xref: /freebsd/sys/cam/cam_xpt.c (revision 2e654ff9dfeab072161ca370e2b3f621ed67e393)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_queue.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_xpt_internal.h>
60 #include <cam/cam_debug.h>
61 
62 #include <cam/scsi/scsi_all.h>
63 #include <cam/scsi/scsi_message.h>
64 #include <cam/scsi/scsi_pass.h>
65 
66 #include <machine/md_var.h>	/* geometry translation */
67 #include <machine/stdarg.h>	/* for xpt_print below */
68 
69 #include "opt_cam.h"
70 
71 /*
72  * This is the maximum number of high powered commands (e.g. start unit)
73  * that can be outstanding at a particular time.
74  */
75 #ifndef CAM_MAX_HIGHPOWER
76 #define CAM_MAX_HIGHPOWER  4
77 #endif
78 
79 /* Datastructures internal to the xpt layer */
80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
81 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
82 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
83 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
84 
85 /* Object for defering XPT actions to a taskqueue */
86 struct xpt_task {
87 	struct task	task;
88 	void		*data1;
89 	uintptr_t	data2;
90 };
91 
92 typedef enum {
93 	XPT_FLAG_OPEN		= 0x01
94 } xpt_flags;
95 
96 struct xpt_softc {
97 	xpt_flags		flags;
98 	u_int32_t		xpt_generation;
99 
100 	/* number of high powered commands that can go through right now */
101 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/* Registered busses */
110 	TAILQ_HEAD(,cam_eb)	xpt_busses;
111 	u_int			bus_generation;
112 
113 	struct intr_config_hook	*xpt_config_hook;
114 
115 	int			boot_delay;
116 	struct callout 		boot_callout;
117 
118 	struct mtx		xpt_topo_lock;
119 	struct mtx		xpt_lock;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156            &xsoftc.boot_delay, 0, "Bus registration wait time");
157 
158 /* Queues for our software interrupt handler */
159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161 static cam_simq_t cam_simq;
162 static struct mtx cam_simq_lock;
163 
164 /* Pointers to software interrupt handlers */
165 static void *cambio_ih;
166 
167 struct cam_periph *xpt_periph;
168 
169 static periph_init_t xpt_periph_init;
170 
171 static struct periph_driver xpt_driver =
172 {
173 	xpt_periph_init, "xpt",
174 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175 	CAM_PERIPH_DRV_EARLY
176 };
177 
178 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179 
180 static d_open_t xptopen;
181 static d_close_t xptclose;
182 static d_ioctl_t xptioctl;
183 
184 static struct cdevsw xpt_cdevsw = {
185 	.d_version =	D_VERSION,
186 	.d_flags =	0,
187 	.d_open =	xptopen,
188 	.d_close =	xptclose,
189 	.d_ioctl =	xptioctl,
190 	.d_name =	"xpt",
191 };
192 
193 /* Storage for debugging datastructures */
194 struct cam_path *cam_dpath;
195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
197 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
198 	&cam_dflags, 0, "Enabled debug flags");
199 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
200 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
202 	&cam_debug_delay, 0, "Delay in us after each debug message");
203 
204 /* Our boot-time initialization hook */
205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
206 
207 static moduledata_t cam_moduledata = {
208 	"cam",
209 	cam_module_event_handler,
210 	NULL
211 };
212 
213 static int	xpt_init(void *);
214 
215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
216 MODULE_VERSION(cam, 1);
217 
218 
219 static void		xpt_async_bcast(struct async_list *async_head,
220 					u_int32_t async_code,
221 					struct cam_path *path,
222 					void *async_arg);
223 static path_id_t xptnextfreepathid(void);
224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
225 static union ccb *xpt_get_ccb(struct cam_ed *device);
226 static void	 xpt_run_dev_allocq(struct cam_ed *device);
227 static void	 xpt_run_devq(struct cam_devq *devq);
228 static timeout_t xpt_release_devq_timeout;
229 static void	 xpt_release_simq_timeout(void *arg) __unused;
230 static void	 xpt_release_bus(struct cam_eb *bus);
231 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
232 		    int run_queue);
233 static struct cam_et*
234 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
235 static void	 xpt_release_target(struct cam_et *target);
236 static struct cam_eb*
237 		 xpt_find_bus(path_id_t path_id);
238 static struct cam_et*
239 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
240 static struct cam_ed*
241 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
242 static void	 xpt_config(void *arg);
243 static xpt_devicefunc_t xptpassannouncefunc;
244 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
245 static void	 xptpoll(struct cam_sim *sim);
246 static void	 camisr(void *);
247 static void	 camisr_runqueue(void *);
248 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
249 				    u_int num_patterns, struct cam_eb *bus);
250 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
251 				       u_int num_patterns,
252 				       struct cam_ed *device);
253 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
254 				       u_int num_patterns,
255 				       struct cam_periph *periph);
256 static xpt_busfunc_t	xptedtbusfunc;
257 static xpt_targetfunc_t	xptedttargetfunc;
258 static xpt_devicefunc_t	xptedtdevicefunc;
259 static xpt_periphfunc_t	xptedtperiphfunc;
260 static xpt_pdrvfunc_t	xptplistpdrvfunc;
261 static xpt_periphfunc_t	xptplistperiphfunc;
262 static int		xptedtmatch(struct ccb_dev_match *cdm);
263 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
264 static int		xptbustraverse(struct cam_eb *start_bus,
265 				       xpt_busfunc_t *tr_func, void *arg);
266 static int		xpttargettraverse(struct cam_eb *bus,
267 					  struct cam_et *start_target,
268 					  xpt_targetfunc_t *tr_func, void *arg);
269 static int		xptdevicetraverse(struct cam_et *target,
270 					  struct cam_ed *start_device,
271 					  xpt_devicefunc_t *tr_func, void *arg);
272 static int		xptperiphtraverse(struct cam_ed *device,
273 					  struct cam_periph *start_periph,
274 					  xpt_periphfunc_t *tr_func, void *arg);
275 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
276 					xpt_pdrvfunc_t *tr_func, void *arg);
277 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
278 					    struct cam_periph *start_periph,
279 					    xpt_periphfunc_t *tr_func,
280 					    void *arg);
281 static xpt_busfunc_t	xptdefbusfunc;
282 static xpt_targetfunc_t	xptdeftargetfunc;
283 static xpt_devicefunc_t	xptdefdevicefunc;
284 static xpt_periphfunc_t	xptdefperiphfunc;
285 static void		xpt_finishconfig_task(void *context, int pending);
286 static void		xpt_dev_async_default(u_int32_t async_code,
287 					      struct cam_eb *bus,
288 					      struct cam_et *target,
289 					      struct cam_ed *device,
290 					      void *async_arg);
291 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
292 						 struct cam_et *target,
293 						 lun_id_t lun_id);
294 static xpt_devicefunc_t	xptsetasyncfunc;
295 static xpt_busfunc_t	xptsetasyncbusfunc;
296 static cam_status	xptregister(struct cam_periph *periph,
297 				    void *arg);
298 static __inline int periph_is_queued(struct cam_periph *periph);
299 static __inline int device_is_queued(struct cam_ed *device);
300 
301 static __inline int
302 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
303 {
304 	int	retval;
305 
306 	if ((dev->ccbq.queue.entries > 0) &&
307 	    (dev->ccbq.dev_openings > 0) &&
308 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
309 		/*
310 		 * The priority of a device waiting for controller
311 		 * resources is that of the highest priority CCB
312 		 * enqueued.
313 		 */
314 		retval =
315 		    xpt_schedule_dev(&devq->send_queue,
316 				     &dev->devq_entry.pinfo,
317 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
318 	} else {
319 		retval = 0;
320 	}
321 	return (retval);
322 }
323 
324 static __inline int
325 periph_is_queued(struct cam_periph *periph)
326 {
327 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
328 }
329 
330 static __inline int
331 device_is_queued(struct cam_ed *device)
332 {
333 	return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
334 }
335 
336 static void
337 xpt_periph_init()
338 {
339 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
340 }
341 
342 static void
343 xptdone(struct cam_periph *periph, union ccb *done_ccb)
344 {
345 	/* Caller will release the CCB */
346 	wakeup(&done_ccb->ccb_h.cbfcnp);
347 }
348 
349 static int
350 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
351 {
352 
353 	/*
354 	 * Only allow read-write access.
355 	 */
356 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
357 		return(EPERM);
358 
359 	/*
360 	 * We don't allow nonblocking access.
361 	 */
362 	if ((flags & O_NONBLOCK) != 0) {
363 		printf("%s: can't do nonblocking access\n", devtoname(dev));
364 		return(ENODEV);
365 	}
366 
367 	/* Mark ourselves open */
368 	mtx_lock(&xsoftc.xpt_lock);
369 	xsoftc.flags |= XPT_FLAG_OPEN;
370 	mtx_unlock(&xsoftc.xpt_lock);
371 
372 	return(0);
373 }
374 
375 static int
376 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
377 {
378 
379 	/* Mark ourselves closed */
380 	mtx_lock(&xsoftc.xpt_lock);
381 	xsoftc.flags &= ~XPT_FLAG_OPEN;
382 	mtx_unlock(&xsoftc.xpt_lock);
383 
384 	return(0);
385 }
386 
387 /*
388  * Don't automatically grab the xpt softc lock here even though this is going
389  * through the xpt device.  The xpt device is really just a back door for
390  * accessing other devices and SIMs, so the right thing to do is to grab
391  * the appropriate SIM lock once the bus/SIM is located.
392  */
393 static int
394 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
395 {
396 	int error;
397 
398 	error = 0;
399 
400 	switch(cmd) {
401 	/*
402 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
403 	 * to accept CCB types that don't quite make sense to send through a
404 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
405 	 * in the CAM spec.
406 	 */
407 	case CAMIOCOMMAND: {
408 		union ccb *ccb;
409 		union ccb *inccb;
410 		struct cam_eb *bus;
411 
412 		inccb = (union ccb *)addr;
413 
414 		bus = xpt_find_bus(inccb->ccb_h.path_id);
415 		if (bus == NULL)
416 			return (EINVAL);
417 
418 		switch (inccb->ccb_h.func_code) {
419 		case XPT_SCAN_BUS:
420 		case XPT_RESET_BUS:
421 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
422 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
423 				xpt_release_bus(bus);
424 				return (EINVAL);
425 			}
426 			break;
427 		case XPT_SCAN_TGT:
428 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
429 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
430 				xpt_release_bus(bus);
431 				return (EINVAL);
432 			}
433 			break;
434 		default:
435 			break;
436 		}
437 
438 		switch(inccb->ccb_h.func_code) {
439 		case XPT_SCAN_BUS:
440 		case XPT_RESET_BUS:
441 		case XPT_PATH_INQ:
442 		case XPT_ENG_INQ:
443 		case XPT_SCAN_LUN:
444 		case XPT_SCAN_TGT:
445 
446 			ccb = xpt_alloc_ccb();
447 
448 			CAM_SIM_LOCK(bus->sim);
449 
450 			/*
451 			 * Create a path using the bus, target, and lun the
452 			 * user passed in.
453 			 */
454 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
455 					    inccb->ccb_h.path_id,
456 					    inccb->ccb_h.target_id,
457 					    inccb->ccb_h.target_lun) !=
458 					    CAM_REQ_CMP){
459 				error = EINVAL;
460 				CAM_SIM_UNLOCK(bus->sim);
461 				xpt_free_ccb(ccb);
462 				break;
463 			}
464 			/* Ensure all of our fields are correct */
465 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
466 				      inccb->ccb_h.pinfo.priority);
467 			xpt_merge_ccb(ccb, inccb);
468 			ccb->ccb_h.cbfcnp = xptdone;
469 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
470 			bcopy(ccb, inccb, sizeof(union ccb));
471 			xpt_free_path(ccb->ccb_h.path);
472 			xpt_free_ccb(ccb);
473 			CAM_SIM_UNLOCK(bus->sim);
474 			break;
475 
476 		case XPT_DEBUG: {
477 			union ccb ccb;
478 
479 			/*
480 			 * This is an immediate CCB, so it's okay to
481 			 * allocate it on the stack.
482 			 */
483 
484 			CAM_SIM_LOCK(bus->sim);
485 
486 			/*
487 			 * Create a path using the bus, target, and lun the
488 			 * user passed in.
489 			 */
490 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
491 					    inccb->ccb_h.path_id,
492 					    inccb->ccb_h.target_id,
493 					    inccb->ccb_h.target_lun) !=
494 					    CAM_REQ_CMP){
495 				error = EINVAL;
496 				CAM_SIM_UNLOCK(bus->sim);
497 				break;
498 			}
499 			/* Ensure all of our fields are correct */
500 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
501 				      inccb->ccb_h.pinfo.priority);
502 			xpt_merge_ccb(&ccb, inccb);
503 			ccb.ccb_h.cbfcnp = xptdone;
504 			xpt_action(&ccb);
505 			bcopy(&ccb, inccb, sizeof(union ccb));
506 			xpt_free_path(ccb.ccb_h.path);
507 			CAM_SIM_UNLOCK(bus->sim);
508 			break;
509 
510 		}
511 		case XPT_DEV_MATCH: {
512 			struct cam_periph_map_info mapinfo;
513 			struct cam_path *old_path;
514 
515 			/*
516 			 * We can't deal with physical addresses for this
517 			 * type of transaction.
518 			 */
519 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
520 			    CAM_DATA_VADDR) {
521 				error = EINVAL;
522 				break;
523 			}
524 
525 			/*
526 			 * Save this in case the caller had it set to
527 			 * something in particular.
528 			 */
529 			old_path = inccb->ccb_h.path;
530 
531 			/*
532 			 * We really don't need a path for the matching
533 			 * code.  The path is needed because of the
534 			 * debugging statements in xpt_action().  They
535 			 * assume that the CCB has a valid path.
536 			 */
537 			inccb->ccb_h.path = xpt_periph->path;
538 
539 			bzero(&mapinfo, sizeof(mapinfo));
540 
541 			/*
542 			 * Map the pattern and match buffers into kernel
543 			 * virtual address space.
544 			 */
545 			error = cam_periph_mapmem(inccb, &mapinfo);
546 
547 			if (error) {
548 				inccb->ccb_h.path = old_path;
549 				break;
550 			}
551 
552 			/*
553 			 * This is an immediate CCB, we can send it on directly.
554 			 */
555 			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
556 			xpt_action(inccb);
557 			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
558 
559 			/*
560 			 * Map the buffers back into user space.
561 			 */
562 			cam_periph_unmapmem(inccb, &mapinfo);
563 
564 			inccb->ccb_h.path = old_path;
565 
566 			error = 0;
567 			break;
568 		}
569 		default:
570 			error = ENOTSUP;
571 			break;
572 		}
573 		xpt_release_bus(bus);
574 		break;
575 	}
576 	/*
577 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
578 	 * with the periphal driver name and unit name filled in.  The other
579 	 * fields don't really matter as input.  The passthrough driver name
580 	 * ("pass"), and unit number are passed back in the ccb.  The current
581 	 * device generation number, and the index into the device peripheral
582 	 * driver list, and the status are also passed back.  Note that
583 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
584 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
585 	 * (or rather should be) impossible for the device peripheral driver
586 	 * list to change since we look at the whole thing in one pass, and
587 	 * we do it with lock protection.
588 	 *
589 	 */
590 	case CAMGETPASSTHRU: {
591 		union ccb *ccb;
592 		struct cam_periph *periph;
593 		struct periph_driver **p_drv;
594 		char   *name;
595 		u_int unit;
596 		u_int cur_generation;
597 		int base_periph_found;
598 		int splbreaknum;
599 
600 		ccb = (union ccb *)addr;
601 		unit = ccb->cgdl.unit_number;
602 		name = ccb->cgdl.periph_name;
603 		/*
604 		 * Every 100 devices, we want to drop our lock protection to
605 		 * give the software interrupt handler a chance to run.
606 		 * Most systems won't run into this check, but this should
607 		 * avoid starvation in the software interrupt handler in
608 		 * large systems.
609 		 */
610 		splbreaknum = 100;
611 
612 		ccb = (union ccb *)addr;
613 
614 		base_periph_found = 0;
615 
616 		/*
617 		 * Sanity check -- make sure we don't get a null peripheral
618 		 * driver name.
619 		 */
620 		if (*ccb->cgdl.periph_name == '\0') {
621 			error = EINVAL;
622 			break;
623 		}
624 
625 		/* Keep the list from changing while we traverse it */
626 		xpt_lock_buses();
627 ptstartover:
628 		cur_generation = xsoftc.xpt_generation;
629 
630 		/* first find our driver in the list of drivers */
631 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
632 			if (strcmp((*p_drv)->driver_name, name) == 0)
633 				break;
634 
635 		if (*p_drv == NULL) {
636 			xpt_unlock_buses();
637 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
638 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
639 			*ccb->cgdl.periph_name = '\0';
640 			ccb->cgdl.unit_number = 0;
641 			error = ENOENT;
642 			break;
643 		}
644 
645 		/*
646 		 * Run through every peripheral instance of this driver
647 		 * and check to see whether it matches the unit passed
648 		 * in by the user.  If it does, get out of the loops and
649 		 * find the passthrough driver associated with that
650 		 * peripheral driver.
651 		 */
652 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
653 		     periph = TAILQ_NEXT(periph, unit_links)) {
654 
655 			if (periph->unit_number == unit) {
656 				break;
657 			} else if (--splbreaknum == 0) {
658 				xpt_unlock_buses();
659 				xpt_lock_buses();
660 				splbreaknum = 100;
661 				if (cur_generation != xsoftc.xpt_generation)
662 				       goto ptstartover;
663 			}
664 		}
665 		/*
666 		 * If we found the peripheral driver that the user passed
667 		 * in, go through all of the peripheral drivers for that
668 		 * particular device and look for a passthrough driver.
669 		 */
670 		if (periph != NULL) {
671 			struct cam_ed *device;
672 			int i;
673 
674 			base_periph_found = 1;
675 			device = periph->path->device;
676 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
677 			     periph != NULL;
678 			     periph = SLIST_NEXT(periph, periph_links), i++) {
679 				/*
680 				 * Check to see whether we have a
681 				 * passthrough device or not.
682 				 */
683 				if (strcmp(periph->periph_name, "pass") == 0) {
684 					/*
685 					 * Fill in the getdevlist fields.
