1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/systm.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/time.h> 45 #include <sys/conf.h> 46 #include <sys/fcntl.h> 47 #include <sys/proc.h> 48 #include <sys/sbuf.h> 49 #include <sys/smp.h> 50 #include <sys/taskqueue.h> 51 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/sysctl.h> 55 #include <sys/kthread.h> 56 57 #include <cam/cam.h> 58 #include <cam/cam_ccb.h> 59 #include <cam/cam_iosched.h> 60 #include <cam/cam_periph.h> 61 #include <cam/cam_queue.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt.h> 64 #include <cam/cam_xpt_sim.h> 65 #include <cam/cam_xpt_periph.h> 66 #include <cam/cam_xpt_internal.h> 67 #include <cam/cam_debug.h> 68 #include <cam/cam_compat.h> 69 70 #include <cam/scsi/scsi_all.h> 71 #include <cam/scsi/scsi_message.h> 72 #include <cam/scsi/scsi_pass.h> 73 74 #include <machine/stdarg.h> /* for xpt_print below */ 75 76 #include "opt_cam.h" 77 78 /* Wild guess based on not wanting to grow the stack too much */ 79 #define XPT_PRINT_MAXLEN 512 80 #ifdef PRINTF_BUFR_SIZE 81 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 82 #else 83 #define XPT_PRINT_LEN 128 84 #endif 85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 86 87 /* 88 * This is the maximum number of high powered commands (e.g. start unit) 89 * that can be outstanding at a particular time. 90 */ 91 #ifndef CAM_MAX_HIGHPOWER 92 #define CAM_MAX_HIGHPOWER 4 93 #endif 94 95 /* Datastructures internal to the xpt layer */ 96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 100 101 struct xpt_softc { 102 uint32_t xpt_generation; 103 104 /* number of high powered commands that can go through right now */ 105 struct mtx xpt_highpower_lock; 106 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 107 int num_highpower; 108 109 /* queue for handling async rescan requests. */ 110 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 111 int buses_to_config; 112 int buses_config_done; 113 int announce_nosbuf; 114 115 /* 116 * Registered buses 117 * 118 * N.B., "busses" is an archaic spelling of "buses". In new code 119 * "buses" is preferred. 120 */ 121 TAILQ_HEAD(,cam_eb) xpt_busses; 122 u_int bus_generation; 123 124 int boot_delay; 125 struct callout boot_callout; 126 struct task boot_task; 127 struct root_hold_token xpt_rootmount; 128 129 struct mtx xpt_topo_lock; 130 struct taskqueue *xpt_taskq; 131 }; 132 133 typedef enum { 134 DM_RET_COPY = 0x01, 135 DM_RET_FLAG_MASK = 0x0f, 136 DM_RET_NONE = 0x00, 137 DM_RET_STOP = 0x10, 138 DM_RET_DESCEND = 0x20, 139 DM_RET_ERROR = 0x30, 140 DM_RET_ACTION_MASK = 0xf0 141 } dev_match_ret; 142 143 typedef enum { 144 XPT_DEPTH_BUS, 145 XPT_DEPTH_TARGET, 146 XPT_DEPTH_DEVICE, 147 XPT_DEPTH_PERIPH 148 } xpt_traverse_depth; 149 150 struct xpt_traverse_config { 151 xpt_traverse_depth depth; 152 void *tr_func; 153 void *tr_arg; 154 }; 155 156 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 157 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 158 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 159 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 160 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 161 162 /* Transport layer configuration information */ 163 static struct xpt_softc xsoftc; 164 165 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 166 167 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 168 &xsoftc.boot_delay, 0, "Bus registration wait time"); 169 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 170 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 171 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 172 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 173 174 struct cam_doneq { 175 struct mtx_padalign cam_doneq_mtx; 176 STAILQ_HEAD(, ccb_hdr) cam_doneq; 177 int cam_doneq_sleep; 178 }; 179 180 static struct cam_doneq cam_doneqs[MAXCPU]; 181 static u_int __read_mostly cam_num_doneqs; 182 static struct proc *cam_proc; 183 static struct cam_doneq cam_async; 184 185 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 186 &cam_num_doneqs, 0, "Number of completion queues/threads"); 187 188 struct cam_periph *xpt_periph; 189 190 static periph_init_t xpt_periph_init; 191 192 static struct periph_driver xpt_driver = 193 { 194 xpt_periph_init, "xpt", 195 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 196 CAM_PERIPH_DRV_EARLY 197 }; 198 199 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 200 201 static d_open_t xptopen; 202 static d_close_t xptclose; 203 static d_ioctl_t xptioctl; 204 static d_ioctl_t xptdoioctl; 205 206 static struct cdevsw xpt_cdevsw = { 207 .d_version = D_VERSION, 208 .d_flags = 0, 209 .d_open = xptopen, 210 .d_close = xptclose, 211 .d_ioctl = xptioctl, 212 .d_name = "xpt", 213 }; 214 215 /* Storage for debugging datastructures */ 216 struct cam_path *cam_dpath; 217 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS; 218 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 219 &cam_dflags, 0, "Enabled debug flags"); 220 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 221 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 222 &cam_debug_delay, 0, "Delay in us after each debug message"); 223 224 /* Our boot-time initialization hook */ 225 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 226 227 static moduledata_t cam_moduledata = { 228 "cam", 229 cam_module_event_handler, 230 NULL 231 }; 232 233 static int xpt_init(void *); 234 235 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 236 MODULE_VERSION(cam, 1); 237 238 static void xpt_async_bcast(struct async_list *async_head, 239 u_int32_t async_code, 240 struct cam_path *path, 241 void *async_arg); 242 static path_id_t xptnextfreepathid(void); 243 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 244 static union ccb *xpt_get_ccb(struct cam_periph *periph); 245 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 246 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 247 static void xpt_run_allocq_task(void *context, int pending); 248 static void xpt_run_devq(struct cam_devq *devq); 249 static callout_func_t xpt_release_devq_timeout; 250 static void xpt_acquire_bus(struct cam_eb *bus); 251 static void xpt_release_bus(struct cam_eb *bus); 252 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 253 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 254 int run_queue); 255 static struct cam_et* 256 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 257 static void xpt_acquire_target(struct cam_et *target); 258 static void xpt_release_target(struct cam_et *target); 259 static struct cam_eb* 260 xpt_find_bus(path_id_t path_id); 261 static struct cam_et* 262 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 263 static struct cam_ed* 264 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 265 static void xpt_config(void *arg); 266 static void xpt_hold_boot_locked(void); 267 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 268 u_int32_t new_priority); 269 static xpt_devicefunc_t xptpassannouncefunc; 270 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 271 static void xptpoll(struct cam_sim *sim); 272 static void camisr_runqueue(void); 273 static void xpt_done_process(struct ccb_hdr *ccb_h); 274 static void xpt_done_td(void *); 275 static void xpt_async_td(void *); 276 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 277 u_int num_patterns, struct cam_eb *bus); 278 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 279 u_int num_patterns, 280 struct cam_ed *device); 281 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 282 u_int num_patterns, 283 struct cam_periph *periph); 284 static xpt_busfunc_t xptedtbusfunc; 285 static xpt_targetfunc_t xptedttargetfunc; 286 static xpt_devicefunc_t xptedtdevicefunc; 287 static xpt_periphfunc_t xptedtperiphfunc; 288 static xpt_pdrvfunc_t xptplistpdrvfunc; 289 static xpt_periphfunc_t xptplistperiphfunc; 290 static int xptedtmatch(struct ccb_dev_match *cdm); 291 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 292 static int xptbustraverse(struct cam_eb *start_bus, 293 xpt_busfunc_t *tr_func, void *arg); 294 static int xpttargettraverse(struct cam_eb *bus, 295 struct cam_et *start_target, 296 xpt_targetfunc_t *tr_func, void *arg); 297 static int xptdevicetraverse(struct cam_et *target, 298 struct cam_ed *start_device, 299 xpt_devicefunc_t *tr_func, void *arg); 300 static int xptperiphtraverse(struct cam_ed *device, 301 struct cam_periph *start_periph, 302 xpt_periphfunc_t *tr_func, void *arg); 303 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 304 xpt_pdrvfunc_t *tr_func, void *arg); 305 static int xptpdperiphtraverse(struct periph_driver **pdrv, 306 struct cam_periph *start_periph, 307 xpt_periphfunc_t *tr_func, 308 void *arg); 309 static xpt_busfunc_t xptdefbusfunc; 310 static xpt_targetfunc_t xptdeftargetfunc; 311 static xpt_devicefunc_t xptdefdevicefunc; 312 static xpt_periphfunc_t xptdefperiphfunc; 313 static void xpt_finishconfig_task(void *context, int pending); 314 static void xpt_dev_async_default(u_int32_t async_code, 315 struct cam_eb *bus, 316 struct cam_et *target, 317 struct cam_ed *device, 318 void *async_arg); 319 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 320 struct cam_et *target, 321 lun_id_t lun_id); 322 static xpt_devicefunc_t xptsetasyncfunc; 323 static xpt_busfunc_t xptsetasyncbusfunc; 324 static cam_status xptregister(struct cam_periph *periph, 325 void *arg); 326 327 static __inline int 328 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 329 { 330 int retval; 331 332 mtx_assert(&devq->send_mtx, MA_OWNED); 333 if ((dev->ccbq.queue.entries > 0) && 334 (dev->ccbq.dev_openings > 0) && 335 (dev->ccbq.queue.qfrozen_cnt == 0)) { 336 /* 337 * The priority of a device waiting for controller 338 * resources is that of the highest priority CCB 339 * enqueued. 340 */ 341 retval = 342 xpt_schedule_dev(&devq->send_queue, 343 &dev->devq_entry, 344 CAMQ_GET_PRIO(&dev->ccbq.queue)); 345 } else { 346 retval = 0; 347 } 348 return (retval); 349 } 350 351 static __inline int 352 device_is_queued(struct cam_ed *device) 353 { 354 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 355 } 356 357 static void 358 xpt_periph_init(void) 359 { 360 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 361 } 362 363 static int 364 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 365 { 366 367 /* 368 * Only allow read-write access. 369 */ 370 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 371 return(EPERM); 372 373 /* 374 * We don't allow nonblocking access. 375 */ 376 if ((flags & O_NONBLOCK) != 0) { 377 printf("%s: can't do nonblocking access\n", devtoname(dev)); 378 return(ENODEV); 379 } 380 381 return(0); 382 } 383 384 static int 385 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 386 { 387 388 return(0); 389 } 390 391 /* 392 * Don't automatically grab the xpt softc lock here even though this is going 393 * through the xpt device. The xpt device is really just a back door for 394 * accessing other devices and SIMs, so the right thing to do is to grab 395 * the appropriate SIM lock once the bus/SIM is located. 396 */ 397 static int 398 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 399 { 400 int error; 401 402 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 403 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 404 } 405 return (error); 406 } 407 408 static int 409 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 410 { 411 int error; 412 413 error = 0; 414 415 switch(cmd) { 416 /* 417 * For the transport layer CAMIOCOMMAND ioctl, we really only want 418 * to accept CCB types that don't quite make sense to send through a 419 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 420 * in the CAM spec. 421 */ 422 case CAMIOCOMMAND: { 423 union ccb *ccb; 424 union ccb *inccb; 425 struct cam_eb *bus; 426 427 inccb = (union ccb *)addr; 428 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 429 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 430 inccb->csio.bio = NULL; 431 #endif 432 433 if (inccb->ccb_h.flags & CAM_UNLOCKED) 434 return (EINVAL); 435 436 bus = xpt_find_bus(inccb->ccb_h.path_id); 437 if (bus == NULL) 438 return (EINVAL); 439 440 switch (inccb->ccb_h.func_code) { 441 case XPT_SCAN_BUS: 442 case XPT_RESET_BUS: 443 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 444 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 445 xpt_release_bus(bus); 446 return (EINVAL); 447 } 448 break; 449 case XPT_SCAN_TGT: 450 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 451 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 452 xpt_release_bus(bus); 453 return (EINVAL); 454 } 455 break; 456 default: 457 break; 458 } 459 460 switch(inccb->ccb_h.func_code) { 461 case XPT_SCAN_BUS: 462 case XPT_RESET_BUS: 463 case XPT_PATH_INQ: 464 case XPT_ENG_INQ: 465 case XPT_SCAN_LUN: 466 case XPT_SCAN_TGT: 467 468 ccb = xpt_alloc_ccb(); 469 470 /* 471 * Create a path using the bus, target, and lun the 472 * user passed in. 473 */ 474 if (xpt_create_path(&ccb->ccb_h.path, NULL, 475 inccb->ccb_h.path_id, 476 inccb->ccb_h.target_id, 477 inccb->ccb_h.target_lun) != 478 CAM_REQ_CMP){ 479 error = EINVAL; 480 xpt_free_ccb(ccb); 481 break; 482 } 483 /* Ensure all of our fields are correct */ 484 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 485 inccb->ccb_h.pinfo.priority); 486 xpt_merge_ccb(ccb, inccb); 487 xpt_path_lock(ccb->ccb_h.path); 488 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 489 xpt_path_unlock(ccb->ccb_h.path); 490 bcopy(ccb, inccb, sizeof(union ccb)); 491 xpt_free_path(ccb->ccb_h.path); 492 xpt_free_ccb(ccb); 493 break; 494 495 case XPT_DEBUG: { 496 union ccb ccb; 497 498 /* 499 * This is an immediate CCB, so it's okay to 500 * allocate it on the stack. 501 */ 502 memset(&ccb, 0, sizeof(ccb)); 503 504 /* 505 * Create a path using the bus, target, and lun the 506 * user passed in. 507 */ 508 if (xpt_create_path(&ccb.ccb_h.path, NULL, 509 inccb->ccb_h.path_id, 510 inccb->ccb_h.target_id, 511 inccb->ccb_h.target_lun) != 512 CAM_REQ_CMP){ 513 error = EINVAL; 514 break; 515 } 516 /* Ensure all of our fields are correct */ 517 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 518 inccb->ccb_h.pinfo.priority); 519 xpt_merge_ccb(&ccb, inccb); 520 xpt_action(&ccb); 521 bcopy(&ccb, inccb, sizeof(union ccb)); 522 xpt_free_path(ccb.ccb_h.path); 523 break; 524 } 525 case XPT_DEV_MATCH: { 526 struct cam_periph_map_info mapinfo; 527 struct cam_path *old_path; 528 529 /* 530 * We can't deal with physical addresses for this 531 * type of transaction. 532 */ 533 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 534 CAM_DATA_VADDR) { 535 error = EINVAL; 536 break; 537 } 538 539 /* 540 * Save this in case the caller had it set to 541 * something in particular. 542 */ 543 old_path = inccb->ccb_h.path; 544 545 /* 546 * We really don't need a path for the matching 547 * code. The path is needed because of the 548 * debugging statements in xpt_action(). They 549 * assume that the CCB has a valid path. 550 */ 551 inccb->ccb_h.path = xpt_periph->path; 552 553 bzero(&mapinfo, sizeof(mapinfo)); 554 555 /* 556 * Map the pattern and match buffers into kernel 557 * virtual address space. 558 */ 559 error = cam_periph_mapmem(inccb, &mapinfo, maxphys); 560 561 if (error) { 562 inccb->ccb_h.path = old_path; 563 break; 564 } 565 566 /* 567 * This is an immediate CCB, we can send it on directly. 568 */ 569 xpt_action(inccb); 570 571 /* 572 * Map the buffers back into user space. 573 */ 574 cam_periph_unmapmem(inccb, &mapinfo); 575 576 inccb->ccb_h.path = old_path; 577 578 error = 0; 579 break; 580 } 581 default: 582 error = ENOTSUP; 583 break; 584 } 585 xpt_release_bus(bus); 586 break; 587 } 588 /* 589 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 590 * with the periphal driver name and unit name filled in. The other 591 * fields don't really matter as input. The passthrough driver name 592 * ("pass"), and unit number are passed back in the ccb. The current 593 * device generation number, and the index into the device peripheral 594 * driver list, and the status are also passed back. Note that 595 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 596 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 597 * (or rather should be) impossible for the device peripheral driver 598 * list to change since we look at the whole thing in one pass, and 599 * we do it with lock protection. 600 * 601 */ 602 case CAMGETPASSTHRU: { 603 union ccb *ccb; 604 struct cam_periph *periph; 605 struct periph_driver **p_drv; 606 char *name; 607 u_int unit; 608 int base_periph_found; 609 610 ccb = (union ccb *)addr; 611 unit = ccb->cgdl.unit_number; 612 name = ccb->cgdl.periph_name; 613 base_periph_found = 0; 614 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 615 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 616 ccb->csio.bio = NULL; 617 #endif 618 619 /* 620 * Sanity check -- make sure we don't get a null peripheral 621 * driver name. 622 */ 623 if (*ccb->cgdl.periph_name == '\0') { 624 error = EINVAL; 625 break; 626 } 627 628 /* Keep the list from changing while we traverse it */ 629 xpt_lock_buses(); 630 631 /* first find our driver in the list of drivers */ 632 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 633 if (strcmp((*p_drv)->driver_name, name) == 0) 634 break; 635 636 if (*p_drv == NULL) { 637 xpt_unlock_buses(); 638 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 639 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 640 *ccb->cgdl.periph_name = '\0'; 641 ccb->cgdl.unit_number = 0; 642 error = ENOENT; 643 break; 644 } 645 646 /* 647 * Run through every peripheral instance of this driver 648 * and check to see whether it matches the unit passed 649 * in by the user. If it does, get out of the loops and 650 * find the passthrough driver associated with that 651 * peripheral driver. 652 */ 653 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 654 periph = TAILQ_NEXT(periph, unit_links)) { 655 if (periph->unit_number == unit) 656 break; 657 } 658 /* 659 * If we found the peripheral driver that the user passed 660 * in, go through all of the peripheral drivers for that 661 * particular device and look for a passthrough driver. 662 */ 663 if (periph != NULL) { 664 struct cam_ed *device; 665 int i; 666 667 base_periph_found = 1; 668 device = periph->path->device; 669 for (i = 0, periph = SLIST_FIRST(&device->periphs); 670 periph != NULL; 671 periph = SLIST_NEXT(periph, periph_links), i++) { 672 /* 673 * Check to see whether we have a 674 * passthrough device or not. 675 */ 676 if (strcmp(periph->periph_name, "pass") == 0) { 677 /* 678 * Fill in the getdevlist fields. 679 */ 680 strlcpy(ccb->cgdl.periph_name, 681 periph->periph_name, 682 sizeof(ccb->cgdl.periph_name)); 683 ccb->cgdl.unit_number = 684 periph->unit_number; 685 if (SLIST_NEXT(periph, periph_links)) 686 ccb->cgdl.status = 687 CAM_GDEVLIST_MORE_DEVS; 688 else 689 ccb->cgdl.status = 690 CAM_GDEVLIST_LAST_DEVICE; 691 ccb->cgdl.generation = 692 device->generation; 693 ccb->cgdl.index = i; 694 /* 695 * Fill in some CCB header fields 696 * that the user may want. 697 */ 698 ccb->ccb_h.path_id = 699 periph->path->bus->path_id; 700 ccb->ccb_h.target_id = 701 periph->path->target->target_id; 702 ccb->ccb_h.target_lun = 703 periph->path->device->lun_id; 704 ccb->ccb_h.status = CAM_REQ_CMP; 705 break; 706 } 707 } 708 } 709 710 /* 711 * If the periph is null here, one of two things has 712 * happened. The first possibility is that we couldn't 713 * find the unit number of the particular peripheral driver 714 * that the user is asking about. e.g. the user asks for 715 * the passthrough driver for "da11". We find the list of 716 * "da" peripherals all right, but there is no unit 11. 717 * The other possibility is that we went through the list 718 * of peripheral drivers attached to the device structure, 719 * but didn't find one with the name "pass". Either way, 720 * we return ENOENT, since we couldn't find something. 721 */ 722 if (periph == NULL) { 723 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 724 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 725 *ccb->cgdl.periph_name = '\0'; 726 ccb->cgdl.unit_number = 0; 727 error = ENOENT; 728 /* 729 * It is unfortunate that this is even necessary, 730 * but there are many, many clueless users out there. 731 * If this is true, the user is looking for the 732 * passthrough driver, but doesn't have one in his 733 * kernel. 