xref: /freebsd/sys/cam/cam_xpt.c (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/md_var.h>	/* geometry translation */
75 #include <machine/stdarg.h>	/* for xpt_print below */
76 
77 #include "opt_cam.h"
78 
79 /* Wild guess based on not wanting to grow the stack too much */
80 #define XPT_PRINT_MAXLEN	512
81 #ifdef PRINTF_BUFR_SIZE
82 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
83 #else
84 #define XPT_PRINT_LEN	128
85 #endif
86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
87 
88 /*
89  * This is the maximum number of high powered commands (e.g. start unit)
90  * that can be outstanding at a particular time.
91  */
92 #ifndef CAM_MAX_HIGHPOWER
93 #define CAM_MAX_HIGHPOWER  4
94 #endif
95 
96 /* Datastructures internal to the xpt layer */
97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
101 
102 struct xpt_softc {
103 	uint32_t		xpt_generation;
104 
105 	/* number of high powered commands that can go through right now */
106 	struct mtx		xpt_highpower_lock;
107 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
108 	int			num_highpower;
109 
110 	/* queue for handling async rescan requests. */
111 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
112 	int buses_to_config;
113 	int buses_config_done;
114 	int announce_nosbuf;
115 
116 	/*
117 	 * Registered buses
118 	 *
119 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
120 	 * "buses" is preferred.
121 	 */
122 	TAILQ_HEAD(,cam_eb)	xpt_busses;
123 	u_int			bus_generation;
124 
125 	int			boot_delay;
126 	struct callout 		boot_callout;
127 	struct task		boot_task;
128 	struct root_hold_token	xpt_rootmount;
129 
130 	struct mtx		xpt_topo_lock;
131 	struct taskqueue	*xpt_taskq;
132 };
133 
134 typedef enum {
135 	DM_RET_COPY		= 0x01,
136 	DM_RET_FLAG_MASK	= 0x0f,
137 	DM_RET_NONE		= 0x00,
138 	DM_RET_STOP		= 0x10,
139 	DM_RET_DESCEND		= 0x20,
140 	DM_RET_ERROR		= 0x30,
141 	DM_RET_ACTION_MASK	= 0xf0
142 } dev_match_ret;
143 
144 typedef enum {
145 	XPT_DEPTH_BUS,
146 	XPT_DEPTH_TARGET,
147 	XPT_DEPTH_DEVICE,
148 	XPT_DEPTH_PERIPH
149 } xpt_traverse_depth;
150 
151 struct xpt_traverse_config {
152 	xpt_traverse_depth	depth;
153 	void			*tr_func;
154 	void			*tr_arg;
155 };
156 
157 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
158 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
159 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
160 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
161 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
162 
163 /* Transport layer configuration information */
164 static struct xpt_softc xsoftc;
165 
166 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
167 
168 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
169            &xsoftc.boot_delay, 0, "Bus registration wait time");
170 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
171 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
172 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
173 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
174 
175 struct cam_doneq {
176 	struct mtx_padalign	cam_doneq_mtx;
177 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
178 	int			cam_doneq_sleep;
179 };
180 
181 static struct cam_doneq cam_doneqs[MAXCPU];
182 static int cam_num_doneqs;
183 static struct proc *cam_proc;
184 
185 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
186            &cam_num_doneqs, 0, "Number of completion queues/threads");
187 
188 struct cam_periph *xpt_periph;
189 
190 static periph_init_t xpt_periph_init;
191 
192 static struct periph_driver xpt_driver =
193 {
194 	xpt_periph_init, "xpt",
195 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
196 	CAM_PERIPH_DRV_EARLY
197 };
198 
199 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
200 
201 static d_open_t xptopen;
202 static d_close_t xptclose;
203 static d_ioctl_t xptioctl;
204 static d_ioctl_t xptdoioctl;
205 
206 static struct cdevsw xpt_cdevsw = {
207 	.d_version =	D_VERSION,
208 	.d_flags =	0,
209 	.d_open =	xptopen,
210 	.d_close =	xptclose,
211 	.d_ioctl =	xptioctl,
212 	.d_name =	"xpt",
213 };
214 
215 /* Storage for debugging datastructures */
216 struct cam_path *cam_dpath;
217 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
218 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
219 	&cam_dflags, 0, "Enabled debug flags");
220 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
221 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
222 	&cam_debug_delay, 0, "Delay in us after each debug message");
223 
224 /* Our boot-time initialization hook */
225 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
226 
227 static moduledata_t cam_moduledata = {
228 	"cam",
229 	cam_module_event_handler,
230 	NULL
231 };
232 
233 static int	xpt_init(void *);
234 
235 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
236 MODULE_VERSION(cam, 1);
237 
238 
239 static void		xpt_async_bcast(struct async_list *async_head,
240 					u_int32_t async_code,
241 					struct cam_path *path,
242 					void *async_arg);
243 static path_id_t xptnextfreepathid(void);
244 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
245 static union ccb *xpt_get_ccb(struct cam_periph *periph);
246 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
247 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
248 static void	 xpt_run_allocq_task(void *context, int pending);
249 static void	 xpt_run_devq(struct cam_devq *devq);
250 static callout_func_t xpt_release_devq_timeout;
251 static void	 xpt_acquire_bus(struct cam_eb *bus);
252 static void	 xpt_release_bus(struct cam_eb *bus);
253 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
254 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
255 		    int run_queue);
256 static struct cam_et*
257 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
258 static void	 xpt_acquire_target(struct cam_et *target);
259 static void	 xpt_release_target(struct cam_et *target);
260 static struct cam_eb*
261 		 xpt_find_bus(path_id_t path_id);
262 static struct cam_et*
263 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
264 static struct cam_ed*
265 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
266 static void	 xpt_config(void *arg);
267 static void	 xpt_hold_boot_locked(void);
268 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
269 				 u_int32_t new_priority);
270 static xpt_devicefunc_t xptpassannouncefunc;
271 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
272 static void	 xptpoll(struct cam_sim *sim);
273 static void	 camisr_runqueue(void);
274 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
275 static void	 xpt_done_td(void *);
276 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
277 				    u_int num_patterns, struct cam_eb *bus);
278 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
279 				       u_int num_patterns,
280 				       struct cam_ed *device);
281 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
282 				       u_int num_patterns,
283 				       struct cam_periph *periph);
284 static xpt_busfunc_t	xptedtbusfunc;
285 static xpt_targetfunc_t	xptedttargetfunc;
286 static xpt_devicefunc_t	xptedtdevicefunc;
287 static xpt_periphfunc_t	xptedtperiphfunc;
288 static xpt_pdrvfunc_t	xptplistpdrvfunc;
289 static xpt_periphfunc_t	xptplistperiphfunc;
290 static int		xptedtmatch(struct ccb_dev_match *cdm);
291 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
292 static int		xptbustraverse(struct cam_eb *start_bus,
293 				       xpt_busfunc_t *tr_func, void *arg);
294 static int		xpttargettraverse(struct cam_eb *bus,
295 					  struct cam_et *start_target,
296 					  xpt_targetfunc_t *tr_func, void *arg);
297 static int		xptdevicetraverse(struct cam_et *target,
298 					  struct cam_ed *start_device,
299 					  xpt_devicefunc_t *tr_func, void *arg);
300 static int		xptperiphtraverse(struct cam_ed *device,
301 					  struct cam_periph *start_periph,
302 					  xpt_periphfunc_t *tr_func, void *arg);
303 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
304 					xpt_pdrvfunc_t *tr_func, void *arg);
305 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
306 					    struct cam_periph *start_periph,
307 					    xpt_periphfunc_t *tr_func,
308 					    void *arg);
309 static xpt_busfunc_t	xptdefbusfunc;
310 static xpt_targetfunc_t	xptdeftargetfunc;
311 static xpt_devicefunc_t	xptdefdevicefunc;
312 static xpt_periphfunc_t	xptdefperiphfunc;
313 static void		xpt_finishconfig_task(void *context, int pending);
314 static void		xpt_dev_async_default(u_int32_t async_code,
315 					      struct cam_eb *bus,
316 					      struct cam_et *target,
317 					      struct cam_ed *device,
318 					      void *async_arg);
319 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
320 						 struct cam_et *target,
321 						 lun_id_t lun_id);
322 static xpt_devicefunc_t	xptsetasyncfunc;
323 static xpt_busfunc_t	xptsetasyncbusfunc;
324 static cam_status	xptregister(struct cam_periph *periph,
325 				    void *arg);
326 static __inline int device_is_queued(struct cam_ed *device);
327 
328 static __inline int
329 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
330 {
331 	int	retval;
332 
333 	mtx_assert(&devq->send_mtx, MA_OWNED);
334 	if ((dev->ccbq.queue.entries > 0) &&
335 	    (dev->ccbq.dev_openings > 0) &&
336 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
337 		/*
338 		 * The priority of a device waiting for controller
339 		 * resources is that of the highest priority CCB
340 		 * enqueued.
341 		 */
342 		retval =
343 		    xpt_schedule_dev(&devq->send_queue,
344 				     &dev->devq_entry,
345 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
346 	} else {
347 		retval = 0;
348 	}
349 	return (retval);
350 }
351 
352 static __inline int
353 device_is_queued(struct cam_ed *device)
354 {
355 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
356 }
357 
358 static void
359 xpt_periph_init()
360 {
361 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
362 }
363 
364 static int
365 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
366 {
367 
368 	/*
369 	 * Only allow read-write access.
370 	 */
371 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
372 		return(EPERM);
373 
374 	/*
375 	 * We don't allow nonblocking access.
376 	 */
377 	if ((flags & O_NONBLOCK) != 0) {
378 		printf("%s: can't do nonblocking access\n", devtoname(dev));
379 		return(ENODEV);
380 	}
381 
382 	return(0);
383 }
384 
385 static int
386 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
387 {
388 
389 	return(0);
390 }
391 
392 /*
393  * Don't automatically grab the xpt softc lock here even though this is going
394  * through the xpt device.  The xpt device is really just a back door for
395  * accessing other devices and SIMs, so the right thing to do is to grab
396  * the appropriate SIM lock once the bus/SIM is located.
397  */
398 static int
399 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
400 {
401 	int error;
402 
403 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
404 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
405 	}
406 	return (error);
407 }
408 
409 static int
410 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
411 {
412 	int error;
413 
414 	error = 0;
415 
416 	switch(cmd) {
417 	/*
418 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
419 	 * to accept CCB types that don't quite make sense to send through a
420 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
421 	 * in the CAM spec.
422 	 */
423 	case CAMIOCOMMAND: {
424 		union ccb *ccb;
425 		union ccb *inccb;
426 		struct cam_eb *bus;
427 
428 		inccb = (union ccb *)addr;
429 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
430 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
431 			inccb->csio.bio = NULL;
432 #endif
433 
434 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
435 			return (EINVAL);
436 
437 		bus = xpt_find_bus(inccb->ccb_h.path_id);
438 		if (bus == NULL)
439 			return (EINVAL);
440 
441 		switch (inccb->ccb_h.func_code) {
442 		case XPT_SCAN_BUS:
443 		case XPT_RESET_BUS:
444 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
445 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
446 				xpt_release_bus(bus);
447 				return (EINVAL);
448 			}
449 			break;
450 		case XPT_SCAN_TGT:
451 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
452 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
453 				xpt_release_bus(bus);
454 				return (EINVAL);
455 			}
456 			break;
457 		default:
458 			break;
459 		}
460 
461 		switch(inccb->ccb_h.func_code) {
462 		case XPT_SCAN_BUS:
463 		case XPT_RESET_BUS:
464 		case XPT_PATH_INQ:
465 		case XPT_ENG_INQ:
466 		case XPT_SCAN_LUN:
467 		case XPT_SCAN_TGT:
468 
469 			ccb = xpt_alloc_ccb();
470 
471 			/*
472 			 * Create a path using the bus, target, and lun the
473 			 * user passed in.
474 			 */
475 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
476 					    inccb->ccb_h.path_id,
477 					    inccb->ccb_h.target_id,
478 					    inccb->ccb_h.target_lun) !=
479 					    CAM_REQ_CMP){
480 				error = EINVAL;
481 				xpt_free_ccb(ccb);
482 				break;
483 			}
484 			/* Ensure all of our fields are correct */
485 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
486 				      inccb->ccb_h.pinfo.priority);
487 			xpt_merge_ccb(ccb, inccb);
488 			xpt_path_lock(ccb->ccb_h.path);
489 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
490 			xpt_path_unlock(ccb->ccb_h.path);
491 			bcopy(ccb, inccb, sizeof(union ccb));
492 			xpt_free_path(ccb->ccb_h.path);
493 			xpt_free_ccb(ccb);
494 			break;
495 
496 		case XPT_DEBUG: {
497 			union ccb ccb;
498 
499 			/*
500 			 * This is an immediate CCB, so it's okay to
501 			 * allocate it on the stack.
502 			 */
503 
504 			/*
505 			 * Create a path using the bus, target, and lun the
506 			 * user passed in.
507 			 */
508 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
509 					    inccb->ccb_h.path_id,
510 					    inccb->ccb_h.target_id,
511 					    inccb->ccb_h.target_lun) !=
512 					    CAM_REQ_CMP){
513 				error = EINVAL;
514 				break;
515 			}
516 			/* Ensure all of our fields are correct */
517 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
518 				      inccb->ccb_h.pinfo.priority);
519 			xpt_merge_ccb(&ccb, inccb);
520 			xpt_action(&ccb);
521 			bcopy(&ccb, inccb, sizeof(union ccb));
522 			xpt_free_path(ccb.ccb_h.path);
523 			break;
524 
525 		}
526 		case XPT_DEV_MATCH: {
527 			struct cam_periph_map_info mapinfo;
528 			struct cam_path *old_path;
529 
530 			/*
531 			 * We can't deal with physical addresses for this
532 			 * type of transaction.
533 			 */
534 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
535 			    CAM_DATA_VADDR) {
536 				error = EINVAL;
537 				break;
538 			}
539 
540 			/*
541 			 * Save this in case the caller had it set to
542 			 * something in particular.
543 			 */
544 			old_path = inccb->ccb_h.path;
545 
546 			/*
547 			 * We really don't need a path for the matching
548 			 * code.  The path is needed because of the
549 			 * debugging statements in xpt_action().  They
550 			 * assume that the CCB has a valid path.
551 			 */
552 			inccb->ccb_h.path = xpt_periph->path;
553 
554 			bzero(&mapinfo, sizeof(mapinfo));
555 
556 			/*
557 			 * Map the pattern and match buffers into kernel
558 			 * virtual address space.
559 			 */
560 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
561 
562 			if (error) {
563 				inccb->ccb_h.path = old_path;
564 				break;
565 			}
566 
567 			/*
568 			 * This is an immediate CCB, we can send it on directly.
569 			 */
570 			xpt_action(inccb);
571 
572 			/*
573 			 * Map the buffers back into user space.
574 			 */
575 			cam_periph_unmapmem(inccb, &mapinfo);
576 
577 			inccb->ccb_h.path = old_path;
578 
579 			error = 0;
580 			break;
581 		}
582 		default:
583 			error = ENOTSUP;
584 			break;
585 		}
586 		xpt_release_bus(bus);
587 		break;
588 	}
589 	/*
590 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
591 	 * with the periphal driver name and unit name filled in.  The other
592 	 * fields don't really matter as input.  The passthrough driver name
593 	 * ("pass"), and unit number are passed back in the ccb.  The current
594 	 * device generation number, and the index into the device peripheral
595 	 * driver list, and the status are also passed back.  Note that
596 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
597 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
598 	 * (or rather should be) impossible for the device peripheral driver
599 	 * list to change since we look at the whole thing in one pass, and
600 	 * we do it with lock protection.
601 	 *
602 	 */
603 	case CAMGETPASSTHRU: {
604 		union ccb *ccb;
605 		struct cam_periph *periph;
606 		struct periph_driver **p_drv;
607 		char   *name;
608 		u_int unit;
609 		int base_periph_found;
610 
611 		ccb = (union ccb *)addr;
612 		unit = ccb->cgdl.unit_number;
613 		name = ccb->cgdl.periph_name;
614 		base_periph_found = 0;
615 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
616 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
617 			ccb->csio.bio = NULL;
618 #endif
619 
620 		/*
621 		 * Sanity check -- make sure we don't get a null peripheral
622 		 * driver name.
623 		 */
624 		if (*ccb->cgdl.periph_name == '\0') {
625 			error = EINVAL;
626 			break;
627 		}
628 
629 		/* Keep the list from changing while we traverse it */
630 		xpt_lock_buses();
631 
632 		/* first find our driver in the list of drivers */
633 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
634 			if (strcmp((*p_drv)->driver_name, name) == 0)
635 				break;
636 
637 		if (*p_drv == NULL) {
638 			xpt_unlock_buses();
639 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
640 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
641 			*ccb->cgdl.periph_name = '\0';
642 			ccb->cgdl.unit_number = 0;
643 			error = ENOENT;
644 			break;
645 		}
646 
647 		/*
648 		 * Run through every peripheral instance of this driver
649 		 * and check to see whether it matches the unit passed
650 		 * in by the user.  If it does, get out of the loops and
651 		 * find the passthrough driver associated with that
652 		 * peripheral driver.
653 		 */
654 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
655 		     periph = TAILQ_NEXT(periph, unit_links)) {
656 
657 			if (periph->unit_number == unit)
658 				break;
659 		}
660 		/*
661 		 * If we found the peripheral driver that the user passed
662 		 * in, go through all of the peripheral drivers for that
663 		 * particular device and look for a passthrough driver.
664 		 */
665 		if (periph != NULL) {
666 			struct cam_ed *device;
667 			int i;
668 
669 			base_periph_found = 1;
670 			device = periph->path->device;
671 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
672 			     periph != NULL;
673 			     periph = SLIST_NEXT(periph, periph_links), i++) {
674 				/*
675 				 * Check to see whether we have a
676 				 * passthrough device or not.
677 				 */
678 				if (strcmp(periph->periph_name, "pass") == 0) {
679 					/*
680 					 * Fill in the getdevlist fields.
681 					 */
682 					strlcpy(ccb->cgdl.periph_name,
683 					       periph->periph_name,
684 					       sizeof(ccb->cgdl.periph_name));
685 					ccb->cgdl.unit_number =
686 						periph->unit_number;
687 					if (SLIST_NEXT(periph, periph_links))
688 						ccb->cgdl.status =
689 							CAM_GDEVLIST_MORE_DEVS;
690 					else
691 						ccb->cgdl.status =
692 						       CAM_GDEVLIST_LAST_DEVICE;
693 					ccb->cgdl.generation =
694 						device->generation;
695 					ccb->cgdl.index = i;
696 					/*
697 					 * Fill in some CCB header fields
698 					 * that the user may want.
699 					 */
700 					ccb->ccb_h.path_id =
701 						periph->path->bus->path_id;
702 					ccb->ccb_h.target_id =
703 						periph->path->target->target_id;
704 					ccb->ccb_h.target_lun =
705 						periph->path->device->lun_id;
706 					ccb->ccb_h.status = CAM_REQ_CMP;
707 					break;
708 				}
709 			}
710 		}
711 
712 		/*
713 		 * If the periph is null here, one of two things has
714 		 * happened.  The first possibility is that we couldn't
715 		 * find the unit number of the particular peripheral driver
716 		 * that the user is asking about.  e.g. the user asks for
717 		 * the passthrough driver for "da11".  We find the list of
718 		 * "da" peripherals all right, but there is no unit 11.
719 		 * The other possibility is that we went through the list
720 		 * of peripheral drivers attached to the device structure,
721 		 * but didn't find one with the name "pass".  Either way,
722 		 * we return ENOENT, since we couldn't find something.
723 		 */
724 		if (periph == NULL) {
725 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
726 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
727 			*ccb->cgdl.periph_name = '\0';
728 			ccb->cgdl.unit_number = 0;
729 			error = ENOENT;
730 			/*
731 			 * It is unfortunate that this is even necessary,
732 			 * but there are many, many clueless users out there.
733 			 * If this is true, the user is looking for the
734 			 * passthrough driver, but doesn't have one in his
735 			 * kernel.
