xref: /freebsd/sys/cam/cam_xpt.c (revision 2cf0c51793da5a2fc03db8990fc2feb3f9aa119f)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/time.h>
42 #include <sys/conf.h>
43 #include <sys/fcntl.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/taskqueue.h>
48 
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/sysctl.h>
52 #include <sys/kthread.h>
53 
54 #include <cam/cam.h>
55 #include <cam/cam_ccb.h>
56 #include <cam/cam_iosched.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_sim.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_sim.h>
62 #include <cam/cam_xpt_periph.h>
63 #include <cam/cam_xpt_internal.h>
64 #include <cam/cam_debug.h>
65 #include <cam/cam_compat.h>
66 
67 #include <cam/scsi/scsi_all.h>
68 #include <cam/scsi/scsi_message.h>
69 #include <cam/scsi/scsi_pass.h>
70 
71 #include <machine/stdarg.h>	/* for xpt_print below */
72 
73 /* Wild guess based on not wanting to grow the stack too much */
74 #define XPT_PRINT_MAXLEN	512
75 #ifdef PRINTF_BUFR_SIZE
76 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
77 #else
78 #define XPT_PRINT_LEN	128
79 #endif
80 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
81 
82 /*
83  * This is the maximum number of high powered commands (e.g. start unit)
84  * that can be outstanding at a particular time.
85  */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER  4
88 #endif
89 
90 /* Datastructures internal to the xpt layer */
91 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
92 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
93 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
94 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
95 
96 struct xpt_softc {
97 	uint32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	struct mtx		xpt_highpower_lock;
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/*
110 	 * Registered buses
111 	 *
112 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
113 	 * "buses" is preferred.
114 	 */
115 	TAILQ_HEAD(,cam_eb)	xpt_busses;
116 	u_int			bus_generation;
117 
118 	int			boot_delay;
119 	struct callout 		boot_callout;
120 	struct task		boot_task;
121 	struct root_hold_token	xpt_rootmount;
122 
123 	struct mtx		xpt_topo_lock;
124 	struct taskqueue	*xpt_taskq;
125 };
126 
127 typedef enum {
128 	DM_RET_COPY		= 0x01,
129 	DM_RET_FLAG_MASK	= 0x0f,
130 	DM_RET_NONE		= 0x00,
131 	DM_RET_STOP		= 0x10,
132 	DM_RET_DESCEND		= 0x20,
133 	DM_RET_ERROR		= 0x30,
134 	DM_RET_ACTION_MASK	= 0xf0
135 } dev_match_ret;
136 
137 typedef enum {
138 	XPT_DEPTH_BUS,
139 	XPT_DEPTH_TARGET,
140 	XPT_DEPTH_DEVICE,
141 	XPT_DEPTH_PERIPH
142 } xpt_traverse_depth;
143 
144 struct xpt_traverse_config {
145 	xpt_traverse_depth	depth;
146 	void			*tr_func;
147 	void			*tr_arg;
148 };
149 
150 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
151 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
152 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
153 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
154 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
155 
156 /* Transport layer configuration information */
157 static struct xpt_softc xsoftc;
158 
159 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
160 
161 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
162            &xsoftc.boot_delay, 0, "Bus registration wait time");
163 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
164 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
165 
166 struct cam_doneq {
167 	struct mtx_padalign	cam_doneq_mtx;
168 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
169 	int			cam_doneq_sleep;
170 };
171 
172 static struct cam_doneq cam_doneqs[MAXCPU];
173 static u_int __read_mostly cam_num_doneqs;
174 static struct proc *cam_proc;
175 static struct cam_doneq cam_async;
176 
177 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
178            &cam_num_doneqs, 0, "Number of completion queues/threads");
179 
180 struct cam_periph *xpt_periph;
181 
182 static periph_init_t xpt_periph_init;
183 
184 static struct periph_driver xpt_driver =
185 {
186 	xpt_periph_init, "xpt",
187 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
188 	CAM_PERIPH_DRV_EARLY
189 };
190 
191 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
192 
193 static d_open_t xptopen;
194 static d_close_t xptclose;
195 static d_ioctl_t xptioctl;
196 static d_ioctl_t xptdoioctl;
197 
198 static struct cdevsw xpt_cdevsw = {
199 	.d_version =	D_VERSION,
200 	.d_flags =	0,
201 	.d_open =	xptopen,
202 	.d_close =	xptclose,
203 	.d_ioctl =	xptioctl,
204 	.d_name =	"xpt",
205 };
206 
207 /* Storage for debugging datastructures */
208 struct cam_path *cam_dpath;
209 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
210 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
211 	&cam_dflags, 0, "Enabled debug flags");
212 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
213 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
214 	&cam_debug_delay, 0, "Delay in us after each debug message");
215 
216 /* Our boot-time initialization hook */
217 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
218 
219 static moduledata_t cam_moduledata = {
220 	"cam",
221 	cam_module_event_handler,
222 	NULL
223 };
224 
225 static int	xpt_init(void *);
226 
227 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
228 MODULE_VERSION(cam, 1);
229 
230 static void		xpt_async_bcast(struct async_list *async_head,
231 					uint32_t async_code,
232 					struct cam_path *path,
233 					void *async_arg);
234 static path_id_t xptnextfreepathid(void);
235 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
236 static union ccb *xpt_get_ccb(struct cam_periph *periph);
237 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
238 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
239 static void	 xpt_run_allocq_task(void *context, int pending);
240 static void	 xpt_run_devq(struct cam_devq *devq);
241 static callout_func_t xpt_release_devq_timeout;
242 static void	 xpt_acquire_bus(struct cam_eb *bus);
243 static void	 xpt_release_bus(struct cam_eb *bus);
244 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
245 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
246 		    int run_queue);
247 static struct cam_et*
248 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
249 static void	 xpt_acquire_target(struct cam_et *target);
250 static void	 xpt_release_target(struct cam_et *target);
251 static struct cam_eb*
252 		 xpt_find_bus(path_id_t path_id);
253 static struct cam_et*
254 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
255 static struct cam_ed*
256 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
257 static void	 xpt_config(void *arg);
258 static void	 xpt_hold_boot_locked(void);
259 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
260 				 uint32_t new_priority);
261 static xpt_devicefunc_t xptpassannouncefunc;
262 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
263 static void	 xptpoll(struct cam_sim *sim);
264 static void	 camisr_runqueue(void);
265 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
266 static void	 xpt_done_td(void *);
267 static void	 xpt_async_td(void *);
268 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
269 				    u_int num_patterns, struct cam_eb *bus);
270 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
271 				       u_int num_patterns,
272 				       struct cam_ed *device);
273 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
274 				       u_int num_patterns,
275 				       struct cam_periph *periph);
276 static xpt_busfunc_t	xptedtbusfunc;
277 static xpt_targetfunc_t	xptedttargetfunc;
278 static xpt_devicefunc_t	xptedtdevicefunc;
279 static xpt_periphfunc_t	xptedtperiphfunc;
280 static xpt_pdrvfunc_t	xptplistpdrvfunc;
281 static xpt_periphfunc_t	xptplistperiphfunc;
282 static int		xptedtmatch(struct ccb_dev_match *cdm);
283 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
284 static int		xptbustraverse(struct cam_eb *start_bus,
285 				       xpt_busfunc_t *tr_func, void *arg);
286 static int		xpttargettraverse(struct cam_eb *bus,
287 					  struct cam_et *start_target,
288 					  xpt_targetfunc_t *tr_func, void *arg);
289 static int		xptdevicetraverse(struct cam_et *target,
290 					  struct cam_ed *start_device,
291 					  xpt_devicefunc_t *tr_func, void *arg);
292 static int		xptperiphtraverse(struct cam_ed *device,
293 					  struct cam_periph *start_periph,
294 					  xpt_periphfunc_t *tr_func, void *arg);
295 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
296 					xpt_pdrvfunc_t *tr_func, void *arg);
297 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
298 					    struct cam_periph *start_periph,
299 					    xpt_periphfunc_t *tr_func,
300 					    void *arg);
301 static xpt_busfunc_t	xptdefbusfunc;
302 static xpt_targetfunc_t	xptdeftargetfunc;
303 static xpt_devicefunc_t	xptdefdevicefunc;
304 static xpt_periphfunc_t	xptdefperiphfunc;
305 static void		xpt_finishconfig_task(void *context, int pending);
306 static void		xpt_dev_async_default(uint32_t async_code,
307 					      struct cam_eb *bus,
308 					      struct cam_et *target,
309 					      struct cam_ed *device,
310 					      void *async_arg);
311 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
312 						 struct cam_et *target,
313 						 lun_id_t lun_id);
314 static xpt_devicefunc_t	xptsetasyncfunc;
315 static xpt_busfunc_t	xptsetasyncbusfunc;
316 static cam_status	xptregister(struct cam_periph *periph,
317 				    void *arg);
318 
319 static __inline int
320 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
321 {
322 	int	retval;
323 
324 	mtx_assert(&devq->send_mtx, MA_OWNED);
325 	if ((dev->ccbq.queue.entries > 0) &&
326 	    (dev->ccbq.dev_openings > 0) &&
327 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
328 		/*
329 		 * The priority of a device waiting for controller
330 		 * resources is that of the highest priority CCB
331 		 * enqueued.
332 		 */
333 		retval =
334 		    xpt_schedule_dev(&devq->send_queue,
335 				     &dev->devq_entry,
336 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
337 	} else {
338 		retval = 0;
339 	}
340 	return (retval);
341 }
342 
343 static __inline int
344 device_is_queued(struct cam_ed *device)
345 {
346 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
347 }
348 
349 static void
350 xpt_periph_init(void)
351 {
352 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
353 }
354 
355 static int
356 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
357 {
358 
359 	/*
360 	 * Only allow read-write access.
361 	 */
362 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
363 		return(EPERM);
364 
365 	/*
366 	 * We don't allow nonblocking access.
367 	 */
368 	if ((flags & O_NONBLOCK) != 0) {
369 		printf("%s: can't do nonblocking access\n", devtoname(dev));
370 		return(ENODEV);
371 	}
372 
373 	return(0);
374 }
375 
376 static int
377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379 
380 	return(0);
381 }
382 
383 /*
384  * Don't automatically grab the xpt softc lock here even though this is going
385  * through the xpt device.  The xpt device is really just a back door for
386  * accessing other devices and SIMs, so the right thing to do is to grab
387  * the appropriate SIM lock once the bus/SIM is located.
388  */
389 static int
390 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
391 {
392 	int error;
393 
394 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
395 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
396 	}
397 	return (error);
398 }
399 
400 static int
401 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
402 {
403 	int error;
404 
405 	error = 0;
406 
407 	switch(cmd) {
408 	/*
409 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
410 	 * to accept CCB types that don't quite make sense to send through a
411 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
412 	 * in the CAM spec.
413 	 */
414 	case CAMIOCOMMAND: {
415 		union ccb *ccb;
416 		union ccb *inccb;
417 		struct cam_eb *bus;
418 
419 		inccb = (union ccb *)addr;
420 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
421 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
422 			inccb->csio.bio = NULL;
423 #endif
424 
425 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
426 			return (EINVAL);
427 
428 		bus = xpt_find_bus(inccb->ccb_h.path_id);
429 		if (bus == NULL)
430 			return (EINVAL);
431 
432 		switch (inccb->ccb_h.func_code) {
433 		case XPT_SCAN_BUS:
434 		case XPT_RESET_BUS:
435 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 				xpt_release_bus(bus);
438 				return (EINVAL);
439 			}
440 			break;
441 		case XPT_SCAN_TGT:
442 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 				xpt_release_bus(bus);
445 				return (EINVAL);
446 			}
447 			break;
448 		default:
449 			break;
450 		}
451 
452 		switch(inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 		case XPT_PATH_INQ:
456 		case XPT_ENG_INQ:
457 		case XPT_SCAN_LUN:
458 		case XPT_SCAN_TGT:
459 
460 			ccb = xpt_alloc_ccb();
461 
462 			/*
463 			 * Create a path using the bus, target, and lun the
464 			 * user passed in.
465 			 */
466 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 					    inccb->ccb_h.path_id,
468 					    inccb->ccb_h.target_id,
469 					    inccb->ccb_h.target_lun) !=
470 					    CAM_REQ_CMP){
471 				error = EINVAL;
472 				xpt_free_ccb(ccb);
473 				break;
474 			}
475 			/* Ensure all of our fields are correct */
476 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477 				      inccb->ccb_h.pinfo.priority);
478 			xpt_merge_ccb(ccb, inccb);
479 			xpt_path_lock(ccb->ccb_h.path);
480 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481 			xpt_path_unlock(ccb->ccb_h.path);
482 			bcopy(ccb, inccb, sizeof(union ccb));
483 			xpt_free_path(ccb->ccb_h.path);
484 			xpt_free_ccb(ccb);
485 			break;
486 
487 		case XPT_DEBUG: {
488 			union ccb ccb;
489 
490 			/*
491 			 * This is an immediate CCB, so it's okay to
492 			 * allocate it on the stack.
493 			 */
494 			memset(&ccb, 0, sizeof(ccb));
495 
496 			/*
497 			 * Create a path using the bus, target, and lun the
498 			 * user passed in.
499 			 */
500 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
501 					    inccb->ccb_h.path_id,
502 					    inccb->ccb_h.target_id,
503 					    inccb->ccb_h.target_lun) !=
504 					    CAM_REQ_CMP){
505 				error = EINVAL;
506 				break;
507 			}
508 			/* Ensure all of our fields are correct */
509 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
510 				      inccb->ccb_h.pinfo.priority);
511 			xpt_merge_ccb(&ccb, inccb);
512 			xpt_action(&ccb);
513 			bcopy(&ccb, inccb, sizeof(union ccb));
514 			xpt_free_path(ccb.ccb_h.path);
515 			break;
516 		}
517 		case XPT_DEV_MATCH: {
518 			struct cam_periph_map_info mapinfo;
519 			struct cam_path *old_path;
520 
521 			/*
522 			 * We can't deal with physical addresses for this
523 			 * type of transaction.
524 			 */
525 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526 			    CAM_DATA_VADDR) {
527 				error = EINVAL;
528 				break;
529 			}
530 
531 			/*
532 			 * Save this in case the caller had it set to
533 			 * something in particular.
534 			 */
535 			old_path = inccb->ccb_h.path;
536 
537 			/*
538 			 * We really don't need a path for the matching
539 			 * code.  The path is needed because of the
540 			 * debugging statements in xpt_action().  They
541 			 * assume that the CCB has a valid path.
542 			 */
543 			inccb->ccb_h.path = xpt_periph->path;
544 
545 			bzero(&mapinfo, sizeof(mapinfo));
546 
547 			/*
548 			 * Map the pattern and match buffers into kernel
549 			 * virtual address space.
550 			 */
551 			error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
552 
553 			if (error) {
554 				inccb->ccb_h.path = old_path;
555 				break;
556 			}
557 
558 			/*
559 			 * This is an immediate CCB, we can send it on directly.
560 			 */
561 			xpt_action(inccb);
562 
563 			/*
564 			 * Map the buffers back into user space.
565 			 */
566 			error = cam_periph_unmapmem(inccb, &mapinfo);
567 
568 			inccb->ccb_h.path = old_path;
569 			break;
570 		}
571 		default:
572 			error = ENOTSUP;
573 			break;
574 		}
575 		xpt_release_bus(bus);
576 		break;
577 	}
578 	/*
579 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
580 	 * with the periphal driver name and unit name filled in.  The other
581 	 * fields don't really matter as input.  The passthrough driver name
582 	 * ("pass"), and unit number are passed back in the ccb.  The current
583 	 * device generation number, and the index into the device peripheral
584 	 * driver list, and the status are also passed back.  Note that
585 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
586 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
587 	 * (or rather should be) impossible for the device peripheral driver
588 	 * list to change since we look at the whole thing in one pass, and
589 	 * we do it with lock protection.
590 	 *
591 	 */
592 	case CAMGETPASSTHRU: {
593 		union ccb *ccb;
594 		struct cam_periph *periph;
595 		struct periph_driver **p_drv;
596 		char   *name;
597 		u_int unit;
598 		bool base_periph_found;
599 
600 		ccb = (union ccb *)addr;
601 		unit = ccb->cgdl.unit_number;
602 		name = ccb->cgdl.periph_name;
603 		base_periph_found = false;
604 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
605 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
606 			ccb->csio.bio = NULL;
607 #endif
608 
609 		/*
610 		 * Sanity check -- make sure we don't get a null peripheral
611 		 * driver name.
612 		 */
613 		if (*ccb->cgdl.periph_name == '\0') {
614 			error = EINVAL;
615 			break;
616 		}
617 
618 		/* Keep the list from changing while we traverse it */
619 		xpt_lock_buses();
620 
621 		/* first find our driver in the list of drivers */
622 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
623 			if (strcmp((*p_drv)->driver_name, name) == 0)
624 				break;
625 
626 		if (*p_drv == NULL) {
627 			xpt_unlock_buses();
628 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
629 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
630 			*ccb->cgdl.periph_name = '\0';
631 			ccb->cgdl.unit_number = 0;
632 			error = ENOENT;
633 			break;
634 		}
635 
636 		/*
637 		 * Run through every peripheral instance of this driver
638 		 * and check to see whether it matches the unit passed
639 		 * in by the user.  If it does, get out of the loops and
640 		 * find the passthrough driver associated with that
641 		 * peripheral driver.
642 		 */
643 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
644 		     periph = TAILQ_NEXT(periph, unit_links)) {
645 			if (periph->unit_number == unit)
646 				break;
647 		}
648 		/*
649 		 * If we found the peripheral driver that the user passed
650 		 * in, go through all of the peripheral drivers for that
651 		 * particular device and look for a passthrough driver.
652 		 */
653 		if (periph != NULL) {
654 			struct cam_ed *device;
655 			int i;
656 
657 			base_periph_found = true;
658 			device = periph->path->device;
659 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
660 			     periph != NULL;
661 			     periph = SLIST_NEXT(periph, periph_links), i++) {
662 				/*
663 				 * Check to see whether we have a
664 				 * passthrough device or not.
665 				 */
666 				if (strcmp(periph->periph_name, "pass") == 0) {
667 					/*
668 					 * Fill in the getdevlist fields.
669 					 */
670 					strlcpy(ccb->cgdl.periph_name,
671 					       periph->periph_name,
672 					       sizeof(ccb->cgdl.periph_name));
673 					ccb->cgdl.unit_number =
674 						periph->unit_number;
675 					if (SLIST_NEXT(periph, periph_links))
676 						ccb->cgdl.status =
677 							CAM_GDEVLIST_MORE_DEVS;
678 					else
679 						ccb->cgdl.status =
680 						       CAM_GDEVLIST_LAST_DEVICE;
681 					ccb->cgdl.generation =
682 						device->generation;
683 					ccb->cgdl.index = i;
684 					/*
685 					 * Fill in some CCB header fields
686 					 * that the user may want.
687 					 */
688 					ccb->ccb_h.path_id =
689 						periph->path->bus->path_id;
690 					ccb->ccb_h.target_id =
691 						periph->path->target->target_id;
692 					ccb->ccb_h.target_lun =
693 						periph->path->device->lun_id;
694 					ccb->ccb_h.status = CAM_REQ_CMP;
695 					break;
696 				}
697 			}
698 		}
699 
700 		/*
701 		 * If the periph is null here, one of two things has
702 		 * happened.  The first possibility is that we couldn't
703 		 * find the unit number of the particular peripheral driver
704 		 * that the user is asking about.  e.g. the user asks for
705 		 * the passthrough driver for "da11".  We find the list of
706 		 * "da" peripherals all right, but there is no unit 11.
707 		 * The other possibility is that we went through the list
708 		 * of peripheral drivers attached to the device structure,
709 		 * but didn't find one with the name "pass".  Either way,
710 		 * we return ENOENT, since we couldn't find something.
711 		 */
712 		if (periph == NULL) {
713 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
714 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
715 			*ccb->cgdl.periph_name = '\0';
716 			ccb->cgdl.unit_number = 0;
717 			error = ENOENT;
718 			/*
719 			 * It is unfortunate that this is even necessary,
720 			 * but there are many, many clueless users out there.
721 			 * If this is true, the user is looking for the
722 			 * passthrough driver, but doesn't have one in his
723 			 * kernel.