734 */ 735 if (base_periph_found == 1) { 736 printf("xptioctl: pass driver is not in the " 737 "kernel\n"); 738 printf("xptioctl: put \"device pass\" in " 739 "your kernel config file\n"); 740 } 741 } 742 xpt_unlock_buses(); 743 break; 744 } 745 default: 746 error = ENOTTY; 747 break; 748 } 749 750 return(error); 751 } 752 753 static int 754 cam_module_event_handler(module_t mod, int what, void *arg) 755 { 756 int error; 757 758 switch (what) { 759 case MOD_LOAD: 760 if ((error = xpt_init(NULL)) != 0) 761 return (error); 762 break; 763 case MOD_UNLOAD: 764 return EBUSY; 765 default: 766 return EOPNOTSUPP; 767 } 768 769 return 0; 770 } 771 772 static struct xpt_proto * 773 xpt_proto_find(cam_proto proto) 774 { 775 struct xpt_proto **pp; 776 777 SET_FOREACH(pp, cam_xpt_proto_set) { 778 if ((*pp)->proto == proto) 779 return *pp; 780 } 781 782 return NULL; 783 } 784 785 static void 786 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 787 { 788 789 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 790 xpt_free_path(done_ccb->ccb_h.path); 791 xpt_free_ccb(done_ccb); 792 } else { 793 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 794 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 795 } 796 xpt_release_boot(); 797 } 798 799 /* thread to handle bus rescans */ 800 static void 801 xpt_scanner_thread(void *dummy) 802 { 803 union ccb *ccb; 804 struct mtx *mtx; 805 struct cam_ed *device; 806 807 xpt_lock_buses(); 808 for (;;) { 809 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 810 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 811 "-", 0); 812 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 813 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 814 xpt_unlock_buses(); 815 816 /* 817 * We need to lock the device's mutex which we use as 818 * the path mutex. We can't do it directly because the 819 * cam_path in the ccb may wind up going away because 820 * the path lock may be dropped and the path retired in 821 * the completion callback. We do this directly to keep 822 * the reference counts in cam_path sane. We also have 823 * to copy the device pointer because ccb_h.path may 824 * be freed in the callback. 825 */ 826 mtx = xpt_path_mtx(ccb->ccb_h.path); 827 device = ccb->ccb_h.path->device; 828 xpt_acquire_device(device); 829 mtx_lock(mtx); 830 xpt_action(ccb); 831 mtx_unlock(mtx); 832 xpt_release_device(device); 833 834 xpt_lock_buses(); 835 } 836 } 837 } 838 839 void 840 xpt_rescan(union ccb *ccb) 841 { 842 struct ccb_hdr *hdr; 843 844 /* Prepare request */ 845 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 846 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 847 ccb->ccb_h.func_code = XPT_SCAN_BUS; 848 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_TGT; 851 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 852 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 853 ccb->ccb_h.func_code = XPT_SCAN_LUN; 854 else { 855 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 856 xpt_free_path(ccb->ccb_h.path); 857 xpt_free_ccb(ccb); 858 return; 859 } 860 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 861 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 862 xpt_action_name(ccb->ccb_h.func_code))); 863 864 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 865 ccb->ccb_h.cbfcnp = xpt_rescan_done; 866 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 867 /* Don't make duplicate entries for the same paths. */ 868 xpt_lock_buses(); 869 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 870 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 871 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 872 wakeup(&xsoftc.ccb_scanq); 873 xpt_unlock_buses(); 874 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 875 xpt_free_path(ccb->ccb_h.path); 876 xpt_free_ccb(ccb); 877 return; 878 } 879 } 880 } 881 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 882 xpt_hold_boot_locked(); 883 wakeup(&xsoftc.ccb_scanq); 884 xpt_unlock_buses(); 885 } 886 887 /* Functions accessed by the peripheral drivers */ 888 static int 889 xpt_init(void *dummy) 890 { 891 struct cam_sim *xpt_sim; 892 struct cam_path *path; 893 struct cam_devq *devq; 894 cam_status status; 895 int error, i; 896 897 TAILQ_INIT(&xsoftc.xpt_busses); 898 TAILQ_INIT(&xsoftc.ccb_scanq); 899 STAILQ_INIT(&xsoftc.highpowerq); 900 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 901 902 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 903 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 904 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 905 906 #ifdef CAM_BOOT_DELAY 907 /* 908 * Override this value at compile time to assist our users 909 * who don't use loader to boot a kernel. 910 */ 911 xsoftc.boot_delay = CAM_BOOT_DELAY; 912 #endif 913 914 /* 915 * The xpt layer is, itself, the equivalent of a SIM. 916 * Allow 16 ccbs in the ccb pool for it. This should 917 * give decent parallelism when we probe buses and 918 * perform other XPT functions. 919 */ 920 devq = cam_simq_alloc(16); 921 xpt_sim = cam_sim_alloc(xptaction, 922 xptpoll, 923 "xpt", 924 /*softc*/NULL, 925 /*unit*/0, 926 /*mtx*/NULL, 927 /*max_dev_transactions*/0, 928 /*max_tagged_dev_transactions*/0, 929 devq); 930 if (xpt_sim == NULL) 931 return (ENOMEM); 932 933 if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 934 printf("xpt_init: xpt_bus_register failed with errno %d," 935 " failing attach\n", error); 936 return (EINVAL); 937 } 938 939 /* 940 * Looking at the XPT from the SIM layer, the XPT is 941 * the equivalent of a peripheral driver. Allocate 942 * a peripheral driver entry for us. 943 */ 944 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 945 CAM_TARGET_WILDCARD, 946 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 947 printf("xpt_init: xpt_create_path failed with status %#x," 948 " failing attach\n", status); 949 return (EINVAL); 950 } 951 xpt_path_lock(path); 952 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 953 path, NULL, 0, xpt_sim); 954 xpt_path_unlock(path); 955 xpt_free_path(path); 956 957 if (cam_num_doneqs < 1) 958 cam_num_doneqs = 1 + mp_ncpus / 6; 959 else if (cam_num_doneqs > MAXCPU) 960 cam_num_doneqs = MAXCPU; 961 for (i = 0; i < cam_num_doneqs; i++) { 962 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 963 MTX_DEF); 964 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 965 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 966 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 967 if (error != 0) { 968 cam_num_doneqs = i; 969 break; 970 } 971 } 972 if (cam_num_doneqs < 1) { 973 printf("xpt_init: Cannot init completion queues " 974 "- failing attach\n"); 975 return (ENOMEM); 976 } 977 978 mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF); 979 STAILQ_INIT(&cam_async.cam_doneq); 980 if (kproc_kthread_add(xpt_async_td, &cam_async, 981 &cam_proc, NULL, 0, 0, "cam", "async") != 0) { 982 printf("xpt_init: Cannot init async thread " 983 "- failing attach\n"); 984 return (ENOMEM); 985 } 986 987 /* 988 * Register a callback for when interrupts are enabled. 989 */ 990 config_intrhook_oneshot(xpt_config, NULL); 991 992 return (0); 993 } 994 995 static cam_status 996 xptregister(struct cam_periph *periph, void *arg) 997 { 998 struct cam_sim *xpt_sim; 999 1000 if (periph == NULL) { 1001 printf("xptregister: periph was NULL!!\n"); 1002 return(CAM_REQ_CMP_ERR); 1003 } 1004 1005 xpt_sim = (struct cam_sim *)arg; 1006 xpt_sim->softc = periph; 1007 xpt_periph = periph; 1008 periph->softc = NULL; 1009 1010 return(CAM_REQ_CMP); 1011 } 1012 1013 int32_t 1014 xpt_add_periph(struct cam_periph *periph) 1015 { 1016 struct cam_ed *device; 1017 int32_t status; 1018 1019 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1020 device = periph->path->device; 1021 status = CAM_REQ_CMP; 1022 if (device != NULL) { 1023 mtx_lock(&device->target->bus->eb_mtx); 1024 device->generation++; 1025 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1026 mtx_unlock(&device->target->bus->eb_mtx); 1027 atomic_add_32(&xsoftc.xpt_generation, 1); 1028 } 1029 1030 return (status); 1031 } 1032 1033 void 1034 xpt_remove_periph(struct cam_periph *periph) 1035 { 1036 struct cam_ed *device; 1037 1038 device = periph->path->device; 1039 if (device != NULL) { 1040 mtx_lock(&device->target->bus->eb_mtx); 1041 device->generation++; 1042 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1043 mtx_unlock(&device->target->bus->eb_mtx); 1044 atomic_add_32(&xsoftc.xpt_generation, 1); 1045 } 1046 } 1047 1048 void 1049 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1050 { 1051 struct cam_path *path = periph->path; 1052 struct xpt_proto *proto; 1053 1054 cam_periph_assert(periph, MA_OWNED); 1055 periph->flags |= CAM_PERIPH_ANNOUNCED; 1056 1057 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1058 periph->periph_name, periph->unit_number, 1059 path->bus->sim->sim_name, 1060 path->bus->sim->unit_number, 1061 path->bus->sim->bus_id, 1062 path->bus->path_id, 1063 path->target->target_id, 1064 (uintmax_t)path->device->lun_id); 1065 printf("%s%d: ", periph->periph_name, periph->unit_number); 1066 proto = xpt_proto_find(path->device->protocol); 1067 if (proto) 1068 proto->ops->announce(path->device); 1069 else 1070 printf("%s%d: Unknown protocol device %d\n", 1071 periph->periph_name, periph->unit_number, 1072 path->device->protocol); 1073 if (path->device->serial_num_len > 0) { 1074 /* Don't wrap the screen - print only the first 60 chars */ 1075 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1076 periph->unit_number, path->device->serial_num); 1077 } 1078 /* Announce transport details. */ 1079 path->bus->xport->ops->announce(periph); 1080 /* Announce command queueing. */ 1081 if (path->device->inq_flags & SID_CmdQue 1082 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1083 printf("%s%d: Command Queueing enabled\n", 1084 periph->periph_name, periph->unit_number); 1085 } 1086 /* Announce caller's details if they've passed in. */ 1087 if (announce_string != NULL) 1088 printf("%s%d: %s\n", periph->periph_name, 1089 periph->unit_number, announce_string); 1090 } 1091 1092 void 1093 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1094 char *announce_string) 1095 { 1096 struct cam_path *path = periph->path; 1097 struct xpt_proto *proto; 1098 1099 cam_periph_assert(periph, MA_OWNED); 1100 periph->flags |= CAM_PERIPH_ANNOUNCED; 1101 1102 /* Fall back to the non-sbuf method if necessary */ 1103 if (xsoftc.announce_nosbuf != 0) { 1104 xpt_announce_periph(periph, announce_string); 1105 return; 1106 } 1107 proto = xpt_proto_find(path->device->protocol); 1108 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1109 (path->bus->xport->ops->announce_sbuf == NULL)) { 1110 xpt_announce_periph(periph, announce_string); 1111 return; 1112 } 1113 1114 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1115 periph->periph_name, periph->unit_number, 1116 path->bus->sim->sim_name, 1117 path->bus->sim->unit_number, 1118 path->bus->sim->bus_id, 1119 path->bus->path_id, 1120 path->target->target_id, 1121 (uintmax_t)path->device->lun_id); 1122 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1123 1124 if (proto) 1125 proto->ops->announce_sbuf(path->device, sb); 1126 else 1127 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1128 periph->periph_name, periph->unit_number, 1129 path->device->protocol); 1130 if (path->device->serial_num_len > 0) { 1131 /* Don't wrap the screen - print only the first 60 chars */ 1132 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1133 periph->periph_name, periph->unit_number, 1134 path->device->serial_num); 1135 } 1136 /* Announce transport details. */ 1137 path->bus->xport->ops->announce_sbuf(periph, sb); 1138 /* Announce command queueing. */ 1139 if (path->device->inq_flags & SID_CmdQue 1140 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1141 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1142 periph->periph_name, periph->unit_number); 1143 } 1144 /* Announce caller's details if they've passed in. */ 1145 if (announce_string != NULL) 1146 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1147 periph->unit_number, announce_string); 1148 } 1149 1150 void 1151 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1152 { 1153 if (quirks != 0) { 1154 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1155 periph->unit_number, quirks, bit_string); 1156 } 1157 } 1158 1159 void 1160 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1161 int quirks, char *bit_string) 1162 { 1163 if (xsoftc.announce_nosbuf != 0) { 1164 xpt_announce_quirks(periph, quirks, bit_string); 1165 return; 1166 } 1167 1168 if (quirks != 0) { 1169 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1170 periph->unit_number, quirks, bit_string); 1171 } 1172 } 1173 1174 void 1175 xpt_denounce_periph(struct cam_periph *periph) 1176 { 1177 struct cam_path *path = periph->path; 1178 struct xpt_proto *proto; 1179 1180 cam_periph_assert(periph, MA_OWNED); 1181 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1182 periph->periph_name, periph->unit_number, 1183 path->bus->sim->sim_name, 1184 path->bus->sim->unit_number, 1185 path->bus->sim->bus_id, 1186 path->bus->path_id, 1187 path->target->target_id, 1188 (uintmax_t)path->device->lun_id); 1189 printf("%s%d: ", periph->periph_name, periph->unit_number); 1190 proto = xpt_proto_find(path->device->protocol); 1191 if (proto) 1192 proto->ops->denounce(path->device); 1193 else 1194 printf("%s%d: Unknown protocol device %d\n", 1195 periph->periph_name, periph->unit_number, 1196 path->device->protocol); 1197 if (path->device->serial_num_len > 0) 1198 printf(" s/n %.60s", path->device->serial_num); 1199 printf(" detached\n"); 1200 } 1201 1202 void 1203 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1204 { 1205 struct cam_path *path = periph->path; 1206 struct xpt_proto *proto; 1207 1208 cam_periph_assert(periph, MA_OWNED); 1209 1210 /* Fall back to the non-sbuf method if necessary */ 1211 if (xsoftc.announce_nosbuf != 0) { 1212 xpt_denounce_periph(periph); 1213 return; 1214 } 1215 proto = xpt_proto_find(path->device->protocol); 1216 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1217 xpt_denounce_periph(periph); 1218 return; 1219 } 1220 1221 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1222 periph->periph_name, periph->unit_number, 1223 path->bus->sim->sim_name, 1224 path->bus->sim->unit_number, 1225 path->bus->sim->bus_id, 1226 path->bus->path_id, 1227 path->target->target_id, 1228 (uintmax_t)path->device->lun_id); 1229 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1230 1231 if (proto) 1232 proto->ops->denounce_sbuf(path->device, sb); 1233 else 1234 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1235 periph->periph_name, periph->unit_number, 1236 path->device->protocol); 1237 if (path->device->serial_num_len > 0) 1238 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1239 sbuf_printf(sb, " detached\n"); 1240 } 1241 1242 int 1243 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1244 { 1245 int ret = -1, l, o; 1246 struct ccb_dev_advinfo cdai; 1247 struct scsi_vpd_device_id *did; 1248 struct scsi_vpd_id_descriptor *idd; 1249 1250 xpt_path_assert(path, MA_OWNED); 1251 1252 memset(&cdai, 0, sizeof(cdai)); 1253 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1254 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1255 cdai.flags = CDAI_FLAG_NONE; 1256 cdai.bufsiz = len; 1257 cdai.buf = buf; 1258 1259 if (!strcmp(attr, "GEOM::ident")) 1260 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1261 else if (!strcmp(attr, "GEOM::physpath")) 1262 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1263 else if (strcmp(attr, "GEOM::lunid") == 0 || 1264 strcmp(attr, "GEOM::lunname") == 0) { 1265 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1266 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1267 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT); 1268 if (cdai.buf == NULL) { 1269 ret = ENOMEM; 1270 goto out; 1271 } 1272 } else 1273 goto out; 1274 1275 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1276 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1277 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1278 if (cdai.provsiz == 0) 1279 goto out; 1280 switch(cdai.buftype) { 1281 case CDAI_TYPE_SCSI_DEVID: 1282 did = (struct scsi_vpd_device_id *)cdai.buf; 1283 if (strcmp(attr, "GEOM::lunid") == 0) { 1284 idd = scsi_get_devid(did, cdai.provsiz, 1285 scsi_devid_is_lun_naa); 1286 if (idd == NULL) 1287 idd = scsi_get_devid(did, cdai.provsiz, 1288 scsi_devid_is_lun_eui64); 1289 if (idd == NULL) 1290 idd = scsi_get_devid(did, cdai.provsiz, 1291 scsi_devid_is_lun_uuid); 1292 if (idd == NULL) 1293 idd = scsi_get_devid(did, cdai.provsiz, 1294 scsi_devid_is_lun_md5); 1295 } else 1296 idd = NULL; 1297 1298 if (idd == NULL) 1299 idd = scsi_get_devid(did, cdai.provsiz, 1300 scsi_devid_is_lun_t10); 1301 if (idd == NULL) 1302 idd = scsi_get_devid(did, cdai.provsiz, 1303 scsi_devid_is_lun_name); 1304 if (idd == NULL) 1305 break; 1306 1307 ret = 0; 1308 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1309 SVPD_ID_CODESET_ASCII) { 1310 if (idd->length < len) { 1311 for (l = 0; l < idd->length; l++) 1312 buf[l] = idd->identifier[l] ? 1313 idd->identifier[l] : ' '; 1314 buf[l] = 0; 1315 } else 1316 ret = EFAULT; 1317 break; 1318 } 1319 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1320 SVPD_ID_CODESET_UTF8) { 1321 l = strnlen(idd->identifier, idd->length); 1322 if (l < len) { 1323 bcopy(idd->identifier, buf, l); 1324 buf[l] = 0; 1325 } else 1326 ret = EFAULT; 1327 break; 1328 } 1329 if ((idd->id_type & SVPD_ID_TYPE_MASK) == 1330 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) { 1331 if ((idd->length - 2) * 2 + 4 >= len) { 1332 ret = EFAULT; 1333 break; 1334 } 1335 for (l = 2, o = 0; l < idd->length; l++) { 1336 if (l == 6 || l == 8 || l == 10 || l == 12) 1337 o += sprintf(buf + o, "-"); 1338 o += sprintf(buf + o, "%02x", 1339 idd->identifier[l]); 1340 } 1341 break; 1342 } 1343 if (idd->length * 2 < len) { 1344 for (l = 0; l < idd->length; l++) 1345 sprintf(buf + l * 2, "%02x", 1346 idd->identifier[l]); 1347 } else 1348 ret = EFAULT; 1349 break; 1350 default: 1351 if (cdai.provsiz < len) { 1352 cdai.buf[cdai.provsiz] = 0; 1353 ret = 0; 1354 } else 1355 ret = EFAULT; 1356 break; 1357 } 1358 1359 out: 1360 if ((char *)cdai.buf != buf) 1361 free(cdai.buf, M_CAMXPT); 1362 return ret; 1363 } 1364 1365 static dev_match_ret 1366 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1367 struct cam_eb *bus) 1368 { 1369 dev_match_ret retval; 1370 u_int i; 1371 1372 retval = DM_RET_NONE; 1373 1374 /* 1375 * If we aren't given something to match against, that's an error. 1376 */ 1377 if (bus == NULL) 1378 return(DM_RET_ERROR); 1379 1380 /* 1381 * If there are no match entries, then this bus matches no 1382 * matter what. 1383 */ 1384 if ((patterns == NULL) || (num_patterns == 0)) 1385 return(DM_RET_DESCEND | DM_RET_COPY); 1386 1387 for (i = 0; i < num_patterns; i++) { 1388 struct bus_match_pattern *cur_pattern; 1389 1390 /* 1391 * If the pattern in question isn't for a bus node, we 1392 * aren't interested. However, we do indicate to the 1393 * calling routine that we should continue descending the 1394 * tree, since the user wants to match against lower-level 1395 * EDT elements. 1396 */ 1397 if (patterns[i].type != DEV_MATCH_BUS) { 1398 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1399 retval |= DM_RET_DESCEND; 1400 continue; 1401 } 1402 1403 cur_pattern = &patterns[i].pattern.bus_pattern; 1404 1405 /* 1406 * If they want to match any bus node, we give them any 1407 * device node. 1408 */ 1409 if (cur_pattern->flags == BUS_MATCH_ANY) { 1410 /* set the copy flag */ 1411 retval |= DM_RET_COPY; 1412 1413 /* 1414 * If we've already decided on an action, go ahead 1415 * and return. 