686 					 */
687 					strcpy(ccb->cgdl.periph_name,
688 					       periph->periph_name);
689 					ccb->cgdl.unit_number =
690 						periph->unit_number;
691 					if (SLIST_NEXT(periph, periph_links))
692 						ccb->cgdl.status =
693 							CAM_GDEVLIST_MORE_DEVS;
694 					else
695 						ccb->cgdl.status =
696 						       CAM_GDEVLIST_LAST_DEVICE;
697 					ccb->cgdl.generation =
698 						device->generation;
699 					ccb->cgdl.index = i;
700 					/*
701 					 * Fill in some CCB header fields
702 					 * that the user may want.
703 					 */
704 					ccb->ccb_h.path_id =
705 						periph->path->bus->path_id;
706 					ccb->ccb_h.target_id =
707 						periph->path->target->target_id;
708 					ccb->ccb_h.target_lun =
709 						periph->path->device->lun_id;
710 					ccb->ccb_h.status = CAM_REQ_CMP;
711 					break;
712 				}
713 			}
714 		}
715 
716 		/*
717 		 * If the periph is null here, one of two things has
718 		 * happened.  The first possibility is that we couldn't
719 		 * find the unit number of the particular peripheral driver
720 		 * that the user is asking about.  e.g. the user asks for
721 		 * the passthrough driver for "da11".  We find the list of
722 		 * "da" peripherals all right, but there is no unit 11.
723 		 * The other possibility is that we went through the list
724 		 * of peripheral drivers attached to the device structure,
725 		 * but didn't find one with the name "pass".  Either way,
726 		 * we return ENOENT, since we couldn't find something.
727 		 */
728 		if (periph == NULL) {
729 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
730 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
731 			*ccb->cgdl.periph_name = '\0';
732 			ccb->cgdl.unit_number = 0;
733 			error = ENOENT;
734 			/*
735 			 * It is unfortunate that this is even necessary,
736 			 * but there are many, many clueless users out there.
737 			 * If this is true, the user is looking for the
738 			 * passthrough driver, but doesn't have one in his
739 			 * kernel.
740 			 */
741 			if (base_periph_found == 1) {
742 				printf("xptioctl: pass driver is not in the "
743 				       "kernel\n");
744 				printf("xptioctl: put \"device pass\" in "
745 				       "your kernel config file\n");
746 			}
747 		}
748 		xpt_unlock_buses();
749 		break;
750 		}
751 	default:
752 		error = ENOTTY;
753 		break;
754 	}
755 
756 	return(error);
757 }
758 
759 static int
760 cam_module_event_handler(module_t mod, int what, void *arg)
761 {
762 	int error;
763 
764 	switch (what) {
765 	case MOD_LOAD:
766 		if ((error = xpt_init(NULL)) != 0)
767 			return (error);
768 		break;
769 	case MOD_UNLOAD:
770 		return EBUSY;
771 	default:
772 		return EOPNOTSUPP;
773 	}
774 
775 	return 0;
776 }
777 
778 static void
779 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
780 {
781 
782 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
783 		xpt_free_path(done_ccb->ccb_h.path);
784 		xpt_free_ccb(done_ccb);
785 	} else {
786 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
787 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
788 	}
789 	xpt_release_boot();
790 }
791 
792 /* thread to handle bus rescans */
793 static void
794 xpt_scanner_thread(void *dummy)
795 {
796 	union ccb	*ccb;
797 	struct cam_sim	*sim;
798 
799 	xpt_lock_buses();
800 	for (;;) {
801 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
802 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
803 			       "ccb_scanq", 0);
804 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
805 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
806 			xpt_unlock_buses();
807 
808 			sim = ccb->ccb_h.path->bus->sim;
809 			CAM_SIM_LOCK(sim);
810 			xpt_action(ccb);
811 			CAM_SIM_UNLOCK(sim);
812 
813 			xpt_lock_buses();
814 		}
815 	}
816 }
817 
818 void
819 xpt_rescan(union ccb *ccb)
820 {
821 	struct ccb_hdr *hdr;
822 
823 	/* Prepare request */
824 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
825 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
826 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
827 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
828 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
829 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
830 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
831 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
832 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
833 	else {
834 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
835 		xpt_free_path(ccb->ccb_h.path);
836 		xpt_free_ccb(ccb);
837 		return;
838 	}
839 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
840 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
841 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
842 	/* Don't make duplicate entries for the same paths. */
843 	xpt_lock_buses();
844 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
845 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
846 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
847 				wakeup(&xsoftc.ccb_scanq);
848 				xpt_unlock_buses();
849 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
850 				xpt_free_path(ccb->ccb_h.path);
851 				xpt_free_ccb(ccb);
852 				return;
853 			}
854 		}
855 	}
856 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
857 	xsoftc.buses_to_config++;
858 	wakeup(&xsoftc.ccb_scanq);
859 	xpt_unlock_buses();
860 }
861 
862 /* Functions accessed by the peripheral drivers */
863 static int
864 xpt_init(void *dummy)
865 {
866 	struct cam_sim *xpt_sim;
867 	struct cam_path *path;
868 	struct cam_devq *devq;
869 	cam_status status;
870 
871 	TAILQ_INIT(&xsoftc.xpt_busses);
872 	TAILQ_INIT(&cam_simq);
873 	TAILQ_INIT(&xsoftc.ccb_scanq);
874 	STAILQ_INIT(&xsoftc.highpowerq);
875 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
876 
877 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
878 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
879 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
880 
881 	/*
882 	 * The xpt layer is, itself, the equivelent of a SIM.
883 	 * Allow 16 ccbs in the ccb pool for it.  This should
884 	 * give decent parallelism when we probe busses and
885 	 * perform other XPT functions.
886 	 */
887 	devq = cam_simq_alloc(16);
888 	xpt_sim = cam_sim_alloc(xptaction,
889 				xptpoll,
890 				"xpt",
891 				/*softc*/NULL,
892 				/*unit*/0,
893 				/*mtx*/&xsoftc.xpt_lock,
894 				/*max_dev_transactions*/0,
895 				/*max_tagged_dev_transactions*/0,
896 				devq);
897 	if (xpt_sim == NULL)
898 		return (ENOMEM);
899 
900 	mtx_lock(&xsoftc.xpt_lock);
901 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
902 		mtx_unlock(&xsoftc.xpt_lock);
903 		printf("xpt_init: xpt_bus_register failed with status %#x,"
904 		       " failing attach\n", status);
905 		return (EINVAL);
906 	}
907 
908 	/*
909 	 * Looking at the XPT from the SIM layer, the XPT is
910 	 * the equivelent of a peripheral driver.  Allocate
911 	 * a peripheral driver entry for us.
912 	 */
913 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
914 				      CAM_TARGET_WILDCARD,
915 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
916 		mtx_unlock(&xsoftc.xpt_lock);
917 		printf("xpt_init: xpt_create_path failed with status %#x,"
918 		       " failing attach\n", status);
919 		return (EINVAL);
920 	}
921 
922 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
923 			 path, NULL, 0, xpt_sim);
924 	xpt_free_path(path);
925 	mtx_unlock(&xsoftc.xpt_lock);
926 	/* Install our software interrupt handlers */
927 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
928 	/*
929 	 * Register a callback for when interrupts are enabled.
930 	 */
931 	xsoftc.xpt_config_hook =
932 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
933 					      M_CAMXPT, M_NOWAIT | M_ZERO);
934 	if (xsoftc.xpt_config_hook == NULL) {
935 		printf("xpt_init: Cannot malloc config hook "
936 		       "- failing attach\n");
937 		return (ENOMEM);
938 	}
939 	xsoftc.xpt_config_hook->ich_func = xpt_config;
940 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
941 		free (xsoftc.xpt_config_hook, M_CAMXPT);
942 		printf("xpt_init: config_intrhook_establish failed "
943 		       "- failing attach\n");
944 	}
945 
946 	return (0);
947 }
948 
949 static cam_status
950 xptregister(struct cam_periph *periph, void *arg)
951 {
952 	struct cam_sim *xpt_sim;
953 
954 	if (periph == NULL) {
955 		printf("xptregister: periph was NULL!!\n");
956 		return(CAM_REQ_CMP_ERR);
957 	}
958 
959 	xpt_sim = (struct cam_sim *)arg;
960 	xpt_sim->softc = periph;
961 	xpt_periph = periph;
962 	periph->softc = NULL;
963 
964 	return(CAM_REQ_CMP);
965 }
966 
967 int32_t
968 xpt_add_periph(struct cam_periph *periph)
969 {
970 	struct cam_ed *device;
971 	int32_t	 status;
972 	struct periph_list *periph_head;
973 
974 	mtx_assert(periph->sim->mtx, MA_OWNED);
975 
976 	device = periph->path->device;
977 
978 	periph_head = &device->periphs;
979 
980 	status = CAM_REQ_CMP;
981 
982 	if (device != NULL) {
983 		/*
984 		 * Make room for this peripheral
985 		 * so it will fit in the queue
986 		 * when it's scheduled to run
987 		 */
988 		status = camq_resize(&device->drvq,
989 				     device->drvq.array_size + 1);
990 
991 		device->generation++;
992 
993 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
994 	}
995 
996 	xpt_lock_buses();
997 	xsoftc.xpt_generation++;
998 	xpt_unlock_buses();
999 
1000 	return (status);
1001 }
1002 
1003 void
1004 xpt_remove_periph(struct cam_periph *periph, int topology_lock_held)
1005 {
1006 	struct cam_ed *device;
1007 
1008 	mtx_assert(periph->sim->mtx, MA_OWNED);
1009 
1010 	device = periph->path->device;
1011 
1012 	if (device != NULL) {
1013 		struct periph_list *periph_head;
1014 
1015 		periph_head = &device->periphs;
1016 
1017 		/* Release the slot for this peripheral */
1018 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1019 
1020 		device->generation++;
1021 
1022 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1023 	}
1024 
1025 	if (topology_lock_held == 0)
1026 		xpt_lock_buses();
1027 
1028 	xsoftc.xpt_generation++;
1029 
1030 	if (topology_lock_held == 0)
1031 		xpt_unlock_buses();
1032 }
1033 
1034 
1035 void
1036 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1037 {
1038 	struct	cam_path *path = periph->path;
1039 
1040 	mtx_assert(periph->sim->mtx, MA_OWNED);
1041 
1042 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1043 	       periph->periph_name, periph->unit_number,
1044 	       path->bus->sim->sim_name,
1045 	       path->bus->sim->unit_number,
1046 	       path->bus->sim->bus_id,
1047 	       path->bus->path_id,
1048 	       path->target->target_id,
1049 	       path->device->lun_id);
1050 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1051 	if (path->device->protocol == PROTO_SCSI)
1052 		scsi_print_inquiry(&path->device->inq_data);
1053 	else if (path->device->protocol == PROTO_ATA ||
1054 	    path->device->protocol == PROTO_SATAPM)
1055 		ata_print_ident(&path->device->ident_data);
1056 	else if (path->device->protocol == PROTO_SEMB)
1057 		semb_print_ident(
1058 		    (struct sep_identify_data *)&path->device->ident_data);
1059 	else
1060 		printf("Unknown protocol device\n");
1061 	if (bootverbose && path->device->serial_num_len > 0) {
1062 		/* Don't wrap the screen  - print only the first 60 chars */
1063 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1064 		       periph->unit_number, path->device->serial_num);
1065 	}
1066 	/* Announce transport details. */
1067 	(*(path->bus->xport->announce))(periph);
1068 	/* Announce command queueing. */
1069 	if (path->device->inq_flags & SID_CmdQue
1070 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1071 		printf("%s%d: Command Queueing enabled\n",
1072 		       periph->periph_name, periph->unit_number);
1073 	}
1074 	/* Announce caller's details if they've passed in. */
1075 	if (announce_string != NULL)
1076 		printf("%s%d: %s\n", periph->periph_name,
1077 		       periph->unit_number, announce_string);
1078 }
1079 
1080 int
1081 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1082 {
1083 	int ret = -1;
1084 	struct ccb_dev_advinfo cdai;
1085 
1086 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1087 
1088 	memset(&cdai, 0, sizeof(cdai));
1089 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1090 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1091 	cdai.bufsiz = len;
1092 
1093 	if (!strcmp(attr, "GEOM::ident"))
1094 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1095 	else if (!strcmp(attr, "GEOM::physpath"))
1096 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1097 	else
1098 		goto out;
1099 
1100 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1101 	if (cdai.buf == NULL) {
1102 		ret = ENOMEM;
1103 		goto out;
1104 	}
1105 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1106 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1107 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1108 	if (cdai.provsiz == 0)
1109 		goto out;
1110 	ret = 0;
1111 	if (strlcpy(buf, cdai.buf, len) >= len)
1112 		ret = EFAULT;
1113 
1114 out:
1115 	if (cdai.buf != NULL)
1116 		free(cdai.buf, M_CAMXPT);
1117 	return ret;
1118 }
1119 
1120 static dev_match_ret
1121 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1122 	    struct cam_eb *bus)
1123 {
1124 	dev_match_ret retval;
1125 	int i;
1126 
1127 	retval = DM_RET_NONE;
1128 
1129 	/*
1130 	 * If we aren't given something to match against, that's an error.
1131 	 */
1132 	if (bus == NULL)
1133 		return(DM_RET_ERROR);
1134 
1135 	/*
1136 	 * If there are no match entries, then this bus matches no
1137 	 * matter what.
1138 	 */
1139 	if ((patterns == NULL) || (num_patterns == 0))
1140 		return(DM_RET_DESCEND | DM_RET_COPY);
1141 
1142 	for (i = 0; i < num_patterns; i++) {
1143 		struct bus_match_pattern *cur_pattern;
1144 
1145 		/*
1146 		 * If the pattern in question isn't for a bus node, we
1147 		 * aren't interested.  However, we do indicate to the
1148 		 * calling routine that we should continue descending the
1149 		 * tree, since the user wants to match against lower-level
1150 		 * EDT elements.
1151 		 */
1152 		if (patterns[i].type != DEV_MATCH_BUS) {
1153 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1154 				retval |= DM_RET_DESCEND;
1155 			continue;
1156 		}
1157 
1158 		cur_pattern = &patterns[i].pattern.bus_pattern;
1159 
1160 		/*
1161 		 * If they want to match any bus node, we give them any
1162 		 * device node.
1163 		 */
1164 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1165 			/* set the copy flag */
1166 			retval |= DM_RET_COPY;
1167 
1168 			/*
1169 			 * If we've already decided on an action, go ahead
1170 			 * and return.
1171 			 */
1172 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1173 				return(retval);
1174 		}
1175 
1176 		/*
1177 		 * Not sure why someone would do this...
1178 		 */
1179 		if (cur_pattern->flags == BUS_MATCH_NONE)
1180 			continue;
1181 
1182 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1183 		 && (cur_pattern->path_id != bus->path_id))
1184 			continue;
1185 
1186 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1187 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1188 			continue;
1189 
1190 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1191 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1192 			continue;
1193 
1194 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1195 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1196 			     DEV_IDLEN) != 0))
1197 			continue;
1198 
1199 		/*
1200 		 * If we get to this point, the user definitely wants
1201 		 * information on this bus.  So tell the caller to copy the
1202 		 * data out.
1203 		 */
1204 		retval |= DM_RET_COPY;
1205 
1206 		/*
1207 		 * If the return action has been set to descend, then we
1208 		 * know that we've already seen a non-bus matching
1209 		 * expression, therefore we need to further descend the tree.
1210 		 * This won't change by continuing around the loop, so we
1211 		 * go ahead and return.  If we haven't seen a non-bus
1212 		 * matching expression, we keep going around the loop until
1213 		 * we exhaust the matching expressions.  We'll set the stop
1214 		 * flag once we fall out of the loop.
1215 		 */
1216 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1217 			return(retval);
1218 	}
1219 
1220 	/*
1221 	 * If the return action hasn't been set to descend yet, that means
1222 	 * we haven't seen anything other than bus matching patterns.  So
1223 	 * tell the caller to stop descending the tree -- the user doesn't
1224 	 * want to match against lower level tree elements.
1225 	 */
1226 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1227 		retval |= DM_RET_STOP;
1228 
1229 	return(retval);
1230 }
1231 
1232 static dev_match_ret
1233 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1234 	       struct cam_ed *device)
1235 {
1236 	dev_match_ret retval;
1237 	int i;
1238 
1239 	retval = DM_RET_NONE;
1240 
1241 	/*
1242 	 * If we aren't given something to match against, that's an error.
1243 	 */
1244 	if (device == NULL)
1245 		return(DM_RET_ERROR);
1246 
1247 	/*
1248 	 * If there are no match entries, then this device matches no
1249 	 * matter what.
1250 	 */
1251 	if ((patterns == NULL) || (num_patterns == 0))
1252 		return(DM_RET_DESCEND | DM_RET_COPY);
1253 
1254 	for (i = 0; i < num_patterns; i++) {
1255 		struct device_match_pattern *cur_pattern;
1256 		struct scsi_vpd_device_id *device_id_page;
1257 
1258 		/*
1259 		 * If the pattern in question isn't for a device node, we
1260 		 * aren't interested.
1261 		 */
1262 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1263 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1264 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1265 				retval |= DM_RET_DESCEND;
1266 			continue;
1267 		}
1268 
1269 		cur_pattern = &patterns[i].pattern.device_pattern;
1270 
1271 		/* Error out if mutually exclusive options are specified. */
1272 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1273 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1274 			return(DM_RET_ERROR);
1275 
1276 		/*
1277 		 * If they want to match any device node, we give them any
1278 		 * device node.
1279 		 */
1280 		if (cur_pattern->flags == DEV_MATCH_ANY)
1281 			goto copy_dev_node;
1282 
1283 		/*
1284 		 * Not sure why someone would do this...
1285 		 */
1286 		if (cur_pattern->flags == DEV_MATCH_NONE)
1287 			continue;
1288 
1289 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1290 		 && (cur_pattern->path_id != device->target->bus->path_id))
1291 			continue;
1292 
1293 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1294 		 && (cur_pattern->target_id != device->target->target_id))
1295 			continue;
1296 
1297 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1298 		 && (cur_pattern->target_lun != device->lun_id))
1299 			continue;
1300 
1301 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1302 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1303 				    (caddr_t)&cur_pattern->data.inq_pat,
1304 				    1, sizeof(cur_pattern->data.inq_pat),
1305 				    scsi_static_inquiry_match) == NULL))
1306 			continue;
1307 
1308 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1309 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1310 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1311 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1312 				      device->device_id_len
1313 				    - SVPD_DEVICE_ID_HDR_LEN,
1314 				      cur_pattern->data.devid_pat.id,
1315 				      cur_pattern->data.devid_pat.id_len) != 0))
1316 			continue;
1317 
1318 copy_dev_node:
1319 		/*
1320 		 * If we get to this point, the user definitely wants
1321 		 * information on this device.  So tell the caller to copy
1322 		 * the data out.
