 cgd = &start_ccb->cgd; 3186 bus = cgd->ccb_h.path->bus; 3187 tar = cgd->ccb_h.path->target; 3188 cgd->inq_data = dev->inq_data; 3189 cgd->ccb_h.status = CAM_REQ_CMP; 3190 cgd->serial_num_len = dev->serial_num_len; 3191 if ((dev->serial_num_len > 0) 3192 && (dev->serial_num != NULL)) 3193 bcopy(dev->serial_num, cgd->serial_num, 3194 dev->serial_num_len); 3195 } 3196 break; 3197 } 3198 case XPT_GDEV_STATS: 3199 { 3200 struct cam_ed *dev; 3201 3202 dev = start_ccb->ccb_h.path->device; 3203 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3204 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3205 } else { 3206 struct ccb_getdevstats *cgds; 3207 struct cam_eb *bus; 3208 struct cam_et *tar; 3209 3210 cgds = &start_ccb->cgds; 3211 bus = cgds->ccb_h.path->bus; 3212 tar = cgds->ccb_h.path->target; 3213 cgds->dev_openings = dev->ccbq.dev_openings; 3214 cgds->dev_active = dev->ccbq.dev_active; 3215 cgds->devq_openings = dev->ccbq.devq_openings; 3216 cgds->devq_queued = dev->ccbq.queue.entries; 3217 cgds->held = dev->ccbq.held; 3218 cgds->last_reset = tar->last_reset; 3219 cgds->maxtags = dev->quirk->maxtags; 3220 cgds->mintags = dev->quirk->mintags; 3221 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3222 cgds->last_reset = bus->last_reset; 3223 cgds->ccb_h.status = CAM_REQ_CMP; 3224 } 3225 break; 3226 } 3227 case XPT_GDEVLIST: 3228 { 3229 struct cam_periph *nperiph; 3230 struct periph_list *periph_head; 3231 struct ccb_getdevlist *cgdl; 3232 u_int i; 3233 struct cam_ed *device; 3234 int found; 3235 3236 3237 found = 0; 3238 3239 /* 3240 * Don't want anyone mucking with our data. 3241 */ 3242 device = start_ccb->ccb_h.path->device; 3243 periph_head = &device->periphs; 3244 cgdl = &start_ccb->cgdl; 3245 3246 /* 3247 * Check and see if the list has changed since the user 3248 * last requested a list member. If so, tell them that the 3249 * list has changed, and therefore they need to start over 3250 * from the beginning. 3251 */ 3252 if ((cgdl->index != 0) && 3253 (cgdl->generation != device->generation)) { 3254 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3255 break; 3256 } 3257 3258 /* 3259 * Traverse the list of peripherals and attempt to find 3260 * the requested peripheral. 3261 */ 3262 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3263 (nperiph != NULL) && (i <= cgdl->index); 3264 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3265 if (i == cgdl->index) { 3266 strncpy(cgdl->periph_name, 3267 nperiph->periph_name, 3268 DEV_IDLEN); 3269 cgdl->unit_number = nperiph->unit_number; 3270 found = 1; 3271 } 3272 } 3273 if (found == 0) { 3274 cgdl->status = CAM_GDEVLIST_ERROR; 3275 break; 3276 } 3277 3278 if (nperiph == NULL) 3279 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3280 else 3281 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3282 3283 cgdl->index++; 3284 cgdl->generation = device->generation; 3285 3286 cgdl->ccb_h.status = CAM_REQ_CMP; 3287 break; 3288 } 3289 case XPT_DEV_MATCH: 3290 { 3291 dev_pos_type position_type; 3292 struct ccb_dev_match *cdm; 3293 3294 cdm = &start_ccb->cdm; 3295 3296 /* 3297 * There are two ways of getting at information in the EDT. 3298 * The first way is via the primary EDT tree. It starts 3299 * with a list of busses, then a list of targets on a bus, 3300 * then devices/luns on a target, and then peripherals on a 3301 * device/lun. The "other" way is by the peripheral driver 3302 * lists. The peripheral driver lists are organized by 3303 * peripheral driver. (obviously) So it makes sense to 3304 * use the peripheral driver list if the user is looking 3305 * for something like "da1", or all "da" devices. If the 3306 * user is looking for something on a particular bus/target 3307 * or lun, it's generally better to go through the EDT tree. 3308 */ 3309 3310 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3311 position_type = cdm->pos.position_type; 3312 else { 3313 u_int i; 3314 3315 position_type = CAM_DEV_POS_NONE; 3316 3317 for (i = 0; i < cdm->num_patterns; i++) { 3318 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3319 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3320 position_type = CAM_DEV_POS_EDT; 3321 break; 3322 } 3323 } 3324 3325 if (cdm->num_patterns == 0) 3326 position_type = CAM_DEV_POS_EDT; 3327 else if (position_type == CAM_DEV_POS_NONE) 3328 position_type = CAM_DEV_POS_PDRV; 3329 } 3330 3331 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3332 case CAM_DEV_POS_EDT: 3333 xptedtmatch(cdm); 3334 break; 3335 case CAM_DEV_POS_PDRV: 3336 xptperiphlistmatch(cdm); 3337 break; 3338 default: 3339 cdm->status = CAM_DEV_MATCH_ERROR; 3340 break; 3341 } 3342 3343 if (cdm->status == CAM_DEV_MATCH_ERROR) 3344 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3345 else 3346 start_ccb->ccb_h.status = CAM_REQ_CMP; 3347 3348 break; 3349 } 3350 case XPT_SASYNC_CB: 3351 { 3352 struct ccb_setasync *csa; 3353 struct async_node *cur_entry; 3354 struct async_list *async_head; 3355 u_int32_t added; 3356 3357 csa = &start_ccb->csa; 3358 added = csa->event_enable; 3359 async_head = &csa->ccb_h.path->device->asyncs; 3360 3361 /* 3362 * If there is already an entry for us, simply 3363 * update it. 3364 */ 3365 cur_entry = SLIST_FIRST(async_head); 3366 while (cur_entry != NULL) { 3367 if ((cur_entry->callback_arg == csa->callback_arg) 3368 && (cur_entry->callback == csa->callback)) 3369 break; 3370 cur_entry = SLIST_NEXT(cur_entry, links); 3371 } 3372 3373 if (cur_entry != NULL) { 3374 /* 3375 * If the request has no flags set, 3376 * remove the entry. 3377 */ 3378 added &= ~cur_entry->event_enable; 3379 if (csa->event_enable == 0) { 3380 SLIST_REMOVE(async_head, cur_entry, 3381 async_node, links); 3382 csa->ccb_h.path->device->refcount--; 3383 free(cur_entry, M_CAMXPT); 3384 } else { 3385 cur_entry->event_enable = csa->event_enable; 3386 } 3387 } else { 3388 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3389 M_NOWAIT); 3390 if (cur_entry == NULL) { 3391 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3392 break; 3393 } 3394 cur_entry->event_enable = csa->event_enable; 3395 cur_entry->callback_arg = csa->callback_arg; 3396 cur_entry->callback = csa->callback; 3397 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3398 csa->ccb_h.path->device->refcount++; 3399 } 3400 3401 /* 3402 * Need to decouple this operation via a taqskqueue so that 3403 * the locking doesn't become a mess. 3404 */ 3405 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) { 3406 struct xpt_task *task; 3407 3408 task = malloc(sizeof(struct xpt_task), M_CAMXPT, 3409 M_NOWAIT); 3410 if (task == NULL) { 3411 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3412 break; 3413 } 3414 3415 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task); 3416 task->data1 = cur_entry; 3417 task->data2 = added; 3418 taskqueue_enqueue(taskqueue_thread, &task->task); 3419 } 3420 3421 start_ccb->ccb_h.status = CAM_REQ_CMP; 3422 break; 3423 } 3424 case XPT_REL_SIMQ: 3425 { 3426 struct ccb_relsim *crs; 3427 struct cam_ed *dev; 3428 3429 crs = &start_ccb->crs; 3430 dev = crs->ccb_h.path->device; 3431 if (dev == NULL) { 3432 3433 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3434 break; 3435 } 3436 3437 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3438 3439 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 3440 /* Don't ever go below one opening */ 3441 if (crs->openings > 0) { 3442 xpt_dev_ccbq_resize(crs->ccb_h.path, 3443 crs->openings); 3444 3445 if (bootverbose) { 3446 xpt_print(crs->ccb_h.path, 3447 "tagged openings now %d\n", 3448 crs->openings); 3449 } 3450 } 3451 } 3452 } 3453 3454 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3455 3456 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3457 3458 /* 3459 * Just extend the old timeout and decrement 3460 * the freeze count so that a single timeout 3461 * is sufficient for releasing the queue. 3462 */ 3463 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3464 callout_stop(&dev->callout); 3465 } else { 3466 3467 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3468 } 3469 3470 callout_reset(&dev->callout, 3471 (crs->release_timeout * hz) / 1000, 3472 xpt_release_devq_timeout, dev); 3473 3474 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3475 3476 } 3477 3478 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3479 3480 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3481 /* 3482 * Decrement the freeze count so that a single 3483 * completion is still sufficient to unfreeze 3484 * the queue. 3485 */ 3486 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3487 } else { 3488 3489 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3490 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3491 } 3492 } 3493 3494 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3495 3496 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3497 || (dev->ccbq.dev_active == 0)) { 3498 3499 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3500 } else { 3501 3502 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3503 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3504 } 3505 } 3506 3507 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3508 3509 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3510 /*run_queue*/TRUE); 3511 } 3512 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3513 start_ccb->ccb_h.status = CAM_REQ_CMP; 3514 break; 3515 } 3516 case XPT_SCAN_BUS: 3517 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3518 break; 3519 case XPT_SCAN_LUN: 3520 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3521 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3522 start_ccb); 3523 break; 3524 case XPT_DEBUG: { 3525 #ifdef CAMDEBUG 3526 #ifdef CAM_DEBUG_DELAY 3527 cam_debug_delay = CAM_DEBUG_DELAY; 3528 #endif 3529 cam_dflags = start_ccb->cdbg.flags; 3530 if (cam_dpath != NULL) { 3531 xpt_free_path(cam_dpath); 3532 cam_dpath = NULL; 3533 } 3534 3535 if (cam_dflags != CAM_DEBUG_NONE) { 3536 if (xpt_create_path(&cam_dpath, xpt_periph, 3537 start_ccb->ccb_h.path_id, 3538 start_ccb->ccb_h.target_id, 3539 start_ccb->ccb_h.target_lun) != 3540 CAM_REQ_CMP) { 3541 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3542 cam_dflags = CAM_DEBUG_NONE; 3543 } else { 3544 start_ccb->ccb_h.status = CAM_REQ_CMP; 3545 xpt_print(cam_dpath, "debugging flags now %x\n", 3546 cam_dflags); 3547 } 3548 } else { 3549 cam_dpath = NULL; 3550 start_ccb->ccb_h.status = CAM_REQ_CMP; 3551 } 3552 #else /* !CAMDEBUG */ 3553 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3554 #endif /* CAMDEBUG */ 3555 break; 3556 } 3557 case XPT_NOOP: 3558 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3559 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3560 start_ccb->ccb_h.status = CAM_REQ_CMP; 3561 break; 3562 default: 3563 case XPT_SDEV_TYPE: 3564 case XPT_TERM_IO: 3565 case XPT_ENG_INQ: 3566 /* XXX Implement */ 3567 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3568 break; 3569 } 3570 } 3571 3572 void 3573 xpt_polled_action(union ccb *start_ccb) 3574 { 3575 u_int32_t timeout; 3576 struct cam_sim *sim; 3577 struct cam_devq *devq; 3578 struct cam_ed *dev; 3579 3580 3581 timeout = start_ccb->ccb_h.timeout; 3582 sim = start_ccb->ccb_h.path->bus->sim; 3583 devq = sim->devq; 3584 dev = start_ccb->ccb_h.path->device; 3585 3586 mtx_assert(sim->mtx, MA_OWNED); 3587 3588 /* 3589 * Steal an opening so that no other queued requests 3590 * can get it before us while we simulate interrupts. 3591 */ 3592 dev->ccbq.devq_openings--; 3593 dev->ccbq.dev_openings--; 3594 3595 while(((devq != NULL && devq->send_openings <= 0) || 3596 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3597 DELAY(1000); 3598 (*(sim->sim_poll))(sim); 3599 camisr_runqueue(&sim->sim_doneq); 3600 } 3601 3602 dev->ccbq.devq_openings++; 3603 dev->ccbq.dev_openings++; 3604 3605 if (timeout != 0) { 3606 xpt_action(start_ccb); 3607 while(--timeout > 0) { 3608 (*(sim->sim_poll))(sim); 3609 camisr_runqueue(&sim->sim_doneq); 3610 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3611 != CAM_REQ_INPROG) 3612 break; 3613 DELAY(1000); 3614 } 3615 if (timeout == 0) { 3616 /* 3617 * XXX Is it worth adding a sim_timeout entry 3618 * point so we can attempt recovery? If 3619 * this is only used for dumps, I don't think 3620 * it is. 3621 */ 3622 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3623 } 3624 } else { 3625 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3626 } 3627 } 3628 3629 /* 3630 * Schedule a peripheral driver to receive a ccb when it's 3631 * target device has space for more transactions. 3632 */ 3633 void 3634 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3635 { 3636 struct cam_ed *device; 3637 int runq; 3638 3639 mtx_assert(perph->sim->mtx, MA_OWNED); 3640 3641 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3642 device = perph->path->device; 3643 if (periph_is_queued(perph)) { 3644 /* Simply reorder based on new priority */ 3645 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3646 (" change priority to %d\n", new_priority)); 3647 if (new_priority < perph->pinfo.priority) { 3648 camq_change_priority(&device->drvq, 3649 perph->pinfo.index, 3650 new_priority); 3651 } 3652 runq = 0; 3653 } else { 3654 /* New entry on the queue */ 3655 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3656 (" added periph to queue\n")); 3657 perph->pinfo.priority = new_priority; 3658 perph->pinfo.generation = ++device->drvq.generation; 3659 camq_insert(&device->drvq, &perph->pinfo); 3660 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3661 } 3662 if (runq != 0) { 3663 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3664 (" calling xpt_run_devq\n")); 3665 xpt_run_dev_allocq(perph->path->bus); 3666 } 3667 } 3668 3669 3670 /* 3671 * Schedule a device to run on a given queue. 3672 * If the device was inserted as a new entry on the queue, 3673 * return 1 meaning the device queue should be run. If we 3674 * were already queued, implying someone else has already 3675 * started the queue, return 0 so the caller doesn't attempt 3676 * to run the queue. 3677 */ 3678 static int 3679 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3680 u_int32_t new_priority) 3681 { 3682 int retval; 3683 u_int32_t old_priority; 3684 3685 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3686 3687 old_priority = pinfo->priority; 3688 3689 /* 3690 * Are we already queued? 