1416 */ 1417 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1418 return(retval); 1419 } 1420 1421 /* 1422 * Not sure why someone would do this... 1423 */ 1424 if (cur_pattern->flags == BUS_MATCH_NONE) 1425 continue; 1426 1427 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1428 && (cur_pattern->path_id != bus->path_id)) 1429 continue; 1430 1431 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1432 && (cur_pattern->bus_id != bus->sim->bus_id)) 1433 continue; 1434 1435 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1436 && (cur_pattern->unit_number != bus->sim->unit_number)) 1437 continue; 1438 1439 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1440 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1441 DEV_IDLEN) != 0)) 1442 continue; 1443 1444 /* 1445 * If we get to this point, the user definitely wants 1446 * information on this bus. So tell the caller to copy the 1447 * data out. 1448 */ 1449 retval |= DM_RET_COPY; 1450 1451 /* 1452 * If the return action has been set to descend, then we 1453 * know that we've already seen a non-bus matching 1454 * expression, therefore we need to further descend the tree. 1455 * This won't change by continuing around the loop, so we 1456 * go ahead and return. If we haven't seen a non-bus 1457 * matching expression, we keep going around the loop until 1458 * we exhaust the matching expressions. We'll set the stop 1459 * flag once we fall out of the loop. 1460 */ 1461 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1462 return(retval); 1463 } 1464 1465 /* 1466 * If the return action hasn't been set to descend yet, that means 1467 * we haven't seen anything other than bus matching patterns. So 1468 * tell the caller to stop descending the tree -- the user doesn't 1469 * want to match against lower level tree elements. 1470 */ 1471 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1472 retval |= DM_RET_STOP; 1473 1474 return(retval); 1475 } 1476 1477 static dev_match_ret 1478 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1479 struct cam_ed *device) 1480 { 1481 dev_match_ret retval; 1482 u_int i; 1483 1484 retval = DM_RET_NONE; 1485 1486 /* 1487 * If we aren't given something to match against, that's an error. 1488 */ 1489 if (device == NULL) 1490 return(DM_RET_ERROR); 1491 1492 /* 1493 * If there are no match entries, then this device matches no 1494 * matter what. 1495 */ 1496 if ((patterns == NULL) || (num_patterns == 0)) 1497 return(DM_RET_DESCEND | DM_RET_COPY); 1498 1499 for (i = 0; i < num_patterns; i++) { 1500 struct device_match_pattern *cur_pattern; 1501 struct scsi_vpd_device_id *device_id_page; 1502 1503 /* 1504 * If the pattern in question isn't for a device node, we 1505 * aren't interested. 1506 */ 1507 if (patterns[i].type != DEV_MATCH_DEVICE) { 1508 if ((patterns[i].type == DEV_MATCH_PERIPH) 1509 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1510 retval |= DM_RET_DESCEND; 1511 continue; 1512 } 1513 1514 cur_pattern = &patterns[i].pattern.device_pattern; 1515 1516 /* Error out if mutually exclusive options are specified. */ 1517 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1518 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1519 return(DM_RET_ERROR); 1520 1521 /* 1522 * If they want to match any device node, we give them any 1523 * device node. 1524 */ 1525 if (cur_pattern->flags == DEV_MATCH_ANY) 1526 goto copy_dev_node; 1527 1528 /* 1529 * Not sure why someone would do this... 1530 */ 1531 if (cur_pattern->flags == DEV_MATCH_NONE) 1532 continue; 1533 1534 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1535 && (cur_pattern->path_id != device->target->bus->path_id)) 1536 continue; 1537 1538 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1539 && (cur_pattern->target_id != device->target->target_id)) 1540 continue; 1541 1542 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1543 && (cur_pattern->target_lun != device->lun_id)) 1544 continue; 1545 1546 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1547 && (cam_quirkmatch((caddr_t)&device->inq_data, 1548 (caddr_t)&cur_pattern->data.inq_pat, 1549 1, sizeof(cur_pattern->data.inq_pat), 1550 scsi_static_inquiry_match) == NULL)) 1551 continue; 1552 1553 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1554 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1555 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1556 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1557 device->device_id_len 1558 - SVPD_DEVICE_ID_HDR_LEN, 1559 cur_pattern->data.devid_pat.id, 1560 cur_pattern->data.devid_pat.id_len) != 0)) 1561 continue; 1562 1563 copy_dev_node: 1564 /* 1565 * If we get to this point, the user definitely wants 1566 * information on this device. So tell the caller to copy 1567 * the data out. 1568 */ 1569 retval |= DM_RET_COPY; 1570 1571 /* 1572 * If the return action has been set to descend, then we 1573 * know that we've already seen a peripheral matching 1574 * expression, therefore we need to further descend the tree. 1575 * This won't change by continuing around the loop, so we 1576 * go ahead and return. If we haven't seen a peripheral 1577 * matching expression, we keep going around the loop until 1578 * we exhaust the matching expressions. We'll set the stop 1579 * flag once we fall out of the loop. 1580 */ 1581 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1582 return(retval); 1583 } 1584 1585 /* 1586 * If the return action hasn't been set to descend yet, that means 1587 * we haven't seen any peripheral matching patterns. So tell the 1588 * caller to stop descending the tree -- the user doesn't want to 1589 * match against lower level tree elements. 1590 */ 1591 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1592 retval |= DM_RET_STOP; 1593 1594 return(retval); 1595 } 1596 1597 /* 1598 * Match a single peripheral against any number of match patterns. 1599 */ 1600 static dev_match_ret 1601 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1602 struct cam_periph *periph) 1603 { 1604 dev_match_ret retval; 1605 u_int i; 1606 1607 /* 1608 * If we aren't given something to match against, that's an error. 1609 */ 1610 if (periph == NULL) 1611 return(DM_RET_ERROR); 1612 1613 /* 1614 * If there are no match entries, then this peripheral matches no 1615 * matter what. 1616 */ 1617 if ((patterns == NULL) || (num_patterns == 0)) 1618 return(DM_RET_STOP | DM_RET_COPY); 1619 1620 /* 1621 * There aren't any nodes below a peripheral node, so there's no 1622 * reason to descend the tree any further. 1623 */ 1624 retval = DM_RET_STOP; 1625 1626 for (i = 0; i < num_patterns; i++) { 1627 struct periph_match_pattern *cur_pattern; 1628 1629 /* 1630 * If the pattern in question isn't for a peripheral, we 1631 * aren't interested. 1632 */ 1633 if (patterns[i].type != DEV_MATCH_PERIPH) 1634 continue; 1635 1636 cur_pattern = &patterns[i].pattern.periph_pattern; 1637 1638 /* 1639 * If they want to match on anything, then we will do so. 1640 */ 1641 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1642 /* set the copy flag */ 1643 retval |= DM_RET_COPY; 1644 1645 /* 1646 * We've already set the return action to stop, 1647 * since there are no nodes below peripherals in 1648 * the tree. 1649 */ 1650 return(retval); 1651 } 1652 1653 /* 1654 * Not sure why someone would do this... 1655 */ 1656 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1657 continue; 1658 1659 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1660 && (cur_pattern->path_id != periph->path->bus->path_id)) 1661 continue; 1662 1663 /* 1664 * For the target and lun id's, we have to make sure the 1665 * target and lun pointers aren't NULL. The xpt peripheral 1666 * has a wildcard target and device. 1667 */ 1668 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1669 && ((periph->path->target == NULL) 1670 ||(cur_pattern->target_id != periph->path->target->target_id))) 1671 continue; 1672 1673 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1674 && ((periph->path->device == NULL) 1675 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1676 continue; 1677 1678 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1679 && (cur_pattern->unit_number != periph->unit_number)) 1680 continue; 1681 1682 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1683 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1684 DEV_IDLEN) != 0)) 1685 continue; 1686 1687 /* 1688 * If we get to this point, the user definitely wants 1689 * information on this peripheral. So tell the caller to 1690 * copy the data out. 1691 */ 1692 retval |= DM_RET_COPY; 1693 1694 /* 1695 * The return action has already been set to stop, since 1696 * peripherals don't have any nodes below them in the EDT. 1697 */ 1698 return(retval); 1699 } 1700 1701 /* 1702 * If we get to this point, the peripheral that was passed in 1703 * doesn't match any of the patterns. 1704 */ 1705 return(retval); 1706 } 1707 1708 static int 1709 xptedtbusfunc(struct cam_eb *bus, void *arg) 1710 { 1711 struct ccb_dev_match *cdm; 1712 struct cam_et *target; 1713 dev_match_ret retval; 1714 1715 cdm = (struct ccb_dev_match *)arg; 1716 1717 /* 1718 * If our position is for something deeper in the tree, that means 1719 * that we've already seen this node. So, we keep going down. 1720 */ 1721 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1722 && (cdm->pos.cookie.bus == bus) 1723 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1724 && (cdm->pos.cookie.target != NULL)) 1725 retval = DM_RET_DESCEND; 1726 else 1727 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1728 1729 /* 1730 * If we got an error, bail out of the search. 1731 */ 1732 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1733 cdm->status = CAM_DEV_MATCH_ERROR; 1734 return(0); 1735 } 1736 1737 /* 1738 * If the copy flag is set, copy this bus out. 1739 */ 1740 if (retval & DM_RET_COPY) { 1741 int spaceleft, j; 1742 1743 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1744 sizeof(struct dev_match_result)); 1745 1746 /* 1747 * If we don't have enough space to put in another 1748 * match result, save our position and tell the 1749 * user there are more devices to check. 1750 */ 1751 if (spaceleft < sizeof(struct dev_match_result)) { 1752 bzero(&cdm->pos, sizeof(cdm->pos)); 1753 cdm->pos.position_type = 1754 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1755 1756 cdm->pos.cookie.bus = bus; 1757 cdm->pos.generations[CAM_BUS_GENERATION]= 1758 xsoftc.bus_generation; 1759 cdm->status = CAM_DEV_MATCH_MORE; 1760 return(0); 1761 } 1762 j = cdm->num_matches; 1763 cdm->num_matches++; 1764 cdm->matches[j].type = DEV_MATCH_BUS; 1765 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1766 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1767 cdm->matches[j].result.bus_result.unit_number = 1768 bus->sim->unit_number; 1769 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1770 bus->sim->sim_name, 1771 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1772 } 1773 1774 /* 1775 * If the user is only interested in buses, there's no 1776 * reason to descend to the next level in the tree. 1777 */ 1778 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1779 return(1); 1780 1781 /* 1782 * If there is a target generation recorded, check it to 1783 * make sure the target list hasn't changed. 1784 */ 1785 mtx_lock(&bus->eb_mtx); 1786 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1787 && (cdm->pos.cookie.bus == bus) 1788 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1789 && (cdm->pos.cookie.target != NULL)) { 1790 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1791 bus->generation)) { 1792 mtx_unlock(&bus->eb_mtx); 1793 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1794 return (0); 1795 } 1796 target = (struct cam_et *)cdm->pos.cookie.target; 1797 target->refcount++; 1798 } else 1799 target = NULL; 1800 mtx_unlock(&bus->eb_mtx); 1801 1802 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1803 } 1804 1805 static int 1806 xptedttargetfunc(struct cam_et *target, void *arg) 1807 { 1808 struct ccb_dev_match *cdm; 1809 struct cam_eb *bus; 1810 struct cam_ed *device; 1811 1812 cdm = (struct ccb_dev_match *)arg; 1813 bus = target->bus; 1814 1815 /* 1816 * If there is a device list generation recorded, check it to 1817 * make sure the device list hasn't changed. 1818 */ 1819 mtx_lock(&bus->eb_mtx); 1820 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1821 && (cdm->pos.cookie.bus == bus) 1822 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1823 && (cdm->pos.cookie.target == target) 1824 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1825 && (cdm->pos.cookie.device != NULL)) { 1826 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1827 target->generation) { 1828 mtx_unlock(&bus->eb_mtx); 1829 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1830 return(0); 1831 } 1832 device = (struct cam_ed *)cdm->pos.cookie.device; 1833 device->refcount++; 1834 } else 1835 device = NULL; 1836 mtx_unlock(&bus->eb_mtx); 1837 1838 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1839 } 1840 1841 static int 1842 xptedtdevicefunc(struct cam_ed *device, void *arg) 1843 { 1844 struct cam_eb *bus; 1845 struct cam_periph *periph; 1846 struct ccb_dev_match *cdm; 1847 dev_match_ret retval; 1848 1849 cdm = (struct ccb_dev_match *)arg; 1850 bus = device->target->bus; 1851 1852 /* 1853 * If our position is for something deeper in the tree, that means 1854 * that we've already seen this node. So, we keep going down. 1855 */ 1856 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1857 && (cdm->pos.cookie.device == device) 1858 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1859 && (cdm->pos.cookie.periph != NULL)) 1860 retval = DM_RET_DESCEND; 1861 else 1862 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1863 device); 1864 1865 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1866 cdm->status = CAM_DEV_MATCH_ERROR; 1867 return(0); 1868 } 1869 1870 /* 1871 * If the copy flag is set, copy this device out. 1872 */ 1873 if (retval & DM_RET_COPY) { 1874 int spaceleft, j; 1875 1876 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1877 sizeof(struct dev_match_result)); 1878 1879 /* 1880 * If we don't have enough space to put in another 1881 * match result, save our position and tell the 1882 * user there are more devices to check. 1883 */ 1884 if (spaceleft < sizeof(struct dev_match_result)) { 1885 bzero(&cdm->pos, sizeof(cdm->pos)); 1886 cdm->pos.position_type = 1887 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1888 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1889 1890 cdm->pos.cookie.bus = device->target->bus; 1891 cdm->pos.generations[CAM_BUS_GENERATION]= 1892 xsoftc.bus_generation; 1893 cdm->pos.cookie.target = device->target; 1894 cdm->pos.generations[CAM_TARGET_GENERATION] = 1895 device->target->bus->generation; 1896 cdm->pos.cookie.device = device; 1897 cdm->pos.generations[CAM_DEV_GENERATION] = 1898 device->target->generation; 1899 cdm->status = CAM_DEV_MATCH_MORE; 1900 return(0); 1901 } 1902 j = cdm->num_matches; 1903 cdm->num_matches++; 1904 cdm->matches[j].type = DEV_MATCH_DEVICE; 1905 cdm->matches[j].result.device_result.path_id = 1906 device->target->bus->path_id; 1907 cdm->matches[j].result.device_result.target_id = 1908 device->target->target_id; 1909 cdm->matches[j].result.device_result.target_lun = 1910 device->lun_id; 1911 cdm->matches[j].result.device_result.protocol = 1912 device->protocol; 1913 bcopy(&device->inq_data, 1914 &cdm->matches[j].result.device_result.inq_data, 1915 sizeof(struct scsi_inquiry_data)); 1916 bcopy(&device->ident_data, 1917 &cdm->matches[j].result.device_result.ident_data, 1918 sizeof(struct ata_params)); 1919 1920 /* Let the user know whether this device is unconfigured */ 1921 if (device->flags & CAM_DEV_UNCONFIGURED) 1922 cdm->matches[j].result.device_result.flags = 1923 DEV_RESULT_UNCONFIGURED; 1924 else 1925 cdm->matches[j].result.device_result.flags = 1926 DEV_RESULT_NOFLAG; 1927 } 1928 1929 /* 1930 * If the user isn't interested in peripherals, don't descend 1931 * the tree any further. 1932 */ 1933 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1934 return(1); 1935 1936 /* 1937 * If there is a peripheral list generation recorded, make sure 1938 * it hasn't changed. 1939 */ 1940 xpt_lock_buses(); 1941 mtx_lock(&bus->eb_mtx); 1942 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1943 && (cdm->pos.cookie.bus == bus) 1944 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1945 && (cdm->pos.cookie.target == device->target) 1946 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1947 && (cdm->pos.cookie.device == device) 1948 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1949 && (cdm->pos.cookie.periph != NULL)) { 1950 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1951 device->generation) { 1952 mtx_unlock(&bus->eb_mtx); 1953 xpt_unlock_buses(); 1954 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1955 return(0); 1956 } 1957 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1958 periph->refcount++; 1959 } else 1960 periph = NULL; 1961 mtx_unlock(&bus->eb_mtx); 1962 xpt_unlock_buses(); 1963 1964 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1965 } 1966 1967 static int 1968 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1969 { 1970 struct ccb_dev_match *cdm; 1971 dev_match_ret retval; 1972 1973 cdm = (struct ccb_dev_match *)arg; 1974 1975 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1976 1977 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1978 cdm->status = CAM_DEV_MATCH_ERROR; 1979 return(0); 1980 } 1981 1982 /* 1983 * If the copy flag is set, copy this peripheral out. 1984 */ 1985 if (retval & DM_RET_COPY) { 1986 int spaceleft, j; 1987 size_t l; 1988 1989 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1990 sizeof(struct dev_match_result)); 1991 1992 /* 1993 * If we don't have enough space to put in another 1994 * match result, save our position and tell the 1995 * user there are more devices to check. 1996 */ 1997 if (spaceleft < sizeof(struct dev_match_result)) { 1998 bzero(&cdm->pos, sizeof(cdm->pos)); 1999 cdm->pos.position_type = 2000 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2001 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2002 CAM_DEV_POS_PERIPH; 2003 2004 cdm->pos.cookie.bus = periph->path->bus; 2005 cdm->pos.generations[CAM_BUS_GENERATION]= 2006 xsoftc.bus_generation; 2007 cdm->pos.cookie.target = periph->path->target; 2008 cdm->pos.generations[CAM_TARGET_GENERATION] = 2009 periph->path->bus->generation; 2010 cdm->pos.cookie.device = periph->path->device; 2011 cdm->pos.generations[CAM_DEV_GENERATION] = 2012 periph->path->target->generation; 2013 cdm->pos.cookie.periph = periph; 2014 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2015 periph->path->device->generation; 2016 cdm->status = CAM_DEV_MATCH_MORE; 2017 return(0); 2018 } 2019 2020 j = cdm->num_matches; 2021 cdm->num_matches++; 2022 cdm->matches[j].type = DEV_MATCH_PERIPH; 2023 cdm->matches[j].result.periph_result.path_id = 2024 periph->path->bus->path_id; 2025 cdm->matches[j].result.periph_result.target_id = 2026 periph->path->target->target_id; 2027 cdm->matches[j].result.periph_result.target_lun = 2028 periph->path->device->lun_id; 2029 cdm->matches[j].result.periph_result.unit_number = 2030 periph->unit_number; 2031 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2032 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2033 periph->periph_name, l); 2034 } 2035 2036 return(1); 2037 } 2038 2039 static int 2040 xptedtmatch(struct ccb_dev_match *cdm) 2041 { 2042 struct cam_eb *bus; 2043 int ret; 2044 2045 cdm->num_matches = 0; 2046 2047 /* 2048 * Check the bus list generation. If it has changed, the user 2049 * needs to reset everything and start over. 2050 */ 2051 xpt_lock_buses(); 2052 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2053 && (cdm->pos.cookie.bus != NULL)) { 2054 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2055 xsoftc.bus_generation) { 2056 xpt_unlock_buses(); 2057 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2058 return(0); 2059 } 2060 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2061 bus->refcount++; 2062 } else 2063 bus = NULL; 2064 xpt_unlock_buses(); 2065 2066 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2067 2068 /* 2069 * If we get back 0, that means that we had to stop before fully 2070 * traversing the EDT. It also means that one of the subroutines 2071 * has set the status field to the proper value. If we get back 1, 2072 * we've fully traversed the EDT and copied out any matching entries. 