1323 		 */
1324 		retval |= DM_RET_COPY;
1325 
1326 		/*
1327 		 * If the return action has been set to descend, then we
1328 		 * know that we've already seen a peripheral matching
1329 		 * expression, therefore we need to further descend the tree.
1330 		 * This won't change by continuing around the loop, so we
1331 		 * go ahead and return.  If we haven't seen a peripheral
1332 		 * matching expression, we keep going around the loop until
1333 		 * we exhaust the matching expressions.  We'll set the stop
1334 		 * flag once we fall out of the loop.
1335 		 */
1336 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1337 			return(retval);
1338 	}
1339 
1340 	/*
1341 	 * If the return action hasn't been set to descend yet, that means
1342 	 * we haven't seen any peripheral matching patterns.  So tell the
1343 	 * caller to stop descending the tree -- the user doesn't want to
1344 	 * match against lower level tree elements.
1345 	 */
1346 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1347 		retval |= DM_RET_STOP;
1348 
1349 	return(retval);
1350 }
1351 
1352 /*
1353  * Match a single peripheral against any number of match patterns.
1354  */
1355 static dev_match_ret
1356 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1357 	       struct cam_periph *periph)
1358 {
1359 	dev_match_ret retval;
1360 	int i;
1361 
1362 	/*
1363 	 * If we aren't given something to match against, that's an error.
1364 	 */
1365 	if (periph == NULL)
1366 		return(DM_RET_ERROR);
1367 
1368 	/*
1369 	 * If there are no match entries, then this peripheral matches no
1370 	 * matter what.
1371 	 */
1372 	if ((patterns == NULL) || (num_patterns == 0))
1373 		return(DM_RET_STOP | DM_RET_COPY);
1374 
1375 	/*
1376 	 * There aren't any nodes below a peripheral node, so there's no
1377 	 * reason to descend the tree any further.
1378 	 */
1379 	retval = DM_RET_STOP;
1380 
1381 	for (i = 0; i < num_patterns; i++) {
1382 		struct periph_match_pattern *cur_pattern;
1383 
1384 		/*
1385 		 * If the pattern in question isn't for a peripheral, we
1386 		 * aren't interested.
1387 		 */
1388 		if (patterns[i].type != DEV_MATCH_PERIPH)
1389 			continue;
1390 
1391 		cur_pattern = &patterns[i].pattern.periph_pattern;
1392 
1393 		/*
1394 		 * If they want to match on anything, then we will do so.
1395 		 */
1396 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1397 			/* set the copy flag */
1398 			retval |= DM_RET_COPY;
1399 
1400 			/*
1401 			 * We've already set the return action to stop,
1402 			 * since there are no nodes below peripherals in
1403 			 * the tree.
1404 			 */
1405 			return(retval);
1406 		}
1407 
1408 		/*
1409 		 * Not sure why someone would do this...
1410 		 */
1411 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1412 			continue;
1413 
1414 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1415 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1416 			continue;
1417 
1418 		/*
1419 		 * For the target and lun id's, we have to make sure the
1420 		 * target and lun pointers aren't NULL.  The xpt peripheral
1421 		 * has a wildcard target and device.
1422 		 */
1423 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1424 		 && ((periph->path->target == NULL)
1425 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1426 			continue;
1427 
1428 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1429 		 && ((periph->path->device == NULL)
1430 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1431 			continue;
1432 
1433 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1434 		 && (cur_pattern->unit_number != periph->unit_number))
1435 			continue;
1436 
1437 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1438 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1439 			     DEV_IDLEN) != 0))
1440 			continue;
1441 
1442 		/*
1443 		 * If we get to this point, the user definitely wants
1444 		 * information on this peripheral.  So tell the caller to
1445 		 * copy the data out.
1446 		 */
1447 		retval |= DM_RET_COPY;
1448 
1449 		/*
1450 		 * The return action has already been set to stop, since
1451 		 * peripherals don't have any nodes below them in the EDT.
1452 		 */
1453 		return(retval);
1454 	}
1455 
1456 	/*
1457 	 * If we get to this point, the peripheral that was passed in
1458 	 * doesn't match any of the patterns.
1459 	 */
1460 	return(retval);
1461 }
1462 
1463 static int
1464 xptedtbusfunc(struct cam_eb *bus, void *arg)
1465 {
1466 	struct ccb_dev_match *cdm;
1467 	dev_match_ret retval;
1468 
1469 	cdm = (struct ccb_dev_match *)arg;
1470 
1471 	/*
1472 	 * If our position is for something deeper in the tree, that means
1473 	 * that we've already seen this node.  So, we keep going down.
1474 	 */
1475 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1476 	 && (cdm->pos.cookie.bus == bus)
1477 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1478 	 && (cdm->pos.cookie.target != NULL))
1479 		retval = DM_RET_DESCEND;
1480 	else
1481 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1482 
1483 	/*
1484 	 * If we got an error, bail out of the search.
1485 	 */
1486 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1487 		cdm->status = CAM_DEV_MATCH_ERROR;
1488 		return(0);
1489 	}
1490 
1491 	/*
1492 	 * If the copy flag is set, copy this bus out.
1493 	 */
1494 	if (retval & DM_RET_COPY) {
1495 		int spaceleft, j;
1496 
1497 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1498 			sizeof(struct dev_match_result));
1499 
1500 		/*
1501 		 * If we don't have enough space to put in another
1502 		 * match result, save our position and tell the
1503 		 * user there are more devices to check.
1504 		 */
1505 		if (spaceleft < sizeof(struct dev_match_result)) {
1506 			bzero(&cdm->pos, sizeof(cdm->pos));
1507 			cdm->pos.position_type =
1508 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1509 
1510 			cdm->pos.cookie.bus = bus;
1511 			cdm->pos.generations[CAM_BUS_GENERATION]=
1512 				xsoftc.bus_generation;
1513 			cdm->status = CAM_DEV_MATCH_MORE;
1514 			return(0);
1515 		}
1516 		j = cdm->num_matches;
1517 		cdm->num_matches++;
1518 		cdm->matches[j].type = DEV_MATCH_BUS;
1519 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1520 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1521 		cdm->matches[j].result.bus_result.unit_number =
1522 			bus->sim->unit_number;
1523 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1524 			bus->sim->sim_name, DEV_IDLEN);
1525 	}
1526 
1527 	/*
1528 	 * If the user is only interested in busses, there's no
1529 	 * reason to descend to the next level in the tree.
1530 	 */
1531 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1532 		return(1);
1533 
1534 	/*
1535 	 * If there is a target generation recorded, check it to
1536 	 * make sure the target list hasn't changed.
1537 	 */
1538 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1539 	 && (bus == cdm->pos.cookie.bus)
1540 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1541 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1542 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1543 	     bus->generation)) {
1544 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1545 		return(0);
1546 	}
1547 
1548 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1549 	 && (cdm->pos.cookie.bus == bus)
1550 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1551 	 && (cdm->pos.cookie.target != NULL))
1552 		return(xpttargettraverse(bus,
1553 					(struct cam_et *)cdm->pos.cookie.target,
1554 					 xptedttargetfunc, arg));
1555 	else
1556 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1557 }
1558 
1559 static int
1560 xptedttargetfunc(struct cam_et *target, void *arg)
1561 {
1562 	struct ccb_dev_match *cdm;
1563 
1564 	cdm = (struct ccb_dev_match *)arg;
1565 
1566 	/*
1567 	 * If there is a device list generation recorded, check it to
1568 	 * make sure the device list hasn't changed.
1569 	 */
1570 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1571 	 && (cdm->pos.cookie.bus == target->bus)
1572 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1573 	 && (cdm->pos.cookie.target == target)
1574 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1575 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1576 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1577 	     target->generation)) {
1578 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1579 		return(0);
1580 	}
1581 
1582 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1583 	 && (cdm->pos.cookie.bus == target->bus)
1584 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1585 	 && (cdm->pos.cookie.target == target)
1586 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1587 	 && (cdm->pos.cookie.device != NULL))
1588 		return(xptdevicetraverse(target,
1589 					(struct cam_ed *)cdm->pos.cookie.device,
1590 					 xptedtdevicefunc, arg));
1591 	else
1592 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1593 }
1594 
1595 static int
1596 xptedtdevicefunc(struct cam_ed *device, void *arg)
1597 {
1598 
1599 	struct ccb_dev_match *cdm;
1600 	dev_match_ret retval;
1601 
1602 	cdm = (struct ccb_dev_match *)arg;
1603 
1604 	/*
1605 	 * If our position is for something deeper in the tree, that means
1606 	 * that we've already seen this node.  So, we keep going down.
1607 	 */
1608 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1609 	 && (cdm->pos.cookie.device == device)
1610 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1611 	 && (cdm->pos.cookie.periph != NULL))
1612 		retval = DM_RET_DESCEND;
1613 	else
1614 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1615 					device);
1616 
1617 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1618 		cdm->status = CAM_DEV_MATCH_ERROR;
1619 		return(0);
1620 	}
1621 
1622 	/*
1623 	 * If the copy flag is set, copy this device out.
1624 	 */
1625 	if (retval & DM_RET_COPY) {
1626 		int spaceleft, j;
1627 
1628 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1629 			sizeof(struct dev_match_result));
1630 
1631 		/*
1632 		 * If we don't have enough space to put in another
1633 		 * match result, save our position and tell the
1634 		 * user there are more devices to check.
1635 		 */
1636 		if (spaceleft < sizeof(struct dev_match_result)) {
1637 			bzero(&cdm->pos, sizeof(cdm->pos));
1638 			cdm->pos.position_type =
1639 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1640 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1641 
1642 			cdm->pos.cookie.bus = device->target->bus;
1643 			cdm->pos.generations[CAM_BUS_GENERATION]=
1644 				xsoftc.bus_generation;
1645 			cdm->pos.cookie.target = device->target;
1646 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1647 				device->target->bus->generation;
1648 			cdm->pos.cookie.device = device;
1649 			cdm->pos.generations[CAM_DEV_GENERATION] =
1650 				device->target->generation;
1651 			cdm->status = CAM_DEV_MATCH_MORE;
1652 			return(0);
1653 		}
1654 		j = cdm->num_matches;
1655 		cdm->num_matches++;
1656 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1657 		cdm->matches[j].result.device_result.path_id =
1658 			device->target->bus->path_id;
1659 		cdm->matches[j].result.device_result.target_id =
1660 			device->target->target_id;
1661 		cdm->matches[j].result.device_result.target_lun =
1662 			device->lun_id;
1663 		cdm->matches[j].result.device_result.protocol =
1664 			device->protocol;
1665 		bcopy(&device->inq_data,
1666 		      &cdm->matches[j].result.device_result.inq_data,
1667 		      sizeof(struct scsi_inquiry_data));
1668 		bcopy(&device->ident_data,
1669 		      &cdm->matches[j].result.device_result.ident_data,
1670 		      sizeof(struct ata_params));
1671 
1672 		/* Let the user know whether this device is unconfigured */
1673 		if (device->flags & CAM_DEV_UNCONFIGURED)
1674 			cdm->matches[j].result.device_result.flags =
1675 				DEV_RESULT_UNCONFIGURED;
1676 		else
1677 			cdm->matches[j].result.device_result.flags =
1678 				DEV_RESULT_NOFLAG;
1679 	}
1680 
1681 	/*
1682 	 * If the user isn't interested in peripherals, don't descend
1683 	 * the tree any further.
1684 	 */
1685 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1686 		return(1);
1687 
1688 	/*
1689 	 * If there is a peripheral list generation recorded, make sure
1690 	 * it hasn't changed.
1691 	 */
1692 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1693 	 && (device->target->bus == cdm->pos.cookie.bus)
1694 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1695 	 && (device->target == cdm->pos.cookie.target)
1696 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1697 	 && (device == cdm->pos.cookie.device)
1698 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1699 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1700 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1701 	     device->generation)){
1702 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1703 		return(0);
1704 	}
1705 
1706 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1707 	 && (cdm->pos.cookie.bus == device->target->bus)
1708 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1709 	 && (cdm->pos.cookie.target == device->target)
1710 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1711 	 && (cdm->pos.cookie.device == device)
1712 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1713 	 && (cdm->pos.cookie.periph != NULL))
1714 		return(xptperiphtraverse(device,
1715 				(struct cam_periph *)cdm->pos.cookie.periph,
1716 				xptedtperiphfunc, arg));
1717 	else
1718 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1719 }
1720 
1721 static int
1722 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1723 {
1724 	struct ccb_dev_match *cdm;
1725 	dev_match_ret retval;
1726 
1727 	cdm = (struct ccb_dev_match *)arg;
1728 
1729 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1730 
1731 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1732 		cdm->status = CAM_DEV_MATCH_ERROR;
1733 		return(0);
1734 	}
1735 
1736 	/*
1737 	 * If the copy flag is set, copy this peripheral out.
1738 	 */
1739 	if (retval & DM_RET_COPY) {
1740 		int spaceleft, j;
1741 
1742 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1743 			sizeof(struct dev_match_result));
1744 
1745 		/*
1746 		 * If we don't have enough space to put in another
1747 		 * match result, save our position and tell the
1748 		 * user there are more devices to check.
1749 		 */
1750 		if (spaceleft < sizeof(struct dev_match_result)) {
1751 			bzero(&cdm->pos, sizeof(cdm->pos));
1752 			cdm->pos.position_type =
1753 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1754 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1755 				CAM_DEV_POS_PERIPH;
1756 
1757 			cdm->pos.cookie.bus = periph->path->bus;
1758 			cdm->pos.generations[CAM_BUS_GENERATION]=
1759 				xsoftc.bus_generation;
1760 			cdm->pos.cookie.target = periph->path->target;
1761 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1762 				periph->path->bus->generation;
1763 			cdm->pos.cookie.device = periph->path->device;
1764 			cdm->pos.generations[CAM_DEV_GENERATION] =
1765 				periph->path->target->generation;
1766 			cdm->pos.cookie.periph = periph;
1767 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1768 				periph->path->device->generation;
1769 			cdm->status = CAM_DEV_MATCH_MORE;
1770 			return(0);
1771 		}
1772 
1773 		j = cdm->num_matches;
1774 		cdm->num_matches++;
1775 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1776 		cdm->matches[j].result.periph_result.path_id =
1777 			periph->path->bus->path_id;
1778 		cdm->matches[j].result.periph_result.target_id =
1779 			periph->path->target->target_id;
1780 		cdm->matches[j].result.periph_result.target_lun =
1781 			periph->path->device->lun_id;
1782 		cdm->matches[j].result.periph_result.unit_number =
1783 			periph->unit_number;
1784 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1785 			periph->periph_name, DEV_IDLEN);
1786 	}
1787 
1788 	return(1);
1789 }
1790 
1791 static int
1792 xptedtmatch(struct ccb_dev_match *cdm)
1793 {
1794 	int ret;
1795 
1796 	cdm->num_matches = 0;
1797 
1798 	/*
1799 	 * Check the bus list generation.  If it has changed, the user
1800 	 * needs to reset everything and start over.
1801 	 */
1802 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1803 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1804 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1805 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1806 		return(0);
1807 	}
1808 
1809 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1810 	 && (cdm->pos.cookie.bus != NULL))
1811 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1812 				     xptedtbusfunc, cdm);
1813 	else
1814 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1815 
1816 	/*
1817 	 * If we get back 0, that means that we had to stop before fully
1818 	 * traversing the EDT.  It also means that one of the subroutines
1819 	 * has set the status field to the proper value.  If we get back 1,
1820 	 * we've fully traversed the EDT and copied out any matching entries.
1821 	 */
1822 	if (ret == 1)
1823 		cdm->status = CAM_DEV_MATCH_LAST;
1824 
1825 	return(ret);
1826 }
1827 
1828 static int
1829 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1830 {
1831 	struct ccb_dev_match *cdm;
1832 
1833 	cdm = (struct ccb_dev_match *)arg;
1834 
1835 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1836 	 && (cdm->pos.cookie.pdrv == pdrv)
1837 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1838 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1839 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1840 	     (*pdrv)->generation)) {
1841 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1842 		return(0);
1843 	}
1844 
1845 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1846 	 && (cdm->pos.cookie.pdrv == pdrv)
1847 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1848 	 && (cdm->pos.cookie.periph != NULL))
1849 		return(xptpdperiphtraverse(pdrv,
1850 				(struct cam_periph *)cdm->pos.cookie.periph,
1851 				xptplistperiphfunc, arg));
1852 	else
1853 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1854 }
1855 
1856 static int
1857 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1858 {
1859 	struct ccb_dev_match *cdm;
1860 	dev_match_ret retval;
1861 
1862 	cdm = (struct ccb_dev_match *)arg;
1863 
1864 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1865 
1866 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1867 		cdm->status = CAM_DEV_MATCH_ERROR;
1868 		return(0);
1869 	}
1870 
1871 	/*
1872 	 * If the copy flag is set, copy this peripheral out.
1873 	 */
1874 	if (retval & DM_RET_COPY) {
1875 		int spaceleft, j;
1876 
1877 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1878 			sizeof(struct dev_match_result));
1879 
1880 		/*
1881 		 * If we don't have enough space to put in another
1882 		 * match result, save our position and tell the
1883 		 * user there are more devices to check.
1884 		 */
1885 		if (spaceleft < sizeof(struct dev_match_result)) {
1886 			struct periph_driver **pdrv;
1887 
1888 			pdrv = NULL;
1889 			bzero(&cdm->pos, sizeof(cdm->pos));
1890 			cdm->pos.position_type =
1891 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1892 				CAM_DEV_POS_PERIPH;
1893 
1894 			/*
1895 			 * This may look a bit non-sensical, but it is
1896 			 * actually quite logical.  There are very few
1897 			 * peripheral drivers, and bloating every peripheral
1898 			 * structure with a pointer back to its parent
1899 			 * peripheral driver linker set entry would cost
1900 			 * more in the long run than doing this quick lookup.
