xref: /freebsd/sys/cam/cam_xpt.c (revision 273c26a3c3bea87a241d6879abd4f991db180bf0)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/proc.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/taskqueue.h>
47 
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_sim.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/cam_xpt_sim.h>
60 #include <cam/cam_xpt_periph.h>
61 #include <cam/cam_xpt_internal.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 
69 #include <machine/md_var.h>	/* geometry translation */
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 
72 #include "opt_cam.h"
73 
74 /*
75  * This is the maximum number of high powered commands (e.g. start unit)
76  * that can be outstanding at a particular time.
77  */
78 #ifndef CAM_MAX_HIGHPOWER
79 #define CAM_MAX_HIGHPOWER  4
80 #endif
81 
82 /* Datastructures internal to the xpt layer */
83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
87 
88 /* Object for defering XPT actions to a taskqueue */
89 struct xpt_task {
90 	struct task	task;
91 	void		*data1;
92 	uintptr_t	data2;
93 };
94 
95 struct xpt_softc {
96 	uint32_t		xpt_generation;
97 
98 	/* number of high powered commands that can go through right now */
99 	struct mtx		xpt_highpower_lock;
100 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
101 	int			num_highpower;
102 
103 	/* queue for handling async rescan requests. */
104 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 	int buses_to_config;
106 	int buses_config_done;
107 
108 	/* Registered busses */
109 	TAILQ_HEAD(,cam_eb)	xpt_busses;
110 	u_int			bus_generation;
111 
112 	struct intr_config_hook	*xpt_config_hook;
113 
114 	int			boot_delay;
115 	struct callout 		boot_callout;
116 
117 	struct mtx		xpt_topo_lock;
118 	struct mtx		xpt_lock;
119 	struct taskqueue	*xpt_taskq;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
155 
156 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
157            &xsoftc.boot_delay, 0, "Bus registration wait time");
158 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
159 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
160 
161 struct cam_doneq {
162 	struct mtx_padalign	cam_doneq_mtx;
163 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
164 	int			cam_doneq_sleep;
165 };
166 
167 static struct cam_doneq cam_doneqs[MAXCPU];
168 static int cam_num_doneqs;
169 static struct proc *cam_proc;
170 
171 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
172            &cam_num_doneqs, 0, "Number of completion queues/threads");
173 
174 struct cam_periph *xpt_periph;
175 
176 static periph_init_t xpt_periph_init;
177 
178 static struct periph_driver xpt_driver =
179 {
180 	xpt_periph_init, "xpt",
181 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
182 	CAM_PERIPH_DRV_EARLY
183 };
184 
185 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
186 
187 static d_open_t xptopen;
188 static d_close_t xptclose;
189 static d_ioctl_t xptioctl;
190 static d_ioctl_t xptdoioctl;
191 
192 static struct cdevsw xpt_cdevsw = {
193 	.d_version =	D_VERSION,
194 	.d_flags =	0,
195 	.d_open =	xptopen,
196 	.d_close =	xptclose,
197 	.d_ioctl =	xptioctl,
198 	.d_name =	"xpt",
199 };
200 
201 /* Storage for debugging datastructures */
202 struct cam_path *cam_dpath;
203 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
204 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
205 	&cam_dflags, 0, "Enabled debug flags");
206 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
207 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
208 	&cam_debug_delay, 0, "Delay in us after each debug message");
209 
210 /* Our boot-time initialization hook */
211 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
212 
213 static moduledata_t cam_moduledata = {
214 	"cam",
215 	cam_module_event_handler,
216 	NULL
217 };
218 
219 static int	xpt_init(void *);
220 
221 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
222 MODULE_VERSION(cam, 1);
223 
224 
225 static void		xpt_async_bcast(struct async_list *async_head,
226 					u_int32_t async_code,
227 					struct cam_path *path,
228 					void *async_arg);
229 static path_id_t xptnextfreepathid(void);
230 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
231 static union ccb *xpt_get_ccb(struct cam_periph *periph);
232 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
233 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
234 static void	 xpt_run_allocq_task(void *context, int pending);
235 static void	 xpt_run_devq(struct cam_devq *devq);
236 static timeout_t xpt_release_devq_timeout;
237 static void	 xpt_release_simq_timeout(void *arg) __unused;
238 static void	 xpt_acquire_bus(struct cam_eb *bus);
239 static void	 xpt_release_bus(struct cam_eb *bus);
240 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
241 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
242 		    int run_queue);
243 static struct cam_et*
244 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
245 static void	 xpt_acquire_target(struct cam_et *target);
246 static void	 xpt_release_target(struct cam_et *target);
247 static struct cam_eb*
248 		 xpt_find_bus(path_id_t path_id);
249 static struct cam_et*
250 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
251 static struct cam_ed*
252 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
253 static void	 xpt_config(void *arg);
254 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
255 				 u_int32_t new_priority);
256 static xpt_devicefunc_t xptpassannouncefunc;
257 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
258 static void	 xptpoll(struct cam_sim *sim);
259 static void	 camisr_runqueue(void);
260 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
261 static void	 xpt_done_td(void *);
262 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
263 				    u_int num_patterns, struct cam_eb *bus);
264 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
265 				       u_int num_patterns,
266 				       struct cam_ed *device);
267 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
268 				       u_int num_patterns,
269 				       struct cam_periph *periph);
270 static xpt_busfunc_t	xptedtbusfunc;
271 static xpt_targetfunc_t	xptedttargetfunc;
272 static xpt_devicefunc_t	xptedtdevicefunc;
273 static xpt_periphfunc_t	xptedtperiphfunc;
274 static xpt_pdrvfunc_t	xptplistpdrvfunc;
275 static xpt_periphfunc_t	xptplistperiphfunc;
276 static int		xptedtmatch(struct ccb_dev_match *cdm);
277 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
278 static int		xptbustraverse(struct cam_eb *start_bus,
279 				       xpt_busfunc_t *tr_func, void *arg);
280 static int		xpttargettraverse(struct cam_eb *bus,
281 					  struct cam_et *start_target,
282 					  xpt_targetfunc_t *tr_func, void *arg);
283 static int		xptdevicetraverse(struct cam_et *target,
284 					  struct cam_ed *start_device,
285 					  xpt_devicefunc_t *tr_func, void *arg);
286 static int		xptperiphtraverse(struct cam_ed *device,
287 					  struct cam_periph *start_periph,
288 					  xpt_periphfunc_t *tr_func, void *arg);
289 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
290 					xpt_pdrvfunc_t *tr_func, void *arg);
291 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
292 					    struct cam_periph *start_periph,
293 					    xpt_periphfunc_t *tr_func,
294 					    void *arg);
295 static xpt_busfunc_t	xptdefbusfunc;
296 static xpt_targetfunc_t	xptdeftargetfunc;
297 static xpt_devicefunc_t	xptdefdevicefunc;
298 static xpt_periphfunc_t	xptdefperiphfunc;
299 static void		xpt_finishconfig_task(void *context, int pending);
300 static void		xpt_dev_async_default(u_int32_t async_code,
301 					      struct cam_eb *bus,
302 					      struct cam_et *target,
303 					      struct cam_ed *device,
304 					      void *async_arg);
305 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
306 						 struct cam_et *target,
307 						 lun_id_t lun_id);
308 static xpt_devicefunc_t	xptsetasyncfunc;
309 static xpt_busfunc_t	xptsetasyncbusfunc;
310 static cam_status	xptregister(struct cam_periph *periph,
311 				    void *arg);
312 static const char *	xpt_action_name(uint32_t action);
313 static __inline int device_is_queued(struct cam_ed *device);
314 
315 static __inline int
316 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
317 {
318 	int	retval;
319 
320 	mtx_assert(&devq->send_mtx, MA_OWNED);
321 	if ((dev->ccbq.queue.entries > 0) &&
322 	    (dev->ccbq.dev_openings > 0) &&
323 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
324 		/*
325 		 * The priority of a device waiting for controller
326 		 * resources is that of the highest priority CCB
327 		 * enqueued.
328 		 */
329 		retval =
330 		    xpt_schedule_dev(&devq->send_queue,
331 				     &dev->devq_entry,
332 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
333 	} else {
334 		retval = 0;
335 	}
336 	return (retval);
337 }
338 
339 static __inline int
340 device_is_queued(struct cam_ed *device)
341 {
342 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
343 }
344 
345 static void
346 xpt_periph_init()
347 {
348 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
349 }
350 
351 static int
352 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
353 {
354 
355 	/*
356 	 * Only allow read-write access.
357 	 */
358 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
359 		return(EPERM);
360 
361 	/*
362 	 * We don't allow nonblocking access.
363 	 */
364 	if ((flags & O_NONBLOCK) != 0) {
365 		printf("%s: can't do nonblocking access\n", devtoname(dev));
366 		return(ENODEV);
367 	}
368 
369 	return(0);
370 }
371 
372 static int
373 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
374 {
375 
376 	return(0);
377 }
378 
379 /*
380  * Don't automatically grab the xpt softc lock here even though this is going
381  * through the xpt device.  The xpt device is really just a back door for
382  * accessing other devices and SIMs, so the right thing to do is to grab
383  * the appropriate SIM lock once the bus/SIM is located.
384  */
385 static int
386 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
387 {
388 	int error;
389 
390 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
391 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
392 	}
393 	return (error);
394 }
395 
396 static int
397 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
398 {
399 	int error;
400 
401 	error = 0;
402 
403 	switch(cmd) {
404 	/*
405 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
406 	 * to accept CCB types that don't quite make sense to send through a
407 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
408 	 * in the CAM spec.
409 	 */
410 	case CAMIOCOMMAND: {
411 		union ccb *ccb;
412 		union ccb *inccb;
413 		struct cam_eb *bus;
414 
415 		inccb = (union ccb *)addr;
416 
417 		bus = xpt_find_bus(inccb->ccb_h.path_id);
418 		if (bus == NULL)
419 			return (EINVAL);
420 
421 		switch (inccb->ccb_h.func_code) {
422 		case XPT_SCAN_BUS:
423 		case XPT_RESET_BUS:
424 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
425 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
426 				xpt_release_bus(bus);
427 				return (EINVAL);
428 			}
429 			break;
430 		case XPT_SCAN_TGT:
431 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
432 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
433 				xpt_release_bus(bus);
434 				return (EINVAL);
435 			}
436 			break;
437 		default:
438 			break;
439 		}
440 
441 		switch(inccb->ccb_h.func_code) {
442 		case XPT_SCAN_BUS:
443 		case XPT_RESET_BUS:
444 		case XPT_PATH_INQ:
445 		case XPT_ENG_INQ:
446 		case XPT_SCAN_LUN:
447 		case XPT_SCAN_TGT:
448 
449 			ccb = xpt_alloc_ccb();
450 
451 			/*
452 			 * Create a path using the bus, target, and lun the
453 			 * user passed in.
454 			 */
455 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
456 					    inccb->ccb_h.path_id,
457 					    inccb->ccb_h.target_id,
458 					    inccb->ccb_h.target_lun) !=
459 					    CAM_REQ_CMP){
460 				error = EINVAL;
461 				xpt_free_ccb(ccb);
462 				break;
463 			}
464 			/* Ensure all of our fields are correct */
465 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
466 				      inccb->ccb_h.pinfo.priority);
467 			xpt_merge_ccb(ccb, inccb);
468 			xpt_path_lock(ccb->ccb_h.path);
469 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
470 			xpt_path_unlock(ccb->ccb_h.path);
471 			bcopy(ccb, inccb, sizeof(union ccb));
472 			xpt_free_path(ccb->ccb_h.path);
473 			xpt_free_ccb(ccb);
474 			break;
475 
476 		case XPT_DEBUG: {
477 			union ccb ccb;
478 
479 			/*
480 			 * This is an immediate CCB, so it's okay to
481 			 * allocate it on the stack.
482 			 */
483 
484 			/*
485 			 * Create a path using the bus, target, and lun the
486 			 * user passed in.
487 			 */
488 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
489 					    inccb->ccb_h.path_id,
490 					    inccb->ccb_h.target_id,
491 					    inccb->ccb_h.target_lun) !=
492 					    CAM_REQ_CMP){
493 				error = EINVAL;
494 				break;
495 			}
496 			/* Ensure all of our fields are correct */
497 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
498 				      inccb->ccb_h.pinfo.priority);
499 			xpt_merge_ccb(&ccb, inccb);
500 			xpt_action(&ccb);
501 			bcopy(&ccb, inccb, sizeof(union ccb));
502 			xpt_free_path(ccb.ccb_h.path);
503 			break;
504 
505 		}
506 		case XPT_DEV_MATCH: {
507 			struct cam_periph_map_info mapinfo;
508 			struct cam_path *old_path;
509 
510 			/*
511 			 * We can't deal with physical addresses for this
512 			 * type of transaction.
513 			 */
514 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
515 			    CAM_DATA_VADDR) {
516 				error = EINVAL;
517 				break;
518 			}
519 
520 			/*
521 			 * Save this in case the caller had it set to
522 			 * something in particular.
523 			 */
524 			old_path = inccb->ccb_h.path;
525 
526 			/*
527 			 * We really don't need a path for the matching
528 			 * code.  The path is needed because of the
529 			 * debugging statements in xpt_action().  They
530 			 * assume that the CCB has a valid path.
531 			 */
532 			inccb->ccb_h.path = xpt_periph->path;
533 
534 			bzero(&mapinfo, sizeof(mapinfo));
535 
536 			/*
537 			 * Map the pattern and match buffers into kernel
538 			 * virtual address space.
539 			 */
540 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
541 
542 			if (error) {
543 				inccb->ccb_h.path = old_path;
544 				break;
545 			}
546 
547 			/*
548 			 * This is an immediate CCB, we can send it on directly.
549 			 */
550 			xpt_action(inccb);
551 
552 			/*
553 			 * Map the buffers back into user space.
554 			 */
555 			cam_periph_unmapmem(inccb, &mapinfo);
556 
557 			inccb->ccb_h.path = old_path;
558 
559 			error = 0;
560 			break;
561 		}
562 		default:
563 			error = ENOTSUP;
564 			break;
565 		}
566 		xpt_release_bus(bus);
567 		break;
568 	}
569 	/*
570 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
571 	 * with the periphal driver name and unit name filled in.  The other
572 	 * fields don't really matter as input.  The passthrough driver name
573 	 * ("pass"), and unit number are passed back in the ccb.  The current
574 	 * device generation number, and the index into the device peripheral
575 	 * driver list, and the status are also passed back.  Note that
576 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
577 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
578 	 * (or rather should be) impossible for the device peripheral driver
579 	 * list to change since we look at the whole thing in one pass, and
580 	 * we do it with lock protection.
581 	 *
582 	 */
583 	case CAMGETPASSTHRU: {
584 		union ccb *ccb;
585 		struct cam_periph *periph;
586 		struct periph_driver **p_drv;
587 		char   *name;
588 		u_int unit;
589 		int base_periph_found;
590 
591 		ccb = (union ccb *)addr;
592 		unit = ccb->cgdl.unit_number;
593 		name = ccb->cgdl.periph_name;
594 		base_periph_found = 0;
595 
596 		/*
597 		 * Sanity check -- make sure we don't get a null peripheral
598 		 * driver name.
599 		 */
600 		if (*ccb->cgdl.periph_name == '\0') {
601 			error = EINVAL;
602 			break;
603 		}
604 
605 		/* Keep the list from changing while we traverse it */
606 		xpt_lock_buses();
607 
608 		/* first find our driver in the list of drivers */
609 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
610 			if (strcmp((*p_drv)->driver_name, name) == 0)
611 				break;
612 
613 		if (*p_drv == NULL) {
614 			xpt_unlock_buses();
615 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
616 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
617 			*ccb->cgdl.periph_name = '\0';
618 			ccb->cgdl.unit_number = 0;
619 			error = ENOENT;
620 			break;
621 		}
622 
623 		/*
624 		 * Run through every peripheral instance of this driver
625 		 * and check to see whether it matches the unit passed
626 		 * in by the user.  If it does, get out of the loops and
627 		 * find the passthrough driver associated with that
628 		 * peripheral driver.
629 		 */
630 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
631 		     periph = TAILQ_NEXT(periph, unit_links)) {
632 
633 			if (periph->unit_number == unit)
634 				break;
635 		}
636 		/*
637 		 * If we found the peripheral driver that the user passed
638 		 * in, go through all of the peripheral drivers for that
639 		 * particular device and look for a passthrough driver.
640 		 */
641 		if (periph != NULL) {
642 			struct cam_ed *device;
643 			int i;
644 
645 			base_periph_found = 1;
646 			device = periph->path->device;
647 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
648 			     periph != NULL;
649 			     periph = SLIST_NEXT(periph, periph_links), i++) {
650 				/*
651 				 * Check to see whether we have a
652 				 * passthrough device or not.
653 				 */
654 				if (strcmp(periph->periph_name, "pass") == 0) {
655 					/*
656 					 * Fill in the getdevlist fields.
657 					 */
658 					strcpy(ccb->cgdl.periph_name,
659 					       periph->periph_name);
660 					ccb->cgdl.unit_number =
661 						periph->unit_number;
662 					if (SLIST_NEXT(periph, periph_links))
663 						ccb->cgdl.status =
664 							CAM_GDEVLIST_MORE_DEVS;
665 					else
666 						ccb->cgdl.status =
667 						       CAM_GDEVLIST_LAST_DEVICE;
668 					ccb->cgdl.generation =
669 						device->generation;
670 					ccb->cgdl.index = i;
671 					/*
672 					 * Fill in some CCB header fields
673 					 * that the user may want.
674 					 */
675 					ccb->ccb_h.path_id =
676 						periph->path->bus->path_id;
677 					ccb->ccb_h.target_id =
678 						periph->path->target->target_id;
679 					ccb->ccb_h.target_lun =
680 						periph->path->device->lun_id;
681 					ccb->ccb_h.status = CAM_REQ_CMP;
682 					break;
683 				}
684 			}
685 		}
686 
687 		/*
688 		 * If the periph is null here, one of two things has
689 		 * happened.  The first possibility is that we couldn't
690 		 * find the unit number of the particular peripheral driver
691 		 * that the user is asking about.  e.g. the user asks for
692 		 * the passthrough driver for "da11".  We find the list of
693 		 * "da" peripherals all right, but there is no unit 11.
694 		 * The other possibility is that we went through the list
695 		 * of peripheral drivers attached to the device structure,
696 		 * but didn't find one with the name "pass".  Either way,
697 		 * we return ENOENT, since we couldn't find something.
698 		 */
699 		if (periph == NULL) {
700 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
701 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
702 			*ccb->cgdl.periph_name = '\0';
703 			ccb->cgdl.unit_number = 0;
704 			error = ENOENT;
705 			/*
706 			 * It is unfortunate that this is even necessary,
707 			 * but there are many, many clueless users out there.
708 			 * If this is true, the user is looking for the
709 			 * passthrough driver, but doesn't have one in his
710 			 * kernel.
711 			 */
712 			if (base_periph_found == 1) {
713 				printf("xptioctl: pass driver is not in the "
714 				       "kernel\n");
715 				printf("xptioctl: put \"device pass\" in "
716 				       "your kernel config file\n");
717 			}
718 		}
719 		xpt_unlock_buses();
720 		break;
721 		}
722 	default:
723 		error = ENOTTY;
724 		break;
725 	}
726 
727 	return(error);
728 }
729 
730 static int
731 cam_module_event_handler(module_t mod, int what, void *arg)
732 {
733 	int error;
734 
735 	switch (what) {
736 	case MOD_LOAD:
737 		if ((error = xpt_init(NULL)) != 0)
738 			return (error);
739 		break;
740 	case MOD_UNLOAD:
741 		return EBUSY;
742 	default:
743 		return EOPNOTSUPP;
744 	}
745 
746 	return 0;
747 }
748 
749 static struct xpt_proto *
750 xpt_proto_find(cam_proto proto)
751 {
752 	struct xpt_proto **pp;
753 
754 	SET_FOREACH(pp, cam_xpt_proto_set) {
755 		if ((*pp)->proto == proto)
756 			return *pp;
757 	}
758 
759 	return NULL;
760 }
761 
762 static void
763 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
764 {
765 
766 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
767 		xpt_free_path(done_ccb->ccb_h.path);
768 		xpt_free_ccb(done_ccb);
769 	} else {
770 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
771 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
772 	}
773 	xpt_release_boot();
774 }
775 
776 /* thread to handle bus rescans */
777 static void
778 xpt_scanner_thread(void *dummy)
779 {
780 	union ccb	*ccb;
781 	struct cam_path	 path;
782 
783 	xpt_lock_buses();
784 	for (;;) {
785 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
786 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
787 			       "-", 0);
788 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
789 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
790 			xpt_unlock_buses();
791 
792 			/*
793 			 * Since lock can be dropped inside and path freed
794 			 * by completion callback even before return here,
795 			 * take our own path copy for reference.
