1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_sim.h> 56 #include <cam/cam_xpt.h> 57 #include <cam/cam_xpt_sim.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_xpt_internal.h> 60 #include <cam/cam_debug.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 #include <machine/md_var.h> /* geometry translation */ 67 #include <machine/stdarg.h> /* for xpt_print below */ 68 69 #include "opt_cam.h" 70 71 /* 72 * This is the maximum number of high powered commands (e.g. start unit) 73 * that can be outstanding at a particular time. 74 */ 75 #ifndef CAM_MAX_HIGHPOWER 76 #define CAM_MAX_HIGHPOWER 4 77 #endif 78 79 /* Datastructures internal to the xpt layer */ 80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 81 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 82 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 83 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 84 85 /* Object for defering XPT actions to a taskqueue */ 86 struct xpt_task { 87 struct task task; 88 void *data1; 89 uintptr_t data2; 90 }; 91 92 typedef enum { 93 XPT_FLAG_OPEN = 0x01 94 } xpt_flags; 95 96 struct xpt_softc { 97 xpt_flags flags; 98 u_int32_t xpt_generation; 99 100 /* number of high powered commands that can go through right now */ 101 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* Registered busses */ 110 TAILQ_HEAD(,cam_eb) xpt_busses; 111 u_int bus_generation; 112 113 struct intr_config_hook *xpt_config_hook; 114 115 int boot_delay; 116 struct callout boot_callout; 117 118 struct mtx xpt_topo_lock; 119 struct mtx xpt_lock; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 156 &xsoftc.boot_delay, 0, "Bus registration wait time"); 157 158 /* Queues for our software interrupt handler */ 159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 161 static cam_simq_t cam_simq; 162 static struct mtx cam_simq_lock; 163 164 /* Pointers to software interrupt handlers */ 165 static void *cambio_ih; 166 167 struct cam_periph *xpt_periph; 168 169 static periph_init_t xpt_periph_init; 170 171 static struct periph_driver xpt_driver = 172 { 173 xpt_periph_init, "xpt", 174 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 175 CAM_PERIPH_DRV_EARLY 176 }; 177 178 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 179 180 static d_open_t xptopen; 181 static d_close_t xptclose; 182 static d_ioctl_t xptioctl; 183 184 static struct cdevsw xpt_cdevsw = { 185 .d_version = D_VERSION, 186 .d_flags = 0, 187 .d_open = xptopen, 188 .d_close = xptclose, 189 .d_ioctl = xptioctl, 190 .d_name = "xpt", 191 }; 192 193 /* Storage for debugging datastructures */ 194 struct cam_path *cam_dpath; 195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 196 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 197 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 198 &cam_dflags, 0, "Enabled debug flags"); 199 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 200 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 202 &cam_debug_delay, 0, "Delay in us after each debug message"); 203 204 /* Our boot-time initialization hook */ 205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 206 207 static moduledata_t cam_moduledata = { 208 "cam", 209 cam_module_event_handler, 210 NULL 211 }; 212 213 static int xpt_init(void *); 214 215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 216 MODULE_VERSION(cam, 1); 217 218 219 static void xpt_async_bcast(struct async_list *async_head, 220 u_int32_t async_code, 221 struct cam_path *path, 222 void *async_arg); 223 static path_id_t xptnextfreepathid(void); 224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 225 static union ccb *xpt_get_ccb(struct cam_ed *device); 226 static void xpt_run_dev_allocq(struct cam_ed *device); 227 static void xpt_run_devq(struct cam_devq *devq); 228 static timeout_t xpt_release_devq_timeout; 229 static void xpt_release_simq_timeout(void *arg) __unused; 230 static void xpt_release_bus(struct cam_eb *bus); 231 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 232 int run_queue); 233 static struct cam_et* 234 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 235 static void xpt_release_target(struct cam_et *target); 236 static struct cam_eb* 237 xpt_find_bus(path_id_t path_id); 238 static struct cam_et* 239 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 240 static struct cam_ed* 241 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 242 static void xpt_config(void *arg); 243 static xpt_devicefunc_t xptpassannouncefunc; 244 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 245 static void xptpoll(struct cam_sim *sim); 246 static void camisr(void *); 247 static void camisr_runqueue(void *); 248 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 249 u_int num_patterns, struct cam_eb *bus); 250 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 251 u_int num_patterns, 252 struct cam_ed *device); 253 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 254 u_int num_patterns, 255 struct cam_periph *periph); 256 static xpt_busfunc_t xptedtbusfunc; 257 static xpt_targetfunc_t xptedttargetfunc; 258 static xpt_devicefunc_t xptedtdevicefunc; 259 static xpt_periphfunc_t xptedtperiphfunc; 260 static xpt_pdrvfunc_t xptplistpdrvfunc; 261 static xpt_periphfunc_t xptplistperiphfunc; 262 static int xptedtmatch(struct ccb_dev_match *cdm); 263 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 264 static int xptbustraverse(struct cam_eb *start_bus, 265 xpt_busfunc_t *tr_func, void *arg); 266 static int xpttargettraverse(struct cam_eb *bus, 267 struct cam_et *start_target, 268 xpt_targetfunc_t *tr_func, void *arg); 269 static int xptdevicetraverse(struct cam_et *target, 270 struct cam_ed *start_device, 271 xpt_devicefunc_t *tr_func, void *arg); 272 static int xptperiphtraverse(struct cam_ed *device, 273 struct cam_periph *start_periph, 274 xpt_periphfunc_t *tr_func, void *arg); 275 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 276 xpt_pdrvfunc_t *tr_func, void *arg); 277 static int xptpdperiphtraverse(struct periph_driver **pdrv, 278 struct cam_periph *start_periph, 279 xpt_periphfunc_t *tr_func, 280 void *arg); 281 static xpt_busfunc_t xptdefbusfunc; 282 static xpt_targetfunc_t xptdeftargetfunc; 283 static xpt_devicefunc_t xptdefdevicefunc; 284 static xpt_periphfunc_t xptdefperiphfunc; 285 static void xpt_finishconfig_task(void *context, int pending); 286 static void xpt_dev_async_default(u_int32_t async_code, 287 struct cam_eb *bus, 288 struct cam_et *target, 289 struct cam_ed *device, 290 void *async_arg); 291 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 292 struct cam_et *target, 293 lun_id_t lun_id); 294 static xpt_devicefunc_t xptsetasyncfunc; 295 static xpt_busfunc_t xptsetasyncbusfunc; 296 static cam_status xptregister(struct cam_periph *periph, 297 void *arg); 298 static __inline int periph_is_queued(struct cam_periph *periph); 299 static __inline int device_is_queued(struct cam_ed *device); 300 301 static __inline int 302 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 303 { 304 int retval; 305 306 if ((dev->ccbq.queue.entries > 0) && 307 (dev->ccbq.dev_openings > 0) && 308 (dev->ccbq.queue.qfrozen_cnt == 0)) { 309 /* 310 * The priority of a device waiting for controller 311 * resources is that of the highest priority CCB 312 * enqueued. 313 */ 314 retval = 315 xpt_schedule_dev(&devq->send_queue, 316 &dev->devq_entry.pinfo, 317 CAMQ_GET_PRIO(&dev->ccbq.queue)); 318 } else { 319 retval = 0; 320 } 321 return (retval); 322 } 323 324 static __inline int 325 periph_is_queued(struct cam_periph *periph) 326 { 327 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 328 } 329 330 static __inline int 331 device_is_queued(struct cam_ed *device) 332 { 333 return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX); 334 } 335 336 static void 337 xpt_periph_init() 338 { 339 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 340 } 341 342 static void 343 xptdone(struct cam_periph *periph, union ccb *done_ccb) 344 { 345 /* Caller will release the CCB */ 346 wakeup(&done_ccb->ccb_h.cbfcnp); 347 } 348 349 static int 350 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 351 { 352 353 /* 354 * Only allow read-write access. 355 */ 356 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 357 return(EPERM); 358 359 /* 360 * We don't allow nonblocking access. 361 */ 362 if ((flags & O_NONBLOCK) != 0) { 363 printf("%s: can't do nonblocking access\n", devtoname(dev)); 364 return(ENODEV); 365 } 366 367 /* Mark ourselves open */ 368 mtx_lock(&xsoftc.xpt_lock); 369 xsoftc.flags |= XPT_FLAG_OPEN; 370 mtx_unlock(&xsoftc.xpt_lock); 371 372 return(0); 373 } 374 375 static int 376 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 377 { 378 379 /* Mark ourselves closed */ 380 mtx_lock(&xsoftc.xpt_lock); 381 xsoftc.flags &= ~XPT_FLAG_OPEN; 382 mtx_unlock(&xsoftc.xpt_lock); 383 384 return(0); 385 } 386 387 /* 388 * Don't automatically grab the xpt softc lock here even though this is going 389 * through the xpt device. The xpt device is really just a back door for 390 * accessing other devices and SIMs, so the right thing to do is to grab 391 * the appropriate SIM lock once the bus/SIM is located. 392 */ 393 static int 394 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 395 { 396 int error; 397 398 error = 0; 399 400 switch(cmd) { 401 /* 402 * For the transport layer CAMIOCOMMAND ioctl, we really only want 403 * to accept CCB types that don't quite make sense to send through a 404 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 405 * in the CAM spec. 406 */ 407 case CAMIOCOMMAND: { 408 union ccb *ccb; 409 union ccb *inccb; 410 struct cam_eb *bus; 411 412 inccb = (union ccb *)addr; 413 414 bus = xpt_find_bus(inccb->ccb_h.path_id); 415 if (bus == NULL) 416 return (EINVAL); 417 418 switch (inccb->ccb_h.func_code) { 419 case XPT_SCAN_BUS: 420 case XPT_RESET_BUS: 421 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 422 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 423 xpt_release_bus(bus); 424 return (EINVAL); 425 } 426 break; 427 case XPT_SCAN_TGT: 428 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 429 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 430 xpt_release_bus(bus); 431 return (EINVAL); 432 } 433 break; 434 default: 435 break; 436 } 437 438 switch(inccb->ccb_h.func_code) { 439 case XPT_SCAN_BUS: 440 case XPT_RESET_BUS: 441 case XPT_PATH_INQ: 442 case XPT_ENG_INQ: 443 case XPT_SCAN_LUN: 444 case XPT_SCAN_TGT: 445 446 ccb = xpt_alloc_ccb(); 447 448 CAM_SIM_LOCK(bus->sim); 449 450 /* 451 * Create a path using the bus, target, and lun the 452 * user passed in. 453 */ 454 if (xpt_create_path(&ccb->ccb_h.path, NULL, 455 inccb->ccb_h.path_id, 456 inccb->ccb_h.target_id, 457 inccb->ccb_h.target_lun) != 458 CAM_REQ_CMP){ 459 error = EINVAL; 460 CAM_SIM_UNLOCK(bus->sim); 461 xpt_free_ccb(ccb); 462 break; 463 } 464 /* Ensure all of our fields are correct */ 465 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 466 inccb->ccb_h.pinfo.priority); 467 xpt_merge_ccb(ccb, inccb); 468 ccb->ccb_h.cbfcnp = xptdone; 469 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 470 bcopy(ccb, inccb, sizeof(union ccb)); 471 xpt_free_path(ccb->ccb_h.path); 472 xpt_free_ccb(ccb); 473 CAM_SIM_UNLOCK(bus->sim); 474 break; 475 476 case XPT_DEBUG: { 477 union ccb ccb; 478 479 /* 480 * This is an immediate CCB, so it's okay to 481 * allocate it on the stack. 482 */ 483 484 CAM_SIM_LOCK(bus->sim); 485 486 /* 487 * Create a path using the bus, target, and lun the 488 * user passed in. 489 */ 490 if (xpt_create_path(&ccb.ccb_h.path, NULL, 491 inccb->ccb_h.path_id, 492 inccb->ccb_h.target_id, 493 inccb->ccb_h.target_lun) != 494 CAM_REQ_CMP){ 495 error = EINVAL; 496 CAM_SIM_UNLOCK(bus->sim); 497 break; 498 } 499 /* Ensure all of our fields are correct */ 500 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 501 inccb->ccb_h.pinfo.priority); 502 xpt_merge_ccb(&ccb, inccb); 503 ccb.ccb_h.cbfcnp = xptdone; 504 xpt_action(&ccb); 505 bcopy(&ccb, inccb, sizeof(union ccb)); 506 xpt_free_path(ccb.ccb_h.path); 507 CAM_SIM_UNLOCK(bus->sim); 508 break; 509 510 } 511 case XPT_DEV_MATCH: { 512 struct cam_periph_map_info mapinfo; 513 struct cam_path *old_path; 514 515 /* 516 * We can't deal with physical addresses for this 517 * type of transaction. 518 */ 519 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 520 CAM_DATA_VADDR) { 521 error = EINVAL; 522 break; 523 } 524 525 /* 526 * Save this in case the caller had it set to 527 * something in particular. 528 */ 529 old_path = inccb->ccb_h.path; 530 531 /* 532 * We really don't need a path for the matching 533 * code. The path is needed because of the 534 * debugging statements in xpt_action(). They 535 * assume that the CCB has a valid path. 536 */ 537 inccb->ccb_h.path = xpt_periph->path; 538 539 bzero(&mapinfo, sizeof(mapinfo)); 540 541 /* 542 * Map the pattern and match buffers into kernel 543 * virtual address space. 544 */ 545 error = cam_periph_mapmem(inccb, &mapinfo); 546 547 if (error) { 548 inccb->ccb_h.path = old_path; 549 break; 550 } 551 552 /* 553 * This is an immediate CCB, we can send it on directly. 554 */ 555 CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path)); 556 xpt_action(inccb); 557 CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path)); 558 559 /* 560 * Map the buffers back into user space. 561 */ 562 cam_periph_unmapmem(inccb, &mapinfo); 563 564 inccb->ccb_h.path = old_path; 565 566 error = 0; 567 break; 568 } 569 default: 570 error = ENOTSUP; 571 break; 572 } 573 xpt_release_bus(bus); 574 break; 575 } 576 /* 577 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 578 * with the periphal driver name and unit name filled in. The other 579 * fields don't really matter as input. The passthrough driver name 580 * ("pass"), and unit number are passed back in the ccb. The current 581 * device generation number, and the index into the device peripheral 582 * driver list, and the status are also passed back. Note that 583 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 584 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 585 * (or rather should be) impossible for the device peripheral driver 586 * list to change since we look at the whole thing in one pass, and 587 * we do it with lock protection. 588 * 589 */ 590 case CAMGETPASSTHRU: { 591 union ccb *ccb; 592 struct cam_periph *periph; 593 struct periph_driver **p_drv; 594 char *name; 595 u_int unit; 596 u_int cur_generation; 597 int base_periph_found; 598 int splbreaknum; 599 600 ccb = (union ccb *)addr; 601 unit = ccb->cgdl.unit_number; 602 name = ccb->cgdl.periph_name; 603 /* 604 * Every 100 devices, we want to drop our lock protection to 605 * give the software interrupt handler a chance to run. 606 * Most systems won't run into this check, but this should 607 * avoid starvation in the software interrupt handler in 608 * large systems. 609 */ 610 splbreaknum = 100; 611 612 ccb = (union ccb *)addr; 613 614 base_periph_found = 0; 615 616 /* 617 * Sanity check -- make sure we don't get a null peripheral 618 * driver name. 619 */ 620 if (*ccb->cgdl.periph_name == '\0') { 621 error = EINVAL; 622 break; 623 } 624 625 /* Keep the list from changing while we traverse it */ 626 xpt_lock_buses(); 627 ptstartover: 628 cur_generation = xsoftc.xpt_generation; 629 630 /* first find our driver in the list of drivers */ 631 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 632 if (strcmp((*p_drv)->driver_name, name) == 0) 633 break; 634 635 if (*p_drv == NULL) { 636 xpt_unlock_buses(); 637 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 638 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 639 *ccb->cgdl.periph_name = '\0'; 640 ccb->cgdl.unit_number = 0; 641 error = ENOENT; 642 break; 643 } 644 645 /* 646 * Run through every peripheral instance of this driver 647 * and check to see whether it matches the unit passed 648 * in by the user. If it does, get out of the loops and 649 * find the passthrough driver associated with that 650 * peripheral driver. 651 */ 652 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 653 periph = TAILQ_NEXT(periph, unit_links)) { 654 655 if (periph->unit_number == unit) { 656 break; 657 } else if (--splbreaknum == 0) { 658 xpt_unlock_buses(); 659 xpt_lock_buses(); 660 splbreaknum = 100; 661 if (cur_generation != xsoftc.xpt_generation) 662 goto ptstartover; 663 } 664 } 665 /* 666 * If we found the peripheral driver that the user passed 667 * in, go through all of the peripheral drivers for that 668 * particular device and look for a passthrough driver. 669 */ 670 if (periph != NULL) { 671 struct cam_ed *device; 672 int i; 673 674 base_periph_found = 1; 675 device = periph->path->device; 676 for (i = 0, periph = SLIST_FIRST(&device->periphs); 677 periph != NULL; 678 periph = SLIST_NEXT(periph, periph_links), i++) { 679 /* 680 * Check to see whether we have a 681 * passthrough device or not. 682 */ 683 if (strcmp(periph->periph_name, "pass") == 0) { 684 /* 685 * Fill in the getdevlist fields. 