736 			 */
737 			if (base_periph_found == 1) {
738 				printf("xptioctl: pass driver is not in the "
739 				       "kernel\n");
740 				printf("xptioctl: put \"device pass\" in "
741 				       "your kernel config file\n");
742 			}
743 		}
744 		xpt_unlock_buses();
745 		break;
746 		}
747 	default:
748 		error = ENOTTY;
749 		break;
750 	}
751 
752 	return(error);
753 }
754 
755 static int
756 cam_module_event_handler(module_t mod, int what, void *arg)
757 {
758 	int error;
759 
760 	switch (what) {
761 	case MOD_LOAD:
762 		if ((error = xpt_init(NULL)) != 0)
763 			return (error);
764 		break;
765 	case MOD_UNLOAD:
766 		return EBUSY;
767 	default:
768 		return EOPNOTSUPP;
769 	}
770 
771 	return 0;
772 }
773 
774 static struct xpt_proto *
775 xpt_proto_find(cam_proto proto)
776 {
777 	struct xpt_proto **pp;
778 
779 	SET_FOREACH(pp, cam_xpt_proto_set) {
780 		if ((*pp)->proto == proto)
781 			return *pp;
782 	}
783 
784 	return NULL;
785 }
786 
787 static void
788 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
789 {
790 
791 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
792 		xpt_free_path(done_ccb->ccb_h.path);
793 		xpt_free_ccb(done_ccb);
794 	} else {
795 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
796 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
797 	}
798 	xpt_release_boot();
799 }
800 
801 /* thread to handle bus rescans */
802 static void
803 xpt_scanner_thread(void *dummy)
804 {
805 	union ccb	*ccb;
806 	struct cam_path	 path;
807 
808 	xpt_lock_buses();
809 	for (;;) {
810 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
811 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
812 			       "-", 0);
813 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
814 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
815 			xpt_unlock_buses();
816 
817 			/*
818 			 * Since lock can be dropped inside and path freed
819 			 * by completion callback even before return here,
820 			 * take our own path copy for reference.
821 			 */
822 			xpt_copy_path(&path, ccb->ccb_h.path);
823 			xpt_path_lock(&path);
824 			xpt_action(ccb);
825 			xpt_path_unlock(&path);
826 			xpt_release_path(&path);
827 
828 			xpt_lock_buses();
829 		}
830 	}
831 }
832 
833 void
834 xpt_rescan(union ccb *ccb)
835 {
836 	struct ccb_hdr *hdr;
837 
838 	/* Prepare request */
839 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
840 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
841 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
842 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
843 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
844 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
845 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
846 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
847 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
848 	else {
849 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
850 		xpt_free_path(ccb->ccb_h.path);
851 		xpt_free_ccb(ccb);
852 		return;
853 	}
854 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
855 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
856  		xpt_action_name(ccb->ccb_h.func_code)));
857 
858 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
859 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
860 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
861 	/* Don't make duplicate entries for the same paths. */
862 	xpt_lock_buses();
863 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
864 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
865 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
866 				wakeup(&xsoftc.ccb_scanq);
867 				xpt_unlock_buses();
868 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
869 				xpt_free_path(ccb->ccb_h.path);
870 				xpt_free_ccb(ccb);
871 				return;
872 			}
873 		}
874 	}
875 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
876 	xpt_hold_boot_locked();
877 	wakeup(&xsoftc.ccb_scanq);
878 	xpt_unlock_buses();
879 }
880 
881 /* Functions accessed by the peripheral drivers */
882 static int
883 xpt_init(void *dummy)
884 {
885 	struct cam_sim *xpt_sim;
886 	struct cam_path *path;
887 	struct cam_devq *devq;
888 	cam_status status;
889 	int error, i;
890 
891 	TAILQ_INIT(&xsoftc.xpt_busses);
892 	TAILQ_INIT(&xsoftc.ccb_scanq);
893 	STAILQ_INIT(&xsoftc.highpowerq);
894 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
895 
896 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
897 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
898 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
899 
900 #ifdef CAM_BOOT_DELAY
901 	/*
902 	 * Override this value at compile time to assist our users
903 	 * who don't use loader to boot a kernel.
904 	 */
905 	xsoftc.boot_delay = CAM_BOOT_DELAY;
906 #endif
907 
908 	/*
909 	 * The xpt layer is, itself, the equivalent of a SIM.
910 	 * Allow 16 ccbs in the ccb pool for it.  This should
911 	 * give decent parallelism when we probe buses and
912 	 * perform other XPT functions.
913 	 */
914 	devq = cam_simq_alloc(16);
915 	xpt_sim = cam_sim_alloc(xptaction,
916 				xptpoll,
917 				"xpt",
918 				/*softc*/NULL,
919 				/*unit*/0,
920 				/*mtx*/NULL,
921 				/*max_dev_transactions*/0,
922 				/*max_tagged_dev_transactions*/0,
923 				devq);
924 	if (xpt_sim == NULL)
925 		return (ENOMEM);
926 
927 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
928 		printf("xpt_init: xpt_bus_register failed with status %#x,"
929 		       " failing attach\n", status);
930 		return (EINVAL);
931 	}
932 
933 	/*
934 	 * Looking at the XPT from the SIM layer, the XPT is
935 	 * the equivalent of a peripheral driver.  Allocate
936 	 * a peripheral driver entry for us.
937 	 */
938 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
939 				      CAM_TARGET_WILDCARD,
940 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
941 		printf("xpt_init: xpt_create_path failed with status %#x,"
942 		       " failing attach\n", status);
943 		return (EINVAL);
944 	}
945 	xpt_path_lock(path);
946 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
947 			 path, NULL, 0, xpt_sim);
948 	xpt_path_unlock(path);
949 	xpt_free_path(path);
950 
951 	if (cam_num_doneqs < 1)
952 		cam_num_doneqs = 1 + mp_ncpus / 6;
953 	else if (cam_num_doneqs > MAXCPU)
954 		cam_num_doneqs = MAXCPU;
955 	for (i = 0; i < cam_num_doneqs; i++) {
956 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
957 		    MTX_DEF);
958 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
959 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
960 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
961 		if (error != 0) {
962 			cam_num_doneqs = i;
963 			break;
964 		}
965 	}
966 	if (cam_num_doneqs < 1) {
967 		printf("xpt_init: Cannot init completion queues "
968 		       "- failing attach\n");
969 		return (ENOMEM);
970 	}
971 
972 	/*
973 	 * Register a callback for when interrupts are enabled.
974 	 */
975 	config_intrhook_oneshot(xpt_config, NULL);
976 
977 	return (0);
978 }
979 
980 static cam_status
981 xptregister(struct cam_periph *periph, void *arg)
982 {
983 	struct cam_sim *xpt_sim;
984 
985 	if (periph == NULL) {
986 		printf("xptregister: periph was NULL!!\n");
987 		return(CAM_REQ_CMP_ERR);
988 	}
989 
990 	xpt_sim = (struct cam_sim *)arg;
991 	xpt_sim->softc = periph;
992 	xpt_periph = periph;
993 	periph->softc = NULL;
994 
995 	return(CAM_REQ_CMP);
996 }
997 
998 int32_t
999 xpt_add_periph(struct cam_periph *periph)
1000 {
1001 	struct cam_ed *device;
1002 	int32_t	 status;
1003 
1004 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1005 	device = periph->path->device;
1006 	status = CAM_REQ_CMP;
1007 	if (device != NULL) {
1008 		mtx_lock(&device->target->bus->eb_mtx);
1009 		device->generation++;
1010 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1011 		mtx_unlock(&device->target->bus->eb_mtx);
1012 		atomic_add_32(&xsoftc.xpt_generation, 1);
1013 	}
1014 
1015 	return (status);
1016 }
1017 
1018 void
1019 xpt_remove_periph(struct cam_periph *periph)
1020 {
1021 	struct cam_ed *device;
1022 
1023 	device = periph->path->device;
1024 	if (device != NULL) {
1025 		mtx_lock(&device->target->bus->eb_mtx);
1026 		device->generation++;
1027 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1028 		mtx_unlock(&device->target->bus->eb_mtx);
1029 		atomic_add_32(&xsoftc.xpt_generation, 1);
1030 	}
1031 }
1032 
1033 
1034 void
1035 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1036 {
1037 	struct	cam_path *path = periph->path;
1038 	struct  xpt_proto *proto;
1039 
1040 	cam_periph_assert(periph, MA_OWNED);
1041 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1042 
1043 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1044 	       periph->periph_name, periph->unit_number,
1045 	       path->bus->sim->sim_name,
1046 	       path->bus->sim->unit_number,
1047 	       path->bus->sim->bus_id,
1048 	       path->bus->path_id,
1049 	       path->target->target_id,
1050 	       (uintmax_t)path->device->lun_id);
1051 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1052 	proto = xpt_proto_find(path->device->protocol);
1053 	if (proto)
1054 		proto->ops->announce(path->device);
1055 	else
1056 		printf("%s%d: Unknown protocol device %d\n",
1057 		    periph->periph_name, periph->unit_number,
1058 		    path->device->protocol);
1059 	if (path->device->serial_num_len > 0) {
1060 		/* Don't wrap the screen  - print only the first 60 chars */
1061 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1062 		       periph->unit_number, path->device->serial_num);
1063 	}
1064 	/* Announce transport details. */
1065 	path->bus->xport->ops->announce(periph);
1066 	/* Announce command queueing. */
1067 	if (path->device->inq_flags & SID_CmdQue
1068 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1069 		printf("%s%d: Command Queueing enabled\n",
1070 		       periph->periph_name, periph->unit_number);
1071 	}
1072 	/* Announce caller's details if they've passed in. */
1073 	if (announce_string != NULL)
1074 		printf("%s%d: %s\n", periph->periph_name,
1075 		       periph->unit_number, announce_string);
1076 }
1077 
1078 void
1079 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1080     char *announce_string)
1081 {
1082 	struct	cam_path *path = periph->path;
1083 	struct  xpt_proto *proto;
1084 
1085 	cam_periph_assert(periph, MA_OWNED);
1086 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1087 
1088 	/* Fall back to the non-sbuf method if necessary */
1089 	if (xsoftc.announce_nosbuf != 0) {
1090 		xpt_announce_periph(periph, announce_string);
1091 		return;
1092 	}
1093 	proto = xpt_proto_find(path->device->protocol);
1094 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1095 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1096 		xpt_announce_periph(periph, announce_string);
1097 		return;
1098 	}
1099 
1100 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1101 	    periph->periph_name, periph->unit_number,
1102 	    path->bus->sim->sim_name,
1103 	    path->bus->sim->unit_number,
1104 	    path->bus->sim->bus_id,
1105 	    path->bus->path_id,
1106 	    path->target->target_id,
1107 	    (uintmax_t)path->device->lun_id);
1108 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1109 
1110 	if (proto)
1111 		proto->ops->announce_sbuf(path->device, sb);
1112 	else
1113 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1114 		    periph->periph_name, periph->unit_number,
1115 		    path->device->protocol);
1116 	if (path->device->serial_num_len > 0) {
1117 		/* Don't wrap the screen  - print only the first 60 chars */
1118 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1119 		    periph->periph_name, periph->unit_number,
1120 		    path->device->serial_num);
1121 	}
1122 	/* Announce transport details. */
1123 	path->bus->xport->ops->announce_sbuf(periph, sb);
1124 	/* Announce command queueing. */
1125 	if (path->device->inq_flags & SID_CmdQue
1126 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1127 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1128 		    periph->periph_name, periph->unit_number);
1129 	}
1130 	/* Announce caller's details if they've passed in. */
1131 	if (announce_string != NULL)
1132 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1133 		    periph->unit_number, announce_string);
1134 }
1135 
1136 void
1137 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1138 {
1139 	if (quirks != 0) {
1140 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1141 		    periph->unit_number, quirks, bit_string);
1142 	}
1143 }
1144 
1145 void
1146 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1147 			 int quirks, char *bit_string)
1148 {
1149 	if (xsoftc.announce_nosbuf != 0) {
1150 		xpt_announce_quirks(periph, quirks, bit_string);
1151 		return;
1152 	}
1153 
1154 	if (quirks != 0) {
1155 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1156 		    periph->unit_number, quirks, bit_string);
1157 	}
1158 }
1159 
1160 void
1161 xpt_denounce_periph(struct cam_periph *periph)
1162 {
1163 	struct	cam_path *path = periph->path;
1164 	struct  xpt_proto *proto;
1165 
1166 	cam_periph_assert(periph, MA_OWNED);
1167 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1168 	       periph->periph_name, periph->unit_number,
1169 	       path->bus->sim->sim_name,
1170 	       path->bus->sim->unit_number,
1171 	       path->bus->sim->bus_id,
1172 	       path->bus->path_id,
1173 	       path->target->target_id,
1174 	       (uintmax_t)path->device->lun_id);
1175 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1176 	proto = xpt_proto_find(path->device->protocol);
1177 	if (proto)
1178 		proto->ops->denounce(path->device);
1179 	else
1180 		printf("%s%d: Unknown protocol device %d\n",
1181 		    periph->periph_name, periph->unit_number,
1182 		    path->device->protocol);
1183 	if (path->device->serial_num_len > 0)
1184 		printf(" s/n %.60s", path->device->serial_num);
1185 	printf(" detached\n");
1186 }
1187 
1188 void
1189 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1190 {
1191 	struct cam_path *path = periph->path;
1192 	struct xpt_proto *proto;
1193 
1194 	cam_periph_assert(periph, MA_OWNED);
1195 
1196 	/* Fall back to the non-sbuf method if necessary */
1197 	if (xsoftc.announce_nosbuf != 0) {
1198 		xpt_denounce_periph(periph);
1199 		return;
1200 	}
1201 	proto = xpt_proto_find(path->device->protocol);
1202 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1203 		xpt_denounce_periph(periph);
1204 		return;
1205 	}
1206 
1207 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1208 	    periph->periph_name, periph->unit_number,
1209 	    path->bus->sim->sim_name,
1210 	    path->bus->sim->unit_number,
1211 	    path->bus->sim->bus_id,
1212 	    path->bus->path_id,
1213 	    path->target->target_id,
1214 	    (uintmax_t)path->device->lun_id);
1215 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1216 
1217 	if (proto)
1218 		proto->ops->denounce_sbuf(path->device, sb);
1219 	else
1220 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1221 		    periph->periph_name, periph->unit_number,
1222 		    path->device->protocol);
1223 	if (path->device->serial_num_len > 0)
1224 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1225 	sbuf_printf(sb, " detached\n");
1226 }
1227 
1228 int
1229 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1230 {
1231 	int ret = -1, l, o;
1232 	struct ccb_dev_advinfo cdai;
1233 	struct scsi_vpd_device_id *did;
1234 	struct scsi_vpd_id_descriptor *idd;
1235 
1236 	xpt_path_assert(path, MA_OWNED);
1237 
1238 	memset(&cdai, 0, sizeof(cdai));
1239 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1240 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1241 	cdai.flags = CDAI_FLAG_NONE;
1242 	cdai.bufsiz = len;
1243 	cdai.buf = buf;
1244 
1245 	if (!strcmp(attr, "GEOM::ident"))
1246 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1247 	else if (!strcmp(attr, "GEOM::physpath"))
1248 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1249 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1250 		 strcmp(attr, "GEOM::lunname") == 0) {
1251 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1252 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1253 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1254 		if (cdai.buf == NULL) {
1255 			ret = ENOMEM;
1256 			goto out;
1257 		}
1258 	} else
1259 		goto out;
1260 
1261 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1262 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1263 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1264 	if (cdai.provsiz == 0)
1265 		goto out;
1266 	switch(cdai.buftype) {
1267 	case CDAI_TYPE_SCSI_DEVID:
1268 		did = (struct scsi_vpd_device_id *)cdai.buf;
1269 		if (strcmp(attr, "GEOM::lunid") == 0) {
1270 			idd = scsi_get_devid(did, cdai.provsiz,
1271 			    scsi_devid_is_lun_naa);
1272 			if (idd == NULL)
1273 				idd = scsi_get_devid(did, cdai.provsiz,
1274 				    scsi_devid_is_lun_eui64);
1275 			if (idd == NULL)
1276 				idd = scsi_get_devid(did, cdai.provsiz,
1277 				    scsi_devid_is_lun_uuid);
1278 			if (idd == NULL)
1279 				idd = scsi_get_devid(did, cdai.provsiz,
1280 				    scsi_devid_is_lun_md5);
1281 		} else
1282 			idd = NULL;
1283 
1284 		if (idd == NULL)
1285 			idd = scsi_get_devid(did, cdai.provsiz,
1286 			    scsi_devid_is_lun_t10);
1287 		if (idd == NULL)
1288 			idd = scsi_get_devid(did, cdai.provsiz,
1289 			    scsi_devid_is_lun_name);
1290 		if (idd == NULL)
1291 			break;
1292 
1293 		ret = 0;
1294 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1295 		    SVPD_ID_CODESET_ASCII) {
1296 			if (idd->length < len) {
1297 				for (l = 0; l < idd->length; l++)
1298 					buf[l] = idd->identifier[l] ?
1299 					    idd->identifier[l] : ' ';
1300 				buf[l] = 0;
1301 			} else
1302 				ret = EFAULT;
1303 			break;
1304 		}
1305 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1306 		    SVPD_ID_CODESET_UTF8) {
1307 			l = strnlen(idd->identifier, idd->length);
1308 			if (l < len) {
1309 				bcopy(idd->identifier, buf, l);
1310 				buf[l] = 0;
1311 			} else
1312 				ret = EFAULT;
1313 			break;
1314 		}
1315 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1316 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1317 			if ((idd->length - 2) * 2 + 4 >= len) {
1318 				ret = EFAULT;
1319 				break;
1320 			}
1321 			for (l = 2, o = 0; l < idd->length; l++) {
1322 				if (l == 6 || l == 8 || l == 10 || l == 12)
1323 				    o += sprintf(buf + o, "-");
1324 				o += sprintf(buf + o, "%02x",
1325 				    idd->identifier[l]);
1326 			}
1327 			break;
1328 		}
1329 		if (idd->length * 2 < len) {
1330 			for (l = 0; l < idd->length; l++)
1331 				sprintf(buf + l * 2, "%02x",
1332 				    idd->identifier[l]);
1333 		} else
1334 				ret = EFAULT;
1335 		break;
1336 	default:
1337 		if (cdai.provsiz < len) {
1338 			cdai.buf[cdai.provsiz] = 0;
1339 			ret = 0;
1340 		} else
1341 			ret = EFAULT;
1342 		break;
1343 	}
1344 
1345 out:
1346 	if ((char *)cdai.buf != buf)
1347 		free(cdai.buf, M_CAMXPT);
1348 	return ret;
1349 }
1350 
1351 static dev_match_ret
1352 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1353 	    struct cam_eb *bus)
1354 {
1355 	dev_match_ret retval;
1356 	u_int i;
1357 
1358 	retval = DM_RET_NONE;
1359 
1360 	/*
1361 	 * If we aren't given something to match against, that's an error.
1362 	 */
1363 	if (bus == NULL)
1364 		return(DM_RET_ERROR);
1365 
1366 	/*
1367 	 * If there are no match entries, then this bus matches no
1368 	 * matter what.
1369 	 */
1370 	if ((patterns == NULL) || (num_patterns == 0))
1371 		return(DM_RET_DESCEND | DM_RET_COPY);
1372 
1373 	for (i = 0; i < num_patterns; i++) {
1374 		struct bus_match_pattern *cur_pattern;
1375 
1376 		/*
1377 		 * If the pattern in question isn't for a bus node, we
1378 		 * aren't interested.  However, we do indicate to the
1379 		 * calling routine that we should continue descending the
1380 		 * tree, since the user wants to match against lower-level
1381 		 * EDT elements.
1382 		 */
1383 		if (patterns[i].type != DEV_MATCH_BUS) {
1384 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1385 				retval |= DM_RET_DESCEND;
1386 			continue;
1387 		}
1388 
1389 		cur_pattern = &patterns[i].pattern.bus_pattern;
1390 
1391 		/*
1392 		 * If they want to match any bus node, we give them any
1393 		 * device node.
1394 		 */
1395 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1396 			/* set the copy flag */
1397 			retval |= DM_RET_COPY;
1398 
1399 			/*
1400 			 * If we've already decided on an action, go ahead
1401 			 * and return.
1402 			 */
1403 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1404 				return(retval);
1405 		}
1406 
1407 		/*
1408 		 * Not sure why someone would do this...
1409 		 */
1410 		if (cur_pattern->flags == BUS_MATCH_NONE)
1411 			continue;
1412 
1413 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1414 		 && (cur_pattern->path_id != bus->path_id))
1415 			continue;
1416 
1417 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1418 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1419 			continue;
1420 
1421 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1422 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1423 			continue;
1424 
1425 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1426 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1427 			     DEV_IDLEN) != 0))
1428 			continue;
1429 
1430 		/*
1431 		 * If we get to this point, the user definitely wants
1432 		 * information on this bus.  So tell the caller to copy the
1433 		 * data out.
1434 		 */
1435 		retval |= DM_RET_COPY;
1436 
1437 		/*
1438 		 * If the return action has been set to descend, then we
1439 		 * know that we've already seen a non-bus matching
1440 		 * expression, therefore we need to further descend the tree.
1441 		 * This won't change by continuing around the loop, so we
1442 		 * go ahead and return.  If we haven't seen a non-bus
1443 		 * matching expression, we keep going around the loop until
1444 		 * we exhaust the matching expressions.  We'll set the stop
1445 		 * flag once we fall out of the loop.