3691 */ 3692 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3693 /* Simply reorder based on new priority */ 3694 if (new_priority < old_priority) { 3695 camq_change_priority(queue, pinfo->index, 3696 new_priority); 3697 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3698 ("changed priority to %d\n", 3699 new_priority)); 3700 } 3701 retval = 0; 3702 } else { 3703 /* New entry on the queue */ 3704 if (new_priority < old_priority) 3705 pinfo->priority = new_priority; 3706 3707 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3708 ("Inserting onto queue\n")); 3709 pinfo->generation = ++queue->generation; 3710 camq_insert(queue, pinfo); 3711 retval = 1; 3712 } 3713 return (retval); 3714 } 3715 3716 static void 3717 xpt_run_dev_allocq(struct cam_eb *bus) 3718 { 3719 struct cam_devq *devq; 3720 3721 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3722 devq = bus->sim->devq; 3723 3724 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3725 (" qfrozen_cnt == 0x%x, entries == %d, " 3726 "openings == %d, active == %d\n", 3727 devq->alloc_queue.qfrozen_cnt, 3728 devq->alloc_queue.entries, 3729 devq->alloc_openings, 3730 devq->alloc_active)); 3731 3732 devq->alloc_queue.qfrozen_cnt++; 3733 while ((devq->alloc_queue.entries > 0) 3734 && (devq->alloc_openings > 0) 3735 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3736 struct cam_ed_qinfo *qinfo; 3737 struct cam_ed *device; 3738 union ccb *work_ccb; 3739 struct cam_periph *drv; 3740 struct camq *drvq; 3741 3742 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3743 CAMQ_HEAD); 3744 device = qinfo->device; 3745 3746 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3747 ("running device %p\n", device)); 3748 3749 drvq = &device->drvq; 3750 3751 #ifdef CAMDEBUG 3752 if (drvq->entries <= 0) { 3753 panic("xpt_run_dev_allocq: " 3754 "Device on queue without any work to do"); 3755 } 3756 #endif 3757 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3758 devq->alloc_openings--; 3759 devq->alloc_active++; 3760 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3761 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3762 drv->pinfo.priority); 3763 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3764 ("calling periph start\n")); 3765 drv->periph_start(drv, work_ccb); 3766 } else { 3767 /* 3768 * Malloc failure in alloc_ccb 3769 */ 3770 /* 3771 * XXX add us to a list to be run from free_ccb 3772 * if we don't have any ccbs active on this 3773 * device queue otherwise we may never get run 3774 * again. 3775 */ 3776 break; 3777 } 3778 3779 if (drvq->entries > 0) { 3780 /* We have more work. Attempt to reschedule */ 3781 xpt_schedule_dev_allocq(bus, device); 3782 } 3783 } 3784 devq->alloc_queue.qfrozen_cnt--; 3785 } 3786 3787 static void 3788 xpt_run_dev_sendq(struct cam_eb *bus) 3789 { 3790 struct cam_devq *devq; 3791 3792 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3793 3794 devq = bus->sim->devq; 3795 3796 devq->send_queue.qfrozen_cnt++; 3797 while ((devq->send_queue.entries > 0) 3798 && (devq->send_openings > 0)) { 3799 struct cam_ed_qinfo *qinfo; 3800 struct cam_ed *device; 3801 union ccb *work_ccb; 3802 struct cam_sim *sim; 3803 3804 if (devq->send_queue.qfrozen_cnt > 1) { 3805 break; 3806 } 3807 3808 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3809 CAMQ_HEAD); 3810 device = qinfo->device; 3811 3812 /* 3813 * If the device has been "frozen", don't attempt 3814 * to run it. 3815 */ 3816 if (device->qfrozen_cnt > 0) { 3817 continue; 3818 } 3819 3820 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3821 ("running device %p\n", device)); 3822 3823 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3824 if (work_ccb == NULL) { 3825 printf("device on run queue with no ccbs???\n"); 3826 continue; 3827 } 3828 3829 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3830 3831 mtx_lock(&xsoftc.xpt_lock); 3832 if (xsoftc.num_highpower <= 0) { 3833 /* 3834 * We got a high power command, but we 3835 * don't have any available slots. Freeze 3836 * the device queue until we have a slot 3837 * available. 3838 */ 3839 device->qfrozen_cnt++; 3840 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3841 &work_ccb->ccb_h, 3842 xpt_links.stqe); 3843 3844 mtx_unlock(&xsoftc.xpt_lock); 3845 continue; 3846 } else { 3847 /* 3848 * Consume a high power slot while 3849 * this ccb runs. 3850 */ 3851 xsoftc.num_highpower--; 3852 } 3853 mtx_unlock(&xsoftc.xpt_lock); 3854 } 3855 devq->active_dev = device; 3856 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3857 3858 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3859 3860 devq->send_openings--; 3861 devq->send_active++; 3862 3863 if (device->ccbq.queue.entries > 0) 3864 xpt_schedule_dev_sendq(bus, device); 3865 3866 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3867 /* 3868 * The client wants to freeze the queue 3869 * after this CCB is sent. 3870 */ 3871 device->qfrozen_cnt++; 3872 } 3873 3874 /* In Target mode, the peripheral driver knows best... */ 3875 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3876 if ((device->inq_flags & SID_CmdQue) != 0 3877 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3878 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3879 else 3880 /* 3881 * Clear this in case of a retried CCB that 3882 * failed due to a rejected tag. 3883 */ 3884 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3885 } 3886 3887 /* 3888 * Device queues can be shared among multiple sim instances 3889 * that reside on different busses. Use the SIM in the queue 3890 * CCB's path, rather than the one in the bus that was passed 3891 * into this function. 3892 */ 3893 sim = work_ccb->ccb_h.path->bus->sim; 3894 (*(sim->sim_action))(sim, work_ccb); 3895 3896 devq->active_dev = NULL; 3897 } 3898 devq->send_queue.qfrozen_cnt--; 3899 } 3900 3901 /* 3902 * This function merges stuff from the slave ccb into the master ccb, while 3903 * keeping important fields in the master ccb constant. 3904 */ 3905 void 3906 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3907 { 3908 3909 /* 3910 * Pull fields that are valid for peripheral drivers to set 3911 * into the master CCB along with the CCB "payload". 3912 */ 3913 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3914 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3915 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3916 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3917 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3918 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3919 } 3920 3921 void 3922 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3923 { 3924 3925 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3926 ccb_h->pinfo.priority = priority; 3927 ccb_h->path = path; 3928 ccb_h->path_id = path->bus->path_id; 3929 if (path->target) 3930 ccb_h->target_id = path->target->target_id; 3931 else 3932 ccb_h->target_id = CAM_TARGET_WILDCARD; 3933 if (path->device) { 3934 ccb_h->target_lun = path->device->lun_id; 3935 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3936 } else { 3937 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3938 } 3939 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3940 ccb_h->flags = 0; 3941 } 3942 3943 /* Path manipulation functions */ 3944 cam_status 3945 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3946 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3947 { 3948 struct cam_path *path; 3949 cam_status status; 3950 3951 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3952 3953 if (path == NULL) { 3954 status = CAM_RESRC_UNAVAIL; 3955 return(status); 3956 } 3957 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3958 if (status != CAM_REQ_CMP) { 3959 free(path, M_CAMXPT); 3960 path = NULL; 3961 } 3962 *new_path_ptr = path; 3963 return (status); 3964 } 3965 3966 cam_status 3967 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3968 struct cam_periph *periph, path_id_t path_id, 3969 target_id_t target_id, lun_id_t lun_id) 3970 { 3971 struct cam_path *path; 3972 struct cam_eb *bus = NULL; 3973 cam_status status; 3974 int need_unlock = 0; 3975 3976 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3977 3978 if (path_id != CAM_BUS_WILDCARD) { 3979 bus = xpt_find_bus(path_id); 3980 if (bus != NULL) { 3981 need_unlock = 1; 3982 CAM_SIM_LOCK(bus->sim); 3983 } 3984 } 3985 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3986 if (need_unlock) 3987 CAM_SIM_UNLOCK(bus->sim); 3988 if (status != CAM_REQ_CMP) { 3989 free(path, M_CAMXPT); 3990 path = NULL; 3991 } 3992 *new_path_ptr = path; 3993 return (status); 3994 } 3995 3996 static cam_status 3997 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3998 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3999 { 4000 struct cam_eb *bus; 4001 struct cam_et *target; 4002 struct cam_ed *device; 4003 cam_status status; 4004 4005 status = CAM_REQ_CMP; /* Completed without error */ 4006 target = NULL; /* Wildcarded */ 4007 device = NULL; /* Wildcarded */ 4008 4009 /* 4010 * We will potentially modify the EDT, so block interrupts 4011 * that may attempt to create cam paths. 4012 */ 4013 bus = xpt_find_bus(path_id); 4014 if (bus == NULL) { 4015 status = CAM_PATH_INVALID; 4016 } else { 4017 target = xpt_find_target(bus, target_id); 4018 if (target == NULL) { 4019 /* Create one */ 4020 struct cam_et *new_target; 4021 4022 new_target = xpt_alloc_target(bus, target_id); 4023 if (new_target == NULL) { 4024 status = CAM_RESRC_UNAVAIL; 4025 } else { 4026 target = new_target; 4027 } 4028 } 4029 if (target != NULL) { 4030 device = xpt_find_device(target, lun_id); 4031 if (device == NULL) { 4032 /* Create one */ 4033 struct cam_ed *new_device; 4034 4035 new_device = xpt_alloc_device(bus, 4036 target, 4037 lun_id); 4038 if (new_device == NULL) { 4039 status = CAM_RESRC_UNAVAIL; 4040 } else { 4041 device = new_device; 4042 } 4043 } 4044 } 4045 } 4046 4047 /* 4048 * Only touch the user's data if we are successful. 4049 */ 4050 if (status == CAM_REQ_CMP) { 4051 new_path->periph = perph; 4052 new_path->bus = bus; 4053 new_path->target = target; 4054 new_path->device = device; 4055 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4056 } else { 4057 if (device != NULL) 4058 xpt_release_device(bus, target, device); 4059 if (target != NULL) 4060 xpt_release_target(bus, target); 4061 if (bus != NULL) 4062 xpt_release_bus(bus); 4063 } 4064 return (status); 4065 } 4066 4067 static void 4068 xpt_release_path(struct cam_path *path) 4069 { 4070 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4071 if (path->device != NULL) { 4072 xpt_release_device(path->bus, path->target, path->device); 4073 path->device = NULL; 4074 } 4075 if (path->target != NULL) { 4076 xpt_release_target(path->bus, path->target); 4077 path->target = NULL; 4078 } 4079 if (path->bus != NULL) { 4080 xpt_release_bus(path->bus); 4081 path->bus = NULL; 4082 } 4083 } 4084 4085 void 4086 xpt_free_path(struct cam_path *path) 4087 { 4088 4089 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4090 xpt_release_path(path); 4091 free(path, M_CAMXPT); 4092 } 4093 4094 4095 /* 4096 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4097 * in path1, 2 for match with wildcards in path2. 4098 */ 4099 int 4100 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4101 { 4102 int retval = 0; 4103 4104 if (path1->bus != path2->bus) { 4105 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4106 retval = 1; 4107 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4108 retval = 2; 4109 else 4110 return (-1); 4111 } 4112 if (path1->target != path2->target) { 4113 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4114 if (retval == 0) 4115 retval = 1; 4116 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4117 retval = 2; 4118 else 4119 return (-1); 4120 } 4121 if (path1->device != path2->device) { 4122 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4123 if (retval == 0) 4124 retval = 1; 4125 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4126 retval = 2; 4127 else 4128 return (-1); 4129 } 4130 return (retval); 4131 } 4132 4133 void 4134 xpt_print_path(struct cam_path *path) 4135 { 4136 4137 if (path == NULL) 4138 printf("(nopath): "); 4139 else { 4140 if (path->periph != NULL) 4141 printf("(%s%d:", path->periph->periph_name, 4142 path->periph->unit_number); 4143 else 4144 printf("(noperiph:"); 4145 4146 if (path->bus != NULL) 4147 printf("%s%d:%d:", path->bus->sim->sim_name, 4148 path->bus->sim->unit_number, 4149 path->bus->sim->bus_id); 4150 else 4151 printf("nobus:"); 4152 4153 if (path->target != NULL) 4154 printf("%d:", path->target->target_id); 4155 else 4156 printf("X:"); 4157 4158 if (path->device != NULL) 4159 printf("%d): ", path->device->lun_id); 4160 else 4161 printf("X): "); 4162 } 4163 } 4164 4165 void 4166 xpt_print(struct cam_path *path, const char *fmt, ...) 4167 { 4168 va_list ap; 4169 xpt_print_path(path); 4170 va_start(ap, fmt); 4171 vprintf(fmt, ap); 4172 va_end(ap); 4173 } 4174 4175 int 4176 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4177 { 4178 struct sbuf sb; 4179 4180 #ifdef INVARIANTS 4181 if (path != NULL && path->bus != NULL) 4182 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4183 #endif 4184 4185 sbuf_new(&sb, str, str_len, 0); 4186 4187 if (path == NULL) 4188 sbuf_printf(&sb, "(nopath): "); 4189 else { 4190 if (path->periph != NULL) 4191 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4192 path->periph->unit_number); 4193 else 4194 sbuf_printf(&sb, "(noperiph:"); 4195 4196 if (path->bus != NULL) 4197 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4198 path->bus->sim->unit_number, 4199 path->bus->sim->bus_id); 4200 else 4201 sbuf_printf(&sb, "nobus:"); 4202 4203 if (path->target != NULL) 4204 sbuf_printf(&sb, "%d:", path->target->target_id); 4205 else 4206 sbuf_printf(&sb, "X:"); 4207 4208 if (path->device != NULL) 4209 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4210 else 4211 sbuf_printf(&sb, "X): "); 4212 } 4213 sbuf_finish(&sb); 4214 4215 return(sbuf_len(&sb)); 4216 } 4217 4218 path_id_t 4219 xpt_path_path_id(struct cam_path *path) 4220 { 4221 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4222 4223 return(path->bus->path_id); 4224 } 4225 4226 target_id_t 4227 xpt_path_target_id(struct cam_path *path) 4228 { 4229 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4230 4231 if (path->target != NULL) 4232 return (path->target->target_id); 4233 else 4234 return (CAM_TARGET_WILDCARD); 4235 } 4236 4237 lun_id_t 4238 xpt_path_lun_id(struct cam_path *path) 4239 { 4240 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4241 4242 if (path->device != NULL) 4243 return (path->device->lun_id); 4244 else 4245 return (CAM_LUN_WILDCARD); 4246 } 4247 4248 struct cam_sim * 4249 xpt_path_sim(struct cam_path *path) 4250 { 4251 4252 return (path->bus->sim); 4253 } 4254 4255 struct cam_periph* 4256 xpt_path_periph(struct cam_path *path) 4257 { 4258 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4259 4260 return (path->periph); 4261 } 4262 4263 /* 4264 * Release a CAM control block for the caller. Remit the cost of the structure 4265 * to the device referenced by the path. If the this device had no 'credits' 4266 * and peripheral drivers have registered async callbacks for this notification 4267 * call them now. 4268 */ 4269 void 4270 xpt_release_ccb(union ccb *free_ccb) 4271 { 4272 struct cam_path *path; 4273 struct cam_ed *device; 4274 struct cam_eb *bus; 4275 struct cam_sim *sim; 4276 4277 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4278 path = free_ccb->ccb_h.path; 4279 device = path->device; 4280 bus = path->bus; 4281 sim = bus->sim; 4282 4283 mtx_assert(sim->mtx, MA_OWNED); 4284 4285 cam_ccbq_release_opening(&device->ccbq); 4286 if (sim->ccb_count > sim->max_ccbs) { 4287 xpt_free_ccb(free_ccb); 4288 sim->ccb_count--; 4289 } else { 4290 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 4291 xpt_links.sle); 4292 } 4293 if (sim->devq == NULL) { 4294 return; 4295 } 4296 sim->devq->alloc_openings++; 4297 sim->devq->alloc_active--; 4298 /* XXX Turn this into an inline function - xpt_run_device?? */ 4299 if ((device_is_alloc_queued(device) == 0) 4300 && (device->drvq.entries > 0)) { 4301 xpt_schedule_dev_allocq(bus, device); 4302 } 4303 if (dev_allocq_is_runnable(sim->devq)) 4304 xpt_run_dev_allocq(bus); 4305 } 4306 4307 /* Functions accessed by SIM drivers */ 4308 4309 /* 4310 * A sim structure, listing the SIM entry points and instance 4311 * identification info is passed to xpt_bus_register to hook the SIM 4312 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4313 * for this new bus and places it in the array of busses and assigns 4314 * it a path_id. The path_id may be influenced by "hard wiring" 4315 * information specified by the user. Once interrupt services are 4316 * available, the bus will be probed. 