686 */ 687 strcpy(ccb->cgdl.periph_name, 688 periph->periph_name); 689 ccb->cgdl.unit_number = 690 periph->unit_number; 691 if (SLIST_NEXT(periph, periph_links)) 692 ccb->cgdl.status = 693 CAM_GDEVLIST_MORE_DEVS; 694 else 695 ccb->cgdl.status = 696 CAM_GDEVLIST_LAST_DEVICE; 697 ccb->cgdl.generation = 698 device->generation; 699 ccb->cgdl.index = i; 700 /* 701 * Fill in some CCB header fields 702 * that the user may want. 703 */ 704 ccb->ccb_h.path_id = 705 periph->path->bus->path_id; 706 ccb->ccb_h.target_id = 707 periph->path->target->target_id; 708 ccb->ccb_h.target_lun = 709 periph->path->device->lun_id; 710 ccb->ccb_h.status = CAM_REQ_CMP; 711 break; 712 } 713 } 714 } 715 716 /* 717 * If the periph is null here, one of two things has 718 * happened. The first possibility is that we couldn't 719 * find the unit number of the particular peripheral driver 720 * that the user is asking about. e.g. the user asks for 721 * the passthrough driver for "da11". We find the list of 722 * "da" peripherals all right, but there is no unit 11. 723 * The other possibility is that we went through the list 724 * of peripheral drivers attached to the device structure, 725 * but didn't find one with the name "pass". Either way, 726 * we return ENOENT, since we couldn't find something. 727 */ 728 if (periph == NULL) { 729 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 730 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 731 *ccb->cgdl.periph_name = '\0'; 732 ccb->cgdl.unit_number = 0; 733 error = ENOENT; 734 /* 735 * It is unfortunate that this is even necessary, 736 * but there are many, many clueless users out there. 737 * If this is true, the user is looking for the 738 * passthrough driver, but doesn't have one in his 739 * kernel. 740 */ 741 if (base_periph_found == 1) { 742 printf("xptioctl: pass driver is not in the " 743 "kernel\n"); 744 printf("xptioctl: put \"device pass\" in " 745 "your kernel config file\n"); 746 } 747 } 748 xpt_unlock_buses(); 749 break; 750 } 751 default: 752 error = ENOTTY; 753 break; 754 } 755 756 return(error); 757 } 758 759 static int 760 cam_module_event_handler(module_t mod, int what, void *arg) 761 { 762 int error; 763 764 switch (what) { 765 case MOD_LOAD: 766 if ((error = xpt_init(NULL)) != 0) 767 return (error); 768 break; 769 case MOD_UNLOAD: 770 return EBUSY; 771 default: 772 return EOPNOTSUPP; 773 } 774 775 return 0; 776 } 777 778 static void 779 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 780 { 781 782 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 783 xpt_free_path(done_ccb->ccb_h.path); 784 xpt_free_ccb(done_ccb); 785 } else { 786 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 787 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 788 } 789 xpt_release_boot(); 790 } 791 792 /* thread to handle bus rescans */ 793 static void 794 xpt_scanner_thread(void *dummy) 795 { 796 union ccb *ccb; 797 struct cam_sim *sim; 798 799 xpt_lock_buses(); 800 for (;;) { 801 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 802 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 803 "ccb_scanq", 0); 804 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 805 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 806 xpt_unlock_buses(); 807 808 sim = ccb->ccb_h.path->bus->sim; 809 CAM_SIM_LOCK(sim); 810 xpt_action(ccb); 811 CAM_SIM_UNLOCK(sim); 812 813 xpt_lock_buses(); 814 } 815 } 816 } 817 818 void 819 xpt_rescan(union ccb *ccb) 820 { 821 struct ccb_hdr *hdr; 822 823 /* Prepare request */ 824 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 825 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 826 ccb->ccb_h.func_code = XPT_SCAN_BUS; 827 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 828 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 829 ccb->ccb_h.func_code = XPT_SCAN_TGT; 830 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 831 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 832 ccb->ccb_h.func_code = XPT_SCAN_LUN; 833 else { 834 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 835 xpt_free_path(ccb->ccb_h.path); 836 xpt_free_ccb(ccb); 837 return; 838 } 839 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 840 ccb->ccb_h.cbfcnp = xpt_rescan_done; 841 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 842 /* Don't make duplicate entries for the same paths. */ 843 xpt_lock_buses(); 844 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 845 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 846 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 847 wakeup(&xsoftc.ccb_scanq); 848 xpt_unlock_buses(); 849 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 850 xpt_free_path(ccb->ccb_h.path); 851 xpt_free_ccb(ccb); 852 return; 853 } 854 } 855 } 856 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 857 xsoftc.buses_to_config++; 858 wakeup(&xsoftc.ccb_scanq); 859 xpt_unlock_buses(); 860 } 861 862 /* Functions accessed by the peripheral drivers */ 863 static int 864 xpt_init(void *dummy) 865 { 866 struct cam_sim *xpt_sim; 867 struct cam_path *path; 868 struct cam_devq *devq; 869 cam_status status; 870 871 TAILQ_INIT(&xsoftc.xpt_busses); 872 TAILQ_INIT(&cam_simq); 873 TAILQ_INIT(&xsoftc.ccb_scanq); 874 STAILQ_INIT(&xsoftc.highpowerq); 875 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 876 877 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 878 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 879 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 880 881 /* 882 * The xpt layer is, itself, the equivelent of a SIM. 883 * Allow 16 ccbs in the ccb pool for it. This should 884 * give decent parallelism when we probe busses and 885 * perform other XPT functions. 886 */ 887 devq = cam_simq_alloc(16); 888 xpt_sim = cam_sim_alloc(xptaction, 889 xptpoll, 890 "xpt", 891 /*softc*/NULL, 892 /*unit*/0, 893 /*mtx*/&xsoftc.xpt_lock, 894 /*max_dev_transactions*/0, 895 /*max_tagged_dev_transactions*/0, 896 devq); 897 if (xpt_sim == NULL) 898 return (ENOMEM); 899 900 mtx_lock(&xsoftc.xpt_lock); 901 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 902 mtx_unlock(&xsoftc.xpt_lock); 903 printf("xpt_init: xpt_bus_register failed with status %#x," 904 " failing attach\n", status); 905 return (EINVAL); 906 } 907 908 /* 909 * Looking at the XPT from the SIM layer, the XPT is 910 * the equivelent of a peripheral driver. Allocate 911 * a peripheral driver entry for us. 912 */ 913 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 914 CAM_TARGET_WILDCARD, 915 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 916 mtx_unlock(&xsoftc.xpt_lock); 917 printf("xpt_init: xpt_create_path failed with status %#x," 918 " failing attach\n", status); 919 return (EINVAL); 920 } 921 922 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 923 path, NULL, 0, xpt_sim); 924 xpt_free_path(path); 925 mtx_unlock(&xsoftc.xpt_lock); 926 /* Install our software interrupt handlers */ 927 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 928 /* 929 * Register a callback for when interrupts are enabled. 930 */ 931 xsoftc.xpt_config_hook = 932 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 933 M_CAMXPT, M_NOWAIT | M_ZERO); 934 if (xsoftc.xpt_config_hook == NULL) { 935 printf("xpt_init: Cannot malloc config hook " 936 "- failing attach\n"); 937 return (ENOMEM); 938 } 939 xsoftc.xpt_config_hook->ich_func = xpt_config; 940 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 941 free (xsoftc.xpt_config_hook, M_CAMXPT); 942 printf("xpt_init: config_intrhook_establish failed " 943 "- failing attach\n"); 944 } 945 946 return (0); 947 } 948 949 static cam_status 950 xptregister(struct cam_periph *periph, void *arg) 951 { 952 struct cam_sim *xpt_sim; 953 954 if (periph == NULL) { 955 printf("xptregister: periph was NULL!!\n"); 956 return(CAM_REQ_CMP_ERR); 957 } 958 959 xpt_sim = (struct cam_sim *)arg; 960 xpt_sim->softc = periph; 961 xpt_periph = periph; 962 periph->softc = NULL; 963 964 return(CAM_REQ_CMP); 965 } 966 967 int32_t 968 xpt_add_periph(struct cam_periph *periph) 969 { 970 struct cam_ed *device; 971 int32_t status; 972 struct periph_list *periph_head; 973 974 mtx_assert(periph->sim->mtx, MA_OWNED); 975 976 device = periph->path->device; 977 978 periph_head = &device->periphs; 979 980 status = CAM_REQ_CMP; 981 982 if (device != NULL) { 983 /* 984 * Make room for this peripheral 985 * so it will fit in the queue 986 * when it's scheduled to run 987 */ 988 status = camq_resize(&device->drvq, 989 device->drvq.array_size + 1); 990 991 device->generation++; 992 993 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 994 } 995 996 xpt_lock_buses(); 997 xsoftc.xpt_generation++; 998 xpt_unlock_buses(); 999 1000 return (status); 1001 } 1002 1003 void 1004 xpt_remove_periph(struct cam_periph *periph, int topology_lock_held) 1005 { 1006 struct cam_ed *device; 1007 1008 mtx_assert(periph->sim->mtx, MA_OWNED); 1009 1010 device = periph->path->device; 1011 1012 if (device != NULL) { 1013 struct periph_list *periph_head; 1014 1015 periph_head = &device->periphs; 1016 1017 /* Release the slot for this peripheral */ 1018 camq_resize(&device->drvq, device->drvq.array_size - 1); 1019 1020 device->generation++; 1021 1022 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1023 } 1024 1025 if (topology_lock_held == 0) 1026 xpt_lock_buses(); 1027 1028 xsoftc.xpt_generation++; 1029 1030 if (topology_lock_held == 0) 1031 xpt_unlock_buses(); 1032 } 1033 1034 1035 void 1036 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1037 { 1038 struct cam_path *path = periph->path; 1039 1040 mtx_assert(periph->sim->mtx, MA_OWNED); 1041 1042 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1043 periph->periph_name, periph->unit_number, 1044 path->bus->sim->sim_name, 1045 path->bus->sim->unit_number, 1046 path->bus->sim->bus_id, 1047 path->bus->path_id, 1048 path->target->target_id, 1049 path->device->lun_id); 1050 printf("%s%d: ", periph->periph_name, periph->unit_number); 1051 if (path->device->protocol == PROTO_SCSI) 1052 scsi_print_inquiry(&path->device->inq_data); 1053 else if (path->device->protocol == PROTO_ATA || 1054 path->device->protocol == PROTO_SATAPM) 1055 ata_print_ident(&path->device->ident_data); 1056 else if (path->device->protocol == PROTO_SEMB) 1057 semb_print_ident( 1058 (struct sep_identify_data *)&path->device->ident_data); 1059 else 1060 printf("Unknown protocol device\n"); 1061 if (bootverbose && path->device->serial_num_len > 0) { 1062 /* Don't wrap the screen - print only the first 60 chars */ 1063 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1064 periph->unit_number, path->device->serial_num); 1065 } 1066 /* Announce transport details. */ 1067 (*(path->bus->xport->announce))(periph); 1068 /* Announce command queueing. */ 1069 if (path->device->inq_flags & SID_CmdQue 1070 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1071 printf("%s%d: Command Queueing enabled\n", 1072 periph->periph_name, periph->unit_number); 1073 } 1074 /* Announce caller's details if they've passed in. */ 1075 if (announce_string != NULL) 1076 printf("%s%d: %s\n", periph->periph_name, 1077 periph->unit_number, announce_string); 1078 } 1079 1080 int 1081 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1082 { 1083 int ret = -1; 1084 struct ccb_dev_advinfo cdai; 1085 1086 mtx_assert(path->bus->sim->mtx, MA_OWNED); 1087 1088 memset(&cdai, 0, sizeof(cdai)); 1089 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1090 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1091 cdai.bufsiz = len; 1092 1093 if (!strcmp(attr, "GEOM::ident")) 1094 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1095 else if (!strcmp(attr, "GEOM::physpath")) 1096 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1097 else 1098 goto out; 1099 1100 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1101 if (cdai.buf == NULL) { 1102 ret = ENOMEM; 1103 goto out; 1104 } 1105 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1106 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1107 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1108 if (cdai.provsiz == 0) 1109 goto out; 1110 ret = 0; 1111 if (strlcpy(buf, cdai.buf, len) >= len) 1112 ret = EFAULT; 1113 1114 out: 1115 if (cdai.buf != NULL) 1116 free(cdai.buf, M_CAMXPT); 1117 return ret; 1118 } 1119 1120 static dev_match_ret 1121 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1122 struct cam_eb *bus) 1123 { 1124 dev_match_ret retval; 1125 int i; 1126 1127 retval = DM_RET_NONE; 1128 1129 /* 1130 * If we aren't given something to match against, that's an error. 1131 */ 1132 if (bus == NULL) 1133 return(DM_RET_ERROR); 1134 1135 /* 1136 * If there are no match entries, then this bus matches no 1137 * matter what. 1138 */ 1139 if ((patterns == NULL) || (num_patterns == 0)) 1140 return(DM_RET_DESCEND | DM_RET_COPY); 1141 1142 for (i = 0; i < num_patterns; i++) { 1143 struct bus_match_pattern *cur_pattern; 1144 1145 /* 1146 * If the pattern in question isn't for a bus node, we 1147 * aren't interested. However, we do indicate to the 1148 * calling routine that we should continue descending the 1149 * tree, since the user wants to match against lower-level 1150 * EDT elements. 1151 */ 1152 if (patterns[i].type != DEV_MATCH_BUS) { 1153 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1154 retval |= DM_RET_DESCEND; 1155 continue; 1156 } 1157 1158 cur_pattern = &patterns[i].pattern.bus_pattern; 1159 1160 /* 1161 * If they want to match any bus node, we give them any 1162 * device node. 1163 */ 1164 if (cur_pattern->flags == BUS_MATCH_ANY) { 1165 /* set the copy flag */ 1166 retval |= DM_RET_COPY; 1167 1168 /* 1169 * If we've already decided on an action, go ahead 1170 * and return. 1171 */ 1172 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1173 return(retval); 1174 } 1175 1176 /* 1177 * Not sure why someone would do this... 1178 */ 1179 if (cur_pattern->flags == BUS_MATCH_NONE) 1180 continue; 1181 1182 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1183 && (cur_pattern->path_id != bus->path_id)) 1184 continue; 1185 1186 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1187 && (cur_pattern->bus_id != bus->sim->bus_id)) 1188 continue; 1189 1190 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1191 && (cur_pattern->unit_number != bus->sim->unit_number)) 1192 continue; 1193 1194 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1195 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1196 DEV_IDLEN) != 0)) 1197 continue; 1198 1199 /* 1200 * If we get to this point, the user definitely wants 1201 * information on this bus. So tell the caller to copy the 1202 * data out. 1203 */ 1204 retval |= DM_RET_COPY; 1205 1206 /* 1207 * If the return action has been set to descend, then we 1208 * know that we've already seen a non-bus matching 1209 * expression, therefore we need to further descend the tree. 1210 * This won't change by continuing around the loop, so we 1211 * go ahead and return. If we haven't seen a non-bus 1212 * matching expression, we keep going around the loop until 1213 * we exhaust the matching expressions. We'll set the stop 1214 * flag once we fall out of the loop. 1215 */ 1216 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1217 return(retval); 1218 } 1219 1220 /* 1221 * If the return action hasn't been set to descend yet, that means 1222 * we haven't seen anything other than bus matching patterns. So 1223 * tell the caller to stop descending the tree -- the user doesn't 1224 * want to match against lower level tree elements. 1225 */ 1226 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1227 retval |= DM_RET_STOP; 1228 1229 return(retval); 1230 } 1231 1232 static dev_match_ret 1233 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1234 struct cam_ed *device) 1235 { 1236 dev_match_ret retval; 1237 int i; 1238 1239 retval = DM_RET_NONE; 1240 1241 /* 1242 * If we aren't given something to match against, that's an error. 1243 */ 1244 if (device == NULL) 1245 return(DM_RET_ERROR); 1246 1247 /* 1248 * If there are no match entries, then this device matches no 1249 * matter what. 1250 */ 1251 if ((patterns == NULL) || (num_patterns == 0)) 1252 return(DM_RET_DESCEND | DM_RET_COPY); 1253 1254 for (i = 0; i < num_patterns; i++) { 1255 struct device_match_pattern *cur_pattern; 1256 struct scsi_vpd_device_id *device_id_page; 1257 1258 /* 1259 * If the pattern in question isn't for a device node, we 1260 * aren't interested. 1261 */ 1262 if (patterns[i].type != DEV_MATCH_DEVICE) { 1263 if ((patterns[i].type == DEV_MATCH_PERIPH) 1264 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1265 retval |= DM_RET_DESCEND; 1266 continue; 1267 } 1268 1269 cur_pattern = &patterns[i].pattern.device_pattern; 1270 1271 /* Error out if mutually exclusive options are specified. */ 1272 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1273 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1274 return(DM_RET_ERROR); 1275 1276 /* 1277 * If they want to match any device node, we give them any 1278 * device node. 1279 */ 1280 if (cur_pattern->flags == DEV_MATCH_ANY) 1281 goto copy_dev_node; 1282 1283 /* 1284 * Not sure why someone would do this... 1285 */ 1286 if (cur_pattern->flags == DEV_MATCH_NONE) 1287 continue; 1288 1289 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1290 && (cur_pattern->path_id != device->target->bus->path_id)) 1291 continue; 1292 1293 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1294 && (cur_pattern->target_id != device->target->target_id)) 1295 continue; 1296 1297 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1298 && (cur_pattern->target_lun != device->lun_id)) 1299 continue; 1300 1301 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1302 && (cam_quirkmatch((caddr_t)&device->inq_data, 1303 (caddr_t)&cur_pattern->data.inq_pat, 1304 1, sizeof(cur_pattern->data.inq_pat), 1305 scsi_static_inquiry_match) == NULL)) 1306 continue; 1307 1308 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1309 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1310 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1311 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1312 device->device_id_len 1313 - SVPD_DEVICE_ID_HDR_LEN, 1314 cur_pattern->data.devid_pat.id, 1315 cur_pattern->data.devid_pat.id_len) != 0)) 1316 continue; 1317 1318 copy_dev_node: 1319 /* 1320 * If we get to this point, the user definitely wants 1321 * information on this device. So tell the caller to copy 1322 * the data out. 1323 */ 1324 retval |= DM_RET_COPY; 1325 1326 /* 1327 * If the return action has been set to descend, then we 1328 * know that we've already seen a peripheral matching 1329 * expression, therefore we need to further descend the tree. 1330 * This won't change by continuing around the loop, so we 1331 * go ahead and return. If we haven't seen a peripheral 1332 * matching expression, we keep going around the loop until 1333 * we exhaust the matching expressions. We'll set the stop 1334 * flag once we fall out of the loop. 1335 */ 1336 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1337 return(retval); 1338 } 1339 1340 /* 1341 * If the return action hasn't been set to descend yet, that means 1342 * we haven't seen any peripheral matching patterns. So tell the 1343 * caller to stop descending the tree -- the user doesn't want to 1344 * match against lower level tree elements. 