1446 		 */
1447 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1448 			return(retval);
1449 	}
1450 
1451 	/*
1452 	 * If the return action hasn't been set to descend yet, that means
1453 	 * we haven't seen anything other than bus matching patterns.  So
1454 	 * tell the caller to stop descending the tree -- the user doesn't
1455 	 * want to match against lower level tree elements.
1456 	 */
1457 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1458 		retval |= DM_RET_STOP;
1459 
1460 	return(retval);
1461 }
1462 
1463 static dev_match_ret
1464 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1465 	       struct cam_ed *device)
1466 {
1467 	dev_match_ret retval;
1468 	u_int i;
1469 
1470 	retval = DM_RET_NONE;
1471 
1472 	/*
1473 	 * If we aren't given something to match against, that's an error.
1474 	 */
1475 	if (device == NULL)
1476 		return(DM_RET_ERROR);
1477 
1478 	/*
1479 	 * If there are no match entries, then this device matches no
1480 	 * matter what.
1481 	 */
1482 	if ((patterns == NULL) || (num_patterns == 0))
1483 		return(DM_RET_DESCEND | DM_RET_COPY);
1484 
1485 	for (i = 0; i < num_patterns; i++) {
1486 		struct device_match_pattern *cur_pattern;
1487 		struct scsi_vpd_device_id *device_id_page;
1488 
1489 		/*
1490 		 * If the pattern in question isn't for a device node, we
1491 		 * aren't interested.
1492 		 */
1493 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1494 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1495 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1496 				retval |= DM_RET_DESCEND;
1497 			continue;
1498 		}
1499 
1500 		cur_pattern = &patterns[i].pattern.device_pattern;
1501 
1502 		/* Error out if mutually exclusive options are specified. */
1503 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1504 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1505 			return(DM_RET_ERROR);
1506 
1507 		/*
1508 		 * If they want to match any device node, we give them any
1509 		 * device node.
1510 		 */
1511 		if (cur_pattern->flags == DEV_MATCH_ANY)
1512 			goto copy_dev_node;
1513 
1514 		/*
1515 		 * Not sure why someone would do this...
1516 		 */
1517 		if (cur_pattern->flags == DEV_MATCH_NONE)
1518 			continue;
1519 
1520 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1521 		 && (cur_pattern->path_id != device->target->bus->path_id))
1522 			continue;
1523 
1524 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1525 		 && (cur_pattern->target_id != device->target->target_id))
1526 			continue;
1527 
1528 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1529 		 && (cur_pattern->target_lun != device->lun_id))
1530 			continue;
1531 
1532 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1533 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1534 				    (caddr_t)&cur_pattern->data.inq_pat,
1535 				    1, sizeof(cur_pattern->data.inq_pat),
1536 				    scsi_static_inquiry_match) == NULL))
1537 			continue;
1538 
1539 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1540 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1541 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1542 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1543 				      device->device_id_len
1544 				    - SVPD_DEVICE_ID_HDR_LEN,
1545 				      cur_pattern->data.devid_pat.id,
1546 				      cur_pattern->data.devid_pat.id_len) != 0))
1547 			continue;
1548 
1549 copy_dev_node:
1550 		/*
1551 		 * If we get to this point, the user definitely wants
1552 		 * information on this device.  So tell the caller to copy
1553 		 * the data out.
1554 		 */
1555 		retval |= DM_RET_COPY;
1556 
1557 		/*
1558 		 * If the return action has been set to descend, then we
1559 		 * know that we've already seen a peripheral matching
1560 		 * expression, therefore we need to further descend the tree.
1561 		 * This won't change by continuing around the loop, so we
1562 		 * go ahead and return.  If we haven't seen a peripheral
1563 		 * matching expression, we keep going around the loop until
1564 		 * we exhaust the matching expressions.  We'll set the stop
1565 		 * flag once we fall out of the loop.
1566 		 */
1567 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1568 			return(retval);
1569 	}
1570 
1571 	/*
1572 	 * If the return action hasn't been set to descend yet, that means
1573 	 * we haven't seen any peripheral matching patterns.  So tell the
1574 	 * caller to stop descending the tree -- the user doesn't want to
1575 	 * match against lower level tree elements.
1576 	 */
1577 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1578 		retval |= DM_RET_STOP;
1579 
1580 	return(retval);
1581 }
1582 
1583 /*
1584  * Match a single peripheral against any number of match patterns.
1585  */
1586 static dev_match_ret
1587 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1588 	       struct cam_periph *periph)
1589 {
1590 	dev_match_ret retval;
1591 	u_int i;
1592 
1593 	/*
1594 	 * If we aren't given something to match against, that's an error.
1595 	 */
1596 	if (periph == NULL)
1597 		return(DM_RET_ERROR);
1598 
1599 	/*
1600 	 * If there are no match entries, then this peripheral matches no
1601 	 * matter what.
1602 	 */
1603 	if ((patterns == NULL) || (num_patterns == 0))
1604 		return(DM_RET_STOP | DM_RET_COPY);
1605 
1606 	/*
1607 	 * There aren't any nodes below a peripheral node, so there's no
1608 	 * reason to descend the tree any further.
1609 	 */
1610 	retval = DM_RET_STOP;
1611 
1612 	for (i = 0; i < num_patterns; i++) {
1613 		struct periph_match_pattern *cur_pattern;
1614 
1615 		/*
1616 		 * If the pattern in question isn't for a peripheral, we
1617 		 * aren't interested.
1618 		 */
1619 		if (patterns[i].type != DEV_MATCH_PERIPH)
1620 			continue;
1621 
1622 		cur_pattern = &patterns[i].pattern.periph_pattern;
1623 
1624 		/*
1625 		 * If they want to match on anything, then we will do so.
1626 		 */
1627 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1628 			/* set the copy flag */
1629 			retval |= DM_RET_COPY;
1630 
1631 			/*
1632 			 * We've already set the return action to stop,
1633 			 * since there are no nodes below peripherals in
1634 			 * the tree.
1635 			 */
1636 			return(retval);
1637 		}
1638 
1639 		/*
1640 		 * Not sure why someone would do this...
1641 		 */
1642 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1643 			continue;
1644 
1645 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1646 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1647 			continue;
1648 
1649 		/*
1650 		 * For the target and lun id's, we have to make sure the
1651 		 * target and lun pointers aren't NULL.  The xpt peripheral
1652 		 * has a wildcard target and device.
1653 		 */
1654 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1655 		 && ((periph->path->target == NULL)
1656 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1657 			continue;
1658 
1659 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1660 		 && ((periph->path->device == NULL)
1661 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1662 			continue;
1663 
1664 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1665 		 && (cur_pattern->unit_number != periph->unit_number))
1666 			continue;
1667 
1668 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1669 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1670 			     DEV_IDLEN) != 0))
1671 			continue;
1672 
1673 		/*
1674 		 * If we get to this point, the user definitely wants
1675 		 * information on this peripheral.  So tell the caller to
1676 		 * copy the data out.
1677 		 */
1678 		retval |= DM_RET_COPY;
1679 
1680 		/*
1681 		 * The return action has already been set to stop, since
1682 		 * peripherals don't have any nodes below them in the EDT.
1683 		 */
1684 		return(retval);
1685 	}
1686 
1687 	/*
1688 	 * If we get to this point, the peripheral that was passed in
1689 	 * doesn't match any of the patterns.
1690 	 */
1691 	return(retval);
1692 }
1693 
1694 static int
1695 xptedtbusfunc(struct cam_eb *bus, void *arg)
1696 {
1697 	struct ccb_dev_match *cdm;
1698 	struct cam_et *target;
1699 	dev_match_ret retval;
1700 
1701 	cdm = (struct ccb_dev_match *)arg;
1702 
1703 	/*
1704 	 * If our position is for something deeper in the tree, that means
1705 	 * that we've already seen this node.  So, we keep going down.
1706 	 */
1707 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1708 	 && (cdm->pos.cookie.bus == bus)
1709 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1710 	 && (cdm->pos.cookie.target != NULL))
1711 		retval = DM_RET_DESCEND;
1712 	else
1713 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1714 
1715 	/*
1716 	 * If we got an error, bail out of the search.
1717 	 */
1718 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1719 		cdm->status = CAM_DEV_MATCH_ERROR;
1720 		return(0);
1721 	}
1722 
1723 	/*
1724 	 * If the copy flag is set, copy this bus out.
1725 	 */
1726 	if (retval & DM_RET_COPY) {
1727 		int spaceleft, j;
1728 
1729 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1730 			sizeof(struct dev_match_result));
1731 
1732 		/*
1733 		 * If we don't have enough space to put in another
1734 		 * match result, save our position and tell the
1735 		 * user there are more devices to check.
1736 		 */
1737 		if (spaceleft < sizeof(struct dev_match_result)) {
1738 			bzero(&cdm->pos, sizeof(cdm->pos));
1739 			cdm->pos.position_type =
1740 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1741 
1742 			cdm->pos.cookie.bus = bus;
1743 			cdm->pos.generations[CAM_BUS_GENERATION]=
1744 				xsoftc.bus_generation;
1745 			cdm->status = CAM_DEV_MATCH_MORE;
1746 			return(0);
1747 		}
1748 		j = cdm->num_matches;
1749 		cdm->num_matches++;
1750 		cdm->matches[j].type = DEV_MATCH_BUS;
1751 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1752 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1753 		cdm->matches[j].result.bus_result.unit_number =
1754 			bus->sim->unit_number;
1755 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1756 			bus->sim->sim_name,
1757 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1758 	}
1759 
1760 	/*
1761 	 * If the user is only interested in buses, there's no
1762 	 * reason to descend to the next level in the tree.
1763 	 */
1764 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1765 		return(1);
1766 
1767 	/*
1768 	 * If there is a target generation recorded, check it to
1769 	 * make sure the target list hasn't changed.
1770 	 */
1771 	mtx_lock(&bus->eb_mtx);
1772 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1773 	 && (cdm->pos.cookie.bus == bus)
1774 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1775 	 && (cdm->pos.cookie.target != NULL)) {
1776 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1777 		    bus->generation)) {
1778 			mtx_unlock(&bus->eb_mtx);
1779 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1780 			return (0);
1781 		}
1782 		target = (struct cam_et *)cdm->pos.cookie.target;
1783 		target->refcount++;
1784 	} else
1785 		target = NULL;
1786 	mtx_unlock(&bus->eb_mtx);
1787 
1788 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1789 }
1790 
1791 static int
1792 xptedttargetfunc(struct cam_et *target, void *arg)
1793 {
1794 	struct ccb_dev_match *cdm;
1795 	struct cam_eb *bus;
1796 	struct cam_ed *device;
1797 
1798 	cdm = (struct ccb_dev_match *)arg;
1799 	bus = target->bus;
1800 
1801 	/*
1802 	 * If there is a device list generation recorded, check it to
1803 	 * make sure the device list hasn't changed.
1804 	 */
1805 	mtx_lock(&bus->eb_mtx);
1806 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1807 	 && (cdm->pos.cookie.bus == bus)
1808 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1809 	 && (cdm->pos.cookie.target == target)
1810 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1811 	 && (cdm->pos.cookie.device != NULL)) {
1812 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1813 		    target->generation) {
1814 			mtx_unlock(&bus->eb_mtx);
1815 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1816 			return(0);
1817 		}
1818 		device = (struct cam_ed *)cdm->pos.cookie.device;
1819 		device->refcount++;
1820 	} else
1821 		device = NULL;
1822 	mtx_unlock(&bus->eb_mtx);
1823 
1824 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1825 }
1826 
1827 static int
1828 xptedtdevicefunc(struct cam_ed *device, void *arg)
1829 {
1830 	struct cam_eb *bus;
1831 	struct cam_periph *periph;
1832 	struct ccb_dev_match *cdm;
1833 	dev_match_ret retval;
1834 
1835 	cdm = (struct ccb_dev_match *)arg;
1836 	bus = device->target->bus;
1837 
1838 	/*
1839 	 * If our position is for something deeper in the tree, that means
1840 	 * that we've already seen this node.  So, we keep going down.
1841 	 */
1842 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1843 	 && (cdm->pos.cookie.device == device)
1844 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1845 	 && (cdm->pos.cookie.periph != NULL))
1846 		retval = DM_RET_DESCEND;
1847 	else
1848 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1849 					device);
1850 
1851 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1852 		cdm->status = CAM_DEV_MATCH_ERROR;
1853 		return(0);
1854 	}
1855 
1856 	/*
1857 	 * If the copy flag is set, copy this device out.
1858 	 */
1859 	if (retval & DM_RET_COPY) {
1860 		int spaceleft, j;
1861 
1862 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1863 			sizeof(struct dev_match_result));
1864 
1865 		/*
1866 		 * If we don't have enough space to put in another
1867 		 * match result, save our position and tell the
1868 		 * user there are more devices to check.
1869 		 */
1870 		if (spaceleft < sizeof(struct dev_match_result)) {
1871 			bzero(&cdm->pos, sizeof(cdm->pos));
1872 			cdm->pos.position_type =
1873 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1874 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1875 
1876 			cdm->pos.cookie.bus = device->target->bus;
1877 			cdm->pos.generations[CAM_BUS_GENERATION]=
1878 				xsoftc.bus_generation;
1879 			cdm->pos.cookie.target = device->target;
1880 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1881 				device->target->bus->generation;
1882 			cdm->pos.cookie.device = device;
1883 			cdm->pos.generations[CAM_DEV_GENERATION] =
1884 				device->target->generation;
1885 			cdm->status = CAM_DEV_MATCH_MORE;
1886 			return(0);
1887 		}
1888 		j = cdm->num_matches;
1889 		cdm->num_matches++;
1890 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1891 		cdm->matches[j].result.device_result.path_id =
1892 			device->target->bus->path_id;
1893 		cdm->matches[j].result.device_result.target_id =
1894 			device->target->target_id;
1895 		cdm->matches[j].result.device_result.target_lun =
1896 			device->lun_id;
1897 		cdm->matches[j].result.device_result.protocol =
1898 			device->protocol;
1899 		bcopy(&device->inq_data,
1900 		      &cdm->matches[j].result.device_result.inq_data,
1901 		      sizeof(struct scsi_inquiry_data));
1902 		bcopy(&device->ident_data,
1903 		      &cdm->matches[j].result.device_result.ident_data,
1904 		      sizeof(struct ata_params));
1905 
1906 		/* Let the user know whether this device is unconfigured */
1907 		if (device->flags & CAM_DEV_UNCONFIGURED)
1908 			cdm->matches[j].result.device_result.flags =
1909 				DEV_RESULT_UNCONFIGURED;
1910 		else
1911 			cdm->matches[j].result.device_result.flags =
1912 				DEV_RESULT_NOFLAG;
1913 	}
1914 
1915 	/*
1916 	 * If the user isn't interested in peripherals, don't descend
1917 	 * the tree any further.
1918 	 */
1919 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1920 		return(1);
1921 
1922 	/*
1923 	 * If there is a peripheral list generation recorded, make sure
1924 	 * it hasn't changed.
1925 	 */
1926 	xpt_lock_buses();
1927 	mtx_lock(&bus->eb_mtx);
1928 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1929 	 && (cdm->pos.cookie.bus == bus)
1930 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1931 	 && (cdm->pos.cookie.target == device->target)
1932 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1933 	 && (cdm->pos.cookie.device == device)
1934 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1935 	 && (cdm->pos.cookie.periph != NULL)) {
1936 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1937 		    device->generation) {
1938 			mtx_unlock(&bus->eb_mtx);
1939 			xpt_unlock_buses();
1940 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1941 			return(0);
1942 		}
1943 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1944 		periph->refcount++;
1945 	} else
1946 		periph = NULL;
1947 	mtx_unlock(&bus->eb_mtx);
1948 	xpt_unlock_buses();
1949 
1950 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1951 }
1952 
1953 static int
1954 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1955 {
1956 	struct ccb_dev_match *cdm;
1957 	dev_match_ret retval;
1958 
1959 	cdm = (struct ccb_dev_match *)arg;
1960 
1961 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1962 
1963 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1964 		cdm->status = CAM_DEV_MATCH_ERROR;
1965 		return(0);
1966 	}
1967 
1968 	/*
1969 	 * If the copy flag is set, copy this peripheral out.
1970 	 */
1971 	if (retval & DM_RET_COPY) {
1972 		int spaceleft, j;
1973 		size_t l;
1974 
1975 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1976 			sizeof(struct dev_match_result));
1977 
1978 		/*
1979 		 * If we don't have enough space to put in another
1980 		 * match result, save our position and tell the
1981 		 * user there are more devices to check.
1982 		 */
1983 		if (spaceleft < sizeof(struct dev_match_result)) {
1984 			bzero(&cdm->pos, sizeof(cdm->pos));
1985 			cdm->pos.position_type =
1986 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1987 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1988 				CAM_DEV_POS_PERIPH;
1989 
1990 			cdm->pos.cookie.bus = periph->path->bus;
1991 			cdm->pos.generations[CAM_BUS_GENERATION]=
1992 				xsoftc.bus_generation;
1993 			cdm->pos.cookie.target = periph->path->target;
1994 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1995 				periph->path->bus->generation;
1996 			cdm->pos.cookie.device = periph->path->device;
1997 			cdm->pos.generations[CAM_DEV_GENERATION] =
1998 				periph->path->target->generation;
1999 			cdm->pos.cookie.periph = periph;
2000 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2001 				periph->path->device->generation;
2002 			cdm->status = CAM_DEV_MATCH_MORE;
2003 			return(0);
2004 		}
2005 
2006 		j = cdm->num_matches;
2007 		cdm->num_matches++;
2008 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2009 		cdm->matches[j].result.periph_result.path_id =
2010 			periph->path->bus->path_id;
2011 		cdm->matches[j].result.periph_result.target_id =
2012 			periph->path->target->target_id;
2013 		cdm->matches[j].result.periph_result.target_lun =
2014 			periph->path->device->lun_id;
2015 		cdm->matches[j].result.periph_result.unit_number =
2016 			periph->unit_number;
2017 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2018 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2019 			periph->periph_name, l);
2020 	}
2021 
2022 	return(1);
2023 }
2024 
2025 static int
2026 xptedtmatch(struct ccb_dev_match *cdm)
2027 {
2028 	struct cam_eb *bus;
2029 	int ret;
2030 
2031 	cdm->num_matches = 0;
2032 
2033 	/*
2034 	 * Check the bus list generation.  If it has changed, the user
2035 	 * needs to reset everything and start over.
2036 	 */
2037 	xpt_lock_buses();
2038 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2039 	 && (cdm->pos.cookie.bus != NULL)) {
2040 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2041 		    xsoftc.bus_generation) {
2042 			xpt_unlock_buses();
2043 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2044 			return(0);
2045 		}
2046 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2047 		bus->refcount++;
2048 	} else
2049 		bus = NULL;
2050 	xpt_unlock_buses();
2051 
2052 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2053 
2054 	/*
2055 	 * If we get back 0, that means that we had to stop before fully
2056 	 * traversing the EDT.  It also means that one of the subroutines
2057 	 * has set the status field to the proper value.  If we get back 1,
2058 	 * we've fully traversed the EDT and copied out any matching entries.
2059 	 */
2060 	if (ret == 1)
2061 		cdm->status = CAM_DEV_MATCH_LAST;
2062 
2063 	return(ret);
2064 }
2065 
2066 static int
2067 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2068 {
2069 	struct cam_periph *periph;
2070 	struct ccb_dev_match *cdm;
2071 
2072 	cdm = (struct ccb_dev_match *)arg;
2073 
2074 	xpt_lock_buses();
2075 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2076 	 && (cdm->pos.cookie.pdrv == pdrv)
2077 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2078 	 && (cdm->pos.cookie.periph != NULL)) {
2079 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2080 		    (*pdrv)->generation) {
2081 			xpt_unlock_buses();
2082 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2083 			return(0);
2084 		}
2085 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2086 		periph->refcount++;
2087 	} else
2088 		periph = NULL;
2089 	xpt_unlock_buses();
2090 
2091 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2092 }
2093 
2094 static int
2095 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2096 {
2097 	struct ccb_dev_match *cdm;
2098 	dev_match_ret retval;
2099 
2100 	cdm = (struct ccb_dev_match *)arg;
2101 
2102 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2103 
2104 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2105 		cdm->status = CAM_DEV_MATCH_ERROR;
2106 		return(0);
2107 	}
2108 
2109 	/*
2110 	 * If the copy flag is set, copy this peripheral out.
2111 	 */
2112 	if (retval & DM_RET_COPY) {
2113 		int spaceleft, j;
2114 		size_t l;
2115 
2116 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2117 			sizeof(struct dev_match_result));
2118 
2119 		/*
2120 		 * If we don't have enough space to put in another
2121 		 * match result, save our position and tell the
2122 		 * user there are more devices to check.