724 			 */
725 			if (base_periph_found) {
726 				printf("xptioctl: pass driver is not in the "
727 				       "kernel\n");
728 				printf("xptioctl: put \"device pass\" in "
729 				       "your kernel config file\n");
730 			}
731 		}
732 		xpt_unlock_buses();
733 		break;
734 		}
735 	default:
736 		error = ENOTTY;
737 		break;
738 	}
739 
740 	return(error);
741 }
742 
743 static int
744 cam_module_event_handler(module_t mod, int what, void *arg)
745 {
746 	int error;
747 
748 	switch (what) {
749 	case MOD_LOAD:
750 		if ((error = xpt_init(NULL)) != 0)
751 			return (error);
752 		break;
753 	case MOD_UNLOAD:
754 		return EBUSY;
755 	default:
756 		return EOPNOTSUPP;
757 	}
758 
759 	return 0;
760 }
761 
762 static struct xpt_proto *
763 xpt_proto_find(cam_proto proto)
764 {
765 	struct xpt_proto **pp;
766 
767 	SET_FOREACH(pp, cam_xpt_proto_set) {
768 		if ((*pp)->proto == proto)
769 			return *pp;
770 	}
771 
772 	return NULL;
773 }
774 
775 static void
776 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
777 {
778 
779 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
780 		xpt_free_path(done_ccb->ccb_h.path);
781 		xpt_free_ccb(done_ccb);
782 	} else {
783 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
784 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
785 	}
786 	xpt_release_boot();
787 }
788 
789 /* thread to handle bus rescans */
790 static void
791 xpt_scanner_thread(void *dummy)
792 {
793 	union ccb	*ccb;
794 	struct mtx	*mtx;
795 	struct cam_ed	*device;
796 
797 	xpt_lock_buses();
798 	for (;;) {
799 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
800 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
801 			       "-", 0);
802 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
803 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
804 			xpt_unlock_buses();
805 
806 			/*
807 			 * We need to lock the device's mutex which we use as
808 			 * the path mutex. We can't do it directly because the
809 			 * cam_path in the ccb may wind up going away because
810 			 * the path lock may be dropped and the path retired in
811 			 * the completion callback. We do this directly to keep
812 			 * the reference counts in cam_path sane. We also have
813 			 * to copy the device pointer because ccb_h.path may
814 			 * be freed in the callback.
815 			 */
816 			mtx = xpt_path_mtx(ccb->ccb_h.path);
817 			device = ccb->ccb_h.path->device;
818 			xpt_acquire_device(device);
819 			mtx_lock(mtx);
820 			xpt_action(ccb);
821 			mtx_unlock(mtx);
822 			xpt_release_device(device);
823 
824 			xpt_lock_buses();
825 		}
826 	}
827 }
828 
829 void
830 xpt_rescan(union ccb *ccb)
831 {
832 	struct ccb_hdr *hdr;
833 
834 	/* Prepare request */
835 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
836 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
837 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
838 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
839 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
840 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
841 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
842 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
843 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
844 	else {
845 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
846 		xpt_free_path(ccb->ccb_h.path);
847 		xpt_free_ccb(ccb);
848 		return;
849 	}
850 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
851 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
852  		xpt_action_name(ccb->ccb_h.func_code)));
853 
854 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
855 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
856 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
857 	/* Don't make duplicate entries for the same paths. */
858 	xpt_lock_buses();
859 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
860 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
861 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
862 				wakeup(&xsoftc.ccb_scanq);
863 				xpt_unlock_buses();
864 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
865 				xpt_free_path(ccb->ccb_h.path);
866 				xpt_free_ccb(ccb);
867 				return;
868 			}
869 		}
870 	}
871 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
872 	xpt_hold_boot_locked();
873 	wakeup(&xsoftc.ccb_scanq);
874 	xpt_unlock_buses();
875 }
876 
877 /* Functions accessed by the peripheral drivers */
878 static int
879 xpt_init(void *dummy)
880 {
881 	struct cam_sim *xpt_sim;
882 	struct cam_path *path;
883 	struct cam_devq *devq;
884 	cam_status status;
885 	int error, i;
886 
887 	TAILQ_INIT(&xsoftc.xpt_busses);
888 	TAILQ_INIT(&xsoftc.ccb_scanq);
889 	STAILQ_INIT(&xsoftc.highpowerq);
890 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
891 
892 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
893 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
894 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
895 
896 #ifdef CAM_BOOT_DELAY
897 	/*
898 	 * Override this value at compile time to assist our users
899 	 * who don't use loader to boot a kernel.
900 	 */
901 	xsoftc.boot_delay = CAM_BOOT_DELAY;
902 #endif
903 
904 	/*
905 	 * The xpt layer is, itself, the equivalent of a SIM.
906 	 * Allow 16 ccbs in the ccb pool for it.  This should
907 	 * give decent parallelism when we probe buses and
908 	 * perform other XPT functions.
909 	 */
910 	devq = cam_simq_alloc(16);
911 	if (devq == NULL)
912 		return (ENOMEM);
913 	xpt_sim = cam_sim_alloc(xptaction,
914 				xptpoll,
915 				"xpt",
916 				/*softc*/NULL,
917 				/*unit*/0,
918 				/*mtx*/NULL,
919 				/*max_dev_transactions*/0,
920 				/*max_tagged_dev_transactions*/0,
921 				devq);
922 	if (xpt_sim == NULL)
923 		return (ENOMEM);
924 
925 	if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
926 		printf("xpt_init: xpt_bus_register failed with errno %d,"
927 		       " failing attach\n", error);
928 		return (EINVAL);
929 	}
930 
931 	/*
932 	 * Looking at the XPT from the SIM layer, the XPT is
933 	 * the equivalent of a peripheral driver.  Allocate
934 	 * a peripheral driver entry for us.
935 	 */
936 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
937 				      CAM_TARGET_WILDCARD,
938 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
939 		printf("xpt_init: xpt_create_path failed with status %#x,"
940 		       " failing attach\n", status);
941 		return (EINVAL);
942 	}
943 	xpt_path_lock(path);
944 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
945 			 path, NULL, 0, xpt_sim);
946 	xpt_path_unlock(path);
947 	xpt_free_path(path);
948 
949 	if (cam_num_doneqs < 1)
950 		cam_num_doneqs = 1 + mp_ncpus / 6;
951 	else if (cam_num_doneqs > MAXCPU)
952 		cam_num_doneqs = MAXCPU;
953 	for (i = 0; i < cam_num_doneqs; i++) {
954 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
955 		    MTX_DEF);
956 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
957 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
958 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
959 		if (error != 0) {
960 			cam_num_doneqs = i;
961 			break;
962 		}
963 	}
964 	if (cam_num_doneqs < 1) {
965 		printf("xpt_init: Cannot init completion queues "
966 		       "- failing attach\n");
967 		return (ENOMEM);
968 	}
969 
970 	mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
971 	STAILQ_INIT(&cam_async.cam_doneq);
972 	if (kproc_kthread_add(xpt_async_td, &cam_async,
973 		&cam_proc, NULL, 0, 0, "cam", "async") != 0) {
974 		printf("xpt_init: Cannot init async thread "
975 		       "- failing attach\n");
976 		return (ENOMEM);
977 	}
978 
979 	/*
980 	 * Register a callback for when interrupts are enabled.
981 	 */
982 	config_intrhook_oneshot(xpt_config, NULL);
983 
984 	return (0);
985 }
986 
987 static cam_status
988 xptregister(struct cam_periph *periph, void *arg)
989 {
990 	struct cam_sim *xpt_sim;
991 
992 	if (periph == NULL) {
993 		printf("xptregister: periph was NULL!!\n");
994 		return(CAM_REQ_CMP_ERR);
995 	}
996 
997 	xpt_sim = (struct cam_sim *)arg;
998 	xpt_sim->softc = periph;
999 	xpt_periph = periph;
1000 	periph->softc = NULL;
1001 
1002 	return(CAM_REQ_CMP);
1003 }
1004 
1005 int32_t
1006 xpt_add_periph(struct cam_periph *periph)
1007 {
1008 	struct cam_ed *device;
1009 	int32_t	 status;
1010 
1011 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1012 	device = periph->path->device;
1013 	status = CAM_REQ_CMP;
1014 	if (device != NULL) {
1015 		mtx_lock(&device->target->bus->eb_mtx);
1016 		device->generation++;
1017 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1018 		mtx_unlock(&device->target->bus->eb_mtx);
1019 		atomic_add_32(&xsoftc.xpt_generation, 1);
1020 	}
1021 
1022 	return (status);
1023 }
1024 
1025 void
1026 xpt_remove_periph(struct cam_periph *periph)
1027 {
1028 	struct cam_ed *device;
1029 
1030 	device = periph->path->device;
1031 	if (device != NULL) {
1032 		mtx_lock(&device->target->bus->eb_mtx);
1033 		device->generation++;
1034 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1035 		mtx_unlock(&device->target->bus->eb_mtx);
1036 		atomic_add_32(&xsoftc.xpt_generation, 1);
1037 	}
1038 }
1039 
1040 void
1041 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1042 {
1043 	char buf[128];
1044 	struct sbuf sb;
1045 
1046 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1047 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1048 	xpt_announce_periph_sbuf(periph, &sb, announce_string);
1049 	(void)sbuf_finish(&sb);
1050 }
1051 
1052 void
1053 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1054     char *announce_string)
1055 {
1056 	struct	cam_path *path = periph->path;
1057 	struct  xpt_proto *proto;
1058 
1059 	cam_periph_assert(periph, MA_OWNED);
1060 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1061 
1062 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1063 	    periph->periph_name, periph->unit_number,
1064 	    path->bus->sim->sim_name,
1065 	    path->bus->sim->unit_number,
1066 	    path->bus->sim->bus_id,
1067 	    path->bus->path_id,
1068 	    path->target->target_id,
1069 	    (uintmax_t)path->device->lun_id);
1070 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1071 	proto = xpt_proto_find(path->device->protocol);
1072 	if (proto)
1073 		proto->ops->announce_sbuf(path->device, sb);
1074 	else
1075 		sbuf_printf(sb, "Unknown protocol device %d\n",
1076 		    path->device->protocol);
1077 	if (path->device->serial_num_len > 0) {
1078 		/* Don't wrap the screen  - print only the first 60 chars */
1079 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1080 		    periph->periph_name, periph->unit_number,
1081 		    path->device->serial_num);
1082 	}
1083 	/* Announce transport details. */
1084 	path->bus->xport->ops->announce_sbuf(periph, sb);
1085 	/* Announce command queueing. */
1086 	if (path->device->inq_flags & SID_CmdQue
1087 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1088 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1089 		    periph->periph_name, periph->unit_number);
1090 	}
1091 	/* Announce caller's details if they've passed in. */
1092 	if (announce_string != NULL)
1093 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1094 		    periph->unit_number, announce_string);
1095 }
1096 
1097 void
1098 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1099 {
1100 	if (quirks != 0) {
1101 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1102 		    periph->unit_number, quirks, bit_string);
1103 	}
1104 }
1105 
1106 void
1107 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1108 			 int quirks, char *bit_string)
1109 {
1110 	if (quirks != 0) {
1111 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1112 		    periph->unit_number, quirks, bit_string);
1113 	}
1114 }
1115 
1116 void
1117 xpt_denounce_periph(struct cam_periph *periph)
1118 {
1119 	char buf[128];
1120 	struct sbuf sb;
1121 
1122 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1123 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1124 	xpt_denounce_periph_sbuf(periph, &sb);
1125 	(void)sbuf_finish(&sb);
1126 }
1127 
1128 void
1129 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1130 {
1131 	struct cam_path *path = periph->path;
1132 	struct xpt_proto *proto;
1133 
1134 	cam_periph_assert(periph, MA_OWNED);
1135 
1136 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1137 	    periph->periph_name, periph->unit_number,
1138 	    path->bus->sim->sim_name,
1139 	    path->bus->sim->unit_number,
1140 	    path->bus->sim->bus_id,
1141 	    path->bus->path_id,
1142 	    path->target->target_id,
1143 	    (uintmax_t)path->device->lun_id);
1144 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1145 	proto = xpt_proto_find(path->device->protocol);
1146 	if (proto)
1147 		proto->ops->denounce_sbuf(path->device, sb);
1148 	else
1149 		sbuf_printf(sb, "Unknown protocol device %d",
1150 		    path->device->protocol);
1151 	if (path->device->serial_num_len > 0)
1152 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1153 	sbuf_cat(sb, " detached\n");
1154 }
1155 
1156 int
1157 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1158 {
1159 	int ret = -1, l, o;
1160 	struct ccb_dev_advinfo cdai;
1161 	struct scsi_vpd_device_id *did;
1162 	struct scsi_vpd_id_descriptor *idd;
1163 
1164 	xpt_path_assert(path, MA_OWNED);
1165 
1166 	memset(&cdai, 0, sizeof(cdai));
1167 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1168 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1169 	cdai.flags = CDAI_FLAG_NONE;
1170 	cdai.bufsiz = len;
1171 	cdai.buf = buf;
1172 
1173 	if (!strcmp(attr, "GEOM::ident"))
1174 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1175 	else if (!strcmp(attr, "GEOM::physpath"))
1176 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1177 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1178 		 strcmp(attr, "GEOM::lunname") == 0) {
1179 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1180 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1181 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1182 		if (cdai.buf == NULL) {
1183 			ret = ENOMEM;
1184 			goto out;
1185 		}
1186 	} else
1187 		goto out;
1188 
1189 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1190 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1191 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1192 	if (cdai.provsiz == 0)
1193 		goto out;
1194 	switch(cdai.buftype) {
1195 	case CDAI_TYPE_SCSI_DEVID:
1196 		did = (struct scsi_vpd_device_id *)cdai.buf;
1197 		if (strcmp(attr, "GEOM::lunid") == 0) {
1198 			idd = scsi_get_devid(did, cdai.provsiz,
1199 			    scsi_devid_is_lun_naa);
1200 			if (idd == NULL)
1201 				idd = scsi_get_devid(did, cdai.provsiz,
1202 				    scsi_devid_is_lun_eui64);
1203 			if (idd == NULL)
1204 				idd = scsi_get_devid(did, cdai.provsiz,
1205 				    scsi_devid_is_lun_uuid);
1206 			if (idd == NULL)
1207 				idd = scsi_get_devid(did, cdai.provsiz,
1208 				    scsi_devid_is_lun_md5);
1209 		} else
1210 			idd = NULL;
1211 
1212 		if (idd == NULL)
1213 			idd = scsi_get_devid(did, cdai.provsiz,
1214 			    scsi_devid_is_lun_t10);
1215 		if (idd == NULL)
1216 			idd = scsi_get_devid(did, cdai.provsiz,
1217 			    scsi_devid_is_lun_name);
1218 		if (idd == NULL)
1219 			break;
1220 
1221 		ret = 0;
1222 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1223 		    SVPD_ID_CODESET_ASCII) {
1224 			if (idd->length < len) {
1225 				for (l = 0; l < idd->length; l++)
1226 					buf[l] = idd->identifier[l] ?
1227 					    idd->identifier[l] : ' ';
1228 				buf[l] = 0;
1229 			} else
1230 				ret = EFAULT;
1231 			break;
1232 		}
1233 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1234 		    SVPD_ID_CODESET_UTF8) {
1235 			l = strnlen(idd->identifier, idd->length);
1236 			if (l < len) {
1237 				bcopy(idd->identifier, buf, l);
1238 				buf[l] = 0;
1239 			} else
1240 				ret = EFAULT;
1241 			break;
1242 		}
1243 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1244 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1245 			if ((idd->length - 2) * 2 + 4 >= len) {
1246 				ret = EFAULT;
1247 				break;
1248 			}
1249 			for (l = 2, o = 0; l < idd->length; l++) {
1250 				if (l == 6 || l == 8 || l == 10 || l == 12)
1251 				    o += sprintf(buf + o, "-");
1252 				o += sprintf(buf + o, "%02x",
1253 				    idd->identifier[l]);
1254 			}
1255 			break;
1256 		}
1257 		if (idd->length * 2 < len) {
1258 			for (l = 0; l < idd->length; l++)
1259 				sprintf(buf + l * 2, "%02x",
1260 				    idd->identifier[l]);
1261 		} else
1262 				ret = EFAULT;
1263 		break;
1264 	default:
1265 		if (cdai.provsiz < len) {
1266 			cdai.buf[cdai.provsiz] = 0;
1267 			ret = 0;
1268 		} else
1269 			ret = EFAULT;
1270 		break;
1271 	}
1272 
1273 out:
1274 	if ((char *)cdai.buf != buf)
1275 		free(cdai.buf, M_CAMXPT);
1276 	return ret;
1277 }
1278 
1279 static dev_match_ret
1280 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1281 	    struct cam_eb *bus)
1282 {
1283 	dev_match_ret retval;
1284 	u_int i;
1285 
1286 	retval = DM_RET_NONE;
1287 
1288 	/*
1289 	 * If we aren't given something to match against, that's an error.
1290 	 */
1291 	if (bus == NULL)
1292 		return(DM_RET_ERROR);
1293 
1294 	/*
1295 	 * If there are no match entries, then this bus matches no
1296 	 * matter what.
1297 	 */
1298 	if ((patterns == NULL) || (num_patterns == 0))
1299 		return(DM_RET_DESCEND | DM_RET_COPY);
1300 
1301 	for (i = 0; i < num_patterns; i++) {
1302 		struct bus_match_pattern *cur_pattern;
1303 		struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1304 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1305 
1306 		/*
1307 		 * If the pattern in question isn't for a bus node, we
1308 		 * aren't interested.  However, we do indicate to the
1309 		 * calling routine that we should continue descending the
1310 		 * tree, since the user wants to match against lower-level
1311 		 * EDT elements.
1312 		 */
1313 		if (patterns[i].type == DEV_MATCH_DEVICE &&
1314 		    (dp->flags & DEV_MATCH_PATH) != 0 &&
1315 		    dp->path_id != bus->path_id)
1316 			continue;
1317 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1318 		    (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1319 		    pp->path_id != bus->path_id)
1320 			continue;
1321 		if (patterns[i].type != DEV_MATCH_BUS) {
1322 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1323 				retval |= DM_RET_DESCEND;
1324 			continue;
1325 		}
1326 
1327 		cur_pattern = &patterns[i].pattern.bus_pattern;
1328 
1329 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1330 		 && (cur_pattern->path_id != bus->path_id))
1331 			continue;
1332 
1333 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1334 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1335 			continue;
1336 
1337 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1338 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1339 			continue;
1340 
1341 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1342 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1343 			     DEV_IDLEN) != 0))
1344 			continue;
1345 
1346 		/*
1347 		 * If we get to this point, the user definitely wants
1348 		 * information on this bus.  So tell the caller to copy the
1349 		 * data out.
1350 		 */
1351 		retval |= DM_RET_COPY;
1352 
1353 		/*
1354 		 * If the return action has been set to descend, then we
1355 		 * know that we've already seen a non-bus matching
1356 		 * expression, therefore we need to further descend the tree.
1357 		 * This won't change by continuing around the loop, so we
1358 		 * go ahead and return.  If we haven't seen a non-bus
1359 		 * matching expression, we keep going around the loop until
1360 		 * we exhaust the matching expressions.  We'll set the stop
1361 		 * flag once we fall out of the loop.
1362 		 */
1363 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1364 			return(retval);
1365 	}
1366 
1367 	/*
1368 	 * If the return action hasn't been set to descend yet, that means
1369 	 * we haven't seen anything other than bus matching patterns.  So
1370 	 * tell the caller to stop descending the tree -- the user doesn't
1371 	 * want to match against lower level tree elements.
1372 	 */
1373 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1374 		retval |= DM_RET_STOP;
1375 
1376 	return(retval);
1377 }
1378 
1379 static dev_match_ret
1380 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1381 	       struct cam_ed *device)
1382 {
1383 	dev_match_ret retval;
1384 	u_int i;
1385 
1386 	retval = DM_RET_NONE;
1387 
1388 	/*
1389 	 * If we aren't given something to match against, that's an error.
1390 	 */
1391 	if (device == NULL)
1392 		return(DM_RET_ERROR);
1393 
1394 	/*
1395 	 * If there are no match entries, then this device matches no
1396 	 * matter what.
1397 	 */
1398 	if ((patterns == NULL) || (num_patterns == 0))
1399 		return(DM_RET_DESCEND | DM_RET_COPY);
1400 
1401 	for (i = 0; i < num_patterns; i++) {
1402 		struct device_match_pattern *cur_pattern;
1403 		struct scsi_vpd_device_id *device_id_page;
1404 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1405 
1406 		/*
1407 		 * If the pattern in question isn't for a device node, we
1408 		 * aren't interested.
1409 		 */
1410 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1411 		    (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1412 		    pp->target_id != device->target->target_id)
1413 			continue;
1414 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1415 		    (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1416 		    pp->target_lun != device->lun_id)
1417 			continue;
1418 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1419 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1420 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1421 				retval |= DM_RET_DESCEND;
1422 			continue;
1423 		}
1424 
1425 		cur_pattern = &patterns[i].pattern.device_pattern;
1426 
1427 		/* Error out if mutually exclusive options are specified. */
1428 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1429 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1430 			return(DM_RET_ERROR);
1431 
1432 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1433 		 && (cur_pattern->path_id != device->target->bus->path_id))
1434 			continue;
1435 
1436 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1437 		 && (cur_pattern->target_id != device->target->target_id))
1438 			continue;
1439 
1440 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1441 		 && (cur_pattern->target_lun != device->lun_id))
1442 			continue;
1443 
1444 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1445 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1446 				    (caddr_t)&cur_pattern->data.inq_pat,
1447 				    1, sizeof(cur_pattern->data.inq_pat),
1448 				    scsi_static_inquiry_match) == NULL))
1449 			continue;
1450 
1451 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1452 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1453 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1454 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1455 				      device->device_id_len
1456 				    - SVPD_DEVICE_ID_HDR_LEN,
1457 				      cur_pattern->data.devid_pat.id,
1458 				      cur_pattern->data.devid_pat.id_len) != 0))
1459 			continue;
1460 
1461 		/*
1462 		 * If we get to this point, the user definitely wants
1463 		 * information on this device.  So tell the caller to copy
1464 		 * the data out.