4317 */ 4318 int32_t 4319 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4320 { 4321 struct cam_eb *new_bus; 4322 struct cam_eb *old_bus; 4323 struct ccb_pathinq cpi; 4324 4325 mtx_assert(sim->mtx, MA_OWNED); 4326 4327 sim->bus_id = bus; 4328 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4329 M_CAMXPT, M_NOWAIT); 4330 if (new_bus == NULL) { 4331 /* Couldn't satisfy request */ 4332 return (CAM_RESRC_UNAVAIL); 4333 } 4334 4335 if (strcmp(sim->sim_name, "xpt") != 0) { 4336 4337 sim->path_id = 4338 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4339 } 4340 4341 TAILQ_INIT(&new_bus->et_entries); 4342 new_bus->path_id = sim->path_id; 4343 cam_sim_hold(sim); 4344 new_bus->sim = sim; 4345 timevalclear(&new_bus->last_reset); 4346 new_bus->flags = 0; 4347 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4348 new_bus->generation = 0; 4349 mtx_lock(&xsoftc.xpt_topo_lock); 4350 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4351 while (old_bus != NULL 4352 && old_bus->path_id < new_bus->path_id) 4353 old_bus = TAILQ_NEXT(old_bus, links); 4354 if (old_bus != NULL) 4355 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4356 else 4357 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4358 xsoftc.bus_generation++; 4359 mtx_unlock(&xsoftc.xpt_topo_lock); 4360 4361 /* Notify interested parties */ 4362 if (sim->path_id != CAM_XPT_PATH_ID) { 4363 struct cam_path path; 4364 4365 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4366 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4367 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4368 cpi.ccb_h.func_code = XPT_PATH_INQ; 4369 xpt_action((union ccb *)&cpi); 4370 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4371 xpt_release_path(&path); 4372 } 4373 return (CAM_SUCCESS); 4374 } 4375 4376 int32_t 4377 xpt_bus_deregister(path_id_t pathid) 4378 { 4379 struct cam_path bus_path; 4380 cam_status status; 4381 4382 status = xpt_compile_path(&bus_path, NULL, pathid, 4383 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4384 if (status != CAM_REQ_CMP) 4385 return (status); 4386 4387 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4388 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4389 4390 /* Release the reference count held while registered. */ 4391 xpt_release_bus(bus_path.bus); 4392 xpt_release_path(&bus_path); 4393 4394 return (CAM_REQ_CMP); 4395 } 4396 4397 static path_id_t 4398 xptnextfreepathid(void) 4399 { 4400 struct cam_eb *bus; 4401 path_id_t pathid; 4402 const char *strval; 4403 4404 pathid = 0; 4405 mtx_lock(&xsoftc.xpt_topo_lock); 4406 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4407 retry: 4408 /* Find an unoccupied pathid */ 4409 while (bus != NULL && bus->path_id <= pathid) { 4410 if (bus->path_id == pathid) 4411 pathid++; 4412 bus = TAILQ_NEXT(bus, links); 4413 } 4414 mtx_unlock(&xsoftc.xpt_topo_lock); 4415 4416 /* 4417 * Ensure that this pathid is not reserved for 4418 * a bus that may be registered in the future. 4419 */ 4420 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4421 ++pathid; 4422 /* Start the search over */ 4423 mtx_lock(&xsoftc.xpt_topo_lock); 4424 goto retry; 4425 } 4426 return (pathid); 4427 } 4428 4429 static path_id_t 4430 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4431 { 4432 path_id_t pathid; 4433 int i, dunit, val; 4434 char buf[32]; 4435 const char *dname; 4436 4437 pathid = CAM_XPT_PATH_ID; 4438 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4439 i = 0; 4440 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4441 if (strcmp(dname, "scbus")) { 4442 /* Avoid a bit of foot shooting. */ 4443 continue; 4444 } 4445 if (dunit < 0) /* unwired?! */ 4446 continue; 4447 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4448 if (sim_bus == val) { 4449 pathid = dunit; 4450 break; 4451 } 4452 } else if (sim_bus == 0) { 4453 /* Unspecified matches bus 0 */ 4454 pathid = dunit; 4455 break; 4456 } else { 4457 printf("Ambiguous scbus configuration for %s%d " 4458 "bus %d, cannot wire down. The kernel " 4459 "config entry for scbus%d should " 4460 "specify a controller bus.\n" 4461 "Scbus will be assigned dynamically.\n", 4462 sim_name, sim_unit, sim_bus, dunit); 4463 break; 4464 } 4465 } 4466 4467 if (pathid == CAM_XPT_PATH_ID) 4468 pathid = xptnextfreepathid(); 4469 return (pathid); 4470 } 4471 4472 void 4473 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4474 { 4475 struct cam_eb *bus; 4476 struct cam_et *target, *next_target; 4477 struct cam_ed *device, *next_device; 4478 4479 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4480 4481 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4482 4483 /* 4484 * Most async events come from a CAM interrupt context. In 4485 * a few cases, the error recovery code at the peripheral layer, 4486 * which may run from our SWI or a process context, may signal 4487 * deferred events with a call to xpt_async. 4488 */ 4489 4490 bus = path->bus; 4491 4492 if (async_code == AC_BUS_RESET) { 4493 /* Update our notion of when the last reset occurred */ 4494 microtime(&bus->last_reset); 4495 } 4496 4497 for (target = TAILQ_FIRST(&bus->et_entries); 4498 target != NULL; 4499 target = next_target) { 4500 4501 next_target = TAILQ_NEXT(target, links); 4502 4503 if (path->target != target 4504 && path->target->target_id != CAM_TARGET_WILDCARD 4505 && target->target_id != CAM_TARGET_WILDCARD) 4506 continue; 4507 4508 if (async_code == AC_SENT_BDR) { 4509 /* Update our notion of when the last reset occurred */ 4510 microtime(&path->target->last_reset); 4511 } 4512 4513 for (device = TAILQ_FIRST(&target->ed_entries); 4514 device != NULL; 4515 device = next_device) { 4516 4517 next_device = TAILQ_NEXT(device, links); 4518 4519 if (path->device != device 4520 && path->device->lun_id != CAM_LUN_WILDCARD 4521 && device->lun_id != CAM_LUN_WILDCARD) 4522 continue; 4523 4524 xpt_dev_async(async_code, bus, target, 4525 device, async_arg); 4526 4527 xpt_async_bcast(&device->asyncs, async_code, 4528 path, async_arg); 4529 } 4530 } 4531 4532 /* 4533 * If this wasn't a fully wildcarded async, tell all 4534 * clients that want all async events. 4535 */ 4536 if (bus != xpt_periph->path->bus) 4537 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4538 path, async_arg); 4539 } 4540 4541 static void 4542 xpt_async_bcast(struct async_list *async_head, 4543 u_int32_t async_code, 4544 struct cam_path *path, void *async_arg) 4545 { 4546 struct async_node *cur_entry; 4547 4548 cur_entry = SLIST_FIRST(async_head); 4549 while (cur_entry != NULL) { 4550 struct async_node *next_entry; 4551 /* 4552 * Grab the next list entry before we call the current 4553 * entry's callback. This is because the callback function 4554 * can delete its async callback entry. 4555 */ 4556 next_entry = SLIST_NEXT(cur_entry, links); 4557 if ((cur_entry->event_enable & async_code) != 0) 4558 cur_entry->callback(cur_entry->callback_arg, 4559 async_code, path, 4560 async_arg); 4561 cur_entry = next_entry; 4562 } 4563 } 4564 4565 /* 4566 * Handle any per-device event notifications that require action by the XPT. 4567 */ 4568 static void 4569 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4570 struct cam_ed *device, void *async_arg) 4571 { 4572 cam_status status; 4573 struct cam_path newpath; 4574 4575 /* 4576 * We only need to handle events for real devices. 4577 */ 4578 if (target->target_id == CAM_TARGET_WILDCARD 4579 || device->lun_id == CAM_LUN_WILDCARD) 4580 return; 4581 4582 /* 4583 * We need our own path with wildcards expanded to 4584 * handle certain types of events. 4585 */ 4586 if ((async_code == AC_SENT_BDR) 4587 || (async_code == AC_BUS_RESET) 4588 || (async_code == AC_INQ_CHANGED)) 4589 status = xpt_compile_path(&newpath, NULL, 4590 bus->path_id, 4591 target->target_id, 4592 device->lun_id); 4593 else 4594 status = CAM_REQ_CMP_ERR; 4595 4596 if (status == CAM_REQ_CMP) { 4597 4598 /* 4599 * Allow transfer negotiation to occur in a 4600 * tag free environment. 4601 */ 4602 if (async_code == AC_SENT_BDR 4603 || async_code == AC_BUS_RESET) 4604 xpt_toggle_tags(&newpath); 4605 4606 if (async_code == AC_INQ_CHANGED) { 4607 /* 4608 * We've sent a start unit command, or 4609 * something similar to a device that 4610 * may have caused its inquiry data to 4611 * change. So we re-scan the device to 4612 * refresh the inquiry data for it. 4613 */ 4614 xpt_scan_lun(newpath.periph, &newpath, 4615 CAM_EXPECT_INQ_CHANGE, NULL); 4616 } 4617 xpt_release_path(&newpath); 4618 } else if (async_code == AC_LOST_DEVICE) { 4619 device->flags |= CAM_DEV_UNCONFIGURED; 4620 } else if (async_code == AC_TRANSFER_NEG) { 4621 struct ccb_trans_settings *settings; 4622 4623 settings = (struct ccb_trans_settings *)async_arg; 4624 xpt_set_transfer_settings(settings, device, 4625 /*async_update*/TRUE); 4626 } 4627 } 4628 4629 u_int32_t 4630 xpt_freeze_devq(struct cam_path *path, u_int count) 4631 { 4632 struct ccb_hdr *ccbh; 4633 4634 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4635 4636 path->device->qfrozen_cnt += count; 4637 4638 /* 4639 * Mark the last CCB in the queue as needing 4640 * to be requeued if the driver hasn't 4641 * changed it's state yet. This fixes a race 4642 * where a ccb is just about to be queued to 4643 * a controller driver when it's interrupt routine 4644 * freezes the queue. To completly close the 4645 * hole, controller drives must check to see 4646 * if a ccb's status is still CAM_REQ_INPROG 4647 * just before they queue 4648 * the CCB. See ahc_action/ahc_freeze_devq for 4649 * an example. 4650 */ 4651 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4652 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4653 ccbh->status = CAM_REQUEUE_REQ; 4654 return (path->device->qfrozen_cnt); 4655 } 4656 4657 u_int32_t 4658 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4659 { 4660 mtx_assert(sim->mtx, MA_OWNED); 4661 4662 sim->devq->send_queue.qfrozen_cnt += count; 4663 if (sim->devq->active_dev != NULL) { 4664 struct ccb_hdr *ccbh; 4665 4666 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4667 ccb_hdr_tailq); 4668 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4669 ccbh->status = CAM_REQUEUE_REQ; 4670 } 4671 return (sim->devq->send_queue.qfrozen_cnt); 4672 } 4673 4674 static void 4675 xpt_release_devq_timeout(void *arg) 4676 { 4677 struct cam_ed *device; 4678 4679 device = (struct cam_ed *)arg; 4680 4681 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4682 } 4683 4684 void 4685 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4686 { 4687 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4688 4689 xpt_release_devq_device(path->device, count, run_queue); 4690 } 4691 4692 static void 4693 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4694 { 4695 int rundevq; 4696 4697 rundevq = 0; 4698 if (dev->qfrozen_cnt > 0) { 4699 4700 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4701 dev->qfrozen_cnt -= count; 4702 if (dev->qfrozen_cnt == 0) { 4703 4704 /* 4705 * No longer need to wait for a successful 4706 * command completion. 4707 */ 4708 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4709 4710 /* 4711 * Remove any timeouts that might be scheduled 4712 * to release this queue. 4713 */ 4714 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4715 callout_stop(&dev->callout); 4716 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4717 } 4718 4719 /* 4720 * Now that we are unfrozen schedule the 4721 * device so any pending transactions are 4722 * run. 4723 */ 4724 if ((dev->ccbq.queue.entries > 0) 4725 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4726 && (run_queue != 0)) { 4727 rundevq = 1; 4728 } 4729 } 4730 } 4731 if (rundevq != 0) 4732 xpt_run_dev_sendq(dev->target->bus); 4733 } 4734 4735 void 4736 xpt_release_simq(struct cam_sim *sim, int run_queue) 4737 { 4738 struct camq *sendq; 4739 4740 mtx_assert(sim->mtx, MA_OWNED); 4741 4742 sendq = &(sim->devq->send_queue); 4743 if (sendq->qfrozen_cnt > 0) { 4744 4745 sendq->qfrozen_cnt--; 4746 if (sendq->qfrozen_cnt == 0) { 4747 struct cam_eb *bus; 4748 4749 /* 4750 * If there is a timeout scheduled to release this 4751 * sim queue, remove it. The queue frozen count is 4752 * already at 0. 4753 */ 4754 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4755 callout_stop(&sim->callout); 4756 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4757 } 4758 bus = xpt_find_bus(sim->path_id); 4759 4760 if (run_queue) { 4761 /* 4762 * Now that we are unfrozen run the send queue. 4763 */ 4764 xpt_run_dev_sendq(bus); 4765 } 4766 xpt_release_bus(bus); 4767 } 4768 } 4769 } 4770 4771 /* 4772 * XXX Appears to be unused. 