2123 		 */
2124 		if (spaceleft < sizeof(struct dev_match_result)) {
2125 			struct periph_driver **pdrv;
2126 
2127 			pdrv = NULL;
2128 			bzero(&cdm->pos, sizeof(cdm->pos));
2129 			cdm->pos.position_type =
2130 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2131 				CAM_DEV_POS_PERIPH;
2132 
2133 			/*
2134 			 * This may look a bit non-sensical, but it is
2135 			 * actually quite logical.  There are very few
2136 			 * peripheral drivers, and bloating every peripheral
2137 			 * structure with a pointer back to its parent
2138 			 * peripheral driver linker set entry would cost
2139 			 * more in the long run than doing this quick lookup.
2140 			 */
2141 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2142 				if (strcmp((*pdrv)->driver_name,
2143 				    periph->periph_name) == 0)
2144 					break;
2145 			}
2146 
2147 			if (*pdrv == NULL) {
2148 				cdm->status = CAM_DEV_MATCH_ERROR;
2149 				return(0);
2150 			}
2151 
2152 			cdm->pos.cookie.pdrv = pdrv;
2153 			/*
2154 			 * The periph generation slot does double duty, as
2155 			 * does the periph pointer slot.  They are used for
2156 			 * both edt and pdrv lookups and positioning.
2157 			 */
2158 			cdm->pos.cookie.periph = periph;
2159 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2160 				(*pdrv)->generation;
2161 			cdm->status = CAM_DEV_MATCH_MORE;
2162 			return(0);
2163 		}
2164 
2165 		j = cdm->num_matches;
2166 		cdm->num_matches++;
2167 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2168 		cdm->matches[j].result.periph_result.path_id =
2169 			periph->path->bus->path_id;
2170 
2171 		/*
2172 		 * The transport layer peripheral doesn't have a target or
2173 		 * lun.
2174 		 */
2175 		if (periph->path->target)
2176 			cdm->matches[j].result.periph_result.target_id =
2177 				periph->path->target->target_id;
2178 		else
2179 			cdm->matches[j].result.periph_result.target_id =
2180 				CAM_TARGET_WILDCARD;
2181 
2182 		if (periph->path->device)
2183 			cdm->matches[j].result.periph_result.target_lun =
2184 				periph->path->device->lun_id;
2185 		else
2186 			cdm->matches[j].result.periph_result.target_lun =
2187 				CAM_LUN_WILDCARD;
2188 
2189 		cdm->matches[j].result.periph_result.unit_number =
2190 			periph->unit_number;
2191 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2192 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2193 			periph->periph_name, l);
2194 	}
2195 
2196 	return(1);
2197 }
2198 
2199 static int
2200 xptperiphlistmatch(struct ccb_dev_match *cdm)
2201 {
2202 	int ret;
2203 
2204 	cdm->num_matches = 0;
2205 
2206 	/*
2207 	 * At this point in the edt traversal function, we check the bus
2208 	 * list generation to make sure that no buses have been added or
2209 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2210 	 * For the peripheral driver list traversal function, however, we
2211 	 * don't have to worry about new peripheral driver types coming or
2212 	 * going; they're in a linker set, and therefore can't change
2213 	 * without a recompile.
2214 	 */
2215 
2216 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2217 	 && (cdm->pos.cookie.pdrv != NULL))
2218 		ret = xptpdrvtraverse(
2219 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2220 				xptplistpdrvfunc, cdm);
2221 	else
2222 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2223 
2224 	/*
2225 	 * If we get back 0, that means that we had to stop before fully
2226 	 * traversing the peripheral driver tree.  It also means that one of
2227 	 * the subroutines has set the status field to the proper value.  If
2228 	 * we get back 1, we've fully traversed the EDT and copied out any
2229 	 * matching entries.
2230 	 */
2231 	if (ret == 1)
2232 		cdm->status = CAM_DEV_MATCH_LAST;
2233 
2234 	return(ret);
2235 }
2236 
2237 static int
2238 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2239 {
2240 	struct cam_eb *bus, *next_bus;
2241 	int retval;
2242 
2243 	retval = 1;
2244 	if (start_bus)
2245 		bus = start_bus;
2246 	else {
2247 		xpt_lock_buses();
2248 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2249 		if (bus == NULL) {
2250 			xpt_unlock_buses();
2251 			return (retval);
2252 		}
2253 		bus->refcount++;
2254 		xpt_unlock_buses();
2255 	}
2256 	for (; bus != NULL; bus = next_bus) {
2257 		retval = tr_func(bus, arg);
2258 		if (retval == 0) {
2259 			xpt_release_bus(bus);
2260 			break;
2261 		}
2262 		xpt_lock_buses();
2263 		next_bus = TAILQ_NEXT(bus, links);
2264 		if (next_bus)
2265 			next_bus->refcount++;
2266 		xpt_unlock_buses();
2267 		xpt_release_bus(bus);
2268 	}
2269 	return(retval);
2270 }
2271 
2272 static int
2273 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2274 		  xpt_targetfunc_t *tr_func, void *arg)
2275 {
2276 	struct cam_et *target, *next_target;
2277 	int retval;
2278 
2279 	retval = 1;
2280 	if (start_target)
2281 		target = start_target;
2282 	else {
2283 		mtx_lock(&bus->eb_mtx);
2284 		target = TAILQ_FIRST(&bus->et_entries);
2285 		if (target == NULL) {
2286 			mtx_unlock(&bus->eb_mtx);
2287 			return (retval);
2288 		}
2289 		target->refcount++;
2290 		mtx_unlock(&bus->eb_mtx);
2291 	}
2292 	for (; target != NULL; target = next_target) {
2293 		retval = tr_func(target, arg);
2294 		if (retval == 0) {
2295 			xpt_release_target(target);
2296 			break;
2297 		}
2298 		mtx_lock(&bus->eb_mtx);
2299 		next_target = TAILQ_NEXT(target, links);
2300 		if (next_target)
2301 			next_target->refcount++;
2302 		mtx_unlock(&bus->eb_mtx);
2303 		xpt_release_target(target);
2304 	}
2305 	return(retval);
2306 }
2307 
2308 static int
2309 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2310 		  xpt_devicefunc_t *tr_func, void *arg)
2311 {
2312 	struct cam_eb *bus;
2313 	struct cam_ed *device, *next_device;
2314 	int retval;
2315 
2316 	retval = 1;
2317 	bus = target->bus;
2318 	if (start_device)
2319 		device = start_device;
2320 	else {
2321 		mtx_lock(&bus->eb_mtx);
2322 		device = TAILQ_FIRST(&target->ed_entries);
2323 		if (device == NULL) {
2324 			mtx_unlock(&bus->eb_mtx);
2325 			return (retval);
2326 		}
2327 		device->refcount++;
2328 		mtx_unlock(&bus->eb_mtx);
2329 	}
2330 	for (; device != NULL; device = next_device) {
2331 		mtx_lock(&device->device_mtx);
2332 		retval = tr_func(device, arg);
2333 		mtx_unlock(&device->device_mtx);
2334 		if (retval == 0) {
2335 			xpt_release_device(device);
2336 			break;
2337 		}
2338 		mtx_lock(&bus->eb_mtx);
2339 		next_device = TAILQ_NEXT(device, links);
2340 		if (next_device)
2341 			next_device->refcount++;
2342 		mtx_unlock(&bus->eb_mtx);
2343 		xpt_release_device(device);
2344 	}
2345 	return(retval);
2346 }
2347 
2348 static int
2349 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2350 		  xpt_periphfunc_t *tr_func, void *arg)
2351 {
2352 	struct cam_eb *bus;
2353 	struct cam_periph *periph, *next_periph;
2354 	int retval;
2355 
2356 	retval = 1;
2357 
2358 	bus = device->target->bus;
2359 	if (start_periph)
2360 		periph = start_periph;
2361 	else {
2362 		xpt_lock_buses();
2363 		mtx_lock(&bus->eb_mtx);
2364 		periph = SLIST_FIRST(&device->periphs);
2365 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2366 			periph = SLIST_NEXT(periph, periph_links);
2367 		if (periph == NULL) {
2368 			mtx_unlock(&bus->eb_mtx);
2369 			xpt_unlock_buses();
2370 			return (retval);
2371 		}
2372 		periph->refcount++;
2373 		mtx_unlock(&bus->eb_mtx);
2374 		xpt_unlock_buses();
2375 	}
2376 	for (; periph != NULL; periph = next_periph) {
2377 		retval = tr_func(periph, arg);
2378 		if (retval == 0) {
2379 			cam_periph_release_locked(periph);
2380 			break;
2381 		}
2382 		xpt_lock_buses();
2383 		mtx_lock(&bus->eb_mtx);
2384 		next_periph = SLIST_NEXT(periph, periph_links);
2385 		while (next_periph != NULL &&
2386 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2387 			next_periph = SLIST_NEXT(next_periph, periph_links);
2388 		if (next_periph)
2389 			next_periph->refcount++;
2390 		mtx_unlock(&bus->eb_mtx);
2391 		xpt_unlock_buses();
2392 		cam_periph_release_locked(periph);
2393 	}
2394 	return(retval);
2395 }
2396 
2397 static int
2398 xptpdrvtraverse(struct periph_driver **start_pdrv,
2399 		xpt_pdrvfunc_t *tr_func, void *arg)
2400 {
2401 	struct periph_driver **pdrv;
2402 	int retval;
2403 
2404 	retval = 1;
2405 
2406 	/*
2407 	 * We don't traverse the peripheral driver list like we do the
2408 	 * other lists, because it is a linker set, and therefore cannot be
2409 	 * changed during runtime.  If the peripheral driver list is ever
2410 	 * re-done to be something other than a linker set (i.e. it can
2411 	 * change while the system is running), the list traversal should
2412 	 * be modified to work like the other traversal functions.
2413 	 */
2414 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2415 	     *pdrv != NULL; pdrv++) {
2416 		retval = tr_func(pdrv, arg);
2417 
2418 		if (retval == 0)
2419 			return(retval);
2420 	}
2421 
2422 	return(retval);
2423 }
2424 
2425 static int
2426 xptpdperiphtraverse(struct periph_driver **pdrv,
2427 		    struct cam_periph *start_periph,
2428 		    xpt_periphfunc_t *tr_func, void *arg)
2429 {
2430 	struct cam_periph *periph, *next_periph;
2431 	int retval;
2432 
2433 	retval = 1;
2434 
2435 	if (start_periph)
2436 		periph = start_periph;
2437 	else {
2438 		xpt_lock_buses();
2439 		periph = TAILQ_FIRST(&(*pdrv)->units);
2440 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2441 			periph = TAILQ_NEXT(periph, unit_links);
2442 		if (periph == NULL) {
2443 			xpt_unlock_buses();
2444 			return (retval);
2445 		}
2446 		periph->refcount++;
2447 		xpt_unlock_buses();
2448 	}
2449 	for (; periph != NULL; periph = next_periph) {
2450 		cam_periph_lock(periph);
2451 		retval = tr_func(periph, arg);
2452 		cam_periph_unlock(periph);
2453 		if (retval == 0) {
2454 			cam_periph_release(periph);
2455 			break;
2456 		}
2457 		xpt_lock_buses();
2458 		next_periph = TAILQ_NEXT(periph, unit_links);
2459 		while (next_periph != NULL &&
2460 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2461 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2462 		if (next_periph)
2463 			next_periph->refcount++;
2464 		xpt_unlock_buses();
2465 		cam_periph_release(periph);
2466 	}
2467 	return(retval);
2468 }
2469 
2470 static int
2471 xptdefbusfunc(struct cam_eb *bus, void *arg)
2472 {
2473 	struct xpt_traverse_config *tr_config;
2474 
2475 	tr_config = (struct xpt_traverse_config *)arg;
2476 
2477 	if (tr_config->depth == XPT_DEPTH_BUS) {
2478 		xpt_busfunc_t *tr_func;
2479 
2480 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2481 
2482 		return(tr_func(bus, tr_config->tr_arg));
2483 	} else
2484 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2485 }
2486 
2487 static int
2488 xptdeftargetfunc(struct cam_et *target, void *arg)
2489 {
2490 	struct xpt_traverse_config *tr_config;
2491 
2492 	tr_config = (struct xpt_traverse_config *)arg;
2493 
2494 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2495 		xpt_targetfunc_t *tr_func;
2496 
2497 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2498 
2499 		return(tr_func(target, tr_config->tr_arg));
2500 	} else
2501 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2502 }
2503 
2504 static int
2505 xptdefdevicefunc(struct cam_ed *device, void *arg)
2506 {
2507 	struct xpt_traverse_config *tr_config;
2508 
2509 	tr_config = (struct xpt_traverse_config *)arg;
2510 
2511 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2512 		xpt_devicefunc_t *tr_func;
2513 
2514 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2515 
2516 		return(tr_func(device, tr_config->tr_arg));
2517 	} else
2518 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2519 }
2520 
2521 static int
2522 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2523 {
2524 	struct xpt_traverse_config *tr_config;
2525 	xpt_periphfunc_t *tr_func;
2526 
2527 	tr_config = (struct xpt_traverse_config *)arg;
2528 
2529 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2530 
2531 	/*
2532 	 * Unlike the other default functions, we don't check for depth
2533 	 * here.  The peripheral driver level is the last level in the EDT,
2534 	 * so if we're here, we should execute the function in question.
2535 	 */
2536 	return(tr_func(periph, tr_config->tr_arg));
2537 }
2538 
2539 /*
2540  * Execute the given function for every bus in the EDT.
2541  */
2542 static int
2543 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2544 {
2545 	struct xpt_traverse_config tr_config;
2546 
2547 	tr_config.depth = XPT_DEPTH_BUS;
2548 	tr_config.tr_func = tr_func;
2549 	tr_config.tr_arg = arg;
2550 
2551 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2552 }
2553 
2554 /*
2555  * Execute the given function for every device in the EDT.
2556  */
2557 static int
2558 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2559 {
2560 	struct xpt_traverse_config tr_config;
2561 
2562 	tr_config.depth = XPT_DEPTH_DEVICE;
2563 	tr_config.tr_func = tr_func;
2564 	tr_config.tr_arg = arg;
2565 
2566 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2567 }
2568 
2569 static int
2570 xptsetasyncfunc(struct cam_ed *device, void *arg)
2571 {
2572 	struct cam_path path;
2573 	struct ccb_getdev cgd;
2574 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2575 
2576 	/*
2577 	 * Don't report unconfigured devices (Wildcard devs,
2578 	 * devices only for target mode, device instances
2579 	 * that have been invalidated but are waiting for
2580 	 * their last reference count to be released).
2581 	 */
2582 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2583 		return (1);
2584 
2585 	xpt_compile_path(&path,
2586 			 NULL,
2587 			 device->target->bus->path_id,
2588 			 device->target->target_id,
2589 			 device->lun_id);
2590 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2591 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2592 	xpt_action((union ccb *)&cgd);
2593 	csa->callback(csa->callback_arg,
2594 			    AC_FOUND_DEVICE,
2595 			    &path, &cgd);
2596 	xpt_release_path(&path);
2597 
2598 	return(1);
2599 }
2600 
2601 static int
2602 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2603 {
2604 	struct cam_path path;
2605 	struct ccb_pathinq cpi;
2606 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2607 
2608 	xpt_compile_path(&path, /*periph*/NULL,
2609 			 bus->path_id,
2610 			 CAM_TARGET_WILDCARD,
2611 			 CAM_LUN_WILDCARD);
2612 	xpt_path_lock(&path);
2613 	xpt_path_inq(&cpi, &path);
2614 	csa->callback(csa->callback_arg,
2615 			    AC_PATH_REGISTERED,
2616 			    &path, &cpi);
2617 	xpt_path_unlock(&path);
2618 	xpt_release_path(&path);
2619 
2620 	return(1);
2621 }
2622 
2623 void
2624 xpt_action(union ccb *start_ccb)
2625 {
2626 
2627 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2628 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2629 		xpt_action_name(start_ccb->ccb_h.func_code)));
2630 
2631 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2632 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2633 }
2634 
2635 void
2636 xpt_action_default(union ccb *start_ccb)
2637 {
2638 	struct cam_path *path;
2639 	struct cam_sim *sim;
2640 	struct mtx *mtx;
2641 
2642 	path = start_ccb->ccb_h.path;
2643 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2644 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2645 		xpt_action_name(start_ccb->ccb_h.func_code)));
2646 
2647 	switch (start_ccb->ccb_h.func_code) {
2648 	case XPT_SCSI_IO:
2649 	{
2650 		struct cam_ed *device;
2651 
2652 		/*
2653 		 * For the sake of compatibility with SCSI-1
2654 		 * devices that may not understand the identify
2655 		 * message, we include lun information in the
2656 		 * second byte of all commands.  SCSI-1 specifies
2657 		 * that luns are a 3 bit value and reserves only 3
2658 		 * bits for lun information in the CDB.  Later
2659 		 * revisions of the SCSI spec allow for more than 8
2660 		 * luns, but have deprecated lun information in the
2661 		 * CDB.  So, if the lun won't fit, we must omit.
2662 		 *
2663 		 * Also be aware that during initial probing for devices,
2664 		 * the inquiry information is unknown but initialized to 0.
2665 		 * This means that this code will be exercised while probing
2666 		 * devices with an ANSI revision greater than 2.
2667 		 */
2668 		device = path->device;
2669 		if (device->protocol_version <= SCSI_REV_2
2670 		 && start_ccb->ccb_h.target_lun < 8
2671 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2672 
2673 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2674 			    start_ccb->ccb_h.target_lun << 5;
2675 		}
2676 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2677 	}
2678 	/* FALLTHROUGH */
2679 	case XPT_TARGET_IO:
2680 	case XPT_CONT_TARGET_IO:
2681 		start_ccb->csio.sense_resid = 0;
2682 		start_ccb->csio.resid = 0;
2683 		/* FALLTHROUGH */
2684 	case XPT_ATA_IO:
2685 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2686 			start_ccb->ataio.resid = 0;
2687 		/* FALLTHROUGH */
2688 	case XPT_NVME_IO:
2689 		/* FALLTHROUGH */
2690 	case XPT_NVME_ADMIN:
2691 		/* FALLTHROUGH */
2692 	case XPT_MMC_IO:
2693 		/* XXX just like nmve_io? */
2694 	case XPT_RESET_DEV:
2695 	case XPT_ENG_EXEC:
2696 	case XPT_SMP_IO:
2697 	{
2698 		struct cam_devq *devq;
2699 
2700 		devq = path->bus->sim->devq;
2701 		mtx_lock(&devq->send_mtx);
2702 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2703 		if (xpt_schedule_devq(devq, path->device) != 0)
2704 			xpt_run_devq(devq);
2705 		mtx_unlock(&devq->send_mtx);
2706 		break;
2707 	}
2708 	case XPT_CALC_GEOMETRY:
2709 		/* Filter out garbage */
2710 		if (start_ccb->ccg.block_size == 0
2711 		 || start_ccb->ccg.volume_size == 0) {
2712 			start_ccb->ccg.cylinders = 0;
2713 			start_ccb->ccg.heads = 0;
2714 			start_ccb->ccg.secs_per_track = 0;
2715 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2716 			break;
2717 		}
2718 		goto call_sim;
2719 	case XPT_ABORT:
2720 	{
2721 		union ccb* abort_ccb;
2722 
2723 		abort_ccb = start_ccb->cab.abort_ccb;
2724 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2725 			struct cam_ed *device;
2726 			struct cam_devq *devq;
2727 
2728 			device = abort_ccb->ccb_h.path->device;
2729 			devq = device->sim->devq;
2730 
2731 			mtx_lock(&devq->send_mtx);
2732 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2733 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2734 				abort_ccb->ccb_h.status =
2735 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2736 				xpt_freeze_devq_device(device, 1);
2737 				mtx_unlock(&devq->send_mtx);
2738 				xpt_done(abort_ccb);
2739 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2740 				break;
2741 			}
2742 			mtx_unlock(&devq->send_mtx);
2743 
2744 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2745 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2746 				/*
2747 				 * We've caught this ccb en route to
2748 				 * the SIM.  Flag it for abort and the
2749 				 * SIM will do so just before starting
2750 				 * real work on the CCB.
2751 				 */
2752 				abort_ccb->ccb_h.status =
2753 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2754 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2755 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2756 				break;
2757 			}
2758 		}
2759 		if (XPT_FC_IS_QUEUED(abort_ccb)
2760 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2761 			/*
2762 			 * It's already completed but waiting
2763 			 * for our SWI to get to it.
2764 			 */
2765 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2766 			break;
2767 		}
2768 		/*
2769 		 * If we weren't able to take care of the abort request
2770 		 * in the XPT, pass the request down to the SIM for processing.