2073 */ 2074 if (ret == 1) 2075 cdm->status = CAM_DEV_MATCH_LAST; 2076 2077 return(ret); 2078 } 2079 2080 static int 2081 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2082 { 2083 struct cam_periph *periph; 2084 struct ccb_dev_match *cdm; 2085 2086 cdm = (struct ccb_dev_match *)arg; 2087 2088 xpt_lock_buses(); 2089 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2090 && (cdm->pos.cookie.pdrv == pdrv) 2091 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2092 && (cdm->pos.cookie.periph != NULL)) { 2093 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2094 (*pdrv)->generation) { 2095 xpt_unlock_buses(); 2096 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2097 return(0); 2098 } 2099 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2100 periph->refcount++; 2101 } else 2102 periph = NULL; 2103 xpt_unlock_buses(); 2104 2105 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2106 } 2107 2108 static int 2109 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2110 { 2111 struct ccb_dev_match *cdm; 2112 dev_match_ret retval; 2113 2114 cdm = (struct ccb_dev_match *)arg; 2115 2116 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2117 2118 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2119 cdm->status = CAM_DEV_MATCH_ERROR; 2120 return(0); 2121 } 2122 2123 /* 2124 * If the copy flag is set, copy this peripheral out. 2125 */ 2126 if (retval & DM_RET_COPY) { 2127 int spaceleft, j; 2128 size_t l; 2129 2130 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2131 sizeof(struct dev_match_result)); 2132 2133 /* 2134 * If we don't have enough space to put in another 2135 * match result, save our position and tell the 2136 * user there are more devices to check. 2137 */ 2138 if (spaceleft < sizeof(struct dev_match_result)) { 2139 struct periph_driver **pdrv; 2140 2141 pdrv = NULL; 2142 bzero(&cdm->pos, sizeof(cdm->pos)); 2143 cdm->pos.position_type = 2144 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2145 CAM_DEV_POS_PERIPH; 2146 2147 /* 2148 * This may look a bit non-sensical, but it is 2149 * actually quite logical. There are very few 2150 * peripheral drivers, and bloating every peripheral 2151 * structure with a pointer back to its parent 2152 * peripheral driver linker set entry would cost 2153 * more in the long run than doing this quick lookup. 2154 */ 2155 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2156 if (strcmp((*pdrv)->driver_name, 2157 periph->periph_name) == 0) 2158 break; 2159 } 2160 2161 if (*pdrv == NULL) { 2162 cdm->status = CAM_DEV_MATCH_ERROR; 2163 return(0); 2164 } 2165 2166 cdm->pos.cookie.pdrv = pdrv; 2167 /* 2168 * The periph generation slot does double duty, as 2169 * does the periph pointer slot. They are used for 2170 * both edt and pdrv lookups and positioning. 2171 */ 2172 cdm->pos.cookie.periph = periph; 2173 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2174 (*pdrv)->generation; 2175 cdm->status = CAM_DEV_MATCH_MORE; 2176 return(0); 2177 } 2178 2179 j = cdm->num_matches; 2180 cdm->num_matches++; 2181 cdm->matches[j].type = DEV_MATCH_PERIPH; 2182 cdm->matches[j].result.periph_result.path_id = 2183 periph->path->bus->path_id; 2184 2185 /* 2186 * The transport layer peripheral doesn't have a target or 2187 * lun. 2188 */ 2189 if (periph->path->target) 2190 cdm->matches[j].result.periph_result.target_id = 2191 periph->path->target->target_id; 2192 else 2193 cdm->matches[j].result.periph_result.target_id = 2194 CAM_TARGET_WILDCARD; 2195 2196 if (periph->path->device) 2197 cdm->matches[j].result.periph_result.target_lun = 2198 periph->path->device->lun_id; 2199 else 2200 cdm->matches[j].result.periph_result.target_lun = 2201 CAM_LUN_WILDCARD; 2202 2203 cdm->matches[j].result.periph_result.unit_number = 2204 periph->unit_number; 2205 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2206 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2207 periph->periph_name, l); 2208 } 2209 2210 return(1); 2211 } 2212 2213 static int 2214 xptperiphlistmatch(struct ccb_dev_match *cdm) 2215 { 2216 int ret; 2217 2218 cdm->num_matches = 0; 2219 2220 /* 2221 * At this point in the edt traversal function, we check the bus 2222 * list generation to make sure that no buses have been added or 2223 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2224 * For the peripheral driver list traversal function, however, we 2225 * don't have to worry about new peripheral driver types coming or 2226 * going; they're in a linker set, and therefore can't change 2227 * without a recompile. 2228 */ 2229 2230 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2231 && (cdm->pos.cookie.pdrv != NULL)) 2232 ret = xptpdrvtraverse( 2233 (struct periph_driver **)cdm->pos.cookie.pdrv, 2234 xptplistpdrvfunc, cdm); 2235 else 2236 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2237 2238 /* 2239 * If we get back 0, that means that we had to stop before fully 2240 * traversing the peripheral driver tree. It also means that one of 2241 * the subroutines has set the status field to the proper value. If 2242 * we get back 1, we've fully traversed the EDT and copied out any 2243 * matching entries. 2244 */ 2245 if (ret == 1) 2246 cdm->status = CAM_DEV_MATCH_LAST; 2247 2248 return(ret); 2249 } 2250 2251 static int 2252 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2253 { 2254 struct cam_eb *bus, *next_bus; 2255 int retval; 2256 2257 retval = 1; 2258 if (start_bus) 2259 bus = start_bus; 2260 else { 2261 xpt_lock_buses(); 2262 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2263 if (bus == NULL) { 2264 xpt_unlock_buses(); 2265 return (retval); 2266 } 2267 bus->refcount++; 2268 xpt_unlock_buses(); 2269 } 2270 for (; bus != NULL; bus = next_bus) { 2271 retval = tr_func(bus, arg); 2272 if (retval == 0) { 2273 xpt_release_bus(bus); 2274 break; 2275 } 2276 xpt_lock_buses(); 2277 next_bus = TAILQ_NEXT(bus, links); 2278 if (next_bus) 2279 next_bus->refcount++; 2280 xpt_unlock_buses(); 2281 xpt_release_bus(bus); 2282 } 2283 return(retval); 2284 } 2285 2286 static int 2287 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2288 xpt_targetfunc_t *tr_func, void *arg) 2289 { 2290 struct cam_et *target, *next_target; 2291 int retval; 2292 2293 retval = 1; 2294 if (start_target) 2295 target = start_target; 2296 else { 2297 mtx_lock(&bus->eb_mtx); 2298 target = TAILQ_FIRST(&bus->et_entries); 2299 if (target == NULL) { 2300 mtx_unlock(&bus->eb_mtx); 2301 return (retval); 2302 } 2303 target->refcount++; 2304 mtx_unlock(&bus->eb_mtx); 2305 } 2306 for (; target != NULL; target = next_target) { 2307 retval = tr_func(target, arg); 2308 if (retval == 0) { 2309 xpt_release_target(target); 2310 break; 2311 } 2312 mtx_lock(&bus->eb_mtx); 2313 next_target = TAILQ_NEXT(target, links); 2314 if (next_target) 2315 next_target->refcount++; 2316 mtx_unlock(&bus->eb_mtx); 2317 xpt_release_target(target); 2318 } 2319 return(retval); 2320 } 2321 2322 static int 2323 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2324 xpt_devicefunc_t *tr_func, void *arg) 2325 { 2326 struct cam_eb *bus; 2327 struct cam_ed *device, *next_device; 2328 int retval; 2329 2330 retval = 1; 2331 bus = target->bus; 2332 if (start_device) 2333 device = start_device; 2334 else { 2335 mtx_lock(&bus->eb_mtx); 2336 device = TAILQ_FIRST(&target->ed_entries); 2337 if (device == NULL) { 2338 mtx_unlock(&bus->eb_mtx); 2339 return (retval); 2340 } 2341 device->refcount++; 2342 mtx_unlock(&bus->eb_mtx); 2343 } 2344 for (; device != NULL; device = next_device) { 2345 mtx_lock(&device->device_mtx); 2346 retval = tr_func(device, arg); 2347 mtx_unlock(&device->device_mtx); 2348 if (retval == 0) { 2349 xpt_release_device(device); 2350 break; 2351 } 2352 mtx_lock(&bus->eb_mtx); 2353 next_device = TAILQ_NEXT(device, links); 2354 if (next_device) 2355 next_device->refcount++; 2356 mtx_unlock(&bus->eb_mtx); 2357 xpt_release_device(device); 2358 } 2359 return(retval); 2360 } 2361 2362 static int 2363 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2364 xpt_periphfunc_t *tr_func, void *arg) 2365 { 2366 struct cam_eb *bus; 2367 struct cam_periph *periph, *next_periph; 2368 int retval; 2369 2370 retval = 1; 2371 2372 bus = device->target->bus; 2373 if (start_periph) 2374 periph = start_periph; 2375 else { 2376 xpt_lock_buses(); 2377 mtx_lock(&bus->eb_mtx); 2378 periph = SLIST_FIRST(&device->periphs); 2379 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2380 periph = SLIST_NEXT(periph, periph_links); 2381 if (periph == NULL) { 2382 mtx_unlock(&bus->eb_mtx); 2383 xpt_unlock_buses(); 2384 return (retval); 2385 } 2386 periph->refcount++; 2387 mtx_unlock(&bus->eb_mtx); 2388 xpt_unlock_buses(); 2389 } 2390 for (; periph != NULL; periph = next_periph) { 2391 retval = tr_func(periph, arg); 2392 if (retval == 0) { 2393 cam_periph_release_locked(periph); 2394 break; 2395 } 2396 xpt_lock_buses(); 2397 mtx_lock(&bus->eb_mtx); 2398 next_periph = SLIST_NEXT(periph, periph_links); 2399 while (next_periph != NULL && 2400 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2401 next_periph = SLIST_NEXT(next_periph, periph_links); 2402 if (next_periph) 2403 next_periph->refcount++; 2404 mtx_unlock(&bus->eb_mtx); 2405 xpt_unlock_buses(); 2406 cam_periph_release_locked(periph); 2407 } 2408 return(retval); 2409 } 2410 2411 static int 2412 xptpdrvtraverse(struct periph_driver **start_pdrv, 2413 xpt_pdrvfunc_t *tr_func, void *arg) 2414 { 2415 struct periph_driver **pdrv; 2416 int retval; 2417 2418 retval = 1; 2419 2420 /* 2421 * We don't traverse the peripheral driver list like we do the 2422 * other lists, because it is a linker set, and therefore cannot be 2423 * changed during runtime. If the peripheral driver list is ever 2424 * re-done to be something other than a linker set (i.e. it can 2425 * change while the system is running), the list traversal should 2426 * be modified to work like the other traversal functions. 2427 */ 2428 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2429 *pdrv != NULL; pdrv++) { 2430 retval = tr_func(pdrv, arg); 2431 2432 if (retval == 0) 2433 return(retval); 2434 } 2435 2436 return(retval); 2437 } 2438 2439 static int 2440 xptpdperiphtraverse(struct periph_driver **pdrv, 2441 struct cam_periph *start_periph, 2442 xpt_periphfunc_t *tr_func, void *arg) 2443 { 2444 struct cam_periph *periph, *next_periph; 2445 int retval; 2446 2447 retval = 1; 2448 2449 if (start_periph) 2450 periph = start_periph; 2451 else { 2452 xpt_lock_buses(); 2453 periph = TAILQ_FIRST(&(*pdrv)->units); 2454 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2455 periph = TAILQ_NEXT(periph, unit_links); 2456 if (periph == NULL) { 2457 xpt_unlock_buses(); 2458 return (retval); 2459 } 2460 periph->refcount++; 2461 xpt_unlock_buses(); 2462 } 2463 for (; periph != NULL; periph = next_periph) { 2464 cam_periph_lock(periph); 2465 retval = tr_func(periph, arg); 2466 cam_periph_unlock(periph); 2467 if (retval == 0) { 2468 cam_periph_release(periph); 2469 break; 2470 } 2471 xpt_lock_buses(); 2472 next_periph = TAILQ_NEXT(periph, unit_links); 2473 while (next_periph != NULL && 2474 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2475 next_periph = TAILQ_NEXT(next_periph, unit_links); 2476 if (next_periph) 2477 next_periph->refcount++; 2478 xpt_unlock_buses(); 2479 cam_periph_release(periph); 2480 } 2481 return(retval); 2482 } 2483 2484 static int 2485 xptdefbusfunc(struct cam_eb *bus, void *arg) 2486 { 2487 struct xpt_traverse_config *tr_config; 2488 2489 tr_config = (struct xpt_traverse_config *)arg; 2490 2491 if (tr_config->depth == XPT_DEPTH_BUS) { 2492 xpt_busfunc_t *tr_func; 2493 2494 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2495 2496 return(tr_func(bus, tr_config->tr_arg)); 2497 } else 2498 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2499 } 2500 2501 static int 2502 xptdeftargetfunc(struct cam_et *target, void *arg) 2503 { 2504 struct xpt_traverse_config *tr_config; 2505 2506 tr_config = (struct xpt_traverse_config *)arg; 2507 2508 if (tr_config->depth == XPT_DEPTH_TARGET) { 2509 xpt_targetfunc_t *tr_func; 2510 2511 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2512 2513 return(tr_func(target, tr_config->tr_arg)); 2514 } else 2515 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2516 } 2517 2518 static int 2519 xptdefdevicefunc(struct cam_ed *device, void *arg) 2520 { 2521 struct xpt_traverse_config *tr_config; 2522 2523 tr_config = (struct xpt_traverse_config *)arg; 2524 2525 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2526 xpt_devicefunc_t *tr_func; 2527 2528 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2529 2530 return(tr_func(device, tr_config->tr_arg)); 2531 } else 2532 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2533 } 2534 2535 static int 2536 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2537 { 2538 struct xpt_traverse_config *tr_config; 2539 xpt_periphfunc_t *tr_func; 2540 2541 tr_config = (struct xpt_traverse_config *)arg; 2542 2543 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2544 2545 /* 2546 * Unlike the other default functions, we don't check for depth 2547 * here. The peripheral driver level is the last level in the EDT, 2548 * so if we're here, we should execute the function in question. 2549 */ 2550 return(tr_func(periph, tr_config->tr_arg)); 2551 } 2552 2553 /* 2554 * Execute the given function for every bus in the EDT. 2555 */ 2556 static int 2557 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2558 { 2559 struct xpt_traverse_config tr_config; 2560 2561 tr_config.depth = XPT_DEPTH_BUS; 2562 tr_config.tr_func = tr_func; 2563 tr_config.tr_arg = arg; 2564 2565 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2566 } 2567 2568 /* 2569 * Execute the given function for every device in the EDT. 2570 */ 2571 static int 2572 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2573 { 2574 struct xpt_traverse_config tr_config; 2575 2576 tr_config.depth = XPT_DEPTH_DEVICE; 2577 tr_config.tr_func = tr_func; 2578 tr_config.tr_arg = arg; 2579 2580 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2581 } 2582 2583 static int 2584 xptsetasyncfunc(struct cam_ed *device, void *arg) 2585 { 2586 struct cam_path path; 2587 struct ccb_getdev cgd; 2588 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2589 2590 /* 2591 * Don't report unconfigured devices (Wildcard devs, 2592 * devices only for target mode, device instances 2593 * that have been invalidated but are waiting for 2594 * their last reference count to be released). 2595 */ 2596 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2597 return (1); 2598 2599 memset(&cgd, 0, sizeof(cgd)); 2600 xpt_compile_path(&path, 2601 NULL, 2602 device->target->bus->path_id, 2603 device->target->target_id, 2604 device->lun_id); 2605 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2606 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2607 xpt_action((union ccb *)&cgd); 2608 csa->callback(csa->callback_arg, 2609 AC_FOUND_DEVICE, 2610 &path, &cgd); 2611 xpt_release_path(&path); 2612 2613 return(1); 2614 } 2615 2616 static int 2617 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2618 { 2619 struct cam_path path; 2620 struct ccb_pathinq cpi; 2621 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2622 2623 xpt_compile_path(&path, /*periph*/NULL, 2624 bus->path_id, 2625 CAM_TARGET_WILDCARD, 2626 CAM_LUN_WILDCARD); 2627 xpt_path_lock(&path); 2628 xpt_path_inq(&cpi, &path); 2629 csa->callback(csa->callback_arg, 2630 AC_PATH_REGISTERED, 2631 &path, &cpi); 2632 xpt_path_unlock(&path); 2633 xpt_release_path(&path); 2634 2635 return(1); 2636 } 2637 2638 void 2639 xpt_action(union ccb *start_ccb) 2640 { 2641 2642 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2643 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2644 xpt_action_name(start_ccb->ccb_h.func_code))); 2645 2646 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2647 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2648 } 2649 2650 void 2651 xpt_action_default(union ccb *start_ccb) 2652 { 2653 struct cam_path *path; 2654 struct cam_sim *sim; 2655 struct mtx *mtx; 2656 2657 path = start_ccb->ccb_h.path; 2658 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2659 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2660 xpt_action_name(start_ccb->ccb_h.func_code))); 2661 2662 switch (start_ccb->ccb_h.func_code) { 2663 case XPT_SCSI_IO: 2664 { 2665 struct cam_ed *device; 2666 2667 /* 2668 * For the sake of compatibility with SCSI-1 2669 * devices that may not understand the identify 2670 * message, we include lun information in the 2671 * second byte of all commands. SCSI-1 specifies 2672 * that luns are a 3 bit value and reserves only 3 2673 * bits for lun information in the CDB. Later 2674 * revisions of the SCSI spec allow for more than 8 2675 * luns, but have deprecated lun information in the 2676 * CDB. So, if the lun won't fit, we must omit. 2677 * 2678 * Also be aware that during initial probing for devices, 2679 * the inquiry information is unknown but initialized to 0. 2680 * This means that this code will be exercised while probing 2681 * devices with an ANSI revision greater than 2. 2682 */ 2683 device = path->device; 2684 if (device->protocol_version <= SCSI_REV_2 2685 && start_ccb->ccb_h.target_lun < 8 2686 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2687 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2688 start_ccb->ccb_h.target_lun << 5; 2689 } 2690 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2691 } 2692 /* FALLTHROUGH */ 2693 case XPT_TARGET_IO: 2694 case XPT_CONT_TARGET_IO: 2695 start_ccb->csio.sense_resid = 0; 2696 start_ccb->csio.resid = 0; 2697 /* FALLTHROUGH */ 2698 case XPT_ATA_IO: 2699 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2700 start_ccb->ataio.resid = 0; 2701 /* FALLTHROUGH */ 2702 case XPT_NVME_IO: 2703 case XPT_NVME_ADMIN: 2704 case XPT_MMC_IO: 2705 case XPT_MMC_GET_TRAN_SETTINGS: 2706 case XPT_MMC_SET_TRAN_SETTINGS: 2707 case XPT_RESET_DEV: 2708 case XPT_ENG_EXEC: 2709 case XPT_SMP_IO: 2710 { 2711 struct cam_devq *devq; 2712 2713 devq = path->bus->sim->devq; 2714 mtx_lock(&devq->send_mtx); 2715 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2716 if (xpt_schedule_devq(devq, path->device) != 0) 2717 xpt_run_devq(devq); 2718 mtx_unlock(&devq->send_mtx); 2719 break; 2720 } 2721 case XPT_CALC_GEOMETRY: 2722 /* Filter out garbage */ 2723 if (start_ccb->ccg.block_size == 0 2724 || start_ccb->ccg.volume_size == 0) { 2725 start_ccb->ccg.cylinders = 0; 2726 start_ccb->ccg.heads = 0; 2727 start_ccb->ccg.secs_per_track = 0; 2728 start_ccb->ccb_h.status = CAM_REQ_CMP; 2729 break; 2730 } 2731 goto call_sim; 2732 case XPT_ABORT: 2733 { 2734 union ccb* abort_ccb; 2735 2736 abort_ccb = start_ccb->cab.abort_ccb; 2737 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2738 struct cam_ed *device; 2739 struct cam_devq *devq; 2740 2741 device = abort_ccb->ccb_h.path->device; 2742 devq = device->sim->devq; 2743 2744 mtx_lock(&devq->send_mtx); 2745 if (abort_ccb->ccb_h.pinfo.index > 0) { 2746 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2747 abort_ccb->ccb_h.status = 2748 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2749 xpt_freeze_devq_device(device, 1); 2750 mtx_unlock(&devq->send_mtx); 2751 xpt_done(abort_ccb); 2752 start_ccb->ccb_h.status = CAM_REQ_CMP; 2753 break; 2754 } 2755 mtx_unlock(&devq->send_mtx); 2756 2757 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2758 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2759 /* 2760 * We've caught this ccb en route to 2761 * the SIM. Flag it for abort and the 2762 * SIM will do so just before starting 2763 * real work on the CCB. 2764 */ 2765 abort_ccb->ccb_h.status = 2766 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2767 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2768 start_ccb->ccb_h.status = CAM_REQ_CMP; 2769 break; 2770 } 2771 } 2772 if (XPT_FC_IS_QUEUED(abort_ccb) 2773 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2774 /* 2775 * It's already completed but waiting 2776 * for our SWI to get to it. 2777 */ 2778 start_ccb->ccb_h.status = CAM_UA_ABORT; 2779 break; 2780 } 2781 /* 2782 * If we weren't able to take care of the abort request 2783 * in the XPT, pass the request down to the SIM for processing. 