4773 */ 4774 static void 4775 xpt_release_simq_timeout(void *arg) 4776 { 4777 struct cam_sim *sim; 4778 4779 sim = (struct cam_sim *)arg; 4780 xpt_release_simq(sim, /* run_queue */ TRUE); 4781 } 4782 4783 void 4784 xpt_done(union ccb *done_ccb) 4785 { 4786 struct cam_sim *sim; 4787 4788 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4789 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4790 /* 4791 * Queue up the request for handling by our SWI handler 4792 * any of the "non-immediate" type of ccbs. 4793 */ 4794 sim = done_ccb->ccb_h.path->bus->sim; 4795 switch (done_ccb->ccb_h.path->periph->type) { 4796 case CAM_PERIPH_BIO: 4797 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4798 sim_links.tqe); 4799 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4800 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4801 mtx_lock(&cam_simq_lock); 4802 TAILQ_INSERT_TAIL(&cam_simq, sim, 4803 links); 4804 sim->flags |= CAM_SIM_ON_DONEQ; 4805 mtx_unlock(&cam_simq_lock); 4806 } 4807 if ((done_ccb->ccb_h.path->periph->flags & 4808 CAM_PERIPH_POLLED) == 0) 4809 swi_sched(cambio_ih, 0); 4810 break; 4811 default: 4812 panic("unknown periph type %d", 4813 done_ccb->ccb_h.path->periph->type); 4814 } 4815 } 4816 } 4817 4818 union ccb * 4819 xpt_alloc_ccb() 4820 { 4821 union ccb *new_ccb; 4822 4823 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4824 return (new_ccb); 4825 } 4826 4827 union ccb * 4828 xpt_alloc_ccb_nowait() 4829 { 4830 union ccb *new_ccb; 4831 4832 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4833 return (new_ccb); 4834 } 4835 4836 void 4837 xpt_free_ccb(union ccb *free_ccb) 4838 { 4839 free(free_ccb, M_CAMXPT); 4840 } 4841 4842 4843 4844 /* Private XPT functions */ 4845 4846 /* 4847 * Get a CAM control block for the caller. Charge the structure to the device 4848 * referenced by the path. If the this device has no 'credits' then the 4849 * device already has the maximum number of outstanding operations under way 4850 * and we return NULL. If we don't have sufficient resources to allocate more 4851 * ccbs, we also return NULL. 4852 */ 4853 static union ccb * 4854 xpt_get_ccb(struct cam_ed *device) 4855 { 4856 union ccb *new_ccb; 4857 struct cam_sim *sim; 4858 4859 sim = device->sim; 4860 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4861 new_ccb = xpt_alloc_ccb_nowait(); 4862 if (new_ccb == NULL) { 4863 return (NULL); 4864 } 4865 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4866 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4867 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4868 xpt_links.sle); 4869 sim->ccb_count++; 4870 } 4871 cam_ccbq_take_opening(&device->ccbq); 4872 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4873 return (new_ccb); 4874 } 4875 4876 static void 4877 xpt_release_bus(struct cam_eb *bus) 4878 { 4879 4880 if ((--bus->refcount == 0) 4881 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4882 mtx_lock(&xsoftc.xpt_topo_lock); 4883 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4884 xsoftc.bus_generation++; 4885 mtx_unlock(&xsoftc.xpt_topo_lock); 4886 cam_sim_release(bus->sim); 4887 free(bus, M_CAMXPT); 4888 } 4889 } 4890 4891 static struct cam_et * 4892 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4893 { 4894 struct cam_et *target; 4895 4896 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4897 if (target != NULL) { 4898 struct cam_et *cur_target; 4899 4900 TAILQ_INIT(&target->ed_entries); 4901 target->bus = bus; 4902 target->target_id = target_id; 4903 target->refcount = 1; 4904 target->generation = 0; 4905 timevalclear(&target->last_reset); 4906 /* 4907 * Hold a reference to our parent bus so it 4908 * will not go away before we do. 4909 */ 4910 bus->refcount++; 4911 4912 /* Insertion sort into our bus's target list */ 4913 cur_target = TAILQ_FIRST(&bus->et_entries); 4914 while (cur_target != NULL && cur_target->target_id < target_id) 4915 cur_target = TAILQ_NEXT(cur_target, links); 4916 4917 if (cur_target != NULL) { 4918 TAILQ_INSERT_BEFORE(cur_target, target, links); 4919 } else { 4920 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4921 } 4922 bus->generation++; 4923 } 4924 return (target); 4925 } 4926 4927 static void 4928 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4929 { 4930 4931 if ((--target->refcount == 0) 4932 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4933 TAILQ_REMOVE(&bus->et_entries, target, links); 4934 bus->generation++; 4935 free(target, M_CAMXPT); 4936 xpt_release_bus(bus); 4937 } 4938 } 4939 4940 static struct cam_ed * 4941 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4942 { 4943 struct cam_path path; 4944 struct cam_ed *device; 4945 struct cam_devq *devq; 4946 cam_status status; 4947 4948 /* Make space for us in the device queue on our bus */ 4949 devq = bus->sim->devq; 4950 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4951 4952 if (status != CAM_REQ_CMP) { 4953 device = NULL; 4954 } else { 4955 device = (struct cam_ed *)malloc(sizeof(*device), 4956 M_CAMXPT, M_NOWAIT); 4957 } 4958 4959 if (device != NULL) { 4960 struct cam_ed *cur_device; 4961 4962 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4963 device->alloc_ccb_entry.device = device; 4964 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4965 device->send_ccb_entry.device = device; 4966 device->target = target; 4967 device->lun_id = lun_id; 4968 device->sim = bus->sim; 4969 /* Initialize our queues */ 4970 if (camq_init(&device->drvq, 0) != 0) { 4971 free(device, M_CAMXPT); 4972 return (NULL); 4973 } 4974 if (cam_ccbq_init(&device->ccbq, 4975 bus->sim->max_dev_openings) != 0) { 4976 camq_fini(&device->drvq); 4977 free(device, M_CAMXPT); 4978 return (NULL); 4979 } 4980 SLIST_INIT(&device->asyncs); 4981 SLIST_INIT(&device->periphs); 4982 device->generation = 0; 4983 device->owner = NULL; 4984 /* 4985 * Take the default quirk entry until we have inquiry 4986 * data and can determine a better quirk to use. 4987 */ 4988 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 4989 bzero(&device->inq_data, sizeof(device->inq_data)); 4990 device->inq_flags = 0; 4991 device->queue_flags = 0; 4992 device->serial_num = NULL; 4993 device->serial_num_len = 0; 4994 device->qfrozen_cnt = 0; 4995 device->flags = CAM_DEV_UNCONFIGURED; 4996 device->tag_delay_count = 0; 4997 device->tag_saved_openings = 0; 4998 device->refcount = 1; 4999 if (bus->sim->flags & CAM_SIM_MPSAFE) 5000 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 5001 else 5002 callout_init_mtx(&device->callout, &Giant, 0); 5003 5004 /* 5005 * Hold a reference to our parent target so it 5006 * will not go away before we do. 5007 */ 5008 target->refcount++; 5009 5010 /* 5011 * XXX should be limited by number of CCBs this bus can 5012 * do. 5013 */ 5014 bus->sim->max_ccbs += device->ccbq.devq_openings; 5015 /* Insertion sort into our target's device list */ 5016 cur_device = TAILQ_FIRST(&target->ed_entries); 5017 while (cur_device != NULL && cur_device->lun_id < lun_id) 5018 cur_device = TAILQ_NEXT(cur_device, links); 5019 if (cur_device != NULL) { 5020 TAILQ_INSERT_BEFORE(cur_device, device, links); 5021 } else { 5022 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5023 } 5024 target->generation++; 5025 if (lun_id != CAM_LUN_WILDCARD) { 5026 xpt_compile_path(&path, 5027 NULL, 5028 bus->path_id, 5029 target->target_id, 5030 lun_id); 5031 xpt_devise_transport(&path); 5032 xpt_release_path(&path); 5033 } 5034 } 5035 return (device); 5036 } 5037 5038 static void 5039 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5040 struct cam_ed *device) 5041 { 5042 5043 if ((--device->refcount == 0) 5044 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5045 struct cam_devq *devq; 5046 5047 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5048 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5049 panic("Removing device while still queued for ccbs"); 5050 5051 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5052 callout_stop(&device->callout); 5053 5054 TAILQ_REMOVE(&target->ed_entries, device,links); 5055 target->generation++; 5056 bus->sim->max_ccbs -= device->ccbq.devq_openings; 5057 /* Release our slot in the devq */ 5058 devq = bus->sim->devq; 5059 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5060 camq_fini(&device->drvq); 5061 camq_fini(&device->ccbq.queue); 5062 free(device, M_CAMXPT); 5063 xpt_release_target(bus, target); 5064 } 5065 } 5066 5067 static u_int32_t 5068 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5069 { 5070 int diff; 5071 int result; 5072 struct cam_ed *dev; 5073 5074 dev = path->device; 5075 5076 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5077 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5078 if (result == CAM_REQ_CMP && (diff < 0)) { 5079 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5080 } 5081 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5082 || (dev->inq_flags & SID_CmdQue) != 0) 5083 dev->tag_saved_openings = newopenings; 5084 /* Adjust the global limit */ 5085 dev->sim->max_ccbs += diff; 5086 return (result); 5087 } 5088 5089 static struct cam_eb * 5090 xpt_find_bus(path_id_t path_id) 5091 { 5092 struct cam_eb *bus; 5093 5094 mtx_lock(&xsoftc.xpt_topo_lock); 5095 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5096 bus != NULL; 5097 bus = TAILQ_NEXT(bus, links)) { 5098 if (bus->path_id == path_id) { 5099 bus->refcount++; 5100 break; 5101 } 5102 } 5103 mtx_unlock(&xsoftc.xpt_topo_lock); 5104 return (bus); 5105 } 5106 5107 static struct cam_et * 5108 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5109 { 5110 struct cam_et *target; 5111 5112 for (target = TAILQ_FIRST(&bus->et_entries); 5113 target != NULL; 5114 target = TAILQ_NEXT(target, links)) { 5115 if (target->target_id == target_id) { 5116 target->refcount++; 5117 break; 5118 } 5119 } 5120 return (target); 5121 } 5122 5123 static struct cam_ed * 5124 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5125 { 5126 struct cam_ed *device; 5127 5128 for (device = TAILQ_FIRST(&target->ed_entries); 5129 device != NULL; 5130 device = TAILQ_NEXT(device, links)) { 5131 if (device->lun_id == lun_id) { 5132 device->refcount++; 5133 break; 5134 } 5135 } 5136 return (device); 5137 } 5138 5139 typedef struct { 5140 union ccb *request_ccb; 5141 struct ccb_pathinq *cpi; 5142 int counter; 5143 } xpt_scan_bus_info; 5144 5145 /* 5146 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5147 * As the scan progresses, xpt_scan_bus is used as the 5148 * callback on completion function. 5149 */ 5150 static void 5151 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5152 { 5153 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5154 ("xpt_scan_bus\n")); 5155 switch (request_ccb->ccb_h.func_code) { 5156 case XPT_SCAN_BUS: 5157 { 5158 xpt_scan_bus_info *scan_info; 5159 union ccb *work_ccb; 5160 struct cam_path *path; 5161 u_int i; 5162 u_int max_target; 5163 u_int initiator_id; 5164 5165 /* Find out the characteristics of the bus */ 5166 work_ccb = xpt_alloc_ccb_nowait(); 5167 if (work_ccb == NULL) { 5168 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5169 xpt_done(request_ccb); 5170 return; 5171 } 5172 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5173 request_ccb->ccb_h.pinfo.priority); 5174 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5175 xpt_action(work_ccb); 5176 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5177 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5178 xpt_free_ccb(work_ccb); 5179 xpt_done(request_ccb); 5180 return; 5181 } 5182 5183 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5184 /* 5185 * Can't scan the bus on an adapter that 5186 * cannot perform the initiator role. 5187 */ 5188 request_ccb->ccb_h.status = CAM_REQ_CMP; 5189 xpt_free_ccb(work_ccb); 5190 xpt_done(request_ccb); 5191 return; 5192 } 5193 5194 /* Save some state for use while we probe for devices */ 5195 scan_info = (xpt_scan_bus_info *) 5196 malloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_NOWAIT); 5197 if (scan_info == NULL) { 5198 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5199 xpt_done(request_ccb); 5200 return; 5201 } 5202 scan_info->request_ccb = request_ccb; 5203 scan_info->cpi = &work_ccb->cpi; 5204 5205 /* Cache on our stack so we can work asynchronously */ 5206 max_target = scan_info->cpi->max_target; 5207 initiator_id = scan_info->cpi->initiator_id; 5208 5209 5210 /* 5211 * We can scan all targets in parallel, or do it sequentially. 5212 */ 5213 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5214 max_target = 0; 5215 scan_info->counter = 0; 5216 } else { 5217 scan_info->counter = scan_info->cpi->max_target + 1; 5218 if (scan_info->cpi->initiator_id < scan_info->counter) { 5219 scan_info->counter--; 5220 } 5221 } 5222 5223 for (i = 0; i <= max_target; i++) { 5224 cam_status status; 5225 if (i == initiator_id) 5226 continue; 5227 5228 status = xpt_create_path(&path, xpt_periph, 5229 request_ccb->ccb_h.path_id, 5230 i, 0); 5231 if (status != CAM_REQ_CMP) { 5232 printf("xpt_scan_bus: xpt_create_path failed" 5233 " with status %#x, bus scan halted\n", 5234 status); 5235 free(scan_info, M_CAMXPT); 5236 request_ccb->ccb_h.status = status; 5237 xpt_free_ccb(work_ccb); 5238 xpt_done(request_ccb); 5239 break; 5240 } 5241 work_ccb = xpt_alloc_ccb_nowait(); 5242 if (work_ccb == NULL) { 5243 free(scan_info, M_CAMXPT); 5244 xpt_free_path(path); 5245 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5246 xpt_done(request_ccb); 5247 break; 5248 } 5249 xpt_setup_ccb(&work_ccb->ccb_h, path, 5250 request_ccb->ccb_h.pinfo.priority); 5251 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5252 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5253 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5254 work_ccb->crcn.flags = request_ccb->crcn.flags; 5255 xpt_action(work_ccb); 5256 } 5257 break; 5258 } 5259 case XPT_SCAN_LUN: 5260 { 5261 cam_status status; 5262 struct cam_path *path; 5263 xpt_scan_bus_info *scan_info; 5264 path_id_t path_id; 5265 target_id_t target_id; 5266 lun_id_t lun_id; 5267 5268 /* Reuse the same CCB to query if a device was really found */ 5269 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5270 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5271 request_ccb->ccb_h.pinfo.priority); 5272 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5273 5274 path_id = request_ccb->ccb_h.path_id; 5275 target_id = request_ccb->ccb_h.target_id; 5276 lun_id = request_ccb->ccb_h.target_lun; 5277 xpt_action(request_ccb); 5278 5279 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5280 struct cam_ed *device; 5281 struct cam_et *target; 5282 int phl; 5283 5284 /* 5285 * If we already probed lun 0 successfully, or 5286 * we have additional configured luns on this 5287 * target that might have "gone away", go onto 5288 * the next lun. 5289 */ 5290 target = request_ccb->ccb_h.path->target; 5291 /* 5292 * We may touch devices that we don't 5293 * hold references too, so ensure they 5294 * don't disappear out from under us. 5295 * The target above is referenced by the 5296 * path in the request ccb. 5297 */ 5298 phl = 0; 5299 device = TAILQ_FIRST(&target->ed_entries); 5300 if (device != NULL) { 5301 phl = CAN_SRCH_HI_SPARSE(device); 5302 if (device->lun_id == 0) 5303 device = TAILQ_NEXT(device, links); 5304 } 5305 if ((lun_id != 0) || (device != NULL)) { 5306 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5307 lun_id++; 5308 } 5309 } else { 5310 struct cam_ed *device; 5311 5312 device = request_ccb->ccb_h.path->device; 5313 5314 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5315 /* Try the next lun */ 5316 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5317 || CAN_SRCH_HI_DENSE(device)) 5318 lun_id++; 5319 } 5320 } 5321 5322 /* 5323 * Free the current request path- we're done with it. 5324 */ 5325 xpt_free_path(request_ccb->ccb_h.path); 5326 5327 /* 5328 * Check to see if we scan any further luns. 5329 */ 5330 if (lun_id == request_ccb->ccb_h.target_lun 5331 || lun_id > scan_info->cpi->max_lun) { 5332 int done; 5333 5334 hop_again: 5335 done = 0; 5336 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5337 scan_info->counter++; 5338 if (scan_info->counter == 5339 scan_info->cpi->initiator_id) { 5340 scan_info->counter++; 5341 } 5342 if (scan_info->counter >= 5343 scan_info->cpi->max_target+1) { 5344 done = 1; 5345 } 5346 } else { 5347 scan_info->counter--; 5348 if (scan_info->counter == 0) { 5349 done = 1; 5350 } 5351 } 5352 if (done) { 5353 xpt_free_ccb(request_ccb); 5354 xpt_free_ccb((union