2771 		 */
2772 	}
2773 	/* FALLTHROUGH */
2774 	case XPT_ACCEPT_TARGET_IO:
2775 	case XPT_EN_LUN:
2776 	case XPT_IMMED_NOTIFY:
2777 	case XPT_NOTIFY_ACK:
2778 	case XPT_RESET_BUS:
2779 	case XPT_IMMEDIATE_NOTIFY:
2780 	case XPT_NOTIFY_ACKNOWLEDGE:
2781 	case XPT_GET_SIM_KNOB_OLD:
2782 	case XPT_GET_SIM_KNOB:
2783 	case XPT_SET_SIM_KNOB:
2784 	case XPT_GET_TRAN_SETTINGS:
2785 	case XPT_SET_TRAN_SETTINGS:
2786 	case XPT_PATH_INQ:
2787 call_sim:
2788 		sim = path->bus->sim;
2789 		mtx = sim->mtx;
2790 		if (mtx && !mtx_owned(mtx))
2791 			mtx_lock(mtx);
2792 		else
2793 			mtx = NULL;
2794 
2795 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2796 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2797 		(*(sim->sim_action))(sim, start_ccb);
2798 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2799 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2800 		if (mtx)
2801 			mtx_unlock(mtx);
2802 		break;
2803 	case XPT_PATH_STATS:
2804 		start_ccb->cpis.last_reset = path->bus->last_reset;
2805 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2806 		break;
2807 	case XPT_GDEV_TYPE:
2808 	{
2809 		struct cam_ed *dev;
2810 
2811 		dev = path->device;
2812 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2813 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2814 		} else {
2815 			struct ccb_getdev *cgd;
2816 
2817 			cgd = &start_ccb->cgd;
2818 			cgd->protocol = dev->protocol;
2819 			cgd->inq_data = dev->inq_data;
2820 			cgd->ident_data = dev->ident_data;
2821 			cgd->inq_flags = dev->inq_flags;
2822 			cgd->ccb_h.status = CAM_REQ_CMP;
2823 			cgd->serial_num_len = dev->serial_num_len;
2824 			if ((dev->serial_num_len > 0)
2825 			 && (dev->serial_num != NULL))
2826 				bcopy(dev->serial_num, cgd->serial_num,
2827 				      dev->serial_num_len);
2828 		}
2829 		break;
2830 	}
2831 	case XPT_GDEV_STATS:
2832 	{
2833 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2834 		struct cam_ed *dev = path->device;
2835 		struct cam_eb *bus = path->bus;
2836 		struct cam_et *tar = path->target;
2837 		struct cam_devq *devq = bus->sim->devq;
2838 
2839 		mtx_lock(&devq->send_mtx);
2840 		cgds->dev_openings = dev->ccbq.dev_openings;
2841 		cgds->dev_active = dev->ccbq.dev_active;
2842 		cgds->allocated = dev->ccbq.allocated;
2843 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2844 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2845 		cgds->last_reset = tar->last_reset;
2846 		cgds->maxtags = dev->maxtags;
2847 		cgds->mintags = dev->mintags;
2848 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2849 			cgds->last_reset = bus->last_reset;
2850 		mtx_unlock(&devq->send_mtx);
2851 		cgds->ccb_h.status = CAM_REQ_CMP;
2852 		break;
2853 	}
2854 	case XPT_GDEVLIST:
2855 	{
2856 		struct cam_periph	*nperiph;
2857 		struct periph_list	*periph_head;
2858 		struct ccb_getdevlist	*cgdl;
2859 		u_int			i;
2860 		struct cam_ed		*device;
2861 		int			found;
2862 
2863 
2864 		found = 0;
2865 
2866 		/*
2867 		 * Don't want anyone mucking with our data.
2868 		 */
2869 		device = path->device;
2870 		periph_head = &device->periphs;
2871 		cgdl = &start_ccb->cgdl;
2872 
2873 		/*
2874 		 * Check and see if the list has changed since the user
2875 		 * last requested a list member.  If so, tell them that the
2876 		 * list has changed, and therefore they need to start over
2877 		 * from the beginning.
2878 		 */
2879 		if ((cgdl->index != 0) &&
2880 		    (cgdl->generation != device->generation)) {
2881 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2882 			break;
2883 		}
2884 
2885 		/*
2886 		 * Traverse the list of peripherals and attempt to find
2887 		 * the requested peripheral.
2888 		 */
2889 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2890 		     (nperiph != NULL) && (i <= cgdl->index);
2891 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2892 			if (i == cgdl->index) {
2893 				strlcpy(cgdl->periph_name,
2894 					nperiph->periph_name,
2895 					sizeof(cgdl->periph_name));
2896 				cgdl->unit_number = nperiph->unit_number;
2897 				found = 1;
2898 			}
2899 		}
2900 		if (found == 0) {
2901 			cgdl->status = CAM_GDEVLIST_ERROR;
2902 			break;
2903 		}
2904 
2905 		if (nperiph == NULL)
2906 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2907 		else
2908 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2909 
2910 		cgdl->index++;
2911 		cgdl->generation = device->generation;
2912 
2913 		cgdl->ccb_h.status = CAM_REQ_CMP;
2914 		break;
2915 	}
2916 	case XPT_DEV_MATCH:
2917 	{
2918 		dev_pos_type position_type;
2919 		struct ccb_dev_match *cdm;
2920 
2921 		cdm = &start_ccb->cdm;
2922 
2923 		/*
2924 		 * There are two ways of getting at information in the EDT.
2925 		 * The first way is via the primary EDT tree.  It starts
2926 		 * with a list of buses, then a list of targets on a bus,
2927 		 * then devices/luns on a target, and then peripherals on a
2928 		 * device/lun.  The "other" way is by the peripheral driver
2929 		 * lists.  The peripheral driver lists are organized by
2930 		 * peripheral driver.  (obviously)  So it makes sense to
2931 		 * use the peripheral driver list if the user is looking
2932 		 * for something like "da1", or all "da" devices.  If the
2933 		 * user is looking for something on a particular bus/target
2934 		 * or lun, it's generally better to go through the EDT tree.
2935 		 */
2936 
2937 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2938 			position_type = cdm->pos.position_type;
2939 		else {
2940 			u_int i;
2941 
2942 			position_type = CAM_DEV_POS_NONE;
2943 
2944 			for (i = 0; i < cdm->num_patterns; i++) {
2945 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2946 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2947 					position_type = CAM_DEV_POS_EDT;
2948 					break;
2949 				}
2950 			}
2951 
2952 			if (cdm->num_patterns == 0)
2953 				position_type = CAM_DEV_POS_EDT;
2954 			else if (position_type == CAM_DEV_POS_NONE)
2955 				position_type = CAM_DEV_POS_PDRV;
2956 		}
2957 
2958 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2959 		case CAM_DEV_POS_EDT:
2960 			xptedtmatch(cdm);
2961 			break;
2962 		case CAM_DEV_POS_PDRV:
2963 			xptperiphlistmatch(cdm);
2964 			break;
2965 		default:
2966 			cdm->status = CAM_DEV_MATCH_ERROR;
2967 			break;
2968 		}
2969 
2970 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2971 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2972 		else
2973 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2974 
2975 		break;
2976 	}
2977 	case XPT_SASYNC_CB:
2978 	{
2979 		struct ccb_setasync *csa;
2980 		struct async_node *cur_entry;
2981 		struct async_list *async_head;
2982 		u_int32_t added;
2983 
2984 		csa = &start_ccb->csa;
2985 		added = csa->event_enable;
2986 		async_head = &path->device->asyncs;
2987 
2988 		/*
2989 		 * If there is already an entry for us, simply
2990 		 * update it.
2991 		 */
2992 		cur_entry = SLIST_FIRST(async_head);
2993 		while (cur_entry != NULL) {
2994 			if ((cur_entry->callback_arg == csa->callback_arg)
2995 			 && (cur_entry->callback == csa->callback))
2996 				break;
2997 			cur_entry = SLIST_NEXT(cur_entry, links);
2998 		}
2999 
3000 		if (cur_entry != NULL) {
3001 		 	/*
3002 			 * If the request has no flags set,
3003 			 * remove the entry.
3004 			 */
3005 			added &= ~cur_entry->event_enable;
3006 			if (csa->event_enable == 0) {
3007 				SLIST_REMOVE(async_head, cur_entry,
3008 					     async_node, links);
3009 				xpt_release_device(path->device);
3010 				free(cur_entry, M_CAMXPT);
3011 			} else {
3012 				cur_entry->event_enable = csa->event_enable;
3013 			}
3014 			csa->event_enable = added;
3015 		} else {
3016 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3017 					   M_NOWAIT);
3018 			if (cur_entry == NULL) {
3019 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3020 				break;
3021 			}
3022 			cur_entry->event_enable = csa->event_enable;
3023 			cur_entry->event_lock = (path->bus->sim->mtx &&
3024 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3025 			cur_entry->callback_arg = csa->callback_arg;
3026 			cur_entry->callback = csa->callback;
3027 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3028 			xpt_acquire_device(path->device);
3029 		}
3030 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3031 		break;
3032 	}
3033 	case XPT_REL_SIMQ:
3034 	{
3035 		struct ccb_relsim *crs;
3036 		struct cam_ed *dev;
3037 
3038 		crs = &start_ccb->crs;
3039 		dev = path->device;
3040 		if (dev == NULL) {
3041 
3042 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3043 			break;
3044 		}
3045 
3046 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3047 
3048 			/* Don't ever go below one opening */
3049 			if (crs->openings > 0) {
3050 				xpt_dev_ccbq_resize(path, crs->openings);
3051 				if (bootverbose) {
3052 					xpt_print(path,
3053 					    "number of openings is now %d\n",
3054 					    crs->openings);
3055 				}
3056 			}
3057 		}
3058 
3059 		mtx_lock(&dev->sim->devq->send_mtx);
3060 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3061 
3062 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3063 
3064 				/*
3065 				 * Just extend the old timeout and decrement
3066 				 * the freeze count so that a single timeout
3067 				 * is sufficient for releasing the queue.
3068 				 */
3069 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3070 				callout_stop(&dev->callout);
3071 			} else {
3072 
3073 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3074 			}
3075 
3076 			callout_reset_sbt(&dev->callout,
3077 			    SBT_1MS * crs->release_timeout, 0,
3078 			    xpt_release_devq_timeout, dev, 0);
3079 
3080 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3081 
3082 		}
3083 
3084 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3085 
3086 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3087 				/*
3088 				 * Decrement the freeze count so that a single
3089 				 * completion is still sufficient to unfreeze
3090 				 * the queue.
3091 				 */
3092 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3093 			} else {
3094 
3095 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3096 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3097 			}
3098 		}
3099 
3100 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3101 
3102 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3103 			 || (dev->ccbq.dev_active == 0)) {
3104 
3105 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3106 			} else {
3107 
3108 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3109 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3110 			}
3111 		}
3112 		mtx_unlock(&dev->sim->devq->send_mtx);
3113 
3114 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3115 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3116 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3117 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3118 		break;
3119 	}
3120 	case XPT_DEBUG: {
3121 		struct cam_path *oldpath;
3122 
3123 		/* Check that all request bits are supported. */
3124 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3125 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3126 			break;
3127 		}
3128 
3129 		cam_dflags = CAM_DEBUG_NONE;
3130 		if (cam_dpath != NULL) {
3131 			oldpath = cam_dpath;
3132 			cam_dpath = NULL;
3133 			xpt_free_path(oldpath);
3134 		}
3135 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3136 			if (xpt_create_path(&cam_dpath, NULL,
3137 					    start_ccb->ccb_h.path_id,
3138 					    start_ccb->ccb_h.target_id,
3139 					    start_ccb->ccb_h.target_lun) !=
3140 					    CAM_REQ_CMP) {
3141 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3142 			} else {
3143 				cam_dflags = start_ccb->cdbg.flags;
3144 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3145 				xpt_print(cam_dpath, "debugging flags now %x\n",
3146 				    cam_dflags);
3147 			}
3148 		} else
3149 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3150 		break;
3151 	}
3152 	case XPT_NOOP:
3153 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3154 			xpt_freeze_devq(path, 1);
3155 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3156 		break;
3157 	case XPT_REPROBE_LUN:
3158 		xpt_async(AC_INQ_CHANGED, path, NULL);
3159 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3160 		xpt_done(start_ccb);
3161 		break;
3162 	default:
3163 	case XPT_SDEV_TYPE:
3164 	case XPT_TERM_IO:
3165 	case XPT_ENG_INQ:
3166 		/* XXX Implement */
3167 		xpt_print(start_ccb->ccb_h.path,
3168 		    "%s: CCB type %#x %s not supported\n", __func__,
3169 		    start_ccb->ccb_h.func_code,
3170 		    xpt_action_name(start_ccb->ccb_h.func_code));
3171 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3172 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3173 			xpt_done(start_ccb);
3174 		}
3175 		break;
3176 	}
3177 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3178 	    ("xpt_action_default: func= %#x %s status %#x\n",
3179 		start_ccb->ccb_h.func_code,
3180  		xpt_action_name(start_ccb->ccb_h.func_code),
3181 		start_ccb->ccb_h.status));
3182 }
3183 
3184 /*
3185  * Call the sim poll routine to allow the sim to complete
3186  * any inflight requests, then call camisr_runqueue to
3187  * complete any CCB that the polling completed.
3188  */
3189 void
3190 xpt_sim_poll(struct cam_sim *sim)
3191 {
3192 	struct mtx *mtx;
3193 
3194 	mtx = sim->mtx;
3195 	if (mtx)
3196 		mtx_lock(mtx);
3197 	(*(sim->sim_poll))(sim);
3198 	if (mtx)
3199 		mtx_unlock(mtx);
3200 	camisr_runqueue();
3201 }
3202 
3203 uint32_t
3204 xpt_poll_setup(union ccb *start_ccb)
3205 {
3206 	u_int32_t timeout;
3207 	struct	  cam_sim *sim;
3208 	struct	  cam_devq *devq;
3209 	struct	  cam_ed *dev;
3210 
3211 	timeout = start_ccb->ccb_h.timeout * 10;
3212 	sim = start_ccb->ccb_h.path->bus->sim;
3213 	devq = sim->devq;
3214 	dev = start_ccb->ccb_h.path->device;
3215 
3216 	/*
3217 	 * Steal an opening so that no other queued requests
3218 	 * can get it before us while we simulate interrupts.
3219 	 */
3220 	mtx_lock(&devq->send_mtx);
3221 	dev->ccbq.dev_openings--;
3222 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3223 	    (--timeout > 0)) {
3224 		mtx_unlock(&devq->send_mtx);
3225 		DELAY(100);
3226 		xpt_sim_poll(sim);
3227 		mtx_lock(&devq->send_mtx);
3228 	}
3229 	dev->ccbq.dev_openings++;
3230 	mtx_unlock(&devq->send_mtx);
3231 
3232 	return (timeout);
3233 }
3234 
3235 void
3236 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3237 {
3238 
3239 	while (--timeout > 0) {
3240 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3241 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3242 		    != CAM_REQ_INPROG)
3243 			break;
3244 		DELAY(100);
3245 	}
3246 
3247 	if (timeout == 0) {
3248 		/*
3249 		 * XXX Is it worth adding a sim_timeout entry
3250 		 * point so we can attempt recovery?  If
3251 		 * this is only used for dumps, I don't think
3252 		 * it is.
3253 		 */
3254 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3255 	}
3256 }
3257 
3258 void
3259 xpt_polled_action(union ccb *start_ccb)
3260 {
3261 	uint32_t	timeout;
3262 	struct cam_ed	*dev;
3263 
3264 	timeout = start_ccb->ccb_h.timeout * 10;
3265 	dev = start_ccb->ccb_h.path->device;
3266 
3267 	mtx_unlock(&dev->device_mtx);
3268 
3269 	timeout = xpt_poll_setup(start_ccb);
3270 	if (timeout > 0) {
3271 		xpt_action(start_ccb);
3272 		xpt_pollwait(start_ccb, timeout);
3273 	} else {
3274 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3275 	}
3276 
3277 	mtx_lock(&dev->device_mtx);
3278 }
3279 
3280 /*
3281  * Schedule a peripheral driver to receive a ccb when its
3282  * target device has space for more transactions.
3283  */
3284 void
3285 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3286 {
3287 
3288 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3289 	cam_periph_assert(periph, MA_OWNED);
3290 	if (new_priority < periph->scheduled_priority) {
3291 		periph->scheduled_priority = new_priority;
3292 		xpt_run_allocq(periph, 0);
3293 	}
3294 }
3295 
3296 
3297 /*
3298  * Schedule a device to run on a given queue.
3299  * If the device was inserted as a new entry on the queue,
3300  * return 1 meaning the device queue should be run. If we
3301  * were already queued, implying someone else has already
3302  * started the queue, return 0 so the caller doesn't attempt
3303  * to run the queue.
3304  */
3305 static int
3306 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3307 		 u_int32_t new_priority)
3308 {
3309 	int retval;
3310 	u_int32_t old_priority;
3311 
3312 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3313 
3314 
3315 	old_priority = pinfo->priority;
3316 
3317 	/*
3318 	 * Are we already queued?
3319 	 */
3320 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3321 		/* Simply reorder based on new priority */
3322 		if (new_priority < old_priority) {
3323 			camq_change_priority(queue, pinfo->index,
3324 					     new_priority);
3325 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3326 					("changed priority to %d\n",
3327 					 new_priority));
3328 			retval = 1;
3329 		} else
3330 			retval = 0;
3331 	} else {
3332 		/* New entry on the queue */
3333 		if (new_priority < old_priority)
3334 			pinfo->priority = new_priority;
3335 
3336 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3337 				("Inserting onto queue\n"));
3338 		pinfo->generation = ++queue->generation;
3339 		camq_insert(queue, pinfo);
3340 		retval = 1;
3341 	}
3342 	return (retval);
3343 }
3344 
3345 static void
3346 xpt_run_allocq_task(void *context, int pending)
3347 {
3348 	struct cam_periph *periph = context;
3349 
3350 	cam_periph_lock(periph);
3351 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3352 	xpt_run_allocq(periph, 1);
3353 	cam_periph_unlock(periph);
3354 	cam_periph_release(periph);
3355 }
3356 
3357 static void
3358 xpt_run_allocq(struct cam_periph *periph, int sleep)
3359 {
3360 	struct cam_ed	*device;
3361 	union ccb	*ccb;
3362 	uint32_t	 prio;
3363 
3364 	cam_periph_assert(periph, MA_OWNED);
3365 	if (periph->periph_allocating)
3366 		return;
3367 	cam_periph_doacquire(periph);
3368 	periph->periph_allocating = 1;
3369 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3370 	device = periph->path->device;
3371 	ccb = NULL;
3372 restart:
3373 	while ((prio = min(periph->scheduled_priority,
3374 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3375 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3376 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3377 
3378 		if (ccb == NULL &&
3379 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3380 			if (sleep) {
3381 				ccb = xpt_get_ccb(periph);
3382 				goto restart;
3383 			}
3384 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3385 				break;
3386 			cam_periph_doacquire(periph);
3387 			periph->flags |= CAM_PERIPH_RUN_TASK;
3388 			taskqueue_enqueue(xsoftc.xpt_taskq,
3389 			    &periph->periph_run_task);
3390 			break;
3391 		}
3392 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3393 		if (prio == periph->immediate_priority) {
3394 			periph->immediate_priority = CAM_PRIORITY_NONE;
3395 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3396 					("waking cam_periph_getccb()\n"));
3397 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3398 					  periph_links.sle);
3399 			wakeup(&periph->ccb_list);
3400 		} else {
3401 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3402 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3403 					("calling periph_start()\n"));
3404 			periph->periph_start(periph, ccb);
3405 		}
3406 		ccb = NULL;
3407 	}
3408 	if (ccb != NULL)
3409 		xpt_release_ccb(ccb);
3410 	periph->periph_allocating = 0;
3411 	cam_periph_release_locked(periph);
3412 }
3413 
3414 static void
3415 xpt_run_devq(struct cam_devq *devq)
3416 {
3417 	struct mtx *mtx;
3418 
3419 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3420 
3421 	devq->send_queue.qfrozen_cnt++;
3422 	while ((devq->send_queue.entries > 0)
3423 	    && (devq->send_openings > 0)
3424 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3425 		struct	cam_ed *device;
3426 		union ccb *work_ccb;
3427 		struct	cam_sim *sim;
3428 		struct xpt_proto *proto;
3429 
3430 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3431 							   CAMQ_HEAD);
3432 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3433 				("running device %p\n", device));
3434 
3435 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3436 		if (work_ccb == NULL) {
3437 			printf("device on run queue with no ccbs???\n");
3438 			continue;
3439 		}
3440 
3441 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3442 
3443 			mtx_lock(&xsoftc.xpt_highpower_lock);
3444 		 	if (xsoftc.num_highpower <= 0) {
3445 				/*
3446 				 * We got a high power command, but we
3447 				 * don't have any available slots.  Freeze
3448 				 * the device queue until we have a slot
3449 				 * available.
