1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 50 #ifdef PC98 51 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 52 #endif 53 54 #include <cam/cam.h> 55 #include <cam/cam_ccb.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_debug.h> 62 63 #include <cam/scsi/scsi_all.h> 64 #include <cam/scsi/scsi_message.h> 65 #include <cam/scsi/scsi_pass.h> 66 #include "opt_cam.h" 67 68 /* Datastructures internal to the xpt layer */ 69 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 70 71 /* 72 * Definition of an async handler callback block. These are used to add 73 * SIMs and peripherals to the async callback lists. 74 */ 75 struct async_node { 76 SLIST_ENTRY(async_node) links; 77 u_int32_t event_enable; /* Async Event enables */ 78 void (*callback)(void *arg, u_int32_t code, 79 struct cam_path *path, void *args); 80 void *callback_arg; 81 }; 82 83 SLIST_HEAD(async_list, async_node); 84 SLIST_HEAD(periph_list, cam_periph); 85 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 86 87 /* 88 * This is the maximum number of high powered commands (e.g. start unit) 89 * that can be outstanding at a particular time. 90 */ 91 #ifndef CAM_MAX_HIGHPOWER 92 #define CAM_MAX_HIGHPOWER 4 93 #endif 94 95 /* number of high powered commands that can go through right now */ 96 static int num_highpower = CAM_MAX_HIGHPOWER; 97 98 /* 99 * Structure for queueing a device in a run queue. 100 * There is one run queue for allocating new ccbs, 101 * and another for sending ccbs to the controller. 102 */ 103 struct cam_ed_qinfo { 104 cam_pinfo pinfo; 105 struct cam_ed *device; 106 }; 107 108 /* 109 * The CAM EDT (Existing Device Table) contains the device information for 110 * all devices for all busses in the system. The table contains a 111 * cam_ed structure for each device on the bus. 112 */ 113 struct cam_ed { 114 TAILQ_ENTRY(cam_ed) links; 115 struct cam_ed_qinfo alloc_ccb_entry; 116 struct cam_ed_qinfo send_ccb_entry; 117 struct cam_et *target; 118 lun_id_t lun_id; 119 struct camq drvq; /* 120 * Queue of type drivers wanting to do 121 * work on this device. 122 */ 123 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 124 struct async_list asyncs; /* Async callback info for this B/T/L */ 125 struct periph_list periphs; /* All attached devices */ 126 u_int generation; /* Generation number */ 127 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 128 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 129 /* Storage for the inquiry data */ 130 #ifdef CAM_NEW_TRAN_CODE 131 cam_proto protocol; 132 u_int protocol_version; 133 cam_xport transport; 134 u_int transport_version; 135 #endif /* CAM_NEW_TRAN_CODE */ 136 struct scsi_inquiry_data inq_data; 137 u_int8_t inq_flags; /* 138 * Current settings for inquiry flags. 139 * This allows us to override settings 140 * like disconnection and tagged 141 * queuing for a device. 142 */ 143 u_int8_t queue_flags; /* Queue flags from the control page */ 144 u_int8_t serial_num_len; 145 u_int8_t *serial_num; 146 u_int32_t qfrozen_cnt; 147 u_int32_t flags; 148 #define CAM_DEV_UNCONFIGURED 0x01 149 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 150 #define CAM_DEV_REL_ON_COMPLETE 0x04 151 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 152 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 153 #define CAM_DEV_TAG_AFTER_COUNT 0x20 154 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 155 u_int32_t tag_delay_count; 156 #define CAM_TAG_DELAY_COUNT 5 157 u_int32_t tag_saved_openings; 158 u_int32_t refcount; 159 struct callout_handle c_handle; 160 }; 161 162 /* 163 * Each target is represented by an ET (Existing Target). These 164 * entries are created when a target is successfully probed with an 165 * identify, and removed when a device fails to respond after a number 166 * of retries, or a bus rescan finds the device missing. 167 */ 168 struct cam_et { 169 TAILQ_HEAD(, cam_ed) ed_entries; 170 TAILQ_ENTRY(cam_et) links; 171 struct cam_eb *bus; 172 target_id_t target_id; 173 u_int32_t refcount; 174 u_int generation; 175 struct timeval last_reset; 176 }; 177 178 /* 179 * Each bus is represented by an EB (Existing Bus). These entries 180 * are created by calls to xpt_bus_register and deleted by calls to 181 * xpt_bus_deregister. 