2784 */ 2785 } 2786 /* FALLTHROUGH */ 2787 case XPT_ACCEPT_TARGET_IO: 2788 case XPT_EN_LUN: 2789 case XPT_IMMED_NOTIFY: 2790 case XPT_NOTIFY_ACK: 2791 case XPT_RESET_BUS: 2792 case XPT_IMMEDIATE_NOTIFY: 2793 case XPT_NOTIFY_ACKNOWLEDGE: 2794 case XPT_GET_SIM_KNOB_OLD: 2795 case XPT_GET_SIM_KNOB: 2796 case XPT_SET_SIM_KNOB: 2797 case XPT_GET_TRAN_SETTINGS: 2798 case XPT_SET_TRAN_SETTINGS: 2799 case XPT_PATH_INQ: 2800 call_sim: 2801 sim = path->bus->sim; 2802 mtx = sim->mtx; 2803 if (mtx && !mtx_owned(mtx)) 2804 mtx_lock(mtx); 2805 else 2806 mtx = NULL; 2807 2808 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2809 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2810 (*(sim->sim_action))(sim, start_ccb); 2811 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2812 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2813 if (mtx) 2814 mtx_unlock(mtx); 2815 break; 2816 case XPT_PATH_STATS: 2817 start_ccb->cpis.last_reset = path->bus->last_reset; 2818 start_ccb->ccb_h.status = CAM_REQ_CMP; 2819 break; 2820 case XPT_GDEV_TYPE: 2821 { 2822 struct cam_ed *dev; 2823 2824 dev = path->device; 2825 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2826 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2827 } else { 2828 struct ccb_getdev *cgd; 2829 2830 cgd = &start_ccb->cgd; 2831 cgd->protocol = dev->protocol; 2832 cgd->inq_data = dev->inq_data; 2833 cgd->ident_data = dev->ident_data; 2834 cgd->inq_flags = dev->inq_flags; 2835 cgd->ccb_h.status = CAM_REQ_CMP; 2836 cgd->serial_num_len = dev->serial_num_len; 2837 if ((dev->serial_num_len > 0) 2838 && (dev->serial_num != NULL)) 2839 bcopy(dev->serial_num, cgd->serial_num, 2840 dev->serial_num_len); 2841 } 2842 break; 2843 } 2844 case XPT_GDEV_STATS: 2845 { 2846 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2847 struct cam_ed *dev = path->device; 2848 struct cam_eb *bus = path->bus; 2849 struct cam_et *tar = path->target; 2850 struct cam_devq *devq = bus->sim->devq; 2851 2852 mtx_lock(&devq->send_mtx); 2853 cgds->dev_openings = dev->ccbq.dev_openings; 2854 cgds->dev_active = dev->ccbq.dev_active; 2855 cgds->allocated = dev->ccbq.allocated; 2856 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2857 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2858 cgds->last_reset = tar->last_reset; 2859 cgds->maxtags = dev->maxtags; 2860 cgds->mintags = dev->mintags; 2861 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2862 cgds->last_reset = bus->last_reset; 2863 mtx_unlock(&devq->send_mtx); 2864 cgds->ccb_h.status = CAM_REQ_CMP; 2865 break; 2866 } 2867 case XPT_GDEVLIST: 2868 { 2869 struct cam_periph *nperiph; 2870 struct periph_list *periph_head; 2871 struct ccb_getdevlist *cgdl; 2872 u_int i; 2873 struct cam_ed *device; 2874 int found; 2875 2876 found = 0; 2877 2878 /* 2879 * Don't want anyone mucking with our data. 2880 */ 2881 device = path->device; 2882 periph_head = &device->periphs; 2883 cgdl = &start_ccb->cgdl; 2884 2885 /* 2886 * Check and see if the list has changed since the user 2887 * last requested a list member. If so, tell them that the 2888 * list has changed, and therefore they need to start over 2889 * from the beginning. 2890 */ 2891 if ((cgdl->index != 0) && 2892 (cgdl->generation != device->generation)) { 2893 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2894 break; 2895 } 2896 2897 /* 2898 * Traverse the list of peripherals and attempt to find 2899 * the requested peripheral. 2900 */ 2901 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2902 (nperiph != NULL) && (i <= cgdl->index); 2903 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2904 if (i == cgdl->index) { 2905 strlcpy(cgdl->periph_name, 2906 nperiph->periph_name, 2907 sizeof(cgdl->periph_name)); 2908 cgdl->unit_number = nperiph->unit_number; 2909 found = 1; 2910 } 2911 } 2912 if (found == 0) { 2913 cgdl->status = CAM_GDEVLIST_ERROR; 2914 break; 2915 } 2916 2917 if (nperiph == NULL) 2918 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2919 else 2920 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2921 2922 cgdl->index++; 2923 cgdl->generation = device->generation; 2924 2925 cgdl->ccb_h.status = CAM_REQ_CMP; 2926 break; 2927 } 2928 case XPT_DEV_MATCH: 2929 { 2930 dev_pos_type position_type; 2931 struct ccb_dev_match *cdm; 2932 2933 cdm = &start_ccb->cdm; 2934 2935 /* 2936 * There are two ways of getting at information in the EDT. 2937 * The first way is via the primary EDT tree. It starts 2938 * with a list of buses, then a list of targets on a bus, 2939 * then devices/luns on a target, and then peripherals on a 2940 * device/lun. The "other" way is by the peripheral driver 2941 * lists. The peripheral driver lists are organized by 2942 * peripheral driver. (obviously) So it makes sense to 2943 * use the peripheral driver list if the user is looking 2944 * for something like "da1", or all "da" devices. If the 2945 * user is looking for something on a particular bus/target 2946 * or lun, it's generally better to go through the EDT tree. 2947 */ 2948 2949 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2950 position_type = cdm->pos.position_type; 2951 else { 2952 u_int i; 2953 2954 position_type = CAM_DEV_POS_NONE; 2955 2956 for (i = 0; i < cdm->num_patterns; i++) { 2957 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2958 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2959 position_type = CAM_DEV_POS_EDT; 2960 break; 2961 } 2962 } 2963 2964 if (cdm->num_patterns == 0) 2965 position_type = CAM_DEV_POS_EDT; 2966 else if (position_type == CAM_DEV_POS_NONE) 2967 position_type = CAM_DEV_POS_PDRV; 2968 } 2969 2970 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2971 case CAM_DEV_POS_EDT: 2972 xptedtmatch(cdm); 2973 break; 2974 case CAM_DEV_POS_PDRV: 2975 xptperiphlistmatch(cdm); 2976 break; 2977 default: 2978 cdm->status = CAM_DEV_MATCH_ERROR; 2979 break; 2980 } 2981 2982 if (cdm->status == CAM_DEV_MATCH_ERROR) 2983 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2984 else 2985 start_ccb->ccb_h.status = CAM_REQ_CMP; 2986 2987 break; 2988 } 2989 case XPT_SASYNC_CB: 2990 { 2991 struct ccb_setasync *csa; 2992 struct async_node *cur_entry; 2993 struct async_list *async_head; 2994 u_int32_t added; 2995 2996 csa = &start_ccb->csa; 2997 added = csa->event_enable; 2998 async_head = &path->device->asyncs; 2999 3000 /* 3001 * If there is already an entry for us, simply 3002 * update it. 3003 */ 3004 cur_entry = SLIST_FIRST(async_head); 3005 while (cur_entry != NULL) { 3006 if ((cur_entry->callback_arg == csa->callback_arg) 3007 && (cur_entry->callback == csa->callback)) 3008 break; 3009 cur_entry = SLIST_NEXT(cur_entry, links); 3010 } 3011 3012 if (cur_entry != NULL) { 3013 /* 3014 * If the request has no flags set, 3015 * remove the entry. 3016 */ 3017 added &= ~cur_entry->event_enable; 3018 if (csa->event_enable == 0) { 3019 SLIST_REMOVE(async_head, cur_entry, 3020 async_node, links); 3021 xpt_release_device(path->device); 3022 free(cur_entry, M_CAMXPT); 3023 } else { 3024 cur_entry->event_enable = csa->event_enable; 3025 } 3026 csa->event_enable = added; 3027 } else { 3028 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3029 M_NOWAIT); 3030 if (cur_entry == NULL) { 3031 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3032 break; 3033 } 3034 cur_entry->event_enable = csa->event_enable; 3035 cur_entry->event_lock = (path->bus->sim->mtx && 3036 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3037 cur_entry->callback_arg = csa->callback_arg; 3038 cur_entry->callback = csa->callback; 3039 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3040 xpt_acquire_device(path->device); 3041 } 3042 start_ccb->ccb_h.status = CAM_REQ_CMP; 3043 break; 3044 } 3045 case XPT_REL_SIMQ: 3046 { 3047 struct ccb_relsim *crs; 3048 struct cam_ed *dev; 3049 3050 crs = &start_ccb->crs; 3051 dev = path->device; 3052 if (dev == NULL) { 3053 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3054 break; 3055 } 3056 3057 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3058 /* Don't ever go below one opening */ 3059 if (crs->openings > 0) { 3060 xpt_dev_ccbq_resize(path, crs->openings); 3061 if (bootverbose) { 3062 xpt_print(path, 3063 "number of openings is now %d\n", 3064 crs->openings); 3065 } 3066 } 3067 } 3068 3069 mtx_lock(&dev->sim->devq->send_mtx); 3070 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3071 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3072 /* 3073 * Just extend the old timeout and decrement 3074 * the freeze count so that a single timeout 3075 * is sufficient for releasing the queue. 3076 */ 3077 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3078 callout_stop(&dev->callout); 3079 } else { 3080 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3081 } 3082 3083 callout_reset_sbt(&dev->callout, 3084 SBT_1MS * crs->release_timeout, 0, 3085 xpt_release_devq_timeout, dev, 0); 3086 3087 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3088 } 3089 3090 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3091 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3092 /* 3093 * Decrement the freeze count so that a single 3094 * completion is still sufficient to unfreeze 3095 * the queue. 3096 */ 3097 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3098 } else { 3099 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3100 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3101 } 3102 } 3103 3104 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3105 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3106 || (dev->ccbq.dev_active == 0)) { 3107 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3108 } else { 3109 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3110 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3111 } 3112 } 3113 mtx_unlock(&dev->sim->devq->send_mtx); 3114 3115 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3116 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3117 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3118 start_ccb->ccb_h.status = CAM_REQ_CMP; 3119 break; 3120 } 3121 case XPT_DEBUG: { 3122 struct cam_path *oldpath; 3123 3124 /* Check that all request bits are supported. */ 3125 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3126 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3127 break; 3128 } 3129 3130 cam_dflags = CAM_DEBUG_NONE; 3131 if (cam_dpath != NULL) { 3132 oldpath = cam_dpath; 3133 cam_dpath = NULL; 3134 xpt_free_path(oldpath); 3135 } 3136 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3137 if (xpt_create_path(&cam_dpath, NULL, 3138 start_ccb->ccb_h.path_id, 3139 start_ccb->ccb_h.target_id, 3140 start_ccb->ccb_h.target_lun) != 3141 CAM_REQ_CMP) { 3142 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3143 } else { 3144 cam_dflags = start_ccb->cdbg.flags; 3145 start_ccb->ccb_h.status = CAM_REQ_CMP; 3146 xpt_print(cam_dpath, "debugging flags now %x\n", 3147 cam_dflags); 3148 } 3149 } else 3150 start_ccb->ccb_h.status = CAM_REQ_CMP; 3151 break; 3152 } 3153 case XPT_NOOP: 3154 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3155 xpt_freeze_devq(path, 1); 3156 start_ccb->ccb_h.status = CAM_REQ_CMP; 3157 break; 3158 case XPT_REPROBE_LUN: 3159 xpt_async(AC_INQ_CHANGED, path, NULL); 3160 start_ccb->ccb_h.status = CAM_REQ_CMP; 3161 xpt_done(start_ccb); 3162 break; 3163 case XPT_ASYNC: 3164 /* 3165 * Queue the async operation so it can be run from a sleepable 3166 * context. 3167 */ 3168 start_ccb->ccb_h.status = CAM_REQ_CMP; 3169 mtx_lock(&cam_async.cam_doneq_mtx); 3170 STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe); 3171 start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX; 3172 mtx_unlock(&cam_async.cam_doneq_mtx); 3173 wakeup(&cam_async.cam_doneq); 3174 break; 3175 default: 3176 case XPT_SDEV_TYPE: 3177 case XPT_TERM_IO: 3178 case XPT_ENG_INQ: 3179 /* XXX Implement */ 3180 xpt_print(start_ccb->ccb_h.path, 3181 "%s: CCB type %#x %s not supported\n", __func__, 3182 start_ccb->ccb_h.func_code, 3183 xpt_action_name(start_ccb->ccb_h.func_code)); 3184 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3185 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3186 xpt_done(start_ccb); 3187 } 3188 break; 3189 } 3190 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3191 ("xpt_action_default: func= %#x %s status %#x\n", 3192 start_ccb->ccb_h.func_code, 3193 xpt_action_name(start_ccb->ccb_h.func_code), 3194 start_ccb->ccb_h.status)); 3195 } 3196 3197 /* 3198 * Call the sim poll routine to allow the sim to complete 3199 * any inflight requests, then call camisr_runqueue to 3200 * complete any CCB that the polling completed. 3201 */ 3202 void 3203 xpt_sim_poll(struct cam_sim *sim) 3204 { 3205 struct mtx *mtx; 3206 3207 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__)); 3208 mtx = sim->mtx; 3209 if (mtx) 3210 mtx_lock(mtx); 3211 (*(sim->sim_poll))(sim); 3212 if (mtx) 3213 mtx_unlock(mtx); 3214 camisr_runqueue(); 3215 } 3216 3217 uint32_t 3218 xpt_poll_setup(union ccb *start_ccb) 3219 { 3220 u_int32_t timeout; 3221 struct cam_sim *sim; 3222 struct cam_devq *devq; 3223 struct cam_ed *dev; 3224 3225 timeout = start_ccb->ccb_h.timeout * 10; 3226 sim = start_ccb->ccb_h.path->bus->sim; 3227 devq = sim->devq; 3228 dev = start_ccb->ccb_h.path->device; 3229 3230 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__)); 3231 3232 /* 3233 * Steal an opening so that no other queued requests 3234 * can get it before us while we simulate interrupts. 3235 */ 3236 mtx_lock(&devq->send_mtx); 3237 dev->ccbq.dev_openings--; 3238 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3239 (--timeout > 0)) { 3240 mtx_unlock(&devq->send_mtx); 3241 DELAY(100); 3242 xpt_sim_poll(sim); 3243 mtx_lock(&devq->send_mtx); 3244 } 3245 dev->ccbq.dev_openings++; 3246 mtx_unlock(&devq->send_mtx); 3247 3248 return (timeout); 3249 } 3250 3251 void 3252 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3253 { 3254 3255 KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim), 3256 ("%s: non-pollable sim", __func__)); 3257 while (--timeout > 0) { 3258 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); 3259 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3260 != CAM_REQ_INPROG) 3261 break; 3262 DELAY(100); 3263 } 3264 3265 if (timeout == 0) { 3266 /* 3267 * XXX Is it worth adding a sim_timeout entry 3268 * point so we can attempt recovery? If 3269 * this is only used for dumps, I don't think 3270 * it is. 3271 */ 3272 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3273 } 3274 } 3275 3276 /* 3277 * Schedule a peripheral driver to receive a ccb when its 3278 * target device has space for more transactions. 3279 */ 3280 void 3281 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3282 { 3283 3284 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3285 cam_periph_assert(periph, MA_OWNED); 3286 if (new_priority < periph->scheduled_priority) { 3287 periph->scheduled_priority = new_priority; 3288 xpt_run_allocq(periph, 0); 3289 } 3290 } 3291 3292 /* 3293 * Schedule a device to run on a given queue. 3294 * If the device was inserted as a new entry on the queue, 3295 * return 1 meaning the device queue should be run. If we 3296 * were already queued, implying someone else has already 3297 * started the queue, return 0 so the caller doesn't attempt 3298 * to run the queue. 3299 */ 3300 static int 3301 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3302 u_int32_t new_priority) 3303 { 3304 int retval; 3305 u_int32_t old_priority; 3306 3307 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3308 3309 old_priority = pinfo->priority; 3310 3311 /* 3312 * Are we already queued? 3313 */ 3314 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3315 /* Simply reorder based on new priority */ 3316 if (new_priority < old_priority) { 3317 camq_change_priority(queue, pinfo->index, 3318 new_priority); 3319 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3320 ("changed priority to %d\n", 3321 new_priority)); 3322 retval = 1; 3323 } else 3324 retval = 0; 3325 } else { 3326 /* New entry on the queue */ 3327 if (new_priority < old_priority) 3328 pinfo->priority = new_priority; 3329 3330 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3331 ("Inserting onto queue\n")); 3332 pinfo->generation = ++queue->generation; 3333 camq_insert(queue, pinfo); 3334 retval = 1; 3335 } 3336 return (retval); 3337 } 3338 3339 static void 3340 xpt_run_allocq_task(void *context, int pending) 3341 { 3342 struct cam_periph *periph = context; 3343 3344 cam_periph_lock(periph); 3345 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3346 xpt_run_allocq(periph, 1); 3347 cam_periph_unlock(periph); 3348 cam_periph_release(periph); 3349 } 3350 3351 static void 3352 xpt_run_allocq(struct cam_periph *periph, int sleep) 3353 { 3354 struct cam_ed *device; 3355 union ccb *ccb; 3356 uint32_t prio; 3357 3358 cam_periph_assert(periph, MA_OWNED); 3359 if (periph->periph_allocating) 3360 return; 3361 cam_periph_doacquire(periph); 3362 periph->periph_allocating = 1; 3363 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3364 device = periph->path->device; 3365 ccb = NULL; 3366 restart: 3367 while ((prio = min(periph->scheduled_priority, 3368 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3369 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3370 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3371 if (ccb == NULL && 3372 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3373 if (sleep) { 3374 ccb = xpt_get_ccb(periph); 3375 goto restart; 3376 } 3377 if (periph->flags & CAM_PERIPH_RUN_TASK) 3378 break; 3379 cam_periph_doacquire(periph); 3380 periph->flags |= CAM_PERIPH_RUN_TASK; 3381 taskqueue_enqueue(xsoftc.xpt_taskq, 3382 &periph->periph_run_task); 3383 break; 3384 } 3385 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3386 if (prio == periph->immediate_priority) { 3387 periph->immediate_priority = CAM_PRIORITY_NONE; 3388 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3389 ("waking cam_periph_getccb()\n")); 3390 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3391 periph_links.sle); 3392 wakeup(&periph->ccb_list); 3393 } else { 3394 periph->scheduled_priority = CAM_PRIORITY_NONE; 3395 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3396 ("calling periph_start()\n")); 3397 periph->periph_start(periph, ccb); 3398 } 3399 ccb = NULL; 3400 } 3401 if (ccb != NULL) 3402 xpt_release_ccb(ccb); 3403 periph->periph_allocating = 0; 3404 cam_periph_release_locked(periph); 3405 } 3406 3407 static void 3408 xpt_run_devq(struct cam_devq *devq) 3409 { 3410 struct mtx *mtx; 3411 3412 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3413 3414 devq->send_queue.qfrozen_cnt++; 3415 while ((devq->send_queue.entries > 0) 3416 && (devq->send_openings > 0) 3417 && (devq->send_queue.qfrozen_cnt <= 1)) { 3418 struct cam_ed *device; 3419 union ccb *work_ccb; 3420 struct cam_sim *sim; 3421 struct xpt_proto *proto; 3422 3423 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3424 CAMQ_HEAD); 3425 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3426 ("running device %p\n", device)); 3427 3428 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3429 if (work_ccb == NULL) { 3430 printf("device on run queue with no ccbs???\n"); 3431 continue; 3432 } 3433 3434 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3435 mtx_lock(&xsoftc.xpt_highpower_lock); 3436 if (xsoftc.num_highpower <= 0) { 3437 /* 3438 * We got a high power command, but we 3439 * don't have any available slots. Freeze 3440 * the device queue until we have a slot 3441 * available. 3442 */ 3443 xpt_freeze_devq_device(device, 1); 3444 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3445 highpowerq_entry); 3446 3447 mtx_unlock(&xsoftc.xpt_highpower_lock); 3448 continue; 3449 } else { 3450 /* 3451 * Consume a high power slot while 3452 * this ccb runs. 3453 */ 3454 xsoftc.num_highpower--; 3455 } 3456 mtx_unlock(&xsoftc.xpt_highpower_lock); 3457 } 3458 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3459 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3460 devq->send_openings--; 3461 devq->send_active++; 3462 xpt_schedule_devq(devq, device); 3463 mtx_unlock(&devq->send_mtx); 3464 3465 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3466 /* 3467 * The client wants to freeze the queue 3468 * after this CCB is sent. 3469 */ 3470 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3471 } 3472 3473 /* In Target mode, the peripheral driver knows best... */ 3474 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3475 if ((device->inq_flags & SID_CmdQue) != 0 3476 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3477 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3478 else 3479 /* 3480 * Clear this in case of a retried CCB that 3481 * failed due to a rejected tag. 3482 */ 3483 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3484 } 3485 3486 KASSERT(device == work_ccb->ccb_h.path->device, 3487 ("device (%p) / path->device (%p) mismatch", 3488 device, work_ccb->ccb_h.path->device)); 3489 proto = xpt_proto_find(device->protocol); 3490 if (proto && proto->ops->debug_out) 3491 proto->ops->debug_out(work_ccb); 3492 3493 /* 3494 * Device queues can be shared among multiple SIM instances 3495 * that reside on different buses. Use the SIM from the 3496 * queued device, rather than the one from the calling bus. 3497 */ 3498 sim = device->sim; 3499 mtx = sim->mtx; 3500 if (mtx && !mtx_owned(mtx)) 3501 mtx_lock(mtx); 3502 else 3503 mtx = NULL; 3504 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3505 (*(sim->sim_action))(sim, work_ccb); 3506 if (mtx) 3507 mtx_unlock(mtx); 3508 mtx_lock(&devq->send_mtx); 3509 } 3510 devq->send_queue.qfrozen_cnt--; 3511 } 3512 3513 /* 3514 * This function merges stuff from the src ccb into the dst ccb, while keeping 3515 * important fields in the dst ccb constant. 