3450 				 */
3451 				xpt_freeze_devq_device(device, 1);
3452 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3453 						   highpowerq_entry);
3454 
3455 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3456 				continue;
3457 			} else {
3458 				/*
3459 				 * Consume a high power slot while
3460 				 * this ccb runs.
3461 				 */
3462 				xsoftc.num_highpower--;
3463 			}
3464 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3465 		}
3466 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3467 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3468 		devq->send_openings--;
3469 		devq->send_active++;
3470 		xpt_schedule_devq(devq, device);
3471 		mtx_unlock(&devq->send_mtx);
3472 
3473 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3474 			/*
3475 			 * The client wants to freeze the queue
3476 			 * after this CCB is sent.
3477 			 */
3478 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3479 		}
3480 
3481 		/* In Target mode, the peripheral driver knows best... */
3482 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3483 			if ((device->inq_flags & SID_CmdQue) != 0
3484 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3485 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3486 			else
3487 				/*
3488 				 * Clear this in case of a retried CCB that
3489 				 * failed due to a rejected tag.
3490 				 */
3491 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3492 		}
3493 
3494 		KASSERT(device == work_ccb->ccb_h.path->device,
3495 		    ("device (%p) / path->device (%p) mismatch",
3496 			device, work_ccb->ccb_h.path->device));
3497 		proto = xpt_proto_find(device->protocol);
3498 		if (proto && proto->ops->debug_out)
3499 			proto->ops->debug_out(work_ccb);
3500 
3501 		/*
3502 		 * Device queues can be shared among multiple SIM instances
3503 		 * that reside on different buses.  Use the SIM from the
3504 		 * queued device, rather than the one from the calling bus.
3505 		 */
3506 		sim = device->sim;
3507 		mtx = sim->mtx;
3508 		if (mtx && !mtx_owned(mtx))
3509 			mtx_lock(mtx);
3510 		else
3511 			mtx = NULL;
3512 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3513 		(*(sim->sim_action))(sim, work_ccb);
3514 		if (mtx)
3515 			mtx_unlock(mtx);
3516 		mtx_lock(&devq->send_mtx);
3517 	}
3518 	devq->send_queue.qfrozen_cnt--;
3519 }
3520 
3521 /*
3522  * This function merges stuff from the slave ccb into the master ccb, while
3523  * keeping important fields in the master ccb constant.
3524  */
3525 void
3526 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3527 {
3528 
3529 	/*
3530 	 * Pull fields that are valid for peripheral drivers to set
3531 	 * into the master CCB along with the CCB "payload".
3532 	 */
3533 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3534 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3535 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3536 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3537 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3538 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3539 }
3540 
3541 void
3542 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3543 		    u_int32_t priority, u_int32_t flags)
3544 {
3545 
3546 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3547 	ccb_h->pinfo.priority = priority;
3548 	ccb_h->path = path;
3549 	ccb_h->path_id = path->bus->path_id;
3550 	if (path->target)
3551 		ccb_h->target_id = path->target->target_id;
3552 	else
3553 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3554 	if (path->device) {
3555 		ccb_h->target_lun = path->device->lun_id;
3556 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3557 	} else {
3558 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3559 	}
3560 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3561 	ccb_h->flags = flags;
3562 	ccb_h->xflags = 0;
3563 }
3564 
3565 void
3566 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3567 {
3568 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3569 }
3570 
3571 /* Path manipulation functions */
3572 cam_status
3573 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3574 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3575 {
3576 	struct	   cam_path *path;
3577 	cam_status status;
3578 
3579 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3580 
3581 	if (path == NULL) {
3582 		status = CAM_RESRC_UNAVAIL;
3583 		return(status);
3584 	}
3585 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3586 	if (status != CAM_REQ_CMP) {
3587 		free(path, M_CAMPATH);
3588 		path = NULL;
3589 	}
3590 	*new_path_ptr = path;
3591 	return (status);
3592 }
3593 
3594 cam_status
3595 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3596 			 struct cam_periph *periph, path_id_t path_id,
3597 			 target_id_t target_id, lun_id_t lun_id)
3598 {
3599 
3600 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3601 	    lun_id));
3602 }
3603 
3604 cam_status
3605 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3606 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3607 {
3608 	struct	     cam_eb *bus;
3609 	struct	     cam_et *target;
3610 	struct	     cam_ed *device;
3611 	cam_status   status;
3612 
3613 	status = CAM_REQ_CMP;	/* Completed without error */
3614 	target = NULL;		/* Wildcarded */
3615 	device = NULL;		/* Wildcarded */
3616 
3617 	/*
3618 	 * We will potentially modify the EDT, so block interrupts
3619 	 * that may attempt to create cam paths.
3620 	 */
3621 	bus = xpt_find_bus(path_id);
3622 	if (bus == NULL) {
3623 		status = CAM_PATH_INVALID;
3624 	} else {
3625 		xpt_lock_buses();
3626 		mtx_lock(&bus->eb_mtx);
3627 		target = xpt_find_target(bus, target_id);
3628 		if (target == NULL) {
3629 			/* Create one */
3630 			struct cam_et *new_target;
3631 
3632 			new_target = xpt_alloc_target(bus, target_id);
3633 			if (new_target == NULL) {
3634 				status = CAM_RESRC_UNAVAIL;
3635 			} else {
3636 				target = new_target;
3637 			}
3638 		}
3639 		xpt_unlock_buses();
3640 		if (target != NULL) {
3641 			device = xpt_find_device(target, lun_id);
3642 			if (device == NULL) {
3643 				/* Create one */
3644 				struct cam_ed *new_device;
3645 
3646 				new_device =
3647 				    (*(bus->xport->ops->alloc_device))(bus,
3648 								       target,
3649 								       lun_id);
3650 				if (new_device == NULL) {
3651 					status = CAM_RESRC_UNAVAIL;
3652 				} else {
3653 					device = new_device;
3654 				}
3655 			}
3656 		}
3657 		mtx_unlock(&bus->eb_mtx);
3658 	}
3659 
3660 	/*
3661 	 * Only touch the user's data if we are successful.
3662 	 */
3663 	if (status == CAM_REQ_CMP) {
3664 		new_path->periph = perph;
3665 		new_path->bus = bus;
3666 		new_path->target = target;
3667 		new_path->device = device;
3668 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3669 	} else {
3670 		if (device != NULL)
3671 			xpt_release_device(device);
3672 		if (target != NULL)
3673 			xpt_release_target(target);
3674 		if (bus != NULL)
3675 			xpt_release_bus(bus);
3676 	}
3677 	return (status);
3678 }
3679 
3680 cam_status
3681 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3682 {
3683 	struct	   cam_path *new_path;
3684 
3685 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3686 	if (new_path == NULL)
3687 		return(CAM_RESRC_UNAVAIL);
3688 	xpt_copy_path(new_path, path);
3689 	*new_path_ptr = new_path;
3690 	return (CAM_REQ_CMP);
3691 }
3692 
3693 void
3694 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3695 {
3696 
3697 	*new_path = *path;
3698 	if (path->bus != NULL)
3699 		xpt_acquire_bus(path->bus);
3700 	if (path->target != NULL)
3701 		xpt_acquire_target(path->target);
3702 	if (path->device != NULL)
3703 		xpt_acquire_device(path->device);
3704 }
3705 
3706 void
3707 xpt_release_path(struct cam_path *path)
3708 {
3709 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3710 	if (path->device != NULL) {
3711 		xpt_release_device(path->device);
3712 		path->device = NULL;
3713 	}
3714 	if (path->target != NULL) {
3715 		xpt_release_target(path->target);
3716 		path->target = NULL;
3717 	}
3718 	if (path->bus != NULL) {
3719 		xpt_release_bus(path->bus);
3720 		path->bus = NULL;
3721 	}
3722 }
3723 
3724 void
3725 xpt_free_path(struct cam_path *path)
3726 {
3727 
3728 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3729 	xpt_release_path(path);
3730 	free(path, M_CAMPATH);
3731 }
3732 
3733 void
3734 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3735     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3736 {
3737 
3738 	xpt_lock_buses();
3739 	if (bus_ref) {
3740 		if (path->bus)
3741 			*bus_ref = path->bus->refcount;
3742 		else
3743 			*bus_ref = 0;
3744 	}
3745 	if (periph_ref) {
3746 		if (path->periph)
3747 			*periph_ref = path->periph->refcount;
3748 		else
3749 			*periph_ref = 0;
3750 	}
3751 	xpt_unlock_buses();
3752 	if (target_ref) {
3753 		if (path->target)
3754 			*target_ref = path->target->refcount;
3755 		else
3756 			*target_ref = 0;
3757 	}
3758 	if (device_ref) {
3759 		if (path->device)
3760 			*device_ref = path->device->refcount;
3761 		else
3762 			*device_ref = 0;
3763 	}
3764 }
3765 
3766 /*
3767  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3768  * in path1, 2 for match with wildcards in path2.
3769  */
3770 int
3771 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3772 {
3773 	int retval = 0;
3774 
3775 	if (path1->bus != path2->bus) {
3776 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3777 			retval = 1;
3778 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3779 			retval = 2;
3780 		else
3781 			return (-1);
3782 	}
3783 	if (path1->target != path2->target) {
3784 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3785 			if (retval == 0)
3786 				retval = 1;
3787 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3788 			retval = 2;
3789 		else
3790 			return (-1);
3791 	}
3792 	if (path1->device != path2->device) {
3793 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3794 			if (retval == 0)
3795 				retval = 1;
3796 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3797 			retval = 2;
3798 		else
3799 			return (-1);
3800 	}
3801 	return (retval);
3802 }
3803 
3804 int
3805 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3806 {
3807 	int retval = 0;
3808 
3809 	if (path->bus != dev->target->bus) {
3810 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3811 			retval = 1;
3812 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3813 			retval = 2;
3814 		else
3815 			return (-1);
3816 	}
3817 	if (path->target != dev->target) {
3818 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3819 			if (retval == 0)
3820 				retval = 1;
3821 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3822 			retval = 2;
3823 		else
3824 			return (-1);
3825 	}
3826 	if (path->device != dev) {
3827 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3828 			if (retval == 0)
3829 				retval = 1;
3830 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3831 			retval = 2;
3832 		else
3833 			return (-1);
3834 	}
3835 	return (retval);
3836 }
3837 
3838 void
3839 xpt_print_path(struct cam_path *path)
3840 {
3841 	struct sbuf sb;
3842 	char buffer[XPT_PRINT_LEN];
3843 
3844 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3845 	xpt_path_sbuf(path, &sb);
3846 	sbuf_finish(&sb);
3847 	printf("%s", sbuf_data(&sb));
3848 	sbuf_delete(&sb);
3849 }
3850 
3851 void
3852 xpt_print_device(struct cam_ed *device)
3853 {
3854 
3855 	if (device == NULL)
3856 		printf("(nopath): ");
3857 	else {
3858 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3859 		       device->sim->unit_number,
3860 		       device->sim->bus_id,
3861 		       device->target->target_id,
3862 		       (uintmax_t)device->lun_id);
3863 	}
3864 }
3865 
3866 void
3867 xpt_print(struct cam_path *path, const char *fmt, ...)
3868 {
3869 	va_list ap;
3870 	struct sbuf sb;
3871 	char buffer[XPT_PRINT_LEN];
3872 
3873 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3874 
3875 	xpt_path_sbuf(path, &sb);
3876 	va_start(ap, fmt);
3877 	sbuf_vprintf(&sb, fmt, ap);
3878 	va_end(ap);
3879 
3880 	sbuf_finish(&sb);
3881 	printf("%s", sbuf_data(&sb));
3882 	sbuf_delete(&sb);
3883 }
3884 
3885 int
3886 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3887 {
3888 	struct sbuf sb;
3889 	int len;
3890 
3891 	sbuf_new(&sb, str, str_len, 0);
3892 	len = xpt_path_sbuf(path, &sb);
3893 	sbuf_finish(&sb);
3894 	return (len);
3895 }
3896 
3897 int
3898 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3899 {
3900 
3901 	if (path == NULL)
3902 		sbuf_printf(sb, "(nopath): ");
3903 	else {
3904 		if (path->periph != NULL)
3905 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3906 				    path->periph->unit_number);
3907 		else
3908 			sbuf_printf(sb, "(noperiph:");
3909 
3910 		if (path->bus != NULL)
3911 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3912 				    path->bus->sim->unit_number,
3913 				    path->bus->sim->bus_id);
3914 		else
3915 			sbuf_printf(sb, "nobus:");
3916 
3917 		if (path->target != NULL)
3918 			sbuf_printf(sb, "%d:", path->target->target_id);
3919 		else
3920 			sbuf_printf(sb, "X:");
3921 
3922 		if (path->device != NULL)
3923 			sbuf_printf(sb, "%jx): ",
3924 			    (uintmax_t)path->device->lun_id);
3925 		else
3926 			sbuf_printf(sb, "X): ");
3927 	}
3928 
3929 	return(sbuf_len(sb));
3930 }
3931 
3932 path_id_t
3933 xpt_path_path_id(struct cam_path *path)
3934 {
3935 	return(path->bus->path_id);
3936 }
3937 
3938 target_id_t
3939 xpt_path_target_id(struct cam_path *path)
3940 {
3941 	if (path->target != NULL)
3942 		return (path->target->target_id);
3943 	else
3944 		return (CAM_TARGET_WILDCARD);
3945 }
3946 
3947 lun_id_t
3948 xpt_path_lun_id(struct cam_path *path)
3949 {
3950 	if (path->device != NULL)
3951 		return (path->device->lun_id);
3952 	else
3953 		return (CAM_LUN_WILDCARD);
3954 }
3955 
3956 struct cam_sim *
3957 xpt_path_sim(struct cam_path *path)
3958 {
3959 
3960 	return (path->bus->sim);
3961 }
3962 
3963 struct cam_periph*
3964 xpt_path_periph(struct cam_path *path)
3965 {
3966 
3967 	return (path->periph);
3968 }
3969 
3970 /*
3971  * Release a CAM control block for the caller.  Remit the cost of the structure
3972  * to the device referenced by the path.  If the this device had no 'credits'
3973  * and peripheral drivers have registered async callbacks for this notification
3974  * call them now.
3975  */
3976 void
3977 xpt_release_ccb(union ccb *free_ccb)
3978 {
3979 	struct	 cam_ed *device;
3980 	struct	 cam_periph *periph;
3981 
3982 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3983 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3984 	device = free_ccb->ccb_h.path->device;
3985 	periph = free_ccb->ccb_h.path->periph;
3986 
3987 	xpt_free_ccb(free_ccb);
3988 	periph->periph_allocated--;
3989 	cam_ccbq_release_opening(&device->ccbq);
3990 	xpt_run_allocq(periph, 0);
3991 }
3992 
3993 /* Functions accessed by SIM drivers */
3994 
3995 static struct xpt_xport_ops xport_default_ops = {
3996 	.alloc_device = xpt_alloc_device_default,
3997 	.action = xpt_action_default,
3998 	.async = xpt_dev_async_default,
3999 };
4000 static struct xpt_xport xport_default = {
4001 	.xport = XPORT_UNKNOWN,
4002 	.name = "unknown",
4003 	.ops = &xport_default_ops,
4004 };
4005 
4006 CAM_XPT_XPORT(xport_default);
4007 
4008 /*
4009  * A sim structure, listing the SIM entry points and instance
4010  * identification info is passed to xpt_bus_register to hook the SIM
4011  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4012  * for this new bus and places it in the array of buses and assigns
4013  * it a path_id.  The path_id may be influenced by "hard wiring"
4014  * information specified by the user.  Once interrupt services are
4015  * available, the bus will be probed.
4016  */
4017 int32_t
4018 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4019 {
4020 	struct cam_eb *new_bus;
4021 	struct cam_eb *old_bus;
4022 	struct ccb_pathinq cpi;
4023 	struct cam_path *path;
4024 	cam_status status;
4025 
4026 	sim->bus_id = bus;
4027 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4028 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4029 	if (new_bus == NULL) {
4030 		/* Couldn't satisfy request */
4031 		return (CAM_RESRC_UNAVAIL);
4032 	}
4033 
4034 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4035 	TAILQ_INIT(&new_bus->et_entries);
4036 	cam_sim_hold(sim);
4037 	new_bus->sim = sim;
4038 	timevalclear(&new_bus->last_reset);
4039 	new_bus->flags = 0;
4040 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4041 	new_bus->generation = 0;
4042 
4043 	xpt_lock_buses();
4044 	sim->path_id = new_bus->path_id =
4045 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4046 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4047 	while (old_bus != NULL
4048 	    && old_bus->path_id < new_bus->path_id)
4049 		old_bus = TAILQ_NEXT(old_bus, links);
4050 	if (old_bus != NULL)
4051 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4052 	else
4053 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4054 	xsoftc.bus_generation++;
4055 	xpt_unlock_buses();
4056 
4057 	/*
4058 	 * Set a default transport so that a PATH_INQ can be issued to
4059 	 * the SIM.  This will then allow for probing and attaching of
4060 	 * a more appropriate transport.
4061 	 */
4062 	new_bus->xport = &xport_default;
4063 
4064 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4065 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4066 	if (status != CAM_REQ_CMP) {
4067 		xpt_release_bus(new_bus);
4068 		return (CAM_RESRC_UNAVAIL);
4069 	}
4070 
4071 	xpt_path_inq(&cpi, path);
4072 
4073 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4074 		struct xpt_xport **xpt;
4075 
4076 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4077 			if ((*xpt)->xport == cpi.transport) {
4078 				new_bus->xport = *xpt;
4079 				break;
4080 			}
4081 		}
4082 		if (new_bus->xport == NULL) {
4083 			xpt_print(path,
4084 			    "No transport found for %d\n", cpi.transport);
4085 			xpt_release_bus(new_bus);
4086 			free(path, M_CAMXPT);
4087 			return (CAM_RESRC_UNAVAIL);
4088 		}
4089 	}
4090 
4091 	/* Notify interested parties */
4092 	if (sim->path_id != CAM_XPT_PATH_ID) {
4093 
4094 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4095 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4096 			union	ccb *scan_ccb;
4097 
4098 			/* Initiate bus rescan. */
4099 			scan_ccb = xpt_alloc_ccb_nowait();
4100 			if (scan_ccb != NULL) {
4101 				scan_ccb->ccb_h.path = path;
4102 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4103 				scan_ccb->crcn.flags = 0;
4104 				xpt_rescan(scan_ccb);
4105 			} else {
4106 				xpt_print(path,
4107 					  "Can't allocate CCB to scan bus\n");
4108 				xpt_free_path(path);
4109 			}
4110 		} else
4111 			xpt_free_path(path);
4112 	} else
4113 		xpt_free_path(path);
4114 	return (CAM_SUCCESS);
4115 }
4116 
4117 int32_t
4118 xpt_bus_deregister(path_id_t pathid)
4119 {
4120 	struct cam_path bus_path;
4121 	cam_status status;
4122 
4123 	status = xpt_compile_path(&bus_path, NULL, pathid,
4124 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4125 	if (status != CAM_REQ_CMP)
4126 		return (status);
4127 
4128 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4129 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4130 
4131 	/* Release the reference count held while registered. */
4132 	xpt_release_bus(bus_path.bus);
4133 	xpt_release_path(&bus_path);
4134 
4135 	return (CAM_REQ_CMP);
4136 }
4137 
4138 static path_id_t
4139 xptnextfreepathid(void)
4140 {
4141 	struct cam_eb *bus;
4142 	path_id_t pathid;
4143 	const char *strval;
4144 
4145 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4146 	pathid = 0;
4147 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4148 retry:
4149 	/* Find an unoccupied pathid */
4150 	while (bus != NULL && bus->path_id <= pathid) {
4151 		if (bus->path_id == pathid)
4152 			pathid++;
4153 		bus = TAILQ_NEXT(bus, links);
4154 	}
4155 
4156 	/*
4157 	 * Ensure that this pathid is not reserved for
4158 	 * a bus that may be registered in the future.