1465 		 */
1466 		retval |= DM_RET_COPY;
1467 
1468 		/*
1469 		 * If the return action has been set to descend, then we
1470 		 * know that we've already seen a peripheral matching
1471 		 * expression, therefore we need to further descend the tree.
1472 		 * This won't change by continuing around the loop, so we
1473 		 * go ahead and return.  If we haven't seen a peripheral
1474 		 * matching expression, we keep going around the loop until
1475 		 * we exhaust the matching expressions.  We'll set the stop
1476 		 * flag once we fall out of the loop.
1477 		 */
1478 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1479 			return(retval);
1480 	}
1481 
1482 	/*
1483 	 * If the return action hasn't been set to descend yet, that means
1484 	 * we haven't seen any peripheral matching patterns.  So tell the
1485 	 * caller to stop descending the tree -- the user doesn't want to
1486 	 * match against lower level tree elements.
1487 	 */
1488 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1489 		retval |= DM_RET_STOP;
1490 
1491 	return(retval);
1492 }
1493 
1494 /*
1495  * Match a single peripheral against any number of match patterns.
1496  */
1497 static dev_match_ret
1498 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1499 	       struct cam_periph *periph)
1500 {
1501 	dev_match_ret retval;
1502 	u_int i;
1503 
1504 	/*
1505 	 * If we aren't given something to match against, that's an error.
1506 	 */
1507 	if (periph == NULL)
1508 		return(DM_RET_ERROR);
1509 
1510 	/*
1511 	 * If there are no match entries, then this peripheral matches no
1512 	 * matter what.
1513 	 */
1514 	if ((patterns == NULL) || (num_patterns == 0))
1515 		return(DM_RET_STOP | DM_RET_COPY);
1516 
1517 	/*
1518 	 * There aren't any nodes below a peripheral node, so there's no
1519 	 * reason to descend the tree any further.
1520 	 */
1521 	retval = DM_RET_STOP;
1522 
1523 	for (i = 0; i < num_patterns; i++) {
1524 		struct periph_match_pattern *cur_pattern;
1525 
1526 		/*
1527 		 * If the pattern in question isn't for a peripheral, we
1528 		 * aren't interested.
1529 		 */
1530 		if (patterns[i].type != DEV_MATCH_PERIPH)
1531 			continue;
1532 
1533 		cur_pattern = &patterns[i].pattern.periph_pattern;
1534 
1535 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1536 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1537 			continue;
1538 
1539 		/*
1540 		 * For the target and lun id's, we have to make sure the
1541 		 * target and lun pointers aren't NULL.  The xpt peripheral
1542 		 * has a wildcard target and device.
1543 		 */
1544 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1545 		 && ((periph->path->target == NULL)
1546 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1547 			continue;
1548 
1549 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1550 		 && ((periph->path->device == NULL)
1551 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1552 			continue;
1553 
1554 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1555 		 && (cur_pattern->unit_number != periph->unit_number))
1556 			continue;
1557 
1558 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1559 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1560 			     DEV_IDLEN) != 0))
1561 			continue;
1562 
1563 		/*
1564 		 * If we get to this point, the user definitely wants
1565 		 * information on this peripheral.  So tell the caller to
1566 		 * copy the data out.
1567 		 */
1568 		retval |= DM_RET_COPY;
1569 
1570 		/*
1571 		 * The return action has already been set to stop, since
1572 		 * peripherals don't have any nodes below them in the EDT.
1573 		 */
1574 		return(retval);
1575 	}
1576 
1577 	/*
1578 	 * If we get to this point, the peripheral that was passed in
1579 	 * doesn't match any of the patterns.
1580 	 */
1581 	return(retval);
1582 }
1583 
1584 static int
1585 xptedtbusfunc(struct cam_eb *bus, void *arg)
1586 {
1587 	struct ccb_dev_match *cdm;
1588 	struct cam_et *target;
1589 	dev_match_ret retval;
1590 
1591 	cdm = (struct ccb_dev_match *)arg;
1592 
1593 	/*
1594 	 * If our position is for something deeper in the tree, that means
1595 	 * that we've already seen this node.  So, we keep going down.
1596 	 */
1597 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1598 	 && (cdm->pos.cookie.bus == bus)
1599 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1600 	 && (cdm->pos.cookie.target != NULL))
1601 		retval = DM_RET_DESCEND;
1602 	else
1603 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1604 
1605 	/*
1606 	 * If we got an error, bail out of the search.
1607 	 */
1608 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1609 		cdm->status = CAM_DEV_MATCH_ERROR;
1610 		return(0);
1611 	}
1612 
1613 	/*
1614 	 * If the copy flag is set, copy this bus out.
1615 	 */
1616 	if (retval & DM_RET_COPY) {
1617 		int spaceleft, j;
1618 
1619 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1620 			sizeof(struct dev_match_result));
1621 
1622 		/*
1623 		 * If we don't have enough space to put in another
1624 		 * match result, save our position and tell the
1625 		 * user there are more devices to check.
1626 		 */
1627 		if (spaceleft < sizeof(struct dev_match_result)) {
1628 			bzero(&cdm->pos, sizeof(cdm->pos));
1629 			cdm->pos.position_type =
1630 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1631 
1632 			cdm->pos.cookie.bus = bus;
1633 			cdm->pos.generations[CAM_BUS_GENERATION]=
1634 				xsoftc.bus_generation;
1635 			cdm->status = CAM_DEV_MATCH_MORE;
1636 			return(0);
1637 		}
1638 		j = cdm->num_matches;
1639 		cdm->num_matches++;
1640 		cdm->matches[j].type = DEV_MATCH_BUS;
1641 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1642 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1643 		cdm->matches[j].result.bus_result.unit_number =
1644 			bus->sim->unit_number;
1645 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1646 			bus->sim->sim_name,
1647 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1648 	}
1649 
1650 	/*
1651 	 * If the user is only interested in buses, there's no
1652 	 * reason to descend to the next level in the tree.
1653 	 */
1654 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1655 		return(1);
1656 
1657 	/*
1658 	 * If there is a target generation recorded, check it to
1659 	 * make sure the target list hasn't changed.
1660 	 */
1661 	mtx_lock(&bus->eb_mtx);
1662 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1663 	 && (cdm->pos.cookie.bus == bus)
1664 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1665 	 && (cdm->pos.cookie.target != NULL)) {
1666 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1667 		    bus->generation)) {
1668 			mtx_unlock(&bus->eb_mtx);
1669 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1670 			return (0);
1671 		}
1672 		target = (struct cam_et *)cdm->pos.cookie.target;
1673 		target->refcount++;
1674 	} else
1675 		target = NULL;
1676 	mtx_unlock(&bus->eb_mtx);
1677 
1678 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1679 }
1680 
1681 static int
1682 xptedttargetfunc(struct cam_et *target, void *arg)
1683 {
1684 	struct ccb_dev_match *cdm;
1685 	struct cam_eb *bus;
1686 	struct cam_ed *device;
1687 
1688 	cdm = (struct ccb_dev_match *)arg;
1689 	bus = target->bus;
1690 
1691 	/*
1692 	 * If there is a device list generation recorded, check it to
1693 	 * make sure the device list hasn't changed.
1694 	 */
1695 	mtx_lock(&bus->eb_mtx);
1696 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1697 	 && (cdm->pos.cookie.bus == bus)
1698 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1699 	 && (cdm->pos.cookie.target == target)
1700 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1701 	 && (cdm->pos.cookie.device != NULL)) {
1702 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1703 		    target->generation) {
1704 			mtx_unlock(&bus->eb_mtx);
1705 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1706 			return(0);
1707 		}
1708 		device = (struct cam_ed *)cdm->pos.cookie.device;
1709 		device->refcount++;
1710 	} else
1711 		device = NULL;
1712 	mtx_unlock(&bus->eb_mtx);
1713 
1714 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1715 }
1716 
1717 static int
1718 xptedtdevicefunc(struct cam_ed *device, void *arg)
1719 {
1720 	struct cam_eb *bus;
1721 	struct cam_periph *periph;
1722 	struct ccb_dev_match *cdm;
1723 	dev_match_ret retval;
1724 
1725 	cdm = (struct ccb_dev_match *)arg;
1726 	bus = device->target->bus;
1727 
1728 	/*
1729 	 * If our position is for something deeper in the tree, that means
1730 	 * that we've already seen this node.  So, we keep going down.
1731 	 */
1732 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1733 	 && (cdm->pos.cookie.device == device)
1734 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1735 	 && (cdm->pos.cookie.periph != NULL))
1736 		retval = DM_RET_DESCEND;
1737 	else
1738 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1739 					device);
1740 
1741 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1742 		cdm->status = CAM_DEV_MATCH_ERROR;
1743 		return(0);
1744 	}
1745 
1746 	/*
1747 	 * If the copy flag is set, copy this device out.
1748 	 */
1749 	if (retval & DM_RET_COPY) {
1750 		int spaceleft, j;
1751 
1752 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1753 			sizeof(struct dev_match_result));
1754 
1755 		/*
1756 		 * If we don't have enough space to put in another
1757 		 * match result, save our position and tell the
1758 		 * user there are more devices to check.
1759 		 */
1760 		if (spaceleft < sizeof(struct dev_match_result)) {
1761 			bzero(&cdm->pos, sizeof(cdm->pos));
1762 			cdm->pos.position_type =
1763 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1764 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1765 
1766 			cdm->pos.cookie.bus = device->target->bus;
1767 			cdm->pos.generations[CAM_BUS_GENERATION]=
1768 				xsoftc.bus_generation;
1769 			cdm->pos.cookie.target = device->target;
1770 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1771 				device->target->bus->generation;
1772 			cdm->pos.cookie.device = device;
1773 			cdm->pos.generations[CAM_DEV_GENERATION] =
1774 				device->target->generation;
1775 			cdm->status = CAM_DEV_MATCH_MORE;
1776 			return(0);
1777 		}
1778 		j = cdm->num_matches;
1779 		cdm->num_matches++;
1780 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1781 		cdm->matches[j].result.device_result.path_id =
1782 			device->target->bus->path_id;
1783 		cdm->matches[j].result.device_result.target_id =
1784 			device->target->target_id;
1785 		cdm->matches[j].result.device_result.target_lun =
1786 			device->lun_id;
1787 		cdm->matches[j].result.device_result.protocol =
1788 			device->protocol;
1789 		bcopy(&device->inq_data,
1790 		      &cdm->matches[j].result.device_result.inq_data,
1791 		      sizeof(struct scsi_inquiry_data));
1792 		bcopy(&device->ident_data,
1793 		      &cdm->matches[j].result.device_result.ident_data,
1794 		      sizeof(struct ata_params));
1795 
1796 		/* Let the user know whether this device is unconfigured */
1797 		if (device->flags & CAM_DEV_UNCONFIGURED)
1798 			cdm->matches[j].result.device_result.flags =
1799 				DEV_RESULT_UNCONFIGURED;
1800 		else
1801 			cdm->matches[j].result.device_result.flags =
1802 				DEV_RESULT_NOFLAG;
1803 	}
1804 
1805 	/*
1806 	 * If the user isn't interested in peripherals, don't descend
1807 	 * the tree any further.
1808 	 */
1809 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1810 		return(1);
1811 
1812 	/*
1813 	 * If there is a peripheral list generation recorded, make sure
1814 	 * it hasn't changed.
1815 	 */
1816 	xpt_lock_buses();
1817 	mtx_lock(&bus->eb_mtx);
1818 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1819 	 && (cdm->pos.cookie.bus == bus)
1820 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1821 	 && (cdm->pos.cookie.target == device->target)
1822 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1823 	 && (cdm->pos.cookie.device == device)
1824 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1825 	 && (cdm->pos.cookie.periph != NULL)) {
1826 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1827 		    device->generation) {
1828 			mtx_unlock(&bus->eb_mtx);
1829 			xpt_unlock_buses();
1830 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1831 			return(0);
1832 		}
1833 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1834 		periph->refcount++;
1835 	} else
1836 		periph = NULL;
1837 	mtx_unlock(&bus->eb_mtx);
1838 	xpt_unlock_buses();
1839 
1840 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1841 }
1842 
1843 static int
1844 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1845 {
1846 	struct ccb_dev_match *cdm;
1847 	dev_match_ret retval;
1848 
1849 	cdm = (struct ccb_dev_match *)arg;
1850 
1851 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1852 
1853 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1854 		cdm->status = CAM_DEV_MATCH_ERROR;
1855 		return(0);
1856 	}
1857 
1858 	/*
1859 	 * If the copy flag is set, copy this peripheral out.
1860 	 */
1861 	if (retval & DM_RET_COPY) {
1862 		int spaceleft, j;
1863 		size_t l;
1864 
1865 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1866 			sizeof(struct dev_match_result));
1867 
1868 		/*
1869 		 * If we don't have enough space to put in another
1870 		 * match result, save our position and tell the
1871 		 * user there are more devices to check.
1872 		 */
1873 		if (spaceleft < sizeof(struct dev_match_result)) {
1874 			bzero(&cdm->pos, sizeof(cdm->pos));
1875 			cdm->pos.position_type =
1876 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1877 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1878 				CAM_DEV_POS_PERIPH;
1879 
1880 			cdm->pos.cookie.bus = periph->path->bus;
1881 			cdm->pos.generations[CAM_BUS_GENERATION]=
1882 				xsoftc.bus_generation;
1883 			cdm->pos.cookie.target = periph->path->target;
1884 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1885 				periph->path->bus->generation;
1886 			cdm->pos.cookie.device = periph->path->device;
1887 			cdm->pos.generations[CAM_DEV_GENERATION] =
1888 				periph->path->target->generation;
1889 			cdm->pos.cookie.periph = periph;
1890 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1891 				periph->path->device->generation;
1892 			cdm->status = CAM_DEV_MATCH_MORE;
1893 			return(0);
1894 		}
1895 
1896 		j = cdm->num_matches;
1897 		cdm->num_matches++;
1898 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1899 		cdm->matches[j].result.periph_result.path_id =
1900 			periph->path->bus->path_id;
1901 		cdm->matches[j].result.periph_result.target_id =
1902 			periph->path->target->target_id;
1903 		cdm->matches[j].result.periph_result.target_lun =
1904 			periph->path->device->lun_id;
1905 		cdm->matches[j].result.periph_result.unit_number =
1906 			periph->unit_number;
1907 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1908 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
1909 			periph->periph_name, l);
1910 	}
1911 
1912 	return(1);
1913 }
1914 
1915 static int
1916 xptedtmatch(struct ccb_dev_match *cdm)
1917 {
1918 	struct cam_eb *bus;
1919 	int ret;
1920 
1921 	cdm->num_matches = 0;
1922 
1923 	/*
1924 	 * Check the bus list generation.  If it has changed, the user
1925 	 * needs to reset everything and start over.
1926 	 */
1927 	xpt_lock_buses();
1928 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1929 	 && (cdm->pos.cookie.bus != NULL)) {
1930 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1931 		    xsoftc.bus_generation) {
1932 			xpt_unlock_buses();
1933 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1934 			return(0);
1935 		}
1936 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1937 		bus->refcount++;
1938 	} else
1939 		bus = NULL;
1940 	xpt_unlock_buses();
1941 
1942 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1943 
1944 	/*
1945 	 * If we get back 0, that means that we had to stop before fully
1946 	 * traversing the EDT.  It also means that one of the subroutines
1947 	 * has set the status field to the proper value.  If we get back 1,
1948 	 * we've fully traversed the EDT and copied out any matching entries.
1949 	 */
1950 	if (ret == 1)
1951 		cdm->status = CAM_DEV_MATCH_LAST;
1952 
1953 	return(ret);
1954 }
1955 
1956 static int
1957 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1958 {
1959 	struct cam_periph *periph;
1960 	struct ccb_dev_match *cdm;
1961 
1962 	cdm = (struct ccb_dev_match *)arg;
1963 
1964 	xpt_lock_buses();
1965 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1966 	 && (cdm->pos.cookie.pdrv == pdrv)
1967 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1968 	 && (cdm->pos.cookie.periph != NULL)) {
1969 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1970 		    (*pdrv)->generation) {
1971 			xpt_unlock_buses();
1972 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1973 			return(0);
1974 		}
1975 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1976 		periph->refcount++;
1977 	} else
1978 		periph = NULL;
1979 	xpt_unlock_buses();
1980 
1981 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1982 }
1983 
1984 static int
1985 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1986 {
1987 	struct ccb_dev_match *cdm;
1988 	dev_match_ret retval;
1989 
1990 	cdm = (struct ccb_dev_match *)arg;
1991 
1992 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1993 
1994 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1995 		cdm->status = CAM_DEV_MATCH_ERROR;
1996 		return(0);
1997 	}
1998 
1999 	/*
2000 	 * If the copy flag is set, copy this peripheral out.
2001 	 */
2002 	if (retval & DM_RET_COPY) {
2003 		int spaceleft, j;
2004 		size_t l;
2005 
2006 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2007 			sizeof(struct dev_match_result));
2008 
2009 		/*
2010 		 * If we don't have enough space to put in another
2011 		 * match result, save our position and tell the
2012 		 * user there are more devices to check.
2013 		 */
2014 		if (spaceleft < sizeof(struct dev_match_result)) {
2015 			struct periph_driver **pdrv;
2016 
2017 			pdrv = NULL;
2018 			bzero(&cdm->pos, sizeof(cdm->pos));
2019 			cdm->pos.position_type =
2020 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2021 				CAM_DEV_POS_PERIPH;
2022 
2023 			/*
2024 			 * This may look a bit non-sensical, but it is
2025 			 * actually quite logical.  There are very few
2026 			 * peripheral drivers, and bloating every peripheral
2027 			 * structure with a pointer back to its parent
2028 			 * peripheral driver linker set entry would cost
2029 			 * more in the long run than doing this quick lookup.
2030 			 */
2031 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2032 				if (strcmp((*pdrv)->driver_name,
2033 				    periph->periph_name) == 0)
2034 					break;
2035 			}
2036 
2037 			if (*pdrv == NULL) {
2038 				cdm->status = CAM_DEV_MATCH_ERROR;
2039 				return(0);
2040 			}
2041 
2042 			cdm->pos.cookie.pdrv = pdrv;
2043 			/*
2044 			 * The periph generation slot does double duty, as
2045 			 * does the periph pointer slot.  They are used for
2046 			 * both edt and pdrv lookups and positioning.
2047 			 */
2048 			cdm->pos.cookie.periph = periph;
2049 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2050 				(*pdrv)->generation;
2051 			cdm->status = CAM_DEV_MATCH_MORE;
2052 			return(0);
2053 		}
2054 
2055 		j = cdm->num_matches;
2056 		cdm->num_matches++;
2057 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2058 		cdm->matches[j].result.periph_result.path_id =
2059 			periph->path->bus->path_id;
2060 
2061 		/*
2062 		 * The transport layer peripheral doesn't have a target or
2063 		 * lun.
2064 		 */
2065 		if (periph->path->target)
2066 			cdm->matches[j].result.periph_result.target_id =
2067 				periph->path->target->target_id;
2068 		else
2069 			cdm->matches[j].result.periph_result.target_id =
2070 				CAM_TARGET_WILDCARD;
2071 
2072 		if (periph->path->device)
2073 			cdm->matches[j].result.periph_result.target_lun =
2074 				periph->path->device->lun_id;
2075 		else
2076 			cdm->matches[j].result.periph_result.target_lun =
2077 				CAM_LUN_WILDCARD;
2078 
2079 		cdm->matches[j].result.periph_result.unit_number =
2080 			periph->unit_number;
2081 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2082 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2083 			periph->periph_name, l);
2084 	}
2085 
2086 	return(1);
2087 }
2088 
2089 static int
2090 xptperiphlistmatch(struct ccb_dev_match *cdm)
2091 {
2092 	int ret;
2093 
2094 	cdm->num_matches = 0;
2095 
2096 	/*
2097 	 * At this point in the edt traversal function, we check the bus
2098 	 * list generation to make sure that no buses have been added or
2099 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2100 	 * For the peripheral driver list traversal function, however, we
2101 	 * don't have to worry about new peripheral driver types coming or
2102 	 * going; they're in a linker set, and therefore can't change
2103 	 * without a recompile.