3516 */ 3517 void 3518 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb) 3519 { 3520 3521 /* 3522 * Pull fields that are valid for peripheral drivers to set 3523 * into the dst CCB along with the CCB "payload". 3524 */ 3525 dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count; 3526 dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code; 3527 dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout; 3528 dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags; 3529 bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1], 3530 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3531 } 3532 3533 void 3534 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3535 u_int32_t priority, u_int32_t flags) 3536 { 3537 3538 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3539 ccb_h->pinfo.priority = priority; 3540 ccb_h->path = path; 3541 ccb_h->path_id = path->bus->path_id; 3542 if (path->target) 3543 ccb_h->target_id = path->target->target_id; 3544 else 3545 ccb_h->target_id = CAM_TARGET_WILDCARD; 3546 if (path->device) { 3547 ccb_h->target_lun = path->device->lun_id; 3548 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3549 } else { 3550 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3551 } 3552 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3553 ccb_h->flags = flags; 3554 ccb_h->xflags = 0; 3555 } 3556 3557 void 3558 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3559 { 3560 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3561 } 3562 3563 /* Path manipulation functions */ 3564 cam_status 3565 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3566 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3567 { 3568 struct cam_path *path; 3569 cam_status status; 3570 3571 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3572 3573 if (path == NULL) { 3574 status = CAM_RESRC_UNAVAIL; 3575 return(status); 3576 } 3577 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3578 if (status != CAM_REQ_CMP) { 3579 free(path, M_CAMPATH); 3580 path = NULL; 3581 } 3582 *new_path_ptr = path; 3583 return (status); 3584 } 3585 3586 cam_status 3587 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3588 struct cam_periph *periph, path_id_t path_id, 3589 target_id_t target_id, lun_id_t lun_id) 3590 { 3591 3592 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3593 lun_id)); 3594 } 3595 3596 cam_status 3597 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3598 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3599 { 3600 struct cam_eb *bus; 3601 struct cam_et *target; 3602 struct cam_ed *device; 3603 cam_status status; 3604 3605 status = CAM_REQ_CMP; /* Completed without error */ 3606 target = NULL; /* Wildcarded */ 3607 device = NULL; /* Wildcarded */ 3608 3609 /* 3610 * We will potentially modify the EDT, so block interrupts 3611 * that may attempt to create cam paths. 3612 */ 3613 bus = xpt_find_bus(path_id); 3614 if (bus == NULL) { 3615 status = CAM_PATH_INVALID; 3616 } else { 3617 xpt_lock_buses(); 3618 mtx_lock(&bus->eb_mtx); 3619 target = xpt_find_target(bus, target_id); 3620 if (target == NULL) { 3621 /* Create one */ 3622 struct cam_et *new_target; 3623 3624 new_target = xpt_alloc_target(bus, target_id); 3625 if (new_target == NULL) { 3626 status = CAM_RESRC_UNAVAIL; 3627 } else { 3628 target = new_target; 3629 } 3630 } 3631 xpt_unlock_buses(); 3632 if (target != NULL) { 3633 device = xpt_find_device(target, lun_id); 3634 if (device == NULL) { 3635 /* Create one */ 3636 struct cam_ed *new_device; 3637 3638 new_device = 3639 (*(bus->xport->ops->alloc_device))(bus, 3640 target, 3641 lun_id); 3642 if (new_device == NULL) { 3643 status = CAM_RESRC_UNAVAIL; 3644 } else { 3645 device = new_device; 3646 } 3647 } 3648 } 3649 mtx_unlock(&bus->eb_mtx); 3650 } 3651 3652 /* 3653 * Only touch the user's data if we are successful. 3654 */ 3655 if (status == CAM_REQ_CMP) { 3656 new_path->periph = perph; 3657 new_path->bus = bus; 3658 new_path->target = target; 3659 new_path->device = device; 3660 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3661 } else { 3662 if (device != NULL) 3663 xpt_release_device(device); 3664 if (target != NULL) 3665 xpt_release_target(target); 3666 if (bus != NULL) 3667 xpt_release_bus(bus); 3668 } 3669 return (status); 3670 } 3671 3672 int 3673 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3674 { 3675 struct cam_path *new_path; 3676 3677 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3678 if (new_path == NULL) 3679 return (ENOMEM); 3680 *new_path = *path; 3681 if (path->bus != NULL) 3682 xpt_acquire_bus(path->bus); 3683 if (path->target != NULL) 3684 xpt_acquire_target(path->target); 3685 if (path->device != NULL) 3686 xpt_acquire_device(path->device); 3687 *new_path_ptr = new_path; 3688 return (0); 3689 } 3690 3691 void 3692 xpt_release_path(struct cam_path *path) 3693 { 3694 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3695 if (path->device != NULL) { 3696 xpt_release_device(path->device); 3697 path->device = NULL; 3698 } 3699 if (path->target != NULL) { 3700 xpt_release_target(path->target); 3701 path->target = NULL; 3702 } 3703 if (path->bus != NULL) { 3704 xpt_release_bus(path->bus); 3705 path->bus = NULL; 3706 } 3707 } 3708 3709 void 3710 xpt_free_path(struct cam_path *path) 3711 { 3712 3713 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3714 xpt_release_path(path); 3715 free(path, M_CAMPATH); 3716 } 3717 3718 void 3719 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3720 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3721 { 3722 3723 xpt_lock_buses(); 3724 if (bus_ref) { 3725 if (path->bus) 3726 *bus_ref = path->bus->refcount; 3727 else 3728 *bus_ref = 0; 3729 } 3730 if (periph_ref) { 3731 if (path->periph) 3732 *periph_ref = path->periph->refcount; 3733 else 3734 *periph_ref = 0; 3735 } 3736 xpt_unlock_buses(); 3737 if (target_ref) { 3738 if (path->target) 3739 *target_ref = path->target->refcount; 3740 else 3741 *target_ref = 0; 3742 } 3743 if (device_ref) { 3744 if (path->device) 3745 *device_ref = path->device->refcount; 3746 else 3747 *device_ref = 0; 3748 } 3749 } 3750 3751 /* 3752 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3753 * in path1, 2 for match with wildcards in path2. 3754 */ 3755 int 3756 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3757 { 3758 int retval = 0; 3759 3760 if (path1->bus != path2->bus) { 3761 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3762 retval = 1; 3763 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3764 retval = 2; 3765 else 3766 return (-1); 3767 } 3768 if (path1->target != path2->target) { 3769 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3770 if (retval == 0) 3771 retval = 1; 3772 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3773 retval = 2; 3774 else 3775 return (-1); 3776 } 3777 if (path1->device != path2->device) { 3778 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3779 if (retval == 0) 3780 retval = 1; 3781 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3782 retval = 2; 3783 else 3784 return (-1); 3785 } 3786 return (retval); 3787 } 3788 3789 int 3790 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3791 { 3792 int retval = 0; 3793 3794 if (path->bus != dev->target->bus) { 3795 if (path->bus->path_id == CAM_BUS_WILDCARD) 3796 retval = 1; 3797 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3798 retval = 2; 3799 else 3800 return (-1); 3801 } 3802 if (path->target != dev->target) { 3803 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3804 if (retval == 0) 3805 retval = 1; 3806 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3807 retval = 2; 3808 else 3809 return (-1); 3810 } 3811 if (path->device != dev) { 3812 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3813 if (retval == 0) 3814 retval = 1; 3815 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3816 retval = 2; 3817 else 3818 return (-1); 3819 } 3820 return (retval); 3821 } 3822 3823 void 3824 xpt_print_path(struct cam_path *path) 3825 { 3826 struct sbuf sb; 3827 char buffer[XPT_PRINT_LEN]; 3828 3829 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3830 xpt_path_sbuf(path, &sb); 3831 sbuf_finish(&sb); 3832 printf("%s", sbuf_data(&sb)); 3833 sbuf_delete(&sb); 3834 } 3835 3836 void 3837 xpt_print_device(struct cam_ed *device) 3838 { 3839 3840 if (device == NULL) 3841 printf("(nopath): "); 3842 else { 3843 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3844 device->sim->unit_number, 3845 device->sim->bus_id, 3846 device->target->target_id, 3847 (uintmax_t)device->lun_id); 3848 } 3849 } 3850 3851 void 3852 xpt_print(struct cam_path *path, const char *fmt, ...) 3853 { 3854 va_list ap; 3855 struct sbuf sb; 3856 char buffer[XPT_PRINT_LEN]; 3857 3858 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3859 3860 xpt_path_sbuf(path, &sb); 3861 va_start(ap, fmt); 3862 sbuf_vprintf(&sb, fmt, ap); 3863 va_end(ap); 3864 3865 sbuf_finish(&sb); 3866 printf("%s", sbuf_data(&sb)); 3867 sbuf_delete(&sb); 3868 } 3869 3870 int 3871 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3872 { 3873 struct sbuf sb; 3874 int len; 3875 3876 sbuf_new(&sb, str, str_len, 0); 3877 len = xpt_path_sbuf(path, &sb); 3878 sbuf_finish(&sb); 3879 return (len); 3880 } 3881 3882 int 3883 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3884 { 3885 3886 if (path == NULL) 3887 sbuf_printf(sb, "(nopath): "); 3888 else { 3889 if (path->periph != NULL) 3890 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3891 path->periph->unit_number); 3892 else 3893 sbuf_printf(sb, "(noperiph:"); 3894 3895 if (path->bus != NULL) 3896 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3897 path->bus->sim->unit_number, 3898 path->bus->sim->bus_id); 3899 else 3900 sbuf_printf(sb, "nobus:"); 3901 3902 if (path->target != NULL) 3903 sbuf_printf(sb, "%d:", path->target->target_id); 3904 else 3905 sbuf_printf(sb, "X:"); 3906 3907 if (path->device != NULL) 3908 sbuf_printf(sb, "%jx): ", 3909 (uintmax_t)path->device->lun_id); 3910 else 3911 sbuf_printf(sb, "X): "); 3912 } 3913 3914 return(sbuf_len(sb)); 3915 } 3916 3917 path_id_t 3918 xpt_path_path_id(struct cam_path *path) 3919 { 3920 return(path->bus->path_id); 3921 } 3922 3923 target_id_t 3924 xpt_path_target_id(struct cam_path *path) 3925 { 3926 if (path->target != NULL) 3927 return (path->target->target_id); 3928 else 3929 return (CAM_TARGET_WILDCARD); 3930 } 3931 3932 lun_id_t 3933 xpt_path_lun_id(struct cam_path *path) 3934 { 3935 if (path->device != NULL) 3936 return (path->device->lun_id); 3937 else 3938 return (CAM_LUN_WILDCARD); 3939 } 3940 3941 struct cam_sim * 3942 xpt_path_sim(struct cam_path *path) 3943 { 3944 3945 return (path->bus->sim); 3946 } 3947 3948 struct cam_periph* 3949 xpt_path_periph(struct cam_path *path) 3950 { 3951 3952 return (path->periph); 3953 } 3954 3955 /* 3956 * Release a CAM control block for the caller. Remit the cost of the structure 3957 * to the device referenced by the path. If the this device had no 'credits' 3958 * and peripheral drivers have registered async callbacks for this notification 3959 * call them now. 3960 */ 3961 void 3962 xpt_release_ccb(union ccb *free_ccb) 3963 { 3964 struct cam_ed *device; 3965 struct cam_periph *periph; 3966 3967 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3968 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3969 device = free_ccb->ccb_h.path->device; 3970 periph = free_ccb->ccb_h.path->periph; 3971 3972 xpt_free_ccb(free_ccb); 3973 periph->periph_allocated--; 3974 cam_ccbq_release_opening(&device->ccbq); 3975 xpt_run_allocq(periph, 0); 3976 } 3977 3978 /* Functions accessed by SIM drivers */ 3979 3980 static struct xpt_xport_ops xport_default_ops = { 3981 .alloc_device = xpt_alloc_device_default, 3982 .action = xpt_action_default, 3983 .async = xpt_dev_async_default, 3984 }; 3985 static struct xpt_xport xport_default = { 3986 .xport = XPORT_UNKNOWN, 3987 .name = "unknown", 3988 .ops = &xport_default_ops, 3989 }; 3990 3991 CAM_XPT_XPORT(xport_default); 3992 3993 /* 3994 * A sim structure, listing the SIM entry points and instance 3995 * identification info is passed to xpt_bus_register to hook the SIM 3996 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3997 * for this new bus and places it in the array of buses and assigns 3998 * it a path_id. The path_id may be influenced by "hard wiring" 3999 * information specified by the user. Once interrupt services are 4000 * available, the bus will be probed. 4001 */ 4002 int 4003 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus) 4004 { 4005 struct cam_eb *new_bus; 4006 struct cam_eb *old_bus; 4007 struct ccb_pathinq cpi; 4008 struct cam_path *path; 4009 cam_status status; 4010 4011 sim->bus_id = bus; 4012 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4013 M_CAMXPT, M_NOWAIT|M_ZERO); 4014 if (new_bus == NULL) { 4015 /* Couldn't satisfy request */ 4016 return (ENOMEM); 4017 } 4018 4019 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4020 TAILQ_INIT(&new_bus->et_entries); 4021 cam_sim_hold(sim); 4022 new_bus->sim = sim; 4023 timevalclear(&new_bus->last_reset); 4024 new_bus->flags = 0; 4025 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4026 new_bus->generation = 0; 4027 new_bus->parent_dev = parent; 4028 4029 xpt_lock_buses(); 4030 sim->path_id = new_bus->path_id = 4031 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4032 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4033 while (old_bus != NULL 4034 && old_bus->path_id < new_bus->path_id) 4035 old_bus = TAILQ_NEXT(old_bus, links); 4036 if (old_bus != NULL) 4037 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4038 else 4039 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4040 xsoftc.bus_generation++; 4041 xpt_unlock_buses(); 4042 4043 /* 4044 * Set a default transport so that a PATH_INQ can be issued to 4045 * the SIM. This will then allow for probing and attaching of 4046 * a more appropriate transport. 4047 */ 4048 new_bus->xport = &xport_default; 4049 4050 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4051 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4052 if (status != CAM_REQ_CMP) { 4053 xpt_release_bus(new_bus); 4054 return (ENOMEM); 4055 } 4056 4057 xpt_path_inq(&cpi, path); 4058 4059 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4060 struct xpt_xport **xpt; 4061 4062 SET_FOREACH(xpt, cam_xpt_xport_set) { 4063 if ((*xpt)->xport == cpi.transport) { 4064 new_bus->xport = *xpt; 4065 break; 4066 } 4067 } 4068 if (new_bus->xport == NULL) { 4069 xpt_print(path, 4070 "No transport found for %d\n", cpi.transport); 4071 xpt_release_bus(new_bus); 4072 free(path, M_CAMXPT); 4073 return (EINVAL); 4074 } 4075 } 4076 4077 /* Notify interested parties */ 4078 if (sim->path_id != CAM_XPT_PATH_ID) { 4079 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4080 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4081 union ccb *scan_ccb; 4082 4083 /* Initiate bus rescan. */ 4084 scan_ccb = xpt_alloc_ccb_nowait(); 4085 if (scan_ccb != NULL) { 4086 scan_ccb->ccb_h.path = path; 4087 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4088 scan_ccb->crcn.flags = 0; 4089 xpt_rescan(scan_ccb); 4090 } else { 4091 xpt_print(path, 4092 "Can't allocate CCB to scan bus\n"); 4093 xpt_free_path(path); 4094 } 4095 } else 4096 xpt_free_path(path); 4097 } else 4098 xpt_free_path(path); 4099 return (CAM_SUCCESS); 4100 } 4101 4102 int 4103 xpt_bus_deregister(path_id_t pathid) 4104 { 4105 struct cam_path bus_path; 4106 cam_status status; 4107 4108 status = xpt_compile_path(&bus_path, NULL, pathid, 4109 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4110 if (status != CAM_REQ_CMP) 4111 return (ENOMEM); 4112 4113 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4114 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4115 4116 /* Release the reference count held while registered. */ 4117 xpt_release_bus(bus_path.bus); 4118 xpt_release_path(&bus_path); 4119 4120 return (CAM_SUCCESS); 4121 } 4122 4123 static path_id_t 4124 xptnextfreepathid(void) 4125 { 4126 struct cam_eb *bus; 4127 path_id_t pathid; 4128 const char *strval; 4129 4130 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4131 pathid = 0; 4132 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4133 retry: 4134 /* Find an unoccupied pathid */ 4135 while (bus != NULL && bus->path_id <= pathid) { 4136 if (bus->path_id == pathid) 4137 pathid++; 4138 bus = TAILQ_NEXT(bus, links); 4139 } 4140 4141 /* 4142 * Ensure that this pathid is not reserved for 4143 * a bus that may be registered in the future. 4144 */ 4145 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4146 ++pathid; 4147 /* Start the search over */ 4148 goto retry; 4149 } 4150 return (pathid); 4151 } 4152 4153 static path_id_t 4154 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4155 { 4156 path_id_t pathid; 4157 int i, dunit, val; 4158 char buf[32]; 4159 const char *dname; 4160 4161 pathid = CAM_XPT_PATH_ID; 4162 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4163 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4164 return (pathid); 4165 i = 0; 4166 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4167 if (strcmp(dname, "scbus")) { 4168 /* Avoid a bit of foot shooting. */ 4169 continue; 4170 } 4171 if (dunit < 0) /* unwired?! */ 4172 continue; 4173 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4174 if (sim_bus == val) { 4175 pathid = dunit; 4176 break; 4177 } 4178 } else if (sim_bus == 0) { 4179 /* Unspecified matches bus 0 */ 4180 pathid = dunit; 4181 break; 4182 } else { 4183 printf("Ambiguous scbus configuration for %s%d " 4184 "bus %d, cannot wire down. The kernel " 4185 "config entry for scbus%d should " 4186 "specify a controller bus.\n" 4187 "Scbus will be assigned dynamically.\n", 4188 sim_name, sim_unit, sim_bus, dunit); 4189 break; 4190 } 4191 } 4192 4193 if (pathid == CAM_XPT_PATH_ID) 4194 pathid = xptnextfreepathid(); 4195 return (pathid); 4196 } 4197 4198 static const char * 4199 xpt_async_string(u_int32_t async_code) 4200 { 4201 4202 switch (async_code) { 4203 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4204 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4205 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4206 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4207 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4208 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4209 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4210 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4211 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4212 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4213 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4214 case AC_CONTRACT: return ("AC_CONTRACT"); 4215 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4216 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4217 } 4218 return ("AC_UNKNOWN"); 4219 } 4220 4221 static int 4222 xpt_async_size(u_int32_t async_code) 4223 { 4224 4225 switch (async_code) { 4226 case AC_BUS_RESET: return (0); 4227 case AC_UNSOL_RESEL: return (0); 4228 case AC_SCSI_AEN: return (0); 4229 case AC_SENT_BDR: return (0); 4230 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4231 case AC_PATH_DEREGISTERED: return (0); 4232 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4233 case AC_LOST_DEVICE: return (0); 4234 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4235 case AC_INQ_CHANGED: return (0); 4236 case AC_GETDEV_CHANGED: return (0); 4237 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4238 case AC_ADVINFO_CHANGED: return (-1); 4239 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4240 } 4241 return (0); 4242 } 4243 4244 static int 4245 xpt_async_process_dev(struct cam_ed *device, void *arg) 4246 { 4247 union ccb *ccb = arg; 4248 struct cam_path *path = ccb->ccb_h.path; 4249 void *async_arg = ccb->casync.async_arg_ptr; 4250 u_int32_t async_code = ccb->casync.async_code; 4251 int relock; 4252 4253 if (path->device != device 4254 && path->device->lun_id != CAM_LUN_WILDCARD 4255 && device->lun_id != CAM_LUN_WILDCARD) 4256 return (1); 4257 4258 /* 4259 * The async callback could free the device. 