796 			 */
797 			xpt_copy_path(&path, ccb->ccb_h.path);
798 			xpt_path_lock(&path);
799 			xpt_action(ccb);
800 			xpt_path_unlock(&path);
801 			xpt_release_path(&path);
802 
803 			xpt_lock_buses();
804 		}
805 	}
806 }
807 
808 void
809 xpt_rescan(union ccb *ccb)
810 {
811 	struct ccb_hdr *hdr;
812 
813 	/* Prepare request */
814 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
815 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
816 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
817 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
818 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
819 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
820 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
821 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
822 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
823 	else {
824 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
825 		xpt_free_path(ccb->ccb_h.path);
826 		xpt_free_ccb(ccb);
827 		return;
828 	}
829 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
830 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
831  		xpt_action_name(ccb->ccb_h.func_code)));
832 
833 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
834 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
835 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
836 	/* Don't make duplicate entries for the same paths. */
837 	xpt_lock_buses();
838 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
839 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
840 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
841 				wakeup(&xsoftc.ccb_scanq);
842 				xpt_unlock_buses();
843 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
844 				xpt_free_path(ccb->ccb_h.path);
845 				xpt_free_ccb(ccb);
846 				return;
847 			}
848 		}
849 	}
850 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
851 	xsoftc.buses_to_config++;
852 	wakeup(&xsoftc.ccb_scanq);
853 	xpt_unlock_buses();
854 }
855 
856 /* Functions accessed by the peripheral drivers */
857 static int
858 xpt_init(void *dummy)
859 {
860 	struct cam_sim *xpt_sim;
861 	struct cam_path *path;
862 	struct cam_devq *devq;
863 	cam_status status;
864 	int error, i;
865 
866 	TAILQ_INIT(&xsoftc.xpt_busses);
867 	TAILQ_INIT(&xsoftc.ccb_scanq);
868 	STAILQ_INIT(&xsoftc.highpowerq);
869 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
870 
871 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
872 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
873 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
874 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
875 
876 #ifdef CAM_BOOT_DELAY
877 	/*
878 	 * Override this value at compile time to assist our users
879 	 * who don't use loader to boot a kernel.
880 	 */
881 	xsoftc.boot_delay = CAM_BOOT_DELAY;
882 #endif
883 	/*
884 	 * The xpt layer is, itself, the equivalent of a SIM.
885 	 * Allow 16 ccbs in the ccb pool for it.  This should
886 	 * give decent parallelism when we probe busses and
887 	 * perform other XPT functions.
888 	 */
889 	devq = cam_simq_alloc(16);
890 	xpt_sim = cam_sim_alloc(xptaction,
891 				xptpoll,
892 				"xpt",
893 				/*softc*/NULL,
894 				/*unit*/0,
895 				/*mtx*/&xsoftc.xpt_lock,
896 				/*max_dev_transactions*/0,
897 				/*max_tagged_dev_transactions*/0,
898 				devq);
899 	if (xpt_sim == NULL)
900 		return (ENOMEM);
901 
902 	mtx_lock(&xsoftc.xpt_lock);
903 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
904 		mtx_unlock(&xsoftc.xpt_lock);
905 		printf("xpt_init: xpt_bus_register failed with status %#x,"
906 		       " failing attach\n", status);
907 		return (EINVAL);
908 	}
909 	mtx_unlock(&xsoftc.xpt_lock);
910 
911 	/*
912 	 * Looking at the XPT from the SIM layer, the XPT is
913 	 * the equivalent of a peripheral driver.  Allocate
914 	 * a peripheral driver entry for us.
915 	 */
916 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
917 				      CAM_TARGET_WILDCARD,
918 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
919 		printf("xpt_init: xpt_create_path failed with status %#x,"
920 		       " failing attach\n", status);
921 		return (EINVAL);
922 	}
923 	xpt_path_lock(path);
924 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
925 			 path, NULL, 0, xpt_sim);
926 	xpt_path_unlock(path);
927 	xpt_free_path(path);
928 
929 	if (cam_num_doneqs < 1)
930 		cam_num_doneqs = 1 + mp_ncpus / 6;
931 	else if (cam_num_doneqs > MAXCPU)
932 		cam_num_doneqs = MAXCPU;
933 	for (i = 0; i < cam_num_doneqs; i++) {
934 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
935 		    MTX_DEF);
936 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
937 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
938 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
939 		if (error != 0) {
940 			cam_num_doneqs = i;
941 			break;
942 		}
943 	}
944 	if (cam_num_doneqs < 1) {
945 		printf("xpt_init: Cannot init completion queues "
946 		       "- failing attach\n");
947 		return (ENOMEM);
948 	}
949 	/*
950 	 * Register a callback for when interrupts are enabled.
951 	 */
952 	xsoftc.xpt_config_hook =
953 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
954 					      M_CAMXPT, M_NOWAIT | M_ZERO);
955 	if (xsoftc.xpt_config_hook == NULL) {
956 		printf("xpt_init: Cannot malloc config hook "
957 		       "- failing attach\n");
958 		return (ENOMEM);
959 	}
960 	xsoftc.xpt_config_hook->ich_func = xpt_config;
961 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
962 		free (xsoftc.xpt_config_hook, M_CAMXPT);
963 		printf("xpt_init: config_intrhook_establish failed "
964 		       "- failing attach\n");
965 	}
966 
967 	return (0);
968 }
969 
970 static cam_status
971 xptregister(struct cam_periph *periph, void *arg)
972 {
973 	struct cam_sim *xpt_sim;
974 
975 	if (periph == NULL) {
976 		printf("xptregister: periph was NULL!!\n");
977 		return(CAM_REQ_CMP_ERR);
978 	}
979 
980 	xpt_sim = (struct cam_sim *)arg;
981 	xpt_sim->softc = periph;
982 	xpt_periph = periph;
983 	periph->softc = NULL;
984 
985 	return(CAM_REQ_CMP);
986 }
987 
988 int32_t
989 xpt_add_periph(struct cam_periph *periph)
990 {
991 	struct cam_ed *device;
992 	int32_t	 status;
993 
994 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
995 	device = periph->path->device;
996 	status = CAM_REQ_CMP;
997 	if (device != NULL) {
998 		mtx_lock(&device->target->bus->eb_mtx);
999 		device->generation++;
1000 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1001 		mtx_unlock(&device->target->bus->eb_mtx);
1002 		atomic_add_32(&xsoftc.xpt_generation, 1);
1003 	}
1004 
1005 	return (status);
1006 }
1007 
1008 void
1009 xpt_remove_periph(struct cam_periph *periph)
1010 {
1011 	struct cam_ed *device;
1012 
1013 	device = periph->path->device;
1014 	if (device != NULL) {
1015 		mtx_lock(&device->target->bus->eb_mtx);
1016 		device->generation++;
1017 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1018 		mtx_unlock(&device->target->bus->eb_mtx);
1019 		atomic_add_32(&xsoftc.xpt_generation, 1);
1020 	}
1021 }
1022 
1023 
1024 void
1025 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1026 {
1027 	struct	cam_path *path = periph->path;
1028 	struct  xpt_proto *proto;
1029 
1030 	cam_periph_assert(periph, MA_OWNED);
1031 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1032 
1033 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1034 	       periph->periph_name, periph->unit_number,
1035 	       path->bus->sim->sim_name,
1036 	       path->bus->sim->unit_number,
1037 	       path->bus->sim->bus_id,
1038 	       path->bus->path_id,
1039 	       path->target->target_id,
1040 	       (uintmax_t)path->device->lun_id);
1041 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1042 	proto = xpt_proto_find(path->device->protocol);
1043 	if (proto)
1044 		proto->ops->announce(path->device);
1045 	else
1046 		printf("%s%d: Unknown protocol device %d\n",
1047 		    periph->periph_name, periph->unit_number,
1048 		    path->device->protocol);
1049 	if (path->device->serial_num_len > 0) {
1050 		/* Don't wrap the screen  - print only the first 60 chars */
1051 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1052 		       periph->unit_number, path->device->serial_num);
1053 	}
1054 	/* Announce transport details. */
1055 	path->bus->xport->ops->announce(periph);
1056 	/* Announce command queueing. */
1057 	if (path->device->inq_flags & SID_CmdQue
1058 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1059 		printf("%s%d: Command Queueing enabled\n",
1060 		       periph->periph_name, periph->unit_number);
1061 	}
1062 	/* Announce caller's details if they've passed in. */
1063 	if (announce_string != NULL)
1064 		printf("%s%d: %s\n", periph->periph_name,
1065 		       periph->unit_number, announce_string);
1066 }
1067 
1068 void
1069 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1070 {
1071 	if (quirks != 0) {
1072 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1073 		    periph->unit_number, quirks, bit_string);
1074 	}
1075 }
1076 
1077 void
1078 xpt_denounce_periph(struct cam_periph *periph)
1079 {
1080 	struct	cam_path *path = periph->path;
1081 	struct  xpt_proto *proto;
1082 
1083 	cam_periph_assert(periph, MA_OWNED);
1084 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1085 	       periph->periph_name, periph->unit_number,
1086 	       path->bus->sim->sim_name,
1087 	       path->bus->sim->unit_number,
1088 	       path->bus->sim->bus_id,
1089 	       path->bus->path_id,
1090 	       path->target->target_id,
1091 	       (uintmax_t)path->device->lun_id);
1092 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1093 	proto = xpt_proto_find(path->device->protocol);
1094 	if (proto)
1095 		proto->ops->denounce(path->device);
1096 	else
1097 		printf("%s%d: Unknown protocol device %d\n",
1098 		    periph->periph_name, periph->unit_number,
1099 		    path->device->protocol);
1100 	if (path->device->serial_num_len > 0)
1101 		printf(" s/n %.60s", path->device->serial_num);
1102 	printf(" detached\n");
1103 }
1104 
1105 
1106 int
1107 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1108 {
1109 	int ret = -1, l;
1110 	struct ccb_dev_advinfo cdai;
1111 	struct scsi_vpd_id_descriptor *idd;
1112 
1113 	xpt_path_assert(path, MA_OWNED);
1114 
1115 	memset(&cdai, 0, sizeof(cdai));
1116 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1117 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1118 	cdai.bufsiz = len;
1119 
1120 	if (!strcmp(attr, "GEOM::ident"))
1121 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1122 	else if (!strcmp(attr, "GEOM::physpath"))
1123 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1124 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1125 		 strcmp(attr, "GEOM::lunname") == 0) {
1126 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1127 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1128 	} else
1129 		goto out;
1130 
1131 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1132 	if (cdai.buf == NULL) {
1133 		ret = ENOMEM;
1134 		goto out;
1135 	}
1136 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1137 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1138 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1139 	if (cdai.provsiz == 0)
1140 		goto out;
1141 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1142 		if (strcmp(attr, "GEOM::lunid") == 0) {
1143 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1144 			    cdai.provsiz, scsi_devid_is_lun_naa);
1145 			if (idd == NULL)
1146 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1147 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1148 		} else
1149 			idd = NULL;
1150 		if (idd == NULL)
1151 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1152 			    cdai.provsiz, scsi_devid_is_lun_t10);
1153 		if (idd == NULL)
1154 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1155 			    cdai.provsiz, scsi_devid_is_lun_name);
1156 		if (idd == NULL)
1157 			goto out;
1158 		ret = 0;
1159 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1160 			if (idd->length < len) {
1161 				for (l = 0; l < idd->length; l++)
1162 					buf[l] = idd->identifier[l] ?
1163 					    idd->identifier[l] : ' ';
1164 				buf[l] = 0;
1165 			} else
1166 				ret = EFAULT;
1167 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1168 			l = strnlen(idd->identifier, idd->length);
1169 			if (l < len) {
1170 				bcopy(idd->identifier, buf, l);
1171 				buf[l] = 0;
1172 			} else
1173 				ret = EFAULT;
1174 		} else {
1175 			if (idd->length * 2 < len) {
1176 				for (l = 0; l < idd->length; l++)
1177 					sprintf(buf + l * 2, "%02x",
1178 					    idd->identifier[l]);
1179 			} else
1180 				ret = EFAULT;
1181 		}
1182 	} else {
1183 		ret = 0;
1184 		if (strlcpy(buf, cdai.buf, len) >= len)
1185 			ret = EFAULT;
1186 	}
1187 
1188 out:
1189 	if (cdai.buf != NULL)
1190 		free(cdai.buf, M_CAMXPT);
1191 	return ret;
1192 }
1193 
1194 static dev_match_ret
1195 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1196 	    struct cam_eb *bus)
1197 {
1198 	dev_match_ret retval;
1199 	u_int i;
1200 
1201 	retval = DM_RET_NONE;
1202 
1203 	/*
1204 	 * If we aren't given something to match against, that's an error.
1205 	 */
1206 	if (bus == NULL)
1207 		return(DM_RET_ERROR);
1208 
1209 	/*
1210 	 * If there are no match entries, then this bus matches no
1211 	 * matter what.
1212 	 */
1213 	if ((patterns == NULL) || (num_patterns == 0))
1214 		return(DM_RET_DESCEND | DM_RET_COPY);
1215 
1216 	for (i = 0; i < num_patterns; i++) {
1217 		struct bus_match_pattern *cur_pattern;
1218 
1219 		/*
1220 		 * If the pattern in question isn't for a bus node, we
1221 		 * aren't interested.  However, we do indicate to the
1222 		 * calling routine that we should continue descending the
1223 		 * tree, since the user wants to match against lower-level
1224 		 * EDT elements.
1225 		 */
1226 		if (patterns[i].type != DEV_MATCH_BUS) {
1227 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1228 				retval |= DM_RET_DESCEND;
1229 			continue;
1230 		}
1231 
1232 		cur_pattern = &patterns[i].pattern.bus_pattern;
1233 
1234 		/*
1235 		 * If they want to match any bus node, we give them any
1236 		 * device node.
1237 		 */
1238 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1239 			/* set the copy flag */
1240 			retval |= DM_RET_COPY;
1241 
1242 			/*
1243 			 * If we've already decided on an action, go ahead
1244 			 * and return.
1245 			 */
1246 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1247 				return(retval);
1248 		}
1249 
1250 		/*
1251 		 * Not sure why someone would do this...
1252 		 */
1253 		if (cur_pattern->flags == BUS_MATCH_NONE)
1254 			continue;
1255 
1256 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1257 		 && (cur_pattern->path_id != bus->path_id))
1258 			continue;
1259 
1260 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1261 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1262 			continue;
1263 
1264 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1265 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1266 			continue;
1267 
1268 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1269 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1270 			     DEV_IDLEN) != 0))
1271 			continue;
1272 
1273 		/*
1274 		 * If we get to this point, the user definitely wants
1275 		 * information on this bus.  So tell the caller to copy the
1276 		 * data out.
1277 		 */
1278 		retval |= DM_RET_COPY;
1279 
1280 		/*
1281 		 * If the return action has been set to descend, then we
1282 		 * know that we've already seen a non-bus matching
1283 		 * expression, therefore we need to further descend the tree.
1284 		 * This won't change by continuing around the loop, so we
1285 		 * go ahead and return.  If we haven't seen a non-bus
1286 		 * matching expression, we keep going around the loop until
1287 		 * we exhaust the matching expressions.  We'll set the stop
1288 		 * flag once we fall out of the loop.
1289 		 */
1290 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1291 			return(retval);
1292 	}
1293 
1294 	/*
1295 	 * If the return action hasn't been set to descend yet, that means
1296 	 * we haven't seen anything other than bus matching patterns.  So
1297 	 * tell the caller to stop descending the tree -- the user doesn't
1298 	 * want to match against lower level tree elements.
1299 	 */
1300 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1301 		retval |= DM_RET_STOP;
1302 
1303 	return(retval);
1304 }
1305 
1306 static dev_match_ret
1307 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1308 	       struct cam_ed *device)
1309 {
1310 	dev_match_ret retval;
1311 	u_int i;
1312 
1313 	retval = DM_RET_NONE;
1314 
1315 	/*
1316 	 * If we aren't given something to match against, that's an error.
1317 	 */
1318 	if (device == NULL)
1319 		return(DM_RET_ERROR);
1320 
1321 	/*
1322 	 * If there are no match entries, then this device matches no
1323 	 * matter what.
1324 	 */
1325 	if ((patterns == NULL) || (num_patterns == 0))
1326 		return(DM_RET_DESCEND | DM_RET_COPY);
1327 
1328 	for (i = 0; i < num_patterns; i++) {
1329 		struct device_match_pattern *cur_pattern;
1330 		struct scsi_vpd_device_id *device_id_page;
1331 
1332 		/*
1333 		 * If the pattern in question isn't for a device node, we
1334 		 * aren't interested.
1335 		 */
1336 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1337 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1338 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1339 				retval |= DM_RET_DESCEND;
1340 			continue;
1341 		}
1342 
1343 		cur_pattern = &patterns[i].pattern.device_pattern;
1344 
1345 		/* Error out if mutually exclusive options are specified. */
1346 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1347 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1348 			return(DM_RET_ERROR);
1349 
1350 		/*
1351 		 * If they want to match any device node, we give them any
1352 		 * device node.
1353 		 */
1354 		if (cur_pattern->flags == DEV_MATCH_ANY)
1355 			goto copy_dev_node;
1356 
1357 		/*
1358 		 * Not sure why someone would do this...
1359 		 */
1360 		if (cur_pattern->flags == DEV_MATCH_NONE)
1361 			continue;
1362 
1363 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1364 		 && (cur_pattern->path_id != device->target->bus->path_id))
1365 			continue;
1366 
1367 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1368 		 && (cur_pattern->target_id != device->target->target_id))
1369 			continue;
1370 
1371 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1372 		 && (cur_pattern->target_lun != device->lun_id))
1373 			continue;
1374 
1375 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1376 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1377 				    (caddr_t)&cur_pattern->data.inq_pat,
1378 				    1, sizeof(cur_pattern->data.inq_pat),
1379 				    scsi_static_inquiry_match) == NULL))
1380 			continue;
1381 
1382 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1383 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1384 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1385 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1386 				      device->device_id_len
1387 				    - SVPD_DEVICE_ID_HDR_LEN,
1388 				      cur_pattern->data.devid_pat.id,
1389 				      cur_pattern->data.devid_pat.id_len) != 0))
1390 			continue;
1391 
1392 copy_dev_node:
1393 		/*
1394 		 * If we get to this point, the user definitely wants
1395 		 * information on this device.  So tell the caller to copy
1396 		 * the data out.
1397 		 */
1398 		retval |= DM_RET_COPY;
1399 
1400 		/*
1401 		 * If the return action has been set to descend, then we
1402 		 * know that we've already seen a peripheral matching
1403 		 * expression, therefore we need to further descend the tree.
1404 		 * This won't change by continuing around the loop, so we
1405 		 * go ahead and return.  If we haven't seen a peripheral
1406 		 * matching expression, we keep going around the loop until
1407 		 * we exhaust the matching expressions.  We'll set the stop
1408 		 * flag once we fall out of the loop.
1409 		 */
1410 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1411 			return(retval);
1412 	}
1413 
1414 	/*
1415 	 * If the return action hasn't been set to descend yet, that means
1416 	 * we haven't seen any peripheral matching patterns.  So tell the
1417 	 * caller to stop descending the tree -- the user doesn't want to
1418 	 * match against lower level tree elements.