1901 			 */
1902 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1903 				if (strcmp((*pdrv)->driver_name,
1904 				    periph->periph_name) == 0)
1905 					break;
1906 			}
1907 
1908 			if (*pdrv == NULL) {
1909 				cdm->status = CAM_DEV_MATCH_ERROR;
1910 				return(0);
1911 			}
1912 
1913 			cdm->pos.cookie.pdrv = pdrv;
1914 			/*
1915 			 * The periph generation slot does double duty, as
1916 			 * does the periph pointer slot.  They are used for
1917 			 * both edt and pdrv lookups and positioning.
1918 			 */
1919 			cdm->pos.cookie.periph = periph;
1920 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1921 				(*pdrv)->generation;
1922 			cdm->status = CAM_DEV_MATCH_MORE;
1923 			return(0);
1924 		}
1925 
1926 		j = cdm->num_matches;
1927 		cdm->num_matches++;
1928 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1929 		cdm->matches[j].result.periph_result.path_id =
1930 			periph->path->bus->path_id;
1931 
1932 		/*
1933 		 * The transport layer peripheral doesn't have a target or
1934 		 * lun.
1935 		 */
1936 		if (periph->path->target)
1937 			cdm->matches[j].result.periph_result.target_id =
1938 				periph->path->target->target_id;
1939 		else
1940 			cdm->matches[j].result.periph_result.target_id = -1;
1941 
1942 		if (periph->path->device)
1943 			cdm->matches[j].result.periph_result.target_lun =
1944 				periph->path->device->lun_id;
1945 		else
1946 			cdm->matches[j].result.periph_result.target_lun = -1;
1947 
1948 		cdm->matches[j].result.periph_result.unit_number =
1949 			periph->unit_number;
1950 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1951 			periph->periph_name, DEV_IDLEN);
1952 	}
1953 
1954 	return(1);
1955 }
1956 
1957 static int
1958 xptperiphlistmatch(struct ccb_dev_match *cdm)
1959 {
1960 	int ret;
1961 
1962 	cdm->num_matches = 0;
1963 
1964 	/*
1965 	 * At this point in the edt traversal function, we check the bus
1966 	 * list generation to make sure that no busses have been added or
1967 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1968 	 * For the peripheral driver list traversal function, however, we
1969 	 * don't have to worry about new peripheral driver types coming or
1970 	 * going; they're in a linker set, and therefore can't change
1971 	 * without a recompile.
1972 	 */
1973 
1974 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1975 	 && (cdm->pos.cookie.pdrv != NULL))
1976 		ret = xptpdrvtraverse(
1977 				(struct periph_driver **)cdm->pos.cookie.pdrv,
1978 				xptplistpdrvfunc, cdm);
1979 	else
1980 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1981 
1982 	/*
1983 	 * If we get back 0, that means that we had to stop before fully
1984 	 * traversing the peripheral driver tree.  It also means that one of
1985 	 * the subroutines has set the status field to the proper value.  If
1986 	 * we get back 1, we've fully traversed the EDT and copied out any
1987 	 * matching entries.
1988 	 */
1989 	if (ret == 1)
1990 		cdm->status = CAM_DEV_MATCH_LAST;
1991 
1992 	return(ret);
1993 }
1994 
1995 static int
1996 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1997 {
1998 	struct cam_eb *bus, *next_bus;
1999 	int retval;
2000 
2001 	retval = 1;
2002 
2003 	xpt_lock_buses();
2004 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2005 	     bus != NULL;
2006 	     bus = next_bus) {
2007 
2008 		bus->refcount++;
2009 
2010 		/*
2011 		 * XXX The locking here is obviously very complex.  We
2012 		 * should work to simplify it.
2013 		 */
2014 		xpt_unlock_buses();
2015 		CAM_SIM_LOCK(bus->sim);
2016 		retval = tr_func(bus, arg);
2017 		CAM_SIM_UNLOCK(bus->sim);
2018 
2019 		xpt_lock_buses();
2020 		next_bus = TAILQ_NEXT(bus, links);
2021 		xpt_unlock_buses();
2022 
2023 		xpt_release_bus(bus);
2024 
2025 		if (retval == 0)
2026 			return(retval);
2027 		xpt_lock_buses();
2028 	}
2029 	xpt_unlock_buses();
2030 
2031 	return(retval);
2032 }
2033 
2034 static int
2035 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2036 		  xpt_targetfunc_t *tr_func, void *arg)
2037 {
2038 	struct cam_et *target, *next_target;
2039 	int retval;
2040 
2041 	mtx_assert(bus->sim->mtx, MA_OWNED);
2042 	retval = 1;
2043 	for (target = (start_target ? start_target :
2044 		       TAILQ_FIRST(&bus->et_entries));
2045 	     target != NULL; target = next_target) {
2046 
2047 		target->refcount++;
2048 
2049 		retval = tr_func(target, arg);
2050 
2051 		next_target = TAILQ_NEXT(target, links);
2052 
2053 		xpt_release_target(target);
2054 
2055 		if (retval == 0)
2056 			return(retval);
2057 	}
2058 
2059 	return(retval);
2060 }
2061 
2062 static int
2063 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2064 		  xpt_devicefunc_t *tr_func, void *arg)
2065 {
2066 	struct cam_ed *device, *next_device;
2067 	int retval;
2068 
2069 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
2070 	retval = 1;
2071 	for (device = (start_device ? start_device :
2072 		       TAILQ_FIRST(&target->ed_entries));
2073 	     device != NULL;
2074 	     device = next_device) {
2075 
2076 		/*
2077 		 * Hold a reference so the current device does not go away
2078 		 * on us.
2079 		 */
2080 		device->refcount++;
2081 
2082 		retval = tr_func(device, arg);
2083 
2084 		/*
2085 		 * Grab our next pointer before we release the current
2086 		 * device.
2087 		 */
2088 		next_device = TAILQ_NEXT(device, links);
2089 
2090 		xpt_release_device(device);
2091 
2092 		if (retval == 0)
2093 			return(retval);
2094 	}
2095 
2096 	return(retval);
2097 }
2098 
2099 static int
2100 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2101 		  xpt_periphfunc_t *tr_func, void *arg)
2102 {
2103 	struct cam_periph *periph, *next_periph;
2104 	int retval;
2105 
2106 	retval = 1;
2107 
2108 	mtx_assert(device->sim->mtx, MA_OWNED);
2109 	xpt_lock_buses();
2110 	for (periph = (start_periph ? start_periph :
2111 		       SLIST_FIRST(&device->periphs));
2112 	     periph != NULL;
2113 	     periph = next_periph) {
2114 
2115 
2116 		/*
2117 		 * In this case, we want to show peripherals that have been
2118 		 * invalidated, but not peripherals that are scheduled to
2119 		 * be freed.  So instead of calling cam_periph_acquire(),
2120 		 * which will fail if the periph has been invalidated, we
2121 		 * just check for the free flag here.  If it is in the
2122 		 * process of being freed, we skip to the next periph.
2123 		 */
2124 		if (periph->flags & CAM_PERIPH_FREE) {
2125 			next_periph = SLIST_NEXT(periph, periph_links);
2126 			continue;
2127 		}
2128 
2129 		/*
2130 		 * Acquire a reference to this periph while we call the
2131 		 * traversal function, so it can't go away.
2132 		 */
2133 		periph->refcount++;
2134 
2135 		retval = tr_func(periph, arg);
2136 
2137 		/*
2138 		 * Grab the next peripheral before we release this one, so
2139 		 * our next pointer is still valid.
2140 		 */
2141 		next_periph = SLIST_NEXT(periph, periph_links);
2142 
2143 		cam_periph_release_locked_buses(periph);
2144 
2145 		if (retval == 0)
2146 			goto bailout_done;
2147 	}
2148 
2149 bailout_done:
2150 
2151 	xpt_unlock_buses();
2152 
2153 	return(retval);
2154 }
2155 
2156 static int
2157 xptpdrvtraverse(struct periph_driver **start_pdrv,
2158 		xpt_pdrvfunc_t *tr_func, void *arg)
2159 {
2160 	struct periph_driver **pdrv;
2161 	int retval;
2162 
2163 	retval = 1;
2164 
2165 	/*
2166 	 * We don't traverse the peripheral driver list like we do the
2167 	 * other lists, because it is a linker set, and therefore cannot be
2168 	 * changed during runtime.  If the peripheral driver list is ever
2169 	 * re-done to be something other than a linker set (i.e. it can
2170 	 * change while the system is running), the list traversal should
2171 	 * be modified to work like the other traversal functions.
2172 	 */
2173 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2174 	     *pdrv != NULL; pdrv++) {
2175 		retval = tr_func(pdrv, arg);
2176 
2177 		if (retval == 0)
2178 			return(retval);
2179 	}
2180 
2181 	return(retval);
2182 }
2183 
2184 static int
2185 xptpdperiphtraverse(struct periph_driver **pdrv,
2186 		    struct cam_periph *start_periph,
2187 		    xpt_periphfunc_t *tr_func, void *arg)
2188 {
2189 	struct cam_periph *periph, *next_periph;
2190 	struct cam_sim *sim;
2191 	int retval;
2192 
2193 	retval = 1;
2194 
2195 	xpt_lock_buses();
2196 	for (periph = (start_periph ? start_periph :
2197 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2198 	     periph = next_periph) {
2199 
2200 
2201 		/*
2202 		 * In this case, we want to show peripherals that have been
2203 		 * invalidated, but not peripherals that are scheduled to
2204 		 * be freed.  So instead of calling cam_periph_acquire(),
2205 		 * which will fail if the periph has been invalidated, we
2206 		 * just check for the free flag here.  If it is free, we
2207 		 * skip to the next periph.
2208 		 */
2209 		if (periph->flags & CAM_PERIPH_FREE) {
2210 			next_periph = TAILQ_NEXT(periph, unit_links);
2211 			continue;
2212 		}
2213 
2214 		/*
2215 		 * Acquire a reference to this periph while we call the
2216 		 * traversal function, so it can't go away.
2217 		 */
2218 		periph->refcount++;
2219 		sim = periph->sim;
2220 		xpt_unlock_buses();
2221 		CAM_SIM_LOCK(sim);
2222 		xpt_lock_buses();
2223 		retval = tr_func(periph, arg);
2224 
2225 		/*
2226 		 * Grab the next peripheral before we release this one, so
2227 		 * our next pointer is still valid.
2228 		 */
2229 		next_periph = TAILQ_NEXT(periph, unit_links);
2230 
2231 		cam_periph_release_locked_buses(periph);
2232 		CAM_SIM_UNLOCK(sim);
2233 
2234 		if (retval == 0)
2235 			goto bailout_done;
2236 	}
2237 bailout_done:
2238 
2239 	xpt_unlock_buses();
2240 
2241 	return(retval);
2242 }
2243 
2244 static int
2245 xptdefbusfunc(struct cam_eb *bus, void *arg)
2246 {
2247 	struct xpt_traverse_config *tr_config;
2248 
2249 	tr_config = (struct xpt_traverse_config *)arg;
2250 
2251 	if (tr_config->depth == XPT_DEPTH_BUS) {
2252 		xpt_busfunc_t *tr_func;
2253 
2254 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2255 
2256 		return(tr_func(bus, tr_config->tr_arg));
2257 	} else
2258 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2259 }
2260 
2261 static int
2262 xptdeftargetfunc(struct cam_et *target, void *arg)
2263 {
2264 	struct xpt_traverse_config *tr_config;
2265 
2266 	tr_config = (struct xpt_traverse_config *)arg;
2267 
2268 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2269 		xpt_targetfunc_t *tr_func;
2270 
2271 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2272 
2273 		return(tr_func(target, tr_config->tr_arg));
2274 	} else
2275 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2276 }
2277 
2278 static int
2279 xptdefdevicefunc(struct cam_ed *device, void *arg)
2280 {
2281 	struct xpt_traverse_config *tr_config;
2282 
2283 	tr_config = (struct xpt_traverse_config *)arg;
2284 
2285 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2286 		xpt_devicefunc_t *tr_func;
2287 
2288 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2289 
2290 		return(tr_func(device, tr_config->tr_arg));
2291 	} else
2292 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2293 }
2294 
2295 static int
2296 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2297 {
2298 	struct xpt_traverse_config *tr_config;
2299 	xpt_periphfunc_t *tr_func;
2300 
2301 	tr_config = (struct xpt_traverse_config *)arg;
2302 
2303 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2304 
2305 	/*
2306 	 * Unlike the other default functions, we don't check for depth
2307 	 * here.  The peripheral driver level is the last level in the EDT,
2308 	 * so if we're here, we should execute the function in question.
2309 	 */
2310 	return(tr_func(periph, tr_config->tr_arg));
2311 }
2312 
2313 /*
2314  * Execute the given function for every bus in the EDT.
2315  */
2316 static int
2317 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2318 {
2319 	struct xpt_traverse_config tr_config;
2320 
2321 	tr_config.depth = XPT_DEPTH_BUS;
2322 	tr_config.tr_func = tr_func;
2323 	tr_config.tr_arg = arg;
2324 
2325 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2326 }
2327 
2328 /*
2329  * Execute the given function for every device in the EDT.
2330  */
2331 static int
2332 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2333 {
2334 	struct xpt_traverse_config tr_config;
2335 
2336 	tr_config.depth = XPT_DEPTH_DEVICE;
2337 	tr_config.tr_func = tr_func;
2338 	tr_config.tr_arg = arg;
2339 
2340 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2341 }
2342 
2343 static int
2344 xptsetasyncfunc(struct cam_ed *device, void *arg)
2345 {
2346 	struct cam_path path;
2347 	struct ccb_getdev cgd;
2348 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2349 
2350 	/*
2351 	 * Don't report unconfigured devices (Wildcard devs,
2352 	 * devices only for target mode, device instances
2353 	 * that have been invalidated but are waiting for
2354 	 * their last reference count to be released).
2355 	 */
2356 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2357 		return (1);
2358 
2359 	xpt_compile_path(&path,
2360 			 NULL,
2361 			 device->target->bus->path_id,
2362 			 device->target->target_id,
2363 			 device->lun_id);
2364 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2365 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2366 	xpt_action((union ccb *)&cgd);
2367 	csa->callback(csa->callback_arg,
2368 			    AC_FOUND_DEVICE,
2369 			    &path, &cgd);
2370 	xpt_release_path(&path);
2371 
2372 	return(1);
2373 }
2374 
2375 static int
2376 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2377 {
2378 	struct cam_path path;
2379 	struct ccb_pathinq cpi;
2380 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2381 
2382 	xpt_compile_path(&path, /*periph*/NULL,
2383 			 bus->sim->path_id,
2384 			 CAM_TARGET_WILDCARD,
2385 			 CAM_LUN_WILDCARD);
2386 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2387 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2388 	xpt_action((union ccb *)&cpi);
2389 	csa->callback(csa->callback_arg,
2390 			    AC_PATH_REGISTERED,
2391 			    &path, &cpi);
2392 	xpt_release_path(&path);
2393 
2394 	return(1);
2395 }
2396 
2397 void
2398 xpt_action(union ccb *start_ccb)
2399 {
2400 
2401 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2402 
2403 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2404 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2405 }
2406 
2407 void
2408 xpt_action_default(union ccb *start_ccb)
2409 {
2410 	struct cam_path *path;
2411 
2412 	path = start_ccb->ccb_h.path;
2413 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2414 
2415 	switch (start_ccb->ccb_h.func_code) {
2416 	case XPT_SCSI_IO:
2417 	{
2418 		struct cam_ed *device;
2419 
2420 		/*
2421 		 * For the sake of compatibility with SCSI-1
2422 		 * devices that may not understand the identify
2423 		 * message, we include lun information in the
2424 		 * second byte of all commands.  SCSI-1 specifies
2425 		 * that luns are a 3 bit value and reserves only 3
2426 		 * bits for lun information in the CDB.  Later
2427 		 * revisions of the SCSI spec allow for more than 8
2428 		 * luns, but have deprecated lun information in the
2429 		 * CDB.  So, if the lun won't fit, we must omit.
2430 		 *
2431 		 * Also be aware that during initial probing for devices,
2432 		 * the inquiry information is unknown but initialized to 0.
2433 		 * This means that this code will be exercised while probing
2434 		 * devices with an ANSI revision greater than 2.
2435 		 */
2436 		device = path->device;
2437 		if (device->protocol_version <= SCSI_REV_2
2438 		 && start_ccb->ccb_h.target_lun < 8
2439 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2440 
2441 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2442 			    start_ccb->ccb_h.target_lun << 5;
2443 		}
2444 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2445 	}
2446 	/* FALLTHROUGH */
2447 	case XPT_TARGET_IO:
2448 	case XPT_CONT_TARGET_IO:
2449 		start_ccb->csio.sense_resid = 0;
2450 		start_ccb->csio.resid = 0;
2451 		/* FALLTHROUGH */
2452 	case XPT_ATA_IO:
2453 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2454 			start_ccb->ataio.resid = 0;
2455 		/* FALLTHROUGH */
2456 	case XPT_RESET_DEV:
2457 	case XPT_ENG_EXEC:
2458 	case XPT_SMP_IO:
2459 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2460 		if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2461 			xpt_run_devq(path->bus->sim->devq);
2462 		break;
2463 	case XPT_CALC_GEOMETRY:
2464 	{
2465 		struct cam_sim *sim;
2466 
2467 		/* Filter out garbage */
2468 		if (start_ccb->ccg.block_size == 0
2469 		 || start_ccb->ccg.volume_size == 0) {
2470 			start_ccb->ccg.cylinders = 0;
2471 			start_ccb->ccg.heads = 0;
2472 			start_ccb->ccg.secs_per_track = 0;
2473 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2474 			break;
2475 		}
2476 #if defined(PC98) || defined(__sparc64__)
2477 		/*
2478 		 * In a PC-98 system, geometry translation depens on
2479 		 * the "real" device geometry obtained from mode page 4.
2480 		 * SCSI geometry translation is performed in the
2481 		 * initialization routine of the SCSI BIOS and the result
2482 		 * stored in host memory.  If the translation is available
2483 		 * in host memory, use it.  If not, rely on the default
2484 		 * translation the device driver performs.
2485 		 * For sparc64, we may need adjust the geometry of large
2486 		 * disks in order to fit the limitations of the 16-bit
2487 		 * fields of the VTOC8 disk label.