182 */ 183 struct cam_eb { 184 TAILQ_HEAD(, cam_et) et_entries; 185 TAILQ_ENTRY(cam_eb) links; 186 path_id_t path_id; 187 struct cam_sim *sim; 188 struct timeval last_reset; 189 u_int32_t flags; 190 #define CAM_EB_RUNQ_SCHEDULED 0x01 191 u_int32_t refcount; 192 u_int generation; 193 }; 194 195 struct cam_path { 196 struct cam_periph *periph; 197 struct cam_eb *bus; 198 struct cam_et *target; 199 struct cam_ed *device; 200 }; 201 202 struct xpt_quirk_entry { 203 struct scsi_inquiry_pattern inq_pat; 204 u_int8_t quirks; 205 #define CAM_QUIRK_NOLUNS 0x01 206 #define CAM_QUIRK_NOSERIAL 0x02 207 #define CAM_QUIRK_HILUNS 0x04 208 #define CAM_QUIRK_NOHILUNS 0x08 209 u_int mintags; 210 u_int maxtags; 211 }; 212 213 static int cam_srch_hi = 0; 214 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 215 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 216 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 217 sysctl_cam_search_luns, "I", 218 "allow search above LUN 7 for SCSI3 and greater devices"); 219 220 #define CAM_SCSI2_MAXLUN 8 221 /* 222 * If we're not quirked to search <= the first 8 luns 223 * and we are either quirked to search above lun 8, 224 * or we're > SCSI-2 and we've enabled hilun searching, 225 * or we're > SCSI-2 and the last lun was a success, 226 * we can look for luns above lun 8. 227 */ 228 #define CAN_SRCH_HI_SPARSE(dv) \ 229 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 230 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 231 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 232 233 #define CAN_SRCH_HI_DENSE(dv) \ 234 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 235 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 236 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 237 238 typedef enum { 239 XPT_FLAG_OPEN = 0x01 240 } xpt_flags; 241 242 struct xpt_softc { 243 xpt_flags flags; 244 u_int32_t generation; 245 }; 246 247 static const char quantum[] = "QUANTUM"; 248 static const char sony[] = "SONY"; 249 static const char west_digital[] = "WDIGTL"; 250 static const char samsung[] = "SAMSUNG"; 251 static const char seagate[] = "SEAGATE"; 252 static const char microp[] = "MICROP"; 253 254 static struct xpt_quirk_entry xpt_quirk_table[] = 255 { 256 { 257 /* Reports QUEUE FULL for temporary resource shortages */ 258 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 259 /*quirks*/0, /*mintags*/24, /*maxtags*/32 260 }, 261 { 262 /* Reports QUEUE FULL for temporary resource shortages */ 263 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 264 /*quirks*/0, /*mintags*/24, /*maxtags*/32 265 }, 266 { 267 /* Reports QUEUE FULL for temporary resource shortages */ 268 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 269 /*quirks*/0, /*mintags*/24, /*maxtags*/32 270 }, 271 { 272 /* Broken tagged queuing drive */ 273 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 274 /*quirks*/0, /*mintags*/0, /*maxtags*/0 275 }, 276 { 277 /* Broken tagged queuing drive */ 278 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 279 /*quirks*/0, /*mintags*/0, /*maxtags*/0 280 }, 281 { 282 /* Broken tagged queuing drive */ 283 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 284 /*quirks*/0, /*mintags*/0, /*maxtags*/0 285 }, 286 { 287 /* 288 * Unfortunately, the Quantum Atlas III has the same 289 * problem as the Atlas II drives above. 290 * Reported by: "Johan Granlund" <johan@granlund.nu> 291 * 292 * For future reference, the drive with the problem was: 293 * QUANTUM QM39100TD-SW N1B0 294 * 295 * It's possible that Quantum will fix the problem in later 296 * firmware revisions. If that happens, the quirk entry 297 * will need to be made specific to the firmware revisions 298 * with the problem. 299 * 300 */ 301 /* Reports QUEUE FULL for temporary resource shortages */ 302 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 303 /*quirks*/0, /*mintags*/24, /*maxtags*/32 304 }, 305 { 306 /* 307 * 18 Gig Atlas III, same problem as the 9G version. 