1419 	 */
1420 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1421 		retval |= DM_RET_STOP;
1422 
1423 	return(retval);
1424 }
1425 
1426 /*
1427  * Match a single peripheral against any number of match patterns.
1428  */
1429 static dev_match_ret
1430 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1431 	       struct cam_periph *periph)
1432 {
1433 	dev_match_ret retval;
1434 	u_int i;
1435 
1436 	/*
1437 	 * If we aren't given something to match against, that's an error.
1438 	 */
1439 	if (periph == NULL)
1440 		return(DM_RET_ERROR);
1441 
1442 	/*
1443 	 * If there are no match entries, then this peripheral matches no
1444 	 * matter what.
1445 	 */
1446 	if ((patterns == NULL) || (num_patterns == 0))
1447 		return(DM_RET_STOP | DM_RET_COPY);
1448 
1449 	/*
1450 	 * There aren't any nodes below a peripheral node, so there's no
1451 	 * reason to descend the tree any further.
1452 	 */
1453 	retval = DM_RET_STOP;
1454 
1455 	for (i = 0; i < num_patterns; i++) {
1456 		struct periph_match_pattern *cur_pattern;
1457 
1458 		/*
1459 		 * If the pattern in question isn't for a peripheral, we
1460 		 * aren't interested.
1461 		 */
1462 		if (patterns[i].type != DEV_MATCH_PERIPH)
1463 			continue;
1464 
1465 		cur_pattern = &patterns[i].pattern.periph_pattern;
1466 
1467 		/*
1468 		 * If they want to match on anything, then we will do so.
1469 		 */
1470 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1471 			/* set the copy flag */
1472 			retval |= DM_RET_COPY;
1473 
1474 			/*
1475 			 * We've already set the return action to stop,
1476 			 * since there are no nodes below peripherals in
1477 			 * the tree.
1478 			 */
1479 			return(retval);
1480 		}
1481 
1482 		/*
1483 		 * Not sure why someone would do this...
1484 		 */
1485 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1486 			continue;
1487 
1488 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1489 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1490 			continue;
1491 
1492 		/*
1493 		 * For the target and lun id's, we have to make sure the
1494 		 * target and lun pointers aren't NULL.  The xpt peripheral
1495 		 * has a wildcard target and device.
1496 		 */
1497 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1498 		 && ((periph->path->target == NULL)
1499 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1500 			continue;
1501 
1502 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1503 		 && ((periph->path->device == NULL)
1504 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1505 			continue;
1506 
1507 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1508 		 && (cur_pattern->unit_number != periph->unit_number))
1509 			continue;
1510 
1511 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1512 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1513 			     DEV_IDLEN) != 0))
1514 			continue;
1515 
1516 		/*
1517 		 * If we get to this point, the user definitely wants
1518 		 * information on this peripheral.  So tell the caller to
1519 		 * copy the data out.
1520 		 */
1521 		retval |= DM_RET_COPY;
1522 
1523 		/*
1524 		 * The return action has already been set to stop, since
1525 		 * peripherals don't have any nodes below them in the EDT.
1526 		 */
1527 		return(retval);
1528 	}
1529 
1530 	/*
1531 	 * If we get to this point, the peripheral that was passed in
1532 	 * doesn't match any of the patterns.
1533 	 */
1534 	return(retval);
1535 }
1536 
1537 static int
1538 xptedtbusfunc(struct cam_eb *bus, void *arg)
1539 {
1540 	struct ccb_dev_match *cdm;
1541 	struct cam_et *target;
1542 	dev_match_ret retval;
1543 
1544 	cdm = (struct ccb_dev_match *)arg;
1545 
1546 	/*
1547 	 * If our position is for something deeper in the tree, that means
1548 	 * that we've already seen this node.  So, we keep going down.
1549 	 */
1550 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1551 	 && (cdm->pos.cookie.bus == bus)
1552 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1553 	 && (cdm->pos.cookie.target != NULL))
1554 		retval = DM_RET_DESCEND;
1555 	else
1556 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1557 
1558 	/*
1559 	 * If we got an error, bail out of the search.
1560 	 */
1561 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1562 		cdm->status = CAM_DEV_MATCH_ERROR;
1563 		return(0);
1564 	}
1565 
1566 	/*
1567 	 * If the copy flag is set, copy this bus out.
1568 	 */
1569 	if (retval & DM_RET_COPY) {
1570 		int spaceleft, j;
1571 
1572 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1573 			sizeof(struct dev_match_result));
1574 
1575 		/*
1576 		 * If we don't have enough space to put in another
1577 		 * match result, save our position and tell the
1578 		 * user there are more devices to check.
1579 		 */
1580 		if (spaceleft < sizeof(struct dev_match_result)) {
1581 			bzero(&cdm->pos, sizeof(cdm->pos));
1582 			cdm->pos.position_type =
1583 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1584 
1585 			cdm->pos.cookie.bus = bus;
1586 			cdm->pos.generations[CAM_BUS_GENERATION]=
1587 				xsoftc.bus_generation;
1588 			cdm->status = CAM_DEV_MATCH_MORE;
1589 			return(0);
1590 		}
1591 		j = cdm->num_matches;
1592 		cdm->num_matches++;
1593 		cdm->matches[j].type = DEV_MATCH_BUS;
1594 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1595 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1596 		cdm->matches[j].result.bus_result.unit_number =
1597 			bus->sim->unit_number;
1598 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1599 			bus->sim->sim_name, DEV_IDLEN);
1600 	}
1601 
1602 	/*
1603 	 * If the user is only interested in busses, there's no
1604 	 * reason to descend to the next level in the tree.
1605 	 */
1606 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1607 		return(1);
1608 
1609 	/*
1610 	 * If there is a target generation recorded, check it to
1611 	 * make sure the target list hasn't changed.
1612 	 */
1613 	mtx_lock(&bus->eb_mtx);
1614 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1615 	 && (cdm->pos.cookie.bus == bus)
1616 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1617 	 && (cdm->pos.cookie.target != NULL)) {
1618 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1619 		    bus->generation)) {
1620 			mtx_unlock(&bus->eb_mtx);
1621 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1622 			return (0);
1623 		}
1624 		target = (struct cam_et *)cdm->pos.cookie.target;
1625 		target->refcount++;
1626 	} else
1627 		target = NULL;
1628 	mtx_unlock(&bus->eb_mtx);
1629 
1630 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1631 }
1632 
1633 static int
1634 xptedttargetfunc(struct cam_et *target, void *arg)
1635 {
1636 	struct ccb_dev_match *cdm;
1637 	struct cam_eb *bus;
1638 	struct cam_ed *device;
1639 
1640 	cdm = (struct ccb_dev_match *)arg;
1641 	bus = target->bus;
1642 
1643 	/*
1644 	 * If there is a device list generation recorded, check it to
1645 	 * make sure the device list hasn't changed.
1646 	 */
1647 	mtx_lock(&bus->eb_mtx);
1648 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1649 	 && (cdm->pos.cookie.bus == bus)
1650 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1651 	 && (cdm->pos.cookie.target == target)
1652 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1653 	 && (cdm->pos.cookie.device != NULL)) {
1654 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1655 		    target->generation) {
1656 			mtx_unlock(&bus->eb_mtx);
1657 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1658 			return(0);
1659 		}
1660 		device = (struct cam_ed *)cdm->pos.cookie.device;
1661 		device->refcount++;
1662 	} else
1663 		device = NULL;
1664 	mtx_unlock(&bus->eb_mtx);
1665 
1666 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1667 }
1668 
1669 static int
1670 xptedtdevicefunc(struct cam_ed *device, void *arg)
1671 {
1672 	struct cam_eb *bus;
1673 	struct cam_periph *periph;
1674 	struct ccb_dev_match *cdm;
1675 	dev_match_ret retval;
1676 
1677 	cdm = (struct ccb_dev_match *)arg;
1678 	bus = device->target->bus;
1679 
1680 	/*
1681 	 * If our position is for something deeper in the tree, that means
1682 	 * that we've already seen this node.  So, we keep going down.
1683 	 */
1684 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1685 	 && (cdm->pos.cookie.device == device)
1686 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1687 	 && (cdm->pos.cookie.periph != NULL))
1688 		retval = DM_RET_DESCEND;
1689 	else
1690 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1691 					device);
1692 
1693 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1694 		cdm->status = CAM_DEV_MATCH_ERROR;
1695 		return(0);
1696 	}
1697 
1698 	/*
1699 	 * If the copy flag is set, copy this device out.
1700 	 */
1701 	if (retval & DM_RET_COPY) {
1702 		int spaceleft, j;
1703 
1704 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1705 			sizeof(struct dev_match_result));
1706 
1707 		/*
1708 		 * If we don't have enough space to put in another
1709 		 * match result, save our position and tell the
1710 		 * user there are more devices to check.
1711 		 */
1712 		if (spaceleft < sizeof(struct dev_match_result)) {
1713 			bzero(&cdm->pos, sizeof(cdm->pos));
1714 			cdm->pos.position_type =
1715 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1716 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1717 
1718 			cdm->pos.cookie.bus = device->target->bus;
1719 			cdm->pos.generations[CAM_BUS_GENERATION]=
1720 				xsoftc.bus_generation;
1721 			cdm->pos.cookie.target = device->target;
1722 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1723 				device->target->bus->generation;
1724 			cdm->pos.cookie.device = device;
1725 			cdm->pos.generations[CAM_DEV_GENERATION] =
1726 				device->target->generation;
1727 			cdm->status = CAM_DEV_MATCH_MORE;
1728 			return(0);
1729 		}
1730 		j = cdm->num_matches;
1731 		cdm->num_matches++;
1732 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1733 		cdm->matches[j].result.device_result.path_id =
1734 			device->target->bus->path_id;
1735 		cdm->matches[j].result.device_result.target_id =
1736 			device->target->target_id;
1737 		cdm->matches[j].result.device_result.target_lun =
1738 			device->lun_id;
1739 		cdm->matches[j].result.device_result.protocol =
1740 			device->protocol;
1741 		bcopy(&device->inq_data,
1742 		      &cdm->matches[j].result.device_result.inq_data,
1743 		      sizeof(struct scsi_inquiry_data));
1744 		bcopy(&device->ident_data,
1745 		      &cdm->matches[j].result.device_result.ident_data,
1746 		      sizeof(struct ata_params));
1747 
1748 		/* Let the user know whether this device is unconfigured */
1749 		if (device->flags & CAM_DEV_UNCONFIGURED)
1750 			cdm->matches[j].result.device_result.flags =
1751 				DEV_RESULT_UNCONFIGURED;
1752 		else
1753 			cdm->matches[j].result.device_result.flags =
1754 				DEV_RESULT_NOFLAG;
1755 	}
1756 
1757 	/*
1758 	 * If the user isn't interested in peripherals, don't descend
1759 	 * the tree any further.
1760 	 */
1761 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1762 		return(1);
1763 
1764 	/*
1765 	 * If there is a peripheral list generation recorded, make sure
1766 	 * it hasn't changed.
1767 	 */
1768 	xpt_lock_buses();
1769 	mtx_lock(&bus->eb_mtx);
1770 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1771 	 && (cdm->pos.cookie.bus == bus)
1772 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1773 	 && (cdm->pos.cookie.target == device->target)
1774 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1775 	 && (cdm->pos.cookie.device == device)
1776 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1777 	 && (cdm->pos.cookie.periph != NULL)) {
1778 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1779 		    device->generation) {
1780 			mtx_unlock(&bus->eb_mtx);
1781 			xpt_unlock_buses();
1782 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1783 			return(0);
1784 		}
1785 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1786 		periph->refcount++;
1787 	} else
1788 		periph = NULL;
1789 	mtx_unlock(&bus->eb_mtx);
1790 	xpt_unlock_buses();
1791 
1792 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1793 }
1794 
1795 static int
1796 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1797 {
1798 	struct ccb_dev_match *cdm;
1799 	dev_match_ret retval;
1800 
1801 	cdm = (struct ccb_dev_match *)arg;
1802 
1803 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1804 
1805 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1806 		cdm->status = CAM_DEV_MATCH_ERROR;
1807 		return(0);
1808 	}
1809 
1810 	/*
1811 	 * If the copy flag is set, copy this peripheral out.
1812 	 */
1813 	if (retval & DM_RET_COPY) {
1814 		int spaceleft, j;
1815 
1816 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1817 			sizeof(struct dev_match_result));
1818 
1819 		/*
1820 		 * If we don't have enough space to put in another
1821 		 * match result, save our position and tell the
1822 		 * user there are more devices to check.
1823 		 */
1824 		if (spaceleft < sizeof(struct dev_match_result)) {
1825 			bzero(&cdm->pos, sizeof(cdm->pos));
1826 			cdm->pos.position_type =
1827 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1828 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1829 				CAM_DEV_POS_PERIPH;
1830 
1831 			cdm->pos.cookie.bus = periph->path->bus;
1832 			cdm->pos.generations[CAM_BUS_GENERATION]=
1833 				xsoftc.bus_generation;
1834 			cdm->pos.cookie.target = periph->path->target;
1835 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1836 				periph->path->bus->generation;
1837 			cdm->pos.cookie.device = periph->path->device;
1838 			cdm->pos.generations[CAM_DEV_GENERATION] =
1839 				periph->path->target->generation;
1840 			cdm->pos.cookie.periph = periph;
1841 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1842 				periph->path->device->generation;
1843 			cdm->status = CAM_DEV_MATCH_MORE;
1844 			return(0);
1845 		}
1846 
1847 		j = cdm->num_matches;
1848 		cdm->num_matches++;
1849 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1850 		cdm->matches[j].result.periph_result.path_id =
1851 			periph->path->bus->path_id;
1852 		cdm->matches[j].result.periph_result.target_id =
1853 			periph->path->target->target_id;
1854 		cdm->matches[j].result.periph_result.target_lun =
1855 			periph->path->device->lun_id;
1856 		cdm->matches[j].result.periph_result.unit_number =
1857 			periph->unit_number;
1858 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1859 			periph->periph_name, DEV_IDLEN);
1860 	}
1861 
1862 	return(1);
1863 }
1864 
1865 static int
1866 xptedtmatch(struct ccb_dev_match *cdm)
1867 {
1868 	struct cam_eb *bus;
1869 	int ret;
1870 
1871 	cdm->num_matches = 0;
1872 
1873 	/*
1874 	 * Check the bus list generation.  If it has changed, the user
1875 	 * needs to reset everything and start over.
1876 	 */
1877 	xpt_lock_buses();
1878 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1879 	 && (cdm->pos.cookie.bus != NULL)) {
1880 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1881 		    xsoftc.bus_generation) {
1882 			xpt_unlock_buses();
1883 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1884 			return(0);
1885 		}
1886 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1887 		bus->refcount++;
1888 	} else
1889 		bus = NULL;
1890 	xpt_unlock_buses();
1891 
1892 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1893 
1894 	/*
1895 	 * If we get back 0, that means that we had to stop before fully
1896 	 * traversing the EDT.  It also means that one of the subroutines
1897 	 * has set the status field to the proper value.  If we get back 1,
1898 	 * we've fully traversed the EDT and copied out any matching entries.
1899 	 */
1900 	if (ret == 1)
1901 		cdm->status = CAM_DEV_MATCH_LAST;
1902 
1903 	return(ret);
1904 }
1905 
1906 static int
1907 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1908 {
1909 	struct cam_periph *periph;
1910 	struct ccb_dev_match *cdm;
1911 
1912 	cdm = (struct ccb_dev_match *)arg;
1913 
1914 	xpt_lock_buses();
1915 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1916 	 && (cdm->pos.cookie.pdrv == pdrv)
1917 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1918 	 && (cdm->pos.cookie.periph != NULL)) {
1919 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1920 		    (*pdrv)->generation) {
1921 			xpt_unlock_buses();
1922 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1923 			return(0);
1924 		}
1925 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1926 		periph->refcount++;
1927 	} else
1928 		periph = NULL;
1929 	xpt_unlock_buses();
1930 
1931 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1932 }
1933 
1934 static int
1935 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1936 {
1937 	struct ccb_dev_match *cdm;
1938 	dev_match_ret retval;
1939 
1940 	cdm = (struct ccb_dev_match *)arg;
1941 
1942 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1943 
1944 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1945 		cdm->status = CAM_DEV_MATCH_ERROR;
1946 		return(0);
1947 	}
1948 
1949 	/*
1950 	 * If the copy flag is set, copy this peripheral out.
1951 	 */
1952 	if (retval & DM_RET_COPY) {
1953 		int spaceleft, j;
1954 
1955 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1956 			sizeof(struct dev_match_result));
1957 
1958 		/*
1959 		 * If we don't have enough space to put in another
1960 		 * match result, save our position and tell the
1961 		 * user there are more devices to check.
1962 		 */
1963 		if (spaceleft < sizeof(struct dev_match_result)) {
1964 			struct periph_driver **pdrv;
1965 
1966 			pdrv = NULL;
1967 			bzero(&cdm->pos, sizeof(cdm->pos));
1968 			cdm->pos.position_type =
1969 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1970 				CAM_DEV_POS_PERIPH;
1971 
1972 			/*
1973 			 * This may look a bit non-sensical, but it is
1974 			 * actually quite logical.  There are very few
1975 			 * peripheral drivers, and bloating every peripheral
1976 			 * structure with a pointer back to its parent
1977 			 * peripheral driver linker set entry would cost
1978 			 * more in the long run than doing this quick lookup.
1979 			 */
1980 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1981 				if (strcmp((*pdrv)->driver_name,
1982 				    periph->periph_name) == 0)
1983 					break;
1984 			}
1985 
1986 			if (*pdrv == NULL) {
1987 				cdm->status = CAM_DEV_MATCH_ERROR;
1988 				return(0);
1989 			}
1990 
1991 			cdm->pos.cookie.pdrv = pdrv;
1992 			/*
1993 			 * The periph generation slot does double duty, as
1994 			 * does the periph pointer slot.  They are used for
1995 			 * both edt and pdrv lookups and positioning.
1996 			 */
1997 			cdm->pos.cookie.periph = periph;
1998 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1999 				(*pdrv)->generation;
2000 			cdm->status = CAM_DEV_MATCH_MORE;
2001 			return(0);
2002 		}
2003 
2004 		j = cdm->num_matches;
2005 		cdm->num_matches++;
2006 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2007 		cdm->matches[j].result.periph_result.path_id =
2008 			periph->path->bus->path_id;
2009 
2010 		/*
2011 		 * The transport layer peripheral doesn't have a target or
2012 		 * lun.
2013 		 */
2014 		if (periph->path->target)
2015 			cdm->matches[j].result.periph_result.target_id =
2016 				periph->path->target->target_id;
2017 		else
2018 			cdm->matches[j].result.periph_result.target_id =
2019 				CAM_TARGET_WILDCARD;
2020 
2021 		if (periph->path->device)
2022 			cdm->matches[j].result.periph_result.target_lun =
2023 				periph->path->device->lun_id;
2024 		else
2025 			cdm->matches[j].result.periph_result.target_lun =
2026 				CAM_LUN_WILDCARD;
2027 
2028 		cdm->matches[j].result.periph_result.unit_number =
2029 			periph->unit_number;
2030 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2031 			periph->periph_name, DEV_IDLEN);
2032 	}
2033 
2034 	return(1);
2035 }
2036 
2037 static int
2038 xptperiphlistmatch(struct ccb_dev_match *cdm)
2039 {
2040 	int ret;
2041 
2042 	cdm->num_matches = 0;
2043 
2044 	/*
2045 	 * At this point in the edt traversal function, we check the bus
2046 	 * list generation to make sure that no busses have been added or
2047 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2048 	 * For the peripheral driver list traversal function, however, we
2049 	 * don't have to worry about new peripheral driver types coming or
2050 	 * going; they're in a linker set, and therefore can't change
2051 	 * without a recompile.