4159 	 */
4160 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4161 		++pathid;
4162 		/* Start the search over */
4163 		goto retry;
4164 	}
4165 	return (pathid);
4166 }
4167 
4168 static path_id_t
4169 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4170 {
4171 	path_id_t pathid;
4172 	int i, dunit, val;
4173 	char buf[32];
4174 	const char *dname;
4175 
4176 	pathid = CAM_XPT_PATH_ID;
4177 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4178 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4179 		return (pathid);
4180 	i = 0;
4181 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4182 		if (strcmp(dname, "scbus")) {
4183 			/* Avoid a bit of foot shooting. */
4184 			continue;
4185 		}
4186 		if (dunit < 0)		/* unwired?! */
4187 			continue;
4188 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4189 			if (sim_bus == val) {
4190 				pathid = dunit;
4191 				break;
4192 			}
4193 		} else if (sim_bus == 0) {
4194 			/* Unspecified matches bus 0 */
4195 			pathid = dunit;
4196 			break;
4197 		} else {
4198 			printf("Ambiguous scbus configuration for %s%d "
4199 			       "bus %d, cannot wire down.  The kernel "
4200 			       "config entry for scbus%d should "
4201 			       "specify a controller bus.\n"
4202 			       "Scbus will be assigned dynamically.\n",
4203 			       sim_name, sim_unit, sim_bus, dunit);
4204 			break;
4205 		}
4206 	}
4207 
4208 	if (pathid == CAM_XPT_PATH_ID)
4209 		pathid = xptnextfreepathid();
4210 	return (pathid);
4211 }
4212 
4213 static const char *
4214 xpt_async_string(u_int32_t async_code)
4215 {
4216 
4217 	switch (async_code) {
4218 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4219 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4220 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4221 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4222 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4223 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4224 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4225 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4226 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4227 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4228 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4229 	case AC_CONTRACT: return ("AC_CONTRACT");
4230 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4231 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4232 	}
4233 	return ("AC_UNKNOWN");
4234 }
4235 
4236 static int
4237 xpt_async_size(u_int32_t async_code)
4238 {
4239 
4240 	switch (async_code) {
4241 	case AC_BUS_RESET: return (0);
4242 	case AC_UNSOL_RESEL: return (0);
4243 	case AC_SCSI_AEN: return (0);
4244 	case AC_SENT_BDR: return (0);
4245 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4246 	case AC_PATH_DEREGISTERED: return (0);
4247 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4248 	case AC_LOST_DEVICE: return (0);
4249 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4250 	case AC_INQ_CHANGED: return (0);
4251 	case AC_GETDEV_CHANGED: return (0);
4252 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4253 	case AC_ADVINFO_CHANGED: return (-1);
4254 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4255 	}
4256 	return (0);
4257 }
4258 
4259 static int
4260 xpt_async_process_dev(struct cam_ed *device, void *arg)
4261 {
4262 	union ccb *ccb = arg;
4263 	struct cam_path *path = ccb->ccb_h.path;
4264 	void *async_arg = ccb->casync.async_arg_ptr;
4265 	u_int32_t async_code = ccb->casync.async_code;
4266 	int relock;
4267 
4268 	if (path->device != device
4269 	 && path->device->lun_id != CAM_LUN_WILDCARD
4270 	 && device->lun_id != CAM_LUN_WILDCARD)
4271 		return (1);
4272 
4273 	/*
4274 	 * The async callback could free the device.
4275 	 * If it is a broadcast async, it doesn't hold
4276 	 * device reference, so take our own reference.
4277 	 */
4278 	xpt_acquire_device(device);
4279 
4280 	/*
4281 	 * If async for specific device is to be delivered to
4282 	 * the wildcard client, take the specific device lock.
4283 	 * XXX: We may need a way for client to specify it.
4284 	 */
4285 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4286 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4287 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4288 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4289 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4290 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4291 		mtx_unlock(&device->device_mtx);
4292 		xpt_path_lock(path);
4293 		relock = 1;
4294 	} else
4295 		relock = 0;
4296 
4297 	(*(device->target->bus->xport->ops->async))(async_code,
4298 	    device->target->bus, device->target, device, async_arg);
4299 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4300 
4301 	if (relock) {
4302 		xpt_path_unlock(path);
4303 		mtx_lock(&device->device_mtx);
4304 	}
4305 	xpt_release_device(device);
4306 	return (1);
4307 }
4308 
4309 static int
4310 xpt_async_process_tgt(struct cam_et *target, void *arg)
4311 {
4312 	union ccb *ccb = arg;
4313 	struct cam_path *path = ccb->ccb_h.path;
4314 
4315 	if (path->target != target
4316 	 && path->target->target_id != CAM_TARGET_WILDCARD
4317 	 && target->target_id != CAM_TARGET_WILDCARD)
4318 		return (1);
4319 
4320 	if (ccb->casync.async_code == AC_SENT_BDR) {
4321 		/* Update our notion of when the last reset occurred */
4322 		microtime(&target->last_reset);
4323 	}
4324 
4325 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4326 }
4327 
4328 static void
4329 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4330 {
4331 	struct cam_eb *bus;
4332 	struct cam_path *path;
4333 	void *async_arg;
4334 	u_int32_t async_code;
4335 
4336 	path = ccb->ccb_h.path;
4337 	async_code = ccb->casync.async_code;
4338 	async_arg = ccb->casync.async_arg_ptr;
4339 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4340 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4341 	bus = path->bus;
4342 
4343 	if (async_code == AC_BUS_RESET) {
4344 		/* Update our notion of when the last reset occurred */
4345 		microtime(&bus->last_reset);
4346 	}
4347 
4348 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4349 
4350 	/*
4351 	 * If this wasn't a fully wildcarded async, tell all
4352 	 * clients that want all async events.
4353 	 */
4354 	if (bus != xpt_periph->path->bus) {
4355 		xpt_path_lock(xpt_periph->path);
4356 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4357 		xpt_path_unlock(xpt_periph->path);
4358 	}
4359 
4360 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4361 		xpt_release_devq(path, 1, TRUE);
4362 	else
4363 		xpt_release_simq(path->bus->sim, TRUE);
4364 	if (ccb->casync.async_arg_size > 0)
4365 		free(async_arg, M_CAMXPT);
4366 	xpt_free_path(path);
4367 	xpt_free_ccb(ccb);
4368 }
4369 
4370 static void
4371 xpt_async_bcast(struct async_list *async_head,
4372 		u_int32_t async_code,
4373 		struct cam_path *path, void *async_arg)
4374 {
4375 	struct async_node *cur_entry;
4376 	struct mtx *mtx;
4377 
4378 	cur_entry = SLIST_FIRST(async_head);
4379 	while (cur_entry != NULL) {
4380 		struct async_node *next_entry;
4381 		/*
4382 		 * Grab the next list entry before we call the current
4383 		 * entry's callback.  This is because the callback function
4384 		 * can delete its async callback entry.
4385 		 */
4386 		next_entry = SLIST_NEXT(cur_entry, links);
4387 		if ((cur_entry->event_enable & async_code) != 0) {
4388 			mtx = cur_entry->event_lock ?
4389 			    path->device->sim->mtx : NULL;
4390 			if (mtx)
4391 				mtx_lock(mtx);
4392 			cur_entry->callback(cur_entry->callback_arg,
4393 					    async_code, path,
4394 					    async_arg);
4395 			if (mtx)
4396 				mtx_unlock(mtx);
4397 		}
4398 		cur_entry = next_entry;
4399 	}
4400 }
4401 
4402 void
4403 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4404 {
4405 	union ccb *ccb;
4406 	int size;
4407 
4408 	ccb = xpt_alloc_ccb_nowait();
4409 	if (ccb == NULL) {
4410 		xpt_print(path, "Can't allocate CCB to send %s\n",
4411 		    xpt_async_string(async_code));
4412 		return;
4413 	}
4414 
4415 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4416 		xpt_print(path, "Can't allocate path to send %s\n",
4417 		    xpt_async_string(async_code));
4418 		xpt_free_ccb(ccb);
4419 		return;
4420 	}
4421 	ccb->ccb_h.path->periph = NULL;
4422 	ccb->ccb_h.func_code = XPT_ASYNC;
4423 	ccb->ccb_h.cbfcnp = xpt_async_process;
4424 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4425 	ccb->casync.async_code = async_code;
4426 	ccb->casync.async_arg_size = 0;
4427 	size = xpt_async_size(async_code);
4428 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4429 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4430 		ccb->ccb_h.func_code,
4431 		xpt_action_name(ccb->ccb_h.func_code),
4432 		async_code,
4433 		xpt_async_string(async_code)));
4434 	if (size > 0 && async_arg != NULL) {
4435 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4436 		if (ccb->casync.async_arg_ptr == NULL) {
4437 			xpt_print(path, "Can't allocate argument to send %s\n",
4438 			    xpt_async_string(async_code));
4439 			xpt_free_path(ccb->ccb_h.path);
4440 			xpt_free_ccb(ccb);
4441 			return;
4442 		}
4443 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4444 		ccb->casync.async_arg_size = size;
4445 	} else if (size < 0) {
4446 		ccb->casync.async_arg_ptr = async_arg;
4447 		ccb->casync.async_arg_size = size;
4448 	}
4449 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4450 		xpt_freeze_devq(path, 1);
4451 	else
4452 		xpt_freeze_simq(path->bus->sim, 1);
4453 	xpt_done(ccb);
4454 }
4455 
4456 static void
4457 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4458 		      struct cam_et *target, struct cam_ed *device,
4459 		      void *async_arg)
4460 {
4461 
4462 	/*
4463 	 * We only need to handle events for real devices.
4464 	 */
4465 	if (target->target_id == CAM_TARGET_WILDCARD
4466 	 || device->lun_id == CAM_LUN_WILDCARD)
4467 		return;
4468 
4469 	printf("%s called\n", __func__);
4470 }
4471 
4472 static uint32_t
4473 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4474 {
4475 	struct cam_devq	*devq;
4476 	uint32_t freeze;
4477 
4478 	devq = dev->sim->devq;
4479 	mtx_assert(&devq->send_mtx, MA_OWNED);
4480 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4481 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4482 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4483 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4484 	/* Remove frozen device from sendq. */
4485 	if (device_is_queued(dev))
4486 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4487 	return (freeze);
4488 }
4489 
4490 u_int32_t
4491 xpt_freeze_devq(struct cam_path *path, u_int count)
4492 {
4493 	struct cam_ed	*dev = path->device;
4494 	struct cam_devq	*devq;
4495 	uint32_t	 freeze;
4496 
4497 	devq = dev->sim->devq;
4498 	mtx_lock(&devq->send_mtx);
4499 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4500 	freeze = xpt_freeze_devq_device(dev, count);
4501 	mtx_unlock(&devq->send_mtx);
4502 	return (freeze);
4503 }
4504 
4505 u_int32_t
4506 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4507 {
4508 	struct cam_devq	*devq;
4509 	uint32_t	 freeze;
4510 
4511 	devq = sim->devq;
4512 	mtx_lock(&devq->send_mtx);
4513 	freeze = (devq->send_queue.qfrozen_cnt += count);
4514 	mtx_unlock(&devq->send_mtx);
4515 	return (freeze);
4516 }
4517 
4518 static void
4519 xpt_release_devq_timeout(void *arg)
4520 {
4521 	struct cam_ed *dev;
4522 	struct cam_devq *devq;
4523 
4524 	dev = (struct cam_ed *)arg;
4525 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4526 	devq = dev->sim->devq;
4527 	mtx_assert(&devq->send_mtx, MA_OWNED);
4528 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4529 		xpt_run_devq(devq);
4530 }
4531 
4532 void
4533 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4534 {
4535 	struct cam_ed *dev;
4536 	struct cam_devq *devq;
4537 
4538 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4539 	    count, run_queue));
4540 	dev = path->device;
4541 	devq = dev->sim->devq;
4542 	mtx_lock(&devq->send_mtx);
4543 	if (xpt_release_devq_device(dev, count, run_queue))
4544 		xpt_run_devq(dev->sim->devq);
4545 	mtx_unlock(&devq->send_mtx);
4546 }
4547 
4548 static int
4549 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4550 {
4551 
4552 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4553 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4554 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4555 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4556 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4557 #ifdef INVARIANTS
4558 		printf("xpt_release_devq(): requested %u > present %u\n",
4559 		    count, dev->ccbq.queue.qfrozen_cnt);
4560 #endif
4561 		count = dev->ccbq.queue.qfrozen_cnt;
4562 	}
4563 	dev->ccbq.queue.qfrozen_cnt -= count;
4564 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4565 		/*
4566 		 * No longer need to wait for a successful
4567 		 * command completion.
4568 		 */
4569 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4570 		/*
4571 		 * Remove any timeouts that might be scheduled
4572 		 * to release this queue.
4573 		 */
4574 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4575 			callout_stop(&dev->callout);
4576 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4577 		}
4578 		/*
4579 		 * Now that we are unfrozen schedule the
4580 		 * device so any pending transactions are
4581 		 * run.
4582 		 */
4583 		xpt_schedule_devq(dev->sim->devq, dev);
4584 	} else
4585 		run_queue = 0;
4586 	return (run_queue);
4587 }
4588 
4589 void
4590 xpt_release_simq(struct cam_sim *sim, int run_queue)
4591 {
4592 	struct cam_devq	*devq;
4593 
4594 	devq = sim->devq;
4595 	mtx_lock(&devq->send_mtx);
4596 	if (devq->send_queue.qfrozen_cnt <= 0) {
4597 #ifdef INVARIANTS
4598 		printf("xpt_release_simq: requested 1 > present %u\n",
4599 		    devq->send_queue.qfrozen_cnt);
4600 #endif
4601 	} else
4602 		devq->send_queue.qfrozen_cnt--;
4603 	if (devq->send_queue.qfrozen_cnt == 0) {
4604 		/*
4605 		 * If there is a timeout scheduled to release this
4606 		 * sim queue, remove it.  The queue frozen count is
4607 		 * already at 0.
4608 		 */
4609 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4610 			callout_stop(&sim->callout);
4611 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4612 		}
4613 		if (run_queue) {
4614 			/*
4615 			 * Now that we are unfrozen run the send queue.
4616 			 */
4617 			xpt_run_devq(sim->devq);
4618 		}
4619 	}
4620 	mtx_unlock(&devq->send_mtx);
4621 }
4622 
4623 void
4624 xpt_done(union ccb *done_ccb)
4625 {
4626 	struct cam_doneq *queue;
4627 	int	run, hash;
4628 
4629 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4630 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4631 	    done_ccb->csio.bio != NULL)
4632 		biotrack(done_ccb->csio.bio, __func__);
4633 #endif
4634 
4635 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4636 	    ("xpt_done: func= %#x %s status %#x\n",
4637 		done_ccb->ccb_h.func_code,
4638 		xpt_action_name(done_ccb->ccb_h.func_code),
4639 		done_ccb->ccb_h.status));
4640 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4641 		return;
4642 
4643 	/* Store the time the ccb was in the sim */
4644 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4645 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4646 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4647 	queue = &cam_doneqs[hash];
4648 	mtx_lock(&queue->cam_doneq_mtx);
4649 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4650 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4651 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4652 	mtx_unlock(&queue->cam_doneq_mtx);
4653 	if (run)
4654 		wakeup(&queue->cam_doneq);
4655 }
4656 
4657 void
4658 xpt_done_direct(union ccb *done_ccb)
4659 {
4660 
4661 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4662 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4663 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4664 		return;
4665 
4666 	/* Store the time the ccb was in the sim */
4667 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4668 	xpt_done_process(&done_ccb->ccb_h);
4669 }
4670 
4671 union ccb *
4672 xpt_alloc_ccb()
4673 {
4674 	union ccb *new_ccb;
4675 
4676 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4677 	return (new_ccb);
4678 }
4679 
4680 union ccb *
4681 xpt_alloc_ccb_nowait()
4682 {
4683 	union ccb *new_ccb;
4684 
4685 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4686 	return (new_ccb);
4687 }
4688 
4689 void
4690 xpt_free_ccb(union ccb *free_ccb)
4691 {
4692 	free(free_ccb, M_CAMCCB);
4693 }
4694 
4695 
4696 
4697 /* Private XPT functions */
4698 
4699 /*
4700  * Get a CAM control block for the caller. Charge the structure to the device
4701  * referenced by the path.  If we don't have sufficient resources to allocate
4702  * more ccbs, we return NULL.
4703  */
4704 static union ccb *
4705 xpt_get_ccb_nowait(struct cam_periph *periph)
4706 {
4707 	union ccb *new_ccb;
4708 
4709 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4710 	if (new_ccb == NULL)
4711 		return (NULL);
4712 	periph->periph_allocated++;
4713 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4714 	return (new_ccb);
4715 }
4716 
4717 static union ccb *
4718 xpt_get_ccb(struct cam_periph *periph)
4719 {
4720 	union ccb *new_ccb;
4721 
4722 	cam_periph_unlock(periph);
4723 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4724 	cam_periph_lock(periph);
4725 	periph->periph_allocated++;
4726 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4727 	return (new_ccb);
4728 }
4729 
4730 union ccb *
4731 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4732 {
4733 	struct ccb_hdr *ccb_h;
4734 
4735 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4736 	cam_periph_assert(periph, MA_OWNED);
4737 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4738 	    ccb_h->pinfo.priority != priority) {
4739 		if (priority < periph->immediate_priority) {
4740 			periph->immediate_priority = priority;
4741 			xpt_run_allocq(periph, 0);
4742 		} else
4743 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4744 			    "cgticb", 0);
4745 	}
4746 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4747 	return ((union ccb *)ccb_h);
4748 }
4749 
4750 static void
4751 xpt_acquire_bus(struct cam_eb *bus)
4752 {
4753 
4754 	xpt_lock_buses();
4755 	bus->refcount++;
4756 	xpt_unlock_buses();
4757 }
4758 
4759 static void
4760 xpt_release_bus(struct cam_eb *bus)
4761 {
4762 
4763 	xpt_lock_buses();
4764 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4765 	if (--bus->refcount > 0) {
4766 		xpt_unlock_buses();
4767 		return;
4768 	}
4769 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4770 	xsoftc.bus_generation++;
4771 	xpt_unlock_buses();
4772 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4773 	    ("destroying bus, but target list is not empty"));
4774 	cam_sim_release(bus->sim);
4775 	mtx_destroy(&bus->eb_mtx);
4776 	free(bus, M_CAMXPT);
4777 }
4778 
4779 static struct cam_et *
4780 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4781 {
4782 	struct cam_et *cur_target, *target;
4783 
4784 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4785 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4786 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4787 					 M_NOWAIT|M_ZERO);
4788 	if (target == NULL)
4789 		return (NULL);
4790 
4791 	TAILQ_INIT(&target->ed_entries);
4792 	target->bus = bus;
4793 	target->target_id = target_id;
4794 	target->refcount = 1;
4795 	target->generation = 0;
4796 	target->luns = NULL;
4797 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4798 	timevalclear(&target->last_reset);
4799 	/*
4800 	 * Hold a reference to our parent bus so it
4801 	 * will not go away before we do.
4802 	 */
4803 	bus->refcount++;
4804 
4805 	/* Insertion sort into our bus's target list */
4806 	cur_target = TAILQ_FIRST(&bus->et_entries);
4807 	while (cur_target != NULL && cur_target->target_id < target_id)
4808 		cur_target = TAILQ_NEXT(cur_target, links);
4809 	if (cur_target != NULL) {
4810 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4811 	} else {
4812 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4813 	}
4814 	bus->generation++;
4815 	return (target);
4816 }
4817 
4818 static void
4819 xpt_acquire_target(struct cam_et *target)
4820 {
4821 	struct cam_eb *bus = target->bus;
4822 
4823 	mtx_lock(&bus->eb_mtx);
4824 	target->refcount++;
4825 	mtx_unlock(&bus->eb_mtx);
4826 }
4827 
4828 static void
4829 xpt_release_target(struct cam_et *target)
4830 {
4831 	struct cam_eb *bus = target->bus;
4832 
4833 	mtx_lock(&bus->eb_mtx);
4834 	if (--target->refcount > 0) {
4835 		mtx_unlock(&bus->eb_mtx);
4836 		return;
4837 	}
4838 	TAILQ_REMOVE(&bus->et_entries, target, links);
4839 	bus->generation++;
4840 	mtx_unlock(&bus->eb_mtx);
4841 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4842 	    ("destroying target, but device list is not empty"));
4843 	xpt_release_bus(bus);
4844 	mtx_destroy(&target->luns_mtx);
4845 	if (target->luns)
4846 		free(target->luns, M_CAMXPT);
4847 	free(target, M_CAMXPT);
4848 }
4849 
4850 static struct cam_ed *
4851 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4852 			 lun_id_t lun_id)
4853 {
4854 	struct cam_ed *device;
4855 
4856 	device = xpt_alloc_device(bus, target, lun_id);
4857 	if (device == NULL)
4858 		return (NULL);
4859 
4860 	device->mintags = 1;
4861 	device->maxtags = 1;
4862 	return (device);
4863 }
4864 
4865 static void
4866 xpt_destroy_device(void *context, int pending)
4867 {
4868 	struct cam_ed	*device = context;
4869 
4870 	mtx_lock(&device->device_mtx);
4871 	mtx_destroy(&device->device_mtx);
4872 	free(device, M_CAMDEV);
4873 }
4874 
4875 struct cam_ed *
4876 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4877 {
4878 	struct cam_ed	*cur_device, *device;
4879 	struct cam_devq	*devq;
4880 	cam_status status;
4881 
4882 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4883 	/* Make space for us in the device queue on our bus */
4884 	devq = bus->sim->devq;
4885 	mtx_lock(&devq->send_mtx);
4886 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4887 	mtx_unlock(&devq->send_mtx);
4888 	if (status != CAM_REQ_CMP)
4889 		return (NULL);
4890 
4891 	device = (struct cam_ed *)malloc(sizeof(*device),
4892 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4893 	if (device == NULL)
4894 		return (NULL);
4895 
4896 	cam_init_pinfo(&device->devq_entry);
4897 	device->target = target;
4898 	device->lun_id = lun_id;
4899 	device->sim = bus->sim;
4900 	if (cam_ccbq_init(&device->ccbq,
4901 			  bus->sim->max_dev_openings) != 0) {
4902 		free(device, M_CAMDEV);
4903 		return (NULL);
4904 	}
4905 	SLIST_INIT(&device->asyncs);
4906 	SLIST_INIT(&device->periphs);
4907 	device->generation = 0;
4908 	device->flags = CAM_DEV_UNCONFIGURED;
4909 	device->tag_delay_count = 0;
4910 	device->tag_saved_openings = 0;
4911 	device->refcount = 1;
4912 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4913 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4914 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4915 	/*
4916 	 * Hold a reference to our parent bus so it
4917 	 * will not go away before we do.