308 * Reported by: Andre Albsmeier 309 * <andre.albsmeier@mchp.siemens.de> 310 * 311 * For future reference, the drive with the problem was: 312 * QUANTUM QM318000TD-S N491 313 */ 314 /* Reports QUEUE FULL for temporary resource shortages */ 315 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 316 /*quirks*/0, /*mintags*/24, /*maxtags*/32 317 }, 318 { 319 /* 320 * Broken tagged queuing drive 321 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 322 * and: Martin Renters <martin@tdc.on.ca> 323 */ 324 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 325 /*quirks*/0, /*mintags*/0, /*maxtags*/0 326 }, 327 /* 328 * The Seagate Medalist Pro drives have very poor write 329 * performance with anything more than 2 tags. 330 * 331 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 332 * Drive: <SEAGATE ST36530N 1444> 333 * 334 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 335 * Drive: <SEAGATE ST34520W 1281> 336 * 337 * No one has actually reported that the 9G version 338 * (ST39140*) of the Medalist Pro has the same problem, but 339 * we're assuming that it does because the 4G and 6.5G 340 * versions of the drive are broken. 341 */ 342 { 343 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 344 /*quirks*/0, /*mintags*/2, /*maxtags*/2 345 }, 346 { 347 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 348 /*quirks*/0, /*mintags*/2, /*maxtags*/2 349 }, 350 { 351 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 352 /*quirks*/0, /*mintags*/2, /*maxtags*/2 353 }, 354 { 355 /* 356 * Slow when tagged queueing is enabled. Write performance 357 * steadily drops off with more and more concurrent 358 * transactions. Best sequential write performance with 359 * tagged queueing turned off and write caching turned on. 360 * 361 * PR: kern/10398 362 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 363 * Drive: DCAS-34330 w/ "S65A" firmware. 364 * 365 * The drive with the problem had the "S65A" firmware 366 * revision, and has also been reported (by Stephen J. 367 * Roznowski <sjr@home.net>) for a drive with the "S61A" 368 * firmware revision. 369 * 370 * Although no one has reported problems with the 2 gig 371 * version of the DCAS drive, the assumption is that it 372 * has the same problems as the 4 gig version. Therefore 373 * this quirk entries disables tagged queueing for all 374 * DCAS drives. 375 */ 376 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 377 /*quirks*/0, /*mintags*/0, /*maxtags*/0 378 }, 379 { 380 /* Broken tagged queuing drive */ 381 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 382 /*quirks*/0, /*mintags*/0, /*maxtags*/0 383 }, 384 { 385 /* Broken tagged queuing drive */ 386 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 387 /*quirks*/0, /*mintags*/0, /*maxtags*/0 388 }, 389 { 390 /* 391 * Broken tagged queuing drive. 392 * Submitted by: 393 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 394 * in PR kern/9535 395 */ 396 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 397 /*quirks*/0, /*mintags*/0, /*maxtags*/0 398 }, 399 { 400 /* 401 * Slow when tagged queueing is enabled. (1.5MB/sec versus 402 * 8MB/sec.) 403 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 404 * Best performance with these drives is achieved with 405 * tagged queueing turned off, and write caching turned on. 406 */ 407 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 408 /*quirks*/0, /*mintags*/0, /*maxtags*/0 409 }, 410 { 411 /* 412 * Slow when tagged queueing is enabled. (1.5MB/sec versus 413 * 8MB/sec.) 414 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 415 * Best performance with these drives is achieved with 416 * tagged queueing turned off, and write caching turned on. 417 */ 418 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 419 /*quirks*/0, /*mintags*/0, /*maxtags*/0 420 }, 421 { 422 /* 423 * Doesn't handle queue full condition correctly, 424 * so we need to limit maxtags to what the device 425 * can handle instead of determining this automatically. 426 */ 427 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 428 /*quirks*/0, /*mintags*/2, /*maxtags*/32 429 }, 430 { 431 /* Really only one LUN */ 432 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 433 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 434 }, 435 { 436 /* I can't believe we need a quirk for DPT volumes. */ 437 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 438 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 439 /*mintags*/0, /*maxtags*/255 440 }, 441 { 442 /* 443 * Many Sony CDROM drives don't like multi-LUN probing. 444 */ 445 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 446 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 447 }, 448 { 449 /* 450 * This drive doesn't like multiple LUN probing. 