2052 	 */
2053 
2054 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2055 	 && (cdm->pos.cookie.pdrv != NULL))
2056 		ret = xptpdrvtraverse(
2057 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2058 				xptplistpdrvfunc, cdm);
2059 	else
2060 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2061 
2062 	/*
2063 	 * If we get back 0, that means that we had to stop before fully
2064 	 * traversing the peripheral driver tree.  It also means that one of
2065 	 * the subroutines has set the status field to the proper value.  If
2066 	 * we get back 1, we've fully traversed the EDT and copied out any
2067 	 * matching entries.
2068 	 */
2069 	if (ret == 1)
2070 		cdm->status = CAM_DEV_MATCH_LAST;
2071 
2072 	return(ret);
2073 }
2074 
2075 static int
2076 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2077 {
2078 	struct cam_eb *bus, *next_bus;
2079 	int retval;
2080 
2081 	retval = 1;
2082 	if (start_bus)
2083 		bus = start_bus;
2084 	else {
2085 		xpt_lock_buses();
2086 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2087 		if (bus == NULL) {
2088 			xpt_unlock_buses();
2089 			return (retval);
2090 		}
2091 		bus->refcount++;
2092 		xpt_unlock_buses();
2093 	}
2094 	for (; bus != NULL; bus = next_bus) {
2095 		retval = tr_func(bus, arg);
2096 		if (retval == 0) {
2097 			xpt_release_bus(bus);
2098 			break;
2099 		}
2100 		xpt_lock_buses();
2101 		next_bus = TAILQ_NEXT(bus, links);
2102 		if (next_bus)
2103 			next_bus->refcount++;
2104 		xpt_unlock_buses();
2105 		xpt_release_bus(bus);
2106 	}
2107 	return(retval);
2108 }
2109 
2110 static int
2111 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2112 		  xpt_targetfunc_t *tr_func, void *arg)
2113 {
2114 	struct cam_et *target, *next_target;
2115 	int retval;
2116 
2117 	retval = 1;
2118 	if (start_target)
2119 		target = start_target;
2120 	else {
2121 		mtx_lock(&bus->eb_mtx);
2122 		target = TAILQ_FIRST(&bus->et_entries);
2123 		if (target == NULL) {
2124 			mtx_unlock(&bus->eb_mtx);
2125 			return (retval);
2126 		}
2127 		target->refcount++;
2128 		mtx_unlock(&bus->eb_mtx);
2129 	}
2130 	for (; target != NULL; target = next_target) {
2131 		retval = tr_func(target, arg);
2132 		if (retval == 0) {
2133 			xpt_release_target(target);
2134 			break;
2135 		}
2136 		mtx_lock(&bus->eb_mtx);
2137 		next_target = TAILQ_NEXT(target, links);
2138 		if (next_target)
2139 			next_target->refcount++;
2140 		mtx_unlock(&bus->eb_mtx);
2141 		xpt_release_target(target);
2142 	}
2143 	return(retval);
2144 }
2145 
2146 static int
2147 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2148 		  xpt_devicefunc_t *tr_func, void *arg)
2149 {
2150 	struct cam_eb *bus;
2151 	struct cam_ed *device, *next_device;
2152 	int retval;
2153 
2154 	retval = 1;
2155 	bus = target->bus;
2156 	if (start_device)
2157 		device = start_device;
2158 	else {
2159 		mtx_lock(&bus->eb_mtx);
2160 		device = TAILQ_FIRST(&target->ed_entries);
2161 		if (device == NULL) {
2162 			mtx_unlock(&bus->eb_mtx);
2163 			return (retval);
2164 		}
2165 		device->refcount++;
2166 		mtx_unlock(&bus->eb_mtx);
2167 	}
2168 	for (; device != NULL; device = next_device) {
2169 		mtx_lock(&device->device_mtx);
2170 		retval = tr_func(device, arg);
2171 		mtx_unlock(&device->device_mtx);
2172 		if (retval == 0) {
2173 			xpt_release_device(device);
2174 			break;
2175 		}
2176 		mtx_lock(&bus->eb_mtx);
2177 		next_device = TAILQ_NEXT(device, links);
2178 		if (next_device)
2179 			next_device->refcount++;
2180 		mtx_unlock(&bus->eb_mtx);
2181 		xpt_release_device(device);
2182 	}
2183 	return(retval);
2184 }
2185 
2186 static int
2187 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2188 		  xpt_periphfunc_t *tr_func, void *arg)
2189 {
2190 	struct cam_eb *bus;
2191 	struct cam_periph *periph, *next_periph;
2192 	int retval;
2193 
2194 	retval = 1;
2195 
2196 	bus = device->target->bus;
2197 	if (start_periph)
2198 		periph = start_periph;
2199 	else {
2200 		xpt_lock_buses();
2201 		mtx_lock(&bus->eb_mtx);
2202 		periph = SLIST_FIRST(&device->periphs);
2203 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2204 			periph = SLIST_NEXT(periph, periph_links);
2205 		if (periph == NULL) {
2206 			mtx_unlock(&bus->eb_mtx);
2207 			xpt_unlock_buses();
2208 			return (retval);
2209 		}
2210 		periph->refcount++;
2211 		mtx_unlock(&bus->eb_mtx);
2212 		xpt_unlock_buses();
2213 	}
2214 	for (; periph != NULL; periph = next_periph) {
2215 		retval = tr_func(periph, arg);
2216 		if (retval == 0) {
2217 			cam_periph_release_locked(periph);
2218 			break;
2219 		}
2220 		xpt_lock_buses();
2221 		mtx_lock(&bus->eb_mtx);
2222 		next_periph = SLIST_NEXT(periph, periph_links);
2223 		while (next_periph != NULL &&
2224 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2225 			next_periph = SLIST_NEXT(next_periph, periph_links);
2226 		if (next_periph)
2227 			next_periph->refcount++;
2228 		mtx_unlock(&bus->eb_mtx);
2229 		xpt_unlock_buses();
2230 		cam_periph_release_locked(periph);
2231 	}
2232 	return(retval);
2233 }
2234 
2235 static int
2236 xptpdrvtraverse(struct periph_driver **start_pdrv,
2237 		xpt_pdrvfunc_t *tr_func, void *arg)
2238 {
2239 	struct periph_driver **pdrv;
2240 	int retval;
2241 
2242 	retval = 1;
2243 
2244 	/*
2245 	 * We don't traverse the peripheral driver list like we do the
2246 	 * other lists, because it is a linker set, and therefore cannot be
2247 	 * changed during runtime.  If the peripheral driver list is ever
2248 	 * re-done to be something other than a linker set (i.e. it can
2249 	 * change while the system is running), the list traversal should
2250 	 * be modified to work like the other traversal functions.
2251 	 */
2252 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2253 	     *pdrv != NULL; pdrv++) {
2254 		retval = tr_func(pdrv, arg);
2255 
2256 		if (retval == 0)
2257 			return(retval);
2258 	}
2259 
2260 	return(retval);
2261 }
2262 
2263 static int
2264 xptpdperiphtraverse(struct periph_driver **pdrv,
2265 		    struct cam_periph *start_periph,
2266 		    xpt_periphfunc_t *tr_func, void *arg)
2267 {
2268 	struct cam_periph *periph, *next_periph;
2269 	int retval;
2270 
2271 	retval = 1;
2272 
2273 	if (start_periph)
2274 		periph = start_periph;
2275 	else {
2276 		xpt_lock_buses();
2277 		periph = TAILQ_FIRST(&(*pdrv)->units);
2278 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2279 			periph = TAILQ_NEXT(periph, unit_links);
2280 		if (periph == NULL) {
2281 			xpt_unlock_buses();
2282 			return (retval);
2283 		}
2284 		periph->refcount++;
2285 		xpt_unlock_buses();
2286 	}
2287 	for (; periph != NULL; periph = next_periph) {
2288 		cam_periph_lock(periph);
2289 		retval = tr_func(periph, arg);
2290 		cam_periph_unlock(periph);
2291 		if (retval == 0) {
2292 			cam_periph_release(periph);
2293 			break;
2294 		}
2295 		xpt_lock_buses();
2296 		next_periph = TAILQ_NEXT(periph, unit_links);
2297 		while (next_periph != NULL &&
2298 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2299 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2300 		if (next_periph)
2301 			next_periph->refcount++;
2302 		xpt_unlock_buses();
2303 		cam_periph_release(periph);
2304 	}
2305 	return(retval);
2306 }
2307 
2308 static int
2309 xptdefbusfunc(struct cam_eb *bus, void *arg)
2310 {
2311 	struct xpt_traverse_config *tr_config;
2312 
2313 	tr_config = (struct xpt_traverse_config *)arg;
2314 
2315 	if (tr_config->depth == XPT_DEPTH_BUS) {
2316 		xpt_busfunc_t *tr_func;
2317 
2318 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2319 
2320 		return(tr_func(bus, tr_config->tr_arg));
2321 	} else
2322 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2323 }
2324 
2325 static int
2326 xptdeftargetfunc(struct cam_et *target, void *arg)
2327 {
2328 	struct xpt_traverse_config *tr_config;
2329 
2330 	tr_config = (struct xpt_traverse_config *)arg;
2331 
2332 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2333 		xpt_targetfunc_t *tr_func;
2334 
2335 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2336 
2337 		return(tr_func(target, tr_config->tr_arg));
2338 	} else
2339 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2340 }
2341 
2342 static int
2343 xptdefdevicefunc(struct cam_ed *device, void *arg)
2344 {
2345 	struct xpt_traverse_config *tr_config;
2346 
2347 	tr_config = (struct xpt_traverse_config *)arg;
2348 
2349 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2350 		xpt_devicefunc_t *tr_func;
2351 
2352 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2353 
2354 		return(tr_func(device, tr_config->tr_arg));
2355 	} else
2356 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2357 }
2358 
2359 static int
2360 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2361 {
2362 	struct xpt_traverse_config *tr_config;
2363 	xpt_periphfunc_t *tr_func;
2364 
2365 	tr_config = (struct xpt_traverse_config *)arg;
2366 
2367 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2368 
2369 	/*
2370 	 * Unlike the other default functions, we don't check for depth
2371 	 * here.  The peripheral driver level is the last level in the EDT,
2372 	 * so if we're here, we should execute the function in question.
2373 	 */
2374 	return(tr_func(periph, tr_config->tr_arg));
2375 }
2376 
2377 /*
2378  * Execute the given function for every bus in the EDT.
2379  */
2380 static int
2381 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2382 {
2383 	struct xpt_traverse_config tr_config;
2384 
2385 	tr_config.depth = XPT_DEPTH_BUS;
2386 	tr_config.tr_func = tr_func;
2387 	tr_config.tr_arg = arg;
2388 
2389 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2390 }
2391 
2392 /*
2393  * Execute the given function for every device in the EDT.
2394  */
2395 static int
2396 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2397 {
2398 	struct xpt_traverse_config tr_config;
2399 
2400 	tr_config.depth = XPT_DEPTH_DEVICE;
2401 	tr_config.tr_func = tr_func;
2402 	tr_config.tr_arg = arg;
2403 
2404 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2405 }
2406 
2407 static int
2408 xptsetasyncfunc(struct cam_ed *device, void *arg)
2409 {
2410 	struct cam_path path;
2411 	struct ccb_getdev cgd;
2412 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2413 
2414 	/*
2415 	 * Don't report unconfigured devices (Wildcard devs,
2416 	 * devices only for target mode, device instances
2417 	 * that have been invalidated but are waiting for
2418 	 * their last reference count to be released).
2419 	 */
2420 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2421 		return (1);
2422 
2423 	xpt_compile_path(&path,
2424 			 NULL,
2425 			 device->target->bus->path_id,
2426 			 device->target->target_id,
2427 			 device->lun_id);
2428 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2429 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2430 	xpt_action((union ccb *)&cgd);
2431 	csa->callback(csa->callback_arg,
2432 			    AC_FOUND_DEVICE,
2433 			    &path, &cgd);
2434 	xpt_release_path(&path);
2435 
2436 	return(1);
2437 }
2438 
2439 static int
2440 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2441 {
2442 	struct cam_path path;
2443 	struct ccb_pathinq cpi;
2444 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2445 
2446 	xpt_compile_path(&path, /*periph*/NULL,
2447 			 bus->path_id,
2448 			 CAM_TARGET_WILDCARD,
2449 			 CAM_LUN_WILDCARD);
2450 	xpt_path_lock(&path);
2451 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2452 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2453 	xpt_action((union ccb *)&cpi);
2454 	csa->callback(csa->callback_arg,
2455 			    AC_PATH_REGISTERED,
2456 			    &path, &cpi);
2457 	xpt_path_unlock(&path);
2458 	xpt_release_path(&path);
2459 
2460 	return(1);
2461 }
2462 
2463 void
2464 xpt_action(union ccb *start_ccb)
2465 {
2466 
2467 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2468 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2469 		xpt_action_name(start_ccb->ccb_h.func_code)));
2470 
2471 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2472 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2473 }
2474 
2475 void
2476 xpt_action_default(union ccb *start_ccb)
2477 {
2478 	struct cam_path *path;
2479 	struct cam_sim *sim;
2480 	int lock;
2481 
2482 	path = start_ccb->ccb_h.path;
2483 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2484 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2485 		xpt_action_name(start_ccb->ccb_h.func_code)));
2486 
2487 	switch (start_ccb->ccb_h.func_code) {
2488 	case XPT_SCSI_IO:
2489 	{
2490 		struct cam_ed *device;
2491 
2492 		/*
2493 		 * For the sake of compatibility with SCSI-1
2494 		 * devices that may not understand the identify
2495 		 * message, we include lun information in the
2496 		 * second byte of all commands.  SCSI-1 specifies
2497 		 * that luns are a 3 bit value and reserves only 3
2498 		 * bits for lun information in the CDB.  Later
2499 		 * revisions of the SCSI spec allow for more than 8
2500 		 * luns, but have deprecated lun information in the
2501 		 * CDB.  So, if the lun won't fit, we must omit.
2502 		 *
2503 		 * Also be aware that during initial probing for devices,
2504 		 * the inquiry information is unknown but initialized to 0.
2505 		 * This means that this code will be exercised while probing
2506 		 * devices with an ANSI revision greater than 2.
2507 		 */
2508 		device = path->device;
2509 		if (device->protocol_version <= SCSI_REV_2
2510 		 && start_ccb->ccb_h.target_lun < 8
2511 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2512 
2513 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2514 			    start_ccb->ccb_h.target_lun << 5;
2515 		}
2516 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2517 	}
2518 	/* FALLTHROUGH */
2519 	case XPT_TARGET_IO:
2520 	case XPT_CONT_TARGET_IO:
2521 		start_ccb->csio.sense_resid = 0;
2522 		start_ccb->csio.resid = 0;
2523 		/* FALLTHROUGH */
2524 	case XPT_ATA_IO:
2525 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2526 			start_ccb->ataio.resid = 0;
2527 		/* FALLTHROUGH */
2528 	case XPT_NVME_IO:
2529 		if (start_ccb->ccb_h.func_code == XPT_NVME_IO)
2530 			start_ccb->nvmeio.resid = 0;
2531 		/* FALLTHROUGH */
2532 	case XPT_RESET_DEV:
2533 	case XPT_ENG_EXEC:
2534 	case XPT_SMP_IO:
2535 	{
2536 		struct cam_devq *devq;
2537 
2538 		devq = path->bus->sim->devq;
2539 		mtx_lock(&devq->send_mtx);
2540 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2541 		if (xpt_schedule_devq(devq, path->device) != 0)
2542 			xpt_run_devq(devq);
2543 		mtx_unlock(&devq->send_mtx);
2544 		break;
2545 	}
2546 	case XPT_CALC_GEOMETRY:
2547 		/* Filter out garbage */
2548 		if (start_ccb->ccg.block_size == 0
2549 		 || start_ccb->ccg.volume_size == 0) {
2550 			start_ccb->ccg.cylinders = 0;
2551 			start_ccb->ccg.heads = 0;
2552 			start_ccb->ccg.secs_per_track = 0;
2553 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2554 			break;
2555 		}
2556 #if defined(PC98) || defined(__sparc64__)
2557 		/*
2558 		 * In a PC-98 system, geometry translation depens on
2559 		 * the "real" device geometry obtained from mode page 4.
2560 		 * SCSI geometry translation is performed in the
2561 		 * initialization routine of the SCSI BIOS and the result
2562 		 * stored in host memory.  If the translation is available
2563 		 * in host memory, use it.  If not, rely on the default
2564 		 * translation the device driver performs.
2565 		 * For sparc64, we may need adjust the geometry of large
2566 		 * disks in order to fit the limitations of the 16-bit
2567 		 * fields of the VTOC8 disk label.
2568 		 */
2569 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2570 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2571 			break;
2572 		}
2573 #endif
2574 		goto call_sim;
2575 	case XPT_ABORT:
2576 	{
2577 		union ccb* abort_ccb;
2578 
2579 		abort_ccb = start_ccb->cab.abort_ccb;
2580 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2581 			struct cam_ed *device;
2582 			struct cam_devq *devq;
2583 
2584 			device = abort_ccb->ccb_h.path->device;
2585 			devq = device->sim->devq;
2586 
2587 			mtx_lock(&devq->send_mtx);
2588 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2589 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2590 				abort_ccb->ccb_h.status =
2591 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2592 				xpt_freeze_devq_device(device, 1);
2593 				mtx_unlock(&devq->send_mtx);
2594 				xpt_done(abort_ccb);
2595 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2596 				break;
2597 			}
2598 			mtx_unlock(&devq->send_mtx);
2599 
2600 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2601 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2602 				/*
2603 				 * We've caught this ccb en route to
2604 				 * the SIM.  Flag it for abort and the
2605 				 * SIM will do so just before starting
2606 				 * real work on the CCB.
2607 				 */
2608 				abort_ccb->ccb_h.status =
2609 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2610 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2611 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2612 				break;
2613 			}
2614 		}
2615 		if (XPT_FC_IS_QUEUED(abort_ccb)
2616 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2617 			/*
2618 			 * It's already completed but waiting
2619 			 * for our SWI to get to it.
2620 			 */
2621 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2622 			break;
2623 		}
2624 		/*
2625 		 * If we weren't able to take care of the abort request
2626 		 * in the XPT, pass the request down to the SIM for processing.
2627 		 */
2628 	}
2629 	/* FALLTHROUGH */
2630 	case XPT_ACCEPT_TARGET_IO:
2631 	case XPT_EN_LUN:
2632 	case XPT_IMMED_NOTIFY:
2633 	case XPT_NOTIFY_ACK:
2634 	case XPT_RESET_BUS:
2635 	case XPT_IMMEDIATE_NOTIFY:
2636 	case XPT_NOTIFY_ACKNOWLEDGE:
2637 	case XPT_GET_SIM_KNOB_OLD:
2638 	case XPT_GET_SIM_KNOB:
2639 	case XPT_SET_SIM_KNOB:
2640 	case XPT_GET_TRAN_SETTINGS:
2641 	case XPT_SET_TRAN_SETTINGS:
2642 	case XPT_PATH_INQ:
2643 call_sim:
2644 		sim = path->bus->sim;
2645 		lock = (mtx_owned(sim->mtx) == 0);
2646 		if (lock)
2647 			CAM_SIM_LOCK(sim);
2648 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2649 		    ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code));
2650 		(*(sim->sim_action))(sim, start_ccb);
2651 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2652 		    ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status));
2653 		if (lock)
2654 			CAM_SIM_UNLOCK(sim);
2655 		break;
2656 	case XPT_PATH_STATS:
2657 		start_ccb->cpis.last_reset = path->bus->last_reset;
2658 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2659 		break;
2660 	case XPT_GDEV_TYPE:
2661 	{
2662 		struct cam_ed *dev;
2663 
2664 		dev = path->device;
2665 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2666 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2667 		} else {
2668 			struct ccb_getdev *cgd;
2669 
2670 			cgd = &start_ccb->cgd;
2671 			cgd->protocol = dev->protocol;
2672 			cgd->inq_data = dev->inq_data;
2673 			cgd->ident_data = dev->ident_data;
2674 			cgd->inq_flags = dev->inq_flags;
2675 			cgd->nvme_data = dev->nvme_data;
2676 			cgd->nvme_cdata = dev->nvme_cdata;
2677 			cgd->ccb_h.status = CAM_REQ_CMP;
2678 			cgd->serial_num_len = dev->serial_num_len;
2679 			if ((dev->serial_num_len > 0)
2680 			 && (dev->serial_num != NULL))
2681 				bcopy(dev->serial_num, cgd->serial_num,
2682 				      dev->serial_num_len);
2683 		}
2684 		break;
2685 	}
2686 	case XPT_GDEV_STATS:
2687 	{
2688 		struct cam_ed *dev;
2689 
2690 		dev = path->device;
2691 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2692 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2693 		} else {
2694 			struct ccb_getdevstats *cgds;
2695 			struct cam_eb *bus;
2696 			struct cam_et *tar;
2697 			struct cam_devq *devq;
2698 
2699 			cgds = &start_ccb->cgds;
2700 			bus = path->bus;
2701 			tar = path->target;
2702 			devq = bus->sim->devq;
2703 			mtx_lock(&devq->send_mtx);
2704 			cgds->dev_openings = dev->ccbq.dev_openings;
2705 			cgds->dev_active = dev->ccbq.dev_active;
2706 			cgds->allocated = dev->ccbq.allocated;
2707 			cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2708 			cgds->held = cgds->allocated - cgds->dev_active -
2709 			    cgds->queued;
2710 			cgds->last_reset = tar->last_reset;
2711 			cgds->maxtags = dev->maxtags;
2712 			cgds->mintags = dev->mintags;
2713 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2714 				cgds->last_reset = bus->last_reset;
2715 			mtx_unlock(&devq->send_mtx);
2716 			cgds->ccb_h.status = CAM_REQ_CMP;
2717 		}
2718 		break;
2719 	}
2720 	case XPT_GDEVLIST:
2721 	{
2722 		struct cam_periph	*nperiph;
2723 		struct periph_list	*periph_head;
2724 		struct ccb_getdevlist	*cgdl;
2725 		u_int			i;
2726 		struct cam_ed		*device;
2727 		int			found;
2728 
2729 
2730 		found = 0;
2731 
2732 		/*
2733 		 * Don't want anyone mucking with our data.