ccb *)scan_info->cpi); 5355 request_ccb = scan_info->request_ccb; 5356 free(scan_info, M_CAMXPT); 5357 request_ccb->ccb_h.status = CAM_REQ_CMP; 5358 xpt_done(request_ccb); 5359 break; 5360 } 5361 5362 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) { 5363 break; 5364 } 5365 status = xpt_create_path(&path, xpt_periph, 5366 scan_info->request_ccb->ccb_h.path_id, 5367 scan_info->counter, 0); 5368 if (status != CAM_REQ_CMP) { 5369 printf("xpt_scan_bus: xpt_create_path failed" 5370 " with status %#x, bus scan halted\n", 5371 status); 5372 xpt_free_ccb(request_ccb); 5373 xpt_free_ccb((union ccb *)scan_info->cpi); 5374 request_ccb = scan_info->request_ccb; 5375 free(scan_info, M_CAMXPT); 5376 request_ccb->ccb_h.status = status; 5377 xpt_done(request_ccb); 5378 break; 5379 } 5380 xpt_setup_ccb(&request_ccb->ccb_h, path, 5381 request_ccb->ccb_h.pinfo.priority); 5382 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5383 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5384 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5385 request_ccb->crcn.flags = 5386 scan_info->request_ccb->crcn.flags; 5387 } else { 5388 status = xpt_create_path(&path, xpt_periph, 5389 path_id, target_id, lun_id); 5390 if (status != CAM_REQ_CMP) { 5391 printf("xpt_scan_bus: xpt_create_path failed " 5392 "with status %#x, halting LUN scan\n", 5393 status); 5394 goto hop_again; 5395 } 5396 xpt_setup_ccb(&request_ccb->ccb_h, path, 5397 request_ccb->ccb_h.pinfo.priority); 5398 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5399 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5400 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5401 request_ccb->crcn.flags = 5402 scan_info->request_ccb->crcn.flags; 5403 } 5404 xpt_action(request_ccb); 5405 break; 5406 } 5407 default: 5408 break; 5409 } 5410 } 5411 5412 typedef enum { 5413 PROBE_TUR, 5414 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */ 5415 PROBE_FULL_INQUIRY, 5416 PROBE_MODE_SENSE, 5417 PROBE_SERIAL_NUM_0, 5418 PROBE_SERIAL_NUM_1, 5419 PROBE_TUR_FOR_NEGOTIATION, 5420 PROBE_INQUIRY_BASIC_DV1, 5421 PROBE_INQUIRY_BASIC_DV2, 5422 PROBE_DV_EXIT, 5423 PROBE_INVALID 5424 } probe_action; 5425 5426 static char *probe_action_text[] = { 5427 "PROBE_TUR", 5428 "PROBE_INQUIRY", 5429 "PROBE_FULL_INQUIRY", 5430 "PROBE_MODE_SENSE", 5431 "PROBE_SERIAL_NUM_0", 5432 "PROBE_SERIAL_NUM_1", 5433 "PROBE_TUR_FOR_NEGOTIATION", 5434 "PROBE_INQUIRY_BASIC_DV1", 5435 "PROBE_INQUIRY_BASIC_DV2", 5436 "PROBE_DV_EXIT", 5437 "PROBE_INVALID" 5438 }; 5439 5440 #define PROBE_SET_ACTION(softc, newaction) \ 5441 do { \ 5442 char **text; \ 5443 text = probe_action_text; \ 5444 CAM_DEBUG((softc)->periph->path, CAM_DEBUG_INFO, \ 5445 ("Probe %s to %s\n", text[(softc)->action], \ 5446 text[(newaction)])); \ 5447 (softc)->action = (newaction); \ 5448 } while(0) 5449 5450 typedef enum { 5451 PROBE_INQUIRY_CKSUM = 0x01, 5452 PROBE_SERIAL_CKSUM = 0x02, 5453 PROBE_NO_ANNOUNCE = 0x04 5454 } probe_flags; 5455 5456 typedef struct { 5457 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5458 probe_action action; 5459 union ccb saved_ccb; 5460 probe_flags flags; 5461 MD5_CTX context; 5462 u_int8_t digest[16]; 5463 struct cam_periph *periph; 5464 } probe_softc; 5465 5466 static void 5467 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5468 cam_flags flags, union ccb *request_ccb) 5469 { 5470 struct ccb_pathinq cpi; 5471 cam_status status; 5472 struct cam_path *new_path; 5473 struct cam_periph *old_periph; 5474 5475 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5476 ("xpt_scan_lun\n")); 5477 5478 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5479 cpi.ccb_h.func_code = XPT_PATH_INQ; 5480 xpt_action((union ccb *)&cpi); 5481 5482 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5483 if (request_ccb != NULL) { 5484 request_ccb->ccb_h.status = cpi.ccb_h.status; 5485 xpt_done(request_ccb); 5486 } 5487 return; 5488 } 5489 5490 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5491 /* 5492 * Can't scan the bus on an adapter that 5493 * cannot perform the initiator role. 5494 */ 5495 if (request_ccb != NULL) { 5496 request_ccb->ccb_h.status = CAM_REQ_CMP; 5497 xpt_done(request_ccb); 5498 } 5499 return; 5500 } 5501 5502 if (request_ccb == NULL) { 5503 request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT); 5504 if (request_ccb == NULL) { 5505 xpt_print(path, "xpt_scan_lun: can't allocate CCB, " 5506 "can't continue\n"); 5507 return; 5508 } 5509 new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT); 5510 if (new_path == NULL) { 5511 xpt_print(path, "xpt_scan_lun: can't allocate path, " 5512 "can't continue\n"); 5513 free(request_ccb, M_CAMXPT); 5514 return; 5515 } 5516 status = xpt_compile_path(new_path, xpt_periph, 5517 path->bus->path_id, 5518 path->target->target_id, 5519 path->device->lun_id); 5520 5521 if (status != CAM_REQ_CMP) { 5522 xpt_print(path, "xpt_scan_lun: can't compile path, " 5523 "can't continue\n"); 5524 free(request_ccb, M_CAMXPT); 5525 free(new_path, M_CAMXPT); 5526 return; 5527 } 5528 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5529 request_ccb->ccb_h.cbfcnp = xptscandone; 5530 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5531 request_ccb->crcn.flags = flags; 5532 } 5533 5534 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5535 probe_softc *softc; 5536 5537 softc = (probe_softc *)old_periph->softc; 5538 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5539 periph_links.tqe); 5540 } else { 5541 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5542 probestart, "probe", 5543 CAM_PERIPH_BIO, 5544 request_ccb->ccb_h.path, NULL, 0, 5545 request_ccb); 5546 5547 if (status != CAM_REQ_CMP) { 5548 xpt_print(path, "xpt_scan_lun: cam_alloc_periph " 5549 "returned an error, can't continue probe\n"); 5550 request_ccb->ccb_h.status = status; 5551 xpt_done(request_ccb); 5552 } 5553 } 5554 } 5555 5556 static void 5557 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5558 { 5559 xpt_release_path(done_ccb->ccb_h.path); 5560 free(done_ccb->ccb_h.path, M_CAMXPT); 5561 free(done_ccb, M_CAMXPT); 5562 } 5563 5564 static cam_status 5565 proberegister(struct cam_periph *periph, void *arg) 5566 { 5567 union ccb *request_ccb; /* CCB representing the probe request */ 5568 cam_status status; 5569 probe_softc *softc; 5570 5571 request_ccb = (union ccb *)arg; 5572 if (periph == NULL) { 5573 printf("proberegister: periph was NULL!!\n"); 5574 return(CAM_REQ_CMP_ERR); 5575 } 5576 5577 if (request_ccb == NULL) { 5578 printf("proberegister: no probe CCB, " 5579 "can't register device\n"); 5580 return(CAM_REQ_CMP_ERR); 5581 } 5582 5583 softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT); 5584 5585 if (softc == NULL) { 5586 printf("proberegister: Unable to probe new device. " 5587 "Unable to allocate softc\n"); 5588 return(CAM_REQ_CMP_ERR); 5589 } 5590 TAILQ_INIT(&softc->request_ccbs); 5591 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5592 periph_links.tqe); 5593 softc->flags = 0; 5594 periph->softc = softc; 5595 softc->periph = periph; 5596 softc->action = PROBE_INVALID; 5597 status = cam_periph_acquire(periph); 5598 if (status != CAM_REQ_CMP) { 5599 return (status); 5600 } 5601 5602 5603 /* 5604 * Ensure we've waited at least a bus settle 5605 * delay before attempting to probe the device. 5606 * For HBAs that don't do bus resets, this won't make a difference. 5607 */ 5608 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5609 scsi_delay); 5610 probeschedule(periph); 5611 return(CAM_REQ_CMP); 5612 } 5613 5614 static void 5615 probeschedule(struct cam_periph *periph) 5616 { 5617 struct ccb_pathinq cpi; 5618 union ccb *ccb; 5619 probe_softc *softc; 5620 5621 softc = (probe_softc *)periph->softc; 5622 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5623 5624 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5625 cpi.ccb_h.func_code = XPT_PATH_INQ; 5626 xpt_action((union ccb *)&cpi); 5627 5628 /* 5629 * If a device has gone away and another device, or the same one, 5630 * is back in the same place, it should have a unit attention 5631 * condition pending. It will not report the unit attention in 5632 * response to an inquiry, which may leave invalid transfer 5633 * negotiations in effect. The TUR will reveal the unit attention 5634 * condition. Only send the TUR for lun 0, since some devices 5635 * will get confused by commands other than inquiry to non-existent 5636 * luns. If you think a device has gone away start your scan from 5637 * lun 0. This will insure that any bogus transfer settings are 5638 * invalidated. 5639 * 5640 * If we haven't seen the device before and the controller supports 5641 * some kind of transfer negotiation, negotiate with the first 5642 * sent command if no bus reset was performed at startup. This 5643 * ensures that the device is not confused by transfer negotiation 5644 * settings left over by loader or BIOS action. 5645 */ 5646 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5647 && (ccb->ccb_h.target_lun == 0)) { 5648 PROBE_SET_ACTION(softc, PROBE_TUR); 5649 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5650 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5651 proberequestdefaultnegotiation(periph); 5652 PROBE_SET_ACTION(softc, PROBE_INQUIRY); 5653 } else { 5654 PROBE_SET_ACTION(softc, PROBE_INQUIRY); 5655 } 5656 5657 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5658 softc->flags |= PROBE_NO_ANNOUNCE; 5659 else 5660 softc->flags &= ~PROBE_NO_ANNOUNCE; 5661 5662 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5663 } 5664 5665 static void 5666 probestart(struct cam_periph *periph, union ccb *start_ccb) 5667 { 5668 /* Probe the device that our peripheral driver points to */ 5669 struct ccb_scsiio *csio; 5670 probe_softc *softc; 5671 5672 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5673 5674 softc = (probe_softc *)periph->softc; 5675 csio = &start_ccb->csio; 5676 5677 switch (softc->action) { 5678 case PROBE_TUR: 5679 case PROBE_TUR_FOR_NEGOTIATION: 5680 case PROBE_DV_EXIT: 5681 { 5682 scsi_test_unit_ready(csio, 5683 /*retries*/10, 5684 probedone, 5685 MSG_SIMPLE_Q_TAG, 5686 SSD_FULL_SIZE, 5687 /*timeout*/60000); 5688 break; 5689 } 5690 case PROBE_INQUIRY: 5691 case PROBE_FULL_INQUIRY: 5692 case PROBE_INQUIRY_BASIC_DV1: 5693 case PROBE_INQUIRY_BASIC_DV2: 5694 { 5695 u_int inquiry_len; 5696 struct scsi_inquiry_data *inq_buf; 5697 5698 inq_buf = &periph->path->device->inq_data; 5699 5700 /* 5701 * If the device is currently configured, we calculate an 5702 * MD5 checksum of the inquiry data, and if the serial number 5703 * length is greater than 0, add the serial number data 5704 * into the checksum as well. Once the inquiry and the 5705 * serial number check finish, we attempt to figure out 5706 * whether we still have the same device. 5707 */ 5708 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5709 5710 MD5Init(&softc->context); 5711 MD5Update(&softc->context, (unsigned char *)inq_buf, 5712 sizeof(struct scsi_inquiry_data)); 5713 softc->flags |= PROBE_INQUIRY_CKSUM; 5714 if (periph->path->device->serial_num_len > 0) { 5715 MD5Update(&softc->context, 5716 periph->path->device->serial_num, 5717 periph->path->device->serial_num_len); 5718 softc->flags |= PROBE_SERIAL_CKSUM; 5719 } 5720 MD5Final(softc->digest, &softc->context); 5721 } 5722 5723 if (softc->action == PROBE_INQUIRY) 5724 inquiry_len = SHORT_INQUIRY_LENGTH; 5725 else 5726 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf); 5727 5728 /* 5729 * Some parallel SCSI devices fail to send an 5730 * ignore wide residue message when dealing with 5731 * odd length inquiry requests. Round up to be 5732 * safe. 5733 */ 5734 inquiry_len = roundup2(inquiry_len, 2); 5735 5736 if (softc->action == PROBE_INQUIRY_BASIC_DV1 5737 || softc->action == PROBE_INQUIRY_BASIC_DV2) { 5738 inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT); 5739 } 5740 if (inq_buf == NULL) { 5741 xpt_print(periph->path, "malloc failure- skipping Basic" 5742 "Domain Validation\n"); 5743 PROBE_SET_ACTION(softc, PROBE_DV_EXIT); 5744 scsi_test_unit_ready(csio, 5745 /*retries*/4, 5746 probedone, 5747 MSG_SIMPLE_Q_TAG, 5748 SSD_FULL_SIZE, 5749 /*timeout*/60000); 5750 break; 5751 } 5752 scsi_inquiry(csio, 5753 /*retries*/4, 5754 probedone, 5755 MSG_SIMPLE_Q_TAG, 5756 (u_int8_t *)inq_buf, 5757 inquiry_len, 5758 /*evpd*/FALSE, 5759 /*page_code*/0, 5760 SSD_MIN_SIZE, 5761 /*timeout*/60 * 1000); 5762 break; 5763 } 5764 case PROBE_MODE_SENSE: 5765 { 5766 void *mode_buf; 5767 int mode_buf_len; 5768 5769 mode_buf_len = sizeof(struct scsi_mode_header_6) 5770 + sizeof(struct scsi_mode_blk_desc) 5771 + sizeof(struct scsi_control_page); 5772 mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT); 5773 if (mode_buf != NULL) { 5774 scsi_mode_sense(csio, 5775 /*retries*/4, 5776 probedone, 5777 MSG_SIMPLE_Q_TAG, 5778 /*dbd*/FALSE, 5779 SMS_PAGE_CTRL_CURRENT, 5780 SMS_CONTROL_MODE_PAGE, 5781 mode_buf, 5782 mode_buf_len, 5783 SSD_FULL_SIZE, 5784 /*timeout*/60000); 5785 break; 5786 } 5787 xpt_print(periph->path, "Unable to mode sense control page - " 5788 "malloc failure\n"); 5789 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0); 5790 } 5791 /* FALLTHROUGH */ 5792 case PROBE_SERIAL_NUM_0: 5793 { 5794 struct scsi_vpd_supported_page_list *vpd_list = NULL; 5795 struct cam_ed *device; 5796 5797 device = periph->path->device; 5798 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) { 5799 vpd_list = malloc(sizeof(*vpd_list), M_CAMXPT, 5800 M_NOWAIT | M_ZERO); 5801 } 5802 5803 if (vpd_list != NULL) { 5804 scsi_inquiry(csio, 5805 /*retries*/4, 5806 probedone, 5807 MSG_SIMPLE_Q_TAG, 5808 (u_int8_t *)vpd_list, 5809 sizeof(*vpd_list), 5810 /*evpd*/TRUE, 5811 SVPD_SUPPORTED_PAGE_LIST, 5812 SSD_MIN_SIZE, 5813 /*timeout*/60 * 1000); 5814 break; 5815 } 5816 /* 5817 * We'll have to do without, let our probedone 5818 * routine finish up for us. 5819 */ 5820 start_ccb->csio.data_ptr = NULL; 5821 probedone(periph, start_ccb); 5822 return; 5823 } 5824 case PROBE_SERIAL_NUM_1: 5825 { 5826 struct scsi_vpd_unit_serial_number *serial_buf; 5827 struct cam_ed* device; 5828 5829 serial_buf = NULL; 5830 device = periph->path->device; 5831 device->serial_num = NULL; 5832 device->serial_num_len = 0; 5833 5834 serial_buf = (struct scsi_vpd_unit_serial_number *) 5835 malloc(sizeof(*serial_buf), M_CAMXPT, M_NOWAIT|M_ZERO); 5836 5837 if (serial_buf != NULL) { 5838 scsi_inquiry(csio, 5839 /*retries*/4, 5840 probedone, 5841 MSG_SIMPLE_Q_TAG, 5842 (u_int8_t *)serial_buf, 5843 sizeof(*serial_buf), 5844 /*evpd*/TRUE, 5845 SVPD_UNIT_SERIAL_NUMBER, 5846 SSD_MIN_SIZE, 5847 /*timeout*/60 * 1000); 5848 break; 5849 } 5850 /* 5851 * We'll have to do without, let our probedone 5852 * routine finish up for us. 5853 */ 5854 start_ccb->csio.data_ptr = NULL; 5855 probedone(periph, start_ccb); 5856 return; 5857 } 5858 case PROBE_INVALID: 5859 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO, 5860 ("probestart: invalid action state\n")); 5861 default: 5862 break; 5863 } 5864 xpt_action(start_ccb); 5865 } 5866 5867 static void 5868 proberequestdefaultnegotiation(struct cam_periph *periph) 5869 { 5870 struct ccb_trans_settings cts; 5871 5872 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5873 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5874 cts.type = CTS_TYPE_USER_SETTINGS; 5875 xpt_action((union ccb *)&cts); 5876 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5877 return; 5878 } 5879 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5880 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5881 xpt_action((union ccb *)&cts); 5882 } 5883 5884 /* 5885 * Backoff Negotiation Code- only pertinent for SPI devices. 