4260 * If it is a broadcast async, it doesn't hold 4261 * device reference, so take our own reference. 4262 */ 4263 xpt_acquire_device(device); 4264 4265 /* 4266 * If async for specific device is to be delivered to 4267 * the wildcard client, take the specific device lock. 4268 * XXX: We may need a way for client to specify it. 4269 */ 4270 if ((device->lun_id == CAM_LUN_WILDCARD && 4271 path->device->lun_id != CAM_LUN_WILDCARD) || 4272 (device->target->target_id == CAM_TARGET_WILDCARD && 4273 path->target->target_id != CAM_TARGET_WILDCARD) || 4274 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4275 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4276 mtx_unlock(&device->device_mtx); 4277 xpt_path_lock(path); 4278 relock = 1; 4279 } else 4280 relock = 0; 4281 4282 (*(device->target->bus->xport->ops->async))(async_code, 4283 device->target->bus, device->target, device, async_arg); 4284 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4285 4286 if (relock) { 4287 xpt_path_unlock(path); 4288 mtx_lock(&device->device_mtx); 4289 } 4290 xpt_release_device(device); 4291 return (1); 4292 } 4293 4294 static int 4295 xpt_async_process_tgt(struct cam_et *target, void *arg) 4296 { 4297 union ccb *ccb = arg; 4298 struct cam_path *path = ccb->ccb_h.path; 4299 4300 if (path->target != target 4301 && path->target->target_id != CAM_TARGET_WILDCARD 4302 && target->target_id != CAM_TARGET_WILDCARD) 4303 return (1); 4304 4305 if (ccb->casync.async_code == AC_SENT_BDR) { 4306 /* Update our notion of when the last reset occurred */ 4307 microtime(&target->last_reset); 4308 } 4309 4310 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4311 } 4312 4313 static void 4314 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4315 { 4316 struct cam_eb *bus; 4317 struct cam_path *path; 4318 void *async_arg; 4319 u_int32_t async_code; 4320 4321 path = ccb->ccb_h.path; 4322 async_code = ccb->casync.async_code; 4323 async_arg = ccb->casync.async_arg_ptr; 4324 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4325 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4326 bus = path->bus; 4327 4328 if (async_code == AC_BUS_RESET) { 4329 /* Update our notion of when the last reset occurred */ 4330 microtime(&bus->last_reset); 4331 } 4332 4333 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4334 4335 /* 4336 * If this wasn't a fully wildcarded async, tell all 4337 * clients that want all async events. 4338 */ 4339 if (bus != xpt_periph->path->bus) { 4340 xpt_path_lock(xpt_periph->path); 4341 xpt_async_process_dev(xpt_periph->path->device, ccb); 4342 xpt_path_unlock(xpt_periph->path); 4343 } 4344 4345 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4346 xpt_release_devq(path, 1, TRUE); 4347 else 4348 xpt_release_simq(path->bus->sim, TRUE); 4349 if (ccb->casync.async_arg_size > 0) 4350 free(async_arg, M_CAMXPT); 4351 xpt_free_path(path); 4352 xpt_free_ccb(ccb); 4353 } 4354 4355 static void 4356 xpt_async_bcast(struct async_list *async_head, 4357 u_int32_t async_code, 4358 struct cam_path *path, void *async_arg) 4359 { 4360 struct async_node *cur_entry; 4361 struct mtx *mtx; 4362 4363 cur_entry = SLIST_FIRST(async_head); 4364 while (cur_entry != NULL) { 4365 struct async_node *next_entry; 4366 /* 4367 * Grab the next list entry before we call the current 4368 * entry's callback. This is because the callback function 4369 * can delete its async callback entry. 4370 */ 4371 next_entry = SLIST_NEXT(cur_entry, links); 4372 if ((cur_entry->event_enable & async_code) != 0) { 4373 mtx = cur_entry->event_lock ? 4374 path->device->sim->mtx : NULL; 4375 if (mtx) 4376 mtx_lock(mtx); 4377 cur_entry->callback(cur_entry->callback_arg, 4378 async_code, path, 4379 async_arg); 4380 if (mtx) 4381 mtx_unlock(mtx); 4382 } 4383 cur_entry = next_entry; 4384 } 4385 } 4386 4387 void 4388 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4389 { 4390 union ccb *ccb; 4391 int size; 4392 4393 ccb = xpt_alloc_ccb_nowait(); 4394 if (ccb == NULL) { 4395 xpt_print(path, "Can't allocate CCB to send %s\n", 4396 xpt_async_string(async_code)); 4397 return; 4398 } 4399 4400 if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) { 4401 xpt_print(path, "Can't allocate path to send %s\n", 4402 xpt_async_string(async_code)); 4403 xpt_free_ccb(ccb); 4404 return; 4405 } 4406 ccb->ccb_h.path->periph = NULL; 4407 ccb->ccb_h.func_code = XPT_ASYNC; 4408 ccb->ccb_h.cbfcnp = xpt_async_process; 4409 ccb->ccb_h.flags |= CAM_UNLOCKED; 4410 ccb->casync.async_code = async_code; 4411 ccb->casync.async_arg_size = 0; 4412 size = xpt_async_size(async_code); 4413 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4414 ("xpt_async: func %#x %s aync_code %d %s\n", 4415 ccb->ccb_h.func_code, 4416 xpt_action_name(ccb->ccb_h.func_code), 4417 async_code, 4418 xpt_async_string(async_code))); 4419 if (size > 0 && async_arg != NULL) { 4420 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4421 if (ccb->casync.async_arg_ptr == NULL) { 4422 xpt_print(path, "Can't allocate argument to send %s\n", 4423 xpt_async_string(async_code)); 4424 xpt_free_path(ccb->ccb_h.path); 4425 xpt_free_ccb(ccb); 4426 return; 4427 } 4428 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4429 ccb->casync.async_arg_size = size; 4430 } else if (size < 0) { 4431 ccb->casync.async_arg_ptr = async_arg; 4432 ccb->casync.async_arg_size = size; 4433 } 4434 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4435 xpt_freeze_devq(path, 1); 4436 else 4437 xpt_freeze_simq(path->bus->sim, 1); 4438 xpt_action(ccb); 4439 } 4440 4441 static void 4442 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4443 struct cam_et *target, struct cam_ed *device, 4444 void *async_arg) 4445 { 4446 4447 /* 4448 * We only need to handle events for real devices. 4449 */ 4450 if (target->target_id == CAM_TARGET_WILDCARD 4451 || device->lun_id == CAM_LUN_WILDCARD) 4452 return; 4453 4454 printf("%s called\n", __func__); 4455 } 4456 4457 static uint32_t 4458 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4459 { 4460 struct cam_devq *devq; 4461 uint32_t freeze; 4462 4463 devq = dev->sim->devq; 4464 mtx_assert(&devq->send_mtx, MA_OWNED); 4465 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4466 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4467 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4468 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4469 /* Remove frozen device from sendq. */ 4470 if (device_is_queued(dev)) 4471 camq_remove(&devq->send_queue, dev->devq_entry.index); 4472 return (freeze); 4473 } 4474 4475 u_int32_t 4476 xpt_freeze_devq(struct cam_path *path, u_int count) 4477 { 4478 struct cam_ed *dev = path->device; 4479 struct cam_devq *devq; 4480 uint32_t freeze; 4481 4482 devq = dev->sim->devq; 4483 mtx_lock(&devq->send_mtx); 4484 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4485 freeze = xpt_freeze_devq_device(dev, count); 4486 mtx_unlock(&devq->send_mtx); 4487 return (freeze); 4488 } 4489 4490 u_int32_t 4491 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4492 { 4493 struct cam_devq *devq; 4494 uint32_t freeze; 4495 4496 devq = sim->devq; 4497 mtx_lock(&devq->send_mtx); 4498 freeze = (devq->send_queue.qfrozen_cnt += count); 4499 mtx_unlock(&devq->send_mtx); 4500 return (freeze); 4501 } 4502 4503 static void 4504 xpt_release_devq_timeout(void *arg) 4505 { 4506 struct cam_ed *dev; 4507 struct cam_devq *devq; 4508 4509 dev = (struct cam_ed *)arg; 4510 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4511 devq = dev->sim->devq; 4512 mtx_assert(&devq->send_mtx, MA_OWNED); 4513 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4514 xpt_run_devq(devq); 4515 } 4516 4517 void 4518 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4519 { 4520 struct cam_ed *dev; 4521 struct cam_devq *devq; 4522 4523 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4524 count, run_queue)); 4525 dev = path->device; 4526 devq = dev->sim->devq; 4527 mtx_lock(&devq->send_mtx); 4528 if (xpt_release_devq_device(dev, count, run_queue)) 4529 xpt_run_devq(dev->sim->devq); 4530 mtx_unlock(&devq->send_mtx); 4531 } 4532 4533 static int 4534 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4535 { 4536 4537 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4538 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4539 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4540 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4541 if (count > dev->ccbq.queue.qfrozen_cnt) { 4542 #ifdef INVARIANTS 4543 printf("xpt_release_devq(): requested %u > present %u\n", 4544 count, dev->ccbq.queue.qfrozen_cnt); 4545 #endif 4546 count = dev->ccbq.queue.qfrozen_cnt; 4547 } 4548 dev->ccbq.queue.qfrozen_cnt -= count; 4549 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4550 /* 4551 * No longer need to wait for a successful 4552 * command completion. 4553 */ 4554 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4555 /* 4556 * Remove any timeouts that might be scheduled 4557 * to release this queue. 4558 */ 4559 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4560 callout_stop(&dev->callout); 4561 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4562 } 4563 /* 4564 * Now that we are unfrozen schedule the 4565 * device so any pending transactions are 4566 * run. 4567 */ 4568 xpt_schedule_devq(dev->sim->devq, dev); 4569 } else 4570 run_queue = 0; 4571 return (run_queue); 4572 } 4573 4574 void 4575 xpt_release_simq(struct cam_sim *sim, int run_queue) 4576 { 4577 struct cam_devq *devq; 4578 4579 devq = sim->devq; 4580 mtx_lock(&devq->send_mtx); 4581 if (devq->send_queue.qfrozen_cnt <= 0) { 4582 #ifdef INVARIANTS 4583 printf("xpt_release_simq: requested 1 > present %u\n", 4584 devq->send_queue.qfrozen_cnt); 4585 #endif 4586 } else 4587 devq->send_queue.qfrozen_cnt--; 4588 if (devq->send_queue.qfrozen_cnt == 0) { 4589 if (run_queue) { 4590 /* 4591 * Now that we are unfrozen run the send queue. 4592 */ 4593 xpt_run_devq(sim->devq); 4594 } 4595 } 4596 mtx_unlock(&devq->send_mtx); 4597 } 4598 4599 void 4600 xpt_done(union ccb *done_ccb) 4601 { 4602 struct cam_doneq *queue; 4603 int run, hash; 4604 4605 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4606 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4607 done_ccb->csio.bio != NULL) 4608 biotrack(done_ccb->csio.bio, __func__); 4609 #endif 4610 4611 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4612 ("xpt_done: func= %#x %s status %#x\n", 4613 done_ccb->ccb_h.func_code, 4614 xpt_action_name(done_ccb->ccb_h.func_code), 4615 done_ccb->ccb_h.status)); 4616 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4617 return; 4618 4619 /* Store the time the ccb was in the sim */ 4620 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4621 done_ccb->ccb_h.status |= CAM_QOS_VALID; 4622 hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4623 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4624 queue = &cam_doneqs[hash]; 4625 mtx_lock(&queue->cam_doneq_mtx); 4626 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4627 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4628 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4629 mtx_unlock(&queue->cam_doneq_mtx); 4630 if (run) 4631 wakeup(&queue->cam_doneq); 4632 } 4633 4634 void 4635 xpt_done_direct(union ccb *done_ccb) 4636 { 4637 4638 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4639 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4640 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4641 return; 4642 4643 /* Store the time the ccb was in the sim */ 4644 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4645 done_ccb->ccb_h.status |= CAM_QOS_VALID; 4646 xpt_done_process(&done_ccb->ccb_h); 4647 } 4648 4649 union ccb * 4650 xpt_alloc_ccb(void) 4651 { 4652 union ccb *new_ccb; 4653 4654 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4655 return (new_ccb); 4656 } 4657 4658 union ccb * 4659 xpt_alloc_ccb_nowait(void) 4660 { 4661 union ccb *new_ccb; 4662 4663 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4664 return (new_ccb); 4665 } 4666 4667 void 4668 xpt_free_ccb(union ccb *free_ccb) 4669 { 4670 struct cam_periph *periph; 4671 4672 if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) { 4673 /* 4674 * Looks like a CCB allocated from a periph UMA zone. 4675 */ 4676 periph = free_ccb->ccb_h.path->periph; 4677 uma_zfree(periph->ccb_zone, free_ccb); 4678 } else { 4679 free(free_ccb, M_CAMCCB); 4680 } 4681 } 4682 4683 /* Private XPT functions */ 4684 4685 /* 4686 * Get a CAM control block for the caller. Charge the structure to the device 4687 * referenced by the path. If we don't have sufficient resources to allocate 4688 * more ccbs, we return NULL. 4689 */ 4690 static union ccb * 4691 xpt_get_ccb_nowait(struct cam_periph *periph) 4692 { 4693 union ccb *new_ccb; 4694 int alloc_flags; 4695 4696 if (periph->ccb_zone != NULL) { 4697 alloc_flags = CAM_CCB_FROM_UMA; 4698 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT); 4699 } else { 4700 alloc_flags = 0; 4701 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4702 } 4703 if (new_ccb == NULL) 4704 return (NULL); 4705 new_ccb->ccb_h.alloc_flags = alloc_flags; 4706 periph->periph_allocated++; 4707 cam_ccbq_take_opening(&periph->path->device->ccbq); 4708 return (new_ccb); 4709 } 4710 4711 static union ccb * 4712 xpt_get_ccb(struct cam_periph *periph) 4713 { 4714 union ccb *new_ccb; 4715 int alloc_flags; 4716 4717 cam_periph_unlock(periph); 4718 if (periph->ccb_zone != NULL) { 4719 alloc_flags = CAM_CCB_FROM_UMA; 4720 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK); 4721 } else { 4722 alloc_flags = 0; 4723 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4724 } 4725 new_ccb->ccb_h.alloc_flags = alloc_flags; 4726 cam_periph_lock(periph); 4727 periph->periph_allocated++; 4728 cam_ccbq_take_opening(&periph->path->device->ccbq); 4729 return (new_ccb); 4730 } 4731 4732 union ccb * 4733 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4734 { 4735 struct ccb_hdr *ccb_h; 4736 4737 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4738 cam_periph_assert(periph, MA_OWNED); 4739 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4740 ccb_h->pinfo.priority != priority) { 4741 if (priority < periph->immediate_priority) { 4742 periph->immediate_priority = priority; 4743 xpt_run_allocq(periph, 0); 4744 } else 4745 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4746 "cgticb", 0); 4747 } 4748 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4749 return ((union ccb *)ccb_h); 4750 } 4751 4752 static void 4753 xpt_acquire_bus(struct cam_eb *bus) 4754 { 4755 4756 xpt_lock_buses(); 4757 bus->refcount++; 4758 xpt_unlock_buses(); 4759 } 4760 4761 static void 4762 xpt_release_bus(struct cam_eb *bus) 4763 { 4764 4765 xpt_lock_buses(); 4766 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4767 if (--bus->refcount > 0) { 4768 xpt_unlock_buses(); 4769 return; 4770 } 4771 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4772 xsoftc.bus_generation++; 4773 xpt_unlock_buses(); 4774 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4775 ("destroying bus, but target list is not empty")); 4776 cam_sim_release(bus->sim); 4777 mtx_destroy(&bus->eb_mtx); 4778 free(bus, M_CAMXPT); 4779 } 4780 4781 static struct cam_et * 4782 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4783 { 4784 struct cam_et *cur_target, *target; 4785 4786 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4787 mtx_assert(&bus->eb_mtx, MA_OWNED); 4788 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4789 M_NOWAIT|M_ZERO); 4790 if (target == NULL) 4791 return (NULL); 4792 4793 TAILQ_INIT(&target->ed_entries); 4794 target->bus = bus; 4795 target->target_id = target_id; 4796 target->refcount = 1; 4797 target->generation = 0; 4798 target->luns = NULL; 4799 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4800 timevalclear(&target->last_reset); 4801 /* 4802 * Hold a reference to our parent bus so it 4803 * will not go away before we do. 4804 */ 4805 bus->refcount++; 4806 4807 /* Insertion sort into our bus's target list */ 4808 cur_target = TAILQ_FIRST(&bus->et_entries); 4809 while (cur_target != NULL && cur_target->target_id < target_id) 4810 cur_target = TAILQ_NEXT(cur_target, links); 4811 if (cur_target != NULL) { 4812 TAILQ_INSERT_BEFORE(cur_target, target, links); 4813 } else { 4814 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4815 } 4816 bus->generation++; 4817 return (target); 4818 } 4819 4820 static void 4821 xpt_acquire_target(struct cam_et *target) 4822 { 4823 struct cam_eb *bus = target->bus; 4824 4825 mtx_lock(&bus->eb_mtx); 4826 target->refcount++; 4827 mtx_unlock(&bus->eb_mtx); 4828 } 4829 4830 static void 4831 xpt_release_target(struct cam_et *target) 4832 { 4833 struct cam_eb *bus = target->bus; 4834 4835 mtx_lock(&bus->eb_mtx); 4836 if (--target->refcount > 0) { 4837 mtx_unlock(&bus->eb_mtx); 4838 return; 4839 } 4840 TAILQ_REMOVE(&bus->et_entries, target, links); 4841 bus->generation++; 4842 mtx_unlock(&bus->eb_mtx); 4843 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4844 ("destroying target, but device list is not empty")); 4845 xpt_release_bus(bus); 4846 mtx_destroy(&target->luns_mtx); 4847 if (target->luns) 4848 free(target->luns, M_CAMXPT); 4849 free(target, M_CAMXPT); 4850 } 4851 4852 static struct cam_ed * 4853 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4854 lun_id_t lun_id) 4855 { 4856 struct cam_ed *device; 4857 4858 device = xpt_alloc_device(bus, target, lun_id); 4859 if (device == NULL) 4860 return (NULL); 4861 4862 device->mintags = 1; 4863 device->maxtags = 1; 4864 return (device); 4865 } 4866 4867 static void 4868 xpt_destroy_device(void *context, int pending) 4869 { 4870 struct cam_ed *device = context; 4871 4872 mtx_lock(&device->device_mtx); 4873 mtx_destroy(&device->device_mtx); 4874 free(device, M_CAMDEV); 4875 } 4876 4877 struct cam_ed * 4878 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4879 { 4880 struct cam_ed *cur_device, *device; 4881 struct cam_devq *devq; 4882 cam_status status; 4883 4884 mtx_assert(&bus->eb_mtx, MA_OWNED); 4885 /* Make space for us in the device queue on our bus */ 4886 devq = bus->sim->devq; 4887 mtx_lock(&devq->send_mtx); 4888 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4889 mtx_unlock(&devq->send_mtx); 4890 if (status != CAM_REQ_CMP) 4891 return (NULL); 4892 4893 device = (struct cam_ed *)malloc(sizeof(*device), 4894 M_CAMDEV, M_NOWAIT|M_ZERO); 4895 if (device == NULL) 4896 return (NULL); 4897 4898 cam_init_pinfo(&device->devq_entry); 4899 device->target = target; 4900 device->lun_id = lun_id; 4901 device->sim = bus->sim; 4902 if (cam_ccbq_init(&device->ccbq, 4903 bus->sim->max_dev_openings) != 0) { 4904 free(device, M_CAMDEV); 4905 return (NULL); 4906 } 4907 SLIST_INIT(&device->asyncs); 4908 SLIST_INIT(&device->periphs); 4909 device->generation = 0; 4910 device->flags = CAM_DEV_UNCONFIGURED; 4911 device->tag_delay_count = 0; 4912 device->tag_saved_openings = 0; 4913 device->refcount = 1; 4914 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4915 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4916 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4917 /* 4918 * Hold a reference to our parent bus so it 4919 * will not go away before we do. 4920 */ 4921 target->refcount++; 4922 4923 cur_device = TAILQ_FIRST(&target->ed_entries); 4924 while (cur_device != NULL && cur_device->lun_id < lun_id) 4925 cur_device = TAILQ_NEXT(cur_device, links); 4926 if (cur_device != NULL) 4927 TAILQ_INSERT_BEFORE(cur_device, device, links); 4928 else 4929 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4930 target->generation++; 4931 return (device); 4932 } 4933 4934 void 4935 xpt_acquire_device(struct cam_ed *device) 4936 { 4937 struct cam_eb *bus = device->target->bus; 4938 4939 mtx_lock(&bus->eb_mtx); 4940 device->refcount++; 4941 mtx_unlock(&bus->eb_mtx); 4942 } 4943 4944 void 4945 xpt_release_device(struct cam_ed *device) 4946 { 4947 struct cam_eb *bus = device->target->bus; 4948 struct cam_devq *devq; 4949 4950 mtx_lock(&bus->eb_mtx); 4951 if (--device->refcount > 0) { 4952 mtx_unlock(&bus->eb_mtx); 4953 return; 4954 } 4955 4956 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4957 device->target->generation++; 4958 mtx_unlock(&bus->eb_mtx); 4959 4960 /* Release our slot in the devq */ 4961 devq = bus->sim->devq; 4962 mtx_lock(&devq->send_mtx); 4963 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4964 4965 KASSERT(SLIST_EMPTY(&device->periphs), 4966 ("destroying device, but periphs list is not empty")); 4967 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4968 ("destroying device while still queued for ccbs")); 4969 4970 /* The send_mtx must be held when accessing the callout */ 4971 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4972 callout_stop(&device->callout); 4973 4974 mtx_unlock(&devq->send_mtx); 4975 4976 xpt_release_target(device->target); 4977 4978 cam_ccbq_fini(&device->ccbq); 4979 /* 4980 * Free allocated memory. free(9) does nothing if the 4981 * supplied pointer is NULL, so it is safe to call without 4982 * checking. 