1345 */ 1346 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1347 retval |= DM_RET_STOP; 1348 1349 return(retval); 1350 } 1351 1352 /* 1353 * Match a single peripheral against any number of match patterns. 1354 */ 1355 static dev_match_ret 1356 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1357 struct cam_periph *periph) 1358 { 1359 dev_match_ret retval; 1360 int i; 1361 1362 /* 1363 * If we aren't given something to match against, that's an error. 1364 */ 1365 if (periph == NULL) 1366 return(DM_RET_ERROR); 1367 1368 /* 1369 * If there are no match entries, then this peripheral matches no 1370 * matter what. 1371 */ 1372 if ((patterns == NULL) || (num_patterns == 0)) 1373 return(DM_RET_STOP | DM_RET_COPY); 1374 1375 /* 1376 * There aren't any nodes below a peripheral node, so there's no 1377 * reason to descend the tree any further. 1378 */ 1379 retval = DM_RET_STOP; 1380 1381 for (i = 0; i < num_patterns; i++) { 1382 struct periph_match_pattern *cur_pattern; 1383 1384 /* 1385 * If the pattern in question isn't for a peripheral, we 1386 * aren't interested. 1387 */ 1388 if (patterns[i].type != DEV_MATCH_PERIPH) 1389 continue; 1390 1391 cur_pattern = &patterns[i].pattern.periph_pattern; 1392 1393 /* 1394 * If they want to match on anything, then we will do so. 1395 */ 1396 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1397 /* set the copy flag */ 1398 retval |= DM_RET_COPY; 1399 1400 /* 1401 * We've already set the return action to stop, 1402 * since there are no nodes below peripherals in 1403 * the tree. 1404 */ 1405 return(retval); 1406 } 1407 1408 /* 1409 * Not sure why someone would do this... 1410 */ 1411 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1412 continue; 1413 1414 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1415 && (cur_pattern->path_id != periph->path->bus->path_id)) 1416 continue; 1417 1418 /* 1419 * For the target and lun id's, we have to make sure the 1420 * target and lun pointers aren't NULL. The xpt peripheral 1421 * has a wildcard target and device. 1422 */ 1423 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1424 && ((periph->path->target == NULL) 1425 ||(cur_pattern->target_id != periph->path->target->target_id))) 1426 continue; 1427 1428 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1429 && ((periph->path->device == NULL) 1430 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1431 continue; 1432 1433 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1434 && (cur_pattern->unit_number != periph->unit_number)) 1435 continue; 1436 1437 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1438 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1439 DEV_IDLEN) != 0)) 1440 continue; 1441 1442 /* 1443 * If we get to this point, the user definitely wants 1444 * information on this peripheral. So tell the caller to 1445 * copy the data out. 1446 */ 1447 retval |= DM_RET_COPY; 1448 1449 /* 1450 * The return action has already been set to stop, since 1451 * peripherals don't have any nodes below them in the EDT. 1452 */ 1453 return(retval); 1454 } 1455 1456 /* 1457 * If we get to this point, the peripheral that was passed in 1458 * doesn't match any of the patterns. 1459 */ 1460 return(retval); 1461 } 1462 1463 static int 1464 xptedtbusfunc(struct cam_eb *bus, void *arg) 1465 { 1466 struct ccb_dev_match *cdm; 1467 dev_match_ret retval; 1468 1469 cdm = (struct ccb_dev_match *)arg; 1470 1471 /* 1472 * If our position is for something deeper in the tree, that means 1473 * that we've already seen this node. So, we keep going down. 1474 */ 1475 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1476 && (cdm->pos.cookie.bus == bus) 1477 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1478 && (cdm->pos.cookie.target != NULL)) 1479 retval = DM_RET_DESCEND; 1480 else 1481 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1482 1483 /* 1484 * If we got an error, bail out of the search. 1485 */ 1486 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1487 cdm->status = CAM_DEV_MATCH_ERROR; 1488 return(0); 1489 } 1490 1491 /* 1492 * If the copy flag is set, copy this bus out. 1493 */ 1494 if (retval & DM_RET_COPY) { 1495 int spaceleft, j; 1496 1497 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1498 sizeof(struct dev_match_result)); 1499 1500 /* 1501 * If we don't have enough space to put in another 1502 * match result, save our position and tell the 1503 * user there are more devices to check. 1504 */ 1505 if (spaceleft < sizeof(struct dev_match_result)) { 1506 bzero(&cdm->pos, sizeof(cdm->pos)); 1507 cdm->pos.position_type = 1508 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1509 1510 cdm->pos.cookie.bus = bus; 1511 cdm->pos.generations[CAM_BUS_GENERATION]= 1512 xsoftc.bus_generation; 1513 cdm->status = CAM_DEV_MATCH_MORE; 1514 return(0); 1515 } 1516 j = cdm->num_matches; 1517 cdm->num_matches++; 1518 cdm->matches[j].type = DEV_MATCH_BUS; 1519 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1520 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1521 cdm->matches[j].result.bus_result.unit_number = 1522 bus->sim->unit_number; 1523 strncpy(cdm->matches[j].result.bus_result.dev_name, 1524 bus->sim->sim_name, DEV_IDLEN); 1525 } 1526 1527 /* 1528 * If the user is only interested in busses, there's no 1529 * reason to descend to the next level in the tree. 1530 */ 1531 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1532 return(1); 1533 1534 /* 1535 * If there is a target generation recorded, check it to 1536 * make sure the target list hasn't changed. 1537 */ 1538 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1539 && (bus == cdm->pos.cookie.bus) 1540 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1541 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1542 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1543 bus->generation)) { 1544 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1545 return(0); 1546 } 1547 1548 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1549 && (cdm->pos.cookie.bus == bus) 1550 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1551 && (cdm->pos.cookie.target != NULL)) 1552 return(xpttargettraverse(bus, 1553 (struct cam_et *)cdm->pos.cookie.target, 1554 xptedttargetfunc, arg)); 1555 else 1556 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1557 } 1558 1559 static int 1560 xptedttargetfunc(struct cam_et *target, void *arg) 1561 { 1562 struct ccb_dev_match *cdm; 1563 1564 cdm = (struct ccb_dev_match *)arg; 1565 1566 /* 1567 * If there is a device list generation recorded, check it to 1568 * make sure the device list hasn't changed. 1569 */ 1570 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1571 && (cdm->pos.cookie.bus == target->bus) 1572 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1573 && (cdm->pos.cookie.target == target) 1574 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1575 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1576 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1577 target->generation)) { 1578 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1579 return(0); 1580 } 1581 1582 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1583 && (cdm->pos.cookie.bus == target->bus) 1584 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1585 && (cdm->pos.cookie.target == target) 1586 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1587 && (cdm->pos.cookie.device != NULL)) 1588 return(xptdevicetraverse(target, 1589 (struct cam_ed *)cdm->pos.cookie.device, 1590 xptedtdevicefunc, arg)); 1591 else 1592 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1593 } 1594 1595 static int 1596 xptedtdevicefunc(struct cam_ed *device, void *arg) 1597 { 1598 1599 struct ccb_dev_match *cdm; 1600 dev_match_ret retval; 1601 1602 cdm = (struct ccb_dev_match *)arg; 1603 1604 /* 1605 * If our position is for something deeper in the tree, that means 1606 * that we've already seen this node. So, we keep going down. 1607 */ 1608 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1609 && (cdm->pos.cookie.device == device) 1610 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1611 && (cdm->pos.cookie.periph != NULL)) 1612 retval = DM_RET_DESCEND; 1613 else 1614 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1615 device); 1616 1617 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1618 cdm->status = CAM_DEV_MATCH_ERROR; 1619 return(0); 1620 } 1621 1622 /* 1623 * If the copy flag is set, copy this device out. 1624 */ 1625 if (retval & DM_RET_COPY) { 1626 int spaceleft, j; 1627 1628 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1629 sizeof(struct dev_match_result)); 1630 1631 /* 1632 * If we don't have enough space to put in another 1633 * match result, save our position and tell the 1634 * user there are more devices to check. 1635 */ 1636 if (spaceleft < sizeof(struct dev_match_result)) { 1637 bzero(&cdm->pos, sizeof(cdm->pos)); 1638 cdm->pos.position_type = 1639 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1640 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1641 1642 cdm->pos.cookie.bus = device->target->bus; 1643 cdm->pos.generations[CAM_BUS_GENERATION]= 1644 xsoftc.bus_generation; 1645 cdm->pos.cookie.target = device->target; 1646 cdm->pos.generations[CAM_TARGET_GENERATION] = 1647 device->target->bus->generation; 1648 cdm->pos.cookie.device = device; 1649 cdm->pos.generations[CAM_DEV_GENERATION] = 1650 device->target->generation; 1651 cdm->status = CAM_DEV_MATCH_MORE; 1652 return(0); 1653 } 1654 j = cdm->num_matches; 1655 cdm->num_matches++; 1656 cdm->matches[j].type = DEV_MATCH_DEVICE; 1657 cdm->matches[j].result.device_result.path_id = 1658 device->target->bus->path_id; 1659 cdm->matches[j].result.device_result.target_id = 1660 device->target->target_id; 1661 cdm->matches[j].result.device_result.target_lun = 1662 device->lun_id; 1663 cdm->matches[j].result.device_result.protocol = 1664 device->protocol; 1665 bcopy(&device->inq_data, 1666 &cdm->matches[j].result.device_result.inq_data, 1667 sizeof(struct scsi_inquiry_data)); 1668 bcopy(&device->ident_data, 1669 &cdm->matches[j].result.device_result.ident_data, 1670 sizeof(struct ata_params)); 1671 1672 /* Let the user know whether this device is unconfigured */ 1673 if (device->flags & CAM_DEV_UNCONFIGURED) 1674 cdm->matches[j].result.device_result.flags = 1675 DEV_RESULT_UNCONFIGURED; 1676 else 1677 cdm->matches[j].result.device_result.flags = 1678 DEV_RESULT_NOFLAG; 1679 } 1680 1681 /* 1682 * If the user isn't interested in peripherals, don't descend 1683 * the tree any further. 1684 */ 1685 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1686 return(1); 1687 1688 /* 1689 * If there is a peripheral list generation recorded, make sure 1690 * it hasn't changed. 1691 */ 1692 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1693 && (device->target->bus == cdm->pos.cookie.bus) 1694 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1695 && (device->target == cdm->pos.cookie.target) 1696 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1697 && (device == cdm->pos.cookie.device) 1698 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1699 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1700 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1701 device->generation)){ 1702 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1703 return(0); 1704 } 1705 1706 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1707 && (cdm->pos.cookie.bus == device->target->bus) 1708 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1709 && (cdm->pos.cookie.target == device->target) 1710 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1711 && (cdm->pos.cookie.device == device) 1712 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1713 && (cdm->pos.cookie.periph != NULL)) 1714 return(xptperiphtraverse(device, 1715 (struct cam_periph *)cdm->pos.cookie.periph, 1716 xptedtperiphfunc, arg)); 1717 else 1718 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1719 } 1720 1721 static int 1722 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1723 { 1724 struct ccb_dev_match *cdm; 1725 dev_match_ret retval; 1726 1727 cdm = (struct ccb_dev_match *)arg; 1728 1729 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1730 1731 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1732 cdm->status = CAM_DEV_MATCH_ERROR; 1733 return(0); 1734 } 1735 1736 /* 1737 * If the copy flag is set, copy this peripheral out. 1738 */ 1739 if (retval & DM_RET_COPY) { 1740 int spaceleft, j; 1741 1742 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1743 sizeof(struct dev_match_result)); 1744 1745 /* 1746 * If we don't have enough space to put in another 1747 * match result, save our position and tell the 1748 * user there are more devices to check. 1749 */ 1750 if (spaceleft < sizeof(struct dev_match_result)) { 1751 bzero(&cdm->pos, sizeof(cdm->pos)); 1752 cdm->pos.position_type = 1753 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1754 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1755 CAM_DEV_POS_PERIPH; 1756 1757 cdm->pos.cookie.bus = periph->path->bus; 1758 cdm->pos.generations[CAM_BUS_GENERATION]= 1759 xsoftc.bus_generation; 1760 cdm->pos.cookie.target = periph->path->target; 1761 cdm->pos.generations[CAM_TARGET_GENERATION] = 1762 periph->path->bus->generation; 1763 cdm->pos.cookie.device = periph->path->device; 1764 cdm->pos.generations[CAM_DEV_GENERATION] = 1765 periph->path->target->generation; 1766 cdm->pos.cookie.periph = periph; 1767 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1768 periph->path->device->generation; 1769 cdm->status = CAM_DEV_MATCH_MORE; 1770 return(0); 1771 } 1772 1773 j = cdm->num_matches; 1774 cdm->num_matches++; 1775 cdm->matches[j].type = DEV_MATCH_PERIPH; 1776 cdm->matches[j].result.periph_result.path_id = 1777 periph->path->bus->path_id; 1778 cdm->matches[j].result.periph_result.target_id = 1779 periph->path->target->target_id; 1780 cdm->matches[j].result.periph_result.target_lun = 1781 periph->path->device->lun_id; 1782 cdm->matches[j].result.periph_result.unit_number = 1783 periph->unit_number; 1784 strncpy(cdm->matches[j].result.periph_result.periph_name, 1785 periph->periph_name, DEV_IDLEN); 1786 } 1787 1788 return(1); 1789 } 1790 1791 static int 1792 xptedtmatch(struct ccb_dev_match *cdm) 1793 { 1794 int ret; 1795 1796 cdm->num_matches = 0; 1797 1798 /* 1799 * Check the bus list generation. If it has changed, the user 1800 * needs to reset everything and start over. 1801 */ 1802 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1803 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1804 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1805 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1806 return(0); 1807 } 1808 1809 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1810 && (cdm->pos.cookie.bus != NULL)) 1811 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1812 xptedtbusfunc, cdm); 1813 else 1814 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1815 1816 /* 1817 * If we get back 0, that means that we had to stop before fully 1818 * traversing the EDT. It also means that one of the subroutines 1819 * has set the status field to the proper value. If we get back 1, 1820 * we've fully traversed the EDT and copied out any matching entries. 1821 */ 1822 if (ret == 1) 1823 cdm->status = CAM_DEV_MATCH_LAST; 1824 1825 return(ret); 1826 } 1827 1828 static int 1829 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1830 { 1831 struct ccb_dev_match *cdm; 1832 1833 cdm = (struct ccb_dev_match *)arg; 1834 1835 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1836 && (cdm->pos.cookie.pdrv == pdrv) 1837 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1838 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1839 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1840 (*pdrv)->generation)) { 1841 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1842 return(0); 1843 } 1844 1845 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1846 && (cdm->pos.cookie.pdrv == pdrv) 1847 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1848 && (cdm->pos.cookie.periph != NULL)) 1849 return(xptpdperiphtraverse(pdrv, 1850 (struct cam_periph *)cdm->pos.cookie.periph, 1851 xptplistperiphfunc, arg)); 1852 else 1853 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1854 } 1855 1856 static int 1857 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1858 { 1859 struct ccb_dev_match *cdm; 1860 dev_match_ret retval; 1861 1862 cdm = (struct ccb_dev_match *)arg; 1863 1864 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1865 1866 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1867 cdm->status = CAM_DEV_MATCH_ERROR; 1868 return(0); 1869 } 1870 1871 /* 1872 * If the copy flag is set, copy this peripheral out. 1873 */ 1874 if (retval & DM_RET_COPY) { 1875 int spaceleft, j; 1876 1877 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1878 sizeof(struct dev_match_result)); 1879 1880 /* 1881 * If we don't have enough space to put in another 1882 * match result, save our position and tell the 1883 * user there are more devices to check. 