5886 */ 5887 static int 5888 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device) 5889 { 5890 struct ccb_trans_settings cts; 5891 struct ccb_trans_settings_spi *spi; 5892 5893 memset(&cts, 0, sizeof (cts)); 5894 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5895 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5896 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5897 xpt_action((union ccb *)&cts); 5898 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5899 if (bootverbose) { 5900 xpt_print(periph->path, 5901 "failed to get current device settings\n"); 5902 } 5903 return (0); 5904 } 5905 if (cts.transport != XPORT_SPI) { 5906 if (bootverbose) { 5907 xpt_print(periph->path, "not SPI transport\n"); 5908 } 5909 return (0); 5910 } 5911 spi = &cts.xport_specific.spi; 5912 5913 /* 5914 * We cannot renegotiate sync rate if we don't have one. 5915 */ 5916 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { 5917 if (bootverbose) { 5918 xpt_print(periph->path, "no sync rate known\n"); 5919 } 5920 return (0); 5921 } 5922 5923 /* 5924 * We'll assert that we don't have to touch PPR options- the 5925 * SIM will see what we do with period and offset and adjust 5926 * the PPR options as appropriate. 5927 */ 5928 5929 /* 5930 * A sync rate with unknown or zero offset is nonsensical. 5931 * A sync period of zero means Async. 5932 */ 5933 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0 5934 || spi->sync_offset == 0 || spi->sync_period == 0) { 5935 if (bootverbose) { 5936 xpt_print(periph->path, "no sync rate available\n"); 5937 } 5938 return (0); 5939 } 5940 5941 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) { 5942 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5943 ("hit async: giving up on DV\n")); 5944 return (0); 5945 } 5946 5947 5948 /* 5949 * Jump sync_period up by one, but stop at 5MHz and fall back to Async. 5950 * We don't try to remember 'last' settings to see if the SIM actually 5951 * gets into the speed we want to set. We check on the SIM telling 5952 * us that a requested speed is bad, but otherwise don't try and 5953 * check the speed due to the asynchronous and handshake nature 5954 * of speed setting. 5955 */ 5956 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET; 5957 for (;;) { 5958 spi->sync_period++; 5959 if (spi->sync_period >= 0xf) { 5960 spi->sync_period = 0; 5961 spi->sync_offset = 0; 5962 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5963 ("setting to async for DV\n")); 5964 /* 5965 * Once we hit async, we don't want to try 5966 * any more settings. 5967 */ 5968 device->flags |= CAM_DEV_DV_HIT_BOTTOM; 5969 } else if (bootverbose) { 5970 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5971 ("DV: period 0x%x\n", spi->sync_period)); 5972 printf("setting period to 0x%x\n", spi->sync_period); 5973 } 5974 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5975 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5976 xpt_action((union ccb *)&cts); 5977 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5978 break; 5979 } 5980 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5981 ("DV: failed to set period 0x%x\n", spi->sync_period)); 5982 if (spi->sync_period == 0) { 5983 return (0); 5984 } 5985 } 5986 return (1); 5987 } 5988 5989 static void 5990 probedone(struct cam_periph *periph, union ccb *done_ccb) 5991 { 5992 probe_softc *softc; 5993 struct cam_path *path; 5994 u_int32_t priority; 5995 5996 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5997 5998 softc = (probe_softc *)periph->softc; 5999 path = done_ccb->ccb_h.path; 6000 priority = done_ccb->ccb_h.pinfo.priority; 6001 6002 switch (softc->action) { 6003 case PROBE_TUR: 6004 { 6005 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6006 6007 if (cam_periph_error(done_ccb, 0, 6008 SF_NO_PRINT, NULL) == ERESTART) 6009 return; 6010 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 6011 /* Don't wedge the queue */ 6012 xpt_release_devq(done_ccb->ccb_h.path, 6013 /*count*/1, 6014 /*run_queue*/TRUE); 6015 } 6016 PROBE_SET_ACTION(softc, PROBE_INQUIRY); 6017 xpt_release_ccb(done_ccb); 6018 xpt_schedule(periph, priority); 6019 return; 6020 } 6021 case PROBE_INQUIRY: 6022 case PROBE_FULL_INQUIRY: 6023 { 6024 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6025 struct scsi_inquiry_data *inq_buf; 6026 u_int8_t periph_qual; 6027 6028 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 6029 inq_buf = &path->device->inq_data; 6030 6031 periph_qual = SID_QUAL(inq_buf); 6032 6033 switch(periph_qual) { 6034 case SID_QUAL_LU_CONNECTED: 6035 { 6036 u_int8_t len; 6037 6038 /* 6039 * We conservatively request only 6040 * SHORT_INQUIRY_LEN bytes of inquiry 6041 * information during our first try 6042 * at sending an INQUIRY. If the device 6043 * has more information to give, 6044 * perform a second request specifying 6045 * the amount of information the device 6046 * is willing to give. 6047 */ 6048 len = inq_buf->additional_length 6049 + offsetof(struct scsi_inquiry_data, 6050 additional_length) + 1; 6051 if (softc->action == PROBE_INQUIRY 6052 && len > SHORT_INQUIRY_LENGTH) { 6053 PROBE_SET_ACTION(softc, PROBE_FULL_INQUIRY); 6054 xpt_release_ccb(done_ccb); 6055 xpt_schedule(periph, priority); 6056 return; 6057 } 6058 6059 xpt_find_quirk(path->device); 6060 6061 xpt_devise_transport(path); 6062 if (INQ_DATA_TQ_ENABLED(inq_buf)) 6063 PROBE_SET_ACTION(softc, PROBE_MODE_SENSE); 6064 else 6065 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0); 6066 6067 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6068 6069 xpt_release_ccb(done_ccb); 6070 xpt_schedule(periph, priority); 6071 return; 6072 } 6073 default: 6074 break; 6075 } 6076 } else if (cam_periph_error(done_ccb, 0, 6077 done_ccb->ccb_h.target_lun > 0 6078 ? SF_RETRY_UA|SF_QUIET_IR 6079 : SF_RETRY_UA, 6080 &softc->saved_ccb) == ERESTART) { 6081 return; 6082 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6083 /* Don't wedge the queue */ 6084 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6085 /*run_queue*/TRUE); 6086 } 6087 /* 6088 * If we get to this point, we got an error status back 6089 * from the inquiry and the error status doesn't require 6090 * automatically retrying the command. Therefore, the 6091 * inquiry failed. If we had inquiry information before 6092 * for this device, but this latest inquiry command failed, 6093 * the device has probably gone away. If this device isn't 6094 * already marked unconfigured, notify the peripheral 6095 * drivers that this device is no more. 6096 */ 6097 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 6098 /* Send the async notification. */ 6099 xpt_async(AC_LOST_DEVICE, path, NULL); 6100 6101 xpt_release_ccb(done_ccb); 6102 break; 6103 } 6104 case PROBE_MODE_SENSE: 6105 { 6106 struct ccb_scsiio *csio; 6107 struct scsi_mode_header_6 *mode_hdr; 6108 6109 csio = &done_ccb->csio; 6110 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 6111 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6112 struct scsi_control_page *page; 6113 u_int8_t *offset; 6114 6115 offset = ((u_int8_t *)&mode_hdr[1]) 6116 + mode_hdr->blk_desc_len; 6117 page = (struct scsi_control_page *)offset; 6118 path->device->queue_flags = page->queue_flags; 6119 } else if (cam_periph_error(done_ccb, 0, 6120 SF_RETRY_UA|SF_NO_PRINT, 6121 &softc->saved_ccb) == ERESTART) { 6122 return; 6123 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6124 /* Don't wedge the queue */ 6125 xpt_release_devq(done_ccb->ccb_h.path, 6126 /*count*/1, /*run_queue*/TRUE); 6127 } 6128 xpt_release_ccb(done_ccb); 6129 free(mode_hdr, M_CAMXPT); 6130 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0); 6131 xpt_schedule(periph, priority); 6132 return; 6133 } 6134 case PROBE_SERIAL_NUM_0: 6135 { 6136 struct ccb_scsiio *csio; 6137 struct scsi_vpd_supported_page_list *page_list; 6138 int length, serialnum_supported, i; 6139 6140 serialnum_supported = 0; 6141 csio = &done_ccb->csio; 6142 page_list = 6143 (struct scsi_vpd_supported_page_list *)csio->data_ptr; 6144 6145 if (page_list == NULL) { 6146 /* 6147 * Don't process the command as it was never sent 6148 */ 6149 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6150 && (page_list->length > 0)) { 6151 length = min(page_list->length, 6152 SVPD_SUPPORTED_PAGES_SIZE); 6153 for (i = 0; i < length; i++) { 6154 if (page_list->list[i] == 6155 SVPD_UNIT_SERIAL_NUMBER) { 6156 serialnum_supported = 1; 6157 break; 6158 } 6159 } 6160 } else if (cam_periph_error(done_ccb, 0, 6161 SF_RETRY_UA|SF_NO_PRINT, 6162 &softc->saved_ccb) == ERESTART) { 6163 return; 6164 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6165 /* Don't wedge the queue */ 6166 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6167 /*run_queue*/TRUE); 6168 } 6169 6170 if (page_list != NULL) 6171 free(page_list, M_DEVBUF); 6172 6173 if (serialnum_supported) { 6174 xpt_release_ccb(done_ccb); 6175 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_1); 6176 xpt_schedule(periph, priority); 6177 return; 6178 } 6179 6180 csio->data_ptr = NULL; 6181 /* FALLTHROUGH */ 6182 } 6183 6184 case PROBE_SERIAL_NUM_1: 6185 { 6186 struct ccb_scsiio *csio; 6187 struct scsi_vpd_unit_serial_number *serial_buf; 6188 u_int32_t priority; 6189 int changed; 6190 int have_serialnum; 6191 6192 changed = 1; 6193 have_serialnum = 0; 6194 csio = &done_ccb->csio; 6195 priority = done_ccb->ccb_h.pinfo.priority; 6196 serial_buf = 6197 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 6198 6199 /* Clean up from previous instance of this device */ 6200 if (path->device->serial_num != NULL) { 6201 free(path->device->serial_num, M_CAMXPT); 6202 path->device->serial_num = NULL; 6203 path->device->serial_num_len = 0; 6204 } 6205 6206 if (serial_buf == NULL) { 6207 /* 6208 * Don't process the command as it was never sent 6209 */ 6210 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6211 && (serial_buf->length > 0)) { 6212 6213 have_serialnum = 1; 6214 path->device->serial_num = 6215 (u_int8_t *)malloc((serial_buf->length + 1), 6216 M_CAMXPT, M_NOWAIT); 6217 if (path->device->serial_num != NULL) { 6218 bcopy(serial_buf->serial_num, 6219 path->device->serial_num, 6220 serial_buf->length); 6221 path->device->serial_num_len = 6222 serial_buf->length; 6223 path->device->serial_num[serial_buf->length] 6224 = '\0'; 6225 } 6226 } else if (cam_periph_error(done_ccb, 0, 6227 SF_RETRY_UA|SF_NO_PRINT, 6228 &softc->saved_ccb) == ERESTART) { 6229 return; 6230 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6231 /* Don't wedge the queue */ 6232 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6233 /*run_queue*/TRUE); 6234 } 6235 6236 /* 6237 * Let's see if we have seen this device before. 6238 */ 6239 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6240 MD5_CTX context; 6241 u_int8_t digest[16]; 6242 6243 MD5Init(&context); 6244 6245 MD5Update(&context, 6246 (unsigned char *)&path->device->inq_data, 6247 sizeof(struct scsi_inquiry_data)); 6248 6249 if (have_serialnum) 6250 MD5Update(&context, serial_buf->serial_num, 6251 serial_buf->length); 6252 6253 MD5Final(digest, &context); 6254 if (bcmp(softc->digest, digest, 16) == 0) 6255 changed = 0; 6256 6257 /* 6258 * XXX Do we need to do a TUR in order to ensure 6259 * that the device really hasn't changed??? 6260 */ 6261 if ((changed != 0) 6262 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6263 xpt_async(AC_LOST_DEVICE, path, NULL); 6264 } 6265 if (serial_buf != NULL) 6266 free(serial_buf, M_CAMXPT); 6267 6268 if (changed != 0) { 6269 /* 6270 * Now that we have all the necessary 6271 * information to safely perform transfer 6272 * negotiations... Controllers don't perform 6273 * any negotiation or tagged queuing until 6274 * after the first XPT_SET_TRAN_SETTINGS ccb is 6275 * received. So, on a new device, just retrieve 6276 * the user settings, and set them as the current 6277 * settings to set the device up. 6278 */ 6279 proberequestdefaultnegotiation(periph); 6280 xpt_release_ccb(done_ccb); 6281 6282 /* 6283 * Perform a TUR to allow the controller to 6284 * perform any necessary transfer negotiation. 6285 */ 6286 PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION); 6287 xpt_schedule(periph, priority); 6288 return; 6289 } 6290 xpt_release_ccb(done_ccb); 6291 break; 6292 } 6293 case PROBE_TUR_FOR_NEGOTIATION: 6294 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6295 DELAY(500000); 6296 if (cam_periph_error(done_ccb, 0, SF_RETRY_UA, 6297 NULL) == ERESTART) 6298 return; 6299 } 6300 /* FALLTHROUGH */ 6301 case PROBE_DV_EXIT: 6302 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6303 /* Don't wedge the queue */ 6304 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6305 /*run_queue*/TRUE); 6306 } 6307 /* 6308 * Do Domain Validation for lun 0 on devices that claim 6309 * to support Synchronous Transfer modes. 