2734 		 */
2735 		device = path->device;
2736 		periph_head = &device->periphs;
2737 		cgdl = &start_ccb->cgdl;
2738 
2739 		/*
2740 		 * Check and see if the list has changed since the user
2741 		 * last requested a list member.  If so, tell them that the
2742 		 * list has changed, and therefore they need to start over
2743 		 * from the beginning.
2744 		 */
2745 		if ((cgdl->index != 0) &&
2746 		    (cgdl->generation != device->generation)) {
2747 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2748 			break;
2749 		}
2750 
2751 		/*
2752 		 * Traverse the list of peripherals and attempt to find
2753 		 * the requested peripheral.
2754 		 */
2755 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2756 		     (nperiph != NULL) && (i <= cgdl->index);
2757 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2758 			if (i == cgdl->index) {
2759 				strncpy(cgdl->periph_name,
2760 					nperiph->periph_name,
2761 					DEV_IDLEN);
2762 				cgdl->unit_number = nperiph->unit_number;
2763 				found = 1;
2764 			}
2765 		}
2766 		if (found == 0) {
2767 			cgdl->status = CAM_GDEVLIST_ERROR;
2768 			break;
2769 		}
2770 
2771 		if (nperiph == NULL)
2772 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2773 		else
2774 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2775 
2776 		cgdl->index++;
2777 		cgdl->generation = device->generation;
2778 
2779 		cgdl->ccb_h.status = CAM_REQ_CMP;
2780 		break;
2781 	}
2782 	case XPT_DEV_MATCH:
2783 	{
2784 		dev_pos_type position_type;
2785 		struct ccb_dev_match *cdm;
2786 
2787 		cdm = &start_ccb->cdm;
2788 
2789 		/*
2790 		 * There are two ways of getting at information in the EDT.
2791 		 * The first way is via the primary EDT tree.  It starts
2792 		 * with a list of busses, then a list of targets on a bus,
2793 		 * then devices/luns on a target, and then peripherals on a
2794 		 * device/lun.  The "other" way is by the peripheral driver
2795 		 * lists.  The peripheral driver lists are organized by
2796 		 * peripheral driver.  (obviously)  So it makes sense to
2797 		 * use the peripheral driver list if the user is looking
2798 		 * for something like "da1", or all "da" devices.  If the
2799 		 * user is looking for something on a particular bus/target
2800 		 * or lun, it's generally better to go through the EDT tree.
2801 		 */
2802 
2803 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2804 			position_type = cdm->pos.position_type;
2805 		else {
2806 			u_int i;
2807 
2808 			position_type = CAM_DEV_POS_NONE;
2809 
2810 			for (i = 0; i < cdm->num_patterns; i++) {
2811 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2812 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2813 					position_type = CAM_DEV_POS_EDT;
2814 					break;
2815 				}
2816 			}
2817 
2818 			if (cdm->num_patterns == 0)
2819 				position_type = CAM_DEV_POS_EDT;
2820 			else if (position_type == CAM_DEV_POS_NONE)
2821 				position_type = CAM_DEV_POS_PDRV;
2822 		}
2823 
2824 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2825 		case CAM_DEV_POS_EDT:
2826 			xptedtmatch(cdm);
2827 			break;
2828 		case CAM_DEV_POS_PDRV:
2829 			xptperiphlistmatch(cdm);
2830 			break;
2831 		default:
2832 			cdm->status = CAM_DEV_MATCH_ERROR;
2833 			break;
2834 		}
2835 
2836 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2837 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2838 		else
2839 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2840 
2841 		break;
2842 	}
2843 	case XPT_SASYNC_CB:
2844 	{
2845 		struct ccb_setasync *csa;
2846 		struct async_node *cur_entry;
2847 		struct async_list *async_head;
2848 		u_int32_t added;
2849 
2850 		csa = &start_ccb->csa;
2851 		added = csa->event_enable;
2852 		async_head = &path->device->asyncs;
2853 
2854 		/*
2855 		 * If there is already an entry for us, simply
2856 		 * update it.
2857 		 */
2858 		cur_entry = SLIST_FIRST(async_head);
2859 		while (cur_entry != NULL) {
2860 			if ((cur_entry->callback_arg == csa->callback_arg)
2861 			 && (cur_entry->callback == csa->callback))
2862 				break;
2863 			cur_entry = SLIST_NEXT(cur_entry, links);
2864 		}
2865 
2866 		if (cur_entry != NULL) {
2867 		 	/*
2868 			 * If the request has no flags set,
2869 			 * remove the entry.
2870 			 */
2871 			added &= ~cur_entry->event_enable;
2872 			if (csa->event_enable == 0) {
2873 				SLIST_REMOVE(async_head, cur_entry,
2874 					     async_node, links);
2875 				xpt_release_device(path->device);
2876 				free(cur_entry, M_CAMXPT);
2877 			} else {
2878 				cur_entry->event_enable = csa->event_enable;
2879 			}
2880 			csa->event_enable = added;
2881 		} else {
2882 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2883 					   M_NOWAIT);
2884 			if (cur_entry == NULL) {
2885 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2886 				break;
2887 			}
2888 			cur_entry->event_enable = csa->event_enable;
2889 			cur_entry->event_lock =
2890 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2891 			cur_entry->callback_arg = csa->callback_arg;
2892 			cur_entry->callback = csa->callback;
2893 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2894 			xpt_acquire_device(path->device);
2895 		}
2896 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2897 		break;
2898 	}
2899 	case XPT_REL_SIMQ:
2900 	{
2901 		struct ccb_relsim *crs;
2902 		struct cam_ed *dev;
2903 
2904 		crs = &start_ccb->crs;
2905 		dev = path->device;
2906 		if (dev == NULL) {
2907 
2908 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2909 			break;
2910 		}
2911 
2912 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2913 
2914 			/* Don't ever go below one opening */
2915 			if (crs->openings > 0) {
2916 				xpt_dev_ccbq_resize(path, crs->openings);
2917 				if (bootverbose) {
2918 					xpt_print(path,
2919 					    "number of openings is now %d\n",
2920 					    crs->openings);
2921 				}
2922 			}
2923 		}
2924 
2925 		mtx_lock(&dev->sim->devq->send_mtx);
2926 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2927 
2928 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2929 
2930 				/*
2931 				 * Just extend the old timeout and decrement
2932 				 * the freeze count so that a single timeout
2933 				 * is sufficient for releasing the queue.
2934 				 */
2935 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2936 				callout_stop(&dev->callout);
2937 			} else {
2938 
2939 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2940 			}
2941 
2942 			callout_reset_sbt(&dev->callout,
2943 			    SBT_1MS * crs->release_timeout, 0,
2944 			    xpt_release_devq_timeout, dev, 0);
2945 
2946 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2947 
2948 		}
2949 
2950 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2951 
2952 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2953 				/*
2954 				 * Decrement the freeze count so that a single
2955 				 * completion is still sufficient to unfreeze
2956 				 * the queue.
2957 				 */
2958 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2959 			} else {
2960 
2961 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2962 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2963 			}
2964 		}
2965 
2966 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2967 
2968 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2969 			 || (dev->ccbq.dev_active == 0)) {
2970 
2971 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2972 			} else {
2973 
2974 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2975 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2976 			}
2977 		}
2978 		mtx_unlock(&dev->sim->devq->send_mtx);
2979 
2980 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2981 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2982 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2983 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2984 		break;
2985 	}
2986 	case XPT_DEBUG: {
2987 		struct cam_path *oldpath;
2988 
2989 		/* Check that all request bits are supported. */
2990 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2991 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2992 			break;
2993 		}
2994 
2995 		cam_dflags = CAM_DEBUG_NONE;
2996 		if (cam_dpath != NULL) {
2997 			oldpath = cam_dpath;
2998 			cam_dpath = NULL;
2999 			xpt_free_path(oldpath);
3000 		}
3001 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3002 			if (xpt_create_path(&cam_dpath, NULL,
3003 					    start_ccb->ccb_h.path_id,
3004 					    start_ccb->ccb_h.target_id,
3005 					    start_ccb->ccb_h.target_lun) !=
3006 					    CAM_REQ_CMP) {
3007 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3008 			} else {
3009 				cam_dflags = start_ccb->cdbg.flags;
3010 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3011 				xpt_print(cam_dpath, "debugging flags now %x\n",
3012 				    cam_dflags);
3013 			}
3014 		} else
3015 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3016 		break;
3017 	}
3018 	case XPT_NOOP:
3019 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3020 			xpt_freeze_devq(path, 1);
3021 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3022 		break;
3023 	case XPT_REPROBE_LUN:
3024 		xpt_async(AC_INQ_CHANGED, path, NULL);
3025 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3026 		xpt_done(start_ccb);
3027 		break;
3028 	default:
3029 	case XPT_SDEV_TYPE:
3030 	case XPT_TERM_IO:
3031 	case XPT_ENG_INQ:
3032 		/* XXX Implement */
3033 		xpt_print_path(start_ccb->ccb_h.path);
3034 		printf("%s: CCB type %#x %s not supported\n", __func__,
3035 		    start_ccb->ccb_h.func_code,
3036 		    xpt_action_name(start_ccb->ccb_h.func_code));
3037 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3038 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3039 			xpt_done(start_ccb);
3040 		}
3041 		break;
3042 	}
3043 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3044 	    ("xpt_action_default: func= %#x %s status %#x\n",
3045 		start_ccb->ccb_h.func_code,
3046  		xpt_action_name(start_ccb->ccb_h.func_code),
3047 		start_ccb->ccb_h.status));
3048 }
3049 
3050 void
3051 xpt_polled_action(union ccb *start_ccb)
3052 {
3053 	u_int32_t timeout;
3054 	struct	  cam_sim *sim;
3055 	struct	  cam_devq *devq;
3056 	struct	  cam_ed *dev;
3057 
3058 	timeout = start_ccb->ccb_h.timeout * 10;
3059 	sim = start_ccb->ccb_h.path->bus->sim;
3060 	devq = sim->devq;
3061 	dev = start_ccb->ccb_h.path->device;
3062 
3063 	mtx_unlock(&dev->device_mtx);
3064 
3065 	/*
3066 	 * Steal an opening so that no other queued requests
3067 	 * can get it before us while we simulate interrupts.
3068 	 */
3069 	mtx_lock(&devq->send_mtx);
3070 	dev->ccbq.dev_openings--;
3071 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3072 	    (--timeout > 0)) {
3073 		mtx_unlock(&devq->send_mtx);
3074 		DELAY(100);
3075 		CAM_SIM_LOCK(sim);
3076 		(*(sim->sim_poll))(sim);
3077 		CAM_SIM_UNLOCK(sim);
3078 		camisr_runqueue();
3079 		mtx_lock(&devq->send_mtx);
3080 	}
3081 	dev->ccbq.dev_openings++;
3082 	mtx_unlock(&devq->send_mtx);
3083 
3084 	if (timeout != 0) {
3085 		xpt_action(start_ccb);
3086 		while(--timeout > 0) {
3087 			CAM_SIM_LOCK(sim);
3088 			(*(sim->sim_poll))(sim);
3089 			CAM_SIM_UNLOCK(sim);
3090 			camisr_runqueue();
3091 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3092 			    != CAM_REQ_INPROG)
3093 				break;
3094 			DELAY(100);
3095 		}
3096 		if (timeout == 0) {
3097 			/*
3098 			 * XXX Is it worth adding a sim_timeout entry
3099 			 * point so we can attempt recovery?  If
3100 			 * this is only used for dumps, I don't think
3101 			 * it is.
3102 			 */
3103 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3104 		}
3105 	} else {
3106 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3107 	}
3108 
3109 	mtx_lock(&dev->device_mtx);
3110 }
3111 
3112 /*
3113  * Schedule a peripheral driver to receive a ccb when its
3114  * target device has space for more transactions.
3115  */
3116 void
3117 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3118 {
3119 
3120 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3121 	cam_periph_assert(periph, MA_OWNED);
3122 	if (new_priority < periph->scheduled_priority) {
3123 		periph->scheduled_priority = new_priority;
3124 		xpt_run_allocq(periph, 0);
3125 	}
3126 }
3127 
3128 
3129 /*
3130  * Schedule a device to run on a given queue.
3131  * If the device was inserted as a new entry on the queue,
3132  * return 1 meaning the device queue should be run. If we
3133  * were already queued, implying someone else has already
3134  * started the queue, return 0 so the caller doesn't attempt
3135  * to run the queue.
3136  */
3137 static int
3138 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3139 		 u_int32_t new_priority)
3140 {
3141 	int retval;
3142 	u_int32_t old_priority;
3143 
3144 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3145 
3146 	old_priority = pinfo->priority;
3147 
3148 	/*
3149 	 * Are we already queued?
3150 	 */
3151 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3152 		/* Simply reorder based on new priority */
3153 		if (new_priority < old_priority) {
3154 			camq_change_priority(queue, pinfo->index,
3155 					     new_priority);
3156 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3157 					("changed priority to %d\n",
3158 					 new_priority));
3159 			retval = 1;
3160 		} else
3161 			retval = 0;
3162 	} else {
3163 		/* New entry on the queue */
3164 		if (new_priority < old_priority)
3165 			pinfo->priority = new_priority;
3166 
3167 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3168 				("Inserting onto queue\n"));
3169 		pinfo->generation = ++queue->generation;
3170 		camq_insert(queue, pinfo);
3171 		retval = 1;
3172 	}
3173 	return (retval);
3174 }
3175 
3176 static void
3177 xpt_run_allocq_task(void *context, int pending)
3178 {
3179 	struct cam_periph *periph = context;
3180 
3181 	cam_periph_lock(periph);
3182 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3183 	xpt_run_allocq(periph, 1);
3184 	cam_periph_unlock(periph);
3185 	cam_periph_release(periph);
3186 }
3187 
3188 static void
3189 xpt_run_allocq(struct cam_periph *periph, int sleep)
3190 {
3191 	struct cam_ed	*device;
3192 	union ccb	*ccb;
3193 	uint32_t	 prio;
3194 
3195 	cam_periph_assert(periph, MA_OWNED);
3196 	if (periph->periph_allocating)
3197 		return;
3198 	periph->periph_allocating = 1;
3199 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3200 	device = periph->path->device;
3201 	ccb = NULL;
3202 restart:
3203 	while ((prio = min(periph->scheduled_priority,
3204 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3205 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3206 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3207 
3208 		if (ccb == NULL &&
3209 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3210 			if (sleep) {
3211 				ccb = xpt_get_ccb(periph);
3212 				goto restart;
3213 			}
3214 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3215 				break;
3216 			cam_periph_doacquire(periph);
3217 			periph->flags |= CAM_PERIPH_RUN_TASK;
3218 			taskqueue_enqueue(xsoftc.xpt_taskq,
3219 			    &periph->periph_run_task);
3220 			break;
3221 		}
3222 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3223 		if (prio == periph->immediate_priority) {
3224 			periph->immediate_priority = CAM_PRIORITY_NONE;
3225 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3226 					("waking cam_periph_getccb()\n"));
3227 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3228 					  periph_links.sle);
3229 			wakeup(&periph->ccb_list);
3230 		} else {
3231 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3232 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3233 					("calling periph_start()\n"));
3234 			periph->periph_start(periph, ccb);
3235 		}
3236 		ccb = NULL;
3237 	}
3238 	if (ccb != NULL)
3239 		xpt_release_ccb(ccb);
3240 	periph->periph_allocating = 0;
3241 }
3242 
3243 static void
3244 xpt_run_devq(struct cam_devq *devq)
3245 {
3246 	int lock;
3247 
3248 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3249 
3250 	devq->send_queue.qfrozen_cnt++;
3251 	while ((devq->send_queue.entries > 0)
3252 	    && (devq->send_openings > 0)
3253 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3254 		struct	cam_ed *device;
3255 		union ccb *work_ccb;
3256 		struct	cam_sim *sim;
3257 		struct xpt_proto *proto;
3258 
3259 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3260 							   CAMQ_HEAD);
3261 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3262 				("running device %p\n", device));
3263 
3264 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3265 		if (work_ccb == NULL) {
3266 			printf("device on run queue with no ccbs???\n");
3267 			continue;
3268 		}
3269 
3270 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3271 
3272 			mtx_lock(&xsoftc.xpt_highpower_lock);
3273 		 	if (xsoftc.num_highpower <= 0) {
3274 				/*
3275 				 * We got a high power command, but we
3276 				 * don't have any available slots.  Freeze
3277 				 * the device queue until we have a slot
3278 				 * available.
3279 				 */
3280 				xpt_freeze_devq_device(device, 1);
3281 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3282 						   highpowerq_entry);
3283 
3284 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3285 				continue;
3286 			} else {
3287 				/*
3288 				 * Consume a high power slot while
3289 				 * this ccb runs.
3290 				 */
3291 				xsoftc.num_highpower--;
3292 			}
3293 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3294 		}
3295 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3296 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3297 		devq->send_openings--;
3298 		devq->send_active++;
3299 		xpt_schedule_devq(devq, device);
3300 		mtx_unlock(&devq->send_mtx);
3301 
3302 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3303 			/*
3304 			 * The client wants to freeze the queue
3305 			 * after this CCB is sent.
3306 			 */
3307 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3308 		}
3309 
3310 		/* In Target mode, the peripheral driver knows best... */
3311 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3312 			if ((device->inq_flags & SID_CmdQue) != 0
3313 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3314 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3315 			else
3316 				/*
3317 				 * Clear this in case of a retried CCB that
3318 				 * failed due to a rejected tag.
3319 				 */
3320 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3321 		}
3322 
3323 		KASSERT(device == work_ccb->ccb_h.path->device,
3324 		    ("device (%p) / path->device (%p) mismatch",
3325 			device, work_ccb->ccb_h.path->device));
3326 		proto = xpt_proto_find(device->protocol);
3327 		if (proto && proto->ops->debug_out)
3328 			proto->ops->debug_out(work_ccb);
3329 
3330 		/*
3331 		 * Device queues can be shared among multiple SIM instances
3332 		 * that reside on different busses.  Use the SIM from the
3333 		 * queued device, rather than the one from the calling bus.