1884 */ 1885 if (spaceleft < sizeof(struct dev_match_result)) { 1886 struct periph_driver **pdrv; 1887 1888 pdrv = NULL; 1889 bzero(&cdm->pos, sizeof(cdm->pos)); 1890 cdm->pos.position_type = 1891 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1892 CAM_DEV_POS_PERIPH; 1893 1894 /* 1895 * This may look a bit non-sensical, but it is 1896 * actually quite logical. There are very few 1897 * peripheral drivers, and bloating every peripheral 1898 * structure with a pointer back to its parent 1899 * peripheral driver linker set entry would cost 1900 * more in the long run than doing this quick lookup. 1901 */ 1902 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1903 if (strcmp((*pdrv)->driver_name, 1904 periph->periph_name) == 0) 1905 break; 1906 } 1907 1908 if (*pdrv == NULL) { 1909 cdm->status = CAM_DEV_MATCH_ERROR; 1910 return(0); 1911 } 1912 1913 cdm->pos.cookie.pdrv = pdrv; 1914 /* 1915 * The periph generation slot does double duty, as 1916 * does the periph pointer slot. They are used for 1917 * both edt and pdrv lookups and positioning. 1918 */ 1919 cdm->pos.cookie.periph = periph; 1920 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1921 (*pdrv)->generation; 1922 cdm->status = CAM_DEV_MATCH_MORE; 1923 return(0); 1924 } 1925 1926 j = cdm->num_matches; 1927 cdm->num_matches++; 1928 cdm->matches[j].type = DEV_MATCH_PERIPH; 1929 cdm->matches[j].result.periph_result.path_id = 1930 periph->path->bus->path_id; 1931 1932 /* 1933 * The transport layer peripheral doesn't have a target or 1934 * lun. 1935 */ 1936 if (periph->path->target) 1937 cdm->matches[j].result.periph_result.target_id = 1938 periph->path->target->target_id; 1939 else 1940 cdm->matches[j].result.periph_result.target_id = -1; 1941 1942 if (periph->path->device) 1943 cdm->matches[j].result.periph_result.target_lun = 1944 periph->path->device->lun_id; 1945 else 1946 cdm->matches[j].result.periph_result.target_lun = -1; 1947 1948 cdm->matches[j].result.periph_result.unit_number = 1949 periph->unit_number; 1950 strncpy(cdm->matches[j].result.periph_result.periph_name, 1951 periph->periph_name, DEV_IDLEN); 1952 } 1953 1954 return(1); 1955 } 1956 1957 static int 1958 xptperiphlistmatch(struct ccb_dev_match *cdm) 1959 { 1960 int ret; 1961 1962 cdm->num_matches = 0; 1963 1964 /* 1965 * At this point in the edt traversal function, we check the bus 1966 * list generation to make sure that no busses have been added or 1967 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1968 * For the peripheral driver list traversal function, however, we 1969 * don't have to worry about new peripheral driver types coming or 1970 * going; they're in a linker set, and therefore can't change 1971 * without a recompile. 1972 */ 1973 1974 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1975 && (cdm->pos.cookie.pdrv != NULL)) 1976 ret = xptpdrvtraverse( 1977 (struct periph_driver **)cdm->pos.cookie.pdrv, 1978 xptplistpdrvfunc, cdm); 1979 else 1980 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 1981 1982 /* 1983 * If we get back 0, that means that we had to stop before fully 1984 * traversing the peripheral driver tree. It also means that one of 1985 * the subroutines has set the status field to the proper value. If 1986 * we get back 1, we've fully traversed the EDT and copied out any 1987 * matching entries. 1988 */ 1989 if (ret == 1) 1990 cdm->status = CAM_DEV_MATCH_LAST; 1991 1992 return(ret); 1993 } 1994 1995 static int 1996 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 1997 { 1998 struct cam_eb *bus, *next_bus; 1999 int retval; 2000 2001 retval = 1; 2002 2003 xpt_lock_buses(); 2004 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2005 bus != NULL; 2006 bus = next_bus) { 2007 2008 bus->refcount++; 2009 2010 /* 2011 * XXX The locking here is obviously very complex. We 2012 * should work to simplify it. 2013 */ 2014 xpt_unlock_buses(); 2015 CAM_SIM_LOCK(bus->sim); 2016 retval = tr_func(bus, arg); 2017 CAM_SIM_UNLOCK(bus->sim); 2018 2019 xpt_lock_buses(); 2020 next_bus = TAILQ_NEXT(bus, links); 2021 xpt_unlock_buses(); 2022 2023 xpt_release_bus(bus); 2024 2025 if (retval == 0) 2026 return(retval); 2027 xpt_lock_buses(); 2028 } 2029 xpt_unlock_buses(); 2030 2031 return(retval); 2032 } 2033 2034 static int 2035 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2036 xpt_targetfunc_t *tr_func, void *arg) 2037 { 2038 struct cam_et *target, *next_target; 2039 int retval; 2040 2041 mtx_assert(bus->sim->mtx, MA_OWNED); 2042 retval = 1; 2043 for (target = (start_target ? start_target : 2044 TAILQ_FIRST(&bus->et_entries)); 2045 target != NULL; target = next_target) { 2046 2047 target->refcount++; 2048 2049 retval = tr_func(target, arg); 2050 2051 next_target = TAILQ_NEXT(target, links); 2052 2053 xpt_release_target(target); 2054 2055 if (retval == 0) 2056 return(retval); 2057 } 2058 2059 return(retval); 2060 } 2061 2062 static int 2063 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2064 xpt_devicefunc_t *tr_func, void *arg) 2065 { 2066 struct cam_ed *device, *next_device; 2067 int retval; 2068 2069 mtx_assert(target->bus->sim->mtx, MA_OWNED); 2070 retval = 1; 2071 for (device = (start_device ? start_device : 2072 TAILQ_FIRST(&target->ed_entries)); 2073 device != NULL; 2074 device = next_device) { 2075 2076 /* 2077 * Hold a reference so the current device does not go away 2078 * on us. 2079 */ 2080 device->refcount++; 2081 2082 retval = tr_func(device, arg); 2083 2084 /* 2085 * Grab our next pointer before we release the current 2086 * device. 2087 */ 2088 next_device = TAILQ_NEXT(device, links); 2089 2090 xpt_release_device(device); 2091 2092 if (retval == 0) 2093 return(retval); 2094 } 2095 2096 return(retval); 2097 } 2098 2099 static int 2100 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2101 xpt_periphfunc_t *tr_func, void *arg) 2102 { 2103 struct cam_periph *periph, *next_periph; 2104 int retval; 2105 2106 retval = 1; 2107 2108 mtx_assert(device->sim->mtx, MA_OWNED); 2109 xpt_lock_buses(); 2110 for (periph = (start_periph ? start_periph : 2111 SLIST_FIRST(&device->periphs)); 2112 periph != NULL; 2113 periph = next_periph) { 2114 2115 2116 /* 2117 * In this case, we want to show peripherals that have been 2118 * invalidated, but not peripherals that are scheduled to 2119 * be freed. So instead of calling cam_periph_acquire(), 2120 * which will fail if the periph has been invalidated, we 2121 * just check for the free flag here. If it is in the 2122 * process of being freed, we skip to the next periph. 2123 */ 2124 if (periph->flags & CAM_PERIPH_FREE) { 2125 next_periph = SLIST_NEXT(periph, periph_links); 2126 continue; 2127 } 2128 2129 /* 2130 * Acquire a reference to this periph while we call the 2131 * traversal function, so it can't go away. 2132 */ 2133 periph->refcount++; 2134 2135 retval = tr_func(periph, arg); 2136 2137 /* 2138 * Grab the next peripheral before we release this one, so 2139 * our next pointer is still valid. 2140 */ 2141 next_periph = SLIST_NEXT(periph, periph_links); 2142 2143 cam_periph_release_locked_buses(periph); 2144 2145 if (retval == 0) 2146 goto bailout_done; 2147 } 2148 2149 bailout_done: 2150 2151 xpt_unlock_buses(); 2152 2153 return(retval); 2154 } 2155 2156 static int 2157 xptpdrvtraverse(struct periph_driver **start_pdrv, 2158 xpt_pdrvfunc_t *tr_func, void *arg) 2159 { 2160 struct periph_driver **pdrv; 2161 int retval; 2162 2163 retval = 1; 2164 2165 /* 2166 * We don't traverse the peripheral driver list like we do the 2167 * other lists, because it is a linker set, and therefore cannot be 2168 * changed during runtime. If the peripheral driver list is ever 2169 * re-done to be something other than a linker set (i.e. it can 2170 * change while the system is running), the list traversal should 2171 * be modified to work like the other traversal functions. 2172 */ 2173 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2174 *pdrv != NULL; pdrv++) { 2175 retval = tr_func(pdrv, arg); 2176 2177 if (retval == 0) 2178 return(retval); 2179 } 2180 2181 return(retval); 2182 } 2183 2184 static int 2185 xptpdperiphtraverse(struct periph_driver **pdrv, 2186 struct cam_periph *start_periph, 2187 xpt_periphfunc_t *tr_func, void *arg) 2188 { 2189 struct cam_periph *periph, *next_periph; 2190 struct cam_sim *sim; 2191 int retval; 2192 2193 retval = 1; 2194 2195 xpt_lock_buses(); 2196 for (periph = (start_periph ? start_periph : 2197 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2198 periph = next_periph) { 2199 2200 2201 /* 2202 * In this case, we want to show peripherals that have been 2203 * invalidated, but not peripherals that are scheduled to 2204 * be freed. So instead of calling cam_periph_acquire(), 2205 * which will fail if the periph has been invalidated, we 2206 * just check for the free flag here. If it is free, we 2207 * skip to the next periph. 2208 */ 2209 if (periph->flags & CAM_PERIPH_FREE) { 2210 next_periph = TAILQ_NEXT(periph, unit_links); 2211 continue; 2212 } 2213 2214 /* 2215 * Acquire a reference to this periph while we call the 2216 * traversal function, so it can't go away. 2217 */ 2218 periph->refcount++; 2219 sim = periph->sim; 2220 xpt_unlock_buses(); 2221 CAM_SIM_LOCK(sim); 2222 xpt_lock_buses(); 2223 retval = tr_func(periph, arg); 2224 2225 /* 2226 * Grab the next peripheral before we release this one, so 2227 * our next pointer is still valid. 2228 */ 2229 next_periph = TAILQ_NEXT(periph, unit_links); 2230 2231 cam_periph_release_locked_buses(periph); 2232 CAM_SIM_UNLOCK(sim); 2233 2234 if (retval == 0) 2235 goto bailout_done; 2236 } 2237 bailout_done: 2238 2239 xpt_unlock_buses(); 2240 2241 return(retval); 2242 } 2243 2244 static int 2245 xptdefbusfunc(struct cam_eb *bus, void *arg) 2246 { 2247 struct xpt_traverse_config *tr_config; 2248 2249 tr_config = (struct xpt_traverse_config *)arg; 2250 2251 if (tr_config->depth == XPT_DEPTH_BUS) { 2252 xpt_busfunc_t *tr_func; 2253 2254 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2255 2256 return(tr_func(bus, tr_config->tr_arg)); 2257 } else 2258 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2259 } 2260 2261 static int 2262 xptdeftargetfunc(struct cam_et *target, void *arg) 2263 { 2264 struct xpt_traverse_config *tr_config; 2265 2266 tr_config = (struct xpt_traverse_config *)arg; 2267 2268 if (tr_config->depth == XPT_DEPTH_TARGET) { 2269 xpt_targetfunc_t *tr_func; 2270 2271 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2272 2273 return(tr_func(target, tr_config->tr_arg)); 2274 } else 2275 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2276 } 2277 2278 static int 2279 xptdefdevicefunc(struct cam_ed *device, void *arg) 2280 { 2281 struct xpt_traverse_config *tr_config; 2282 2283 tr_config = (struct xpt_traverse_config *)arg; 2284 2285 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2286 xpt_devicefunc_t *tr_func; 2287 2288 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2289 2290 return(tr_func(device, tr_config->tr_arg)); 2291 } else 2292 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2293 } 2294 2295 static int 2296 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2297 { 2298 struct xpt_traverse_config *tr_config; 2299 xpt_periphfunc_t *tr_func; 2300 2301 tr_config = (struct xpt_traverse_config *)arg; 2302 2303 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2304 2305 /* 2306 * Unlike the other default functions, we don't check for depth 2307 * here. The peripheral driver level is the last level in the EDT, 2308 * so if we're here, we should execute the function in question. 2309 */ 2310 return(tr_func(periph, tr_config->tr_arg)); 2311 } 2312 2313 /* 2314 * Execute the given function for every bus in the EDT. 2315 */ 2316 static int 2317 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2318 { 2319 struct xpt_traverse_config tr_config; 2320 2321 tr_config.depth = XPT_DEPTH_BUS; 2322 tr_config.tr_func = tr_func; 2323 tr_config.tr_arg = arg; 2324 2325 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2326 } 2327 2328 /* 2329 * Execute the given function for every device in the EDT. 2330 */ 2331 static int 2332 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2333 { 2334 struct xpt_traverse_config tr_config; 2335 2336 tr_config.depth = XPT_DEPTH_DEVICE; 2337 tr_config.tr_func = tr_func; 2338 tr_config.tr_arg = arg; 2339 2340 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2341 } 2342 2343 static int 2344 xptsetasyncfunc(struct cam_ed *device, void *arg) 2345 { 2346 struct cam_path path; 2347 struct ccb_getdev cgd; 2348 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2349 2350 /* 2351 * Don't report unconfigured devices (Wildcard devs, 2352 * devices only for target mode, device instances 2353 * that have been invalidated but are waiting for 2354 * their last reference count to be released). 2355 */ 2356 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2357 return (1); 2358 2359 xpt_compile_path(&path, 2360 NULL, 2361 device->target->bus->path_id, 2362 device->target->target_id, 2363 device->lun_id); 2364 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2365 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2366 xpt_action((union ccb *)&cgd); 2367 csa->callback(csa->callback_arg, 2368 AC_FOUND_DEVICE, 2369 &path, &cgd); 2370 xpt_release_path(&path); 2371 2372 return(1); 2373 } 2374 2375 static int 2376 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2377 { 2378 struct cam_path path; 2379 struct ccb_pathinq cpi; 2380 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2381 2382 xpt_compile_path(&path, /*periph*/NULL, 2383 bus->sim->path_id, 2384 CAM_TARGET_WILDCARD, 2385 CAM_LUN_WILDCARD); 2386 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2387 cpi.ccb_h.func_code = XPT_PATH_INQ; 2388 xpt_action((union ccb *)&cpi); 2389 csa->callback(csa->callback_arg, 2390 AC_PATH_REGISTERED, 2391 &path, &cpi); 2392 xpt_release_path(&path); 2393 2394 return(1); 2395 } 2396 2397 void 2398 xpt_action(union ccb *start_ccb) 2399 { 2400 2401 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2402 2403 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2404 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2405 } 2406 2407 void 2408 xpt_action_default(union ccb *start_ccb) 2409 { 2410 struct cam_path *path; 2411 2412 path = start_ccb->ccb_h.path; 2413 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2414 2415 switch (start_ccb->ccb_h.func_code) { 2416 case XPT_SCSI_IO: 2417 { 2418 struct cam_ed *device; 2419 2420 /* 2421 * For the sake of compatibility with SCSI-1 2422 * devices that may not understand the identify 2423 * message, we include lun information in the 2424 * second byte of all commands. SCSI-1 specifies 2425 * that luns are a 3 bit value and reserves only 3 2426 * bits for lun information in the CDB. Later 2427 * revisions of the SCSI spec allow for more than 8 2428 * luns, but have deprecated lun information in the 2429 * CDB. So, if the lun won't fit, we must omit. 2430 * 2431 * Also be aware that during initial probing for devices, 2432 * the inquiry information is unknown but initialized to 0. 2433 * This means that this code will be exercised while probing 2434 * devices with an ANSI revision greater than 2. 2435 */ 2436 device = path->device; 2437 if (device->protocol_version <= SCSI_REV_2 2438 && start_ccb->ccb_h.target_lun < 8 2439 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2440 2441 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2442 start_ccb->ccb_h.target_lun << 5; 2443 } 2444 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2445 } 2446 /* FALLTHROUGH */ 2447 case XPT_TARGET_IO: 2448 case XPT_CONT_TARGET_IO: 2449 start_ccb->csio.sense_resid = 0; 2450 start_ccb->csio.resid = 0; 2451 /* FALLTHROUGH */ 2452 case XPT_ATA_IO: 2453 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2454 start_ccb->ataio.resid = 0; 2455 /* FALLTHROUGH */ 2456 case XPT_RESET_DEV: 2457 case XPT_ENG_EXEC: 2458 case XPT_SMP_IO: 2459 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2460 if (xpt_schedule_devq(path->bus->sim->devq, path->device)) 2461 xpt_run_devq(path->bus->sim->devq); 2462 break; 2463 case XPT_CALC_GEOMETRY: 2464 { 2465 struct cam_sim *sim; 2466 2467 /* Filter out garbage */ 2468 if (start_ccb->ccg.block_size == 0 2469 || start_ccb->ccg.volume_size == 0) { 2470 start_ccb->ccg.cylinders = 0; 2471 start_ccb->ccg.heads = 0; 2472 start_ccb->ccg.secs_per_track = 0; 2473 start_ccb->ccb_h.status = CAM_REQ_CMP; 2474 break; 2475 } 2476 #if defined(PC98) || defined(__sparc64__) 2477 /* 2478 * In a PC-98 system, geometry translation depens on 2479 * the "real" device geometry obtained from mode page 4. 