2104 	 */
2105 
2106 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2107 	 && (cdm->pos.cookie.pdrv != NULL))
2108 		ret = xptpdrvtraverse(
2109 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2110 				xptplistpdrvfunc, cdm);
2111 	else
2112 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2113 
2114 	/*
2115 	 * If we get back 0, that means that we had to stop before fully
2116 	 * traversing the peripheral driver tree.  It also means that one of
2117 	 * the subroutines has set the status field to the proper value.  If
2118 	 * we get back 1, we've fully traversed the EDT and copied out any
2119 	 * matching entries.
2120 	 */
2121 	if (ret == 1)
2122 		cdm->status = CAM_DEV_MATCH_LAST;
2123 
2124 	return(ret);
2125 }
2126 
2127 static int
2128 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2129 {
2130 	struct cam_eb *bus, *next_bus;
2131 	int retval;
2132 
2133 	retval = 1;
2134 	if (start_bus)
2135 		bus = start_bus;
2136 	else {
2137 		xpt_lock_buses();
2138 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2139 		if (bus == NULL) {
2140 			xpt_unlock_buses();
2141 			return (retval);
2142 		}
2143 		bus->refcount++;
2144 		xpt_unlock_buses();
2145 	}
2146 	for (; bus != NULL; bus = next_bus) {
2147 		retval = tr_func(bus, arg);
2148 		if (retval == 0) {
2149 			xpt_release_bus(bus);
2150 			break;
2151 		}
2152 		xpt_lock_buses();
2153 		next_bus = TAILQ_NEXT(bus, links);
2154 		if (next_bus)
2155 			next_bus->refcount++;
2156 		xpt_unlock_buses();
2157 		xpt_release_bus(bus);
2158 	}
2159 	return(retval);
2160 }
2161 
2162 static int
2163 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2164 		  xpt_targetfunc_t *tr_func, void *arg)
2165 {
2166 	struct cam_et *target, *next_target;
2167 	int retval;
2168 
2169 	retval = 1;
2170 	if (start_target)
2171 		target = start_target;
2172 	else {
2173 		mtx_lock(&bus->eb_mtx);
2174 		target = TAILQ_FIRST(&bus->et_entries);
2175 		if (target == NULL) {
2176 			mtx_unlock(&bus->eb_mtx);
2177 			return (retval);
2178 		}
2179 		target->refcount++;
2180 		mtx_unlock(&bus->eb_mtx);
2181 	}
2182 	for (; target != NULL; target = next_target) {
2183 		retval = tr_func(target, arg);
2184 		if (retval == 0) {
2185 			xpt_release_target(target);
2186 			break;
2187 		}
2188 		mtx_lock(&bus->eb_mtx);
2189 		next_target = TAILQ_NEXT(target, links);
2190 		if (next_target)
2191 			next_target->refcount++;
2192 		mtx_unlock(&bus->eb_mtx);
2193 		xpt_release_target(target);
2194 	}
2195 	return(retval);
2196 }
2197 
2198 static int
2199 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2200 		  xpt_devicefunc_t *tr_func, void *arg)
2201 {
2202 	struct cam_eb *bus;
2203 	struct cam_ed *device, *next_device;
2204 	int retval;
2205 
2206 	retval = 1;
2207 	bus = target->bus;
2208 	if (start_device)
2209 		device = start_device;
2210 	else {
2211 		mtx_lock(&bus->eb_mtx);
2212 		device = TAILQ_FIRST(&target->ed_entries);
2213 		if (device == NULL) {
2214 			mtx_unlock(&bus->eb_mtx);
2215 			return (retval);
2216 		}
2217 		device->refcount++;
2218 		mtx_unlock(&bus->eb_mtx);
2219 	}
2220 	for (; device != NULL; device = next_device) {
2221 		mtx_lock(&device->device_mtx);
2222 		retval = tr_func(device, arg);
2223 		mtx_unlock(&device->device_mtx);
2224 		if (retval == 0) {
2225 			xpt_release_device(device);
2226 			break;
2227 		}
2228 		mtx_lock(&bus->eb_mtx);
2229 		next_device = TAILQ_NEXT(device, links);
2230 		if (next_device)
2231 			next_device->refcount++;
2232 		mtx_unlock(&bus->eb_mtx);
2233 		xpt_release_device(device);
2234 	}
2235 	return(retval);
2236 }
2237 
2238 static int
2239 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2240 		  xpt_periphfunc_t *tr_func, void *arg)
2241 {
2242 	struct cam_eb *bus;
2243 	struct cam_periph *periph, *next_periph;
2244 	int retval;
2245 
2246 	retval = 1;
2247 
2248 	bus = device->target->bus;
2249 	if (start_periph)
2250 		periph = start_periph;
2251 	else {
2252 		xpt_lock_buses();
2253 		mtx_lock(&bus->eb_mtx);
2254 		periph = SLIST_FIRST(&device->periphs);
2255 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2256 			periph = SLIST_NEXT(periph, periph_links);
2257 		if (periph == NULL) {
2258 			mtx_unlock(&bus->eb_mtx);
2259 			xpt_unlock_buses();
2260 			return (retval);
2261 		}
2262 		periph->refcount++;
2263 		mtx_unlock(&bus->eb_mtx);
2264 		xpt_unlock_buses();
2265 	}
2266 	for (; periph != NULL; periph = next_periph) {
2267 		retval = tr_func(periph, arg);
2268 		if (retval == 0) {
2269 			cam_periph_release_locked(periph);
2270 			break;
2271 		}
2272 		xpt_lock_buses();
2273 		mtx_lock(&bus->eb_mtx);
2274 		next_periph = SLIST_NEXT(periph, periph_links);
2275 		while (next_periph != NULL &&
2276 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2277 			next_periph = SLIST_NEXT(next_periph, periph_links);
2278 		if (next_periph)
2279 			next_periph->refcount++;
2280 		mtx_unlock(&bus->eb_mtx);
2281 		xpt_unlock_buses();
2282 		cam_periph_release_locked(periph);
2283 	}
2284 	return(retval);
2285 }
2286 
2287 static int
2288 xptpdrvtraverse(struct periph_driver **start_pdrv,
2289 		xpt_pdrvfunc_t *tr_func, void *arg)
2290 {
2291 	struct periph_driver **pdrv;
2292 	int retval;
2293 
2294 	retval = 1;
2295 
2296 	/*
2297 	 * We don't traverse the peripheral driver list like we do the
2298 	 * other lists, because it is a linker set, and therefore cannot be
2299 	 * changed during runtime.  If the peripheral driver list is ever
2300 	 * re-done to be something other than a linker set (i.e. it can
2301 	 * change while the system is running), the list traversal should
2302 	 * be modified to work like the other traversal functions.
2303 	 */
2304 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2305 	     *pdrv != NULL; pdrv++) {
2306 		retval = tr_func(pdrv, arg);
2307 
2308 		if (retval == 0)
2309 			return(retval);
2310 	}
2311 
2312 	return(retval);
2313 }
2314 
2315 static int
2316 xptpdperiphtraverse(struct periph_driver **pdrv,
2317 		    struct cam_periph *start_periph,
2318 		    xpt_periphfunc_t *tr_func, void *arg)
2319 {
2320 	struct cam_periph *periph, *next_periph;
2321 	int retval;
2322 
2323 	retval = 1;
2324 
2325 	if (start_periph)
2326 		periph = start_periph;
2327 	else {
2328 		xpt_lock_buses();
2329 		periph = TAILQ_FIRST(&(*pdrv)->units);
2330 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2331 			periph = TAILQ_NEXT(periph, unit_links);
2332 		if (periph == NULL) {
2333 			xpt_unlock_buses();
2334 			return (retval);
2335 		}
2336 		periph->refcount++;
2337 		xpt_unlock_buses();
2338 	}
2339 	for (; periph != NULL; periph = next_periph) {
2340 		cam_periph_lock(periph);
2341 		retval = tr_func(periph, arg);
2342 		cam_periph_unlock(periph);
2343 		if (retval == 0) {
2344 			cam_periph_release(periph);
2345 			break;
2346 		}
2347 		xpt_lock_buses();
2348 		next_periph = TAILQ_NEXT(periph, unit_links);
2349 		while (next_periph != NULL &&
2350 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2351 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2352 		if (next_periph)
2353 			next_periph->refcount++;
2354 		xpt_unlock_buses();
2355 		cam_periph_release(periph);
2356 	}
2357 	return(retval);
2358 }
2359 
2360 static int
2361 xptdefbusfunc(struct cam_eb *bus, void *arg)
2362 {
2363 	struct xpt_traverse_config *tr_config;
2364 
2365 	tr_config = (struct xpt_traverse_config *)arg;
2366 
2367 	if (tr_config->depth == XPT_DEPTH_BUS) {
2368 		xpt_busfunc_t *tr_func;
2369 
2370 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2371 
2372 		return(tr_func(bus, tr_config->tr_arg));
2373 	} else
2374 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2375 }
2376 
2377 static int
2378 xptdeftargetfunc(struct cam_et *target, void *arg)
2379 {
2380 	struct xpt_traverse_config *tr_config;
2381 
2382 	tr_config = (struct xpt_traverse_config *)arg;
2383 
2384 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2385 		xpt_targetfunc_t *tr_func;
2386 
2387 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2388 
2389 		return(tr_func(target, tr_config->tr_arg));
2390 	} else
2391 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2392 }
2393 
2394 static int
2395 xptdefdevicefunc(struct cam_ed *device, void *arg)
2396 {
2397 	struct xpt_traverse_config *tr_config;
2398 
2399 	tr_config = (struct xpt_traverse_config *)arg;
2400 
2401 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2402 		xpt_devicefunc_t *tr_func;
2403 
2404 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2405 
2406 		return(tr_func(device, tr_config->tr_arg));
2407 	} else
2408 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2409 }
2410 
2411 static int
2412 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2413 {
2414 	struct xpt_traverse_config *tr_config;
2415 	xpt_periphfunc_t *tr_func;
2416 
2417 	tr_config = (struct xpt_traverse_config *)arg;
2418 
2419 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2420 
2421 	/*
2422 	 * Unlike the other default functions, we don't check for depth
2423 	 * here.  The peripheral driver level is the last level in the EDT,
2424 	 * so if we're here, we should execute the function in question.
2425 	 */
2426 	return(tr_func(periph, tr_config->tr_arg));
2427 }
2428 
2429 /*
2430  * Execute the given function for every bus in the EDT.
2431  */
2432 static int
2433 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2434 {
2435 	struct xpt_traverse_config tr_config;
2436 
2437 	tr_config.depth = XPT_DEPTH_BUS;
2438 	tr_config.tr_func = tr_func;
2439 	tr_config.tr_arg = arg;
2440 
2441 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2442 }
2443 
2444 /*
2445  * Execute the given function for every device in the EDT.
2446  */
2447 static int
2448 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2449 {
2450 	struct xpt_traverse_config tr_config;
2451 
2452 	tr_config.depth = XPT_DEPTH_DEVICE;
2453 	tr_config.tr_func = tr_func;
2454 	tr_config.tr_arg = arg;
2455 
2456 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2457 }
2458 
2459 static int
2460 xptsetasyncfunc(struct cam_ed *device, void *arg)
2461 {
2462 	struct cam_path path;
2463 	struct ccb_getdev cgd;
2464 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2465 
2466 	/*
2467 	 * Don't report unconfigured devices (Wildcard devs,
2468 	 * devices only for target mode, device instances
2469 	 * that have been invalidated but are waiting for
2470 	 * their last reference count to be released).
2471 	 */
2472 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2473 		return (1);
2474 
2475 	memset(&cgd, 0, sizeof(cgd));
2476 	xpt_compile_path(&path,
2477 			 NULL,
2478 			 device->target->bus->path_id,
2479 			 device->target->target_id,
2480 			 device->lun_id);
2481 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2482 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2483 	xpt_action((union ccb *)&cgd);
2484 	csa->callback(csa->callback_arg,
2485 			    AC_FOUND_DEVICE,
2486 			    &path, &cgd);
2487 	xpt_release_path(&path);
2488 
2489 	return(1);
2490 }
2491 
2492 static int
2493 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2494 {
2495 	struct cam_path path;
2496 	struct ccb_pathinq cpi;
2497 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2498 
2499 	xpt_compile_path(&path, /*periph*/NULL,
2500 			 bus->path_id,
2501 			 CAM_TARGET_WILDCARD,
2502 			 CAM_LUN_WILDCARD);
2503 	xpt_path_lock(&path);
2504 	xpt_path_inq(&cpi, &path);
2505 	csa->callback(csa->callback_arg,
2506 			    AC_PATH_REGISTERED,
2507 			    &path, &cpi);
2508 	xpt_path_unlock(&path);
2509 	xpt_release_path(&path);
2510 
2511 	return(1);
2512 }
2513 
2514 void
2515 xpt_action(union ccb *start_ccb)
2516 {
2517 
2518 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2519 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2520 		xpt_action_name(start_ccb->ccb_h.func_code)));
2521 
2522 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2523 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2524 }
2525 
2526 void
2527 xpt_action_default(union ccb *start_ccb)
2528 {
2529 	struct cam_path *path;
2530 	struct cam_sim *sim;
2531 	struct mtx *mtx;
2532 
2533 	path = start_ccb->ccb_h.path;
2534 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2535 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2536 		xpt_action_name(start_ccb->ccb_h.func_code)));
2537 
2538 	switch (start_ccb->ccb_h.func_code) {
2539 	case XPT_SCSI_IO:
2540 	{
2541 		struct cam_ed *device;
2542 
2543 		/*
2544 		 * For the sake of compatibility with SCSI-1
2545 		 * devices that may not understand the identify
2546 		 * message, we include lun information in the
2547 		 * second byte of all commands.  SCSI-1 specifies
2548 		 * that luns are a 3 bit value and reserves only 3
2549 		 * bits for lun information in the CDB.  Later
2550 		 * revisions of the SCSI spec allow for more than 8
2551 		 * luns, but have deprecated lun information in the
2552 		 * CDB.  So, if the lun won't fit, we must omit.
2553 		 *
2554 		 * Also be aware that during initial probing for devices,
2555 		 * the inquiry information is unknown but initialized to 0.
2556 		 * This means that this code will be exercised while probing
2557 		 * devices with an ANSI revision greater than 2.
2558 		 */
2559 		device = path->device;
2560 		if (device->protocol_version <= SCSI_REV_2
2561 		 && start_ccb->ccb_h.target_lun < 8
2562 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2563 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2564 			    start_ccb->ccb_h.target_lun << 5;
2565 		}
2566 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2567 	}
2568 	/* FALLTHROUGH */
2569 	case XPT_TARGET_IO:
2570 	case XPT_CONT_TARGET_IO:
2571 		start_ccb->csio.sense_resid = 0;
2572 		start_ccb->csio.resid = 0;
2573 		/* FALLTHROUGH */
2574 	case XPT_ATA_IO:
2575 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2576 			start_ccb->ataio.resid = 0;
2577 		/* FALLTHROUGH */
2578 	case XPT_NVME_IO:
2579 	case XPT_NVME_ADMIN:
2580 	case XPT_MMC_IO:
2581 	case XPT_MMC_GET_TRAN_SETTINGS:
2582 	case XPT_MMC_SET_TRAN_SETTINGS:
2583 	case XPT_RESET_DEV:
2584 	case XPT_ENG_EXEC:
2585 	case XPT_SMP_IO:
2586 	{
2587 		struct cam_devq *devq;
2588 
2589 		devq = path->bus->sim->devq;
2590 		mtx_lock(&devq->send_mtx);
2591 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2592 		if (xpt_schedule_devq(devq, path->device) != 0)
2593 			xpt_run_devq(devq);
2594 		mtx_unlock(&devq->send_mtx);
2595 		break;
2596 	}
2597 	case XPT_CALC_GEOMETRY:
2598 		/* Filter out garbage */
2599 		if (start_ccb->ccg.block_size == 0
2600 		 || start_ccb->ccg.volume_size == 0) {
2601 			start_ccb->ccg.cylinders = 0;
2602 			start_ccb->ccg.heads = 0;
2603 			start_ccb->ccg.secs_per_track = 0;
2604 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2605 			break;
2606 		}
2607 		goto call_sim;
2608 	case XPT_ABORT:
2609 	{
2610 		union ccb* abort_ccb;
2611 
2612 		abort_ccb = start_ccb->cab.abort_ccb;
2613 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2614 			struct cam_ed *device;
2615 			struct cam_devq *devq;
2616 
2617 			device = abort_ccb->ccb_h.path->device;
2618 			devq = device->sim->devq;
2619 
2620 			mtx_lock(&devq->send_mtx);
2621 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2622 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2623 				abort_ccb->ccb_h.status =
2624 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2625 				xpt_freeze_devq_device(device, 1);
2626 				mtx_unlock(&devq->send_mtx);
2627 				xpt_done(abort_ccb);
2628 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2629 				break;
2630 			}
2631 			mtx_unlock(&devq->send_mtx);
2632 
2633 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2634 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2635 				/*
2636 				 * We've caught this ccb en route to
2637 				 * the SIM.  Flag it for abort and the
2638 				 * SIM will do so just before starting
2639 				 * real work on the CCB.
2640 				 */
2641 				abort_ccb->ccb_h.status =
2642 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2643 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2644 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2645 				break;
2646 			}
2647 		}
2648 		if (XPT_FC_IS_QUEUED(abort_ccb)
2649 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2650 			/*
2651 			 * It's already completed but waiting
2652 			 * for our SWI to get to it.
2653 			 */
2654 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2655 			break;
2656 		}
2657 		/*
2658 		 * If we weren't able to take care of the abort request
2659 		 * in the XPT, pass the request down to the SIM for processing.
2660 		 */
2661 	}
2662 	/* FALLTHROUGH */
2663 	case XPT_ACCEPT_TARGET_IO:
2664 	case XPT_EN_LUN:
2665 	case XPT_IMMED_NOTIFY:
2666 	case XPT_NOTIFY_ACK:
2667 	case XPT_RESET_BUS:
2668 	case XPT_IMMEDIATE_NOTIFY:
2669 	case XPT_NOTIFY_ACKNOWLEDGE:
2670 	case XPT_GET_SIM_KNOB_OLD:
2671 	case XPT_GET_SIM_KNOB:
2672 	case XPT_SET_SIM_KNOB:
2673 	case XPT_GET_TRAN_SETTINGS:
2674 	case XPT_SET_TRAN_SETTINGS:
2675 	case XPT_PATH_INQ:
2676 call_sim:
2677 		sim = path->bus->sim;
2678 		mtx = sim->mtx;
2679 		if (mtx && !mtx_owned(mtx))
2680 			mtx_lock(mtx);
2681 		else
2682 			mtx = NULL;
2683 
2684 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2685 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2686 		(*(sim->sim_action))(sim, start_ccb);
2687 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2688 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2689 		if (mtx)
2690 			mtx_unlock(mtx);
2691 		break;
2692 	case XPT_PATH_STATS:
2693 		start_ccb->cpis.last_reset = path->bus->last_reset;
2694 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2695 		break;
2696 	case XPT_GDEV_TYPE:
2697 	{
2698 		struct cam_ed *dev;
2699 
2700 		dev = path->device;
2701 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2702 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2703 		} else {
2704 			struct ccb_getdev *cgd;
2705 
2706 			cgd = &start_ccb->cgd;
2707 			cgd->protocol = dev->protocol;
2708 			cgd->inq_data = dev->inq_data;
2709 			cgd->ident_data = dev->ident_data;
2710 			cgd->inq_flags = dev->inq_flags;
2711 			cgd->ccb_h.status = CAM_REQ_CMP;
2712 			cgd->serial_num_len = dev->serial_num_len;
2713 			if ((dev->serial_num_len > 0)
2714 			 && (dev->serial_num != NULL))
2715 				bcopy(dev->serial_num, cgd->serial_num,
2716 				      dev->serial_num_len);
2717 		}
2718 		break;
2719 	}
2720 	case XPT_GDEV_STATS:
2721 	{
2722 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2723 		struct cam_ed *dev = path->device;
2724 		struct cam_eb *bus = path->bus;
2725 		struct cam_et *tar = path->target;
2726 		struct cam_devq *devq = bus->sim->devq;
2727 
2728 		mtx_lock(&devq->send_mtx);
2729 		cgds->dev_openings = dev->ccbq.dev_openings;
2730 		cgds->dev_active = dev->ccbq.dev_active;
2731 		cgds->allocated = dev->ccbq.allocated;
2732 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2733 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2734 		cgds->last_reset = tar->last_reset;
2735 		cgds->maxtags = dev->maxtags;
2736 		cgds->mintags = dev->mintags;
2737 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2738 			cgds->last_reset = bus->last_reset;
2739 		mtx_unlock(&devq->send_mtx);
2740 		cgds->ccb_h.status = CAM_REQ_CMP;
2741 		break;
2742 	}
2743 	case XPT_GDEVLIST:
2744 	{
2745 		struct cam_periph	*nperiph;
2746 		struct periph_list	*periph_head;
2747 		struct ccb_getdevlist	*cgdl;
2748 		u_int			i;
2749 		struct cam_ed		*device;
2750 		bool			found;
2751 
2752 		found = false;
2753 
2754 		/*
2755 		 * Don't want anyone mucking with our data.