6310 */ 6311 if (softc->action == PROBE_TUR_FOR_NEGOTIATION 6312 && done_ccb->ccb_h.target_lun == 0 6313 && (path->device->inq_data.flags & SID_Sync) != 0 6314 && (path->device->flags & CAM_DEV_IN_DV) == 0) { 6315 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6316 ("Begin Domain Validation\n")); 6317 path->device->flags |= CAM_DEV_IN_DV; 6318 xpt_release_ccb(done_ccb); 6319 PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1); 6320 xpt_schedule(periph, priority); 6321 return; 6322 } 6323 if (softc->action == PROBE_DV_EXIT) { 6324 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6325 ("Leave Domain Validation\n")); 6326 } 6327 path->device->flags &= 6328 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6329 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6330 /* Inform the XPT that a new device has been found */ 6331 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6332 xpt_action(done_ccb); 6333 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6334 done_ccb); 6335 } 6336 xpt_release_ccb(done_ccb); 6337 break; 6338 case PROBE_INQUIRY_BASIC_DV1: 6339 case PROBE_INQUIRY_BASIC_DV2: 6340 { 6341 struct scsi_inquiry_data *nbuf; 6342 struct ccb_scsiio *csio; 6343 6344 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6345 /* Don't wedge the queue */ 6346 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6347 /*run_queue*/TRUE); 6348 } 6349 csio = &done_ccb->csio; 6350 nbuf = (struct scsi_inquiry_data *)csio->data_ptr; 6351 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) { 6352 xpt_print(path, 6353 "inquiry data fails comparison at DV%d step\n", 6354 softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2); 6355 if (proberequestbackoff(periph, path->device)) { 6356 path->device->flags &= ~CAM_DEV_IN_DV; 6357 PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION); 6358 } else { 6359 /* give up */ 6360 PROBE_SET_ACTION(softc, PROBE_DV_EXIT); 6361 } 6362 free(nbuf, M_CAMXPT); 6363 xpt_release_ccb(done_ccb); 6364 xpt_schedule(periph, priority); 6365 return; 6366 } 6367 free(nbuf, M_CAMXPT); 6368 if (softc->action == PROBE_INQUIRY_BASIC_DV1) { 6369 PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2); 6370 xpt_release_ccb(done_ccb); 6371 xpt_schedule(periph, priority); 6372 return; 6373 } 6374 if (softc->action == PROBE_INQUIRY_BASIC_DV2) { 6375 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6376 ("Leave Domain Validation Successfully\n")); 6377 } 6378 path->device->flags &= 6379 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6380 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6381 /* Inform the XPT that a new device has been found */ 6382 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6383 xpt_action(done_ccb); 6384 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6385 done_ccb); 6386 } 6387 xpt_release_ccb(done_ccb); 6388 break; 6389 } 6390 case PROBE_INVALID: 6391 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_INFO, 6392 ("probedone: invalid action state\n")); 6393 default: 6394 break; 6395 } 6396 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6397 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6398 done_ccb->ccb_h.status = CAM_REQ_CMP; 6399 xpt_done(done_ccb); 6400 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6401 cam_periph_invalidate(periph); 6402 cam_periph_release_locked(periph); 6403 } else { 6404 probeschedule(periph); 6405 } 6406 } 6407 6408 static void 6409 probecleanup(struct cam_periph *periph) 6410 { 6411 free(periph->softc, M_CAMXPT); 6412 } 6413 6414 static void 6415 xpt_find_quirk(struct cam_ed *device) 6416 { 6417 caddr_t match; 6418 6419 match = cam_quirkmatch((caddr_t)&device->inq_data, 6420 (caddr_t)xpt_quirk_table, 6421 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6422 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6423 6424 if (match == NULL) 6425 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6426 6427 device->quirk = (struct xpt_quirk_entry *)match; 6428 } 6429 6430 static int 6431 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6432 { 6433 int error, bool; 6434 6435 bool = cam_srch_hi; 6436 error = sysctl_handle_int(oidp, &bool, 0, req); 6437 if (error != 0 || req->newptr == NULL) 6438 return (error); 6439 if (bool == 0 || bool == 1) { 6440 cam_srch_hi = bool; 6441 return (0); 6442 } else { 6443 return (EINVAL); 6444 } 6445 } 6446 6447 6448 static void 6449 xpt_devise_transport(struct cam_path *path) 6450 { 6451 struct ccb_pathinq cpi; 6452 struct ccb_trans_settings cts; 6453 struct scsi_inquiry_data *inq_buf; 6454 6455 /* Get transport information from the SIM */ 6456 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6457 cpi.ccb_h.func_code = XPT_PATH_INQ; 6458 xpt_action((union ccb *)&cpi); 6459 6460 inq_buf = NULL; 6461 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6462 inq_buf = &path->device->inq_data; 6463 path->device->protocol = PROTO_SCSI; 6464 path->device->protocol_version = 6465 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6466 path->device->transport = cpi.transport; 6467 path->device->transport_version = cpi.transport_version; 6468 6469 /* 6470 * Any device not using SPI3 features should 6471 * be considered SPI2 or lower. 6472 */ 6473 if (inq_buf != NULL) { 6474 if (path->device->transport == XPORT_SPI 6475 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6476 && path->device->transport_version > 2) 6477 path->device->transport_version = 2; 6478 } else { 6479 struct cam_ed* otherdev; 6480 6481 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6482 otherdev != NULL; 6483 otherdev = TAILQ_NEXT(otherdev, links)) { 6484 if (otherdev != path->device) 6485 break; 6486 } 6487 6488 if (otherdev != NULL) { 6489 /* 6490 * Initially assume the same versioning as 6491 * prior luns for this target. 6492 */ 6493 path->device->protocol_version = 6494 otherdev->protocol_version; 6495 path->device->transport_version = 6496 otherdev->transport_version; 6497 } else { 6498 /* Until we know better, opt for safty */ 6499 path->device->protocol_version = 2; 6500 if (path->device->transport == XPORT_SPI) 6501 path->device->transport_version = 2; 6502 else 6503 path->device->transport_version = 0; 6504 } 6505 } 6506 6507 /* 6508 * XXX 6509 * For a device compliant with SPC-2 we should be able 6510 * to determine the transport version supported by 6511 * scrutinizing the version descriptors in the 6512 * inquiry buffer. 6513 */ 6514 6515 /* Tell the controller what we think */ 6516 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6517 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6518 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6519 cts.transport = path->device->transport; 6520 cts.transport_version = path->device->transport_version; 6521 cts.protocol = path->device->protocol; 6522 cts.protocol_version = path->device->protocol_version; 6523 cts.proto_specific.valid = 0; 6524 cts.xport_specific.valid = 0; 6525 xpt_action((union ccb *)&cts); 6526 } 6527 6528 static void 6529 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6530 int async_update) 6531 { 6532 struct ccb_pathinq cpi; 6533 struct ccb_trans_settings cur_cts; 6534 struct ccb_trans_settings_scsi *scsi; 6535 struct ccb_trans_settings_scsi *cur_scsi; 6536 struct cam_sim *sim; 6537 struct scsi_inquiry_data *inq_data; 6538 6539 if (device == NULL) { 6540 cts->ccb_h.status = CAM_PATH_INVALID; 6541 xpt_done((union ccb *)cts); 6542 return; 6543 } 6544 6545 if (cts->protocol == PROTO_UNKNOWN 6546 || cts->protocol == PROTO_UNSPECIFIED) { 6547 cts->protocol = device->protocol; 6548 cts->protocol_version = device->protocol_version; 6549 } 6550 6551 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6552 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6553 cts->protocol_version = device->protocol_version; 6554 6555 if (cts->protocol != device->protocol) { 6556 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n", 6557 cts->protocol, device->protocol); 6558 cts->protocol = device->protocol; 6559 } 6560 6561 if (cts->protocol_version > device->protocol_version) { 6562 if (bootverbose) { 6563 xpt_print(cts->ccb_h.path, "Down reving Protocol " 6564 "Version from %d to %d?\n", cts->protocol_version, 6565 device->protocol_version); 6566 } 6567 cts->protocol_version = device->protocol_version; 6568 } 6569 6570 if (cts->transport == XPORT_UNKNOWN 6571 || cts->transport == XPORT_UNSPECIFIED) { 6572 cts->transport = device->transport; 6573 cts->transport_version = device->transport_version; 6574 } 6575 6576 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6577 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6578 cts->transport_version = device->transport_version; 6579 6580 if (cts->transport != device->transport) { 6581 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n", 6582 cts->transport, device->transport); 6583 cts->transport = device->transport; 6584 } 6585 6586 if (cts->transport_version > device->transport_version) { 6587 if (bootverbose) { 6588 xpt_print(cts->ccb_h.path, "Down reving Transport " 6589 "Version from %d to %d?\n", cts->transport_version, 6590 device->transport_version); 6591 } 6592 cts->transport_version = device->transport_version; 6593 } 6594 6595 sim = cts->ccb_h.path->bus->sim; 6596 6597 /* 6598 * Nothing more of interest to do unless 6599 * this is a device connected via the 6600 * SCSI protocol. 6601 */ 6602 if (cts->protocol != PROTO_SCSI) { 6603 if (async_update == FALSE) 6604 (*(sim->sim_action))(sim, (union ccb *)cts); 6605 return; 6606 } 6607 6608 inq_data = &device->inq_data; 6609 scsi = &cts->proto_specific.scsi; 6610 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6611 cpi.ccb_h.func_code = XPT_PATH_INQ; 6612 xpt_action((union ccb *)&cpi); 6613 6614 /* SCSI specific sanity checking */ 6615 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6616 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 6617 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6618 || (device->quirk->mintags == 0)) { 6619 /* 6620 * Can't tag on hardware that doesn't support tags, 6621 * doesn't have it enabled, or has broken tag support. 6622 */ 6623 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6624 } 6625 6626 if (async_update == FALSE) { 6627 /* 6628 * Perform sanity checking against what the 6629 * controller and device can do. 6630 */ 6631 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6632 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6633 cur_cts.type = cts->type; 6634 xpt_action((union ccb *)&cur_cts); 6635 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6636 return; 6637 } 6638 cur_scsi = &cur_cts.proto_specific.scsi; 6639 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6640 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6641 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6642 } 6643 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6644 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6645 } 6646 6647 /* SPI specific sanity checking */ 6648 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6649 u_int spi3caps; 6650 struct ccb_trans_settings_spi *spi; 6651 struct ccb_trans_settings_spi *cur_spi; 6652 6653 spi = &cts->xport_specific.spi; 6654 6655 cur_spi = &cur_cts.xport_specific.spi; 6656 6657 /* Fill in any gaps in what the user gave us */ 6658 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6659 spi->sync_period = cur_spi->sync_period; 6660 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6661 spi->sync_period = 0; 6662 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6663 spi->sync_offset = cur_spi->sync_offset; 6664 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6665 spi->sync_offset = 0; 6666 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6667 spi->ppr_options = cur_spi->ppr_options; 6668 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6669 spi->ppr_options = 0; 6670 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6671 spi->bus_width = cur_spi->bus_width; 6672 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6673 spi->bus_width = 0; 6674 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6675 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6676 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6677 } 6678 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6679 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6680 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6681 && (inq_data->flags & SID_Sync) == 0 6682 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6683 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) { 6684 /* Force async */ 6685 spi->sync_period = 0; 6686 spi->sync_offset = 0; 6687 } 6688 6689 switch (spi->bus_width) { 6690 case MSG_EXT_WDTR_BUS_32_BIT: 6691 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6692 || (inq_data->flags & SID_WBus32) != 0 6693 || cts->type == CTS_TYPE_USER_SETTINGS) 6694 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6695 break; 6696 /* Fall Through to 16-bit */ 6697 case MSG_EXT_WDTR_BUS_16_BIT: 6698 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6699 || (inq_data->flags & SID_WBus16) != 0 6700 || cts->type == CTS_TYPE_USER_SETTINGS) 6701 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6702 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6703 break; 6704 } 6705 /* Fall Through to 8-bit */ 6706 default: /* New bus width?? */ 6707 case MSG_EXT_WDTR_BUS_8_BIT: 6708 /* All targets can do this */ 6709 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6710 break; 6711 } 6712 6713 spi3caps = cpi.xport_specific.spi.ppr_options; 6714 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6715 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6716 spi3caps &= inq_data->spi3data; 6717 6718 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6719 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6720 6721 if ((spi3caps & SID_SPI_IUS) == 0) 6722 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6723 6724 if ((spi3caps & SID_SPI_QAS) == 0) 6725 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6726 6727 /* No SPI Transfer settings are allowed unless we are wide */ 6728 if (spi->bus_width == 0) 6729 spi->ppr_options = 0; 6730 6731 if ((spi->valid & CTS_SPI_VALID_DISC) 6732 && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) { 6733 /* 6734 * Can't tag queue without disconnection. 6735 */ 6736 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6737 scsi->valid |= CTS_SCSI_VALID_TQ; 6738 } 6739 6740 /* 6741 * If we are currently performing tagged transactions to 6742 * this device and want to change its negotiation parameters, 6743 * go non-tagged for a bit to give the controller a chance to 6744 * negotiate unhampered by tag messages. 6745 */ 6746 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6747 && (device->inq_flags & SID_CmdQue) != 0 6748 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6749 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6750 CTS_SPI_VALID_SYNC_OFFSET| 6751 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6752 xpt_toggle_tags(cts->ccb_h.path); 6753 } 6754 6755 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6756 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6757 int device_tagenb; 6758 6759 /* 6760 * If we are transitioning from tags to no-tags or 6761 * vice-versa, we need to carefully freeze and restart 6762 * the queue so that we don't overlap tagged and non-tagged 6763 * commands. We also temporarily stop tags if there is 6764 * a change in transfer negotiation settings to allow 6765 * "tag-less" negotiation. 6766 */ 6767 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6768 || (device->inq_flags & SID_CmdQue) != 0) 6769 device_tagenb = TRUE; 6770 else 6771 device_tagenb = FALSE; 6772 6773 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6774 && device_tagenb == FALSE) 6775 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6776 && device_tagenb == TRUE)) { 6777 6778 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6779 /* 6780 * Delay change to use tags until after a 6781 * few commands have gone to this device so 6782 * the controller has time to perform transfer 6783 * negotiations without tagged messages getting 6784 * in the way. 6785 */ 6786 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6787 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6788 } else { 6789 struct ccb_relsim crs; 6790 6791 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6792 device->inq_flags &= ~SID_CmdQue; 6793 xpt_dev_ccbq_resize(cts->ccb_h.path, 6794 sim->max_dev_openings); 6795 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6796 device->tag_delay_count = 0; 6797 6798 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6799 /*priority*/1); 6800 crs.ccb_h.func_code = XPT_REL_SIMQ; 6801 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6802 crs.openings 6803 = crs.release_timeout 6804 = crs.qfrozen_cnt 6805 = 0; 6806 xpt_action((union ccb *)&crs); 6807 } 6808 } 6809 } 6810 if (async_update == FALSE) 6811 (*(sim->sim_action))(sim, (union ccb *)cts); 6812 } 6813 6814 6815 static void 6816 xpt_toggle_tags(struct cam_path *path) 6817 { 6818 struct cam_ed *dev; 6819 6820 /* 6821 * Give controllers a chance to renegotiate 6822 * before starting tag operations. We 6823 * "toggle" tagged queuing off then on 6824 * which causes the tag enable command delay 6825 * counter to come into effect. 