2480 * SCSI geometry translation is performed in the 2481 * initialization routine of the SCSI BIOS and the result 2482 * stored in host memory. If the translation is available 2483 * in host memory, use it. If not, rely on the default 2484 * translation the device driver performs. 2485 * For sparc64, we may need adjust the geometry of large 2486 * disks in order to fit the limitations of the 16-bit 2487 * fields of the VTOC8 disk label. 2488 */ 2489 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2490 start_ccb->ccb_h.status = CAM_REQ_CMP; 2491 break; 2492 } 2493 #endif 2494 sim = path->bus->sim; 2495 (*(sim->sim_action))(sim, start_ccb); 2496 break; 2497 } 2498 case XPT_ABORT: 2499 { 2500 union ccb* abort_ccb; 2501 2502 abort_ccb = start_ccb->cab.abort_ccb; 2503 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2504 2505 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2506 struct cam_ccbq *ccbq; 2507 struct cam_ed *device; 2508 2509 device = abort_ccb->ccb_h.path->device; 2510 ccbq = &device->ccbq; 2511 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2512 abort_ccb->ccb_h.status = 2513 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2514 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2515 xpt_done(abort_ccb); 2516 start_ccb->ccb_h.status = CAM_REQ_CMP; 2517 break; 2518 } 2519 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2520 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2521 /* 2522 * We've caught this ccb en route to 2523 * the SIM. Flag it for abort and the 2524 * SIM will do so just before starting 2525 * real work on the CCB. 2526 */ 2527 abort_ccb->ccb_h.status = 2528 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2529 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2530 start_ccb->ccb_h.status = CAM_REQ_CMP; 2531 break; 2532 } 2533 } 2534 if (XPT_FC_IS_QUEUED(abort_ccb) 2535 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2536 /* 2537 * It's already completed but waiting 2538 * for our SWI to get to it. 2539 */ 2540 start_ccb->ccb_h.status = CAM_UA_ABORT; 2541 break; 2542 } 2543 /* 2544 * If we weren't able to take care of the abort request 2545 * in the XPT, pass the request down to the SIM for processing. 2546 */ 2547 } 2548 /* FALLTHROUGH */ 2549 case XPT_ACCEPT_TARGET_IO: 2550 case XPT_EN_LUN: 2551 case XPT_IMMED_NOTIFY: 2552 case XPT_NOTIFY_ACK: 2553 case XPT_RESET_BUS: 2554 case XPT_IMMEDIATE_NOTIFY: 2555 case XPT_NOTIFY_ACKNOWLEDGE: 2556 case XPT_GET_SIM_KNOB: 2557 case XPT_SET_SIM_KNOB: 2558 { 2559 struct cam_sim *sim; 2560 2561 sim = path->bus->sim; 2562 (*(sim->sim_action))(sim, start_ccb); 2563 break; 2564 } 2565 case XPT_PATH_INQ: 2566 { 2567 struct cam_sim *sim; 2568 2569 sim = path->bus->sim; 2570 (*(sim->sim_action))(sim, start_ccb); 2571 break; 2572 } 2573 case XPT_PATH_STATS: 2574 start_ccb->cpis.last_reset = path->bus->last_reset; 2575 start_ccb->ccb_h.status = CAM_REQ_CMP; 2576 break; 2577 case XPT_GDEV_TYPE: 2578 { 2579 struct cam_ed *dev; 2580 2581 dev = path->device; 2582 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2583 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2584 } else { 2585 struct ccb_getdev *cgd; 2586 2587 cgd = &start_ccb->cgd; 2588 cgd->protocol = dev->protocol; 2589 cgd->inq_data = dev->inq_data; 2590 cgd->ident_data = dev->ident_data; 2591 cgd->inq_flags = dev->inq_flags; 2592 cgd->ccb_h.status = CAM_REQ_CMP; 2593 cgd->serial_num_len = dev->serial_num_len; 2594 if ((dev->serial_num_len > 0) 2595 && (dev->serial_num != NULL)) 2596 bcopy(dev->serial_num, cgd->serial_num, 2597 dev->serial_num_len); 2598 } 2599 break; 2600 } 2601 case XPT_GDEV_STATS: 2602 { 2603 struct cam_ed *dev; 2604 2605 dev = path->device; 2606 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2607 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2608 } else { 2609 struct ccb_getdevstats *cgds; 2610 struct cam_eb *bus; 2611 struct cam_et *tar; 2612 2613 cgds = &start_ccb->cgds; 2614 bus = path->bus; 2615 tar = path->target; 2616 cgds->dev_openings = dev->ccbq.dev_openings; 2617 cgds->dev_active = dev->ccbq.dev_active; 2618 cgds->devq_openings = dev->ccbq.devq_openings; 2619 cgds->devq_queued = dev->ccbq.queue.entries; 2620 cgds->held = dev->ccbq.held; 2621 cgds->last_reset = tar->last_reset; 2622 cgds->maxtags = dev->maxtags; 2623 cgds->mintags = dev->mintags; 2624 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2625 cgds->last_reset = bus->last_reset; 2626 cgds->ccb_h.status = CAM_REQ_CMP; 2627 } 2628 break; 2629 } 2630 case XPT_GDEVLIST: 2631 { 2632 struct cam_periph *nperiph; 2633 struct periph_list *periph_head; 2634 struct ccb_getdevlist *cgdl; 2635 u_int i; 2636 struct cam_ed *device; 2637 int found; 2638 2639 2640 found = 0; 2641 2642 /* 2643 * Don't want anyone mucking with our data. 2644 */ 2645 device = path->device; 2646 periph_head = &device->periphs; 2647 cgdl = &start_ccb->cgdl; 2648 2649 /* 2650 * Check and see if the list has changed since the user 2651 * last requested a list member. If so, tell them that the 2652 * list has changed, and therefore they need to start over 2653 * from the beginning. 2654 */ 2655 if ((cgdl->index != 0) && 2656 (cgdl->generation != device->generation)) { 2657 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2658 break; 2659 } 2660 2661 /* 2662 * Traverse the list of peripherals and attempt to find 2663 * the requested peripheral. 2664 */ 2665 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2666 (nperiph != NULL) && (i <= cgdl->index); 2667 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2668 if (i == cgdl->index) { 2669 strncpy(cgdl->periph_name, 2670 nperiph->periph_name, 2671 DEV_IDLEN); 2672 cgdl->unit_number = nperiph->unit_number; 2673 found = 1; 2674 } 2675 } 2676 if (found == 0) { 2677 cgdl->status = CAM_GDEVLIST_ERROR; 2678 break; 2679 } 2680 2681 if (nperiph == NULL) 2682 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2683 else 2684 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2685 2686 cgdl->index++; 2687 cgdl->generation = device->generation; 2688 2689 cgdl->ccb_h.status = CAM_REQ_CMP; 2690 break; 2691 } 2692 case XPT_DEV_MATCH: 2693 { 2694 dev_pos_type position_type; 2695 struct ccb_dev_match *cdm; 2696 2697 cdm = &start_ccb->cdm; 2698 2699 /* 2700 * There are two ways of getting at information in the EDT. 2701 * The first way is via the primary EDT tree. It starts 2702 * with a list of busses, then a list of targets on a bus, 2703 * then devices/luns on a target, and then peripherals on a 2704 * device/lun. The "other" way is by the peripheral driver 2705 * lists. The peripheral driver lists are organized by 2706 * peripheral driver. (obviously) So it makes sense to 2707 * use the peripheral driver list if the user is looking 2708 * for something like "da1", or all "da" devices. If the 2709 * user is looking for something on a particular bus/target 2710 * or lun, it's generally better to go through the EDT tree. 2711 */ 2712 2713 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2714 position_type = cdm->pos.position_type; 2715 else { 2716 u_int i; 2717 2718 position_type = CAM_DEV_POS_NONE; 2719 2720 for (i = 0; i < cdm->num_patterns; i++) { 2721 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2722 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2723 position_type = CAM_DEV_POS_EDT; 2724 break; 2725 } 2726 } 2727 2728 if (cdm->num_patterns == 0) 2729 position_type = CAM_DEV_POS_EDT; 2730 else if (position_type == CAM_DEV_POS_NONE) 2731 position_type = CAM_DEV_POS_PDRV; 2732 } 2733 2734 /* 2735 * Note that we drop the SIM lock here, because the EDT 2736 * traversal code needs to do its own locking. 2737 */ 2738 CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path)); 2739 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2740 case CAM_DEV_POS_EDT: 2741 xptedtmatch(cdm); 2742 break; 2743 case CAM_DEV_POS_PDRV: 2744 xptperiphlistmatch(cdm); 2745 break; 2746 default: 2747 cdm->status = CAM_DEV_MATCH_ERROR; 2748 break; 2749 } 2750 CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path)); 2751 2752 if (cdm->status == CAM_DEV_MATCH_ERROR) 2753 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2754 else 2755 start_ccb->ccb_h.status = CAM_REQ_CMP; 2756 2757 break; 2758 } 2759 case XPT_SASYNC_CB: 2760 { 2761 struct ccb_setasync *csa; 2762 struct async_node *cur_entry; 2763 struct async_list *async_head; 2764 u_int32_t added; 2765 2766 csa = &start_ccb->csa; 2767 added = csa->event_enable; 2768 async_head = &path->device->asyncs; 2769 2770 /* 2771 * If there is already an entry for us, simply 2772 * update it. 2773 */ 2774 cur_entry = SLIST_FIRST(async_head); 2775 while (cur_entry != NULL) { 2776 if ((cur_entry->callback_arg == csa->callback_arg) 2777 && (cur_entry->callback == csa->callback)) 2778 break; 2779 cur_entry = SLIST_NEXT(cur_entry, links); 2780 } 2781 2782 if (cur_entry != NULL) { 2783 /* 2784 * If the request has no flags set, 2785 * remove the entry. 2786 */ 2787 added &= ~cur_entry->event_enable; 2788 if (csa->event_enable == 0) { 2789 SLIST_REMOVE(async_head, cur_entry, 2790 async_node, links); 2791 xpt_release_device(path->device); 2792 free(cur_entry, M_CAMXPT); 2793 } else { 2794 cur_entry->event_enable = csa->event_enable; 2795 } 2796 csa->event_enable = added; 2797 } else { 2798 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2799 M_NOWAIT); 2800 if (cur_entry == NULL) { 2801 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2802 break; 2803 } 2804 cur_entry->event_enable = csa->event_enable; 2805 cur_entry->callback_arg = csa->callback_arg; 2806 cur_entry->callback = csa->callback; 2807 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2808 xpt_acquire_device(path->device); 2809 } 2810 start_ccb->ccb_h.status = CAM_REQ_CMP; 2811 break; 2812 } 2813 case XPT_REL_SIMQ: 2814 { 2815 struct ccb_relsim *crs; 2816 struct cam_ed *dev; 2817 2818 crs = &start_ccb->crs; 2819 dev = path->device; 2820 if (dev == NULL) { 2821 2822 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2823 break; 2824 } 2825 2826 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2827 2828 /* Don't ever go below one opening */ 2829 if (crs->openings > 0) { 2830 xpt_dev_ccbq_resize(path, crs->openings); 2831 if (bootverbose) { 2832 xpt_print(path, 2833 "number of openings is now %d\n", 2834 crs->openings); 2835 } 2836 } 2837 } 2838 2839 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2840 2841 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2842 2843 /* 2844 * Just extend the old timeout and decrement 2845 * the freeze count so that a single timeout 2846 * is sufficient for releasing the queue. 2847 */ 2848 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2849 callout_stop(&dev->callout); 2850 } else { 2851 2852 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2853 } 2854 2855 callout_reset(&dev->callout, 2856 (crs->release_timeout * hz) / 1000, 2857 xpt_release_devq_timeout, dev); 2858 2859 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2860 2861 } 2862 2863 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2864 2865 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2866 /* 2867 * Decrement the freeze count so that a single 2868 * completion is still sufficient to unfreeze 2869 * the queue. 2870 */ 2871 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2872 } else { 2873 2874 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2875 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2876 } 2877 } 2878 2879 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2880 2881 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2882 || (dev->ccbq.dev_active == 0)) { 2883 2884 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2885 } else { 2886 2887 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2888 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2889 } 2890 } 2891 2892 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2893 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2894 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2895 start_ccb->ccb_h.status = CAM_REQ_CMP; 2896 break; 2897 } 2898 case XPT_DEBUG: { 2899 struct cam_path *oldpath; 2900 struct cam_sim *oldsim; 2901 2902 /* Check that all request bits are supported. */ 2903 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2904 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2905 break; 2906 } 2907 2908 cam_dflags = CAM_DEBUG_NONE; 2909 if (cam_dpath != NULL) { 2910 /* To release the old path we must hold proper lock. */ 2911 oldpath = cam_dpath; 2912 cam_dpath = NULL; 2913 oldsim = xpt_path_sim(oldpath); 2914 CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2915 CAM_SIM_LOCK(oldsim); 2916 xpt_free_path(oldpath); 2917 CAM_SIM_UNLOCK(oldsim); 2918 CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2919 } 2920 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2921 if (xpt_create_path(&cam_dpath, NULL, 2922 start_ccb->ccb_h.path_id, 2923 start_ccb->ccb_h.target_id, 2924 start_ccb->ccb_h.target_lun) != 2925 CAM_REQ_CMP) { 2926 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2927 } else { 2928 cam_dflags = start_ccb->cdbg.flags; 2929 start_ccb->ccb_h.status = CAM_REQ_CMP; 2930 xpt_print(cam_dpath, "debugging flags now %x\n", 2931 cam_dflags); 2932 } 2933 } else 2934 start_ccb->ccb_h.status = CAM_REQ_CMP; 2935 break; 2936 } 2937 case XPT_NOOP: 2938 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2939 xpt_freeze_devq(path, 1); 2940 start_ccb->ccb_h.status = CAM_REQ_CMP; 2941 break; 2942 default: 2943 case XPT_SDEV_TYPE: 2944 case XPT_TERM_IO: 2945 case XPT_ENG_INQ: 2946 /* XXX Implement */ 2947 printf("%s: CCB type %#x not supported\n", __func__, 2948 start_ccb->ccb_h.func_code); 2949 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2950 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2951 xpt_done(start_ccb); 2952 } 2953 break; 2954 } 2955 } 2956 2957 void 2958 xpt_polled_action(union ccb *start_ccb) 2959 { 2960 u_int32_t timeout; 2961 struct cam_sim *sim; 2962 struct cam_devq *devq; 2963 struct cam_ed *dev; 2964 2965 2966 timeout = start_ccb->ccb_h.timeout * 10; 2967 sim = start_ccb->ccb_h.path->bus->sim; 2968 devq = sim->devq; 2969 dev = start_ccb->ccb_h.path->device; 2970 2971 mtx_assert(sim->mtx, MA_OWNED); 2972 2973 /* Don't use ISR for this SIM while polling. */ 2974 sim->flags |= CAM_SIM_POLLED; 2975 2976 /* 2977 * Steal an opening so that no other queued requests 2978 * can get it before us while we simulate interrupts. 2979 */ 2980 dev->ccbq.devq_openings--; 2981 dev->ccbq.dev_openings--; 2982 2983 while(((devq != NULL && devq->send_openings <= 0) || 2984 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 2985 DELAY(100); 2986 (*(sim->sim_poll))(sim); 2987 camisr_runqueue(&sim->sim_doneq); 2988 } 2989 2990 dev->ccbq.devq_openings++; 2991 dev->ccbq.dev_openings++; 2992 2993 if (timeout != 0) { 2994 xpt_action(start_ccb); 2995 while(--timeout > 0) { 2996 (*(sim->sim_poll))(sim); 2997 camisr_runqueue(&sim->sim_doneq); 2998 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 2999 != CAM_REQ_INPROG) 3000 break; 3001 DELAY(100); 3002 } 3003 if (timeout == 0) { 3004 /* 3005 * XXX Is it worth adding a sim_timeout entry 3006 * point so we can attempt recovery? If 3007 * this is only used for dumps, I don't think 3008 * it is. 3009 */ 3010 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3011 } 3012 } else { 3013 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3014 } 3015 3016 /* We will use CAM ISR for this SIM again. */ 3017 sim->flags &= ~CAM_SIM_POLLED; 3018 } 3019 3020 /* 3021 * Schedule a peripheral driver to receive a ccb when it's 3022 * target device has space for more transactions. 3023 */ 3024 void 3025 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3026 { 3027 struct cam_ed *device; 3028 int runq = 0; 3029 3030 mtx_assert(perph->sim->mtx, MA_OWNED); 3031 3032 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3033 device = perph->path->device; 3034 if (periph_is_queued(perph)) { 3035 /* Simply reorder based on new priority */ 3036 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3037 (" change priority to %d\n", new_priority)); 3038 if (new_priority < perph->pinfo.priority) { 3039 camq_change_priority(&device->drvq, 3040 perph->pinfo.index, 3041 new_priority); 3042 runq = 1; 3043 } 3044 } else { 3045 /* New entry on the queue */ 3046 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3047 (" added periph to queue\n")); 3048 perph->pinfo.priority = new_priority; 3049 perph->pinfo.generation = ++device->drvq.generation; 3050 camq_insert(&device->drvq, &perph->pinfo); 3051 runq = 1; 3052 } 3053 if (runq != 0) { 3054 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3055 (" calling xpt_run_dev_allocq\n")); 3056 xpt_run_dev_allocq(device); 3057 } 3058 } 3059 3060 3061 /* 3062 * Schedule a device to run on a given queue. 3063 * If the device was inserted as a new entry on the queue, 3064 * return 1 meaning the device queue should be run. If we 3065 * were already queued, implying someone else has already 3066 * started the queue, return 0 so the caller doesn't attempt 3067 * to run the queue. 3068 */ 3069 int 3070 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3071 u_int32_t new_priority) 3072 { 3073 int retval; 3074 u_int32_t old_priority; 3075 3076 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3077 3078 old_priority = pinfo->priority; 3079 3080 /* 3081 * Are we already queued? 