3334 		 */
3335 		sim = device->sim;
3336 		lock = (mtx_owned(sim->mtx) == 0);
3337 		if (lock)
3338 			CAM_SIM_LOCK(sim);
3339 		work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
3340 		(*(sim->sim_action))(sim, work_ccb);
3341 		if (lock)
3342 			CAM_SIM_UNLOCK(sim);
3343 		mtx_lock(&devq->send_mtx);
3344 	}
3345 	devq->send_queue.qfrozen_cnt--;
3346 }
3347 
3348 /*
3349  * This function merges stuff from the slave ccb into the master ccb, while
3350  * keeping important fields in the master ccb constant.
3351  */
3352 void
3353 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3354 {
3355 
3356 	/*
3357 	 * Pull fields that are valid for peripheral drivers to set
3358 	 * into the master CCB along with the CCB "payload".
3359 	 */
3360 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3361 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3362 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3363 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3364 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3365 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3366 }
3367 
3368 void
3369 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3370 		    u_int32_t priority, u_int32_t flags)
3371 {
3372 
3373 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3374 	ccb_h->pinfo.priority = priority;
3375 	ccb_h->path = path;
3376 	ccb_h->path_id = path->bus->path_id;
3377 	if (path->target)
3378 		ccb_h->target_id = path->target->target_id;
3379 	else
3380 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3381 	if (path->device) {
3382 		ccb_h->target_lun = path->device->lun_id;
3383 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3384 	} else {
3385 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3386 	}
3387 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3388 	ccb_h->flags = flags;
3389 	ccb_h->xflags = 0;
3390 }
3391 
3392 void
3393 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3394 {
3395 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3396 }
3397 
3398 /* Path manipulation functions */
3399 cam_status
3400 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3401 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3402 {
3403 	struct	   cam_path *path;
3404 	cam_status status;
3405 
3406 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3407 
3408 	if (path == NULL) {
3409 		status = CAM_RESRC_UNAVAIL;
3410 		return(status);
3411 	}
3412 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3413 	if (status != CAM_REQ_CMP) {
3414 		free(path, M_CAMPATH);
3415 		path = NULL;
3416 	}
3417 	*new_path_ptr = path;
3418 	return (status);
3419 }
3420 
3421 cam_status
3422 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3423 			 struct cam_periph *periph, path_id_t path_id,
3424 			 target_id_t target_id, lun_id_t lun_id)
3425 {
3426 
3427 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3428 	    lun_id));
3429 }
3430 
3431 cam_status
3432 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3433 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3434 {
3435 	struct	     cam_eb *bus;
3436 	struct	     cam_et *target;
3437 	struct	     cam_ed *device;
3438 	cam_status   status;
3439 
3440 	status = CAM_REQ_CMP;	/* Completed without error */
3441 	target = NULL;		/* Wildcarded */
3442 	device = NULL;		/* Wildcarded */
3443 
3444 	/*
3445 	 * We will potentially modify the EDT, so block interrupts
3446 	 * that may attempt to create cam paths.
3447 	 */
3448 	bus = xpt_find_bus(path_id);
3449 	if (bus == NULL) {
3450 		status = CAM_PATH_INVALID;
3451 	} else {
3452 		xpt_lock_buses();
3453 		mtx_lock(&bus->eb_mtx);
3454 		target = xpt_find_target(bus, target_id);
3455 		if (target == NULL) {
3456 			/* Create one */
3457 			struct cam_et *new_target;
3458 
3459 			new_target = xpt_alloc_target(bus, target_id);
3460 			if (new_target == NULL) {
3461 				status = CAM_RESRC_UNAVAIL;
3462 			} else {
3463 				target = new_target;
3464 			}
3465 		}
3466 		xpt_unlock_buses();
3467 		if (target != NULL) {
3468 			device = xpt_find_device(target, lun_id);
3469 			if (device == NULL) {
3470 				/* Create one */
3471 				struct cam_ed *new_device;
3472 
3473 				new_device =
3474 				    (*(bus->xport->ops->alloc_device))(bus,
3475 								       target,
3476 								       lun_id);
3477 				if (new_device == NULL) {
3478 					status = CAM_RESRC_UNAVAIL;
3479 				} else {
3480 					device = new_device;
3481 				}
3482 			}
3483 		}
3484 		mtx_unlock(&bus->eb_mtx);
3485 	}
3486 
3487 	/*
3488 	 * Only touch the user's data if we are successful.
3489 	 */
3490 	if (status == CAM_REQ_CMP) {
3491 		new_path->periph = perph;
3492 		new_path->bus = bus;
3493 		new_path->target = target;
3494 		new_path->device = device;
3495 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3496 	} else {
3497 		if (device != NULL)
3498 			xpt_release_device(device);
3499 		if (target != NULL)
3500 			xpt_release_target(target);
3501 		if (bus != NULL)
3502 			xpt_release_bus(bus);
3503 	}
3504 	return (status);
3505 }
3506 
3507 cam_status
3508 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3509 {
3510 	struct	   cam_path *new_path;
3511 
3512 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3513 	if (new_path == NULL)
3514 		return(CAM_RESRC_UNAVAIL);
3515 	xpt_copy_path(new_path, path);
3516 	*new_path_ptr = new_path;
3517 	return (CAM_REQ_CMP);
3518 }
3519 
3520 void
3521 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3522 {
3523 
3524 	*new_path = *path;
3525 	if (path->bus != NULL)
3526 		xpt_acquire_bus(path->bus);
3527 	if (path->target != NULL)
3528 		xpt_acquire_target(path->target);
3529 	if (path->device != NULL)
3530 		xpt_acquire_device(path->device);
3531 }
3532 
3533 void
3534 xpt_release_path(struct cam_path *path)
3535 {
3536 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3537 	if (path->device != NULL) {
3538 		xpt_release_device(path->device);
3539 		path->device = NULL;
3540 	}
3541 	if (path->target != NULL) {
3542 		xpt_release_target(path->target);
3543 		path->target = NULL;
3544 	}
3545 	if (path->bus != NULL) {
3546 		xpt_release_bus(path->bus);
3547 		path->bus = NULL;
3548 	}
3549 }
3550 
3551 void
3552 xpt_free_path(struct cam_path *path)
3553 {
3554 
3555 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3556 	xpt_release_path(path);
3557 	free(path, M_CAMPATH);
3558 }
3559 
3560 void
3561 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3562     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3563 {
3564 
3565 	xpt_lock_buses();
3566 	if (bus_ref) {
3567 		if (path->bus)
3568 			*bus_ref = path->bus->refcount;
3569 		else
3570 			*bus_ref = 0;
3571 	}
3572 	if (periph_ref) {
3573 		if (path->periph)
3574 			*periph_ref = path->periph->refcount;
3575 		else
3576 			*periph_ref = 0;
3577 	}
3578 	xpt_unlock_buses();
3579 	if (target_ref) {
3580 		if (path->target)
3581 			*target_ref = path->target->refcount;
3582 		else
3583 			*target_ref = 0;
3584 	}
3585 	if (device_ref) {
3586 		if (path->device)
3587 			*device_ref = path->device->refcount;
3588 		else
3589 			*device_ref = 0;
3590 	}
3591 }
3592 
3593 /*
3594  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3595  * in path1, 2 for match with wildcards in path2.
3596  */
3597 int
3598 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3599 {
3600 	int retval = 0;
3601 
3602 	if (path1->bus != path2->bus) {
3603 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3604 			retval = 1;
3605 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3606 			retval = 2;
3607 		else
3608 			return (-1);
3609 	}
3610 	if (path1->target != path2->target) {
3611 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3612 			if (retval == 0)
3613 				retval = 1;
3614 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3615 			retval = 2;
3616 		else
3617 			return (-1);
3618 	}
3619 	if (path1->device != path2->device) {
3620 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3621 			if (retval == 0)
3622 				retval = 1;
3623 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3624 			retval = 2;
3625 		else
3626 			return (-1);
3627 	}
3628 	return (retval);
3629 }
3630 
3631 int
3632 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3633 {
3634 	int retval = 0;
3635 
3636 	if (path->bus != dev->target->bus) {
3637 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3638 			retval = 1;
3639 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3640 			retval = 2;
3641 		else
3642 			return (-1);
3643 	}
3644 	if (path->target != dev->target) {
3645 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3646 			if (retval == 0)
3647 				retval = 1;
3648 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3649 			retval = 2;
3650 		else
3651 			return (-1);
3652 	}
3653 	if (path->device != dev) {
3654 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3655 			if (retval == 0)
3656 				retval = 1;
3657 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3658 			retval = 2;
3659 		else
3660 			return (-1);
3661 	}
3662 	return (retval);
3663 }
3664 
3665 void
3666 xpt_print_path(struct cam_path *path)
3667 {
3668 
3669 	if (path == NULL)
3670 		printf("(nopath): ");
3671 	else {
3672 		if (path->periph != NULL)
3673 			printf("(%s%d:", path->periph->periph_name,
3674 			       path->periph->unit_number);
3675 		else
3676 			printf("(noperiph:");
3677 
3678 		if (path->bus != NULL)
3679 			printf("%s%d:%d:", path->bus->sim->sim_name,
3680 			       path->bus->sim->unit_number,
3681 			       path->bus->sim->bus_id);
3682 		else
3683 			printf("nobus:");
3684 
3685 		if (path->target != NULL)
3686 			printf("%d:", path->target->target_id);
3687 		else
3688 			printf("X:");
3689 
3690 		if (path->device != NULL)
3691 			printf("%jx): ", (uintmax_t)path->device->lun_id);
3692 		else
3693 			printf("X): ");
3694 	}
3695 }
3696 
3697 void
3698 xpt_print_device(struct cam_ed *device)
3699 {
3700 
3701 	if (device == NULL)
3702 		printf("(nopath): ");
3703 	else {
3704 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3705 		       device->sim->unit_number,
3706 		       device->sim->bus_id,
3707 		       device->target->target_id,
3708 		       (uintmax_t)device->lun_id);
3709 	}
3710 }
3711 
3712 void
3713 xpt_print(struct cam_path *path, const char *fmt, ...)
3714 {
3715 	va_list ap;
3716 	xpt_print_path(path);
3717 	va_start(ap, fmt);
3718 	vprintf(fmt, ap);
3719 	va_end(ap);
3720 }
3721 
3722 int
3723 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3724 {
3725 	struct sbuf sb;
3726 
3727 	sbuf_new(&sb, str, str_len, 0);
3728 
3729 	if (path == NULL)
3730 		sbuf_printf(&sb, "(nopath): ");
3731 	else {
3732 		if (path->periph != NULL)
3733 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3734 				    path->periph->unit_number);
3735 		else
3736 			sbuf_printf(&sb, "(noperiph:");
3737 
3738 		if (path->bus != NULL)
3739 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3740 				    path->bus->sim->unit_number,
3741 				    path->bus->sim->bus_id);
3742 		else
3743 			sbuf_printf(&sb, "nobus:");
3744 
3745 		if (path->target != NULL)
3746 			sbuf_printf(&sb, "%d:", path->target->target_id);
3747 		else
3748 			sbuf_printf(&sb, "X:");
3749 
3750 		if (path->device != NULL)
3751 			sbuf_printf(&sb, "%jx): ",
3752 			    (uintmax_t)path->device->lun_id);
3753 		else
3754 			sbuf_printf(&sb, "X): ");
3755 	}
3756 	sbuf_finish(&sb);
3757 
3758 	return(sbuf_len(&sb));
3759 }
3760 
3761 path_id_t
3762 xpt_path_path_id(struct cam_path *path)
3763 {
3764 	return(path->bus->path_id);
3765 }
3766 
3767 target_id_t
3768 xpt_path_target_id(struct cam_path *path)
3769 {
3770 	if (path->target != NULL)
3771 		return (path->target->target_id);
3772 	else
3773 		return (CAM_TARGET_WILDCARD);
3774 }
3775 
3776 lun_id_t
3777 xpt_path_lun_id(struct cam_path *path)
3778 {
3779 	if (path->device != NULL)
3780 		return (path->device->lun_id);
3781 	else
3782 		return (CAM_LUN_WILDCARD);
3783 }
3784 
3785 struct cam_sim *
3786 xpt_path_sim(struct cam_path *path)
3787 {
3788 
3789 	return (path->bus->sim);
3790 }
3791 
3792 struct cam_periph*
3793 xpt_path_periph(struct cam_path *path)
3794 {
3795 
3796 	return (path->periph);
3797 }
3798 
3799 /*
3800  * Release a CAM control block for the caller.  Remit the cost of the structure
3801  * to the device referenced by the path.  If the this device had no 'credits'
3802  * and peripheral drivers have registered async callbacks for this notification
3803  * call them now.
3804  */
3805 void
3806 xpt_release_ccb(union ccb *free_ccb)
3807 {
3808 	struct	 cam_ed *device;
3809 	struct	 cam_periph *periph;
3810 
3811 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3812 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3813 	device = free_ccb->ccb_h.path->device;
3814 	periph = free_ccb->ccb_h.path->periph;
3815 
3816 	xpt_free_ccb(free_ccb);
3817 	periph->periph_allocated--;
3818 	cam_ccbq_release_opening(&device->ccbq);
3819 	xpt_run_allocq(periph, 0);
3820 }
3821 
3822 /* Functions accessed by SIM drivers */
3823 
3824 static struct xpt_xport_ops xport_default_ops = {
3825 	.alloc_device = xpt_alloc_device_default,
3826 	.action = xpt_action_default,
3827 	.async = xpt_dev_async_default,
3828 };
3829 static struct xpt_xport xport_default = {
3830 	.xport = XPORT_UNKNOWN,
3831 	.name = "unknown",
3832 	.ops = &xport_default_ops,
3833 };
3834 
3835 CAM_XPT_XPORT(xport_default);
3836 
3837 /*
3838  * A sim structure, listing the SIM entry points and instance
3839  * identification info is passed to xpt_bus_register to hook the SIM
3840  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3841  * for this new bus and places it in the array of busses and assigns
3842  * it a path_id.  The path_id may be influenced by "hard wiring"
3843  * information specified by the user.  Once interrupt services are
3844  * available, the bus will be probed.
3845  */
3846 int32_t
3847 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3848 {
3849 	struct cam_eb *new_bus;
3850 	struct cam_eb *old_bus;
3851 	struct ccb_pathinq cpi;
3852 	struct cam_path *path;
3853 	cam_status status;
3854 
3855 	mtx_assert(sim->mtx, MA_OWNED);
3856 
3857 	sim->bus_id = bus;
3858 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3859 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3860 	if (new_bus == NULL) {
3861 		/* Couldn't satisfy request */
3862 		return (CAM_RESRC_UNAVAIL);
3863 	}
3864 
3865 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3866 	TAILQ_INIT(&new_bus->et_entries);
3867 	cam_sim_hold(sim);
3868 	new_bus->sim = sim;
3869 	timevalclear(&new_bus->last_reset);
3870 	new_bus->flags = 0;
3871 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3872 	new_bus->generation = 0;
3873 
3874 	xpt_lock_buses();
3875 	sim->path_id = new_bus->path_id =
3876 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3877 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3878 	while (old_bus != NULL
3879 	    && old_bus->path_id < new_bus->path_id)
3880 		old_bus = TAILQ_NEXT(old_bus, links);
3881 	if (old_bus != NULL)
3882 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3883 	else
3884 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3885 	xsoftc.bus_generation++;
3886 	xpt_unlock_buses();
3887 
3888 	/*
3889 	 * Set a default transport so that a PATH_INQ can be issued to
3890 	 * the SIM.  This will then allow for probing and attaching of
3891 	 * a more appropriate transport.
3892 	 */
3893 	new_bus->xport = &xport_default;
3894 
3895 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3896 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3897 	if (status != CAM_REQ_CMP) {
3898 		xpt_release_bus(new_bus);
3899 		free(path, M_CAMXPT);
3900 		return (CAM_RESRC_UNAVAIL);
3901 	}
3902 
3903 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3904 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3905 	xpt_action((union ccb *)&cpi);
3906 
3907 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3908 		struct xpt_xport **xpt;
3909 
3910 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3911 			if ((*xpt)->xport == cpi.transport) {
3912 				new_bus->xport = *xpt;
3913 				break;
3914 			}
3915 		}
3916 		if (new_bus->xport == NULL) {
3917 			xpt_print_path(path);
3918 			printf("No transport found for %d\n", cpi.transport);
3919 			xpt_release_bus(new_bus);
3920 			free(path, M_CAMXPT);
3921 			return (CAM_RESRC_UNAVAIL);
3922 		}
3923 	}
3924 
3925 	/* Notify interested parties */
3926 	if (sim->path_id != CAM_XPT_PATH_ID) {
3927 
3928 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3929 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3930 			union	ccb *scan_ccb;
3931 
3932 			/* Initiate bus rescan. */
3933 			scan_ccb = xpt_alloc_ccb_nowait();
3934 			if (scan_ccb != NULL) {
3935 				scan_ccb->ccb_h.path = path;
3936 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3937 				scan_ccb->crcn.flags = 0;
3938 				xpt_rescan(scan_ccb);
3939 			} else {
3940 				xpt_print(path,
3941 					  "Can't allocate CCB to scan bus\n");
3942 				xpt_free_path(path);
3943 			}
3944 		} else
3945 			xpt_free_path(path);
3946 	} else
3947 		xpt_free_path(path);
3948 	return (CAM_SUCCESS);
3949 }
3950 
3951 int32_t
3952 xpt_bus_deregister(path_id_t pathid)
3953 {
3954 	struct cam_path bus_path;
3955 	cam_status status;
3956 
3957 	status = xpt_compile_path(&bus_path, NULL, pathid,
3958 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3959 	if (status != CAM_REQ_CMP)
3960 		return (status);
3961 
3962 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3963 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3964 
3965 	/* Release the reference count held while registered. */
3966 	xpt_release_bus(bus_path.bus);
3967 	xpt_release_path(&bus_path);
3968 
3969 	return (CAM_REQ_CMP);
3970 }
3971 
3972 static path_id_t
3973 xptnextfreepathid(void)
3974 {
3975 	struct cam_eb *bus;
3976 	path_id_t pathid;
3977 	const char *strval;
3978 
3979 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3980 	pathid = 0;
3981 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3982 retry:
3983 	/* Find an unoccupied pathid */
3984 	while (bus != NULL && bus->path_id <= pathid) {
3985 		if (bus->path_id == pathid)
3986 			pathid++;
3987 		bus = TAILQ_NEXT(bus, links);
3988 	}
3989 
3990 	/*
3991 	 * Ensure that this pathid is not reserved for
3992 	 * a bus that may be registered in the future.