2756 		 */
2757 		device = path->device;
2758 		periph_head = &device->periphs;
2759 		cgdl = &start_ccb->cgdl;
2760 
2761 		/*
2762 		 * Check and see if the list has changed since the user
2763 		 * last requested a list member.  If so, tell them that the
2764 		 * list has changed, and therefore they need to start over
2765 		 * from the beginning.
2766 		 */
2767 		if ((cgdl->index != 0) &&
2768 		    (cgdl->generation != device->generation)) {
2769 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2770 			break;
2771 		}
2772 
2773 		/*
2774 		 * Traverse the list of peripherals and attempt to find
2775 		 * the requested peripheral.
2776 		 */
2777 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2778 		     (nperiph != NULL) && (i <= cgdl->index);
2779 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2780 			if (i == cgdl->index) {
2781 				strlcpy(cgdl->periph_name,
2782 					nperiph->periph_name,
2783 					sizeof(cgdl->periph_name));
2784 				cgdl->unit_number = nperiph->unit_number;
2785 				found = true;
2786 			}
2787 		}
2788 		if (!found) {
2789 			cgdl->status = CAM_GDEVLIST_ERROR;
2790 			break;
2791 		}
2792 
2793 		if (nperiph == NULL)
2794 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2795 		else
2796 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2797 
2798 		cgdl->index++;
2799 		cgdl->generation = device->generation;
2800 
2801 		cgdl->ccb_h.status = CAM_REQ_CMP;
2802 		break;
2803 	}
2804 	case XPT_DEV_MATCH:
2805 	{
2806 		dev_pos_type position_type;
2807 		struct ccb_dev_match *cdm;
2808 
2809 		cdm = &start_ccb->cdm;
2810 
2811 		/*
2812 		 * There are two ways of getting at information in the EDT.
2813 		 * The first way is via the primary EDT tree.  It starts
2814 		 * with a list of buses, then a list of targets on a bus,
2815 		 * then devices/luns on a target, and then peripherals on a
2816 		 * device/lun.  The "other" way is by the peripheral driver
2817 		 * lists.  The peripheral driver lists are organized by
2818 		 * peripheral driver.  (obviously)  So it makes sense to
2819 		 * use the peripheral driver list if the user is looking
2820 		 * for something like "da1", or all "da" devices.  If the
2821 		 * user is looking for something on a particular bus/target
2822 		 * or lun, it's generally better to go through the EDT tree.
2823 		 */
2824 
2825 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2826 			position_type = cdm->pos.position_type;
2827 		else {
2828 			u_int i;
2829 
2830 			position_type = CAM_DEV_POS_NONE;
2831 
2832 			for (i = 0; i < cdm->num_patterns; i++) {
2833 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2834 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2835 					position_type = CAM_DEV_POS_EDT;
2836 					break;
2837 				}
2838 			}
2839 
2840 			if (cdm->num_patterns == 0)
2841 				position_type = CAM_DEV_POS_EDT;
2842 			else if (position_type == CAM_DEV_POS_NONE)
2843 				position_type = CAM_DEV_POS_PDRV;
2844 		}
2845 
2846 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2847 		case CAM_DEV_POS_EDT:
2848 			xptedtmatch(cdm);
2849 			break;
2850 		case CAM_DEV_POS_PDRV:
2851 			xptperiphlistmatch(cdm);
2852 			break;
2853 		default:
2854 			cdm->status = CAM_DEV_MATCH_ERROR;
2855 			break;
2856 		}
2857 
2858 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2859 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2860 		else
2861 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2862 
2863 		break;
2864 	}
2865 	case XPT_SASYNC_CB:
2866 	{
2867 		struct ccb_setasync *csa;
2868 		struct async_node *cur_entry;
2869 		struct async_list *async_head;
2870 		uint32_t added;
2871 
2872 		csa = &start_ccb->csa;
2873 		added = csa->event_enable;
2874 		async_head = &path->device->asyncs;
2875 
2876 		/*
2877 		 * If there is already an entry for us, simply
2878 		 * update it.
2879 		 */
2880 		cur_entry = SLIST_FIRST(async_head);
2881 		while (cur_entry != NULL) {
2882 			if ((cur_entry->callback_arg == csa->callback_arg)
2883 			 && (cur_entry->callback == csa->callback))
2884 				break;
2885 			cur_entry = SLIST_NEXT(cur_entry, links);
2886 		}
2887 
2888 		if (cur_entry != NULL) {
2889 		 	/*
2890 			 * If the request has no flags set,
2891 			 * remove the entry.
2892 			 */
2893 			added &= ~cur_entry->event_enable;
2894 			if (csa->event_enable == 0) {
2895 				SLIST_REMOVE(async_head, cur_entry,
2896 					     async_node, links);
2897 				xpt_release_device(path->device);
2898 				free(cur_entry, M_CAMXPT);
2899 			} else {
2900 				cur_entry->event_enable = csa->event_enable;
2901 			}
2902 			csa->event_enable = added;
2903 		} else {
2904 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2905 					   M_NOWAIT);
2906 			if (cur_entry == NULL) {
2907 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2908 				break;
2909 			}
2910 			cur_entry->event_enable = csa->event_enable;
2911 			cur_entry->event_lock = (path->bus->sim->mtx &&
2912 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2913 			cur_entry->callback_arg = csa->callback_arg;
2914 			cur_entry->callback = csa->callback;
2915 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2916 			xpt_acquire_device(path->device);
2917 		}
2918 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2919 		break;
2920 	}
2921 	case XPT_REL_SIMQ:
2922 	{
2923 		struct ccb_relsim *crs;
2924 		struct cam_ed *dev;
2925 
2926 		crs = &start_ccb->crs;
2927 		dev = path->device;
2928 		if (dev == NULL) {
2929 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2930 			break;
2931 		}
2932 
2933 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2934 			/* Don't ever go below one opening */
2935 			if (crs->openings > 0) {
2936 				xpt_dev_ccbq_resize(path, crs->openings);
2937 				if (bootverbose) {
2938 					xpt_print(path,
2939 					    "number of openings is now %d\n",
2940 					    crs->openings);
2941 				}
2942 			}
2943 		}
2944 
2945 		mtx_lock(&dev->sim->devq->send_mtx);
2946 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2947 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2948 				/*
2949 				 * Just extend the old timeout and decrement
2950 				 * the freeze count so that a single timeout
2951 				 * is sufficient for releasing the queue.
2952 				 */
2953 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2954 				callout_stop(&dev->callout);
2955 			} else {
2956 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2957 			}
2958 
2959 			callout_reset_sbt(&dev->callout,
2960 			    SBT_1MS * crs->release_timeout, SBT_1MS,
2961 			    xpt_release_devq_timeout, dev, 0);
2962 
2963 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2964 		}
2965 
2966 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2967 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2968 				/*
2969 				 * Decrement the freeze count so that a single
2970 				 * completion is still sufficient to unfreeze
2971 				 * the queue.
2972 				 */
2973 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2974 			} else {
2975 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2976 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2977 			}
2978 		}
2979 
2980 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2981 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2982 			 || (dev->ccbq.dev_active == 0)) {
2983 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2984 			} else {
2985 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2986 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2987 			}
2988 		}
2989 		mtx_unlock(&dev->sim->devq->send_mtx);
2990 
2991 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2992 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2993 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2994 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2995 		break;
2996 	}
2997 	case XPT_DEBUG: {
2998 		struct cam_path *oldpath;
2999 
3000 		/* Check that all request bits are supported. */
3001 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3002 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3003 			break;
3004 		}
3005 
3006 		cam_dflags = CAM_DEBUG_NONE;
3007 		if (cam_dpath != NULL) {
3008 			oldpath = cam_dpath;
3009 			cam_dpath = NULL;
3010 			xpt_free_path(oldpath);
3011 		}
3012 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3013 			if (xpt_create_path(&cam_dpath, NULL,
3014 					    start_ccb->ccb_h.path_id,
3015 					    start_ccb->ccb_h.target_id,
3016 					    start_ccb->ccb_h.target_lun) !=
3017 					    CAM_REQ_CMP) {
3018 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3019 			} else {
3020 				cam_dflags = start_ccb->cdbg.flags;
3021 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3022 				xpt_print(cam_dpath, "debugging flags now %x\n",
3023 				    cam_dflags);
3024 			}
3025 		} else
3026 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3027 		break;
3028 	}
3029 	case XPT_NOOP:
3030 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3031 			xpt_freeze_devq(path, 1);
3032 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3033 		break;
3034 	case XPT_REPROBE_LUN:
3035 		xpt_async(AC_INQ_CHANGED, path, NULL);
3036 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3037 		xpt_done(start_ccb);
3038 		break;
3039 	case XPT_ASYNC:
3040 		/*
3041 		 * Queue the async operation so it can be run from a sleepable
3042 		 * context.
3043 		 */
3044 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3045 		mtx_lock(&cam_async.cam_doneq_mtx);
3046 		STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3047 		start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3048 		mtx_unlock(&cam_async.cam_doneq_mtx);
3049 		wakeup(&cam_async.cam_doneq);
3050 		break;
3051 	default:
3052 	case XPT_SDEV_TYPE:
3053 	case XPT_TERM_IO:
3054 	case XPT_ENG_INQ:
3055 		/* XXX Implement */
3056 		xpt_print(start_ccb->ccb_h.path,
3057 		    "%s: CCB type %#x %s not supported\n", __func__,
3058 		    start_ccb->ccb_h.func_code,
3059 		    xpt_action_name(start_ccb->ccb_h.func_code));
3060 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3061 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3062 			xpt_done(start_ccb);
3063 		}
3064 		break;
3065 	}
3066 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3067 	    ("xpt_action_default: func= %#x %s status %#x\n",
3068 		start_ccb->ccb_h.func_code,
3069  		xpt_action_name(start_ccb->ccb_h.func_code),
3070 		start_ccb->ccb_h.status));
3071 }
3072 
3073 /*
3074  * Call the sim poll routine to allow the sim to complete
3075  * any inflight requests, then call camisr_runqueue to
3076  * complete any CCB that the polling completed.
3077  */
3078 void
3079 xpt_sim_poll(struct cam_sim *sim)
3080 {
3081 	struct mtx *mtx;
3082 
3083 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3084 	mtx = sim->mtx;
3085 	if (mtx)
3086 		mtx_lock(mtx);
3087 	(*(sim->sim_poll))(sim);
3088 	if (mtx)
3089 		mtx_unlock(mtx);
3090 	camisr_runqueue();
3091 }
3092 
3093 uint32_t
3094 xpt_poll_setup(union ccb *start_ccb)
3095 {
3096 	uint32_t timeout;
3097 	struct	  cam_sim *sim;
3098 	struct	  cam_devq *devq;
3099 	struct	  cam_ed *dev;
3100 
3101 	timeout = start_ccb->ccb_h.timeout * 10;
3102 	sim = start_ccb->ccb_h.path->bus->sim;
3103 	devq = sim->devq;
3104 	dev = start_ccb->ccb_h.path->device;
3105 
3106 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3107 
3108 	/*
3109 	 * Steal an opening so that no other queued requests
3110 	 * can get it before us while we simulate interrupts.
3111 	 */
3112 	mtx_lock(&devq->send_mtx);
3113 	dev->ccbq.dev_openings--;
3114 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3115 	    (--timeout > 0)) {
3116 		mtx_unlock(&devq->send_mtx);
3117 		DELAY(100);
3118 		xpt_sim_poll(sim);
3119 		mtx_lock(&devq->send_mtx);
3120 	}
3121 	dev->ccbq.dev_openings++;
3122 	mtx_unlock(&devq->send_mtx);
3123 
3124 	return (timeout);
3125 }
3126 
3127 void
3128 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3129 {
3130 
3131 	KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3132 	    ("%s: non-pollable sim", __func__));
3133 	while (--timeout > 0) {
3134 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3135 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3136 		    != CAM_REQ_INPROG)
3137 			break;
3138 		DELAY(100);
3139 	}
3140 
3141 	if (timeout == 0) {
3142 		/*
3143 		 * XXX Is it worth adding a sim_timeout entry
3144 		 * point so we can attempt recovery?  If
3145 		 * this is only used for dumps, I don't think
3146 		 * it is.
3147 		 */
3148 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3149 	}
3150 }
3151 
3152 /*
3153  * Schedule a peripheral driver to receive a ccb when its
3154  * target device has space for more transactions.
3155  */
3156 void
3157 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3158 {
3159 
3160 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3161 	cam_periph_assert(periph, MA_OWNED);
3162 	if (new_priority < periph->scheduled_priority) {
3163 		periph->scheduled_priority = new_priority;
3164 		xpt_run_allocq(periph, 0);
3165 	}
3166 }
3167 
3168 /*
3169  * Schedule a device to run on a given queue.
3170  * If the device was inserted as a new entry on the queue,
3171  * return 1 meaning the device queue should be run. If we
3172  * were already queued, implying someone else has already
3173  * started the queue, return 0 so the caller doesn't attempt
3174  * to run the queue.
3175  */
3176 static int
3177 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3178 		 uint32_t new_priority)
3179 {
3180 	int retval;
3181 	uint32_t old_priority;
3182 
3183 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3184 
3185 	old_priority = pinfo->priority;
3186 
3187 	/*
3188 	 * Are we already queued?
3189 	 */
3190 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3191 		/* Simply reorder based on new priority */
3192 		if (new_priority < old_priority) {
3193 			camq_change_priority(queue, pinfo->index,
3194 					     new_priority);
3195 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3196 					("changed priority to %d\n",
3197 					 new_priority));
3198 			retval = 1;
3199 		} else
3200 			retval = 0;
3201 	} else {
3202 		/* New entry on the queue */
3203 		if (new_priority < old_priority)
3204 			pinfo->priority = new_priority;
3205 
3206 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3207 				("Inserting onto queue\n"));
3208 		pinfo->generation = ++queue->generation;
3209 		camq_insert(queue, pinfo);
3210 		retval = 1;
3211 	}
3212 	return (retval);
3213 }
3214 
3215 static void
3216 xpt_run_allocq_task(void *context, int pending)
3217 {
3218 	struct cam_periph *periph = context;
3219 
3220 	cam_periph_lock(periph);
3221 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3222 	xpt_run_allocq(periph, 1);
3223 	cam_periph_unlock(periph);
3224 	cam_periph_release(periph);
3225 }
3226 
3227 static void
3228 xpt_run_allocq(struct cam_periph *periph, int sleep)
3229 {
3230 	struct cam_ed	*device;
3231 	union ccb	*ccb;
3232 	uint32_t	 prio;
3233 
3234 	cam_periph_assert(periph, MA_OWNED);
3235 	if (periph->periph_allocating)
3236 		return;
3237 	cam_periph_doacquire(periph);
3238 	periph->periph_allocating = 1;
3239 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3240 	device = periph->path->device;
3241 	ccb = NULL;
3242 restart:
3243 	while ((prio = min(periph->scheduled_priority,
3244 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3245 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3246 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3247 		if (ccb == NULL &&
3248 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3249 			if (sleep) {
3250 				ccb = xpt_get_ccb(periph);
3251 				goto restart;
3252 			}
3253 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3254 				break;
3255 			cam_periph_doacquire(periph);
3256 			periph->flags |= CAM_PERIPH_RUN_TASK;
3257 			taskqueue_enqueue(xsoftc.xpt_taskq,
3258 			    &periph->periph_run_task);
3259 			break;
3260 		}
3261 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3262 		if (prio == periph->immediate_priority) {
3263 			periph->immediate_priority = CAM_PRIORITY_NONE;
3264 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3265 					("waking cam_periph_getccb()\n"));
3266 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3267 					  periph_links.sle);
3268 			wakeup(&periph->ccb_list);
3269 		} else {
3270 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3271 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3272 					("calling periph_start()\n"));
3273 			periph->periph_start(periph, ccb);
3274 		}
3275 		ccb = NULL;
3276 	}
3277 	if (ccb != NULL)
3278 		xpt_release_ccb(ccb);
3279 	periph->periph_allocating = 0;
3280 	cam_periph_release_locked(periph);
3281 }
3282 
3283 static void
3284 xpt_run_devq(struct cam_devq *devq)
3285 {
3286 	struct mtx *mtx;
3287 
3288 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3289 
3290 	devq->send_queue.qfrozen_cnt++;
3291 	while ((devq->send_queue.entries > 0)
3292 	    && (devq->send_openings > 0)
3293 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3294 		struct	cam_ed *device;
3295 		union ccb *work_ccb;
3296 		struct	cam_sim *sim;
3297 		struct xpt_proto *proto;
3298 
3299 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3300 							   CAMQ_HEAD);
3301 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3302 				("running device %p\n", device));
3303 
3304 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3305 		if (work_ccb == NULL) {
3306 			printf("device on run queue with no ccbs???\n");
3307 			continue;
3308 		}
3309 
3310 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3311 			mtx_lock(&xsoftc.xpt_highpower_lock);
3312 		 	if (xsoftc.num_highpower <= 0) {
3313 				/*
3314 				 * We got a high power command, but we
3315 				 * don't have any available slots.  Freeze
3316 				 * the device queue until we have a slot
3317 				 * available.
3318 				 */
3319 				xpt_freeze_devq_device(device, 1);
3320 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3321 						   highpowerq_entry);
3322 
3323 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3324 				continue;
3325 			} else {
3326 				/*
3327 				 * Consume a high power slot while
3328 				 * this ccb runs.
3329 				 */
3330 				xsoftc.num_highpower--;
3331 			}
3332 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3333 		}
3334 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3335 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3336 		devq->send_openings--;
3337 		devq->send_active++;
3338 		xpt_schedule_devq(devq, device);
3339 		mtx_unlock(&devq->send_mtx);
3340 
3341 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3342 			/*
3343 			 * The client wants to freeze the queue
3344 			 * after this CCB is sent.
3345 			 */
3346 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3347 		}
3348 
3349 		/* In Target mode, the peripheral driver knows best... */
3350 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3351 			if ((device->inq_flags & SID_CmdQue) != 0
3352 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3353 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3354 			else
3355 				/*
3356 				 * Clear this in case of a retried CCB that
3357 				 * failed due to a rejected tag.
3358 				 */
3359 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3360 		}
3361 
3362 		KASSERT(device == work_ccb->ccb_h.path->device,
3363 		    ("device (%p) / path->device (%p) mismatch",
3364 			device, work_ccb->ccb_h.path->device));
3365 		proto = xpt_proto_find(device->protocol);
3366 		if (proto && proto->ops->debug_out)
3367 			proto->ops->debug_out(work_ccb);
3368 
3369 		/*
3370 		 * Device queues can be shared among multiple SIM instances
3371 		 * that reside on different buses.  Use the SIM from the
3372 		 * queued device, rather than the one from the calling bus.
3373 		 */
3374 		sim = device->sim;
3375 		mtx = sim->mtx;
3376 		if (mtx && !mtx_owned(mtx))
3377 			mtx_lock(mtx);
3378 		else
3379 			mtx = NULL;
3380 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3381 		(*(sim->sim_action))(sim, work_ccb);
3382 		if (mtx)
3383 			mtx_unlock(mtx);
3384 		mtx_lock(&devq->send_mtx);
3385 	}
3386 	devq->send_queue.qfrozen_cnt--;
3387 }
3388 
3389 /*
3390  * This function merges stuff from the src ccb into the dst ccb, while keeping
3391  * important fields in the dst ccb constant.
3392  */
3393 void
3394 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3395 {
3396 
3397 	/*
3398 	 * Pull fields that are valid for peripheral drivers to set
3399 	 * into the dst CCB along with the CCB "payload".
3400 	 */
3401 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3402 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3403 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3404 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3405 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3406 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3407 }
3408 
3409 void
3410 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3411 		    uint32_t priority, uint32_t flags)
3412 {
3413 
3414 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3415 	ccb_h->pinfo.priority = priority;
3416 	ccb_h->path = path;
3417 	ccb_h->path_id = path->bus->path_id;
3418 	if (path->target)
3419 		ccb_h->target_id = path->target->target_id;
3420 	else
3421 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3422 	if (path->device) {
3423 		ccb_h->target_lun = path->device->lun_id;
3424 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3425 	} else {
3426 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3427 	}
3428 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3429 	ccb_h->flags = flags;
3430 	ccb_h->xflags = 0;
3431 }
3432 
3433 void
3434 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3435 {
3436 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3437 }
3438 
3439 /* Path manipulation functions */
3440 cam_status
3441 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3442 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3443 {
3444 	struct	   cam_path *path;
3445 	cam_status status;
3446 
3447 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3448 
3449 	if (path == NULL) {
3450 		status = CAM_RESRC_UNAVAIL;
3451 		return(status);
3452 	}
3453 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3454 	if (status != CAM_REQ_CMP) {
3455 		free(path, M_CAMPATH);
3456 		path = NULL;
3457 	}
3458 	*new_path_ptr = path;
3459 	return (status);
3460 }
3461 
3462 cam_status
3463 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3464 			 struct cam_periph *periph, path_id_t path_id,
3465 			 target_id_t target_id, lun_id_t lun_id)
3466 {
3467 
3468 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3469 	    lun_id));
3470 }
3471 
3472 cam_status
3473 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3474 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3475 {
3476 	struct	     cam_eb *bus;
3477 	struct	     cam_et *target;
3478 	struct	     cam_ed *device;
3479 	cam_status   status;
3480 
3481 	status = CAM_REQ_CMP;	/* Completed without error */
3482 	target = NULL;		/* Wildcarded */
3483 	device = NULL;		/* Wildcarded */
3484 
3485 	/*
3486 	 * We will potentially modify the EDT, so block interrupts
3487 	 * that may attempt to create cam paths.