451 * Submitted by: Parag Patel <parag@cgt.com> 452 */ 453 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 454 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 455 }, 456 { 457 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 458 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 459 }, 460 { 461 /* 462 * The 8200 doesn't like multi-lun probing, and probably 463 * don't like serial number requests either. 464 */ 465 { 466 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 467 "EXB-8200*", "*" 468 }, 469 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 470 }, 471 { 472 /* 473 * Let's try the same as above, but for a drive that says 474 * it's an IPL-6860 but is actually an EXB 8200. 475 */ 476 { 477 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 478 "IPL-6860*", "*" 479 }, 480 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 481 }, 482 { 483 /* 484 * These Hitachi drives don't like multi-lun probing. 485 * The PR submitter has a DK319H, but says that the Linux 486 * kernel has a similar work-around for the DK312 and DK314, 487 * so all DK31* drives are quirked here. 488 * PR: misc/18793 489 * Submitted by: Paul Haddad <paul@pth.com> 490 */ 491 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 492 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 493 }, 494 { 495 /* 496 * The Hitachi CJ series with J8A8 firmware apparantly has 497 * problems with tagged commands. 498 * PR: 23536 499 * Reported by: amagai@nue.org 500 */ 501 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 502 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 503 }, 504 { 505 /* 506 * These are the large storage arrays. 507 * Submitted by: William Carrel <william.carrel@infospace.com> 508 */ 509 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 510 CAM_QUIRK_HILUNS, 2, 1024 511 }, 512 { 513 /* 514 * This old revision of the TDC3600 is also SCSI-1, and 515 * hangs upon serial number probing. 516 */ 517 { 518 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 519 " TDC 3600", "U07:" 520 }, 521 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 522 }, 523 { 524 /* 525 * Maxtor Personal Storage 3000XT (Firewire) 526 * hangs upon serial number probing. 527 */ 528 { 529 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 530 "1394 storage", "*" 531 }, 532 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 533 }, 534 { 535 /* 536 * Would repond to all LUNs if asked for. 537 */ 538 { 539 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 540 "CP150", "*" 541 }, 542 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 543 }, 544 { 545 /* 546 * Would repond to all LUNs if asked for. 547 */ 548 { 549 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 550 "96X2*", "*" 551 }, 552 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 553 }, 554 { 555 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 556 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 557 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 558 }, 559 { 560 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 561 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 562 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 563 }, 564 { 565 /* TeraSolutions special settings for TRC-22 RAID */ 566 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 567 /*quirks*/0, /*mintags*/55, /*maxtags*/255 568 }, 569 { 570 /* Veritas Storage Appliance */ 571 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 572 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 573 }, 574 { 575 /* 576 * Would respond to all LUNs. Device type and removable 577 * flag are jumper-selectable. 