2488 		 */
2489 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2490 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2491 			break;
2492 		}
2493 #endif
2494 		sim = path->bus->sim;
2495 		(*(sim->sim_action))(sim, start_ccb);
2496 		break;
2497 	}
2498 	case XPT_ABORT:
2499 	{
2500 		union ccb* abort_ccb;
2501 
2502 		abort_ccb = start_ccb->cab.abort_ccb;
2503 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2504 
2505 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2506 				struct cam_ccbq *ccbq;
2507 				struct cam_ed *device;
2508 
2509 				device = abort_ccb->ccb_h.path->device;
2510 				ccbq = &device->ccbq;
2511 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2512 				abort_ccb->ccb_h.status =
2513 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2514 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2515 				xpt_done(abort_ccb);
2516 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2517 				break;
2518 			}
2519 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2520 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2521 				/*
2522 				 * We've caught this ccb en route to
2523 				 * the SIM.  Flag it for abort and the
2524 				 * SIM will do so just before starting
2525 				 * real work on the CCB.
2526 				 */
2527 				abort_ccb->ccb_h.status =
2528 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2529 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2530 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2531 				break;
2532 			}
2533 		}
2534 		if (XPT_FC_IS_QUEUED(abort_ccb)
2535 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2536 			/*
2537 			 * It's already completed but waiting
2538 			 * for our SWI to get to it.
2539 			 */
2540 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2541 			break;
2542 		}
2543 		/*
2544 		 * If we weren't able to take care of the abort request
2545 		 * in the XPT, pass the request down to the SIM for processing.
2546 		 */
2547 	}
2548 	/* FALLTHROUGH */
2549 	case XPT_ACCEPT_TARGET_IO:
2550 	case XPT_EN_LUN:
2551 	case XPT_IMMED_NOTIFY:
2552 	case XPT_NOTIFY_ACK:
2553 	case XPT_RESET_BUS:
2554 	case XPT_IMMEDIATE_NOTIFY:
2555 	case XPT_NOTIFY_ACKNOWLEDGE:
2556 	case XPT_GET_SIM_KNOB:
2557 	case XPT_SET_SIM_KNOB:
2558 	{
2559 		struct cam_sim *sim;
2560 
2561 		sim = path->bus->sim;
2562 		(*(sim->sim_action))(sim, start_ccb);
2563 		break;
2564 	}
2565 	case XPT_PATH_INQ:
2566 	{
2567 		struct cam_sim *sim;
2568 
2569 		sim = path->bus->sim;
2570 		(*(sim->sim_action))(sim, start_ccb);
2571 		break;
2572 	}
2573 	case XPT_PATH_STATS:
2574 		start_ccb->cpis.last_reset = path->bus->last_reset;
2575 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2576 		break;
2577 	case XPT_GDEV_TYPE:
2578 	{
2579 		struct cam_ed *dev;
2580 
2581 		dev = path->device;
2582 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2583 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2584 		} else {
2585 			struct ccb_getdev *cgd;
2586 
2587 			cgd = &start_ccb->cgd;
2588 			cgd->protocol = dev->protocol;
2589 			cgd->inq_data = dev->inq_data;
2590 			cgd->ident_data = dev->ident_data;
2591 			cgd->inq_flags = dev->inq_flags;
2592 			cgd->ccb_h.status = CAM_REQ_CMP;
2593 			cgd->serial_num_len = dev->serial_num_len;
2594 			if ((dev->serial_num_len > 0)
2595 			 && (dev->serial_num != NULL))
2596 				bcopy(dev->serial_num, cgd->serial_num,
2597 				      dev->serial_num_len);
2598 		}
2599 		break;
2600 	}
2601 	case XPT_GDEV_STATS:
2602 	{
2603 		struct cam_ed *dev;
2604 
2605 		dev = path->device;
2606 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2607 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2608 		} else {
2609 			struct ccb_getdevstats *cgds;
2610 			struct cam_eb *bus;
2611 			struct cam_et *tar;
2612 
2613 			cgds = &start_ccb->cgds;
2614 			bus = path->bus;
2615 			tar = path->target;
2616 			cgds->dev_openings = dev->ccbq.dev_openings;
2617 			cgds->dev_active = dev->ccbq.dev_active;
2618 			cgds->devq_openings = dev->ccbq.devq_openings;
2619 			cgds->devq_queued = dev->ccbq.queue.entries;
2620 			cgds->held = dev->ccbq.held;
2621 			cgds->last_reset = tar->last_reset;
2622 			cgds->maxtags = dev->maxtags;
2623 			cgds->mintags = dev->mintags;
2624 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2625 				cgds->last_reset = bus->last_reset;
2626 			cgds->ccb_h.status = CAM_REQ_CMP;
2627 		}
2628 		break;
2629 	}
2630 	case XPT_GDEVLIST:
2631 	{
2632 		struct cam_periph	*nperiph;
2633 		struct periph_list	*periph_head;
2634 		struct ccb_getdevlist	*cgdl;
2635 		u_int			i;
2636 		struct cam_ed		*device;
2637 		int			found;
2638 
2639 
2640 		found = 0;
2641 
2642 		/*
2643 		 * Don't want anyone mucking with our data.
2644 		 */
2645 		device = path->device;
2646 		periph_head = &device->periphs;
2647 		cgdl = &start_ccb->cgdl;
2648 
2649 		/*
2650 		 * Check and see if the list has changed since the user
2651 		 * last requested a list member.  If so, tell them that the
2652 		 * list has changed, and therefore they need to start over
2653 		 * from the beginning.
2654 		 */
2655 		if ((cgdl->index != 0) &&
2656 		    (cgdl->generation != device->generation)) {
2657 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2658 			break;
2659 		}
2660 
2661 		/*
2662 		 * Traverse the list of peripherals and attempt to find
2663 		 * the requested peripheral.
2664 		 */
2665 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2666 		     (nperiph != NULL) && (i <= cgdl->index);
2667 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2668 			if (i == cgdl->index) {
2669 				strncpy(cgdl->periph_name,
2670 					nperiph->periph_name,
2671 					DEV_IDLEN);
2672 				cgdl->unit_number = nperiph->unit_number;
2673 				found = 1;
2674 			}
2675 		}
2676 		if (found == 0) {
2677 			cgdl->status = CAM_GDEVLIST_ERROR;
2678 			break;
2679 		}
2680 
2681 		if (nperiph == NULL)
2682 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2683 		else
2684 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2685 
2686 		cgdl->index++;
2687 		cgdl->generation = device->generation;
2688 
2689 		cgdl->ccb_h.status = CAM_REQ_CMP;
2690 		break;
2691 	}
2692 	case XPT_DEV_MATCH:
2693 	{
2694 		dev_pos_type position_type;
2695 		struct ccb_dev_match *cdm;
2696 
2697 		cdm = &start_ccb->cdm;
2698 
2699 		/*
2700 		 * There are two ways of getting at information in the EDT.
2701 		 * The first way is via the primary EDT tree.  It starts
2702 		 * with a list of busses, then a list of targets on a bus,
2703 		 * then devices/luns on a target, and then peripherals on a
2704 		 * device/lun.  The "other" way is by the peripheral driver
2705 		 * lists.  The peripheral driver lists are organized by
2706 		 * peripheral driver.  (obviously)  So it makes sense to
2707 		 * use the peripheral driver list if the user is looking
2708 		 * for something like "da1", or all "da" devices.  If the
2709 		 * user is looking for something on a particular bus/target
2710 		 * or lun, it's generally better to go through the EDT tree.
2711 		 */
2712 
2713 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2714 			position_type = cdm->pos.position_type;
2715 		else {
2716 			u_int i;
2717 
2718 			position_type = CAM_DEV_POS_NONE;
2719 
2720 			for (i = 0; i < cdm->num_patterns; i++) {
2721 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2722 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2723 					position_type = CAM_DEV_POS_EDT;
2724 					break;
2725 				}
2726 			}
2727 
2728 			if (cdm->num_patterns == 0)
2729 				position_type = CAM_DEV_POS_EDT;
2730 			else if (position_type == CAM_DEV_POS_NONE)
2731 				position_type = CAM_DEV_POS_PDRV;
2732 		}
2733 
2734 		/*
2735 		 * Note that we drop the SIM lock here, because the EDT
2736 		 * traversal code needs to do its own locking.
2737 		 */
2738 		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2739 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2740 		case CAM_DEV_POS_EDT:
2741 			xptedtmatch(cdm);
2742 			break;
2743 		case CAM_DEV_POS_PDRV:
2744 			xptperiphlistmatch(cdm);
2745 			break;
2746 		default:
2747 			cdm->status = CAM_DEV_MATCH_ERROR;
2748 			break;
2749 		}
2750 		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2751 
2752 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2753 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2754 		else
2755 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2756 
2757 		break;
2758 	}
2759 	case XPT_SASYNC_CB:
2760 	{
2761 		struct ccb_setasync *csa;
2762 		struct async_node *cur_entry;
2763 		struct async_list *async_head;
2764 		u_int32_t added;
2765 
2766 		csa = &start_ccb->csa;
2767 		added = csa->event_enable;
2768 		async_head = &path->device->asyncs;
2769 
2770 		/*
2771 		 * If there is already an entry for us, simply
2772 		 * update it.
2773 		 */
2774 		cur_entry = SLIST_FIRST(async_head);
2775 		while (cur_entry != NULL) {
2776 			if ((cur_entry->callback_arg == csa->callback_arg)
2777 			 && (cur_entry->callback == csa->callback))
2778 				break;
2779 			cur_entry = SLIST_NEXT(cur_entry, links);
2780 		}
2781 
2782 		if (cur_entry != NULL) {
2783 		 	/*
2784 			 * If the request has no flags set,
2785 			 * remove the entry.
2786 			 */
2787 			added &= ~cur_entry->event_enable;
2788 			if (csa->event_enable == 0) {
2789 				SLIST_REMOVE(async_head, cur_entry,
2790 					     async_node, links);
2791 				xpt_release_device(path->device);
2792 				free(cur_entry, M_CAMXPT);
2793 			} else {
2794 				cur_entry->event_enable = csa->event_enable;
2795 			}
2796 			csa->event_enable = added;
2797 		} else {
2798 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2799 					   M_NOWAIT);
2800 			if (cur_entry == NULL) {
2801 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2802 				break;
2803 			}
2804 			cur_entry->event_enable = csa->event_enable;
2805 			cur_entry->callback_arg = csa->callback_arg;
2806 			cur_entry->callback = csa->callback;
2807 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2808 			xpt_acquire_device(path->device);
2809 		}
2810 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2811 		break;
2812 	}
2813 	case XPT_REL_SIMQ:
2814 	{
2815 		struct ccb_relsim *crs;
2816 		struct cam_ed *dev;
2817 
2818 		crs = &start_ccb->crs;
2819 		dev = path->device;
2820 		if (dev == NULL) {
2821 
2822 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2823 			break;
2824 		}
2825 
2826 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2827 
2828 			/* Don't ever go below one opening */
2829 			if (crs->openings > 0) {
2830 				xpt_dev_ccbq_resize(path, crs->openings);
2831 				if (bootverbose) {
2832 					xpt_print(path,
2833 					    "number of openings is now %d\n",
2834 					    crs->openings);
2835 				}
2836 			}
2837 		}
2838 
2839 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2840 
2841 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2842 
2843 				/*
2844 				 * Just extend the old timeout and decrement
2845 				 * the freeze count so that a single timeout
2846 				 * is sufficient for releasing the queue.
2847 				 */
2848 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2849 				callout_stop(&dev->callout);
2850 			} else {
2851 
2852 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2853 			}
2854 
2855 			callout_reset(&dev->callout,
2856 			    (crs->release_timeout * hz) / 1000,
2857 			    xpt_release_devq_timeout, dev);
2858 
2859 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2860 
2861 		}
2862 
2863 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2864 
2865 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2866 				/*
2867 				 * Decrement the freeze count so that a single
2868 				 * completion is still sufficient to unfreeze
2869 				 * the queue.
2870 				 */
2871 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2872 			} else {
2873 
2874 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2875 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2876 			}
2877 		}
2878 
2879 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2880 
2881 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2882 			 || (dev->ccbq.dev_active == 0)) {
2883 
2884 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2885 			} else {
2886 
2887 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2888 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2889 			}
2890 		}
2891 
2892 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2893 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2894 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2895 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2896 		break;
2897 	}
2898 	case XPT_DEBUG: {
2899 		struct cam_path *oldpath;
2900 		struct cam_sim *oldsim;
2901 
2902 		/* Check that all request bits are supported. */
2903 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2904 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2905 			break;
2906 		}
2907 
2908 		cam_dflags = CAM_DEBUG_NONE;
2909 		if (cam_dpath != NULL) {
2910 			/* To release the old path we must hold proper lock. */
2911 			oldpath = cam_dpath;
2912 			cam_dpath = NULL;
2913 			oldsim = xpt_path_sim(oldpath);
2914 			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2915 			CAM_SIM_LOCK(oldsim);
2916 			xpt_free_path(oldpath);
2917 			CAM_SIM_UNLOCK(oldsim);
2918 			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2919 		}
2920 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2921 			if (xpt_create_path(&cam_dpath, NULL,
2922 					    start_ccb->ccb_h.path_id,
2923 					    start_ccb->ccb_h.target_id,
2924 					    start_ccb->ccb_h.target_lun) !=
2925 					    CAM_REQ_CMP) {
2926 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2927 			} else {
2928 				cam_dflags = start_ccb->cdbg.flags;
2929 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2930 				xpt_print(cam_dpath, "debugging flags now %x\n",
2931 				    cam_dflags);
2932 			}
2933 		} else
2934 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2935 		break;
2936 	}
2937 	case XPT_NOOP:
2938 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2939 			xpt_freeze_devq(path, 1);
2940 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2941 		break;
2942 	default:
2943 	case XPT_SDEV_TYPE:
2944 	case XPT_TERM_IO:
2945 	case XPT_ENG_INQ:
2946 		/* XXX Implement */
2947 		printf("%s: CCB type %#x not supported\n", __func__,
2948 		       start_ccb->ccb_h.func_code);
2949 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2950 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2951 			xpt_done(start_ccb);
2952 		}
2953 		break;
2954 	}
2955 }
2956 
2957 void
2958 xpt_polled_action(union ccb *start_ccb)
2959 {
2960 	u_int32_t timeout;
2961 	struct	  cam_sim *sim;
2962 	struct	  cam_devq *devq;
2963 	struct	  cam_ed *dev;
2964 
2965 
2966 	timeout = start_ccb->ccb_h.timeout * 10;
2967 	sim = start_ccb->ccb_h.path->bus->sim;
2968 	devq = sim->devq;
2969 	dev = start_ccb->ccb_h.path->device;
2970 
2971 	mtx_assert(sim->mtx, MA_OWNED);
2972 
2973 	/* Don't use ISR for this SIM while polling. */
2974 	sim->flags |= CAM_SIM_POLLED;
2975 
2976 	/*
2977 	 * Steal an opening so that no other queued requests
2978 	 * can get it before us while we simulate interrupts.
2979 	 */
2980 	dev->ccbq.devq_openings--;
2981 	dev->ccbq.dev_openings--;
2982 
2983 	while(((devq != NULL && devq->send_openings <= 0) ||
2984 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2985 		DELAY(100);
2986 		(*(sim->sim_poll))(sim);
2987 		camisr_runqueue(&sim->sim_doneq);
2988 	}
2989 
2990 	dev->ccbq.devq_openings++;
2991 	dev->ccbq.dev_openings++;
2992 
2993 	if (timeout != 0) {
2994 		xpt_action(start_ccb);
2995 		while(--timeout > 0) {
2996 			(*(sim->sim_poll))(sim);
2997 			camisr_runqueue(&sim->sim_doneq);
2998 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
2999 			    != CAM_REQ_INPROG)
3000 				break;
3001 			DELAY(100);
3002 		}
3003 		if (timeout == 0) {
3004 			/*
3005 			 * XXX Is it worth adding a sim_timeout entry
3006 			 * point so we can attempt recovery?  If
3007 			 * this is only used for dumps, I don't think
3008 			 * it is.
3009 			 */
3010 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3011 		}
3012 	} else {
3013 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3014 	}
3015 
3016 	/* We will use CAM ISR for this SIM again. */
3017 	sim->flags &= ~CAM_SIM_POLLED;
3018 }
3019 
3020 /*
3021  * Schedule a peripheral driver to receive a ccb when it's
3022  * target device has space for more transactions.
3023  */
3024 void
3025 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3026 {
3027 	struct cam_ed *device;
3028 	int runq = 0;
3029 
3030 	mtx_assert(perph->sim->mtx, MA_OWNED);
3031 
3032 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3033 	device = perph->path->device;
3034 	if (periph_is_queued(perph)) {
3035 		/* Simply reorder based on new priority */
3036 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3037 			  ("   change priority to %d\n", new_priority));
3038 		if (new_priority < perph->pinfo.priority) {
3039 			camq_change_priority(&device->drvq,
3040 					     perph->pinfo.index,
3041 					     new_priority);
3042 			runq = 1;
3043 		}
3044 	} else {
3045 		/* New entry on the queue */
3046 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3047 			  ("   added periph to queue\n"));
3048 		perph->pinfo.priority = new_priority;
3049 		perph->pinfo.generation = ++device->drvq.generation;
3050 		camq_insert(&device->drvq, &perph->pinfo);
3051 		runq = 1;
3052 	}
3053 	if (runq != 0) {
3054 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3055 			  ("   calling xpt_run_dev_allocq\n"));
3056 		xpt_run_dev_allocq(device);
3057 	}
3058 }
3059 
3060 
3061 /*
3062  * Schedule a device to run on a given queue.
3063  * If the device was inserted as a new entry on the queue,
3064  * return 1 meaning the device queue should be run. If we
3065  * were already queued, implying someone else has already
3066  * started the queue, return 0 so the caller doesn't attempt
3067  * to run the queue.
3068  */
3069 int
3070 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3071 		 u_int32_t new_priority)
3072 {
3073 	int retval;
3074 	u_int32_t old_priority;
3075 
3076 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3077 
3078 	old_priority = pinfo->priority;
3079 
3080 	/*
3081 	 * Are we already queued?