4918 	 */
4919 	target->refcount++;
4920 
4921 	cur_device = TAILQ_FIRST(&target->ed_entries);
4922 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4923 		cur_device = TAILQ_NEXT(cur_device, links);
4924 	if (cur_device != NULL)
4925 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4926 	else
4927 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4928 	target->generation++;
4929 	return (device);
4930 }
4931 
4932 void
4933 xpt_acquire_device(struct cam_ed *device)
4934 {
4935 	struct cam_eb *bus = device->target->bus;
4936 
4937 	mtx_lock(&bus->eb_mtx);
4938 	device->refcount++;
4939 	mtx_unlock(&bus->eb_mtx);
4940 }
4941 
4942 void
4943 xpt_release_device(struct cam_ed *device)
4944 {
4945 	struct cam_eb *bus = device->target->bus;
4946 	struct cam_devq *devq;
4947 
4948 	mtx_lock(&bus->eb_mtx);
4949 	if (--device->refcount > 0) {
4950 		mtx_unlock(&bus->eb_mtx);
4951 		return;
4952 	}
4953 
4954 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4955 	device->target->generation++;
4956 	mtx_unlock(&bus->eb_mtx);
4957 
4958 	/* Release our slot in the devq */
4959 	devq = bus->sim->devq;
4960 	mtx_lock(&devq->send_mtx);
4961 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4962 	mtx_unlock(&devq->send_mtx);
4963 
4964 	KASSERT(SLIST_EMPTY(&device->periphs),
4965 	    ("destroying device, but periphs list is not empty"));
4966 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4967 	    ("destroying device while still queued for ccbs"));
4968 
4969 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4970 		callout_stop(&device->callout);
4971 
4972 	xpt_release_target(device->target);
4973 
4974 	cam_ccbq_fini(&device->ccbq);
4975 	/*
4976 	 * Free allocated memory.  free(9) does nothing if the
4977 	 * supplied pointer is NULL, so it is safe to call without
4978 	 * checking.
4979 	 */
4980 	free(device->supported_vpds, M_CAMXPT);
4981 	free(device->device_id, M_CAMXPT);
4982 	free(device->ext_inq, M_CAMXPT);
4983 	free(device->physpath, M_CAMXPT);
4984 	free(device->rcap_buf, M_CAMXPT);
4985 	free(device->serial_num, M_CAMXPT);
4986 	free(device->nvme_data, M_CAMXPT);
4987 	free(device->nvme_cdata, M_CAMXPT);
4988 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4989 }
4990 
4991 u_int32_t
4992 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4993 {
4994 	int	result;
4995 	struct	cam_ed *dev;
4996 
4997 	dev = path->device;
4998 	mtx_lock(&dev->sim->devq->send_mtx);
4999 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5000 	mtx_unlock(&dev->sim->devq->send_mtx);
5001 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5002 	 || (dev->inq_flags & SID_CmdQue) != 0)
5003 		dev->tag_saved_openings = newopenings;
5004 	return (result);
5005 }
5006 
5007 static struct cam_eb *
5008 xpt_find_bus(path_id_t path_id)
5009 {
5010 	struct cam_eb *bus;
5011 
5012 	xpt_lock_buses();
5013 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5014 	     bus != NULL;
5015 	     bus = TAILQ_NEXT(bus, links)) {
5016 		if (bus->path_id == path_id) {
5017 			bus->refcount++;
5018 			break;
5019 		}
5020 	}
5021 	xpt_unlock_buses();
5022 	return (bus);
5023 }
5024 
5025 static struct cam_et *
5026 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5027 {
5028 	struct cam_et *target;
5029 
5030 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5031 	for (target = TAILQ_FIRST(&bus->et_entries);
5032 	     target != NULL;
5033 	     target = TAILQ_NEXT(target, links)) {
5034 		if (target->target_id == target_id) {
5035 			target->refcount++;
5036 			break;
5037 		}
5038 	}
5039 	return (target);
5040 }
5041 
5042 static struct cam_ed *
5043 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5044 {
5045 	struct cam_ed *device;
5046 
5047 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5048 	for (device = TAILQ_FIRST(&target->ed_entries);
5049 	     device != NULL;
5050 	     device = TAILQ_NEXT(device, links)) {
5051 		if (device->lun_id == lun_id) {
5052 			device->refcount++;
5053 			break;
5054 		}
5055 	}
5056 	return (device);
5057 }
5058 
5059 void
5060 xpt_start_tags(struct cam_path *path)
5061 {
5062 	struct ccb_relsim crs;
5063 	struct cam_ed *device;
5064 	struct cam_sim *sim;
5065 	int    newopenings;
5066 
5067 	device = path->device;
5068 	sim = path->bus->sim;
5069 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5070 	xpt_freeze_devq(path, /*count*/1);
5071 	device->inq_flags |= SID_CmdQue;
5072 	if (device->tag_saved_openings != 0)
5073 		newopenings = device->tag_saved_openings;
5074 	else
5075 		newopenings = min(device->maxtags,
5076 				  sim->max_tagged_dev_openings);
5077 	xpt_dev_ccbq_resize(path, newopenings);
5078 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5079 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5080 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5081 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5082 	crs.openings
5083 	    = crs.release_timeout
5084 	    = crs.qfrozen_cnt
5085 	    = 0;
5086 	xpt_action((union ccb *)&crs);
5087 }
5088 
5089 void
5090 xpt_stop_tags(struct cam_path *path)
5091 {
5092 	struct ccb_relsim crs;
5093 	struct cam_ed *device;
5094 	struct cam_sim *sim;
5095 
5096 	device = path->device;
5097 	sim = path->bus->sim;
5098 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5099 	device->tag_delay_count = 0;
5100 	xpt_freeze_devq(path, /*count*/1);
5101 	device->inq_flags &= ~SID_CmdQue;
5102 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5103 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5104 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5105 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5106 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5107 	crs.openings
5108 	    = crs.release_timeout
5109 	    = crs.qfrozen_cnt
5110 	    = 0;
5111 	xpt_action((union ccb *)&crs);
5112 }
5113 
5114 /*
5115  * Assume all possible buses are detected by this time, so allow boot
5116  * as soon as they all are scanned.
5117  */
5118 static void
5119 xpt_boot_delay(void *arg)
5120 {
5121 
5122 	xpt_release_boot();
5123 }
5124 
5125 /*
5126  * Now that all config hooks have completed, start boot_delay timer,
5127  * waiting for possibly still undetected buses (USB) to appear.
5128  */
5129 static void
5130 xpt_ch_done(void *arg)
5131 {
5132 
5133 	callout_init(&xsoftc.boot_callout, 1);
5134 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5135 	    xpt_boot_delay, NULL, 0);
5136 }
5137 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5138 
5139 /*
5140  * Now that interrupts are enabled, go find our devices
5141  */
5142 static void
5143 xpt_config(void *arg)
5144 {
5145 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5146 		printf("xpt_config: failed to create taskqueue thread.\n");
5147 
5148 	/* Setup debugging path */
5149 	if (cam_dflags != CAM_DEBUG_NONE) {
5150 		if (xpt_create_path(&cam_dpath, NULL,
5151 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5152 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5153 			printf("xpt_config: xpt_create_path() failed for debug"
5154 			       " target %d:%d:%d, debugging disabled\n",
5155 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5156 			cam_dflags = CAM_DEBUG_NONE;
5157 		}
5158 	} else
5159 		cam_dpath = NULL;
5160 
5161 	periphdriver_init(1);
5162 	xpt_hold_boot();
5163 
5164 	/* Fire up rescan thread. */
5165 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5166 	    "cam", "scanner")) {
5167 		printf("xpt_config: failed to create rescan thread.\n");
5168 	}
5169 }
5170 
5171 void
5172 xpt_hold_boot_locked(void)
5173 {
5174 
5175 	if (xsoftc.buses_to_config++ == 0)
5176 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5177 }
5178 
5179 void
5180 xpt_hold_boot(void)
5181 {
5182 
5183 	xpt_lock_buses();
5184 	xpt_hold_boot_locked();
5185 	xpt_unlock_buses();
5186 }
5187 
5188 void
5189 xpt_release_boot(void)
5190 {
5191 
5192 	xpt_lock_buses();
5193 	if (--xsoftc.buses_to_config == 0) {
5194 		if (xsoftc.buses_config_done == 0) {
5195 			xsoftc.buses_config_done = 1;
5196 			xsoftc.buses_to_config++;
5197 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5198 			    NULL);
5199 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5200 		} else
5201 			root_mount_rel(&xsoftc.xpt_rootmount);
5202 	}
5203 	xpt_unlock_buses();
5204 }
5205 
5206 /*
5207  * If the given device only has one peripheral attached to it, and if that
5208  * peripheral is the passthrough driver, announce it.  This insures that the
5209  * user sees some sort of announcement for every peripheral in their system.
5210  */
5211 static int
5212 xptpassannouncefunc(struct cam_ed *device, void *arg)
5213 {
5214 	struct cam_periph *periph;
5215 	int i;
5216 
5217 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5218 	     periph = SLIST_NEXT(periph, periph_links), i++);
5219 
5220 	periph = SLIST_FIRST(&device->periphs);
5221 	if ((i == 1)
5222 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5223 		xpt_announce_periph(periph, NULL);
5224 
5225 	return(1);
5226 }
5227 
5228 static void
5229 xpt_finishconfig_task(void *context, int pending)
5230 {
5231 
5232 	periphdriver_init(2);
5233 	/*
5234 	 * Check for devices with no "standard" peripheral driver
5235 	 * attached.  For any devices like that, announce the
5236 	 * passthrough driver so the user will see something.
5237 	 */
5238 	if (!bootverbose)
5239 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5240 
5241 	xpt_release_boot();
5242 }
5243 
5244 cam_status
5245 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5246 		   struct cam_path *path)
5247 {
5248 	struct ccb_setasync csa;
5249 	cam_status status;
5250 	int xptpath = 0;
5251 
5252 	if (path == NULL) {
5253 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5254 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5255 		if (status != CAM_REQ_CMP)
5256 			return (status);
5257 		xpt_path_lock(path);
5258 		xptpath = 1;
5259 	}
5260 
5261 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5262 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5263 	csa.event_enable = event;
5264 	csa.callback = cbfunc;
5265 	csa.callback_arg = cbarg;
5266 	xpt_action((union ccb *)&csa);
5267 	status = csa.ccb_h.status;
5268 
5269 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5270 	    ("xpt_register_async: func %p\n", cbfunc));
5271 
5272 	if (xptpath) {
5273 		xpt_path_unlock(path);
5274 		xpt_free_path(path);
5275 	}
5276 
5277 	if ((status == CAM_REQ_CMP) &&
5278 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5279 		/*
5280 		 * Get this peripheral up to date with all
5281 		 * the currently existing devices.
5282 		 */
5283 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5284 	}
5285 	if ((status == CAM_REQ_CMP) &&
5286 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5287 		/*
5288 		 * Get this peripheral up to date with all
5289 		 * the currently existing buses.
5290 		 */
5291 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5292 	}
5293 
5294 	return (status);
5295 }
5296 
5297 static void
5298 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5299 {
5300 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5301 
5302 	switch (work_ccb->ccb_h.func_code) {
5303 	/* Common cases first */
5304 	case XPT_PATH_INQ:		/* Path routing inquiry */
5305 	{
5306 		struct ccb_pathinq *cpi;
5307 
5308 		cpi = &work_ccb->cpi;
5309 		cpi->version_num = 1; /* XXX??? */
5310 		cpi->hba_inquiry = 0;
5311 		cpi->target_sprt = 0;
5312 		cpi->hba_misc = 0;
5313 		cpi->hba_eng_cnt = 0;
5314 		cpi->max_target = 0;
5315 		cpi->max_lun = 0;
5316 		cpi->initiator_id = 0;
5317 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5318 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5319 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5320 		cpi->unit_number = sim->unit_number;
5321 		cpi->bus_id = sim->bus_id;
5322 		cpi->base_transfer_speed = 0;
5323 		cpi->protocol = PROTO_UNSPECIFIED;
5324 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5325 		cpi->transport = XPORT_UNSPECIFIED;
5326 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5327 		cpi->ccb_h.status = CAM_REQ_CMP;
5328 		xpt_done(work_ccb);
5329 		break;
5330 	}
5331 	default:
5332 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5333 		xpt_done(work_ccb);
5334 		break;
5335 	}
5336 }
5337 
5338 /*
5339  * The xpt as a "controller" has no interrupt sources, so polling
5340  * is a no-op.
5341  */
5342 static void
5343 xptpoll(struct cam_sim *sim)
5344 {
5345 }
5346 
5347 void
5348 xpt_lock_buses(void)
5349 {
5350 	mtx_lock(&xsoftc.xpt_topo_lock);
5351 }
5352 
5353 void
5354 xpt_unlock_buses(void)
5355 {
5356 	mtx_unlock(&xsoftc.xpt_topo_lock);
5357 }
5358 
5359 struct mtx *
5360 xpt_path_mtx(struct cam_path *path)
5361 {
5362 
5363 	return (&path->device->device_mtx);
5364 }
5365 
5366 static void
5367 xpt_done_process(struct ccb_hdr *ccb_h)
5368 {
5369 	struct cam_sim *sim = NULL;
5370 	struct cam_devq *devq = NULL;
5371 	struct mtx *mtx = NULL;
5372 
5373 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5374 	struct ccb_scsiio *csio;
5375 
5376 	if (ccb_h->func_code == XPT_SCSI_IO) {
5377 		csio = &((union ccb *)ccb_h)->csio;
5378 		if (csio->bio != NULL)
5379 			biotrack(csio->bio, __func__);
5380 	}
5381 #endif
5382 
5383 	if (ccb_h->flags & CAM_HIGH_POWER) {
5384 		struct highpowerlist	*hphead;
5385 		struct cam_ed		*device;
5386 
5387 		mtx_lock(&xsoftc.xpt_highpower_lock);
5388 		hphead = &xsoftc.highpowerq;
5389 
5390 		device = STAILQ_FIRST(hphead);
5391 
5392 		/*
5393 		 * Increment the count since this command is done.
5394 		 */
5395 		xsoftc.num_highpower++;
5396 
5397 		/*
5398 		 * Any high powered commands queued up?
5399 		 */
5400 		if (device != NULL) {
5401 
5402 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5403 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5404 
5405 			mtx_lock(&device->sim->devq->send_mtx);
5406 			xpt_release_devq_device(device,
5407 					 /*count*/1, /*runqueue*/TRUE);
5408 			mtx_unlock(&device->sim->devq->send_mtx);
5409 		} else
5410 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5411 	}
5412 
5413 	/*
5414 	 * Insulate against a race where the periph is destroyed but CCBs are
5415 	 * still not all processed. This shouldn't happen, but allows us better
5416 	 * bug diagnostic when it does.
5417 	 */
5418 	if (ccb_h->path->bus)
5419 		sim = ccb_h->path->bus->sim;
5420 
5421 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5422 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5423 		xpt_release_simq(sim, /*run_queue*/FALSE);
5424 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5425 	}
5426 
5427 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5428 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5429 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5430 		ccb_h->status &= ~CAM_DEV_QFRZN;
5431 	}
5432 
5433 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5434 		struct cam_ed *dev = ccb_h->path->device;
5435 
5436 		if (sim)
5437 			devq = sim->devq;
5438 		KASSERT(devq, ("Periph disappeared with request pending."));
5439 
5440 		mtx_lock(&devq->send_mtx);
5441 		devq->send_active--;
5442 		devq->send_openings++;
5443 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5444 
5445 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5446 		  && (dev->ccbq.dev_active == 0))) {
5447 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5448 			xpt_release_devq_device(dev, /*count*/1,
5449 					 /*run_queue*/FALSE);
5450 		}
5451 
5452 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5453 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5454 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5455 			xpt_release_devq_device(dev, /*count*/1,
5456 					 /*run_queue*/FALSE);
5457 		}
5458 
5459 		if (!device_is_queued(dev))
5460 			(void)xpt_schedule_devq(devq, dev);
5461 		xpt_run_devq(devq);
5462 		mtx_unlock(&devq->send_mtx);
5463 
5464 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5465 			mtx = xpt_path_mtx(ccb_h->path);
5466 			mtx_lock(mtx);
5467 
5468 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5469 			 && (--dev->tag_delay_count == 0))
5470 				xpt_start_tags(ccb_h->path);
5471 		}
5472 	}
5473 
5474 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5475 		if (mtx == NULL) {
5476 			mtx = xpt_path_mtx(ccb_h->path);
5477 			mtx_lock(mtx);
5478 		}
5479 	} else {
5480 		if (mtx != NULL) {
5481 			mtx_unlock(mtx);
5482 			mtx = NULL;
5483 		}
5484 	}
5485 
5486 	/* Call the peripheral driver's callback */
5487 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5488 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5489 	if (mtx != NULL)
5490 		mtx_unlock(mtx);
5491 }
5492 
5493 void
5494 xpt_done_td(void *arg)
5495 {
5496 	struct cam_doneq *queue = arg;
5497 	struct ccb_hdr *ccb_h;
5498 	STAILQ_HEAD(, ccb_hdr)	doneq;
5499 
5500 	STAILQ_INIT(&doneq);
5501 	mtx_lock(&queue->cam_doneq_mtx);
5502 	while (1) {
5503 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5504 			queue->cam_doneq_sleep = 1;
5505 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5506 			    PRIBIO, "-", 0);
5507 			queue->cam_doneq_sleep = 0;
5508 		}
5509 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5510 		mtx_unlock(&queue->cam_doneq_mtx);
5511 
5512 		THREAD_NO_SLEEPING();
5513 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5514 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5515 			xpt_done_process(ccb_h);
5516 		}
5517 		THREAD_SLEEPING_OK();
5518 
5519 		mtx_lock(&queue->cam_doneq_mtx);
5520 	}
5521 }
5522 
5523 static void
5524 camisr_runqueue(void)
5525 {
5526 	struct	ccb_hdr *ccb_h;
5527 	struct cam_doneq *queue;
5528 	int i;
5529 
5530 	/* Process global queues. */
5531 	for (i = 0; i < cam_num_doneqs; i++) {
5532 		queue = &cam_doneqs[i];
5533 		mtx_lock(&queue->cam_doneq_mtx);
5534 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5535 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5536 			mtx_unlock(&queue->cam_doneq_mtx);
5537 			xpt_done_process(ccb_h);
5538 			mtx_lock(&queue->cam_doneq_mtx);
5539 		}
5540 		mtx_unlock(&queue->cam_doneq_mtx);
5541 	}
5542 }
5543 
5544 struct kv
5545 {
5546 	uint32_t v;
5547 	const char *name;
5548 };
5549 
5550 static struct kv map[] = {
5551 	{ XPT_NOOP, "XPT_NOOP" },
5552 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5553 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5554 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5555 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5556 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5557 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5558 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5559 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5560 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5561 	{ XPT_DEBUG, "XPT_DEBUG" },
5562 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5563 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5564 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5565 	{ XPT_ASYNC, "XPT_ASYNC" },
5566 	{ XPT_ABORT, "XPT_ABORT" },
5567 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5568 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5569 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5570 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5571 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5572 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5573 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5574 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5575 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5576 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5577 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5578 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5579 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5580 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5581 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5582 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5583 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5584 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5585 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5586 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5587 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5588 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5589 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5590 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5591 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5592 	{ 0, 0 }
5593 };
5594 
5595 const char *
5596 xpt_action_name(uint32_t action)
5597 {
5598 	static char buffer[32];	/* Only for unknown messages -- racy */
5599 	struct kv *walker = map;
5600 
5601 	while (walker->name != NULL) {
5602 		if (walker->v == action)
5603 			return (walker->name);
5604 		walker++;
5605 	}
5606 
5607 	snprintf(buffer, sizeof(buffer), "%#x", action);
5608 	return (buffer);
5609 }
5610