578 */ 579 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 580 "Tahiti 1", "*" 581 }, 582 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 583 }, 584 { 585 /* EasyRAID E5A aka. areca ARC-6010 */ 586 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 587 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 588 }, 589 { 590 /* Default tagged queuing parameters for all devices */ 591 { 592 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 593 /*vendor*/"*", /*product*/"*", /*revision*/"*" 594 }, 595 /*quirks*/0, /*mintags*/2, /*maxtags*/255 596 }, 597 }; 598 599 static const int xpt_quirk_table_size = 600 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 601 602 typedef enum { 603 DM_RET_COPY = 0x01, 604 DM_RET_FLAG_MASK = 0x0f, 605 DM_RET_NONE = 0x00, 606 DM_RET_STOP = 0x10, 607 DM_RET_DESCEND = 0x20, 608 DM_RET_ERROR = 0x30, 609 DM_RET_ACTION_MASK = 0xf0 610 } dev_match_ret; 611 612 typedef enum { 613 XPT_DEPTH_BUS, 614 XPT_DEPTH_TARGET, 615 XPT_DEPTH_DEVICE, 616 XPT_DEPTH_PERIPH 617 } xpt_traverse_depth; 618 619 struct xpt_traverse_config { 620 xpt_traverse_depth depth; 621 void *tr_func; 622 void *tr_arg; 623 }; 624 625 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 626 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 627 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 628 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 629 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 630 631 /* Transport layer configuration information */ 632 static struct xpt_softc xsoftc; 633 634 /* Queues for our software interrupt handler */ 635 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 636 static cam_isrq_t cam_bioq; 637 static struct mtx cam_bioq_lock; 638 639 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 640 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 641 static u_int xpt_max_ccbs; /* 642 * Maximum size of ccb pool. Modified as 643 * devices are added/removed or have their 644 * opening counts changed. 645 */ 646 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 647 648 struct cam_periph *xpt_periph; 649 650 static periph_init_t xpt_periph_init; 651 652 static periph_init_t probe_periph_init; 653 654 static struct periph_driver xpt_driver = 655 { 656 xpt_periph_init, "xpt", 657 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 658 }; 659 660 static struct periph_driver probe_driver = 661 { 662 probe_periph_init, "probe", 663 TAILQ_HEAD_INITIALIZER(probe_driver.units) 664 }; 665 666 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 667 PERIPHDRIVER_DECLARE(probe, probe_driver); 668 669 670 static d_open_t xptopen; 671 static d_close_t xptclose; 672 static d_ioctl_t xptioctl; 673 674 static struct cdevsw xpt_cdevsw = { 675 .d_version = D_VERSION, 676 .d_flags = D_NEEDGIANT, 677 .d_open = xptopen, 678 .d_close = xptclose, 679 .d_ioctl = xptioctl, 680 .d_name = "xpt", 681 }; 682 683 static struct intr_config_hook *xpt_config_hook; 684 685 /* Registered busses */ 686 static TAILQ_HEAD(,cam_eb) xpt_busses; 687 static u_int bus_generation; 688 689 /* Storage for debugging datastructures */ 690 #ifdef CAMDEBUG 691 struct cam_path *cam_dpath; 692 u_int32_t cam_dflags; 693 u_int32_t cam_debug_delay; 694 #endif 695 696 /* Pointers to software interrupt handlers */ 697 static void *cambio_ih; 698 699 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 700 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 701 #endif 702 703 /* 704 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 705 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 706 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 707 */ 708 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 709 || defined(CAM_DEBUG_LUN) 710 #ifdef CAMDEBUG 711 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 712 || !defined(CAM_DEBUG_LUN) 713 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 714 and CAM_DEBUG_LUN" 715 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 716 #else /* !CAMDEBUG */ 717 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 718 #endif /* CAMDEBUG */ 719 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 720 721 /* Our boot-time initialization hook */ 722 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 723 724 static moduledata_t cam_moduledata = { 725 "cam", 726 cam_module_event_handler, 727 NULL 728 }; 729 730 static void xpt_init(void *); 731 732 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 733 MODULE_VERSION(cam, 1); 734 735 736 static cam_status xpt_compile_path(struct cam_path *new_path, 737 struct cam_periph *perph, 738 path_id_t path_id, 739 target_id_t target_id, 740 lun_id_t lun_id); 741 742 static void xpt_release_path(struct cam_path *path); 743 744 static void xpt_async_bcast(struct async_list *async_head, 745 u_int32_t async_code, 746 struct cam_path *path, 747 void *async_arg); 748 static void xpt_dev_async(u_int32_t async_code, 749 struct cam_eb *bus, 750 struct cam_et *target, 