3082 	 */
3083 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3084 		/* Simply reorder based on new priority */
3085 		if (new_priority < old_priority) {
3086 			camq_change_priority(queue, pinfo->index,
3087 					     new_priority);
3088 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3089 					("changed priority to %d\n",
3090 					 new_priority));
3091 			retval = 1;
3092 		} else
3093 			retval = 0;
3094 	} else {
3095 		/* New entry on the queue */
3096 		if (new_priority < old_priority)
3097 			pinfo->priority = new_priority;
3098 
3099 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3100 				("Inserting onto queue\n"));
3101 		pinfo->generation = ++queue->generation;
3102 		camq_insert(queue, pinfo);
3103 		retval = 1;
3104 	}
3105 	return (retval);
3106 }
3107 
3108 static void
3109 xpt_run_dev_allocq(struct cam_ed *device)
3110 {
3111 	struct camq	*drvq;
3112 
3113 	if (device->ccbq.devq_allocating)
3114 		return;
3115 	device->ccbq.devq_allocating = 1;
3116 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3117 	drvq = &device->drvq;
3118 	while ((drvq->entries > 0) &&
3119 	    (device->ccbq.devq_openings > 0 ||
3120 	     CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3121 	    (device->ccbq.queue.qfrozen_cnt == 0)) {
3122 		union	ccb *work_ccb;
3123 		struct	cam_periph *drv;
3124 
3125 		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3126 		    "Device on queue without any work to do"));
3127 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3128 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3129 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3130 				      drv->pinfo.priority);
3131 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3132 					("calling periph start\n"));
3133 			drv->periph_start(drv, work_ccb);
3134 		} else {
3135 			/*
3136 			 * Malloc failure in alloc_ccb
3137 			 */
3138 			/*
3139 			 * XXX add us to a list to be run from free_ccb
3140 			 * if we don't have any ccbs active on this
3141 			 * device queue otherwise we may never get run
3142 			 * again.
3143 			 */
3144 			break;
3145 		}
3146 	}
3147 	device->ccbq.devq_allocating = 0;
3148 }
3149 
3150 static void
3151 xpt_run_devq(struct cam_devq *devq)
3152 {
3153 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3154 
3155 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3156 
3157 	devq->send_queue.qfrozen_cnt++;
3158 	while ((devq->send_queue.entries > 0)
3159 	    && (devq->send_openings > 0)
3160 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3161 		struct	cam_ed_qinfo *qinfo;
3162 		struct	cam_ed *device;
3163 		union ccb *work_ccb;
3164 		struct	cam_sim *sim;
3165 
3166 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3167 							   CAMQ_HEAD);
3168 		device = qinfo->device;
3169 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3170 				("running device %p\n", device));
3171 
3172 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3173 		if (work_ccb == NULL) {
3174 			printf("device on run queue with no ccbs???\n");
3175 			continue;
3176 		}
3177 
3178 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3179 
3180 			mtx_lock(&xsoftc.xpt_lock);
3181 		 	if (xsoftc.num_highpower <= 0) {
3182 				/*
3183 				 * We got a high power command, but we
3184 				 * don't have any available slots.  Freeze
3185 				 * the device queue until we have a slot
3186 				 * available.
3187 				 */
3188 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3189 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3190 						   &work_ccb->ccb_h,
3191 						   xpt_links.stqe);
3192 
3193 				mtx_unlock(&xsoftc.xpt_lock);
3194 				continue;
3195 			} else {
3196 				/*
3197 				 * Consume a high power slot while
3198 				 * this ccb runs.
3199 				 */
3200 				xsoftc.num_highpower--;
3201 			}
3202 			mtx_unlock(&xsoftc.xpt_lock);
3203 		}
3204 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3205 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3206 
3207 		devq->send_openings--;
3208 		devq->send_active++;
3209 
3210 		xpt_schedule_devq(devq, device);
3211 
3212 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3213 			/*
3214 			 * The client wants to freeze the queue
3215 			 * after this CCB is sent.
3216 			 */
3217 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3218 		}
3219 
3220 		/* In Target mode, the peripheral driver knows best... */
3221 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3222 			if ((device->inq_flags & SID_CmdQue) != 0
3223 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3224 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3225 			else
3226 				/*
3227 				 * Clear this in case of a retried CCB that
3228 				 * failed due to a rejected tag.
3229 				 */
3230 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3231 		}
3232 
3233 		switch (work_ccb->ccb_h.func_code) {
3234 		case XPT_SCSI_IO:
3235 			CAM_DEBUG(work_ccb->ccb_h.path,
3236 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3237 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3238 					  &device->inq_data),
3239 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3240 					     cdb_str, sizeof(cdb_str))));
3241 			break;
3242 		case XPT_ATA_IO:
3243 			CAM_DEBUG(work_ccb->ccb_h.path,
3244 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3245 			     ata_op_string(&work_ccb->ataio.cmd),
3246 			     ata_cmd_string(&work_ccb->ataio.cmd,
3247 					    cdb_str, sizeof(cdb_str))));
3248 			break;
3249 		default:
3250 			break;
3251 		}
3252 
3253 		/*
3254 		 * Device queues can be shared among multiple sim instances
3255 		 * that reside on different busses.  Use the SIM in the queue
3256 		 * CCB's path, rather than the one in the bus that was passed
3257 		 * into this function.
3258 		 */
3259 		sim = work_ccb->ccb_h.path->bus->sim;
3260 		(*(sim->sim_action))(sim, work_ccb);
3261 	}
3262 	devq->send_queue.qfrozen_cnt--;
3263 }
3264 
3265 /*
3266  * This function merges stuff from the slave ccb into the master ccb, while
3267  * keeping important fields in the master ccb constant.
3268  */
3269 void
3270 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3271 {
3272 
3273 	/*
3274 	 * Pull fields that are valid for peripheral drivers to set
3275 	 * into the master CCB along with the CCB "payload".
3276 	 */
3277 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3278 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3279 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3280 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3281 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3282 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3283 }
3284 
3285 void
3286 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3287 {
3288 
3289 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3290 	ccb_h->pinfo.priority = priority;
3291 	ccb_h->path = path;
3292 	ccb_h->path_id = path->bus->path_id;
3293 	if (path->target)
3294 		ccb_h->target_id = path->target->target_id;
3295 	else
3296 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3297 	if (path->device) {
3298 		ccb_h->target_lun = path->device->lun_id;
3299 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3300 	} else {
3301 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3302 	}
3303 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3304 	ccb_h->flags = 0;
3305 }
3306 
3307 /* Path manipulation functions */
3308 cam_status
3309 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3310 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3311 {
3312 	struct	   cam_path *path;
3313 	cam_status status;
3314 
3315 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3316 
3317 	if (path == NULL) {
3318 		status = CAM_RESRC_UNAVAIL;
3319 		return(status);
3320 	}
3321 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3322 	if (status != CAM_REQ_CMP) {
3323 		free(path, M_CAMPATH);
3324 		path = NULL;
3325 	}
3326 	*new_path_ptr = path;
3327 	return (status);
3328 }
3329 
3330 cam_status
3331 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3332 			 struct cam_periph *periph, path_id_t path_id,
3333 			 target_id_t target_id, lun_id_t lun_id)
3334 {
3335 	struct	   cam_path *path;
3336 	struct	   cam_eb *bus = NULL;
3337 	cam_status status;
3338 
3339 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3340 
3341 	bus = xpt_find_bus(path_id);
3342 	if (bus != NULL)
3343 		CAM_SIM_LOCK(bus->sim);
3344 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3345 	if (bus != NULL) {
3346 		CAM_SIM_UNLOCK(bus->sim);
3347 		xpt_release_bus(bus);
3348 	}
3349 	if (status != CAM_REQ_CMP) {
3350 		free(path, M_CAMPATH);
3351 		path = NULL;
3352 	}
3353 	*new_path_ptr = path;
3354 	return (status);
3355 }
3356 
3357 cam_status
3358 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3359 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3360 {
3361 	struct	     cam_eb *bus;
3362 	struct	     cam_et *target;
3363 	struct	     cam_ed *device;
3364 	cam_status   status;
3365 
3366 	status = CAM_REQ_CMP;	/* Completed without error */
3367 	target = NULL;		/* Wildcarded */
3368 	device = NULL;		/* Wildcarded */
3369 
3370 	/*
3371 	 * We will potentially modify the EDT, so block interrupts
3372 	 * that may attempt to create cam paths.
3373 	 */
3374 	bus = xpt_find_bus(path_id);
3375 	if (bus == NULL) {
3376 		status = CAM_PATH_INVALID;
3377 	} else {
3378 		target = xpt_find_target(bus, target_id);
3379 		if (target == NULL) {
3380 			/* Create one */
3381 			struct cam_et *new_target;
3382 
3383 			new_target = xpt_alloc_target(bus, target_id);
3384 			if (new_target == NULL) {
3385 				status = CAM_RESRC_UNAVAIL;
3386 			} else {
3387 				target = new_target;
3388 			}
3389 		}
3390 		if (target != NULL) {
3391 			device = xpt_find_device(target, lun_id);
3392 			if (device == NULL) {
3393 				/* Create one */
3394 				struct cam_ed *new_device;
3395 
3396 				new_device =
3397 				    (*(bus->xport->alloc_device))(bus,
3398 								      target,
3399 								      lun_id);
3400 				if (new_device == NULL) {
3401 					status = CAM_RESRC_UNAVAIL;
3402 				} else {
3403 					device = new_device;
3404 				}
3405 			}
3406 		}
3407 	}
3408 
3409 	/*
3410 	 * Only touch the user's data if we are successful.
3411 	 */
3412 	if (status == CAM_REQ_CMP) {
3413 		new_path->periph = perph;
3414 		new_path->bus = bus;
3415 		new_path->target = target;
3416 		new_path->device = device;
3417 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3418 	} else {
3419 		if (device != NULL)
3420 			xpt_release_device(device);
3421 		if (target != NULL)
3422 			xpt_release_target(target);
3423 		if (bus != NULL)
3424 			xpt_release_bus(bus);
3425 	}
3426 	return (status);
3427 }
3428 
3429 void
3430 xpt_release_path(struct cam_path *path)
3431 {
3432 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3433 	if (path->device != NULL) {
3434 		xpt_release_device(path->device);
3435 		path->device = NULL;
3436 	}
3437 	if (path->target != NULL) {
3438 		xpt_release_target(path->target);
3439 		path->target = NULL;
3440 	}
3441 	if (path->bus != NULL) {
3442 		xpt_release_bus(path->bus);
3443 		path->bus = NULL;
3444 	}
3445 }
3446 
3447 void
3448 xpt_free_path(struct cam_path *path)
3449 {
3450 
3451 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3452 	xpt_release_path(path);
3453 	free(path, M_CAMPATH);
3454 }
3455 
3456 void
3457 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3458     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3459 {
3460 
3461 	xpt_lock_buses();
3462 	if (bus_ref) {
3463 		if (path->bus)
3464 			*bus_ref = path->bus->refcount;
3465 		else
3466 			*bus_ref = 0;
3467 	}
3468 	if (periph_ref) {
3469 		if (path->periph)
3470 			*periph_ref = path->periph->refcount;
3471 		else
3472 			*periph_ref = 0;
3473 	}
3474 	xpt_unlock_buses();
3475 	if (target_ref) {
3476 		if (path->target)
3477 			*target_ref = path->target->refcount;
3478 		else
3479 			*target_ref = 0;
3480 	}
3481 	if (device_ref) {
3482 		if (path->device)
3483 			*device_ref = path->device->refcount;
3484 		else
3485 			*device_ref = 0;
3486 	}
3487 }
3488 
3489 /*
3490  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3491  * in path1, 2 for match with wildcards in path2.
3492  */
3493 int
3494 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3495 {
3496 	int retval = 0;
3497 
3498 	if (path1->bus != path2->bus) {
3499 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3500 			retval = 1;
3501 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3502 			retval = 2;
3503 		else
3504 			return (-1);
3505 	}
3506 	if (path1->target != path2->target) {
3507 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3508 			if (retval == 0)
3509 				retval = 1;
3510 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3511 			retval = 2;
3512 		else
3513 			return (-1);
3514 	}
3515 	if (path1->device != path2->device) {
3516 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3517 			if (retval == 0)
3518 				retval = 1;
3519 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3520 			retval = 2;
3521 		else
3522 			return (-1);
3523 	}
3524 	return (retval);
3525 }
3526 
3527 void
3528 xpt_print_path(struct cam_path *path)
3529 {
3530 
3531 	if (path == NULL)
3532 		printf("(nopath): ");
3533 	else {
3534 		if (path->periph != NULL)
3535 			printf("(%s%d:", path->periph->periph_name,
3536 			       path->periph->unit_number);
3537 		else
3538 			printf("(noperiph:");
3539 
3540 		if (path->bus != NULL)
3541 			printf("%s%d:%d:", path->bus->sim->sim_name,
3542 			       path->bus->sim->unit_number,
3543 			       path->bus->sim->bus_id);
3544 		else
3545 			printf("nobus:");
3546 
3547 		if (path->target != NULL)
3548 			printf("%d:", path->target->target_id);
3549 		else
3550 			printf("X:");
3551 
3552 		if (path->device != NULL)
3553 			printf("%d): ", path->device->lun_id);
3554 		else
3555 			printf("X): ");
3556 	}
3557 }
3558 
3559 void
3560 xpt_print(struct cam_path *path, const char *fmt, ...)
3561 {
3562 	va_list ap;
3563 	xpt_print_path(path);
3564 	va_start(ap, fmt);
3565 	vprintf(fmt, ap);
3566 	va_end(ap);
3567 }
3568 
3569 int
3570 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3571 {
3572 	struct sbuf sb;
3573 
3574 #ifdef INVARIANTS
3575 	if (path != NULL && path->bus != NULL)
3576 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3577 #endif
3578 
3579 	sbuf_new(&sb, str, str_len, 0);
3580 
3581 	if (path == NULL)
3582 		sbuf_printf(&sb, "(nopath): ");
3583 	else {
3584 		if (path->periph != NULL)
3585 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3586 				    path->periph->unit_number);
3587 		else
3588 			sbuf_printf(&sb, "(noperiph:");
3589 
3590 		if (path->bus != NULL)
3591 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3592 				    path->bus->sim->unit_number,
3593 				    path->bus->sim->bus_id);
3594 		else
3595 			sbuf_printf(&sb, "nobus:");
3596 
3597 		if (path->target != NULL)
3598 			sbuf_printf(&sb, "%d:", path->target->target_id);
3599 		else
3600 			sbuf_printf(&sb, "X:");
3601 
3602 		if (path->device != NULL)
3603 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3604 		else
3605 			sbuf_printf(&sb, "X): ");
3606 	}
3607 	sbuf_finish(&sb);
3608 
3609 	return(sbuf_len(&sb));
3610 }
3611 
3612 path_id_t
3613 xpt_path_path_id(struct cam_path *path)
3614 {
3615 	return(path->bus->path_id);
3616 }
3617 
3618 target_id_t
3619 xpt_path_target_id(struct cam_path *path)
3620 {
3621 	if (path->target != NULL)
3622 		return (path->target->target_id);
3623 	else
3624 		return (CAM_TARGET_WILDCARD);
3625 }
3626 
3627 lun_id_t
3628 xpt_path_lun_id(struct cam_path *path)
3629 {
3630 	if (path->device != NULL)
3631 		return (path->device->lun_id);
3632 	else
3633 		return (CAM_LUN_WILDCARD);
3634 }
3635 
3636 struct cam_sim *
3637 xpt_path_sim(struct cam_path *path)
3638 {
3639 
3640 	return (path->bus->sim);
3641 }
3642 
3643 struct cam_periph*
3644 xpt_path_periph(struct cam_path *path)
3645 {
3646 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3647 
3648 	return (path->periph);
3649 }
3650 
3651 int
3652 xpt_path_legacy_ata_id(struct cam_path *path)
3653 {
3654 	struct cam_eb *bus;
3655 	int bus_id;
3656 
3657 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3658 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3659 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3660 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3661 		return (-1);
3662 
3663 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3664 	    path->bus->sim->unit_number < 2) {
3665 		bus_id = path->bus->sim->unit_number;
3666 	} else {
3667 		bus_id = 2;
3668 		xpt_lock_buses();
3669 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3670 			if (bus == path->bus)
3671 				break;
3672 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3673 			     bus->sim->unit_number >= 2) ||
3674 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3675 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3676 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3677 				bus_id++;
3678 		}
3679 		xpt_unlock_buses();
3680 	}
3681 	if (path->target != NULL) {
3682 		if (path->target->target_id < 2)
3683 			return (bus_id * 2 + path->target->target_id);
3684 		else
3685 			return (-1);
3686 	} else
3687 		return (bus_id * 2);
3688 }
3689 
3690 /*
3691  * Release a CAM control block for the caller.  Remit the cost of the structure
3692  * to the device referenced by the path.  If the this device had no 'credits'
3693  * and peripheral drivers have registered async callbacks for this notification
3694  * call them now.
3695  */
3696 void
3697 xpt_release_ccb(union ccb *free_ccb)
3698 {
3699 	struct	 cam_path *path;
3700 	struct	 cam_ed *device;
3701 	struct	 cam_eb *bus;
3702 	struct   cam_sim *sim;
3703 
3704 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3705 	path = free_ccb->ccb_h.path;
3706 	device = path->device;
3707 	bus = path->bus;
3708 	sim = bus->sim;
3709 
3710 	mtx_assert(sim->mtx, MA_OWNED);
3711 
3712 	cam_ccbq_release_opening(&device->ccbq);
3713 	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3714 		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3715 		cam_ccbq_resize(&device->ccbq,
3716 		    device->ccbq.dev_openings + device->ccbq.dev_active);
3717 	}
3718 	if (sim->ccb_count > sim->max_ccbs) {
3719 		xpt_free_ccb(free_ccb);
3720 		sim->ccb_count--;
3721 	} else {
3722 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3723 		    xpt_links.sle);
3724 	}
3725 	xpt_run_dev_allocq(device);
3726 }
3727 
3728 /* Functions accessed by SIM drivers */
3729 
3730 static struct xpt_xport xport_default = {
3731 	.alloc_device = xpt_alloc_device_default,
3732 	.action = xpt_action_default,
3733 	.async = xpt_dev_async_default,
3734 };
3735 
3736 /*
3737  * A sim structure, listing the SIM entry points and instance
3738  * identification info is passed to xpt_bus_register to hook the SIM
3739  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3740  * for this new bus and places it in the array of busses and assigns
3741  * it a path_id.  The path_id may be influenced by "hard wiring"
3742  * information specified by the user.  Once interrupt services are
3743  * available, the bus will be probed.