3082 */ 3083 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3084 /* Simply reorder based on new priority */ 3085 if (new_priority < old_priority) { 3086 camq_change_priority(queue, pinfo->index, 3087 new_priority); 3088 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3089 ("changed priority to %d\n", 3090 new_priority)); 3091 retval = 1; 3092 } else 3093 retval = 0; 3094 } else { 3095 /* New entry on the queue */ 3096 if (new_priority < old_priority) 3097 pinfo->priority = new_priority; 3098 3099 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3100 ("Inserting onto queue\n")); 3101 pinfo->generation = ++queue->generation; 3102 camq_insert(queue, pinfo); 3103 retval = 1; 3104 } 3105 return (retval); 3106 } 3107 3108 static void 3109 xpt_run_dev_allocq(struct cam_ed *device) 3110 { 3111 struct camq *drvq; 3112 3113 if (device->ccbq.devq_allocating) 3114 return; 3115 device->ccbq.devq_allocating = 1; 3116 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device)); 3117 drvq = &device->drvq; 3118 while ((drvq->entries > 0) && 3119 (device->ccbq.devq_openings > 0 || 3120 CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) && 3121 (device->ccbq.queue.qfrozen_cnt == 0)) { 3122 union ccb *work_ccb; 3123 struct cam_periph *drv; 3124 3125 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: " 3126 "Device on queue without any work to do")); 3127 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3128 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3129 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3130 drv->pinfo.priority); 3131 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3132 ("calling periph start\n")); 3133 drv->periph_start(drv, work_ccb); 3134 } else { 3135 /* 3136 * Malloc failure in alloc_ccb 3137 */ 3138 /* 3139 * XXX add us to a list to be run from free_ccb 3140 * if we don't have any ccbs active on this 3141 * device queue otherwise we may never get run 3142 * again. 3143 */ 3144 break; 3145 } 3146 } 3147 device->ccbq.devq_allocating = 0; 3148 } 3149 3150 static void 3151 xpt_run_devq(struct cam_devq *devq) 3152 { 3153 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3154 3155 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3156 3157 devq->send_queue.qfrozen_cnt++; 3158 while ((devq->send_queue.entries > 0) 3159 && (devq->send_openings > 0) 3160 && (devq->send_queue.qfrozen_cnt <= 1)) { 3161 struct cam_ed_qinfo *qinfo; 3162 struct cam_ed *device; 3163 union ccb *work_ccb; 3164 struct cam_sim *sim; 3165 3166 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3167 CAMQ_HEAD); 3168 device = qinfo->device; 3169 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3170 ("running device %p\n", device)); 3171 3172 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3173 if (work_ccb == NULL) { 3174 printf("device on run queue with no ccbs???\n"); 3175 continue; 3176 } 3177 3178 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3179 3180 mtx_lock(&xsoftc.xpt_lock); 3181 if (xsoftc.num_highpower <= 0) { 3182 /* 3183 * We got a high power command, but we 3184 * don't have any available slots. Freeze 3185 * the device queue until we have a slot 3186 * available. 3187 */ 3188 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3189 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3190 &work_ccb->ccb_h, 3191 xpt_links.stqe); 3192 3193 mtx_unlock(&xsoftc.xpt_lock); 3194 continue; 3195 } else { 3196 /* 3197 * Consume a high power slot while 3198 * this ccb runs. 3199 */ 3200 xsoftc.num_highpower--; 3201 } 3202 mtx_unlock(&xsoftc.xpt_lock); 3203 } 3204 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3205 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3206 3207 devq->send_openings--; 3208 devq->send_active++; 3209 3210 xpt_schedule_devq(devq, device); 3211 3212 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3213 /* 3214 * The client wants to freeze the queue 3215 * after this CCB is sent. 3216 */ 3217 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3218 } 3219 3220 /* In Target mode, the peripheral driver knows best... */ 3221 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3222 if ((device->inq_flags & SID_CmdQue) != 0 3223 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3224 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3225 else 3226 /* 3227 * Clear this in case of a retried CCB that 3228 * failed due to a rejected tag. 3229 */ 3230 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3231 } 3232 3233 switch (work_ccb->ccb_h.func_code) { 3234 case XPT_SCSI_IO: 3235 CAM_DEBUG(work_ccb->ccb_h.path, 3236 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3237 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3238 &device->inq_data), 3239 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3240 cdb_str, sizeof(cdb_str)))); 3241 break; 3242 case XPT_ATA_IO: 3243 CAM_DEBUG(work_ccb->ccb_h.path, 3244 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3245 ata_op_string(&work_ccb->ataio.cmd), 3246 ata_cmd_string(&work_ccb->ataio.cmd, 3247 cdb_str, sizeof(cdb_str)))); 3248 break; 3249 default: 3250 break; 3251 } 3252 3253 /* 3254 * Device queues can be shared among multiple sim instances 3255 * that reside on different busses. Use the SIM in the queue 3256 * CCB's path, rather than the one in the bus that was passed 3257 * into this function. 3258 */ 3259 sim = work_ccb->ccb_h.path->bus->sim; 3260 (*(sim->sim_action))(sim, work_ccb); 3261 } 3262 devq->send_queue.qfrozen_cnt--; 3263 } 3264 3265 /* 3266 * This function merges stuff from the slave ccb into the master ccb, while 3267 * keeping important fields in the master ccb constant. 3268 */ 3269 void 3270 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3271 { 3272 3273 /* 3274 * Pull fields that are valid for peripheral drivers to set 3275 * into the master CCB along with the CCB "payload". 3276 */ 3277 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3278 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3279 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3280 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3281 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3282 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3283 } 3284 3285 void 3286 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3287 { 3288 3289 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3290 ccb_h->pinfo.priority = priority; 3291 ccb_h->path = path; 3292 ccb_h->path_id = path->bus->path_id; 3293 if (path->target) 3294 ccb_h->target_id = path->target->target_id; 3295 else 3296 ccb_h->target_id = CAM_TARGET_WILDCARD; 3297 if (path->device) { 3298 ccb_h->target_lun = path->device->lun_id; 3299 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3300 } else { 3301 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3302 } 3303 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3304 ccb_h->flags = 0; 3305 } 3306 3307 /* Path manipulation functions */ 3308 cam_status 3309 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3310 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3311 { 3312 struct cam_path *path; 3313 cam_status status; 3314 3315 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3316 3317 if (path == NULL) { 3318 status = CAM_RESRC_UNAVAIL; 3319 return(status); 3320 } 3321 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3322 if (status != CAM_REQ_CMP) { 3323 free(path, M_CAMPATH); 3324 path = NULL; 3325 } 3326 *new_path_ptr = path; 3327 return (status); 3328 } 3329 3330 cam_status 3331 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3332 struct cam_periph *periph, path_id_t path_id, 3333 target_id_t target_id, lun_id_t lun_id) 3334 { 3335 struct cam_path *path; 3336 struct cam_eb *bus = NULL; 3337 cam_status status; 3338 3339 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK); 3340 3341 bus = xpt_find_bus(path_id); 3342 if (bus != NULL) 3343 CAM_SIM_LOCK(bus->sim); 3344 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3345 if (bus != NULL) { 3346 CAM_SIM_UNLOCK(bus->sim); 3347 xpt_release_bus(bus); 3348 } 3349 if (status != CAM_REQ_CMP) { 3350 free(path, M_CAMPATH); 3351 path = NULL; 3352 } 3353 *new_path_ptr = path; 3354 return (status); 3355 } 3356 3357 cam_status 3358 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3359 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3360 { 3361 struct cam_eb *bus; 3362 struct cam_et *target; 3363 struct cam_ed *device; 3364 cam_status status; 3365 3366 status = CAM_REQ_CMP; /* Completed without error */ 3367 target = NULL; /* Wildcarded */ 3368 device = NULL; /* Wildcarded */ 3369 3370 /* 3371 * We will potentially modify the EDT, so block interrupts 3372 * that may attempt to create cam paths. 3373 */ 3374 bus = xpt_find_bus(path_id); 3375 if (bus == NULL) { 3376 status = CAM_PATH_INVALID; 3377 } else { 3378 target = xpt_find_target(bus, target_id); 3379 if (target == NULL) { 3380 /* Create one */ 3381 struct cam_et *new_target; 3382 3383 new_target = xpt_alloc_target(bus, target_id); 3384 if (new_target == NULL) { 3385 status = CAM_RESRC_UNAVAIL; 3386 } else { 3387 target = new_target; 3388 } 3389 } 3390 if (target != NULL) { 3391 device = xpt_find_device(target, lun_id); 3392 if (device == NULL) { 3393 /* Create one */ 3394 struct cam_ed *new_device; 3395 3396 new_device = 3397 (*(bus->xport->alloc_device))(bus, 3398 target, 3399 lun_id); 3400 if (new_device == NULL) { 3401 status = CAM_RESRC_UNAVAIL; 3402 } else { 3403 device = new_device; 3404 } 3405 } 3406 } 3407 } 3408 3409 /* 3410 * Only touch the user's data if we are successful. 3411 */ 3412 if (status == CAM_REQ_CMP) { 3413 new_path->periph = perph; 3414 new_path->bus = bus; 3415 new_path->target = target; 3416 new_path->device = device; 3417 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3418 } else { 3419 if (device != NULL) 3420 xpt_release_device(device); 3421 if (target != NULL) 3422 xpt_release_target(target); 3423 if (bus != NULL) 3424 xpt_release_bus(bus); 3425 } 3426 return (status); 3427 } 3428 3429 void 3430 xpt_release_path(struct cam_path *path) 3431 { 3432 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3433 if (path->device != NULL) { 3434 xpt_release_device(path->device); 3435 path->device = NULL; 3436 } 3437 if (path->target != NULL) { 3438 xpt_release_target(path->target); 3439 path->target = NULL; 3440 } 3441 if (path->bus != NULL) { 3442 xpt_release_bus(path->bus); 3443 path->bus = NULL; 3444 } 3445 } 3446 3447 void 3448 xpt_free_path(struct cam_path *path) 3449 { 3450 3451 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3452 xpt_release_path(path); 3453 free(path, M_CAMPATH); 3454 } 3455 3456 void 3457 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3458 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3459 { 3460 3461 xpt_lock_buses(); 3462 if (bus_ref) { 3463 if (path->bus) 3464 *bus_ref = path->bus->refcount; 3465 else 3466 *bus_ref = 0; 3467 } 3468 if (periph_ref) { 3469 if (path->periph) 3470 *periph_ref = path->periph->refcount; 3471 else 3472 *periph_ref = 0; 3473 } 3474 xpt_unlock_buses(); 3475 if (target_ref) { 3476 if (path->target) 3477 *target_ref = path->target->refcount; 3478 else 3479 *target_ref = 0; 3480 } 3481 if (device_ref) { 3482 if (path->device) 3483 *device_ref = path->device->refcount; 3484 else 3485 *device_ref = 0; 3486 } 3487 } 3488 3489 /* 3490 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3491 * in path1, 2 for match with wildcards in path2. 3492 */ 3493 int 3494 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3495 { 3496 int retval = 0; 3497 3498 if (path1->bus != path2->bus) { 3499 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3500 retval = 1; 3501 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3502 retval = 2; 3503 else 3504 return (-1); 3505 } 3506 if (path1->target != path2->target) { 3507 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3508 if (retval == 0) 3509 retval = 1; 3510 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3511 retval = 2; 3512 else 3513 return (-1); 3514 } 3515 if (path1->device != path2->device) { 3516 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3517 if (retval == 0) 3518 retval = 1; 3519 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3520 retval = 2; 3521 else 3522 return (-1); 3523 } 3524 return (retval); 3525 } 3526 3527 void 3528 xpt_print_path(struct cam_path *path) 3529 { 3530 3531 if (path == NULL) 3532 printf("(nopath): "); 3533 else { 3534 if (path->periph != NULL) 3535 printf("(%s%d:", path->periph->periph_name, 3536 path->periph->unit_number); 3537 else 3538 printf("(noperiph:"); 3539 3540 if (path->bus != NULL) 3541 printf("%s%d:%d:", path->bus->sim->sim_name, 3542 path->bus->sim->unit_number, 3543 path->bus->sim->bus_id); 3544 else 3545 printf("nobus:"); 3546 3547 if (path->target != NULL) 3548 printf("%d:", path->target->target_id); 3549 else 3550 printf("X:"); 3551 3552 if (path->device != NULL) 3553 printf("%d): ", path->device->lun_id); 3554 else 3555 printf("X): "); 3556 } 3557 } 3558 3559 void 3560 xpt_print(struct cam_path *path, const char *fmt, ...) 3561 { 3562 va_list ap; 3563 xpt_print_path(path); 3564 va_start(ap, fmt); 3565 vprintf(fmt, ap); 3566 va_end(ap); 3567 } 3568 3569 int 3570 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3571 { 3572 struct sbuf sb; 3573 3574 #ifdef INVARIANTS 3575 if (path != NULL && path->bus != NULL) 3576 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3577 #endif 3578 3579 sbuf_new(&sb, str, str_len, 0); 3580 3581 if (path == NULL) 3582 sbuf_printf(&sb, "(nopath): "); 3583 else { 3584 if (path->periph != NULL) 3585 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3586 path->periph->unit_number); 3587 else 3588 sbuf_printf(&sb, "(noperiph:"); 3589 3590 if (path->bus != NULL) 3591 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3592 path->bus->sim->unit_number, 3593 path->bus->sim->bus_id); 3594 else 3595 sbuf_printf(&sb, "nobus:"); 3596 3597 if (path->target != NULL) 3598 sbuf_printf(&sb, "%d:", path->target->target_id); 3599 else 3600 sbuf_printf(&sb, "X:"); 3601 3602 if (path->device != NULL) 3603 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3604 else 3605 sbuf_printf(&sb, "X): "); 3606 } 3607 sbuf_finish(&sb); 3608 3609 return(sbuf_len(&sb)); 3610 } 3611 3612 path_id_t 3613 xpt_path_path_id(struct cam_path *path) 3614 { 3615 return(path->bus->path_id); 3616 } 3617 3618 target_id_t 3619 xpt_path_target_id(struct cam_path *path) 3620 { 3621 if (path->target != NULL) 3622 return (path->target->target_id); 3623 else 3624 return (CAM_TARGET_WILDCARD); 3625 } 3626 3627 lun_id_t 3628 xpt_path_lun_id(struct cam_path *path) 3629 { 3630 if (path->device != NULL) 3631 return (path->device->lun_id); 3632 else 3633 return (CAM_LUN_WILDCARD); 3634 } 3635 3636 struct cam_sim * 3637 xpt_path_sim(struct cam_path *path) 3638 { 3639 3640 return (path->bus->sim); 3641 } 3642 3643 struct cam_periph* 3644 xpt_path_periph(struct cam_path *path) 3645 { 3646 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3647 3648 return (path->periph); 3649 } 3650 3651 int 3652 xpt_path_legacy_ata_id(struct cam_path *path) 3653 { 3654 struct cam_eb *bus; 3655 int bus_id; 3656 3657 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3658 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3659 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3660 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3661 return (-1); 3662 3663 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3664 path->bus->sim->unit_number < 2) { 3665 bus_id = path->bus->sim->unit_number; 3666 } else { 3667 bus_id = 2; 3668 xpt_lock_buses(); 3669 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3670 if (bus == path->bus) 3671 break; 3672 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3673 bus->sim->unit_number >= 2) || 3674 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3675 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3676 strcmp(bus->sim->sim_name, "siisch") == 0) 3677 bus_id++; 3678 } 3679 xpt_unlock_buses(); 3680 } 3681 if (path->target != NULL) { 3682 if (path->target->target_id < 2) 3683 return (bus_id * 2 + path->target->target_id); 3684 else 3685 return (-1); 3686 } else 3687 return (bus_id * 2); 3688 } 3689 3690 /* 3691 * Release a CAM control block for the caller. Remit the cost of the structure 3692 * to the device referenced by the path. If the this device had no 'credits' 3693 * and peripheral drivers have registered async callbacks for this notification 3694 * call them now. 3695 */ 3696 void 3697 xpt_release_ccb(union ccb *free_ccb) 3698 { 3699 struct cam_path *path; 3700 struct cam_ed *device; 3701 struct cam_eb *bus; 3702 struct cam_sim *sim; 3703 3704 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3705 path = free_ccb->ccb_h.path; 3706 device = path->device; 3707 bus = path->bus; 3708 sim = bus->sim; 3709 3710 mtx_assert(sim->mtx, MA_OWNED); 3711 3712 cam_ccbq_release_opening(&device->ccbq); 3713 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3714 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3715 cam_ccbq_resize(&device->ccbq, 3716 device->ccbq.dev_openings + device->ccbq.dev_active); 3717 } 3718 if (sim->ccb_count > sim->max_ccbs) { 3719 xpt_free_ccb(free_ccb); 3720 sim->ccb_count--; 3721 } else { 3722 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3723 xpt_links.sle); 3724 } 3725 xpt_run_dev_allocq(device); 3726 } 3727 3728 /* Functions accessed by SIM drivers */ 3729 3730 static struct xpt_xport xport_default = { 3731 .alloc_device = xpt_alloc_device_default, 3732 .action = xpt_action_default, 3733 .async = xpt_dev_async_default, 3734 }; 3735 3736 /* 3737 * A sim structure, listing the SIM entry points and instance 3738 * identification info is passed to xpt_bus_register to hook the SIM 3739 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3740 * for this new bus and places it in the array of busses and assigns 3741 * it a path_id. The path_id may be influenced by "hard wiring" 3742 * information specified by the user. Once interrupt services are 3743 * available, the bus will be probed. 