751 struct cam_ed *device, 752 void *async_arg); 753 static path_id_t xptnextfreepathid(void); 754 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 755 static union ccb *xpt_get_ccb(struct cam_ed *device); 756 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 757 u_int32_t new_priority); 758 static void xpt_run_dev_allocq(struct cam_eb *bus); 759 static void xpt_run_dev_sendq(struct cam_eb *bus); 760 static timeout_t xpt_release_devq_timeout; 761 static timeout_t xpt_release_simq_timeout; 762 static void xpt_release_bus(struct cam_eb *bus); 763 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 764 int run_queue); 765 static struct cam_et* 766 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 767 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 768 static struct cam_ed* 769 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 770 lun_id_t lun_id); 771 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 772 struct cam_ed *device); 773 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 774 static struct cam_eb* 775 xpt_find_bus(path_id_t path_id); 776 static struct cam_et* 777 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 778 static struct cam_ed* 779 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 780 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 781 static void xpt_scan_lun(struct cam_periph *periph, 782 struct cam_path *path, cam_flags flags, 783 union ccb *ccb); 784 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 785 static xpt_busfunc_t xptconfigbuscountfunc; 786 static xpt_busfunc_t xptconfigfunc; 787 static void xpt_config(void *arg); 788 static xpt_devicefunc_t xptpassannouncefunc; 789 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 790 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 791 static void xptpoll(struct cam_sim *sim); 792 static void camisr(void *); 793 #if 0 794 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 795 static void xptasync(struct cam_periph *periph, 796 u_int32_t code, cam_path *path); 797 #endif 798 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 799 u_int num_patterns, struct cam_eb *bus); 800 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 801 u_int num_patterns, 802 struct cam_ed *device); 803 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 804 u_int num_patterns, 805 struct cam_periph *periph); 806 static xpt_busfunc_t xptedtbusfunc; 807 static xpt_targetfunc_t xptedttargetfunc; 808 static xpt_devicefunc_t xptedtdevicefunc; 809 static xpt_periphfunc_t xptedtperiphfunc; 810 static xpt_pdrvfunc_t xptplistpdrvfunc; 811 static xpt_periphfunc_t xptplistperiphfunc; 812 static int xptedtmatch(struct ccb_dev_match *cdm); 813 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 814 static int xptbustraverse(struct cam_eb *start_bus, 815 xpt_busfunc_t *tr_func, void *arg); 816 static int xpttargettraverse(struct cam_eb *bus, 817 struct cam_et *start_target, 818 xpt_targetfunc_t *tr_func, void *arg); 819 static int xptdevicetraverse(struct cam_et *target, 820 struct cam_ed *start_device, 821 xpt_devicefunc_t *tr_func, void *arg); 822 static int xptperiphtraverse(struct cam_ed *device, 823 struct cam_periph *start_periph, 824 xpt_periphfunc_t *tr_func, void *arg); 825 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 826 xpt_pdrvfunc_t *tr_func, void *arg); 827 static int xptpdperiphtraverse(struct periph_driver **pdrv, 828 struct cam_periph *start_periph, 829 xpt_periphfunc_t *tr_func, 830 void *arg); 831 static xpt_busfunc_t xptdefbusfunc; 832 static xpt_targetfunc_t xptdeftargetfunc; 833 static xpt_devicefunc_t xptdefdevicefunc; 834 static xpt_periphfunc_t xptdefperiphfunc; 835 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 836 #ifdef notusedyet 837 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 838 void *arg); 839 #endif 840 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 841 void *arg); 842 #ifdef notusedyet 843 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 844 void *arg); 845 #endif 846 static xpt_devicefunc_t xptsetasyncfunc; 847 static xpt_busfunc_t xptsetasyncbusfunc; 848 static cam_status xptregister(struct cam_periph *periph, 849 void *arg); 850 static cam_status proberegister(struct cam_periph *periph, 851 void *arg); 852 static void probeschedule(struct cam_periph *probe_periph); 