3993 	 */
3994 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3995 		++pathid;
3996 		/* Start the search over */
3997 		goto retry;
3998 	}
3999 	return (pathid);
4000 }
4001 
4002 static path_id_t
4003 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4004 {
4005 	path_id_t pathid;
4006 	int i, dunit, val;
4007 	char buf[32];
4008 	const char *dname;
4009 
4010 	pathid = CAM_XPT_PATH_ID;
4011 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4012 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4013 		return (pathid);
4014 	i = 0;
4015 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4016 		if (strcmp(dname, "scbus")) {
4017 			/* Avoid a bit of foot shooting. */
4018 			continue;
4019 		}
4020 		if (dunit < 0)		/* unwired?! */
4021 			continue;
4022 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4023 			if (sim_bus == val) {
4024 				pathid = dunit;
4025 				break;
4026 			}
4027 		} else if (sim_bus == 0) {
4028 			/* Unspecified matches bus 0 */
4029 			pathid = dunit;
4030 			break;
4031 		} else {
4032 			printf("Ambiguous scbus configuration for %s%d "
4033 			       "bus %d, cannot wire down.  The kernel "
4034 			       "config entry for scbus%d should "
4035 			       "specify a controller bus.\n"
4036 			       "Scbus will be assigned dynamically.\n",
4037 			       sim_name, sim_unit, sim_bus, dunit);
4038 			break;
4039 		}
4040 	}
4041 
4042 	if (pathid == CAM_XPT_PATH_ID)
4043 		pathid = xptnextfreepathid();
4044 	return (pathid);
4045 }
4046 
4047 static const char *
4048 xpt_async_string(u_int32_t async_code)
4049 {
4050 
4051 	switch (async_code) {
4052 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4053 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4054 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4055 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4056 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4057 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4058 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4059 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4060 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4061 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4062 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4063 	case AC_CONTRACT: return ("AC_CONTRACT");
4064 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4065 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4066 	}
4067 	return ("AC_UNKNOWN");
4068 }
4069 
4070 static int
4071 xpt_async_size(u_int32_t async_code)
4072 {
4073 
4074 	switch (async_code) {
4075 	case AC_BUS_RESET: return (0);
4076 	case AC_UNSOL_RESEL: return (0);
4077 	case AC_SCSI_AEN: return (0);
4078 	case AC_SENT_BDR: return (0);
4079 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4080 	case AC_PATH_DEREGISTERED: return (0);
4081 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4082 	case AC_LOST_DEVICE: return (0);
4083 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4084 	case AC_INQ_CHANGED: return (0);
4085 	case AC_GETDEV_CHANGED: return (0);
4086 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4087 	case AC_ADVINFO_CHANGED: return (-1);
4088 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4089 	}
4090 	return (0);
4091 }
4092 
4093 static int
4094 xpt_async_process_dev(struct cam_ed *device, void *arg)
4095 {
4096 	union ccb *ccb = arg;
4097 	struct cam_path *path = ccb->ccb_h.path;
4098 	void *async_arg = ccb->casync.async_arg_ptr;
4099 	u_int32_t async_code = ccb->casync.async_code;
4100 	int relock;
4101 
4102 	if (path->device != device
4103 	 && path->device->lun_id != CAM_LUN_WILDCARD
4104 	 && device->lun_id != CAM_LUN_WILDCARD)
4105 		return (1);
4106 
4107 	/*
4108 	 * The async callback could free the device.
4109 	 * If it is a broadcast async, it doesn't hold
4110 	 * device reference, so take our own reference.
4111 	 */
4112 	xpt_acquire_device(device);
4113 
4114 	/*
4115 	 * If async for specific device is to be delivered to
4116 	 * the wildcard client, take the specific device lock.
4117 	 * XXX: We may need a way for client to specify it.
4118 	 */
4119 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4120 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4121 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4122 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4123 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4124 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4125 		mtx_unlock(&device->device_mtx);
4126 		xpt_path_lock(path);
4127 		relock = 1;
4128 	} else
4129 		relock = 0;
4130 
4131 	(*(device->target->bus->xport->ops->async))(async_code,
4132 	    device->target->bus, device->target, device, async_arg);
4133 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4134 
4135 	if (relock) {
4136 		xpt_path_unlock(path);
4137 		mtx_lock(&device->device_mtx);
4138 	}
4139 	xpt_release_device(device);
4140 	return (1);
4141 }
4142 
4143 static int
4144 xpt_async_process_tgt(struct cam_et *target, void *arg)
4145 {
4146 	union ccb *ccb = arg;
4147 	struct cam_path *path = ccb->ccb_h.path;
4148 
4149 	if (path->target != target
4150 	 && path->target->target_id != CAM_TARGET_WILDCARD
4151 	 && target->target_id != CAM_TARGET_WILDCARD)
4152 		return (1);
4153 
4154 	if (ccb->casync.async_code == AC_SENT_BDR) {
4155 		/* Update our notion of when the last reset occurred */
4156 		microtime(&target->last_reset);
4157 	}
4158 
4159 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4160 }
4161 
4162 static void
4163 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4164 {
4165 	struct cam_eb *bus;
4166 	struct cam_path *path;
4167 	void *async_arg;
4168 	u_int32_t async_code;
4169 
4170 	path = ccb->ccb_h.path;
4171 	async_code = ccb->casync.async_code;
4172 	async_arg = ccb->casync.async_arg_ptr;
4173 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4174 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4175 	bus = path->bus;
4176 
4177 	if (async_code == AC_BUS_RESET) {
4178 		/* Update our notion of when the last reset occurred */
4179 		microtime(&bus->last_reset);
4180 	}
4181 
4182 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4183 
4184 	/*
4185 	 * If this wasn't a fully wildcarded async, tell all
4186 	 * clients that want all async events.
4187 	 */
4188 	if (bus != xpt_periph->path->bus) {
4189 		xpt_path_lock(xpt_periph->path);
4190 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4191 		xpt_path_unlock(xpt_periph->path);
4192 	}
4193 
4194 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4195 		xpt_release_devq(path, 1, TRUE);
4196 	else
4197 		xpt_release_simq(path->bus->sim, TRUE);
4198 	if (ccb->casync.async_arg_size > 0)
4199 		free(async_arg, M_CAMXPT);
4200 	xpt_free_path(path);
4201 	xpt_free_ccb(ccb);
4202 }
4203 
4204 static void
4205 xpt_async_bcast(struct async_list *async_head,
4206 		u_int32_t async_code,
4207 		struct cam_path *path, void *async_arg)
4208 {
4209 	struct async_node *cur_entry;
4210 	int lock;
4211 
4212 	cur_entry = SLIST_FIRST(async_head);
4213 	while (cur_entry != NULL) {
4214 		struct async_node *next_entry;
4215 		/*
4216 		 * Grab the next list entry before we call the current
4217 		 * entry's callback.  This is because the callback function
4218 		 * can delete its async callback entry.
4219 		 */
4220 		next_entry = SLIST_NEXT(cur_entry, links);
4221 		if ((cur_entry->event_enable & async_code) != 0) {
4222 			lock = cur_entry->event_lock;
4223 			if (lock)
4224 				CAM_SIM_LOCK(path->device->sim);
4225 			cur_entry->callback(cur_entry->callback_arg,
4226 					    async_code, path,
4227 					    async_arg);
4228 			if (lock)
4229 				CAM_SIM_UNLOCK(path->device->sim);
4230 		}
4231 		cur_entry = next_entry;
4232 	}
4233 }
4234 
4235 void
4236 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4237 {
4238 	union ccb *ccb;
4239 	int size;
4240 
4241 	ccb = xpt_alloc_ccb_nowait();
4242 	if (ccb == NULL) {
4243 		xpt_print(path, "Can't allocate CCB to send %s\n",
4244 		    xpt_async_string(async_code));
4245 		return;
4246 	}
4247 
4248 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4249 		xpt_print(path, "Can't allocate path to send %s\n",
4250 		    xpt_async_string(async_code));
4251 		xpt_free_ccb(ccb);
4252 		return;
4253 	}
4254 	ccb->ccb_h.path->periph = NULL;
4255 	ccb->ccb_h.func_code = XPT_ASYNC;
4256 	ccb->ccb_h.cbfcnp = xpt_async_process;
4257 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4258 	ccb->casync.async_code = async_code;
4259 	ccb->casync.async_arg_size = 0;
4260 	size = xpt_async_size(async_code);
4261 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4262 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4263 		ccb->ccb_h.func_code,
4264 		xpt_action_name(ccb->ccb_h.func_code),
4265 		async_code,
4266 		xpt_async_string(async_code)));
4267 	if (size > 0 && async_arg != NULL) {
4268 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4269 		if (ccb->casync.async_arg_ptr == NULL) {
4270 			xpt_print(path, "Can't allocate argument to send %s\n",
4271 			    xpt_async_string(async_code));
4272 			xpt_free_path(ccb->ccb_h.path);
4273 			xpt_free_ccb(ccb);
4274 			return;
4275 		}
4276 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4277 		ccb->casync.async_arg_size = size;
4278 	} else if (size < 0) {
4279 		ccb->casync.async_arg_ptr = async_arg;
4280 		ccb->casync.async_arg_size = size;
4281 	}
4282 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4283 		xpt_freeze_devq(path, 1);
4284 	else
4285 		xpt_freeze_simq(path->bus->sim, 1);
4286 	xpt_done(ccb);
4287 }
4288 
4289 static void
4290 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4291 		      struct cam_et *target, struct cam_ed *device,
4292 		      void *async_arg)
4293 {
4294 
4295 	/*
4296 	 * We only need to handle events for real devices.
4297 	 */
4298 	if (target->target_id == CAM_TARGET_WILDCARD
4299 	 || device->lun_id == CAM_LUN_WILDCARD)
4300 		return;
4301 
4302 	printf("%s called\n", __func__);
4303 }
4304 
4305 static uint32_t
4306 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4307 {
4308 	struct cam_devq	*devq;
4309 	uint32_t freeze;
4310 
4311 	devq = dev->sim->devq;
4312 	mtx_assert(&devq->send_mtx, MA_OWNED);
4313 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4314 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4315 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4316 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4317 	/* Remove frozen device from sendq. */
4318 	if (device_is_queued(dev))
4319 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4320 	return (freeze);
4321 }
4322 
4323 u_int32_t
4324 xpt_freeze_devq(struct cam_path *path, u_int count)
4325 {
4326 	struct cam_ed	*dev = path->device;
4327 	struct cam_devq	*devq;
4328 	uint32_t	 freeze;
4329 
4330 	devq = dev->sim->devq;
4331 	mtx_lock(&devq->send_mtx);
4332 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4333 	freeze = xpt_freeze_devq_device(dev, count);
4334 	mtx_unlock(&devq->send_mtx);
4335 	return (freeze);
4336 }
4337 
4338 u_int32_t
4339 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4340 {
4341 	struct cam_devq	*devq;
4342 	uint32_t	 freeze;
4343 
4344 	devq = sim->devq;
4345 	mtx_lock(&devq->send_mtx);
4346 	freeze = (devq->send_queue.qfrozen_cnt += count);
4347 	mtx_unlock(&devq->send_mtx);
4348 	return (freeze);
4349 }
4350 
4351 static void
4352 xpt_release_devq_timeout(void *arg)
4353 {
4354 	struct cam_ed *dev;
4355 	struct cam_devq *devq;
4356 
4357 	dev = (struct cam_ed *)arg;
4358 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4359 	devq = dev->sim->devq;
4360 	mtx_assert(&devq->send_mtx, MA_OWNED);
4361 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4362 		xpt_run_devq(devq);
4363 }
4364 
4365 void
4366 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4367 {
4368 	struct cam_ed *dev;
4369 	struct cam_devq *devq;
4370 
4371 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4372 	    count, run_queue));
4373 	dev = path->device;
4374 	devq = dev->sim->devq;
4375 	mtx_lock(&devq->send_mtx);
4376 	if (xpt_release_devq_device(dev, count, run_queue))
4377 		xpt_run_devq(dev->sim->devq);
4378 	mtx_unlock(&devq->send_mtx);
4379 }
4380 
4381 static int
4382 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4383 {
4384 
4385 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4386 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4387 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4388 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4389 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4390 #ifdef INVARIANTS
4391 		printf("xpt_release_devq(): requested %u > present %u\n",
4392 		    count, dev->ccbq.queue.qfrozen_cnt);
4393 #endif
4394 		count = dev->ccbq.queue.qfrozen_cnt;
4395 	}
4396 	dev->ccbq.queue.qfrozen_cnt -= count;
4397 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4398 		/*
4399 		 * No longer need to wait for a successful
4400 		 * command completion.
4401 		 */
4402 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4403 		/*
4404 		 * Remove any timeouts that might be scheduled
4405 		 * to release this queue.
4406 		 */
4407 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4408 			callout_stop(&dev->callout);
4409 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4410 		}
4411 		/*
4412 		 * Now that we are unfrozen schedule the
4413 		 * device so any pending transactions are
4414 		 * run.
4415 		 */
4416 		xpt_schedule_devq(dev->sim->devq, dev);
4417 	} else
4418 		run_queue = 0;
4419 	return (run_queue);
4420 }
4421 
4422 void
4423 xpt_release_simq(struct cam_sim *sim, int run_queue)
4424 {
4425 	struct cam_devq	*devq;
4426 
4427 	devq = sim->devq;
4428 	mtx_lock(&devq->send_mtx);
4429 	if (devq->send_queue.qfrozen_cnt <= 0) {
4430 #ifdef INVARIANTS
4431 		printf("xpt_release_simq: requested 1 > present %u\n",
4432 		    devq->send_queue.qfrozen_cnt);
4433 #endif
4434 	} else
4435 		devq->send_queue.qfrozen_cnt--;
4436 	if (devq->send_queue.qfrozen_cnt == 0) {
4437 		/*
4438 		 * If there is a timeout scheduled to release this
4439 		 * sim queue, remove it.  The queue frozen count is
4440 		 * already at 0.
4441 		 */
4442 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4443 			callout_stop(&sim->callout);
4444 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4445 		}
4446 		if (run_queue) {
4447 			/*
4448 			 * Now that we are unfrozen run the send queue.
4449 			 */
4450 			xpt_run_devq(sim->devq);
4451 		}
4452 	}
4453 	mtx_unlock(&devq->send_mtx);
4454 }
4455 
4456 /*
4457  * XXX Appears to be unused.
4458  */
4459 static void
4460 xpt_release_simq_timeout(void *arg)
4461 {
4462 	struct cam_sim *sim;
4463 
4464 	sim = (struct cam_sim *)arg;
4465 	xpt_release_simq(sim, /* run_queue */ TRUE);
4466 }
4467 
4468 void
4469 xpt_done(union ccb *done_ccb)
4470 {
4471 	struct cam_doneq *queue;
4472 	int	run, hash;
4473 
4474 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4475 	    ("xpt_done: func= %#x %s status %#x\n",
4476 		done_ccb->ccb_h.func_code,
4477 		xpt_action_name(done_ccb->ccb_h.func_code),
4478 		done_ccb->ccb_h.status));
4479 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4480 		return;
4481 
4482 	/* Store the time the ccb was in the sim */
4483 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4484 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4485 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4486 	queue = &cam_doneqs[hash];
4487 	mtx_lock(&queue->cam_doneq_mtx);
4488 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4489 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4490 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4491 	mtx_unlock(&queue->cam_doneq_mtx);
4492 	if (run)
4493 		wakeup(&queue->cam_doneq);
4494 }
4495 
4496 void
4497 xpt_done_direct(union ccb *done_ccb)
4498 {
4499 
4500 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4501 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4502 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4503 		return;
4504 
4505 	/* Store the time the ccb was in the sim */
4506 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4507 	xpt_done_process(&done_ccb->ccb_h);
4508 }
4509 
4510 union ccb *
4511 xpt_alloc_ccb()
4512 {
4513 	union ccb *new_ccb;
4514 
4515 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4516 	return (new_ccb);
4517 }
4518 
4519 union ccb *
4520 xpt_alloc_ccb_nowait()
4521 {
4522 	union ccb *new_ccb;
4523 
4524 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4525 	return (new_ccb);
4526 }
4527 
4528 void
4529 xpt_free_ccb(union ccb *free_ccb)
4530 {
4531 	free(free_ccb, M_CAMCCB);
4532 }
4533 
4534 
4535 
4536 /* Private XPT functions */
4537 
4538 /*
4539  * Get a CAM control block for the caller. Charge the structure to the device
4540  * referenced by the path.  If we don't have sufficient resources to allocate
4541  * more ccbs, we return NULL.
4542  */
4543 static union ccb *
4544 xpt_get_ccb_nowait(struct cam_periph *periph)
4545 {
4546 	union ccb *new_ccb;
4547 
4548 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4549 	if (new_ccb == NULL)
4550 		return (NULL);
4551 	periph->periph_allocated++;
4552 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4553 	return (new_ccb);
4554 }
4555 
4556 static union ccb *
4557 xpt_get_ccb(struct cam_periph *periph)
4558 {
4559 	union ccb *new_ccb;
4560 
4561 	cam_periph_unlock(periph);
4562 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4563 	cam_periph_lock(periph);
4564 	periph->periph_allocated++;
4565 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4566 	return (new_ccb);
4567 }
4568 
4569 union ccb *
4570 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4571 {
4572 	struct ccb_hdr *ccb_h;
4573 
4574 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4575 	cam_periph_assert(periph, MA_OWNED);
4576 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4577 	    ccb_h->pinfo.priority != priority) {
4578 		if (priority < periph->immediate_priority) {
4579 			periph->immediate_priority = priority;
4580 			xpt_run_allocq(periph, 0);
4581 		} else
4582 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4583 			    "cgticb", 0);
4584 	}
4585 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4586 	return ((union ccb *)ccb_h);
4587 }
4588 
4589 static void
4590 xpt_acquire_bus(struct cam_eb *bus)
4591 {
4592 
4593 	xpt_lock_buses();
4594 	bus->refcount++;
4595 	xpt_unlock_buses();
4596 }
4597 
4598 static void
4599 xpt_release_bus(struct cam_eb *bus)
4600 {
4601 
4602 	xpt_lock_buses();
4603 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4604 	if (--bus->refcount > 0) {
4605 		xpt_unlock_buses();
4606 		return;
4607 	}
4608 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4609 	xsoftc.bus_generation++;
4610 	xpt_unlock_buses();
4611 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4612 	    ("destroying bus, but target list is not empty"));
4613 	cam_sim_release(bus->sim);
4614 	mtx_destroy(&bus->eb_mtx);
4615 	free(bus, M_CAMXPT);
4616 }
4617 
4618 static struct cam_et *
4619 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4620 {
4621 	struct cam_et *cur_target, *target;
4622 
4623 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4624 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4625 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4626 					 M_NOWAIT|M_ZERO);
4627 	if (target == NULL)
4628 		return (NULL);
4629 
4630 	TAILQ_INIT(&target->ed_entries);
4631 	target->bus = bus;
4632 	target->target_id = target_id;
4633 	target->refcount = 1;
4634 	target->generation = 0;
4635 	target->luns = NULL;
4636 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4637 	timevalclear(&target->last_reset);
4638 	/*
4639 	 * Hold a reference to our parent bus so it
4640 	 * will not go away before we do.
4641 	 */
4642 	bus->refcount++;
4643 
4644 	/* Insertion sort into our bus's target list */
4645 	cur_target = TAILQ_FIRST(&bus->et_entries);
4646 	while (cur_target != NULL && cur_target->target_id < target_id)
4647 		cur_target = TAILQ_NEXT(cur_target, links);
4648 	if (cur_target != NULL) {
4649 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4650 	} else {
4651 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4652 	}
4653 	bus->generation++;
4654 	return (target);
4655 }
4656 
4657 static void
4658 xpt_acquire_target(struct cam_et *target)
4659 {
4660 	struct cam_eb *bus = target->bus;
4661 
4662 	mtx_lock(&bus->eb_mtx);
4663 	target->refcount++;
4664 	mtx_unlock(&bus->eb_mtx);
4665 }
4666 
4667 static void
4668 xpt_release_target(struct cam_et *target)
4669 {
4670 	struct cam_eb *bus = target->bus;
4671 
4672 	mtx_lock(&bus->eb_mtx);
4673 	if (--target->refcount > 0) {
4674 		mtx_unlock(&bus->eb_mtx);
4675 		return;
4676 	}
4677 	TAILQ_REMOVE(&bus->et_entries, target, links);
4678 	bus->generation++;
4679 	mtx_unlock(&bus->eb_mtx);
4680 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4681 	    ("destroying target, but device list is not empty"));
4682 	xpt_release_bus(bus);
4683 	mtx_destroy(&target->luns_mtx);
4684 	if (target->luns)
4685 		free(target->luns, M_CAMXPT);
4686 	free(target, M_CAMXPT);
4687 }
4688 
4689 static struct cam_ed *
4690 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4691 			 lun_id_t lun_id)
4692 {
4693 	struct cam_ed *device;
4694 
4695 	device = xpt_alloc_device(bus, target, lun_id);
4696 	if (device == NULL)
4697 		return (NULL);
4698 
4699 	device->mintags = 1;
4700 	device->maxtags = 1;
4701 	return (device);
4702 }
4703 
4704 static void
4705 xpt_destroy_device(void *context, int pending)
4706 {
4707 	struct cam_ed	*device = context;
4708 
4709 	mtx_lock(&device->device_mtx);
4710 	mtx_destroy(&device->device_mtx);
4711 	free(device, M_CAMDEV);
4712 }
4713 
4714 struct cam_ed *
4715 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4716 {
4717 	struct cam_ed	*cur_device, *device;
4718 	struct cam_devq	*devq;
4719 	cam_status status;
4720 
4721 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4722 	/* Make space for us in the device queue on our bus */
4723 	devq = bus->sim->devq;
4724 	mtx_lock(&devq->send_mtx);
4725 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4726 	mtx_unlock(&devq->send_mtx);
4727 	if (status != CAM_REQ_CMP)
4728 		return (NULL);
4729 
4730 	device = (struct cam_ed *)malloc(sizeof(*device),
4731 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4732 	if (device == NULL)
4733 		return (NULL);
4734 
4735 	cam_init_pinfo(&device->devq_entry);
4736 	device->target = target;
4737 	device->lun_id = lun_id;
4738 	device->sim = bus->sim;
4739 	if (cam_ccbq_init(&device->ccbq,
4740 			  bus->sim->max_dev_openings) != 0) {
4741 		free(device, M_CAMDEV);
4742 		return (NULL);
4743 	}
4744 	SLIST_INIT(&device->asyncs);
4745 	SLIST_INIT(&device->periphs);
4746 	device->generation = 0;
4747 	device->flags = CAM_DEV_UNCONFIGURED;
4748 	device->tag_delay_count = 0;
4749 	device->tag_saved_openings = 0;
4750 	device->refcount = 1;
4751 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4752 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4753 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4754 	/*
4755 	 * Hold a reference to our parent bus so it
4756 	 * will not go away before we do.