6826 */ 6827 dev = path->device; 6828 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6829 || ((dev->inq_flags & SID_CmdQue) != 0 6830 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6831 struct ccb_trans_settings cts; 6832 6833 xpt_setup_ccb(&cts.ccb_h, path, 1); 6834 cts.protocol = PROTO_SCSI; 6835 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6836 cts.transport = XPORT_UNSPECIFIED; 6837 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6838 cts.proto_specific.scsi.flags = 0; 6839 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6840 xpt_set_transfer_settings(&cts, path->device, 6841 /*async_update*/TRUE); 6842 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6843 xpt_set_transfer_settings(&cts, path->device, 6844 /*async_update*/TRUE); 6845 } 6846 } 6847 6848 static void 6849 xpt_start_tags(struct cam_path *path) 6850 { 6851 struct ccb_relsim crs; 6852 struct cam_ed *device; 6853 struct cam_sim *sim; 6854 int newopenings; 6855 6856 device = path->device; 6857 sim = path->bus->sim; 6858 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6859 xpt_freeze_devq(path, /*count*/1); 6860 device->inq_flags |= SID_CmdQue; 6861 if (device->tag_saved_openings != 0) 6862 newopenings = device->tag_saved_openings; 6863 else 6864 newopenings = min(device->quirk->maxtags, 6865 sim->max_tagged_dev_openings); 6866 xpt_dev_ccbq_resize(path, newopenings); 6867 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6868 crs.ccb_h.func_code = XPT_REL_SIMQ; 6869 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6870 crs.openings 6871 = crs.release_timeout 6872 = crs.qfrozen_cnt 6873 = 0; 6874 xpt_action((union ccb *)&crs); 6875 } 6876 6877 static int busses_to_config; 6878 static int busses_to_reset; 6879 6880 static int 6881 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6882 { 6883 6884 mtx_assert(bus->sim->mtx, MA_OWNED); 6885 6886 if (bus->path_id != CAM_XPT_PATH_ID) { 6887 struct cam_path path; 6888 struct ccb_pathinq cpi; 6889 int can_negotiate; 6890 6891 busses_to_config++; 6892 xpt_compile_path(&path, NULL, bus->path_id, 6893 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6894 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6895 cpi.ccb_h.func_code = XPT_PATH_INQ; 6896 xpt_action((union ccb *)&cpi); 6897 can_negotiate = cpi.hba_inquiry; 6898 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6899 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6900 && can_negotiate) 6901 busses_to_reset++; 6902 xpt_release_path(&path); 6903 } 6904 6905 return(1); 6906 } 6907 6908 static int 6909 xptconfigfunc(struct cam_eb *bus, void *arg) 6910 { 6911 struct cam_path *path; 6912 union ccb *work_ccb; 6913 6914 mtx_assert(bus->sim->mtx, MA_OWNED); 6915 6916 if (bus->path_id != CAM_XPT_PATH_ID) { 6917 cam_status status; 6918 int can_negotiate; 6919 6920 work_ccb = xpt_alloc_ccb_nowait(); 6921 if (work_ccb == NULL) { 6922 busses_to_config--; 6923 xpt_finishconfig(xpt_periph, NULL); 6924 return(0); 6925 } 6926 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6927 CAM_TARGET_WILDCARD, 6928 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6929 printf("xptconfigfunc: xpt_create_path failed with " 6930 "status %#x for bus %d\n", status, bus->path_id); 6931 printf("xptconfigfunc: halting bus configuration\n"); 6932 xpt_free_ccb(work_ccb); 6933 busses_to_config--; 6934 xpt_finishconfig(xpt_periph, NULL); 6935 return(0); 6936 } 6937 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6938 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6939 xpt_action(work_ccb); 6940 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6941 printf("xptconfigfunc: CPI failed on bus %d " 6942 "with status %d\n", bus->path_id, 6943 work_ccb->ccb_h.status); 6944 xpt_finishconfig(xpt_periph, work_ccb); 6945 return(1); 6946 } 6947 6948 can_negotiate = work_ccb->cpi.hba_inquiry; 6949 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6950 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6951 && (can_negotiate != 0)) { 6952 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6953 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6954 work_ccb->ccb_h.cbfcnp = NULL; 6955 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6956 ("Resetting Bus\n")); 6957 xpt_action(work_ccb); 6958 xpt_finishconfig(xpt_periph, work_ccb); 6959 } else { 6960 /* Act as though we performed a successful BUS RESET */ 6961 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6962 xpt_finishconfig(xpt_periph, work_ccb); 6963 } 6964 } 6965 6966 return(1); 6967 } 6968 6969 static void 6970 xpt_config(void *arg) 6971 { 6972 /* 6973 * Now that interrupts are enabled, go find our devices 6974 */ 6975 6976 #ifdef CAMDEBUG 6977 /* Setup debugging flags and path */ 6978 #ifdef CAM_DEBUG_FLAGS 6979 cam_dflags = CAM_DEBUG_FLAGS; 6980 #else /* !CAM_DEBUG_FLAGS */ 6981 cam_dflags = CAM_DEBUG_NONE; 6982 #endif /* CAM_DEBUG_FLAGS */ 6983 #ifdef CAM_DEBUG_BUS 6984 if (cam_dflags != CAM_DEBUG_NONE) { 6985 /* 6986 * Locking is specifically omitted here. No SIMs have 6987 * registered yet, so xpt_create_path will only be searching 6988 * empty lists of targets and devices. 6989 */ 6990 if (xpt_create_path(&cam_dpath, xpt_periph, 6991 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6992 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6993 printf("xpt_config: xpt_create_path() failed for debug" 6994 " target %d:%d:%d, debugging disabled\n", 6995 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6996 cam_dflags = CAM_DEBUG_NONE; 6997 } 6998 } else 6999 cam_dpath = NULL; 7000 #else /* !CAM_DEBUG_BUS */ 7001 cam_dpath = NULL; 7002 #endif /* CAM_DEBUG_BUS */ 7003 #endif /* CAMDEBUG */ 7004 7005 /* 7006 * Scan all installed busses. 7007 */ 7008 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 7009 7010 if (busses_to_config == 0) { 7011 /* Call manually because we don't have any busses */ 7012 xpt_finishconfig(xpt_periph, NULL); 7013 } else { 7014 if (busses_to_reset > 0 && scsi_delay >= 2000) { 7015 printf("Waiting %d seconds for SCSI " 7016 "devices to settle\n", scsi_delay/1000); 7017 } 7018 xpt_for_all_busses(xptconfigfunc, NULL); 7019 } 7020 } 7021 7022 /* 7023 * If the given device only has one peripheral attached to it, and if that 7024 * peripheral is the passthrough driver, announce it. This insures that the 7025 * user sees some sort of announcement for every peripheral in their system. 7026 */ 7027 static int 7028 xptpassannouncefunc(struct cam_ed *device, void *arg) 7029 { 7030 struct cam_periph *periph; 7031 int i; 7032 7033 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 7034 periph = SLIST_NEXT(periph, periph_links), i++); 7035 7036 periph = SLIST_FIRST(&device->periphs); 7037 if ((i == 1) 7038 && (strncmp(periph->periph_name, "pass", 4) == 0)) 7039 xpt_announce_periph(periph, NULL); 7040 7041 return(1); 7042 } 7043 7044 static void 7045 xpt_finishconfig_task(void *context, int pending) 7046 { 7047 struct periph_driver **p_drv; 7048 int i; 7049 7050 if (busses_to_config == 0) { 7051 /* Register all the peripheral drivers */ 7052 /* XXX This will have to change when we have loadable modules */ 7053 p_drv = periph_drivers; 7054 for (i = 0; p_drv[i] != NULL; i++) { 7055 (*p_drv[i]->init)(); 7056 } 7057 7058 /* 7059 * Check for devices with no "standard" peripheral driver 7060 * attached. For any devices like that, announce the 7061 * passthrough driver so the user will see something. 7062 */ 7063 xpt_for_all_devices(xptpassannouncefunc, NULL); 7064 7065 /* Release our hook so that the boot can continue. */ 7066 config_intrhook_disestablish(xsoftc.xpt_config_hook); 7067 free(xsoftc.xpt_config_hook, M_CAMXPT); 7068 xsoftc.xpt_config_hook = NULL; 7069 } 7070 7071 free(context, M_CAMXPT); 7072 } 7073 7074 static void 7075 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 7076 { 7077 struct xpt_task *task; 7078 7079 if (done_ccb != NULL) { 7080 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 7081 ("xpt_finishconfig\n")); 7082 switch(done_ccb->ccb_h.func_code) { 7083 case XPT_RESET_BUS: 7084 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 7085 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 7086 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 7087 done_ccb->crcn.flags = 0; 7088 xpt_action(done_ccb); 7089 return; 7090 } 7091 /* FALLTHROUGH */ 7092 case XPT_SCAN_BUS: 7093 default: 7094 xpt_free_path(done_ccb->ccb_h.path); 7095 busses_to_config--; 7096 break; 7097 } 7098 } 7099 7100 if (busses_to_config == 0) { 7101 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 7102 if (task != NULL) { 7103 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 7104 taskqueue_enqueue(taskqueue_thread, &task->task); 7105 } 7106 } 7107 7108 if (done_ccb != NULL) 7109 xpt_free_ccb(done_ccb); 7110 } 7111 7112 cam_status 7113 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 7114 struct cam_path *path) 7115 { 7116 struct ccb_setasync csa; 7117 cam_status status; 7118 int xptpath = 0; 7119 7120 if (path == NULL) { 7121 mtx_lock(&xsoftc.xpt_lock); 7122 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 7123 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 7124 if (status != CAM_REQ_CMP) { 7125 mtx_unlock(&xsoftc.xpt_lock); 7126 return (status); 7127 } 7128 xptpath = 1; 7129 } 7130 7131 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5); 7132 csa.ccb_h.func_code = XPT_SASYNC_CB; 7133 csa.event_enable = event; 7134 csa.callback = cbfunc; 7135 csa.callback_arg = cbarg; 7136 xpt_action((union ccb *)&csa); 7137 status = csa.ccb_h.status; 7138 if (xptpath) { 7139 xpt_free_path(path); 7140 mtx_unlock(&xsoftc.xpt_lock); 7141 } 7142 return (status); 7143 } 7144 7145 static void 7146 xptaction(struct cam_sim *sim, union ccb *work_ccb) 7147 { 7148 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 7149 7150 switch (work_ccb->ccb_h.func_code) { 7151 /* Common cases first */ 7152 case XPT_PATH_INQ: /* Path routing inquiry */ 7153 { 7154 struct ccb_pathinq *cpi; 7155 7156 cpi = &work_ccb->cpi; 7157 cpi->version_num = 1; /* XXX??? */ 7158 cpi->hba_inquiry = 0; 7159 cpi->target_sprt = 0; 7160 cpi->hba_misc = 0; 7161 cpi->hba_eng_cnt = 0; 7162 cpi->max_target = 0; 7163 cpi->max_lun = 0; 7164 cpi->initiator_id = 0; 7165 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7166 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7167 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7168 cpi->unit_number = sim->unit_number; 7169 cpi->bus_id = sim->bus_id; 7170 cpi->base_transfer_speed = 0; 7171 cpi->protocol = PROTO_UNSPECIFIED; 7172 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7173 cpi->transport = XPORT_UNSPECIFIED; 7174 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7175 cpi->ccb_h.status = CAM_REQ_CMP; 7176 xpt_done(work_ccb); 7177 break; 7178 } 7179 default: 7180 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7181 xpt_done(work_ccb); 7182 break; 7183 } 7184 } 7185 7186 /* 7187 * The xpt as a "controller" has no interrupt sources, so polling 7188 * is a no-op. 7189 */ 7190 static void 7191 xptpoll(struct cam_sim *sim) 7192 { 7193 } 7194 7195 void 7196 xpt_lock_buses(void) 7197 { 7198 mtx_lock(&xsoftc.xpt_topo_lock); 7199 } 7200 7201 void 7202 xpt_unlock_buses(void) 7203 { 7204 mtx_unlock(&xsoftc.xpt_topo_lock); 7205 } 7206 7207 static void 7208 camisr(void *dummy) 7209 { 7210 cam_simq_t queue; 7211 struct cam_sim *sim; 7212 7213 mtx_lock(&cam_simq_lock); 7214 TAILQ_INIT(&queue); 7215 TAILQ_CONCAT(&queue, &cam_simq, links); 7216 mtx_unlock(&cam_simq_lock); 7217 7218 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 7219 TAILQ_REMOVE(&queue, sim, links); 7220 CAM_SIM_LOCK(sim); 7221 sim->flags &= ~CAM_SIM_ON_DONEQ; 7222 camisr_runqueue(&sim->sim_doneq); 7223 CAM_SIM_UNLOCK(sim); 7224 } 7225 } 7226 7227 static void 7228 camisr_runqueue(void *V_queue) 7229 { 7230 cam_isrq_t *queue = V_queue; 7231 struct ccb_hdr *ccb_h; 7232 7233 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 7234 int runq; 7235 7236 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 7237 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7238 7239 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7240 ("camisr\n")); 7241 7242 runq = FALSE; 7243 7244 if (ccb_h->flags & CAM_HIGH_POWER) { 7245 struct highpowerlist *hphead; 7246 union ccb *send_ccb; 7247 7248 mtx_lock(&xsoftc.xpt_lock); 7249 hphead = &xsoftc.highpowerq; 7250 7251 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7252 7253 /* 7254 * Increment the count since this command is done. 7255 */ 7256 xsoftc.num_highpower++; 7257 7258 /* 7259 * Any high powered commands queued up? 7260 */ 7261 if (send_ccb != NULL) { 7262 7263 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7264 mtx_unlock(&xsoftc.xpt_lock); 7265 7266 xpt_release_devq(send_ccb->ccb_h.path, 7267 /*count*/1, /*runqueue*/TRUE); 7268 } else 7269 mtx_unlock(&xsoftc.xpt_lock); 7270 } 7271 7272 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7273 struct cam_ed *dev; 7274 7275 dev = ccb_h->path->device; 7276 7277 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7278 ccb_h->path->bus->sim->devq->send_active--; 7279 ccb_h->path->bus->sim->devq->send_openings++; 7280 7281 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7282 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7283 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7284 && (dev->ccbq.dev_active == 0))) { 7285 7286 xpt_release_devq(ccb_h->path, /*count*/1, 7287 /*run_queue*/TRUE); 7288 } 7289 7290 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7291 && (--dev->tag_delay_count == 0)) 7292 xpt_start_tags(ccb_h->path); 7293 7294 if ((dev->ccbq.queue.entries > 0) 7295 && (dev->qfrozen_cnt == 0) 7296 && (device_is_send_queued(dev) == 0)) { 7297 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7298 dev); 7299 } 7300 } 7301 7302 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7303 xpt_release_simq(ccb_h->path->bus->sim, 7304 /*run_queue*/TRUE); 7305 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7306 runq = FALSE; 7307 } 7308 7309 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7310 && (ccb_h->status & CAM_DEV_QFRZN)) { 7311 xpt_release_devq(ccb_h->path, /*count*/1, 7312 /*run_queue*/TRUE); 7313 ccb_h->status &= ~CAM_DEV_QFRZN; 7314 } else if (runq) { 7315 xpt_run_dev_sendq(ccb_h->path->bus); 7316 } 7317 7318 /* Call the peripheral driver's callback */ 7319 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7320 } 7321 } 7322 7323