853 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 854 static void proberequestdefaultnegotiation(struct cam_periph *periph); 855 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 856 static void probecleanup(struct cam_periph *periph); 857 static void xpt_find_quirk(struct cam_ed *device); 858 #ifdef CAM_NEW_TRAN_CODE 859 static void xpt_devise_transport(struct cam_path *path); 860 #endif /* CAM_NEW_TRAN_CODE */ 861 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 862 struct cam_ed *device, 863 int async_update); 864 static void xpt_toggle_tags(struct cam_path *path); 865 static void xpt_start_tags(struct cam_path *path); 866 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 867 struct cam_ed *dev); 868 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 869 struct cam_ed *dev); 870 static __inline int periph_is_queued(struct cam_periph *periph); 871 static __inline int device_is_alloc_queued(struct cam_ed *device); 872 static __inline int device_is_send_queued(struct cam_ed *device); 873 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 874 875 static __inline int 876 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 877 { 878 int retval; 879 880 if (dev->ccbq.devq_openings > 0) { 881 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 882 cam_ccbq_resize(&dev->ccbq, 883 dev->ccbq.dev_openings 884 + dev->ccbq.dev_active); 885 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 886 } 887 /* 888 * The priority of a device waiting for CCB resources 889 * is that of the the highest priority peripheral driver 890 * enqueued. 891 */ 892 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 893 &dev->alloc_ccb_entry.pinfo, 894 CAMQ_GET_HEAD(&dev->drvq)->priority); 895 } else { 896 retval = 0; 897 } 898 899 return (retval); 900 } 901 902 static __inline int 903 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 904 { 905 int retval; 906 907 if (dev->ccbq.dev_openings > 0) { 908 /* 909 * The priority of a device waiting for controller 910 * resources is that of the the highest priority CCB 911 * enqueued. 912 */ 913 retval = 914 xpt_schedule_dev(&bus->sim->devq->send_queue, 915 &dev->send_ccb_entry.pinfo, 916 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 917 } else { 918 retval = 0; 919 } 920 return (retval); 921 } 922 923 static __inline int 924 periph_is_queued(struct cam_periph *periph) 925 { 926 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 927 } 928 929 static __inline int 930 device_is_alloc_queued(struct cam_ed *device) 931 { 932 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 933 } 934 935 static __inline int 936 device_is_send_queued(struct cam_ed *device) 937 { 938 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 939 } 940 941 static __inline int 942 dev_allocq_is_runnable(struct cam_devq *devq) 943 { 944 /* 945 * Have work to do. 946 * Have space to do more work. 947 * Allowed to do work. 948 */ 949 return ((devq->alloc_queue.qfrozen_cnt == 0) 950 && (devq->alloc_queue.entries > 0) 951 && (devq->alloc_openings > 0)); 952 } 953 954 static void 955 xpt_periph_init() 956 { 957 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 958 } 959 960 static void 961 probe_periph_init() 962 { 963 } 964 965 966 static void 967 xptdone(struct cam_periph *periph, union ccb *done_ccb) 968 { 969 /* Caller will release the CCB */ 970 wakeup(&done_ccb->ccb_h.cbfcnp); 971 } 972 973 static int 974 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 975 { 976 int unit; 977 978 unit = minor(dev) & 0xff; 979 980 /* 981 * Only allow read-write access. 982 */ 983 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 984 return(EPERM); 985 986 /* 987 * We don't allow nonblocking access. 988 */ 989 if ((flags & O_NONBLOCK) != 0) { 990 printf("xpt%d: can't do nonblocking access\n", unit); 991 return(ENODEV); 992 } 993 994 /* 995 * We only have one transport layer right now. If someone accesses 996 * us via something other than minor number 1, point out their 997 * mistake. 998 */ 999 if (unit != 0) { 1000 printf("xptopen: got invalid xpt unit %d\n", unit); 1001 return(ENXIO); 1002 } 1003 1004 /* Mark ourselves open */ 1005 xsoftc.flags |= XPT_FLAG_OPEN; 1006 1007 return(0); 1008 } 1009 1010 static int 1011 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 1012 { 1013 int unit; 1014 1015 unit = minor(dev) & 0xff; 1016 1017 /* 1018 * We only have one transport layer right now. If someone accesses 1019 * us via something other than minor number 1, point out their 1020 * mistake. 