4757 	 */
4758 	target->refcount++;
4759 
4760 	cur_device = TAILQ_FIRST(&target->ed_entries);
4761 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4762 		cur_device = TAILQ_NEXT(cur_device, links);
4763 	if (cur_device != NULL)
4764 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4765 	else
4766 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4767 	target->generation++;
4768 	return (device);
4769 }
4770 
4771 void
4772 xpt_acquire_device(struct cam_ed *device)
4773 {
4774 	struct cam_eb *bus = device->target->bus;
4775 
4776 	mtx_lock(&bus->eb_mtx);
4777 	device->refcount++;
4778 	mtx_unlock(&bus->eb_mtx);
4779 }
4780 
4781 void
4782 xpt_release_device(struct cam_ed *device)
4783 {
4784 	struct cam_eb *bus = device->target->bus;
4785 	struct cam_devq *devq;
4786 
4787 	mtx_lock(&bus->eb_mtx);
4788 	if (--device->refcount > 0) {
4789 		mtx_unlock(&bus->eb_mtx);
4790 		return;
4791 	}
4792 
4793 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4794 	device->target->generation++;
4795 	mtx_unlock(&bus->eb_mtx);
4796 
4797 	/* Release our slot in the devq */
4798 	devq = bus->sim->devq;
4799 	mtx_lock(&devq->send_mtx);
4800 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4801 	mtx_unlock(&devq->send_mtx);
4802 
4803 	KASSERT(SLIST_EMPTY(&device->periphs),
4804 	    ("destroying device, but periphs list is not empty"));
4805 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4806 	    ("destroying device while still queued for ccbs"));
4807 
4808 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4809 		callout_stop(&device->callout);
4810 
4811 	xpt_release_target(device->target);
4812 
4813 	cam_ccbq_fini(&device->ccbq);
4814 	/*
4815 	 * Free allocated memory.  free(9) does nothing if the
4816 	 * supplied pointer is NULL, so it is safe to call without
4817 	 * checking.
4818 	 */
4819 	free(device->supported_vpds, M_CAMXPT);
4820 	free(device->device_id, M_CAMXPT);
4821 	free(device->ext_inq, M_CAMXPT);
4822 	free(device->physpath, M_CAMXPT);
4823 	free(device->rcap_buf, M_CAMXPT);
4824 	free(device->serial_num, M_CAMXPT);
4825 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4826 }
4827 
4828 u_int32_t
4829 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4830 {
4831 	int	result;
4832 	struct	cam_ed *dev;
4833 
4834 	dev = path->device;
4835 	mtx_lock(&dev->sim->devq->send_mtx);
4836 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4837 	mtx_unlock(&dev->sim->devq->send_mtx);
4838 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4839 	 || (dev->inq_flags & SID_CmdQue) != 0)
4840 		dev->tag_saved_openings = newopenings;
4841 	return (result);
4842 }
4843 
4844 static struct cam_eb *
4845 xpt_find_bus(path_id_t path_id)
4846 {
4847 	struct cam_eb *bus;
4848 
4849 	xpt_lock_buses();
4850 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4851 	     bus != NULL;
4852 	     bus = TAILQ_NEXT(bus, links)) {
4853 		if (bus->path_id == path_id) {
4854 			bus->refcount++;
4855 			break;
4856 		}
4857 	}
4858 	xpt_unlock_buses();
4859 	return (bus);
4860 }
4861 
4862 static struct cam_et *
4863 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4864 {
4865 	struct cam_et *target;
4866 
4867 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4868 	for (target = TAILQ_FIRST(&bus->et_entries);
4869 	     target != NULL;
4870 	     target = TAILQ_NEXT(target, links)) {
4871 		if (target->target_id == target_id) {
4872 			target->refcount++;
4873 			break;
4874 		}
4875 	}
4876 	return (target);
4877 }
4878 
4879 static struct cam_ed *
4880 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4881 {
4882 	struct cam_ed *device;
4883 
4884 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4885 	for (device = TAILQ_FIRST(&target->ed_entries);
4886 	     device != NULL;
4887 	     device = TAILQ_NEXT(device, links)) {
4888 		if (device->lun_id == lun_id) {
4889 			device->refcount++;
4890 			break;
4891 		}
4892 	}
4893 	return (device);
4894 }
4895 
4896 void
4897 xpt_start_tags(struct cam_path *path)
4898 {
4899 	struct ccb_relsim crs;
4900 	struct cam_ed *device;
4901 	struct cam_sim *sim;
4902 	int    newopenings;
4903 
4904 	device = path->device;
4905 	sim = path->bus->sim;
4906 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4907 	xpt_freeze_devq(path, /*count*/1);
4908 	device->inq_flags |= SID_CmdQue;
4909 	if (device->tag_saved_openings != 0)
4910 		newopenings = device->tag_saved_openings;
4911 	else
4912 		newopenings = min(device->maxtags,
4913 				  sim->max_tagged_dev_openings);
4914 	xpt_dev_ccbq_resize(path, newopenings);
4915 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4916 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4917 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4918 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4919 	crs.openings
4920 	    = crs.release_timeout
4921 	    = crs.qfrozen_cnt
4922 	    = 0;
4923 	xpt_action((union ccb *)&crs);
4924 }
4925 
4926 void
4927 xpt_stop_tags(struct cam_path *path)
4928 {
4929 	struct ccb_relsim crs;
4930 	struct cam_ed *device;
4931 	struct cam_sim *sim;
4932 
4933 	device = path->device;
4934 	sim = path->bus->sim;
4935 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4936 	device->tag_delay_count = 0;
4937 	xpt_freeze_devq(path, /*count*/1);
4938 	device->inq_flags &= ~SID_CmdQue;
4939 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4940 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4941 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4942 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4943 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4944 	crs.openings
4945 	    = crs.release_timeout
4946 	    = crs.qfrozen_cnt
4947 	    = 0;
4948 	xpt_action((union ccb *)&crs);
4949 }
4950 
4951 static void
4952 xpt_boot_delay(void *arg)
4953 {
4954 
4955 	xpt_release_boot();
4956 }
4957 
4958 static void
4959 xpt_config(void *arg)
4960 {
4961 	/*
4962 	 * Now that interrupts are enabled, go find our devices
4963 	 */
4964 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4965 		printf("xpt_config: failed to create taskqueue thread.\n");
4966 
4967 	/* Setup debugging path */
4968 	if (cam_dflags != CAM_DEBUG_NONE) {
4969 		if (xpt_create_path(&cam_dpath, NULL,
4970 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4971 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4972 			printf("xpt_config: xpt_create_path() failed for debug"
4973 			       " target %d:%d:%d, debugging disabled\n",
4974 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4975 			cam_dflags = CAM_DEBUG_NONE;
4976 		}
4977 	} else
4978 		cam_dpath = NULL;
4979 
4980 	periphdriver_init(1);
4981 	xpt_hold_boot();
4982 	callout_init(&xsoftc.boot_callout, 1);
4983 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
4984 	    xpt_boot_delay, NULL, 0);
4985 	/* Fire up rescan thread. */
4986 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
4987 	    "cam", "scanner")) {
4988 		printf("xpt_config: failed to create rescan thread.\n");
4989 	}
4990 }
4991 
4992 void
4993 xpt_hold_boot(void)
4994 {
4995 	xpt_lock_buses();
4996 	xsoftc.buses_to_config++;
4997 	xpt_unlock_buses();
4998 }
4999 
5000 void
5001 xpt_release_boot(void)
5002 {
5003 	xpt_lock_buses();
5004 	xsoftc.buses_to_config--;
5005 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5006 		struct	xpt_task *task;
5007 
5008 		xsoftc.buses_config_done = 1;
5009 		xpt_unlock_buses();
5010 		/* Call manually because we don't have any busses */
5011 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5012 		if (task != NULL) {
5013 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5014 			taskqueue_enqueue(taskqueue_thread, &task->task);
5015 		}
5016 	} else
5017 		xpt_unlock_buses();
5018 }
5019 
5020 /*
5021  * If the given device only has one peripheral attached to it, and if that
5022  * peripheral is the passthrough driver, announce it.  This insures that the
5023  * user sees some sort of announcement for every peripheral in their system.
5024  */
5025 static int
5026 xptpassannouncefunc(struct cam_ed *device, void *arg)
5027 {
5028 	struct cam_periph *periph;
5029 	int i;
5030 
5031 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5032 	     periph = SLIST_NEXT(periph, periph_links), i++);
5033 
5034 	periph = SLIST_FIRST(&device->periphs);
5035 	if ((i == 1)
5036 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5037 		xpt_announce_periph(periph, NULL);
5038 
5039 	return(1);
5040 }
5041 
5042 static void
5043 xpt_finishconfig_task(void *context, int pending)
5044 {
5045 
5046 	periphdriver_init(2);
5047 	/*
5048 	 * Check for devices with no "standard" peripheral driver
5049 	 * attached.  For any devices like that, announce the
5050 	 * passthrough driver so the user will see something.
5051 	 */
5052 	if (!bootverbose)
5053 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5054 
5055 	/* Release our hook so that the boot can continue. */
5056 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5057 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5058 	xsoftc.xpt_config_hook = NULL;
5059 
5060 	free(context, M_CAMXPT);
5061 }
5062 
5063 cam_status
5064 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5065 		   struct cam_path *path)
5066 {
5067 	struct ccb_setasync csa;
5068 	cam_status status;
5069 	int xptpath = 0;
5070 
5071 	if (path == NULL) {
5072 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5073 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5074 		if (status != CAM_REQ_CMP)
5075 			return (status);
5076 		xpt_path_lock(path);
5077 		xptpath = 1;
5078 	}
5079 
5080 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5081 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5082 	csa.event_enable = event;
5083 	csa.callback = cbfunc;
5084 	csa.callback_arg = cbarg;
5085 	xpt_action((union ccb *)&csa);
5086 	status = csa.ccb_h.status;
5087 
5088 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5089 	    ("xpt_register_async: func %p\n", cbfunc));
5090 
5091 	if (xptpath) {
5092 		xpt_path_unlock(path);
5093 		xpt_free_path(path);
5094 	}
5095 
5096 	if ((status == CAM_REQ_CMP) &&
5097 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5098 		/*
5099 		 * Get this peripheral up to date with all
5100 		 * the currently existing devices.
5101 		 */
5102 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5103 	}
5104 	if ((status == CAM_REQ_CMP) &&
5105 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5106 		/*
5107 		 * Get this peripheral up to date with all
5108 		 * the currently existing busses.
5109 		 */
5110 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5111 	}
5112 
5113 	return (status);
5114 }
5115 
5116 static void
5117 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5118 {
5119 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5120 
5121 	switch (work_ccb->ccb_h.func_code) {
5122 	/* Common cases first */
5123 	case XPT_PATH_INQ:		/* Path routing inquiry */
5124 	{
5125 		struct ccb_pathinq *cpi;
5126 
5127 		cpi = &work_ccb->cpi;
5128 		cpi->version_num = 1; /* XXX??? */
5129 		cpi->hba_inquiry = 0;
5130 		cpi->target_sprt = 0;
5131 		cpi->hba_misc = 0;
5132 		cpi->hba_eng_cnt = 0;
5133 		cpi->max_target = 0;
5134 		cpi->max_lun = 0;
5135 		cpi->initiator_id = 0;
5136 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5137 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
5138 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5139 		cpi->unit_number = sim->unit_number;
5140 		cpi->bus_id = sim->bus_id;
5141 		cpi->base_transfer_speed = 0;
5142 		cpi->protocol = PROTO_UNSPECIFIED;
5143 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5144 		cpi->transport = XPORT_UNSPECIFIED;
5145 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5146 		cpi->ccb_h.status = CAM_REQ_CMP;
5147 		xpt_done(work_ccb);
5148 		break;
5149 	}
5150 	default:
5151 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5152 		xpt_done(work_ccb);
5153 		break;
5154 	}
5155 }
5156 
5157 /*
5158  * The xpt as a "controller" has no interrupt sources, so polling
5159  * is a no-op.
5160  */
5161 static void
5162 xptpoll(struct cam_sim *sim)
5163 {
5164 }
5165 
5166 void
5167 xpt_lock_buses(void)
5168 {
5169 	mtx_lock(&xsoftc.xpt_topo_lock);
5170 }
5171 
5172 void
5173 xpt_unlock_buses(void)
5174 {
5175 	mtx_unlock(&xsoftc.xpt_topo_lock);
5176 }
5177 
5178 struct mtx *
5179 xpt_path_mtx(struct cam_path *path)
5180 {
5181 
5182 	return (&path->device->device_mtx);
5183 }
5184 
5185 static void
5186 xpt_done_process(struct ccb_hdr *ccb_h)
5187 {
5188 	struct cam_sim *sim;
5189 	struct cam_devq *devq;
5190 	struct mtx *mtx = NULL;
5191 
5192 	if (ccb_h->flags & CAM_HIGH_POWER) {
5193 		struct highpowerlist	*hphead;
5194 		struct cam_ed		*device;
5195 
5196 		mtx_lock(&xsoftc.xpt_highpower_lock);
5197 		hphead = &xsoftc.highpowerq;
5198 
5199 		device = STAILQ_FIRST(hphead);
5200 
5201 		/*
5202 		 * Increment the count since this command is done.
5203 		 */
5204 		xsoftc.num_highpower++;
5205 
5206 		/*
5207 		 * Any high powered commands queued up?
5208 		 */
5209 		if (device != NULL) {
5210 
5211 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5212 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5213 
5214 			mtx_lock(&device->sim->devq->send_mtx);
5215 			xpt_release_devq_device(device,
5216 					 /*count*/1, /*runqueue*/TRUE);
5217 			mtx_unlock(&device->sim->devq->send_mtx);
5218 		} else
5219 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5220 	}
5221 
5222 	sim = ccb_h->path->bus->sim;
5223 
5224 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5225 		xpt_release_simq(sim, /*run_queue*/FALSE);
5226 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5227 	}
5228 
5229 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5230 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5231 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5232 		ccb_h->status &= ~CAM_DEV_QFRZN;
5233 	}
5234 
5235 	devq = sim->devq;
5236 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5237 		struct cam_ed *dev = ccb_h->path->device;
5238 
5239 		mtx_lock(&devq->send_mtx);
5240 		devq->send_active--;
5241 		devq->send_openings++;
5242 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5243 
5244 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5245 		  && (dev->ccbq.dev_active == 0))) {
5246 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5247 			xpt_release_devq_device(dev, /*count*/1,
5248 					 /*run_queue*/FALSE);
5249 		}
5250 
5251 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5252 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5253 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5254 			xpt_release_devq_device(dev, /*count*/1,
5255 					 /*run_queue*/FALSE);
5256 		}
5257 
5258 		if (!device_is_queued(dev))
5259 			(void)xpt_schedule_devq(devq, dev);
5260 		xpt_run_devq(devq);
5261 		mtx_unlock(&devq->send_mtx);
5262 
5263 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5264 			mtx = xpt_path_mtx(ccb_h->path);
5265 			mtx_lock(mtx);
5266 
5267 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5268 			 && (--dev->tag_delay_count == 0))
5269 				xpt_start_tags(ccb_h->path);
5270 		}
5271 	}
5272 
5273 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5274 		if (mtx == NULL) {
5275 			mtx = xpt_path_mtx(ccb_h->path);
5276 			mtx_lock(mtx);
5277 		}
5278 	} else {
5279 		if (mtx != NULL) {
5280 			mtx_unlock(mtx);
5281 			mtx = NULL;
5282 		}
5283 	}
5284 
5285 	/* Call the peripheral driver's callback */
5286 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5287 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5288 	if (mtx != NULL)
5289 		mtx_unlock(mtx);
5290 }
5291 
5292 void
5293 xpt_done_td(void *arg)
5294 {
5295 	struct cam_doneq *queue = arg;
5296 	struct ccb_hdr *ccb_h;
5297 	STAILQ_HEAD(, ccb_hdr)	doneq;
5298 
5299 	STAILQ_INIT(&doneq);
5300 	mtx_lock(&queue->cam_doneq_mtx);
5301 	while (1) {
5302 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5303 			queue->cam_doneq_sleep = 1;
5304 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5305 			    PRIBIO, "-", 0);
5306 			queue->cam_doneq_sleep = 0;
5307 		}
5308 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5309 		mtx_unlock(&queue->cam_doneq_mtx);
5310 
5311 		THREAD_NO_SLEEPING();
5312 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5313 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5314 			xpt_done_process(ccb_h);
5315 		}
5316 		THREAD_SLEEPING_OK();
5317 
5318 		mtx_lock(&queue->cam_doneq_mtx);
5319 	}
5320 }
5321 
5322 static void
5323 camisr_runqueue(void)
5324 {
5325 	struct	ccb_hdr *ccb_h;
5326 	struct cam_doneq *queue;
5327 	int i;
5328 
5329 	/* Process global queues. */
5330 	for (i = 0; i < cam_num_doneqs; i++) {
5331 		queue = &cam_doneqs[i];
5332 		mtx_lock(&queue->cam_doneq_mtx);
5333 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5334 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5335 			mtx_unlock(&queue->cam_doneq_mtx);
5336 			xpt_done_process(ccb_h);
5337 			mtx_lock(&queue->cam_doneq_mtx);
5338 		}
5339 		mtx_unlock(&queue->cam_doneq_mtx);
5340 	}
5341 }
5342 
5343 struct kv
5344 {
5345 	uint32_t v;
5346 	const char *name;
5347 };
5348 
5349 static struct kv map[] = {
5350 	{ XPT_NOOP, "XPT_NOOP" },
5351 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5352 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5353 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5354 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5355 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5356 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5357 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5358 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5359 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5360 	{ XPT_DEBUG, "XPT_DEBUG" },
5361 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5362 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5363 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5364 	{ XPT_ASYNC, "XPT_ASYNC" },
5365 	{ XPT_ABORT, "XPT_ABORT" },
5366 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5367 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5368 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5369 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5370 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5371 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5372 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5373 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5374 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5375 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5376 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5377 	{ XPT_MMCSD_IO, "XPT_MMCSD_IO" },
5378 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5379 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5380 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5381 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5382 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5383 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5384 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5385 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5386 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5387 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5388 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5389 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5390 	{ 0, 0 }
5391 };
5392 
5393 static const char *
5394 xpt_action_name(uint32_t action)
5395 {
5396 	static char buffer[32];	/* Only for unknown messages -- racy */
5397 	struct kv *walker = map;
5398 
5399 	while (walker->name != NULL) {
5400 		if (walker->v == action)
5401 			return (walker->name);
5402 		walker++;
5403 	}
5404 
5405 	snprintf(buffer, sizeof(buffer), "%#x", action);
5406 	return (buffer);
5407 }
5408