3488 	 */
3489 	bus = xpt_find_bus(path_id);
3490 	if (bus == NULL) {
3491 		status = CAM_PATH_INVALID;
3492 	} else {
3493 		xpt_lock_buses();
3494 		mtx_lock(&bus->eb_mtx);
3495 		target = xpt_find_target(bus, target_id);
3496 		if (target == NULL) {
3497 			/* Create one */
3498 			struct cam_et *new_target;
3499 
3500 			new_target = xpt_alloc_target(bus, target_id);
3501 			if (new_target == NULL) {
3502 				status = CAM_RESRC_UNAVAIL;
3503 			} else {
3504 				target = new_target;
3505 			}
3506 		}
3507 		xpt_unlock_buses();
3508 		if (target != NULL) {
3509 			device = xpt_find_device(target, lun_id);
3510 			if (device == NULL) {
3511 				/* Create one */
3512 				struct cam_ed *new_device;
3513 
3514 				new_device =
3515 				    (*(bus->xport->ops->alloc_device))(bus,
3516 								       target,
3517 								       lun_id);
3518 				if (new_device == NULL) {
3519 					status = CAM_RESRC_UNAVAIL;
3520 				} else {
3521 					device = new_device;
3522 				}
3523 			}
3524 		}
3525 		mtx_unlock(&bus->eb_mtx);
3526 	}
3527 
3528 	/*
3529 	 * Only touch the user's data if we are successful.
3530 	 */
3531 	if (status == CAM_REQ_CMP) {
3532 		new_path->periph = perph;
3533 		new_path->bus = bus;
3534 		new_path->target = target;
3535 		new_path->device = device;
3536 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3537 	} else {
3538 		if (device != NULL)
3539 			xpt_release_device(device);
3540 		if (target != NULL)
3541 			xpt_release_target(target);
3542 		if (bus != NULL)
3543 			xpt_release_bus(bus);
3544 	}
3545 	return (status);
3546 }
3547 
3548 int
3549 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3550 {
3551 	struct	   cam_path *new_path;
3552 
3553 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3554 	if (new_path == NULL)
3555 		return (ENOMEM);
3556 	*new_path = *path;
3557 	if (path->bus != NULL)
3558 		xpt_acquire_bus(path->bus);
3559 	if (path->target != NULL)
3560 		xpt_acquire_target(path->target);
3561 	if (path->device != NULL)
3562 		xpt_acquire_device(path->device);
3563 	*new_path_ptr = new_path;
3564 	return (0);
3565 }
3566 
3567 void
3568 xpt_release_path(struct cam_path *path)
3569 {
3570 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3571 	if (path->device != NULL) {
3572 		xpt_release_device(path->device);
3573 		path->device = NULL;
3574 	}
3575 	if (path->target != NULL) {
3576 		xpt_release_target(path->target);
3577 		path->target = NULL;
3578 	}
3579 	if (path->bus != NULL) {
3580 		xpt_release_bus(path->bus);
3581 		path->bus = NULL;
3582 	}
3583 }
3584 
3585 void
3586 xpt_free_path(struct cam_path *path)
3587 {
3588 
3589 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3590 	xpt_release_path(path);
3591 	free(path, M_CAMPATH);
3592 }
3593 
3594 void
3595 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3596     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3597 {
3598 
3599 	xpt_lock_buses();
3600 	if (bus_ref) {
3601 		if (path->bus)
3602 			*bus_ref = path->bus->refcount;
3603 		else
3604 			*bus_ref = 0;
3605 	}
3606 	if (periph_ref) {
3607 		if (path->periph)
3608 			*periph_ref = path->periph->refcount;
3609 		else
3610 			*periph_ref = 0;
3611 	}
3612 	xpt_unlock_buses();
3613 	if (target_ref) {
3614 		if (path->target)
3615 			*target_ref = path->target->refcount;
3616 		else
3617 			*target_ref = 0;
3618 	}
3619 	if (device_ref) {
3620 		if (path->device)
3621 			*device_ref = path->device->refcount;
3622 		else
3623 			*device_ref = 0;
3624 	}
3625 }
3626 
3627 /*
3628  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3629  * in path1, 2 for match with wildcards in path2.
3630  */
3631 int
3632 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3633 {
3634 	int retval = 0;
3635 
3636 	if (path1->bus != path2->bus) {
3637 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3638 			retval = 1;
3639 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3640 			retval = 2;
3641 		else
3642 			return (-1);
3643 	}
3644 	if (path1->target != path2->target) {
3645 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3646 			if (retval == 0)
3647 				retval = 1;
3648 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3649 			retval = 2;
3650 		else
3651 			return (-1);
3652 	}
3653 	if (path1->device != path2->device) {
3654 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3655 			if (retval == 0)
3656 				retval = 1;
3657 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3658 			retval = 2;
3659 		else
3660 			return (-1);
3661 	}
3662 	return (retval);
3663 }
3664 
3665 int
3666 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3667 {
3668 	int retval = 0;
3669 
3670 	if (path->bus != dev->target->bus) {
3671 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3672 			retval = 1;
3673 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3674 			retval = 2;
3675 		else
3676 			return (-1);
3677 	}
3678 	if (path->target != dev->target) {
3679 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3680 			if (retval == 0)
3681 				retval = 1;
3682 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3683 			retval = 2;
3684 		else
3685 			return (-1);
3686 	}
3687 	if (path->device != dev) {
3688 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3689 			if (retval == 0)
3690 				retval = 1;
3691 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3692 			retval = 2;
3693 		else
3694 			return (-1);
3695 	}
3696 	return (retval);
3697 }
3698 
3699 void
3700 xpt_print_path(struct cam_path *path)
3701 {
3702 	struct sbuf sb;
3703 	char buffer[XPT_PRINT_LEN];
3704 
3705 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3706 	xpt_path_sbuf(path, &sb);
3707 	sbuf_finish(&sb);
3708 	printf("%s", sbuf_data(&sb));
3709 	sbuf_delete(&sb);
3710 }
3711 
3712 static void
3713 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb)
3714 {
3715 	if (device == NULL)
3716 		sbuf_cat(sb, "(nopath): ");
3717 	else {
3718 		sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ",
3719 		    device->sim->sim_name,
3720 		    device->sim->unit_number,
3721 		    device->sim->bus_id,
3722 		    device->target->target_id,
3723 		    (uintmax_t)device->lun_id);
3724 	}
3725 }
3726 
3727 void
3728 xpt_print(struct cam_path *path, const char *fmt, ...)
3729 {
3730 	va_list ap;
3731 	struct sbuf sb;
3732 	char buffer[XPT_PRINT_LEN];
3733 
3734 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3735 
3736 	xpt_path_sbuf(path, &sb);
3737 	va_start(ap, fmt);
3738 	sbuf_vprintf(&sb, fmt, ap);
3739 	va_end(ap);
3740 
3741 	sbuf_finish(&sb);
3742 	printf("%s", sbuf_data(&sb));
3743 	sbuf_delete(&sb);
3744 }
3745 
3746 char *
3747 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3748 {
3749 	struct sbuf sb;
3750 
3751 	sbuf_new(&sb, str, str_len, 0);
3752 	xpt_path_sbuf(path, &sb);
3753 	sbuf_finish(&sb);
3754 	return (str);
3755 }
3756 
3757 void
3758 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3759 {
3760 
3761 	if (path == NULL)
3762 		sbuf_cat(sb, "(nopath): ");
3763 	else {
3764 		if (path->periph != NULL)
3765 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3766 				    path->periph->unit_number);
3767 		else
3768 			sbuf_cat(sb, "(noperiph:");
3769 
3770 		if (path->bus != NULL)
3771 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3772 				    path->bus->sim->unit_number,
3773 				    path->bus->sim->bus_id);
3774 		else
3775 			sbuf_cat(sb, "nobus:");
3776 
3777 		if (path->target != NULL)
3778 			sbuf_printf(sb, "%d:", path->target->target_id);
3779 		else
3780 			sbuf_cat(sb, "X:");
3781 
3782 		if (path->device != NULL)
3783 			sbuf_printf(sb, "%jx): ",
3784 			    (uintmax_t)path->device->lun_id);
3785 		else
3786 			sbuf_cat(sb, "X): ");
3787 	}
3788 }
3789 
3790 path_id_t
3791 xpt_path_path_id(struct cam_path *path)
3792 {
3793 	return(path->bus->path_id);
3794 }
3795 
3796 target_id_t
3797 xpt_path_target_id(struct cam_path *path)
3798 {
3799 	if (path->target != NULL)
3800 		return (path->target->target_id);
3801 	else
3802 		return (CAM_TARGET_WILDCARD);
3803 }
3804 
3805 lun_id_t
3806 xpt_path_lun_id(struct cam_path *path)
3807 {
3808 	if (path->device != NULL)
3809 		return (path->device->lun_id);
3810 	else
3811 		return (CAM_LUN_WILDCARD);
3812 }
3813 
3814 struct cam_sim *
3815 xpt_path_sim(struct cam_path *path)
3816 {
3817 
3818 	return (path->bus->sim);
3819 }
3820 
3821 struct cam_periph*
3822 xpt_path_periph(struct cam_path *path)
3823 {
3824 
3825 	return (path->periph);
3826 }
3827 
3828 /*
3829  * Release a CAM control block for the caller.  Remit the cost of the structure
3830  * to the device referenced by the path.  If the this device had no 'credits'
3831  * and peripheral drivers have registered async callbacks for this notification
3832  * call them now.
3833  */
3834 void
3835 xpt_release_ccb(union ccb *free_ccb)
3836 {
3837 	struct	 cam_ed *device;
3838 	struct	 cam_periph *periph;
3839 
3840 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3841 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3842 	device = free_ccb->ccb_h.path->device;
3843 	periph = free_ccb->ccb_h.path->periph;
3844 
3845 	xpt_free_ccb(free_ccb);
3846 	periph->periph_allocated--;
3847 	cam_ccbq_release_opening(&device->ccbq);
3848 	xpt_run_allocq(periph, 0);
3849 }
3850 
3851 /* Functions accessed by SIM drivers */
3852 
3853 static struct xpt_xport_ops xport_default_ops = {
3854 	.alloc_device = xpt_alloc_device_default,
3855 	.action = xpt_action_default,
3856 	.async = xpt_dev_async_default,
3857 };
3858 static struct xpt_xport xport_default = {
3859 	.xport = XPORT_UNKNOWN,
3860 	.name = "unknown",
3861 	.ops = &xport_default_ops,
3862 };
3863 
3864 CAM_XPT_XPORT(xport_default);
3865 
3866 /*
3867  * A sim structure, listing the SIM entry points and instance
3868  * identification info is passed to xpt_bus_register to hook the SIM
3869  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3870  * for this new bus and places it in the array of buses and assigns
3871  * it a path_id.  The path_id may be influenced by "hard wiring"
3872  * information specified by the user.  Once interrupt services are
3873  * available, the bus will be probed.
3874  */
3875 int
3876 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3877 {
3878 	struct cam_eb *new_bus;
3879 	struct cam_eb *old_bus;
3880 	struct ccb_pathinq cpi;
3881 	struct cam_path *path;
3882 	cam_status status;
3883 
3884 	sim->bus_id = bus;
3885 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3886 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3887 	if (new_bus == NULL) {
3888 		/* Couldn't satisfy request */
3889 		return (ENOMEM);
3890 	}
3891 
3892 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3893 	TAILQ_INIT(&new_bus->et_entries);
3894 	cam_sim_hold(sim);
3895 	new_bus->sim = sim;
3896 	timevalclear(&new_bus->last_reset);
3897 	new_bus->flags = 0;
3898 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3899 	new_bus->generation = 0;
3900 	new_bus->parent_dev = parent;
3901 
3902 	xpt_lock_buses();
3903 	sim->path_id = new_bus->path_id =
3904 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3905 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3906 	while (old_bus != NULL
3907 	    && old_bus->path_id < new_bus->path_id)
3908 		old_bus = TAILQ_NEXT(old_bus, links);
3909 	if (old_bus != NULL)
3910 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3911 	else
3912 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3913 	xsoftc.bus_generation++;
3914 	xpt_unlock_buses();
3915 
3916 	/*
3917 	 * Set a default transport so that a PATH_INQ can be issued to
3918 	 * the SIM.  This will then allow for probing and attaching of
3919 	 * a more appropriate transport.
3920 	 */
3921 	new_bus->xport = &xport_default;
3922 
3923 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3924 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3925 	if (status != CAM_REQ_CMP) {
3926 		xpt_release_bus(new_bus);
3927 		return (ENOMEM);
3928 	}
3929 
3930 	xpt_path_inq(&cpi, path);
3931 
3932 	/*
3933 	 * Use the results of PATH_INQ to pick a transport.  Note that
3934 	 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3935 	 * xport_default instead of a transport from
3936 	 * cam_xpt_port_set.
3937 	 */
3938 	if (cam_ccb_success((union ccb *)&cpi) &&
3939 	    cpi.transport != XPORT_UNSPECIFIED) {
3940 		struct xpt_xport **xpt;
3941 
3942 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3943 			if ((*xpt)->xport == cpi.transport) {
3944 				new_bus->xport = *xpt;
3945 				break;
3946 			}
3947 		}
3948 		if (new_bus->xport == &xport_default) {
3949 			xpt_print(path,
3950 			    "No transport found for %d\n", cpi.transport);
3951 			xpt_release_bus(new_bus);
3952 			xpt_free_path(path);
3953 			return (EINVAL);
3954 		}
3955 	}
3956 
3957 	/* Notify interested parties */
3958 	if (sim->path_id != CAM_XPT_PATH_ID) {
3959 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3960 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3961 			union	ccb *scan_ccb;
3962 
3963 			/* Initiate bus rescan. */
3964 			scan_ccb = xpt_alloc_ccb_nowait();
3965 			if (scan_ccb != NULL) {
3966 				scan_ccb->ccb_h.path = path;
3967 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3968 				scan_ccb->crcn.flags = 0;
3969 				xpt_rescan(scan_ccb);
3970 			} else {
3971 				xpt_print(path,
3972 					  "Can't allocate CCB to scan bus\n");
3973 				xpt_free_path(path);
3974 			}
3975 		} else
3976 			xpt_free_path(path);
3977 	} else
3978 		xpt_free_path(path);
3979 	return (CAM_SUCCESS);
3980 }
3981 
3982 int
3983 xpt_bus_deregister(path_id_t pathid)
3984 {
3985 	struct cam_path bus_path;
3986 	cam_status status;
3987 
3988 	status = xpt_compile_path(&bus_path, NULL, pathid,
3989 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3990 	if (status != CAM_REQ_CMP)
3991 		return (ENOMEM);
3992 
3993 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3994 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3995 
3996 	/* Release the reference count held while registered. */
3997 	xpt_release_bus(bus_path.bus);
3998 	xpt_release_path(&bus_path);
3999 
4000 	return (CAM_SUCCESS);
4001 }
4002 
4003 static path_id_t
4004 xptnextfreepathid(void)
4005 {
4006 	struct cam_eb *bus;
4007 	path_id_t pathid;
4008 	const char *strval;
4009 
4010 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4011 	pathid = 0;
4012 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4013 retry:
4014 	/* Find an unoccupied pathid */
4015 	while (bus != NULL && bus->path_id <= pathid) {
4016 		if (bus->path_id == pathid)
4017 			pathid++;
4018 		bus = TAILQ_NEXT(bus, links);
4019 	}
4020 
4021 	/*
4022 	 * Ensure that this pathid is not reserved for
4023 	 * a bus that may be registered in the future.
4024 	 */
4025 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4026 		++pathid;
4027 		/* Start the search over */
4028 		goto retry;
4029 	}
4030 	return (pathid);
4031 }
4032 
4033 static path_id_t
4034 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4035 {
4036 	path_id_t pathid;
4037 	int i, dunit, val;
4038 	char buf[32];
4039 	const char *dname;
4040 
4041 	pathid = CAM_XPT_PATH_ID;
4042 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4043 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4044 		return (pathid);
4045 	i = 0;
4046 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4047 		if (strcmp(dname, "scbus")) {
4048 			/* Avoid a bit of foot shooting. */
4049 			continue;
4050 		}
4051 		if (dunit < 0)		/* unwired?! */
4052 			continue;
4053 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4054 			if (sim_bus == val) {
4055 				pathid = dunit;
4056 				break;
4057 			}
4058 		} else if (sim_bus == 0) {
4059 			/* Unspecified matches bus 0 */
4060 			pathid = dunit;
4061 			break;
4062 		} else {
4063 			printf("Ambiguous scbus configuration for %s%d "
4064 			       "bus %d, cannot wire down.  The kernel "
4065 			       "config entry for scbus%d should "
4066 			       "specify a controller bus.\n"
4067 			       "Scbus will be assigned dynamically.\n",
4068 			       sim_name, sim_unit, sim_bus, dunit);
4069 			break;
4070 		}
4071 	}
4072 
4073 	if (pathid == CAM_XPT_PATH_ID)
4074 		pathid = xptnextfreepathid();
4075 	return (pathid);
4076 }
4077 
4078 static const char *
4079 xpt_async_string(uint32_t async_code)
4080 {
4081 
4082 	switch (async_code) {
4083 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4084 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4085 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4086 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4087 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4088 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4089 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4090 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4091 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4092 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4093 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4094 	case AC_CONTRACT: return ("AC_CONTRACT");
4095 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4096 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4097 	}
4098 	return ("AC_UNKNOWN");
4099 }
4100 
4101 static int
4102 xpt_async_size(uint32_t async_code)
4103 {
4104 
4105 	switch (async_code) {
4106 	case AC_BUS_RESET: return (0);
4107 	case AC_UNSOL_RESEL: return (0);
4108 	case AC_SCSI_AEN: return (0);
4109 	case AC_SENT_BDR: return (0);
4110 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4111 	case AC_PATH_DEREGISTERED: return (0);
4112 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4113 	case AC_LOST_DEVICE: return (0);
4114 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4115 	case AC_INQ_CHANGED: return (0);
4116 	case AC_GETDEV_CHANGED: return (0);
4117 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4118 	case AC_ADVINFO_CHANGED: return (-1);
4119 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4120 	}
4121 	return (0);
4122 }
4123 
4124 static int
4125 xpt_async_process_dev(struct cam_ed *device, void *arg)
4126 {
4127 	union ccb *ccb = arg;
4128 	struct cam_path *path = ccb->ccb_h.path;
4129 	void *async_arg = ccb->casync.async_arg_ptr;
4130 	uint32_t async_code = ccb->casync.async_code;
4131 	bool relock;
4132 
4133 	if (path->device != device
4134 	 && path->device->lun_id != CAM_LUN_WILDCARD
4135 	 && device->lun_id != CAM_LUN_WILDCARD)
4136 		return (1);
4137 
4138 	/*
4139 	 * The async callback could free the device.
4140 	 * If it is a broadcast async, it doesn't hold
4141 	 * device reference, so take our own reference.
4142 	 */
4143 	xpt_acquire_device(device);
4144 
4145 	/*
4146 	 * If async for specific device is to be delivered to
4147 	 * the wildcard client, take the specific device lock.
4148 	 * XXX: We may need a way for client to specify it.