3744  */
3745 int32_t
3746 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3747 {
3748 	struct cam_eb *new_bus;
3749 	struct cam_eb *old_bus;
3750 	struct ccb_pathinq cpi;
3751 	struct cam_path *path;
3752 	cam_status status;
3753 
3754 	mtx_assert(sim->mtx, MA_OWNED);
3755 
3756 	sim->bus_id = bus;
3757 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3758 					  M_CAMXPT, M_NOWAIT);
3759 	if (new_bus == NULL) {
3760 		/* Couldn't satisfy request */
3761 		return (CAM_RESRC_UNAVAIL);
3762 	}
3763 	if (strcmp(sim->sim_name, "xpt") != 0) {
3764 		sim->path_id =
3765 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3766 	}
3767 
3768 	TAILQ_INIT(&new_bus->et_entries);
3769 	new_bus->path_id = sim->path_id;
3770 	cam_sim_hold(sim);
3771 	new_bus->sim = sim;
3772 	timevalclear(&new_bus->last_reset);
3773 	new_bus->flags = 0;
3774 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3775 	new_bus->generation = 0;
3776 
3777 	xpt_lock_buses();
3778 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3779 	while (old_bus != NULL
3780 	    && old_bus->path_id < new_bus->path_id)
3781 		old_bus = TAILQ_NEXT(old_bus, links);
3782 	if (old_bus != NULL)
3783 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3784 	else
3785 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3786 	xsoftc.bus_generation++;
3787 	xpt_unlock_buses();
3788 
3789 	/*
3790 	 * Set a default transport so that a PATH_INQ can be issued to
3791 	 * the SIM.  This will then allow for probing and attaching of
3792 	 * a more appropriate transport.
3793 	 */
3794 	new_bus->xport = &xport_default;
3795 
3796 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3797 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3798 	if (status != CAM_REQ_CMP) {
3799 		xpt_release_bus(new_bus);
3800 		free(path, M_CAMXPT);
3801 		return (CAM_RESRC_UNAVAIL);
3802 	}
3803 
3804 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3805 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3806 	xpt_action((union ccb *)&cpi);
3807 
3808 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3809 		switch (cpi.transport) {
3810 		case XPORT_SPI:
3811 		case XPORT_SAS:
3812 		case XPORT_FC:
3813 		case XPORT_USB:
3814 		case XPORT_ISCSI:
3815 		case XPORT_PPB:
3816 			new_bus->xport = scsi_get_xport();
3817 			break;
3818 		case XPORT_ATA:
3819 		case XPORT_SATA:
3820 			new_bus->xport = ata_get_xport();
3821 			break;
3822 		default:
3823 			new_bus->xport = &xport_default;
3824 			break;
3825 		}
3826 	}
3827 
3828 	/* Notify interested parties */
3829 	if (sim->path_id != CAM_XPT_PATH_ID) {
3830 		union	ccb *scan_ccb;
3831 
3832 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3833 		/* Initiate bus rescan. */
3834 		scan_ccb = xpt_alloc_ccb_nowait();
3835 		scan_ccb->ccb_h.path = path;
3836 		scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3837 		scan_ccb->crcn.flags = 0;
3838 		xpt_rescan(scan_ccb);
3839 	} else
3840 		xpt_free_path(path);
3841 	return (CAM_SUCCESS);
3842 }
3843 
3844 int32_t
3845 xpt_bus_deregister(path_id_t pathid)
3846 {
3847 	struct cam_path bus_path;
3848 	cam_status status;
3849 
3850 	status = xpt_compile_path(&bus_path, NULL, pathid,
3851 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3852 	if (status != CAM_REQ_CMP)
3853 		return (status);
3854 
3855 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3856 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3857 
3858 	/* Release the reference count held while registered. */
3859 	xpt_release_bus(bus_path.bus);
3860 	xpt_release_path(&bus_path);
3861 
3862 	return (CAM_REQ_CMP);
3863 }
3864 
3865 static path_id_t
3866 xptnextfreepathid(void)
3867 {
3868 	struct cam_eb *bus;
3869 	path_id_t pathid;
3870 	const char *strval;
3871 
3872 	pathid = 0;
3873 	xpt_lock_buses();
3874 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3875 retry:
3876 	/* Find an unoccupied pathid */
3877 	while (bus != NULL && bus->path_id <= pathid) {
3878 		if (bus->path_id == pathid)
3879 			pathid++;
3880 		bus = TAILQ_NEXT(bus, links);
3881 	}
3882 	xpt_unlock_buses();
3883 
3884 	/*
3885 	 * Ensure that this pathid is not reserved for
3886 	 * a bus that may be registered in the future.
3887 	 */
3888 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3889 		++pathid;
3890 		/* Start the search over */
3891 		xpt_lock_buses();
3892 		goto retry;
3893 	}
3894 	return (pathid);
3895 }
3896 
3897 static path_id_t
3898 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3899 {
3900 	path_id_t pathid;
3901 	int i, dunit, val;
3902 	char buf[32];
3903 	const char *dname;
3904 
3905 	pathid = CAM_XPT_PATH_ID;
3906 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3907 	i = 0;
3908 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3909 		if (strcmp(dname, "scbus")) {
3910 			/* Avoid a bit of foot shooting. */
3911 			continue;
3912 		}
3913 		if (dunit < 0)		/* unwired?! */
3914 			continue;
3915 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3916 			if (sim_bus == val) {
3917 				pathid = dunit;
3918 				break;
3919 			}
3920 		} else if (sim_bus == 0) {
3921 			/* Unspecified matches bus 0 */
3922 			pathid = dunit;
3923 			break;
3924 		} else {
3925 			printf("Ambiguous scbus configuration for %s%d "
3926 			       "bus %d, cannot wire down.  The kernel "
3927 			       "config entry for scbus%d should "
3928 			       "specify a controller bus.\n"
3929 			       "Scbus will be assigned dynamically.\n",
3930 			       sim_name, sim_unit, sim_bus, dunit);
3931 			break;
3932 		}
3933 	}
3934 
3935 	if (pathid == CAM_XPT_PATH_ID)
3936 		pathid = xptnextfreepathid();
3937 	return (pathid);
3938 }
3939 
3940 static const char *
3941 xpt_async_string(u_int32_t async_code)
3942 {
3943 
3944 	switch (async_code) {
3945 	case AC_BUS_RESET: return ("AC_BUS_RESET");
3946 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
3947 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
3948 	case AC_SENT_BDR: return ("AC_SENT_BDR");
3949 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
3950 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
3951 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
3952 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
3953 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
3954 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
3955 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
3956 	case AC_CONTRACT: return ("AC_CONTRACT");
3957 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
3958 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
3959 	}
3960 	return ("AC_UNKNOWN");
3961 }
3962 
3963 void
3964 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3965 {
3966 	struct cam_eb *bus;
3967 	struct cam_et *target, *next_target;
3968 	struct cam_ed *device, *next_device;
3969 
3970 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3971 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
3972 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
3973 
3974 	/*
3975 	 * Most async events come from a CAM interrupt context.  In
3976 	 * a few cases, the error recovery code at the peripheral layer,
3977 	 * which may run from our SWI or a process context, may signal
3978 	 * deferred events with a call to xpt_async.
3979 	 */
3980 
3981 	bus = path->bus;
3982 
3983 	if (async_code == AC_BUS_RESET) {
3984 		/* Update our notion of when the last reset occurred */
3985 		microtime(&bus->last_reset);
3986 	}
3987 
3988 	for (target = TAILQ_FIRST(&bus->et_entries);
3989 	     target != NULL;
3990 	     target = next_target) {
3991 
3992 		next_target = TAILQ_NEXT(target, links);
3993 
3994 		if (path->target != target
3995 		 && path->target->target_id != CAM_TARGET_WILDCARD
3996 		 && target->target_id != CAM_TARGET_WILDCARD)
3997 			continue;
3998 
3999 		if (async_code == AC_SENT_BDR) {
4000 			/* Update our notion of when the last reset occurred */
4001 			microtime(&path->target->last_reset);
4002 		}
4003 
4004 		for (device = TAILQ_FIRST(&target->ed_entries);
4005 		     device != NULL;
4006 		     device = next_device) {
4007 
4008 			next_device = TAILQ_NEXT(device, links);
4009 
4010 			if (path->device != device
4011 			 && path->device->lun_id != CAM_LUN_WILDCARD
4012 			 && device->lun_id != CAM_LUN_WILDCARD)
4013 				continue;
4014 			/*
4015 			 * The async callback could free the device.
4016 			 * If it is a broadcast async, it doesn't hold
4017 			 * device reference, so take our own reference.
4018 			 */
4019 			xpt_acquire_device(device);
4020 			(*(bus->xport->async))(async_code, bus,
4021 					       target, device,
4022 					       async_arg);
4023 
4024 			xpt_async_bcast(&device->asyncs, async_code,
4025 					path, async_arg);
4026 			xpt_release_device(device);
4027 		}
4028 	}
4029 
4030 	/*
4031 	 * If this wasn't a fully wildcarded async, tell all
4032 	 * clients that want all async events.
4033 	 */
4034 	if (bus != xpt_periph->path->bus)
4035 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4036 				path, async_arg);
4037 }
4038 
4039 static void
4040 xpt_async_bcast(struct async_list *async_head,
4041 		u_int32_t async_code,
4042 		struct cam_path *path, void *async_arg)
4043 {
4044 	struct async_node *cur_entry;
4045 
4046 	cur_entry = SLIST_FIRST(async_head);
4047 	while (cur_entry != NULL) {
4048 		struct async_node *next_entry;
4049 		/*
4050 		 * Grab the next list entry before we call the current
4051 		 * entry's callback.  This is because the callback function
4052 		 * can delete its async callback entry.
4053 		 */
4054 		next_entry = SLIST_NEXT(cur_entry, links);
4055 		if ((cur_entry->event_enable & async_code) != 0)
4056 			cur_entry->callback(cur_entry->callback_arg,
4057 					    async_code, path,
4058 					    async_arg);
4059 		cur_entry = next_entry;
4060 	}
4061 }
4062 
4063 static void
4064 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4065 		      struct cam_et *target, struct cam_ed *device,
4066 		      void *async_arg)
4067 {
4068 	printf("%s called\n", __func__);
4069 }
4070 
4071 u_int32_t
4072 xpt_freeze_devq(struct cam_path *path, u_int count)
4073 {
4074 	struct cam_ed *dev = path->device;
4075 
4076 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4077 	dev->ccbq.queue.qfrozen_cnt += count;
4078 	/* Remove frozen device from sendq. */
4079 	if (device_is_queued(dev)) {
4080 		camq_remove(&dev->sim->devq->send_queue,
4081 		    dev->devq_entry.pinfo.index);
4082 	}
4083 	return (dev->ccbq.queue.qfrozen_cnt);
4084 }
4085 
4086 u_int32_t
4087 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4088 {
4089 
4090 	mtx_assert(sim->mtx, MA_OWNED);
4091 	sim->devq->send_queue.qfrozen_cnt += count;
4092 	return (sim->devq->send_queue.qfrozen_cnt);
4093 }
4094 
4095 static void
4096 xpt_release_devq_timeout(void *arg)
4097 {
4098 	struct cam_ed *device;
4099 
4100 	device = (struct cam_ed *)arg;
4101 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4102 }
4103 
4104 void
4105 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4106 {
4107 
4108 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4109 	xpt_release_devq_device(path->device, count, run_queue);
4110 }
4111 
4112 void
4113 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4114 {
4115 
4116 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4117 #ifdef INVARIANTS
4118 		printf("xpt_release_devq(): requested %u > present %u\n",
4119 		    count, dev->ccbq.queue.qfrozen_cnt);
4120 #endif
4121 		count = dev->ccbq.queue.qfrozen_cnt;
4122 	}
4123 	dev->ccbq.queue.qfrozen_cnt -= count;
4124 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4125 		/*
4126 		 * No longer need to wait for a successful
4127 		 * command completion.
4128 		 */
4129 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4130 		/*
4131 		 * Remove any timeouts that might be scheduled
4132 		 * to release this queue.
4133 		 */
4134 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4135 			callout_stop(&dev->callout);
4136 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4137 		}
4138 		xpt_run_dev_allocq(dev);
4139 		if (run_queue == 0)
4140 			return;
4141 		/*
4142 		 * Now that we are unfrozen schedule the
4143 		 * device so any pending transactions are
4144 		 * run.
4145 		 */
4146 		if (xpt_schedule_devq(dev->sim->devq, dev))
4147 			xpt_run_devq(dev->sim->devq);
4148 	}
4149 }
4150 
4151 void
4152 xpt_release_simq(struct cam_sim *sim, int run_queue)
4153 {
4154 	struct	camq *sendq;
4155 
4156 	mtx_assert(sim->mtx, MA_OWNED);
4157 	sendq = &(sim->devq->send_queue);
4158 	if (sendq->qfrozen_cnt <= 0) {
4159 #ifdef INVARIANTS
4160 		printf("xpt_release_simq: requested 1 > present %u\n",
4161 		    sendq->qfrozen_cnt);
4162 #endif
4163 	} else
4164 		sendq->qfrozen_cnt--;
4165 	if (sendq->qfrozen_cnt == 0) {
4166 		/*
4167 		 * If there is a timeout scheduled to release this
4168 		 * sim queue, remove it.  The queue frozen count is
4169 		 * already at 0.
4170 		 */
4171 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4172 			callout_stop(&sim->callout);
4173 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4174 		}
4175 		if (run_queue) {
4176 			/*
4177 			 * Now that we are unfrozen run the send queue.
4178 			 */
4179 			xpt_run_devq(sim->devq);
4180 		}
4181 	}
4182 }
4183 
4184 /*
4185  * XXX Appears to be unused.
4186  */
4187 static void
4188 xpt_release_simq_timeout(void *arg)
4189 {
4190 	struct cam_sim *sim;
4191 
4192 	sim = (struct cam_sim *)arg;
4193 	xpt_release_simq(sim, /* run_queue */ TRUE);
4194 }
4195 
4196 void
4197 xpt_done(union ccb *done_ccb)
4198 {
4199 	struct cam_sim *sim;
4200 	int	first;
4201 
4202 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4203 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4204 		/*
4205 		 * Queue up the request for handling by our SWI handler
4206 		 * any of the "non-immediate" type of ccbs.
4207 		 */
4208 		sim = done_ccb->ccb_h.path->bus->sim;
4209 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4210 		    sim_links.tqe);
4211 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4212 		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4213 		    CAM_SIM_BATCH)) == 0) {
4214 			mtx_lock(&cam_simq_lock);
4215 			first = TAILQ_EMPTY(&cam_simq);
4216 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4217 			mtx_unlock(&cam_simq_lock);
4218 			sim->flags |= CAM_SIM_ON_DONEQ;
4219 			if (first)
4220 				swi_sched(cambio_ih, 0);
4221 		}
4222 	}
4223 }
4224 
4225 void
4226 xpt_batch_start(struct cam_sim *sim)
4227 {
4228 
4229 	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4230 	sim->flags |= CAM_SIM_BATCH;
4231 }
4232 
4233 void
4234 xpt_batch_done(struct cam_sim *sim)
4235 {
4236 
4237 	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4238 	sim->flags &= ~CAM_SIM_BATCH;
4239 	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4240 	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4241 		camisr_runqueue(&sim->sim_doneq);
4242 }
4243 
4244 union ccb *
4245 xpt_alloc_ccb()
4246 {
4247 	union ccb *new_ccb;
4248 
4249 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4250 	return (new_ccb);
4251 }
4252 
4253 union ccb *
4254 xpt_alloc_ccb_nowait()
4255 {
4256 	union ccb *new_ccb;
4257 
4258 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4259 	return (new_ccb);
4260 }
4261 
4262 void
4263 xpt_free_ccb(union ccb *free_ccb)
4264 {
4265 	free(free_ccb, M_CAMCCB);
4266 }
4267 
4268 
4269 
4270 /* Private XPT functions */
4271 
4272 /*
4273  * Get a CAM control block for the caller. Charge the structure to the device
4274  * referenced by the path.  If the this device has no 'credits' then the
4275  * device already has the maximum number of outstanding operations under way
4276  * and we return NULL. If we don't have sufficient resources to allocate more
4277  * ccbs, we also return NULL.
4278  */
4279 static union ccb *
4280 xpt_get_ccb(struct cam_ed *device)
4281 {
4282 	union ccb *new_ccb;
4283 	struct cam_sim *sim;
4284 
4285 	sim = device->sim;
4286 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4287 		new_ccb = xpt_alloc_ccb_nowait();
4288                 if (new_ccb == NULL) {
4289 			return (NULL);
4290 		}
4291 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4292 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4293 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4294 				  xpt_links.sle);
4295 		sim->ccb_count++;
4296 	}
4297 	cam_ccbq_take_opening(&device->ccbq);
4298 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4299 	return (new_ccb);
4300 }
4301 
4302 static void
4303 xpt_release_bus(struct cam_eb *bus)
4304 {
4305 
4306 	xpt_lock_buses();
4307 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4308 	if (--bus->refcount > 0) {
4309 		xpt_unlock_buses();
4310 		return;
4311 	}
4312 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4313 	    ("refcount is zero, but target list is not empty"));
4314 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4315 	xsoftc.bus_generation++;
4316 	xpt_unlock_buses();
4317 	cam_sim_release(bus->sim);
4318 	free(bus, M_CAMXPT);
4319 }
4320 
4321 static struct cam_et *
4322 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4323 {
4324 	struct cam_et *cur_target, *target;
4325 
4326 	mtx_assert(bus->sim->mtx, MA_OWNED);
4327 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4328 					 M_NOWAIT|M_ZERO);
4329 	if (target == NULL)
4330 		return (NULL);
4331 
4332 	TAILQ_INIT(&target->ed_entries);
4333 	target->bus = bus;
4334 	target->target_id = target_id;
4335 	target->refcount = 1;
4336 	target->generation = 0;
4337 	target->luns = NULL;
4338 	timevalclear(&target->last_reset);
4339 	/*
4340 	 * Hold a reference to our parent bus so it
4341 	 * will not go away before we do.