4983 */ 4984 free(device->supported_vpds, M_CAMXPT); 4985 free(device->device_id, M_CAMXPT); 4986 free(device->ext_inq, M_CAMXPT); 4987 free(device->physpath, M_CAMXPT); 4988 free(device->rcap_buf, M_CAMXPT); 4989 free(device->serial_num, M_CAMXPT); 4990 free(device->nvme_data, M_CAMXPT); 4991 free(device->nvme_cdata, M_CAMXPT); 4992 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4993 } 4994 4995 u_int32_t 4996 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4997 { 4998 int result; 4999 struct cam_ed *dev; 5000 5001 dev = path->device; 5002 mtx_lock(&dev->sim->devq->send_mtx); 5003 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5004 mtx_unlock(&dev->sim->devq->send_mtx); 5005 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5006 || (dev->inq_flags & SID_CmdQue) != 0) 5007 dev->tag_saved_openings = newopenings; 5008 return (result); 5009 } 5010 5011 static struct cam_eb * 5012 xpt_find_bus(path_id_t path_id) 5013 { 5014 struct cam_eb *bus; 5015 5016 xpt_lock_buses(); 5017 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5018 bus != NULL; 5019 bus = TAILQ_NEXT(bus, links)) { 5020 if (bus->path_id == path_id) { 5021 bus->refcount++; 5022 break; 5023 } 5024 } 5025 xpt_unlock_buses(); 5026 return (bus); 5027 } 5028 5029 static struct cam_et * 5030 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5031 { 5032 struct cam_et *target; 5033 5034 mtx_assert(&bus->eb_mtx, MA_OWNED); 5035 for (target = TAILQ_FIRST(&bus->et_entries); 5036 target != NULL; 5037 target = TAILQ_NEXT(target, links)) { 5038 if (target->target_id == target_id) { 5039 target->refcount++; 5040 break; 5041 } 5042 } 5043 return (target); 5044 } 5045 5046 static struct cam_ed * 5047 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5048 { 5049 struct cam_ed *device; 5050 5051 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5052 for (device = TAILQ_FIRST(&target->ed_entries); 5053 device != NULL; 5054 device = TAILQ_NEXT(device, links)) { 5055 if (device->lun_id == lun_id) { 5056 device->refcount++; 5057 break; 5058 } 5059 } 5060 return (device); 5061 } 5062 5063 void 5064 xpt_start_tags(struct cam_path *path) 5065 { 5066 struct ccb_relsim crs; 5067 struct cam_ed *device; 5068 struct cam_sim *sim; 5069 int newopenings; 5070 5071 device = path->device; 5072 sim = path->bus->sim; 5073 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5074 xpt_freeze_devq(path, /*count*/1); 5075 device->inq_flags |= SID_CmdQue; 5076 if (device->tag_saved_openings != 0) 5077 newopenings = device->tag_saved_openings; 5078 else 5079 newopenings = min(device->maxtags, 5080 sim->max_tagged_dev_openings); 5081 xpt_dev_ccbq_resize(path, newopenings); 5082 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5083 memset(&crs, 0, sizeof(crs)); 5084 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5085 crs.ccb_h.func_code = XPT_REL_SIMQ; 5086 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5087 crs.openings 5088 = crs.release_timeout 5089 = crs.qfrozen_cnt 5090 = 0; 5091 xpt_action((union ccb *)&crs); 5092 } 5093 5094 void 5095 xpt_stop_tags(struct cam_path *path) 5096 { 5097 struct ccb_relsim crs; 5098 struct cam_ed *device; 5099 struct cam_sim *sim; 5100 5101 device = path->device; 5102 sim = path->bus->sim; 5103 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5104 device->tag_delay_count = 0; 5105 xpt_freeze_devq(path, /*count*/1); 5106 device->inq_flags &= ~SID_CmdQue; 5107 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5108 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5109 memset(&crs, 0, sizeof(crs)); 5110 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5111 crs.ccb_h.func_code = XPT_REL_SIMQ; 5112 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5113 crs.openings 5114 = crs.release_timeout 5115 = crs.qfrozen_cnt 5116 = 0; 5117 xpt_action((union ccb *)&crs); 5118 } 5119 5120 /* 5121 * Assume all possible buses are detected by this time, so allow boot 5122 * as soon as they all are scanned. 5123 */ 5124 static void 5125 xpt_boot_delay(void *arg) 5126 { 5127 5128 xpt_release_boot(); 5129 } 5130 5131 /* 5132 * Now that all config hooks have completed, start boot_delay timer, 5133 * waiting for possibly still undetected buses (USB) to appear. 5134 */ 5135 static void 5136 xpt_ch_done(void *arg) 5137 { 5138 5139 callout_init(&xsoftc.boot_callout, 1); 5140 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5141 xpt_boot_delay, NULL, 0); 5142 } 5143 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL); 5144 5145 /* 5146 * Now that interrupts are enabled, go find our devices 5147 */ 5148 static void 5149 xpt_config(void *arg) 5150 { 5151 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5152 printf("xpt_config: failed to create taskqueue thread.\n"); 5153 5154 /* Setup debugging path */ 5155 if (cam_dflags != CAM_DEBUG_NONE) { 5156 if (xpt_create_path(&cam_dpath, NULL, 5157 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5158 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5159 printf("xpt_config: xpt_create_path() failed for debug" 5160 " target %d:%d:%d, debugging disabled\n", 5161 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5162 cam_dflags = CAM_DEBUG_NONE; 5163 } 5164 } else 5165 cam_dpath = NULL; 5166 5167 periphdriver_init(1); 5168 xpt_hold_boot(); 5169 5170 /* Fire up rescan thread. */ 5171 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5172 "cam", "scanner")) { 5173 printf("xpt_config: failed to create rescan thread.\n"); 5174 } 5175 } 5176 5177 void 5178 xpt_hold_boot_locked(void) 5179 { 5180 5181 if (xsoftc.buses_to_config++ == 0) 5182 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount); 5183 } 5184 5185 void 5186 xpt_hold_boot(void) 5187 { 5188 5189 xpt_lock_buses(); 5190 xpt_hold_boot_locked(); 5191 xpt_unlock_buses(); 5192 } 5193 5194 void 5195 xpt_release_boot(void) 5196 { 5197 5198 xpt_lock_buses(); 5199 if (--xsoftc.buses_to_config == 0) { 5200 if (xsoftc.buses_config_done == 0) { 5201 xsoftc.buses_config_done = 1; 5202 xsoftc.buses_to_config++; 5203 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task, 5204 NULL); 5205 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task); 5206 } else 5207 root_mount_rel(&xsoftc.xpt_rootmount); 5208 } 5209 xpt_unlock_buses(); 5210 } 5211 5212 /* 5213 * If the given device only has one peripheral attached to it, and if that 5214 * peripheral is the passthrough driver, announce it. This insures that the 5215 * user sees some sort of announcement for every peripheral in their system. 5216 */ 5217 static int 5218 xptpassannouncefunc(struct cam_ed *device, void *arg) 5219 { 5220 struct cam_periph *periph; 5221 int i; 5222 5223 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5224 periph = SLIST_NEXT(periph, periph_links), i++); 5225 5226 periph = SLIST_FIRST(&device->periphs); 5227 if ((i == 1) 5228 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5229 xpt_announce_periph(periph, NULL); 5230 5231 return(1); 5232 } 5233 5234 static void 5235 xpt_finishconfig_task(void *context, int pending) 5236 { 5237 5238 periphdriver_init(2); 5239 /* 5240 * Check for devices with no "standard" peripheral driver 5241 * attached. For any devices like that, announce the 5242 * passthrough driver so the user will see something. 5243 */ 5244 if (!bootverbose) 5245 xpt_for_all_devices(xptpassannouncefunc, NULL); 5246 5247 xpt_release_boot(); 5248 } 5249 5250 cam_status 5251 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5252 struct cam_path *path) 5253 { 5254 struct ccb_setasync csa; 5255 cam_status status; 5256 int xptpath = 0; 5257 5258 if (path == NULL) { 5259 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5260 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5261 if (status != CAM_REQ_CMP) 5262 return (status); 5263 xpt_path_lock(path); 5264 xptpath = 1; 5265 } 5266 5267 memset(&csa, 0, sizeof(csa)); 5268 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5269 csa.ccb_h.func_code = XPT_SASYNC_CB; 5270 csa.event_enable = event; 5271 csa.callback = cbfunc; 5272 csa.callback_arg = cbarg; 5273 xpt_action((union ccb *)&csa); 5274 status = csa.ccb_h.status; 5275 5276 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5277 ("xpt_register_async: func %p\n", cbfunc)); 5278 5279 if (xptpath) { 5280 xpt_path_unlock(path); 5281 xpt_free_path(path); 5282 } 5283 5284 if ((status == CAM_REQ_CMP) && 5285 (csa.event_enable & AC_FOUND_DEVICE)) { 5286 /* 5287 * Get this peripheral up to date with all 5288 * the currently existing devices. 5289 */ 5290 xpt_for_all_devices(xptsetasyncfunc, &csa); 5291 } 5292 if ((status == CAM_REQ_CMP) && 5293 (csa.event_enable & AC_PATH_REGISTERED)) { 5294 /* 5295 * Get this peripheral up to date with all 5296 * the currently existing buses. 5297 */ 5298 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5299 } 5300 5301 return (status); 5302 } 5303 5304 static void 5305 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5306 { 5307 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5308 5309 switch (work_ccb->ccb_h.func_code) { 5310 /* Common cases first */ 5311 case XPT_PATH_INQ: /* Path routing inquiry */ 5312 { 5313 struct ccb_pathinq *cpi; 5314 5315 cpi = &work_ccb->cpi; 5316 cpi->version_num = 1; /* XXX??? */ 5317 cpi->hba_inquiry = 0; 5318 cpi->target_sprt = 0; 5319 cpi->hba_misc = 0; 5320 cpi->hba_eng_cnt = 0; 5321 cpi->max_target = 0; 5322 cpi->max_lun = 0; 5323 cpi->initiator_id = 0; 5324 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5325 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5326 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5327 cpi->unit_number = sim->unit_number; 5328 cpi->bus_id = sim->bus_id; 5329 cpi->base_transfer_speed = 0; 5330 cpi->protocol = PROTO_UNSPECIFIED; 5331 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5332 cpi->transport = XPORT_UNSPECIFIED; 5333 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5334 cpi->ccb_h.status = CAM_REQ_CMP; 5335 break; 5336 } 5337 default: 5338 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5339 break; 5340 } 5341 xpt_done(work_ccb); 5342 } 5343 5344 /* 5345 * The xpt as a "controller" has no interrupt sources, so polling 5346 * is a no-op. 5347 */ 5348 static void 5349 xptpoll(struct cam_sim *sim) 5350 { 5351 } 5352 5353 void 5354 xpt_lock_buses(void) 5355 { 5356 mtx_lock(&xsoftc.xpt_topo_lock); 5357 } 5358 5359 void 5360 xpt_unlock_buses(void) 5361 { 5362 mtx_unlock(&xsoftc.xpt_topo_lock); 5363 } 5364 5365 struct mtx * 5366 xpt_path_mtx(struct cam_path *path) 5367 { 5368 5369 return (&path->device->device_mtx); 5370 } 5371 5372 static void 5373 xpt_done_process(struct ccb_hdr *ccb_h) 5374 { 5375 struct cam_sim *sim = NULL; 5376 struct cam_devq *devq = NULL; 5377 struct mtx *mtx = NULL; 5378 5379 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5380 struct ccb_scsiio *csio; 5381 5382 if (ccb_h->func_code == XPT_SCSI_IO) { 5383 csio = &((union ccb *)ccb_h)->csio; 5384 if (csio->bio != NULL) 5385 biotrack(csio->bio, __func__); 5386 } 5387 #endif 5388 5389 if (ccb_h->flags & CAM_HIGH_POWER) { 5390 struct highpowerlist *hphead; 5391 struct cam_ed *device; 5392 5393 mtx_lock(&xsoftc.xpt_highpower_lock); 5394 hphead = &xsoftc.highpowerq; 5395 5396 device = STAILQ_FIRST(hphead); 5397 5398 /* 5399 * Increment the count since this command is done. 5400 */ 5401 xsoftc.num_highpower++; 5402 5403 /* 5404 * Any high powered commands queued up? 5405 */ 5406 if (device != NULL) { 5407 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5408 mtx_unlock(&xsoftc.xpt_highpower_lock); 5409 5410 mtx_lock(&device->sim->devq->send_mtx); 5411 xpt_release_devq_device(device, 5412 /*count*/1, /*runqueue*/TRUE); 5413 mtx_unlock(&device->sim->devq->send_mtx); 5414 } else 5415 mtx_unlock(&xsoftc.xpt_highpower_lock); 5416 } 5417 5418 /* 5419 * Insulate against a race where the periph is destroyed but CCBs are 5420 * still not all processed. This shouldn't happen, but allows us better 5421 * bug diagnostic when it does. 5422 */ 5423 if (ccb_h->path->bus) 5424 sim = ccb_h->path->bus->sim; 5425 5426 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5427 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); 5428 xpt_release_simq(sim, /*run_queue*/FALSE); 5429 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5430 } 5431 5432 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5433 && (ccb_h->status & CAM_DEV_QFRZN)) { 5434 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5435 ccb_h->status &= ~CAM_DEV_QFRZN; 5436 } 5437 5438 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5439 struct cam_ed *dev = ccb_h->path->device; 5440 5441 if (sim) 5442 devq = sim->devq; 5443 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.", 5444 ccb_h, xpt_action_name(ccb_h->func_code))); 5445 5446 mtx_lock(&devq->send_mtx); 5447 devq->send_active--; 5448 devq->send_openings++; 5449 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5450 5451 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5452 && (dev->ccbq.dev_active == 0))) { 5453 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5454 xpt_release_devq_device(dev, /*count*/1, 5455 /*run_queue*/FALSE); 5456 } 5457 5458 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5459 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5460 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5461 xpt_release_devq_device(dev, /*count*/1, 5462 /*run_queue*/FALSE); 5463 } 5464 5465 if (!device_is_queued(dev)) 5466 (void)xpt_schedule_devq(devq, dev); 5467 xpt_run_devq(devq); 5468 mtx_unlock(&devq->send_mtx); 5469 5470 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5471 mtx = xpt_path_mtx(ccb_h->path); 5472 mtx_lock(mtx); 5473 5474 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5475 && (--dev->tag_delay_count == 0)) 5476 xpt_start_tags(ccb_h->path); 5477 } 5478 } 5479 5480 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5481 if (mtx == NULL) { 5482 mtx = xpt_path_mtx(ccb_h->path); 5483 mtx_lock(mtx); 5484 } 5485 } else { 5486 if (mtx != NULL) { 5487 mtx_unlock(mtx); 5488 mtx = NULL; 5489 } 5490 } 5491 5492 /* Call the peripheral driver's callback */ 5493 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5494 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5495 if (mtx != NULL) 5496 mtx_unlock(mtx); 5497 } 5498 5499 /* 5500 * Parameterize instead and use xpt_done_td? 5501 */ 5502 static void 5503 xpt_async_td(void *arg) 5504 { 5505 struct cam_doneq *queue = arg; 5506 struct ccb_hdr *ccb_h; 5507 STAILQ_HEAD(, ccb_hdr) doneq; 5508 5509 STAILQ_INIT(&doneq); 5510 mtx_lock(&queue->cam_doneq_mtx); 5511 while (1) { 5512 while (STAILQ_EMPTY(&queue->cam_doneq)) 5513 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5514 PRIBIO, "-", 0); 5515 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5516 mtx_unlock(&queue->cam_doneq_mtx); 5517 5518 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5519 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5520 xpt_done_process(ccb_h); 5521 } 5522 5523 mtx_lock(&queue->cam_doneq_mtx); 5524 } 5525 } 5526 5527 void 5528 xpt_done_td(void *arg) 5529 { 5530 struct cam_doneq *queue = arg; 5531 struct ccb_hdr *ccb_h; 5532 STAILQ_HEAD(, ccb_hdr) doneq; 5533 5534 STAILQ_INIT(&doneq); 5535 mtx_lock(&queue->cam_doneq_mtx); 5536 while (1) { 5537 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5538 queue->cam_doneq_sleep = 1; 5539 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5540 PRIBIO, "-", 0); 5541 queue->cam_doneq_sleep = 0; 5542 } 5543 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5544 mtx_unlock(&queue->cam_doneq_mtx); 5545 5546 THREAD_NO_SLEEPING(); 5547 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5548 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5549 xpt_done_process(ccb_h); 5550 } 5551 THREAD_SLEEPING_OK(); 5552 5553 mtx_lock(&queue->cam_doneq_mtx); 5554 } 5555 } 5556 5557 static void 5558 camisr_runqueue(void) 5559 { 5560 struct ccb_hdr *ccb_h; 5561 struct cam_doneq *queue; 5562 int i; 5563 5564 /* Process global queues. */ 5565 for (i = 0; i < cam_num_doneqs; i++) { 5566 queue = &cam_doneqs[i]; 5567 mtx_lock(&queue->cam_doneq_mtx); 5568 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5569 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5570 mtx_unlock(&queue->cam_doneq_mtx); 5571 xpt_done_process(ccb_h); 5572 mtx_lock(&queue->cam_doneq_mtx); 5573 } 5574 mtx_unlock(&queue->cam_doneq_mtx); 5575 } 5576 } 5577 5578 /** 5579 * @brief Return the device_t associated with the path 5580 * 5581 * When a SIM is created, it registers a bus with a NEWBUS device_t. This is 5582 * stored in the internal cam_eb bus structure. There is no guarnatee any given 5583 * path will have a @c device_t associated with it (it's legal to call @c 5584 * xpt_bus_register with a @c NULL @c device_t. 5585 * 5586 * @param path Path to return the device_t for. 5587 */ 5588 device_t 5589 xpt_path_sim_device(const struct cam_path *path) 5590 { 5591 return (path->bus->parent_dev); 5592 } 5593 5594 struct kv 5595 { 5596 uint32_t v; 5597 const char *name; 5598 }; 5599 5600 static struct kv map[] = { 5601 { XPT_NOOP, "XPT_NOOP" }, 5602 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5603 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5604 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5605 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5606 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5607 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5608 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5609 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5610 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5611 { XPT_DEBUG, "XPT_DEBUG" }, 5612 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5613 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5614 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5615 { XPT_ASYNC, "XPT_ASYNC" }, 5616 { XPT_ABORT, "XPT_ABORT" }, 5617 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5618 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5619 { XPT_TERM_IO, "XPT_TERM_IO" }, 5620 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5621 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5622 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5623 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5624 { XPT_ATA_IO, "XPT_ATA_IO" }, 5625 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5626 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5627 { XPT_NVME_IO, "XPT_NVME_IO" }, 5628 { XPT_MMC_IO, "XPT_MMC_IO" }, 5629 { XPT_SMP_IO, "XPT_SMP_IO" }, 5630 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5631 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5632 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5633 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5634 { XPT_EN_LUN, "XPT_EN_LUN" }, 5635 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5636 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5637 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5638 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5639 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5640 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5641 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5642 { 0, 0 } 5643 }; 5644 5645 const char * 5646 xpt_action_name(uint32_t action) 5647 { 5648 static char buffer[32]; /* Only for unknown messages -- racy */ 5649 struct kv *walker = map; 5650 5651 while (walker->name != NULL) { 5652 if (walker->v == action) 5653 return (walker->name); 5654 walker++; 5655 } 5656 5657 snprintf(buffer, sizeof(buffer), "%#x", action); 5658 return (buffer); 5659 } 5660