4149 	 */
4150 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4151 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4152 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4153 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4154 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4155 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4156 		mtx_unlock(&device->device_mtx);
4157 		xpt_path_lock(path);
4158 		relock = true;
4159 	} else
4160 		relock = false;
4161 
4162 	(*(device->target->bus->xport->ops->async))(async_code,
4163 	    device->target->bus, device->target, device, async_arg);
4164 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4165 
4166 	if (relock) {
4167 		xpt_path_unlock(path);
4168 		mtx_lock(&device->device_mtx);
4169 	}
4170 	xpt_release_device(device);
4171 	return (1);
4172 }
4173 
4174 static int
4175 xpt_async_process_tgt(struct cam_et *target, void *arg)
4176 {
4177 	union ccb *ccb = arg;
4178 	struct cam_path *path = ccb->ccb_h.path;
4179 
4180 	if (path->target != target
4181 	 && path->target->target_id != CAM_TARGET_WILDCARD
4182 	 && target->target_id != CAM_TARGET_WILDCARD)
4183 		return (1);
4184 
4185 	if (ccb->casync.async_code == AC_SENT_BDR) {
4186 		/* Update our notion of when the last reset occurred */
4187 		microtime(&target->last_reset);
4188 	}
4189 
4190 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4191 }
4192 
4193 static void
4194 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4195 {
4196 	struct cam_eb *bus;
4197 	struct cam_path *path;
4198 	void *async_arg;
4199 	uint32_t async_code;
4200 
4201 	path = ccb->ccb_h.path;
4202 	async_code = ccb->casync.async_code;
4203 	async_arg = ccb->casync.async_arg_ptr;
4204 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4205 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4206 	bus = path->bus;
4207 
4208 	if (async_code == AC_BUS_RESET) {
4209 		/* Update our notion of when the last reset occurred */
4210 		microtime(&bus->last_reset);
4211 	}
4212 
4213 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4214 
4215 	/*
4216 	 * If this wasn't a fully wildcarded async, tell all
4217 	 * clients that want all async events.
4218 	 */
4219 	if (bus != xpt_periph->path->bus) {
4220 		xpt_path_lock(xpt_periph->path);
4221 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4222 		xpt_path_unlock(xpt_periph->path);
4223 	}
4224 
4225 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4226 		xpt_release_devq(path, 1, TRUE);
4227 	else
4228 		xpt_release_simq(path->bus->sim, TRUE);
4229 	if (ccb->casync.async_arg_size > 0)
4230 		free(async_arg, M_CAMXPT);
4231 	xpt_free_path(path);
4232 	xpt_free_ccb(ccb);
4233 }
4234 
4235 static void
4236 xpt_async_bcast(struct async_list *async_head,
4237 		uint32_t async_code,
4238 		struct cam_path *path, void *async_arg)
4239 {
4240 	struct async_node *cur_entry;
4241 	struct mtx *mtx;
4242 
4243 	cur_entry = SLIST_FIRST(async_head);
4244 	while (cur_entry != NULL) {
4245 		struct async_node *next_entry;
4246 		/*
4247 		 * Grab the next list entry before we call the current
4248 		 * entry's callback.  This is because the callback function
4249 		 * can delete its async callback entry.
4250 		 */
4251 		next_entry = SLIST_NEXT(cur_entry, links);
4252 		if ((cur_entry->event_enable & async_code) != 0) {
4253 			mtx = cur_entry->event_lock ?
4254 			    path->device->sim->mtx : NULL;
4255 			if (mtx)
4256 				mtx_lock(mtx);
4257 			cur_entry->callback(cur_entry->callback_arg,
4258 					    async_code, path,
4259 					    async_arg);
4260 			if (mtx)
4261 				mtx_unlock(mtx);
4262 		}
4263 		cur_entry = next_entry;
4264 	}
4265 }
4266 
4267 void
4268 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4269 {
4270 	union ccb *ccb;
4271 	int size;
4272 
4273 	ccb = xpt_alloc_ccb_nowait();
4274 	if (ccb == NULL) {
4275 		xpt_print(path, "Can't allocate CCB to send %s\n",
4276 		    xpt_async_string(async_code));
4277 		return;
4278 	}
4279 
4280 	if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4281 		xpt_print(path, "Can't allocate path to send %s\n",
4282 		    xpt_async_string(async_code));
4283 		xpt_free_ccb(ccb);
4284 		return;
4285 	}
4286 	ccb->ccb_h.path->periph = NULL;
4287 	ccb->ccb_h.func_code = XPT_ASYNC;
4288 	ccb->ccb_h.cbfcnp = xpt_async_process;
4289 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4290 	ccb->casync.async_code = async_code;
4291 	ccb->casync.async_arg_size = 0;
4292 	size = xpt_async_size(async_code);
4293 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4294 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4295 		ccb->ccb_h.func_code,
4296 		xpt_action_name(ccb->ccb_h.func_code),
4297 		async_code,
4298 		xpt_async_string(async_code)));
4299 	if (size > 0 && async_arg != NULL) {
4300 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4301 		if (ccb->casync.async_arg_ptr == NULL) {
4302 			xpt_print(path, "Can't allocate argument to send %s\n",
4303 			    xpt_async_string(async_code));
4304 			xpt_free_path(ccb->ccb_h.path);
4305 			xpt_free_ccb(ccb);
4306 			return;
4307 		}
4308 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4309 		ccb->casync.async_arg_size = size;
4310 	} else if (size < 0) {
4311 		ccb->casync.async_arg_ptr = async_arg;
4312 		ccb->casync.async_arg_size = size;
4313 	}
4314 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4315 		xpt_freeze_devq(path, 1);
4316 	else
4317 		xpt_freeze_simq(path->bus->sim, 1);
4318 	xpt_action(ccb);
4319 }
4320 
4321 static void
4322 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4323 		      struct cam_et *target, struct cam_ed *device,
4324 		      void *async_arg)
4325 {
4326 
4327 	/*
4328 	 * We only need to handle events for real devices.
4329 	 */
4330 	if (target->target_id == CAM_TARGET_WILDCARD
4331 	 || device->lun_id == CAM_LUN_WILDCARD)
4332 		return;
4333 
4334 	printf("%s called\n", __func__);
4335 }
4336 
4337 static uint32_t
4338 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4339 {
4340 	struct cam_devq	*devq;
4341 	uint32_t freeze;
4342 
4343 	devq = dev->sim->devq;
4344 	mtx_assert(&devq->send_mtx, MA_OWNED);
4345 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4346 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4347 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4348 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4349 	/* Remove frozen device from sendq. */
4350 	if (device_is_queued(dev))
4351 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4352 	return (freeze);
4353 }
4354 
4355 uint32_t
4356 xpt_freeze_devq(struct cam_path *path, u_int count)
4357 {
4358 	struct cam_ed	*dev = path->device;
4359 	struct cam_devq	*devq;
4360 	uint32_t	 freeze;
4361 
4362 	devq = dev->sim->devq;
4363 	mtx_lock(&devq->send_mtx);
4364 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4365 	freeze = xpt_freeze_devq_device(dev, count);
4366 	mtx_unlock(&devq->send_mtx);
4367 	return (freeze);
4368 }
4369 
4370 uint32_t
4371 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4372 {
4373 	struct cam_devq	*devq;
4374 	uint32_t	 freeze;
4375 
4376 	devq = sim->devq;
4377 	mtx_lock(&devq->send_mtx);
4378 	freeze = (devq->send_queue.qfrozen_cnt += count);
4379 	mtx_unlock(&devq->send_mtx);
4380 	return (freeze);
4381 }
4382 
4383 static void
4384 xpt_release_devq_timeout(void *arg)
4385 {
4386 	struct cam_ed *dev;
4387 	struct cam_devq *devq;
4388 
4389 	dev = (struct cam_ed *)arg;
4390 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4391 	devq = dev->sim->devq;
4392 	mtx_assert(&devq->send_mtx, MA_OWNED);
4393 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4394 		xpt_run_devq(devq);
4395 }
4396 
4397 void
4398 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4399 {
4400 	struct cam_ed *dev;
4401 	struct cam_devq *devq;
4402 
4403 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4404 	    count, run_queue));
4405 	dev = path->device;
4406 	devq = dev->sim->devq;
4407 	mtx_lock(&devq->send_mtx);
4408 	if (xpt_release_devq_device(dev, count, run_queue))
4409 		xpt_run_devq(dev->sim->devq);
4410 	mtx_unlock(&devq->send_mtx);
4411 }
4412 
4413 static int
4414 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4415 {
4416 
4417 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4418 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4419 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4420 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4421 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4422 #ifdef INVARIANTS
4423 		printf("xpt_release_devq(): requested %u > present %u\n",
4424 		    count, dev->ccbq.queue.qfrozen_cnt);
4425 #endif
4426 		count = dev->ccbq.queue.qfrozen_cnt;
4427 	}
4428 	dev->ccbq.queue.qfrozen_cnt -= count;
4429 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4430 		/*
4431 		 * No longer need to wait for a successful
4432 		 * command completion.
4433 		 */
4434 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4435 		/*
4436 		 * Remove any timeouts that might be scheduled
4437 		 * to release this queue.
4438 		 */
4439 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4440 			callout_stop(&dev->callout);
4441 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4442 		}
4443 		/*
4444 		 * Now that we are unfrozen schedule the
4445 		 * device so any pending transactions are
4446 		 * run.
4447 		 */
4448 		xpt_schedule_devq(dev->sim->devq, dev);
4449 	} else
4450 		run_queue = 0;
4451 	return (run_queue);
4452 }
4453 
4454 void
4455 xpt_release_simq(struct cam_sim *sim, int run_queue)
4456 {
4457 	struct cam_devq	*devq;
4458 
4459 	devq = sim->devq;
4460 	mtx_lock(&devq->send_mtx);
4461 	if (devq->send_queue.qfrozen_cnt <= 0) {
4462 #ifdef INVARIANTS
4463 		printf("xpt_release_simq: requested 1 > present %u\n",
4464 		    devq->send_queue.qfrozen_cnt);
4465 #endif
4466 	} else
4467 		devq->send_queue.qfrozen_cnt--;
4468 	if (devq->send_queue.qfrozen_cnt == 0) {
4469 		if (run_queue) {
4470 			/*
4471 			 * Now that we are unfrozen run the send queue.
4472 			 */
4473 			xpt_run_devq(sim->devq);
4474 		}
4475 	}
4476 	mtx_unlock(&devq->send_mtx);
4477 }
4478 
4479 void
4480 xpt_done(union ccb *done_ccb)
4481 {
4482 	struct cam_doneq *queue;
4483 	int	run, hash;
4484 
4485 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4486 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4487 	    done_ccb->csio.bio != NULL)
4488 		biotrack(done_ccb->csio.bio, __func__);
4489 #endif
4490 
4491 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4492 	    ("xpt_done: func= %#x %s status %#x\n",
4493 		done_ccb->ccb_h.func_code,
4494 		xpt_action_name(done_ccb->ccb_h.func_code),
4495 		done_ccb->ccb_h.status));
4496 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4497 		return;
4498 
4499 	/* Store the time the ccb was in the sim */
4500 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4501 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4502 	hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4503 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4504 	queue = &cam_doneqs[hash];
4505 	mtx_lock(&queue->cam_doneq_mtx);
4506 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4507 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4508 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4509 	mtx_unlock(&queue->cam_doneq_mtx);
4510 	if (run && !dumping)
4511 		wakeup(&queue->cam_doneq);
4512 }
4513 
4514 void
4515 xpt_done_direct(union ccb *done_ccb)
4516 {
4517 
4518 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4519 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4520 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4521 		return;
4522 
4523 	/* Store the time the ccb was in the sim */
4524 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4525 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4526 	xpt_done_process(&done_ccb->ccb_h);
4527 }
4528 
4529 union ccb *
4530 xpt_alloc_ccb(void)
4531 {
4532 	union ccb *new_ccb;
4533 
4534 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4535 	return (new_ccb);
4536 }
4537 
4538 union ccb *
4539 xpt_alloc_ccb_nowait(void)
4540 {
4541 	union ccb *new_ccb;
4542 
4543 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4544 	return (new_ccb);
4545 }
4546 
4547 void
4548 xpt_free_ccb(union ccb *free_ccb)
4549 {
4550 	struct cam_periph *periph;
4551 
4552 	if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4553 		/*
4554 		 * Looks like a CCB allocated from a periph UMA zone.
4555 		 */
4556 		periph = free_ccb->ccb_h.path->periph;
4557 		uma_zfree(periph->ccb_zone, free_ccb);
4558 	} else {
4559 		free(free_ccb, M_CAMCCB);
4560 	}
4561 }
4562 
4563 /* Private XPT functions */
4564 
4565 /*
4566  * Get a CAM control block for the caller. Charge the structure to the device
4567  * referenced by the path.  If we don't have sufficient resources to allocate
4568  * more ccbs, we return NULL.
4569  */
4570 static union ccb *
4571 xpt_get_ccb_nowait(struct cam_periph *periph)
4572 {
4573 	union ccb *new_ccb;
4574 	int alloc_flags;
4575 
4576 	if (periph->ccb_zone != NULL) {
4577 		alloc_flags = CAM_CCB_FROM_UMA;
4578 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4579 	} else {
4580 		alloc_flags = 0;
4581 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4582 	}
4583 	if (new_ccb == NULL)
4584 		return (NULL);
4585 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4586 	periph->periph_allocated++;
4587 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4588 	return (new_ccb);
4589 }
4590 
4591 static union ccb *
4592 xpt_get_ccb(struct cam_periph *periph)
4593 {
4594 	union ccb *new_ccb;
4595 	int alloc_flags;
4596 
4597 	cam_periph_unlock(periph);
4598 	if (periph->ccb_zone != NULL) {
4599 		alloc_flags = CAM_CCB_FROM_UMA;
4600 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4601 	} else {
4602 		alloc_flags = 0;
4603 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4604 	}
4605 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4606 	cam_periph_lock(periph);
4607 	periph->periph_allocated++;
4608 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4609 	return (new_ccb);
4610 }
4611 
4612 union ccb *
4613 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4614 {
4615 	struct ccb_hdr *ccb_h;
4616 
4617 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4618 	cam_periph_assert(periph, MA_OWNED);
4619 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4620 	    ccb_h->pinfo.priority != priority) {
4621 		if (priority < periph->immediate_priority) {
4622 			periph->immediate_priority = priority;
4623 			xpt_run_allocq(periph, 0);
4624 		} else
4625 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4626 			    "cgticb", 0);
4627 	}
4628 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4629 	return ((union ccb *)ccb_h);
4630 }
4631 
4632 static void
4633 xpt_acquire_bus(struct cam_eb *bus)
4634 {
4635 
4636 	xpt_lock_buses();
4637 	bus->refcount++;
4638 	xpt_unlock_buses();
4639 }
4640 
4641 static void
4642 xpt_release_bus(struct cam_eb *bus)
4643 {
4644 
4645 	xpt_lock_buses();
4646 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4647 	if (--bus->refcount > 0) {
4648 		xpt_unlock_buses();
4649 		return;
4650 	}
4651 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4652 	xsoftc.bus_generation++;
4653 	xpt_unlock_buses();
4654 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4655 	    ("destroying bus, but target list is not empty"));
4656 	cam_sim_release(bus->sim);
4657 	mtx_destroy(&bus->eb_mtx);
4658 	free(bus, M_CAMXPT);
4659 }
4660 
4661 static struct cam_et *
4662 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4663 {
4664 	struct cam_et *cur_target, *target;
4665 
4666 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4667 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4668 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4669 					 M_NOWAIT|M_ZERO);
4670 	if (target == NULL)
4671 		return (NULL);
4672 
4673 	TAILQ_INIT(&target->ed_entries);
4674 	target->bus = bus;
4675 	target->target_id = target_id;
4676 	target->refcount = 1;
4677 	target->generation = 0;
4678 	target->luns = NULL;
4679 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4680 	timevalclear(&target->last_reset);
4681 	/*
4682 	 * Hold a reference to our parent bus so it
4683 	 * will not go away before we do.
4684 	 */
4685 	bus->refcount++;
4686 
4687 	/* Insertion sort into our bus's target list */
4688 	cur_target = TAILQ_FIRST(&bus->et_entries);
4689 	while (cur_target != NULL && cur_target->target_id < target_id)
4690 		cur_target = TAILQ_NEXT(cur_target, links);
4691 	if (cur_target != NULL) {
4692 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4693 	} else {
4694 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4695 	}
4696 	bus->generation++;
4697 	return (target);
4698 }
4699 
4700 static void
4701 xpt_acquire_target(struct cam_et *target)
4702 {
4703 	struct cam_eb *bus = target->bus;
4704 
4705 	mtx_lock(&bus->eb_mtx);
4706 	target->refcount++;
4707 	mtx_unlock(&bus->eb_mtx);
4708 }
4709 
4710 static void
4711 xpt_release_target(struct cam_et *target)
4712 {
4713 	struct cam_eb *bus = target->bus;
4714 
4715 	mtx_lock(&bus->eb_mtx);
4716 	if (--target->refcount > 0) {
4717 		mtx_unlock(&bus->eb_mtx);
4718 		return;
4719 	}
4720 	TAILQ_REMOVE(&bus->et_entries, target, links);
4721 	bus->generation++;
4722 	mtx_unlock(&bus->eb_mtx);
4723 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4724 	    ("destroying target, but device list is not empty"));
4725 	xpt_release_bus(bus);
4726 	mtx_destroy(&target->luns_mtx);
4727 	if (target->luns)
4728 		free(target->luns, M_CAMXPT);
4729 	free(target, M_CAMXPT);
4730 }
4731 
4732 static struct cam_ed *
4733 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4734 			 lun_id_t lun_id)
4735 {
4736 	struct cam_ed *device;
4737 
4738 	device = xpt_alloc_device(bus, target, lun_id);
4739 	if (device == NULL)
4740 		return (NULL);
4741 
4742 	device->mintags = 1;
4743 	device->maxtags = 1;
4744 	return (device);
4745 }
4746 
4747 static void
4748 xpt_destroy_device(void *context, int pending)
4749 {
4750 	struct cam_ed	*device = context;
4751 
4752 	mtx_lock(&device->device_mtx);
4753 	mtx_destroy(&device->device_mtx);
4754 	free(device, M_CAMDEV);
4755 }
4756 
4757 struct cam_ed *
4758 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4759 {
4760 	struct cam_ed	*cur_device, *device;
4761 	struct cam_devq	*devq;
4762 	cam_status status;
4763 
4764 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4765 	/* Make space for us in the device queue on our bus */
4766 	devq = bus->sim->devq;
4767 	mtx_lock(&devq->send_mtx);
4768 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4769 	mtx_unlock(&devq->send_mtx);
4770 	if (status != CAM_REQ_CMP)
4771 		return (NULL);
4772 
4773 	device = (struct cam_ed *)malloc(sizeof(*device),
4774 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4775 	if (device == NULL)
4776 		return (NULL);
4777 
4778 	cam_init_pinfo(&device->devq_entry);
4779 	device->target = target;
4780 	device->lun_id = lun_id;
4781 	device->sim = bus->sim;
4782 	if (cam_ccbq_init(&device->ccbq,
4783 			  bus->sim->max_dev_openings) != 0) {
4784 		free(device, M_CAMDEV);
4785 		return (NULL);
4786 	}
4787 	SLIST_INIT(&device->asyncs);
4788 	SLIST_INIT(&device->periphs);
4789 	device->generation = 0;
4790 	device->flags = CAM_DEV_UNCONFIGURED;
4791 	device->tag_delay_count = 0;
4792 	device->tag_saved_openings = 0;
4793 	device->refcount = 1;
4794 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4795 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4796 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4797 	/*
4798 	 * Hold a reference to our parent bus so it
4799 	 * will not go away before we do.
4800 	 */
4801 	target->refcount++;
4802 
4803 	cur_device = TAILQ_FIRST(&target->ed_entries);
4804 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4805 		cur_device = TAILQ_NEXT(cur_device, links);
4806 	if (cur_device != NULL)
4807 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4808 	else
4809 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4810 	target->generation++;
4811 	return (device);
4812 }
4813 
4814 void
4815 xpt_acquire_device(struct cam_ed *device)
4816 {
4817 	struct cam_eb *bus = device->target->bus;
4818 
4819 	mtx_lock(&bus->eb_mtx);
4820 	device->refcount++;
4821 	mtx_unlock(&bus->eb_mtx);
4822 }
4823 
4824 void
4825 xpt_release_device(struct cam_ed *device)
4826 {
4827 	struct cam_eb *bus = device->target->bus;
4828 	struct cam_devq *devq;
4829 
4830 	mtx_lock(&bus->eb_mtx);
4831 	if (--device->refcount > 0) {
4832 		mtx_unlock(&bus->eb_mtx);
4833 		return;
4834 	}
4835 
4836 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4837 	device->target->generation++;
4838 	mtx_unlock(&bus->eb_mtx);
4839 
4840 	/* Release our slot in the devq */
4841 	devq = bus->sim->devq;
4842 	mtx_lock(&devq->send_mtx);
4843 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4844 
4845 	KASSERT(SLIST_EMPTY(&device->periphs),
4846 	    ("destroying device, but periphs list is not empty"));
4847 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4848 	    ("destroying device while still queued for ccbs"));
4849 
4850 	/* The send_mtx must be held when accessing the callout */
4851 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4852 		callout_stop(&device->callout);
4853 
4854 	mtx_unlock(&devq->send_mtx);
4855 
4856 	xpt_release_target(device->target);
4857 
4858 	cam_ccbq_fini(&device->ccbq);
4859 	/*
4860 	 * Free allocated memory.  free(9) does nothing if the
4861 	 * supplied pointer is NULL, so it is safe to call without
4862 	 * checking.