3744 */ 3745 int32_t 3746 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3747 { 3748 struct cam_eb *new_bus; 3749 struct cam_eb *old_bus; 3750 struct ccb_pathinq cpi; 3751 struct cam_path *path; 3752 cam_status status; 3753 3754 mtx_assert(sim->mtx, MA_OWNED); 3755 3756 sim->bus_id = bus; 3757 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3758 M_CAMXPT, M_NOWAIT); 3759 if (new_bus == NULL) { 3760 /* Couldn't satisfy request */ 3761 return (CAM_RESRC_UNAVAIL); 3762 } 3763 if (strcmp(sim->sim_name, "xpt") != 0) { 3764 sim->path_id = 3765 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3766 } 3767 3768 TAILQ_INIT(&new_bus->et_entries); 3769 new_bus->path_id = sim->path_id; 3770 cam_sim_hold(sim); 3771 new_bus->sim = sim; 3772 timevalclear(&new_bus->last_reset); 3773 new_bus->flags = 0; 3774 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3775 new_bus->generation = 0; 3776 3777 xpt_lock_buses(); 3778 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3779 while (old_bus != NULL 3780 && old_bus->path_id < new_bus->path_id) 3781 old_bus = TAILQ_NEXT(old_bus, links); 3782 if (old_bus != NULL) 3783 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3784 else 3785 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3786 xsoftc.bus_generation++; 3787 xpt_unlock_buses(); 3788 3789 /* 3790 * Set a default transport so that a PATH_INQ can be issued to 3791 * the SIM. This will then allow for probing and attaching of 3792 * a more appropriate transport. 3793 */ 3794 new_bus->xport = &xport_default; 3795 3796 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3797 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3798 if (status != CAM_REQ_CMP) { 3799 xpt_release_bus(new_bus); 3800 free(path, M_CAMXPT); 3801 return (CAM_RESRC_UNAVAIL); 3802 } 3803 3804 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3805 cpi.ccb_h.func_code = XPT_PATH_INQ; 3806 xpt_action((union ccb *)&cpi); 3807 3808 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3809 switch (cpi.transport) { 3810 case XPORT_SPI: 3811 case XPORT_SAS: 3812 case XPORT_FC: 3813 case XPORT_USB: 3814 case XPORT_ISCSI: 3815 case XPORT_PPB: 3816 new_bus->xport = scsi_get_xport(); 3817 break; 3818 case XPORT_ATA: 3819 case XPORT_SATA: 3820 new_bus->xport = ata_get_xport(); 3821 break; 3822 default: 3823 new_bus->xport = &xport_default; 3824 break; 3825 } 3826 } 3827 3828 /* Notify interested parties */ 3829 if (sim->path_id != CAM_XPT_PATH_ID) { 3830 union ccb *scan_ccb; 3831 3832 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3833 /* Initiate bus rescan. */ 3834 scan_ccb = xpt_alloc_ccb_nowait(); 3835 scan_ccb->ccb_h.path = path; 3836 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3837 scan_ccb->crcn.flags = 0; 3838 xpt_rescan(scan_ccb); 3839 } else 3840 xpt_free_path(path); 3841 return (CAM_SUCCESS); 3842 } 3843 3844 int32_t 3845 xpt_bus_deregister(path_id_t pathid) 3846 { 3847 struct cam_path bus_path; 3848 cam_status status; 3849 3850 status = xpt_compile_path(&bus_path, NULL, pathid, 3851 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3852 if (status != CAM_REQ_CMP) 3853 return (status); 3854 3855 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3856 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3857 3858 /* Release the reference count held while registered. */ 3859 xpt_release_bus(bus_path.bus); 3860 xpt_release_path(&bus_path); 3861 3862 return (CAM_REQ_CMP); 3863 } 3864 3865 static path_id_t 3866 xptnextfreepathid(void) 3867 { 3868 struct cam_eb *bus; 3869 path_id_t pathid; 3870 const char *strval; 3871 3872 pathid = 0; 3873 xpt_lock_buses(); 3874 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3875 retry: 3876 /* Find an unoccupied pathid */ 3877 while (bus != NULL && bus->path_id <= pathid) { 3878 if (bus->path_id == pathid) 3879 pathid++; 3880 bus = TAILQ_NEXT(bus, links); 3881 } 3882 xpt_unlock_buses(); 3883 3884 /* 3885 * Ensure that this pathid is not reserved for 3886 * a bus that may be registered in the future. 3887 */ 3888 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3889 ++pathid; 3890 /* Start the search over */ 3891 xpt_lock_buses(); 3892 goto retry; 3893 } 3894 return (pathid); 3895 } 3896 3897 static path_id_t 3898 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3899 { 3900 path_id_t pathid; 3901 int i, dunit, val; 3902 char buf[32]; 3903 const char *dname; 3904 3905 pathid = CAM_XPT_PATH_ID; 3906 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3907 i = 0; 3908 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3909 if (strcmp(dname, "scbus")) { 3910 /* Avoid a bit of foot shooting. */ 3911 continue; 3912 } 3913 if (dunit < 0) /* unwired?! */ 3914 continue; 3915 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3916 if (sim_bus == val) { 3917 pathid = dunit; 3918 break; 3919 } 3920 } else if (sim_bus == 0) { 3921 /* Unspecified matches bus 0 */ 3922 pathid = dunit; 3923 break; 3924 } else { 3925 printf("Ambiguous scbus configuration for %s%d " 3926 "bus %d, cannot wire down. The kernel " 3927 "config entry for scbus%d should " 3928 "specify a controller bus.\n" 3929 "Scbus will be assigned dynamically.\n", 3930 sim_name, sim_unit, sim_bus, dunit); 3931 break; 3932 } 3933 } 3934 3935 if (pathid == CAM_XPT_PATH_ID) 3936 pathid = xptnextfreepathid(); 3937 return (pathid); 3938 } 3939 3940 static const char * 3941 xpt_async_string(u_int32_t async_code) 3942 { 3943 3944 switch (async_code) { 3945 case AC_BUS_RESET: return ("AC_BUS_RESET"); 3946 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 3947 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 3948 case AC_SENT_BDR: return ("AC_SENT_BDR"); 3949 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 3950 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 3951 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 3952 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 3953 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 3954 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 3955 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 3956 case AC_CONTRACT: return ("AC_CONTRACT"); 3957 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 3958 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 3959 } 3960 return ("AC_UNKNOWN"); 3961 } 3962 3963 void 3964 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 3965 { 3966 struct cam_eb *bus; 3967 struct cam_et *target, *next_target; 3968 struct cam_ed *device, *next_device; 3969 3970 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3971 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 3972 ("xpt_async(%s)\n", xpt_async_string(async_code))); 3973 3974 /* 3975 * Most async events come from a CAM interrupt context. In 3976 * a few cases, the error recovery code at the peripheral layer, 3977 * which may run from our SWI or a process context, may signal 3978 * deferred events with a call to xpt_async. 3979 */ 3980 3981 bus = path->bus; 3982 3983 if (async_code == AC_BUS_RESET) { 3984 /* Update our notion of when the last reset occurred */ 3985 microtime(&bus->last_reset); 3986 } 3987 3988 for (target = TAILQ_FIRST(&bus->et_entries); 3989 target != NULL; 3990 target = next_target) { 3991 3992 next_target = TAILQ_NEXT(target, links); 3993 3994 if (path->target != target 3995 && path->target->target_id != CAM_TARGET_WILDCARD 3996 && target->target_id != CAM_TARGET_WILDCARD) 3997 continue; 3998 3999 if (async_code == AC_SENT_BDR) { 4000 /* Update our notion of when the last reset occurred */ 4001 microtime(&path->target->last_reset); 4002 } 4003 4004 for (device = TAILQ_FIRST(&target->ed_entries); 4005 device != NULL; 4006 device = next_device) { 4007 4008 next_device = TAILQ_NEXT(device, links); 4009 4010 if (path->device != device 4011 && path->device->lun_id != CAM_LUN_WILDCARD 4012 && device->lun_id != CAM_LUN_WILDCARD) 4013 continue; 4014 /* 4015 * The async callback could free the device. 4016 * If it is a broadcast async, it doesn't hold 4017 * device reference, so take our own reference. 4018 */ 4019 xpt_acquire_device(device); 4020 (*(bus->xport->async))(async_code, bus, 4021 target, device, 4022 async_arg); 4023 4024 xpt_async_bcast(&device->asyncs, async_code, 4025 path, async_arg); 4026 xpt_release_device(device); 4027 } 4028 } 4029 4030 /* 4031 * If this wasn't a fully wildcarded async, tell all 4032 * clients that want all async events. 4033 */ 4034 if (bus != xpt_periph->path->bus) 4035 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4036 path, async_arg); 4037 } 4038 4039 static void 4040 xpt_async_bcast(struct async_list *async_head, 4041 u_int32_t async_code, 4042 struct cam_path *path, void *async_arg) 4043 { 4044 struct async_node *cur_entry; 4045 4046 cur_entry = SLIST_FIRST(async_head); 4047 while (cur_entry != NULL) { 4048 struct async_node *next_entry; 4049 /* 4050 * Grab the next list entry before we call the current 4051 * entry's callback. This is because the callback function 4052 * can delete its async callback entry. 4053 */ 4054 next_entry = SLIST_NEXT(cur_entry, links); 4055 if ((cur_entry->event_enable & async_code) != 0) 4056 cur_entry->callback(cur_entry->callback_arg, 4057 async_code, path, 4058 async_arg); 4059 cur_entry = next_entry; 4060 } 4061 } 4062 4063 static void 4064 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4065 struct cam_et *target, struct cam_ed *device, 4066 void *async_arg) 4067 { 4068 printf("%s called\n", __func__); 4069 } 4070 4071 u_int32_t 4072 xpt_freeze_devq(struct cam_path *path, u_int count) 4073 { 4074 struct cam_ed *dev = path->device; 4075 4076 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4077 dev->ccbq.queue.qfrozen_cnt += count; 4078 /* Remove frozen device from sendq. */ 4079 if (device_is_queued(dev)) { 4080 camq_remove(&dev->sim->devq->send_queue, 4081 dev->devq_entry.pinfo.index); 4082 } 4083 return (dev->ccbq.queue.qfrozen_cnt); 4084 } 4085 4086 u_int32_t 4087 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4088 { 4089 4090 mtx_assert(sim->mtx, MA_OWNED); 4091 sim->devq->send_queue.qfrozen_cnt += count; 4092 return (sim->devq->send_queue.qfrozen_cnt); 4093 } 4094 4095 static void 4096 xpt_release_devq_timeout(void *arg) 4097 { 4098 struct cam_ed *device; 4099 4100 device = (struct cam_ed *)arg; 4101 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4102 } 4103 4104 void 4105 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4106 { 4107 4108 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4109 xpt_release_devq_device(path->device, count, run_queue); 4110 } 4111 4112 void 4113 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4114 { 4115 4116 if (count > dev->ccbq.queue.qfrozen_cnt) { 4117 #ifdef INVARIANTS 4118 printf("xpt_release_devq(): requested %u > present %u\n", 4119 count, dev->ccbq.queue.qfrozen_cnt); 4120 #endif 4121 count = dev->ccbq.queue.qfrozen_cnt; 4122 } 4123 dev->ccbq.queue.qfrozen_cnt -= count; 4124 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4125 /* 4126 * No longer need to wait for a successful 4127 * command completion. 4128 */ 4129 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4130 /* 4131 * Remove any timeouts that might be scheduled 4132 * to release this queue. 4133 */ 4134 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4135 callout_stop(&dev->callout); 4136 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4137 } 4138 xpt_run_dev_allocq(dev); 4139 if (run_queue == 0) 4140 return; 4141 /* 4142 * Now that we are unfrozen schedule the 4143 * device so any pending transactions are 4144 * run. 4145 */ 4146 if (xpt_schedule_devq(dev->sim->devq, dev)) 4147 xpt_run_devq(dev->sim->devq); 4148 } 4149 } 4150 4151 void 4152 xpt_release_simq(struct cam_sim *sim, int run_queue) 4153 { 4154 struct camq *sendq; 4155 4156 mtx_assert(sim->mtx, MA_OWNED); 4157 sendq = &(sim->devq->send_queue); 4158 if (sendq->qfrozen_cnt <= 0) { 4159 #ifdef INVARIANTS 4160 printf("xpt_release_simq: requested 1 > present %u\n", 4161 sendq->qfrozen_cnt); 4162 #endif 4163 } else 4164 sendq->qfrozen_cnt--; 4165 if (sendq->qfrozen_cnt == 0) { 4166 /* 4167 * If there is a timeout scheduled to release this 4168 * sim queue, remove it. The queue frozen count is 4169 * already at 0. 4170 */ 4171 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4172 callout_stop(&sim->callout); 4173 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4174 } 4175 if (run_queue) { 4176 /* 4177 * Now that we are unfrozen run the send queue. 4178 */ 4179 xpt_run_devq(sim->devq); 4180 } 4181 } 4182 } 4183 4184 /* 4185 * XXX Appears to be unused. 4186 */ 4187 static void 4188 xpt_release_simq_timeout(void *arg) 4189 { 4190 struct cam_sim *sim; 4191 4192 sim = (struct cam_sim *)arg; 4193 xpt_release_simq(sim, /* run_queue */ TRUE); 4194 } 4195 4196 void 4197 xpt_done(union ccb *done_ccb) 4198 { 4199 struct cam_sim *sim; 4200 int first; 4201 4202 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4203 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4204 /* 4205 * Queue up the request for handling by our SWI handler 4206 * any of the "non-immediate" type of ccbs. 4207 */ 4208 sim = done_ccb->ccb_h.path->bus->sim; 4209 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4210 sim_links.tqe); 4211 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4212 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED | 4213 CAM_SIM_BATCH)) == 0) { 4214 mtx_lock(&cam_simq_lock); 4215 first = TAILQ_EMPTY(&cam_simq); 4216 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4217 mtx_unlock(&cam_simq_lock); 4218 sim->flags |= CAM_SIM_ON_DONEQ; 4219 if (first) 4220 swi_sched(cambio_ih, 0); 4221 } 4222 } 4223 } 4224 4225 void 4226 xpt_batch_start(struct cam_sim *sim) 4227 { 4228 4229 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set")); 4230 sim->flags |= CAM_SIM_BATCH; 4231 } 4232 4233 void 4234 xpt_batch_done(struct cam_sim *sim) 4235 { 4236 4237 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set")); 4238 sim->flags &= ~CAM_SIM_BATCH; 4239 if (!TAILQ_EMPTY(&sim->sim_doneq) && 4240 (sim->flags & CAM_SIM_ON_DONEQ) == 0) 4241 camisr_runqueue(&sim->sim_doneq); 4242 } 4243 4244 union ccb * 4245 xpt_alloc_ccb() 4246 { 4247 union ccb *new_ccb; 4248 4249 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4250 return (new_ccb); 4251 } 4252 4253 union ccb * 4254 xpt_alloc_ccb_nowait() 4255 { 4256 union ccb *new_ccb; 4257 4258 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4259 return (new_ccb); 4260 } 4261 4262 void 4263 xpt_free_ccb(union ccb *free_ccb) 4264 { 4265 free(free_ccb, M_CAMCCB); 4266 } 4267 4268 4269 4270 /* Private XPT functions */ 4271 4272 /* 4273 * Get a CAM control block for the caller. Charge the structure to the device 4274 * referenced by the path. If the this device has no 'credits' then the 4275 * device already has the maximum number of outstanding operations under way 4276 * and we return NULL. If we don't have sufficient resources to allocate more 4277 * ccbs, we also return NULL. 4278 */ 4279 static union ccb * 4280 xpt_get_ccb(struct cam_ed *device) 4281 { 4282 union ccb *new_ccb; 4283 struct cam_sim *sim; 4284 4285 sim = device->sim; 4286 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4287 new_ccb = xpt_alloc_ccb_nowait(); 4288 if (new_ccb == NULL) { 4289 return (NULL); 4290 } 4291 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4292 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4293 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4294 xpt_links.sle); 4295 sim->ccb_count++; 4296 } 4297 cam_ccbq_take_opening(&device->ccbq); 4298 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4299 return (new_ccb); 4300 } 4301 4302 static void 4303 xpt_release_bus(struct cam_eb *bus) 4304 { 4305 4306 xpt_lock_buses(); 4307 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4308 if (--bus->refcount > 0) { 4309 xpt_unlock_buses(); 4310 return; 4311 } 4312 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4313 ("refcount is zero, but target list is not empty")); 4314 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4315 xsoftc.bus_generation++; 4316 xpt_unlock_buses(); 4317 cam_sim_release(bus->sim); 4318 free(bus, M_CAMXPT); 4319 } 4320 4321 static struct cam_et * 4322 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4323 { 4324 struct cam_et *cur_target, *target; 4325 4326 mtx_assert(bus->sim->mtx, MA_OWNED); 4327 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4328 M_NOWAIT|M_ZERO); 4329 if (target == NULL) 4330 return (NULL); 4331 4332 TAILQ_INIT(&target->ed_entries); 4333 target->bus = bus; 4334 target->target_id = target_id; 4335 target->refcount = 1; 4336 target->generation = 0; 4337 target->luns = NULL; 4338 timevalclear(&target->last_reset); 4339 /* 4340 * Hold a reference to our parent bus so it 4341 * will not go away before we do. 4342 */ 4343 xpt_lock_buses(); 4344 bus->refcount++; 4345 xpt_unlock_buses(); 4346 4347 /* Insertion sort into our bus's target list */ 4348 cur_target = TAILQ_FIRST(&bus->et_entries); 4349 while (cur_target != NULL && cur_target->target_id < target_id) 4350 cur_target = TAILQ_NEXT(cur_target, links); 4351 if (cur_target != NULL) { 4352 TAILQ_INSERT_BEFORE(cur_target, target, links); 4353 } else { 4354 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4355 } 4356 bus->generation++; 4357 return (target); 4358 } 4359 4360 static void 4361 xpt_release_target(struct cam_et *target) 4362 { 4363 4364 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4365 if (--target->refcount > 0) 4366 return; 4367 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4368 ("refcount is zero, but device list is not empty")); 4369 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4370 target->bus->generation++; 4371 xpt_release_bus(target->bus); 4372 if (target->luns) 4373 free(target->luns, M_CAMXPT); 4374 free(target, M_CAMXPT); 4375 } 4376 4377 static struct cam_ed * 4378 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4379 lun_id_t lun_id) 4380 { 4381 struct cam_ed *device; 4382 4383 device = xpt_alloc_device(bus, target, lun_id); 4384 if (device == NULL) 4385 return (NULL); 4386 4387 device->mintags = 1; 4388 device->maxtags = 1; 4389 bus->sim->max_ccbs += device->ccbq.devq_openings; 4390 return (device); 4391 } 4392 4393 struct cam_ed * 4394 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4395 { 4396 struct cam_ed *cur_device, *device; 4397 struct cam_devq *devq; 4398 cam_status status; 4399 4400 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4401 /* Make space for us in the device queue on our bus */ 4402 devq = bus->sim->devq; 4403 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4404 if (status != CAM_REQ_CMP) 4405 return (NULL); 4406 4407 device = (struct cam_ed *)malloc(sizeof(*device), 4408 M_CAMDEV, M_NOWAIT|M_ZERO); 4409 if (device == NULL) 4410 return (NULL); 4411 4412 cam_init_pinfo(&device->devq_entry.pinfo); 4413 device->devq_entry.device = device; 4414 device->target = target; 4415 device->lun_id = lun_id; 4416 device->sim = bus->sim; 4417 /* Initialize our queues */ 4418 if (camq_init(&device->drvq, 0) != 0) { 4419 free(device, M_CAMDEV); 4420 return (NULL); 4421 } 4422 if (cam_ccbq_init(&device->ccbq, 4423 bus->sim->max_dev_openings) != 0) { 4424 camq_fini(&device->drvq); 4425 free(device, M_CAMDEV); 4426 return (NULL); 4427 } 4428 SLIST_INIT(&device->asyncs); 4429 SLIST_INIT(&device->periphs); 4430 device->generation = 0; 4431 device->flags = CAM_DEV_UNCONFIGURED; 4432 device->tag_delay_count = 0; 4433 device->tag_saved_openings = 0; 4434 device->refcount = 1; 4435 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4436 4437 cur_device = TAILQ_FIRST(&target->ed_entries); 4438 while (cur_device != NULL && cur_device->lun_id < lun_id) 4439 cur_device = TAILQ_NEXT(cur_device, links); 4440 if (cur_device != NULL) 4441 TAILQ_INSERT_BEFORE(cur_device, device, links); 4442 else 4443 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4444 target->refcount++; 4445 target->generation++; 4446 return (device); 4447 } 4448 4449 void 4450 xpt_acquire_device(struct cam_ed *device) 4451 { 4452 4453 mtx_assert(device->sim->mtx, MA_OWNED); 4454 device->refcount++; 4455 } 4456 4457 void 4458 xpt_release_device(struct cam_ed *device) 4459 { 4460 struct cam_devq *devq; 4461 4462 mtx_assert(device->sim->mtx, MA_OWNED); 4463 if (--device->refcount > 0) 4464 return; 4465 4466 KASSERT(SLIST_EMPTY(&device->periphs), 4467 ("refcount is zero, but periphs list is not empty")); 4468 if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4469 panic("Removing device while still queued for ccbs"); 4470 4471 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4472 callout_stop(&device->callout); 4473 4474 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4475 device->target->generation++; 4476 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4477 /* Release our slot in the devq */ 4478 devq = device->target->bus->sim->devq; 4479 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4480 camq_fini(&device->drvq); 4481 cam_ccbq_fini(&device->ccbq); 4482 /* 4483 * Free allocated memory. free(9) does nothing if the 4484 * supplied pointer is NULL, so it is safe to call without 4485 * checking. 4486 */ 4487 free(device->supported_vpds, M_CAMXPT); 4488 free(device->device_id, M_CAMXPT); 4489 free(device->physpath, M_CAMXPT); 4490 free(device->rcap_buf, M_CAMXPT); 4491 free(device->serial_num, M_CAMXPT); 4492 4493 xpt_release_target(device->target); 4494 free(device, M_CAMDEV); 4495 } 4496 4497 u_int32_t 4498 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4499 { 4500 int diff; 4501 int result; 4502 struct cam_ed *dev; 4503 4504 dev = path->device; 4505 4506 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4507 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4508 if (result == CAM_REQ_CMP && (diff < 0)) { 4509 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4510 } 4511 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4512 || (dev->inq_flags & SID_CmdQue) != 0) 4513 dev->tag_saved_openings = newopenings; 4514 /* Adjust the global limit */ 4515 dev->sim->max_ccbs += diff; 4516 return (result); 4517 } 4518 4519 static struct cam_eb * 4520 xpt_find_bus(path_id_t path_id) 4521 { 4522 struct cam_eb *bus; 4523 4524 xpt_lock_buses(); 4525 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4526 bus != NULL; 4527 bus = TAILQ_NEXT(bus, links)) { 4528 if (bus->path_id == path_id) { 4529 bus->refcount++; 4530 break; 4531 } 4532 } 4533 xpt_unlock_buses(); 4534 return (bus); 4535 } 4536 4537 static struct cam_et * 4538 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4539 { 4540 struct cam_et *target; 4541 4542 mtx_assert(bus->sim->mtx, MA_OWNED); 4543 for (target = TAILQ_FIRST(&bus->et_entries); 4544 target != NULL; 4545 target = TAILQ_NEXT(target, links)) { 4546 if (target->target_id == target_id) { 4547 target->refcount++; 4548 break; 4549 } 4550 } 4551 return (target); 4552 } 4553 4554 static struct cam_ed * 4555 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4556 { 4557 struct cam_ed *device; 4558 4559 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4560 for (device = TAILQ_FIRST(&target->ed_entries); 4561 device != NULL; 4562 device = TAILQ_NEXT(device, links)) { 4563 if (device->lun_id == lun_id) { 4564 device->refcount++; 4565 break; 4566 } 4567 } 4568 return (device); 4569 } 4570 4571 void 4572 xpt_start_tags(struct cam_path *path) 4573 { 4574 struct ccb_relsim crs; 4575 struct cam_ed *device; 4576 struct cam_sim *sim; 4577 int newopenings; 4578 4579 device = path->device; 4580 sim = path->bus->sim; 4581 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4582 xpt_freeze_devq(path, /*count*/1); 4583 device->inq_flags |= SID_CmdQue; 4584 if (device->tag_saved_openings != 0) 4585 newopenings = device->tag_saved_openings; 4586 else 4587 newopenings = min(device->maxtags, 4588 sim->max_tagged_dev_openings); 4589 xpt_dev_ccbq_resize(path, newopenings); 4590 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4591 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4592 crs.ccb_h.func_code = XPT_REL_SIMQ; 4593 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4594 crs.openings 4595 = crs.release_timeout 4596 = crs.qfrozen_cnt 4597 = 0; 4598 xpt_action((union ccb *)&crs); 4599 } 4600 4601 void 4602 xpt_stop_tags(struct cam_path *path) 4603 { 4604 struct ccb_relsim crs; 4605 struct cam_ed *device; 4606 struct cam_sim *sim; 4607 4608 device = path->device; 4609 sim = path->bus->sim; 4610 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4611 device->tag_delay_count = 0; 4612 xpt_freeze_devq(path, /*count*/1); 4613 device->inq_flags &= ~SID_CmdQue; 4614 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4615 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4616 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4617 crs.ccb_h.func_code = XPT_REL_SIMQ; 4618 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4619 crs.openings 4620 = crs.release_timeout 4621 = crs.qfrozen_cnt 4622 = 0; 4623 xpt_action((union ccb *)&crs); 4624 } 4625 4626 static void 4627 xpt_boot_delay(void *arg) 4628 { 4629 4630 xpt_release_boot(); 4631 } 4632 4633 static void 4634 xpt_config(void *arg) 4635 { 4636 /* 4637 * Now that interrupts are enabled, go find our devices 4638 */ 4639 4640 /* Setup debugging path */ 4641 if (cam_dflags != CAM_DEBUG_NONE) { 4642 if (xpt_create_path_unlocked(&cam_dpath, NULL, 4643 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4644 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4645 printf("xpt_config: xpt_create_path() failed for debug" 4646 " target %d:%d:%d, debugging disabled\n", 4647 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4648 cam_dflags = CAM_DEBUG_NONE; 4649 } 4650 } else 4651 cam_dpath = NULL; 4652 4653 periphdriver_init(1); 4654 xpt_hold_boot(); 4655 callout_init(&xsoftc.boot_callout, 1); 4656 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4657 xpt_boot_delay, NULL); 4658 /* Fire up rescan thread. */ 4659 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4660 printf("xpt_config: failed to create rescan thread.\n"); 4661 } 4662 } 4663 4664 void 4665 xpt_hold_boot(void) 4666 { 4667 xpt_lock_buses(); 4668 xsoftc.buses_to_config++; 4669 xpt_unlock_buses(); 4670 } 4671 4672 void 4673 xpt_release_boot(void) 4674 { 4675 xpt_lock_buses(); 4676 xsoftc.buses_to_config--; 4677 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4678 struct xpt_task *task; 4679 4680 xsoftc.buses_config_done = 1; 4681 xpt_unlock_buses(); 4682 /* Call manually because we don't have any busses */ 4683 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4684 if (task != NULL) { 4685 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4686 taskqueue_enqueue(taskqueue_thread, &task->task); 4687 } 4688 } else 4689 xpt_unlock_buses(); 4690 } 4691 4692 /* 4693 * If the given device only has one peripheral attached to it, and if that 4694 * peripheral is the passthrough driver, announce it. This insures that the 4695 * user sees some sort of announcement for every peripheral in their system. 4696 */ 4697 static int 4698 xptpassannouncefunc(struct cam_ed *device, void *arg) 4699 { 4700 struct cam_periph *periph; 4701 int i; 4702 4703 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4704 periph = SLIST_NEXT(periph, periph_links), i++); 4705 4706 periph = SLIST_FIRST(&device->periphs); 4707 if ((i == 1) 4708 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4709 xpt_announce_periph(periph, NULL); 4710 4711 return(1); 4712 } 4713 4714 static void 4715 xpt_finishconfig_task(void *context, int pending) 4716 { 4717 4718 periphdriver_init(2); 4719 /* 4720 * Check for devices with no "standard" peripheral driver 4721 * attached. For any devices like that, announce the 4722 * passthrough driver so the user will see something. 4723 */ 4724 if (!bootverbose) 4725 xpt_for_all_devices(xptpassannouncefunc, NULL); 4726 4727 /* Release our hook so that the boot can continue. */ 4728 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4729 free(xsoftc.xpt_config_hook, M_CAMXPT); 4730 xsoftc.xpt_config_hook = NULL; 4731 4732 free(context, M_CAMXPT); 4733 } 4734 4735 cam_status 4736 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4737 struct cam_path *path) 4738 { 4739 struct ccb_setasync csa; 4740 cam_status status; 4741 int xptpath = 0; 4742 4743 if (path == NULL) { 4744 mtx_lock(&xsoftc.xpt_lock); 4745 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4746 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4747 if (status != CAM_REQ_CMP) { 4748 mtx_unlock(&xsoftc.xpt_lock); 4749 return (status); 4750 } 4751 xptpath = 1; 4752 } 4753 4754 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4755 csa.ccb_h.func_code = XPT_SASYNC_CB; 4756 csa.event_enable = event; 4757 csa.callback = cbfunc; 4758 csa.callback_arg = cbarg; 4759 xpt_action((union ccb *)&csa); 4760 status = csa.ccb_h.status; 4761 4762 if (xptpath) { 4763 xpt_free_path(path); 4764 mtx_unlock(&xsoftc.xpt_lock); 4765 } 4766 4767 if ((status == CAM_REQ_CMP) && 4768 (csa.event_enable & AC_FOUND_DEVICE)) { 4769 /* 4770 * Get this peripheral up to date with all 4771 * the currently existing devices. 4772 */ 4773 xpt_for_all_devices(xptsetasyncfunc, &csa); 4774 } 4775 if ((status == CAM_REQ_CMP) && 4776 (csa.event_enable & AC_PATH_REGISTERED)) { 4777 /* 4778 * Get this peripheral up to date with all 4779 * the currently existing busses. 4780 */ 4781 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4782 } 4783 4784 return (status); 4785 } 4786 4787 static void 4788 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4789 { 4790 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4791 4792 switch (work_ccb->ccb_h.func_code) { 4793 /* Common cases first */ 4794 case XPT_PATH_INQ: /* Path routing inquiry */ 4795 { 4796 struct ccb_pathinq *cpi; 4797 4798 cpi = &work_ccb->cpi; 4799 cpi->version_num = 1; /* XXX??? */ 4800 cpi->hba_inquiry = 0; 4801 cpi->target_sprt = 0; 4802 cpi->hba_misc = 0; 4803 cpi->hba_eng_cnt = 0; 4804 cpi->max_target = 0; 4805 cpi->max_lun = 0; 4806 cpi->initiator_id = 0; 4807 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4808 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4809 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4810 cpi->unit_number = sim->unit_number; 4811 cpi->bus_id = sim->bus_id; 4812 cpi->base_transfer_speed = 0; 4813 cpi->protocol = PROTO_UNSPECIFIED; 4814 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4815 cpi->transport = XPORT_UNSPECIFIED; 4816 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4817 cpi->ccb_h.status = CAM_REQ_CMP; 4818 xpt_done(work_ccb); 4819 break; 4820 } 4821 default: 4822 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4823 xpt_done(work_ccb); 4824 break; 4825 } 4826 } 4827 4828 /* 4829 * The xpt as a "controller" has no interrupt sources, so polling 4830 * is a no-op. 4831 */ 4832 static void 4833 xptpoll(struct cam_sim *sim) 4834 { 4835 } 4836 4837 void 4838 xpt_lock_buses(void) 4839 { 4840 mtx_lock(&xsoftc.xpt_topo_lock); 4841 } 4842 4843 void 4844 xpt_unlock_buses(void) 4845 { 4846 mtx_unlock(&xsoftc.xpt_topo_lock); 4847 } 4848 4849 static void 4850 camisr(void *dummy) 4851 { 4852 cam_simq_t queue; 4853 struct cam_sim *sim; 4854 4855 mtx_lock(&cam_simq_lock); 4856 TAILQ_INIT(&queue); 4857 while (!TAILQ_EMPTY(&cam_simq)) { 4858 TAILQ_CONCAT(&queue, &cam_simq, links); 4859 mtx_unlock(&cam_simq_lock); 4860 4861 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4862 TAILQ_REMOVE(&queue, sim, links); 4863 CAM_SIM_LOCK(sim); 4864 camisr_runqueue(&sim->sim_doneq); 4865 sim->flags &= ~CAM_SIM_ON_DONEQ; 4866 CAM_SIM_UNLOCK(sim); 4867 } 4868 mtx_lock(&cam_simq_lock); 4869 } 4870 mtx_unlock(&cam_simq_lock); 4871 } 4872 4873 static void 4874 camisr_runqueue(void *V_queue) 4875 { 4876 cam_isrq_t *queue = V_queue; 4877 struct ccb_hdr *ccb_h; 4878 4879 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 4880 int runq; 4881 4882 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 4883 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4884 4885 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 4886 ("camisr\n")); 4887 4888 runq = FALSE; 4889 4890 if (ccb_h->flags & CAM_HIGH_POWER) { 4891 struct highpowerlist *hphead; 4892 union ccb *send_ccb; 4893 4894 mtx_lock(&xsoftc.xpt_lock); 4895 hphead = &xsoftc.highpowerq; 4896 4897 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 4898 4899 /* 4900 * Increment the count since this command is done. 4901 */ 4902 xsoftc.num_highpower++; 4903 4904 /* 4905 * Any high powered commands queued up? 4906 */ 4907 if (send_ccb != NULL) { 4908 4909 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 4910 mtx_unlock(&xsoftc.xpt_lock); 4911 4912 xpt_release_devq(send_ccb->ccb_h.path, 4913 /*count*/1, /*runqueue*/TRUE); 4914 } else 4915 mtx_unlock(&xsoftc.xpt_lock); 4916 } 4917 4918 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 4919 struct cam_ed *dev; 4920 4921 dev = ccb_h->path->device; 4922 4923 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 4924 ccb_h->path->bus->sim->devq->send_active--; 4925 ccb_h->path->bus->sim->devq->send_openings++; 4926 runq = TRUE; 4927 4928 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 4929 && (dev->ccbq.dev_active == 0))) { 4930 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 4931 xpt_release_devq(ccb_h->path, /*count*/1, 4932 /*run_queue*/FALSE); 4933 } 4934 4935 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 4936 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 4937 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4938 xpt_release_devq(ccb_h->path, /*count*/1, 4939 /*run_queue*/FALSE); 4940 } 4941 4942 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4943 && (--dev->tag_delay_count == 0)) 4944 xpt_start_tags(ccb_h->path); 4945 if (!device_is_queued(dev)) { 4946 (void)xpt_schedule_devq( 4947 ccb_h->path->bus->sim->devq, dev); 4948 } 4949 } 4950 4951 if (ccb_h->status & CAM_RELEASE_SIMQ) { 4952 xpt_release_simq(ccb_h->path->bus->sim, 4953 /*run_queue*/TRUE); 4954 ccb_h->status &= ~CAM_RELEASE_SIMQ; 4955 runq = FALSE; 4956 } 4957 4958 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 4959 && (ccb_h->status & CAM_DEV_QFRZN)) { 4960 xpt_release_devq(ccb_h->path, /*count*/1, 4961 /*run_queue*/TRUE); 4962 ccb_h->status &= ~CAM_DEV_QFRZN; 4963 } else if (runq) { 4964 xpt_run_devq(ccb_h->path->bus->sim->devq); 4965 } 4966 4967 /* Call the peripheral driver's callback */ 4968 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 4969 } 4970 } 4971