4342 	 */
4343 	xpt_lock_buses();
4344 	bus->refcount++;
4345 	xpt_unlock_buses();
4346 
4347 	/* Insertion sort into our bus's target list */
4348 	cur_target = TAILQ_FIRST(&bus->et_entries);
4349 	while (cur_target != NULL && cur_target->target_id < target_id)
4350 		cur_target = TAILQ_NEXT(cur_target, links);
4351 	if (cur_target != NULL) {
4352 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4353 	} else {
4354 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4355 	}
4356 	bus->generation++;
4357 	return (target);
4358 }
4359 
4360 static void
4361 xpt_release_target(struct cam_et *target)
4362 {
4363 
4364 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4365 	if (--target->refcount > 0)
4366 		return;
4367 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4368 	    ("refcount is zero, but device list is not empty"));
4369 	TAILQ_REMOVE(&target->bus->et_entries, target, links);
4370 	target->bus->generation++;
4371 	xpt_release_bus(target->bus);
4372 	if (target->luns)
4373 		free(target->luns, M_CAMXPT);
4374 	free(target, M_CAMXPT);
4375 }
4376 
4377 static struct cam_ed *
4378 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4379 			 lun_id_t lun_id)
4380 {
4381 	struct cam_ed *device;
4382 
4383 	device = xpt_alloc_device(bus, target, lun_id);
4384 	if (device == NULL)
4385 		return (NULL);
4386 
4387 	device->mintags = 1;
4388 	device->maxtags = 1;
4389 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4390 	return (device);
4391 }
4392 
4393 struct cam_ed *
4394 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4395 {
4396 	struct cam_ed	*cur_device, *device;
4397 	struct cam_devq	*devq;
4398 	cam_status status;
4399 
4400 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4401 	/* Make space for us in the device queue on our bus */
4402 	devq = bus->sim->devq;
4403 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4404 	if (status != CAM_REQ_CMP)
4405 		return (NULL);
4406 
4407 	device = (struct cam_ed *)malloc(sizeof(*device),
4408 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4409 	if (device == NULL)
4410 		return (NULL);
4411 
4412 	cam_init_pinfo(&device->devq_entry.pinfo);
4413 	device->devq_entry.device = device;
4414 	device->target = target;
4415 	device->lun_id = lun_id;
4416 	device->sim = bus->sim;
4417 	/* Initialize our queues */
4418 	if (camq_init(&device->drvq, 0) != 0) {
4419 		free(device, M_CAMDEV);
4420 		return (NULL);
4421 	}
4422 	if (cam_ccbq_init(&device->ccbq,
4423 			  bus->sim->max_dev_openings) != 0) {
4424 		camq_fini(&device->drvq);
4425 		free(device, M_CAMDEV);
4426 		return (NULL);
4427 	}
4428 	SLIST_INIT(&device->asyncs);
4429 	SLIST_INIT(&device->periphs);
4430 	device->generation = 0;
4431 	device->flags = CAM_DEV_UNCONFIGURED;
4432 	device->tag_delay_count = 0;
4433 	device->tag_saved_openings = 0;
4434 	device->refcount = 1;
4435 	callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4436 
4437 	cur_device = TAILQ_FIRST(&target->ed_entries);
4438 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4439 		cur_device = TAILQ_NEXT(cur_device, links);
4440 	if (cur_device != NULL)
4441 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4442 	else
4443 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4444 	target->refcount++;
4445 	target->generation++;
4446 	return (device);
4447 }
4448 
4449 void
4450 xpt_acquire_device(struct cam_ed *device)
4451 {
4452 
4453 	mtx_assert(device->sim->mtx, MA_OWNED);
4454 	device->refcount++;
4455 }
4456 
4457 void
4458 xpt_release_device(struct cam_ed *device)
4459 {
4460 	struct cam_devq *devq;
4461 
4462 	mtx_assert(device->sim->mtx, MA_OWNED);
4463 	if (--device->refcount > 0)
4464 		return;
4465 
4466 	KASSERT(SLIST_EMPTY(&device->periphs),
4467 	    ("refcount is zero, but periphs list is not empty"));
4468 	if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4469 		panic("Removing device while still queued for ccbs");
4470 
4471 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4472 		callout_stop(&device->callout);
4473 
4474 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4475 	device->target->generation++;
4476 	device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4477 	/* Release our slot in the devq */
4478 	devq = device->target->bus->sim->devq;
4479 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4480 	camq_fini(&device->drvq);
4481 	cam_ccbq_fini(&device->ccbq);
4482 	/*
4483 	 * Free allocated memory.  free(9) does nothing if the
4484 	 * supplied pointer is NULL, so it is safe to call without
4485 	 * checking.
4486 	 */
4487 	free(device->supported_vpds, M_CAMXPT);
4488 	free(device->device_id, M_CAMXPT);
4489 	free(device->physpath, M_CAMXPT);
4490 	free(device->rcap_buf, M_CAMXPT);
4491 	free(device->serial_num, M_CAMXPT);
4492 
4493 	xpt_release_target(device->target);
4494 	free(device, M_CAMDEV);
4495 }
4496 
4497 u_int32_t
4498 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4499 {
4500 	int	diff;
4501 	int	result;
4502 	struct	cam_ed *dev;
4503 
4504 	dev = path->device;
4505 
4506 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4507 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4508 	if (result == CAM_REQ_CMP && (diff < 0)) {
4509 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4510 	}
4511 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4512 	 || (dev->inq_flags & SID_CmdQue) != 0)
4513 		dev->tag_saved_openings = newopenings;
4514 	/* Adjust the global limit */
4515 	dev->sim->max_ccbs += diff;
4516 	return (result);
4517 }
4518 
4519 static struct cam_eb *
4520 xpt_find_bus(path_id_t path_id)
4521 {
4522 	struct cam_eb *bus;
4523 
4524 	xpt_lock_buses();
4525 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4526 	     bus != NULL;
4527 	     bus = TAILQ_NEXT(bus, links)) {
4528 		if (bus->path_id == path_id) {
4529 			bus->refcount++;
4530 			break;
4531 		}
4532 	}
4533 	xpt_unlock_buses();
4534 	return (bus);
4535 }
4536 
4537 static struct cam_et *
4538 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4539 {
4540 	struct cam_et *target;
4541 
4542 	mtx_assert(bus->sim->mtx, MA_OWNED);
4543 	for (target = TAILQ_FIRST(&bus->et_entries);
4544 	     target != NULL;
4545 	     target = TAILQ_NEXT(target, links)) {
4546 		if (target->target_id == target_id) {
4547 			target->refcount++;
4548 			break;
4549 		}
4550 	}
4551 	return (target);
4552 }
4553 
4554 static struct cam_ed *
4555 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4556 {
4557 	struct cam_ed *device;
4558 
4559 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4560 	for (device = TAILQ_FIRST(&target->ed_entries);
4561 	     device != NULL;
4562 	     device = TAILQ_NEXT(device, links)) {
4563 		if (device->lun_id == lun_id) {
4564 			device->refcount++;
4565 			break;
4566 		}
4567 	}
4568 	return (device);
4569 }
4570 
4571 void
4572 xpt_start_tags(struct cam_path *path)
4573 {
4574 	struct ccb_relsim crs;
4575 	struct cam_ed *device;
4576 	struct cam_sim *sim;
4577 	int    newopenings;
4578 
4579 	device = path->device;
4580 	sim = path->bus->sim;
4581 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4582 	xpt_freeze_devq(path, /*count*/1);
4583 	device->inq_flags |= SID_CmdQue;
4584 	if (device->tag_saved_openings != 0)
4585 		newopenings = device->tag_saved_openings;
4586 	else
4587 		newopenings = min(device->maxtags,
4588 				  sim->max_tagged_dev_openings);
4589 	xpt_dev_ccbq_resize(path, newopenings);
4590 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4591 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4592 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4593 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4594 	crs.openings
4595 	    = crs.release_timeout
4596 	    = crs.qfrozen_cnt
4597 	    = 0;
4598 	xpt_action((union ccb *)&crs);
4599 }
4600 
4601 void
4602 xpt_stop_tags(struct cam_path *path)
4603 {
4604 	struct ccb_relsim crs;
4605 	struct cam_ed *device;
4606 	struct cam_sim *sim;
4607 
4608 	device = path->device;
4609 	sim = path->bus->sim;
4610 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4611 	device->tag_delay_count = 0;
4612 	xpt_freeze_devq(path, /*count*/1);
4613 	device->inq_flags &= ~SID_CmdQue;
4614 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4615 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4616 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4617 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4618 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4619 	crs.openings
4620 	    = crs.release_timeout
4621 	    = crs.qfrozen_cnt
4622 	    = 0;
4623 	xpt_action((union ccb *)&crs);
4624 }
4625 
4626 static void
4627 xpt_boot_delay(void *arg)
4628 {
4629 
4630 	xpt_release_boot();
4631 }
4632 
4633 static void
4634 xpt_config(void *arg)
4635 {
4636 	/*
4637 	 * Now that interrupts are enabled, go find our devices
4638 	 */
4639 
4640 	/* Setup debugging path */
4641 	if (cam_dflags != CAM_DEBUG_NONE) {
4642 		if (xpt_create_path_unlocked(&cam_dpath, NULL,
4643 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4644 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4645 			printf("xpt_config: xpt_create_path() failed for debug"
4646 			       " target %d:%d:%d, debugging disabled\n",
4647 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4648 			cam_dflags = CAM_DEBUG_NONE;
4649 		}
4650 	} else
4651 		cam_dpath = NULL;
4652 
4653 	periphdriver_init(1);
4654 	xpt_hold_boot();
4655 	callout_init(&xsoftc.boot_callout, 1);
4656 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4657 	    xpt_boot_delay, NULL);
4658 	/* Fire up rescan thread. */
4659 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4660 		printf("xpt_config: failed to create rescan thread.\n");
4661 	}
4662 }
4663 
4664 void
4665 xpt_hold_boot(void)
4666 {
4667 	xpt_lock_buses();
4668 	xsoftc.buses_to_config++;
4669 	xpt_unlock_buses();
4670 }
4671 
4672 void
4673 xpt_release_boot(void)
4674 {
4675 	xpt_lock_buses();
4676 	xsoftc.buses_to_config--;
4677 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4678 		struct	xpt_task *task;
4679 
4680 		xsoftc.buses_config_done = 1;
4681 		xpt_unlock_buses();
4682 		/* Call manually because we don't have any busses */
4683 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4684 		if (task != NULL) {
4685 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4686 			taskqueue_enqueue(taskqueue_thread, &task->task);
4687 		}
4688 	} else
4689 		xpt_unlock_buses();
4690 }
4691 
4692 /*
4693  * If the given device only has one peripheral attached to it, and if that
4694  * peripheral is the passthrough driver, announce it.  This insures that the
4695  * user sees some sort of announcement for every peripheral in their system.
4696  */
4697 static int
4698 xptpassannouncefunc(struct cam_ed *device, void *arg)
4699 {
4700 	struct cam_periph *periph;
4701 	int i;
4702 
4703 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4704 	     periph = SLIST_NEXT(periph, periph_links), i++);
4705 
4706 	periph = SLIST_FIRST(&device->periphs);
4707 	if ((i == 1)
4708 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4709 		xpt_announce_periph(periph, NULL);
4710 
4711 	return(1);
4712 }
4713 
4714 static void
4715 xpt_finishconfig_task(void *context, int pending)
4716 {
4717 
4718 	periphdriver_init(2);
4719 	/*
4720 	 * Check for devices with no "standard" peripheral driver
4721 	 * attached.  For any devices like that, announce the
4722 	 * passthrough driver so the user will see something.
4723 	 */
4724 	if (!bootverbose)
4725 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4726 
4727 	/* Release our hook so that the boot can continue. */
4728 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4729 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4730 	xsoftc.xpt_config_hook = NULL;
4731 
4732 	free(context, M_CAMXPT);
4733 }
4734 
4735 cam_status
4736 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4737 		   struct cam_path *path)
4738 {
4739 	struct ccb_setasync csa;
4740 	cam_status status;
4741 	int xptpath = 0;
4742 
4743 	if (path == NULL) {
4744 		mtx_lock(&xsoftc.xpt_lock);
4745 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4746 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4747 		if (status != CAM_REQ_CMP) {
4748 			mtx_unlock(&xsoftc.xpt_lock);
4749 			return (status);
4750 		}
4751 		xptpath = 1;
4752 	}
4753 
4754 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4755 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4756 	csa.event_enable = event;
4757 	csa.callback = cbfunc;
4758 	csa.callback_arg = cbarg;
4759 	xpt_action((union ccb *)&csa);
4760 	status = csa.ccb_h.status;
4761 
4762 	if (xptpath) {
4763 		xpt_free_path(path);
4764 		mtx_unlock(&xsoftc.xpt_lock);
4765 	}
4766 
4767 	if ((status == CAM_REQ_CMP) &&
4768 	    (csa.event_enable & AC_FOUND_DEVICE)) {
4769 		/*
4770 		 * Get this peripheral up to date with all
4771 		 * the currently existing devices.
4772 		 */
4773 		xpt_for_all_devices(xptsetasyncfunc, &csa);
4774 	}
4775 	if ((status == CAM_REQ_CMP) &&
4776 	    (csa.event_enable & AC_PATH_REGISTERED)) {
4777 		/*
4778 		 * Get this peripheral up to date with all
4779 		 * the currently existing busses.
4780 		 */
4781 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4782 	}
4783 
4784 	return (status);
4785 }
4786 
4787 static void
4788 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4789 {
4790 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4791 
4792 	switch (work_ccb->ccb_h.func_code) {
4793 	/* Common cases first */
4794 	case XPT_PATH_INQ:		/* Path routing inquiry */
4795 	{
4796 		struct ccb_pathinq *cpi;
4797 
4798 		cpi = &work_ccb->cpi;
4799 		cpi->version_num = 1; /* XXX??? */
4800 		cpi->hba_inquiry = 0;
4801 		cpi->target_sprt = 0;
4802 		cpi->hba_misc = 0;
4803 		cpi->hba_eng_cnt = 0;
4804 		cpi->max_target = 0;
4805 		cpi->max_lun = 0;
4806 		cpi->initiator_id = 0;
4807 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4808 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4809 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4810 		cpi->unit_number = sim->unit_number;
4811 		cpi->bus_id = sim->bus_id;
4812 		cpi->base_transfer_speed = 0;
4813 		cpi->protocol = PROTO_UNSPECIFIED;
4814 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4815 		cpi->transport = XPORT_UNSPECIFIED;
4816 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4817 		cpi->ccb_h.status = CAM_REQ_CMP;
4818 		xpt_done(work_ccb);
4819 		break;
4820 	}
4821 	default:
4822 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4823 		xpt_done(work_ccb);
4824 		break;
4825 	}
4826 }
4827 
4828 /*
4829  * The xpt as a "controller" has no interrupt sources, so polling
4830  * is a no-op.
4831  */
4832 static void
4833 xptpoll(struct cam_sim *sim)
4834 {
4835 }
4836 
4837 void
4838 xpt_lock_buses(void)
4839 {
4840 	mtx_lock(&xsoftc.xpt_topo_lock);
4841 }
4842 
4843 void
4844 xpt_unlock_buses(void)
4845 {
4846 	mtx_unlock(&xsoftc.xpt_topo_lock);
4847 }
4848 
4849 static void
4850 camisr(void *dummy)
4851 {
4852 	cam_simq_t queue;
4853 	struct cam_sim *sim;
4854 
4855 	mtx_lock(&cam_simq_lock);
4856 	TAILQ_INIT(&queue);
4857 	while (!TAILQ_EMPTY(&cam_simq)) {
4858 		TAILQ_CONCAT(&queue, &cam_simq, links);
4859 		mtx_unlock(&cam_simq_lock);
4860 
4861 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4862 			TAILQ_REMOVE(&queue, sim, links);
4863 			CAM_SIM_LOCK(sim);
4864 			camisr_runqueue(&sim->sim_doneq);
4865 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4866 			CAM_SIM_UNLOCK(sim);
4867 		}
4868 		mtx_lock(&cam_simq_lock);
4869 	}
4870 	mtx_unlock(&cam_simq_lock);
4871 }
4872 
4873 static void
4874 camisr_runqueue(void *V_queue)
4875 {
4876 	cam_isrq_t *queue = V_queue;
4877 	struct	ccb_hdr *ccb_h;
4878 
4879 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4880 		int	runq;
4881 
4882 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4883 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4884 
4885 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4886 			  ("camisr\n"));
4887 
4888 		runq = FALSE;
4889 
4890 		if (ccb_h->flags & CAM_HIGH_POWER) {
4891 			struct highpowerlist	*hphead;
4892 			union ccb		*send_ccb;
4893 
4894 			mtx_lock(&xsoftc.xpt_lock);
4895 			hphead = &xsoftc.highpowerq;
4896 
4897 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4898 
4899 			/*
4900 			 * Increment the count since this command is done.
4901 			 */
4902 			xsoftc.num_highpower++;
4903 
4904 			/*
4905 			 * Any high powered commands queued up?
4906 			 */
4907 			if (send_ccb != NULL) {
4908 
4909 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4910 				mtx_unlock(&xsoftc.xpt_lock);
4911 
4912 				xpt_release_devq(send_ccb->ccb_h.path,
4913 						 /*count*/1, /*runqueue*/TRUE);
4914 			} else
4915 				mtx_unlock(&xsoftc.xpt_lock);
4916 		}
4917 
4918 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4919 			struct cam_ed *dev;
4920 
4921 			dev = ccb_h->path->device;
4922 
4923 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4924 			ccb_h->path->bus->sim->devq->send_active--;
4925 			ccb_h->path->bus->sim->devq->send_openings++;
4926 			runq = TRUE;
4927 
4928 			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4929 			  && (dev->ccbq.dev_active == 0))) {
4930 				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
4931 				xpt_release_devq(ccb_h->path, /*count*/1,
4932 						 /*run_queue*/FALSE);
4933 			}
4934 
4935 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4936 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
4937 				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4938 				xpt_release_devq(ccb_h->path, /*count*/1,
4939 						 /*run_queue*/FALSE);
4940 			}
4941 
4942 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4943 			 && (--dev->tag_delay_count == 0))
4944 				xpt_start_tags(ccb_h->path);
4945 			if (!device_is_queued(dev)) {
4946 				(void)xpt_schedule_devq(
4947 				    ccb_h->path->bus->sim->devq, dev);
4948 			}
4949 		}
4950 
4951 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
4952 			xpt_release_simq(ccb_h->path->bus->sim,
4953 					 /*run_queue*/TRUE);
4954 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
4955 			runq = FALSE;
4956 		}
4957 
4958 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4959 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
4960 			xpt_release_devq(ccb_h->path, /*count*/1,
4961 					 /*run_queue*/TRUE);
4962 			ccb_h->status &= ~CAM_DEV_QFRZN;
4963 		} else if (runq) {
4964 			xpt_run_devq(ccb_h->path->bus->sim->devq);
4965 		}
4966 
4967 		/* Call the peripheral driver's callback */
4968 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4969 	}
4970 }
4971