4863 	 */
4864 	free(device->supported_vpds, M_CAMXPT);
4865 	free(device->device_id, M_CAMXPT);
4866 	free(device->ext_inq, M_CAMXPT);
4867 	free(device->physpath, M_CAMXPT);
4868 	free(device->rcap_buf, M_CAMXPT);
4869 	free(device->serial_num, M_CAMXPT);
4870 	free(device->nvme_data, M_CAMXPT);
4871 	free(device->nvme_cdata, M_CAMXPT);
4872 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4873 }
4874 
4875 uint32_t
4876 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4877 {
4878 	int	result;
4879 	struct	cam_ed *dev;
4880 
4881 	dev = path->device;
4882 	mtx_lock(&dev->sim->devq->send_mtx);
4883 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4884 	mtx_unlock(&dev->sim->devq->send_mtx);
4885 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4886 	 || (dev->inq_flags & SID_CmdQue) != 0)
4887 		dev->tag_saved_openings = newopenings;
4888 	return (result);
4889 }
4890 
4891 static struct cam_eb *
4892 xpt_find_bus(path_id_t path_id)
4893 {
4894 	struct cam_eb *bus;
4895 
4896 	xpt_lock_buses();
4897 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4898 	     bus != NULL;
4899 	     bus = TAILQ_NEXT(bus, links)) {
4900 		if (bus->path_id == path_id) {
4901 			bus->refcount++;
4902 			break;
4903 		}
4904 	}
4905 	xpt_unlock_buses();
4906 	return (bus);
4907 }
4908 
4909 static struct cam_et *
4910 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4911 {
4912 	struct cam_et *target;
4913 
4914 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4915 	for (target = TAILQ_FIRST(&bus->et_entries);
4916 	     target != NULL;
4917 	     target = TAILQ_NEXT(target, links)) {
4918 		if (target->target_id == target_id) {
4919 			target->refcount++;
4920 			break;
4921 		}
4922 	}
4923 	return (target);
4924 }
4925 
4926 static struct cam_ed *
4927 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4928 {
4929 	struct cam_ed *device;
4930 
4931 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4932 	for (device = TAILQ_FIRST(&target->ed_entries);
4933 	     device != NULL;
4934 	     device = TAILQ_NEXT(device, links)) {
4935 		if (device->lun_id == lun_id) {
4936 			device->refcount++;
4937 			break;
4938 		}
4939 	}
4940 	return (device);
4941 }
4942 
4943 void
4944 xpt_start_tags(struct cam_path *path)
4945 {
4946 	struct ccb_relsim crs;
4947 	struct cam_ed *device;
4948 	struct cam_sim *sim;
4949 	int    newopenings;
4950 
4951 	device = path->device;
4952 	sim = path->bus->sim;
4953 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4954 	xpt_freeze_devq(path, /*count*/1);
4955 	device->inq_flags |= SID_CmdQue;
4956 	if (device->tag_saved_openings != 0)
4957 		newopenings = device->tag_saved_openings;
4958 	else
4959 		newopenings = min(device->maxtags,
4960 				  sim->max_tagged_dev_openings);
4961 	xpt_dev_ccbq_resize(path, newopenings);
4962 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4963 	memset(&crs, 0, sizeof(crs));
4964 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4965 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4966 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4967 	crs.openings
4968 	    = crs.release_timeout
4969 	    = crs.qfrozen_cnt
4970 	    = 0;
4971 	xpt_action((union ccb *)&crs);
4972 }
4973 
4974 void
4975 xpt_stop_tags(struct cam_path *path)
4976 {
4977 	struct ccb_relsim crs;
4978 	struct cam_ed *device;
4979 	struct cam_sim *sim;
4980 
4981 	device = path->device;
4982 	sim = path->bus->sim;
4983 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4984 	device->tag_delay_count = 0;
4985 	xpt_freeze_devq(path, /*count*/1);
4986 	device->inq_flags &= ~SID_CmdQue;
4987 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4988 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4989 	memset(&crs, 0, sizeof(crs));
4990 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4991 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4992 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4993 	crs.openings
4994 	    = crs.release_timeout
4995 	    = crs.qfrozen_cnt
4996 	    = 0;
4997 	xpt_action((union ccb *)&crs);
4998 }
4999 
5000 /*
5001  * Assume all possible buses are detected by this time, so allow boot
5002  * as soon as they all are scanned.
5003  */
5004 static void
5005 xpt_boot_delay(void *arg)
5006 {
5007 
5008 	xpt_release_boot();
5009 }
5010 
5011 /*
5012  * Now that all config hooks have completed, start boot_delay timer,
5013  * waiting for possibly still undetected buses (USB) to appear.
5014  */
5015 static void
5016 xpt_ch_done(void *arg)
5017 {
5018 
5019 	callout_init(&xsoftc.boot_callout, 1);
5020 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5021 	    SBT_1MS, xpt_boot_delay, NULL, 0);
5022 }
5023 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5024 
5025 /*
5026  * Now that interrupts are enabled, go find our devices
5027  */
5028 static void
5029 xpt_config(void *arg)
5030 {
5031 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5032 		printf("xpt_config: failed to create taskqueue thread.\n");
5033 
5034 	/* Setup debugging path */
5035 	if (cam_dflags != CAM_DEBUG_NONE) {
5036 		if (xpt_create_path(&cam_dpath, NULL,
5037 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5038 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5039 			printf("xpt_config: xpt_create_path() failed for debug"
5040 			       " target %d:%d:%d, debugging disabled\n",
5041 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5042 			cam_dflags = CAM_DEBUG_NONE;
5043 		}
5044 	} else
5045 		cam_dpath = NULL;
5046 
5047 	periphdriver_init(1);
5048 	xpt_hold_boot();
5049 
5050 	/* Fire up rescan thread. */
5051 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5052 	    "cam", "scanner")) {
5053 		printf("xpt_config: failed to create rescan thread.\n");
5054 	}
5055 }
5056 
5057 void
5058 xpt_hold_boot_locked(void)
5059 {
5060 
5061 	if (xsoftc.buses_to_config++ == 0)
5062 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5063 }
5064 
5065 void
5066 xpt_hold_boot(void)
5067 {
5068 
5069 	xpt_lock_buses();
5070 	xpt_hold_boot_locked();
5071 	xpt_unlock_buses();
5072 }
5073 
5074 void
5075 xpt_release_boot(void)
5076 {
5077 
5078 	xpt_lock_buses();
5079 	if (--xsoftc.buses_to_config == 0) {
5080 		if (xsoftc.buses_config_done == 0) {
5081 			xsoftc.buses_config_done = 1;
5082 			xsoftc.buses_to_config++;
5083 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5084 			    NULL);
5085 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5086 		} else
5087 			root_mount_rel(&xsoftc.xpt_rootmount);
5088 	}
5089 	xpt_unlock_buses();
5090 }
5091 
5092 /*
5093  * If the given device only has one peripheral attached to it, and if that
5094  * peripheral is the passthrough driver, announce it.  This insures that the
5095  * user sees some sort of announcement for every peripheral in their system.
5096  */
5097 static int
5098 xptpassannouncefunc(struct cam_ed *device, void *arg)
5099 {
5100 	struct cam_periph *periph;
5101 	int i;
5102 
5103 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5104 	     periph = SLIST_NEXT(periph, periph_links), i++);
5105 
5106 	periph = SLIST_FIRST(&device->periphs);
5107 	if ((i == 1)
5108 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5109 		xpt_announce_periph(periph, NULL);
5110 
5111 	return(1);
5112 }
5113 
5114 static void
5115 xpt_finishconfig_task(void *context, int pending)
5116 {
5117 
5118 	periphdriver_init(2);
5119 	/*
5120 	 * Check for devices with no "standard" peripheral driver
5121 	 * attached.  For any devices like that, announce the
5122 	 * passthrough driver so the user will see something.
5123 	 */
5124 	if (!bootverbose)
5125 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5126 
5127 	xpt_release_boot();
5128 }
5129 
5130 cam_status
5131 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5132 		   struct cam_path *path)
5133 {
5134 	struct ccb_setasync csa;
5135 	cam_status status;
5136 	bool xptpath = false;
5137 
5138 	if (path == NULL) {
5139 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5140 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5141 		if (status != CAM_REQ_CMP)
5142 			return (status);
5143 		xpt_path_lock(path);
5144 		xptpath = true;
5145 	}
5146 
5147 	memset(&csa, 0, sizeof(csa));
5148 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5149 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5150 	csa.event_enable = event;
5151 	csa.callback = cbfunc;
5152 	csa.callback_arg = cbarg;
5153 	xpt_action((union ccb *)&csa);
5154 	status = csa.ccb_h.status;
5155 
5156 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5157 	    ("xpt_register_async: func %p\n", cbfunc));
5158 
5159 	if (xptpath) {
5160 		xpt_path_unlock(path);
5161 		xpt_free_path(path);
5162 	}
5163 
5164 	if ((status == CAM_REQ_CMP) &&
5165 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5166 		/*
5167 		 * Get this peripheral up to date with all
5168 		 * the currently existing devices.
5169 		 */
5170 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5171 	}
5172 	if ((status == CAM_REQ_CMP) &&
5173 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5174 		/*
5175 		 * Get this peripheral up to date with all
5176 		 * the currently existing buses.
5177 		 */
5178 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5179 	}
5180 
5181 	return (status);
5182 }
5183 
5184 static void
5185 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5186 {
5187 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5188 
5189 	switch (work_ccb->ccb_h.func_code) {
5190 	/* Common cases first */
5191 	case XPT_PATH_INQ:		/* Path routing inquiry */
5192 	{
5193 		struct ccb_pathinq *cpi;
5194 
5195 		cpi = &work_ccb->cpi;
5196 		cpi->version_num = 1; /* XXX??? */
5197 		cpi->hba_inquiry = 0;
5198 		cpi->target_sprt = 0;
5199 		cpi->hba_misc = 0;
5200 		cpi->hba_eng_cnt = 0;
5201 		cpi->max_target = 0;
5202 		cpi->max_lun = 0;
5203 		cpi->initiator_id = 0;
5204 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5205 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5206 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5207 		cpi->unit_number = sim->unit_number;
5208 		cpi->bus_id = sim->bus_id;
5209 		cpi->base_transfer_speed = 0;
5210 		cpi->protocol = PROTO_UNSPECIFIED;
5211 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5212 		cpi->transport = XPORT_UNSPECIFIED;
5213 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5214 		cpi->ccb_h.status = CAM_REQ_CMP;
5215 		break;
5216 	}
5217 	default:
5218 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5219 		break;
5220 	}
5221 	xpt_done(work_ccb);
5222 }
5223 
5224 /*
5225  * The xpt as a "controller" has no interrupt sources, so polling
5226  * is a no-op.
5227  */
5228 static void
5229 xptpoll(struct cam_sim *sim)
5230 {
5231 }
5232 
5233 void
5234 xpt_lock_buses(void)
5235 {
5236 	mtx_lock(&xsoftc.xpt_topo_lock);
5237 }
5238 
5239 void
5240 xpt_unlock_buses(void)
5241 {
5242 	mtx_unlock(&xsoftc.xpt_topo_lock);
5243 }
5244 
5245 struct mtx *
5246 xpt_path_mtx(struct cam_path *path)
5247 {
5248 
5249 	return (&path->device->device_mtx);
5250 }
5251 
5252 static void
5253 xpt_done_process(struct ccb_hdr *ccb_h)
5254 {
5255 	struct cam_sim *sim = NULL;
5256 	struct cam_devq *devq = NULL;
5257 	struct mtx *mtx = NULL;
5258 
5259 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5260 	struct ccb_scsiio *csio;
5261 
5262 	if (ccb_h->func_code == XPT_SCSI_IO) {
5263 		csio = &((union ccb *)ccb_h)->csio;
5264 		if (csio->bio != NULL)
5265 			biotrack(csio->bio, __func__);
5266 	}
5267 #endif
5268 
5269 	if (ccb_h->flags & CAM_HIGH_POWER) {
5270 		struct highpowerlist	*hphead;
5271 		struct cam_ed		*device;
5272 
5273 		mtx_lock(&xsoftc.xpt_highpower_lock);
5274 		hphead = &xsoftc.highpowerq;
5275 
5276 		device = STAILQ_FIRST(hphead);
5277 
5278 		/*
5279 		 * Increment the count since this command is done.
5280 		 */
5281 		xsoftc.num_highpower++;
5282 
5283 		/*
5284 		 * Any high powered commands queued up?
5285 		 */
5286 		if (device != NULL) {
5287 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5288 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5289 
5290 			mtx_lock(&device->sim->devq->send_mtx);
5291 			xpt_release_devq_device(device,
5292 					 /*count*/1, /*runqueue*/TRUE);
5293 			mtx_unlock(&device->sim->devq->send_mtx);
5294 		} else
5295 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5296 	}
5297 
5298 	/*
5299 	 * Insulate against a race where the periph is destroyed but CCBs are
5300 	 * still not all processed. This shouldn't happen, but allows us better
5301 	 * bug diagnostic when it does.
5302 	 */
5303 	if (ccb_h->path->bus)
5304 		sim = ccb_h->path->bus->sim;
5305 
5306 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5307 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5308 		xpt_release_simq(sim, /*run_queue*/FALSE);
5309 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5310 	}
5311 
5312 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5313 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5314 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5315 		ccb_h->status &= ~CAM_DEV_QFRZN;
5316 	}
5317 
5318 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5319 		struct cam_ed *dev = ccb_h->path->device;
5320 
5321 		if (sim)
5322 			devq = sim->devq;
5323 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5324 			ccb_h, xpt_action_name(ccb_h->func_code)));
5325 
5326 		mtx_lock(&devq->send_mtx);
5327 		devq->send_active--;
5328 		devq->send_openings++;
5329 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5330 
5331 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5332 		  && (dev->ccbq.dev_active == 0))) {
5333 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5334 			xpt_release_devq_device(dev, /*count*/1,
5335 					 /*run_queue*/FALSE);
5336 		}
5337 
5338 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5339 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5340 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5341 			xpt_release_devq_device(dev, /*count*/1,
5342 					 /*run_queue*/FALSE);
5343 		}
5344 
5345 		if (!device_is_queued(dev))
5346 			(void)xpt_schedule_devq(devq, dev);
5347 		xpt_run_devq(devq);
5348 		mtx_unlock(&devq->send_mtx);
5349 
5350 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5351 			mtx = xpt_path_mtx(ccb_h->path);
5352 			mtx_lock(mtx);
5353 
5354 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5355 			 && (--dev->tag_delay_count == 0))
5356 				xpt_start_tags(ccb_h->path);
5357 		}
5358 	}
5359 
5360 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5361 		if (mtx == NULL) {
5362 			mtx = xpt_path_mtx(ccb_h->path);
5363 			mtx_lock(mtx);
5364 		}
5365 	} else {
5366 		if (mtx != NULL) {
5367 			mtx_unlock(mtx);
5368 			mtx = NULL;
5369 		}
5370 	}
5371 
5372 	/* Call the peripheral driver's callback */
5373 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5374 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5375 	if (mtx != NULL)
5376 		mtx_unlock(mtx);
5377 }
5378 
5379 /*
5380  * Parameterize instead and use xpt_done_td?
5381  */
5382 static void
5383 xpt_async_td(void *arg)
5384 {
5385 	struct cam_doneq *queue = arg;
5386 	struct ccb_hdr *ccb_h;
5387 	STAILQ_HEAD(, ccb_hdr)	doneq;
5388 
5389 	STAILQ_INIT(&doneq);
5390 	mtx_lock(&queue->cam_doneq_mtx);
5391 	while (1) {
5392 		while (STAILQ_EMPTY(&queue->cam_doneq))
5393 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5394 			    PRIBIO, "-", 0);
5395 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5396 		mtx_unlock(&queue->cam_doneq_mtx);
5397 
5398 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5399 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5400 			xpt_done_process(ccb_h);
5401 		}
5402 
5403 		mtx_lock(&queue->cam_doneq_mtx);
5404 	}
5405 }
5406 
5407 void
5408 xpt_done_td(void *arg)
5409 {
5410 	struct cam_doneq *queue = arg;
5411 	struct ccb_hdr *ccb_h;
5412 	STAILQ_HEAD(, ccb_hdr)	doneq;
5413 
5414 	STAILQ_INIT(&doneq);
5415 	mtx_lock(&queue->cam_doneq_mtx);
5416 	while (1) {
5417 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5418 			queue->cam_doneq_sleep = 1;
5419 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5420 			    PRIBIO, "-", 0);
5421 			queue->cam_doneq_sleep = 0;
5422 		}
5423 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5424 		mtx_unlock(&queue->cam_doneq_mtx);
5425 
5426 		THREAD_NO_SLEEPING();
5427 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5428 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5429 			xpt_done_process(ccb_h);
5430 		}
5431 		THREAD_SLEEPING_OK();
5432 
5433 		mtx_lock(&queue->cam_doneq_mtx);
5434 	}
5435 }
5436 
5437 static void
5438 camisr_runqueue(void)
5439 {
5440 	struct	ccb_hdr *ccb_h;
5441 	struct cam_doneq *queue;
5442 	int i;
5443 
5444 	/* Process global queues. */
5445 	for (i = 0; i < cam_num_doneqs; i++) {
5446 		queue = &cam_doneqs[i];
5447 		mtx_lock(&queue->cam_doneq_mtx);
5448 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5449 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5450 			mtx_unlock(&queue->cam_doneq_mtx);
5451 			xpt_done_process(ccb_h);
5452 			mtx_lock(&queue->cam_doneq_mtx);
5453 		}
5454 		mtx_unlock(&queue->cam_doneq_mtx);
5455 	}
5456 }
5457 
5458 /**
5459  * @brief Return the device_t associated with the path
5460  *
5461  * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5462  * stored in the internal cam_eb bus structure. There is no guarnatee any given
5463  * path will have a @c device_t associated with it (it's legal to call @c
5464  * xpt_bus_register with a @c NULL @c device_t.
5465  *
5466  * @param path		Path to return the device_t for.
5467  */
5468 device_t
5469 xpt_path_sim_device(const struct cam_path *path)
5470 {
5471 	return (path->bus->parent_dev);
5472 }
5473 
5474 struct kv
5475 {
5476 	uint32_t v;
5477 	const char *name;
5478 };
5479 
5480 static struct kv map[] = {
5481 	{ XPT_NOOP, "XPT_NOOP" },
5482 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5483 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5484 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5485 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5486 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5487 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5488 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5489 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5490 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5491 	{ XPT_DEBUG, "XPT_DEBUG" },
5492 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5493 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5494 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5495 	{ XPT_ASYNC, "XPT_ASYNC" },
5496 	{ XPT_ABORT, "XPT_ABORT" },
5497 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5498 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5499 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5500 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5501 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5502 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5503 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5504 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5505 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5506 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5507 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5508 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5509 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5510 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5511 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5512 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5513 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5514 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5515 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5516 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5517 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5518 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5519 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5520 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5521 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5522 	{ 0, 0 }
5523 };
5524 
5525 const char *
5526 xpt_action_name(uint32_t action)
5527 {
5528 	static char buffer[32];	/* Only for unknown messages -- racy */
5529 	struct kv *walker = map;
5530 
5531 	while (walker->name != NULL) {
5532 		if (walker->v == action)
5533 			return (walker->name);
5534 		walker++;
5535 	}
5536 
5537 	snprintf(buffer, sizeof(buffer), "%#x", action);
5538 	return (buffer);
5539 }
5540 
5541 void
5542 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...)
5543 {
5544 	struct sbuf sbuf;
5545 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5546 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5547 	va_list ap;
5548 
5549 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5550 	xpt_path_sbuf(path, sb);
5551 	va_start(ap, fmt);
5552 	sbuf_vprintf(sb, fmt, ap);
5553 	va_end(ap);
5554 	sbuf_finish(sb);
5555 	sbuf_delete(sb);
5556 	if (cam_debug_delay != 0)
5557 		DELAY(cam_debug_delay);
5558 }
5559 
5560 void
5561 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...)
5562 {
5563 	struct sbuf sbuf;
5564 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5565 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5566 	va_list ap;
5567 
5568 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5569 	xpt_device_sbuf(dev, sb);
5570 	va_start(ap, fmt);
5571 	sbuf_vprintf(sb, fmt, ap);
5572 	va_end(ap);
5573 	sbuf_finish(sb);
5574 	sbuf_delete(sb);
5575 	if (cam_debug_delay != 0)
5576 		DELAY(cam_debug_delay);
5577 }
5578 
5579 void
5580 xpt_cam_debug(const char *fmt, ...)
5581 {
5582 	struct sbuf sbuf;
5583 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5584 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5585 	va_list ap;
5586 
5587 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5588 	sbuf_cat(sb, "cam_debug: ");
5589 	va_start(ap, fmt);
5590 	sbuf_vprintf(sb, fmt, ap);
5591 	va_end(ap);
5592 	sbuf_finish(sb);
5593 	sbuf_delete(sb);
5594 	if (cam_debug_delay != 0)
5595 		DELAY(cam_debug_delay);
5596 }
5597