1021 */ 1022 if (unit != 0) { 1023 printf("xptclose: got invalid xpt unit %d\n", unit); 1024 return(ENXIO); 1025 } 1026 1027 /* Mark ourselves closed */ 1028 xsoftc.flags &= ~XPT_FLAG_OPEN; 1029 1030 return(0); 1031 } 1032 1033 static int 1034 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1035 { 1036 int unit, error; 1037 1038 error = 0; 1039 unit = minor(dev) & 0xff; 1040 1041 /* 1042 * We only have one transport layer right now. If someone accesses 1043 * us via something other than minor number 1, point out their 1044 * mistake. 1045 */ 1046 if (unit != 0) { 1047 printf("xptioctl: got invalid xpt unit %d\n", unit); 1048 return(ENXIO); 1049 } 1050 1051 switch(cmd) { 1052 /* 1053 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1054 * to accept CCB types that don't quite make sense to send through a 1055 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1056 * in the CAM spec. 1057 */ 1058 case CAMIOCOMMAND: { 1059 union ccb *ccb; 1060 union ccb *inccb; 1061 1062 inccb = (union ccb *)addr; 1063 1064 switch(inccb->ccb_h.func_code) { 1065 case XPT_SCAN_BUS: 1066 case XPT_RESET_BUS: 1067 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1068 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1069 error = EINVAL; 1070 break; 1071 } 1072 /* FALLTHROUGH */ 1073 case XPT_PATH_INQ: 1074 case XPT_ENG_INQ: 1075 case XPT_SCAN_LUN: 1076 1077 ccb = xpt_alloc_ccb(); 1078 1079 /* 1080 * Create a path using the bus, target, and lun the 1081 * user passed in. 1082 */ 1083 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1084 inccb->ccb_h.path_id, 1085 inccb->ccb_h.target_id, 1086 inccb->ccb_h.target_lun) != 1087 CAM_REQ_CMP){ 1088 error = EINVAL; 1089 xpt_free_ccb(ccb); 1090 break; 1091 } 1092 /* Ensure all of our fields are correct */ 1093 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1094 inccb->ccb_h.pinfo.priority); 1095 xpt_merge_ccb(ccb, inccb); 1096 ccb->ccb_h.cbfcnp = xptdone; 1097 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1098 bcopy(ccb, inccb, sizeof(union ccb)); 1099 xpt_free_path(ccb->ccb_h.path); 1100 xpt_free_ccb(ccb); 1101 break; 1102 1103 case XPT_DEBUG: { 1104 union ccb ccb; 1105 1106 /* 1107 * This is an immediate CCB, so it's okay to 1108 * allocate it on the stack. 1109 */ 1110 1111 /* 1112 * Create a path using the bus, target, and lun the 1113 * user passed in. 1114 */ 1115 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1116 inccb->ccb_h.path_id, 1117 inccb->ccb_h.target_id, 1118 inccb->ccb_h.target_lun) != 1119 CAM_REQ_CMP){ 1120 error = EINVAL; 1121 break; 1122 } 1123 /* Ensure all of our fields are correct */ 1124 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1125 inccb->ccb_h.pinfo.priority); 1126 xpt_merge_ccb(&ccb, inccb); 1127 ccb.ccb_h.cbfcnp = xptdone; 1128 xpt_action(&ccb); 1129 bcopy(&ccb, inccb, sizeof(union ccb)); 1130 xpt_free_path(ccb.ccb_h.path); 1131 break; 1132 1133 } 1134 case XPT_DEV_MATCH: { 1135 struct cam_periph_map_info mapinfo; 1136 struct cam_path *old_path; 1137 1138 /* 1139 * We can't deal with physical addresses for this 1140 * type of transaction. 1141 */ 1142 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1143 error = EINVAL; 1144 break; 1145 } 1146 1147 /* 1148 * Save this in case the caller had it set to 1149 * something in particular. 1150 */ 1151 old_path = inccb->ccb_h.path; 1152 1153 /* 1154 * We really don't need a path for the matching 1155 * code. The path is needed because of the 1156 * debugging statements in xpt_action(). They 1157 * assume that the CCB has a valid path. 1158 */ 1159 inccb->ccb_h.path = xpt_periph->path; 1160 1161 bzero(&mapinfo, sizeof(mapinfo)); 1162 1163 /* 1164 * Map the pattern and match buffers into kernel 1165 * virtual address space. 1166 */ 1167 error = cam_periph_mapmem(inccb, &mapinfo); 1168 1169 if (error) { 1170 inccb->ccb_h.path = old_path; 1171 break; 1172 } 1173 1174 /* 1175 * This is an immediate CCB, we can send it on directly. 1176 */ 1177 xpt_action(inccb); 1178 1179 /* 1180 * Map the buffers back into user space. 1181 */ 1182 cam_periph_unmapmem(inccb, &mapinfo); 1183 1184 inccb->ccb_h.path = old_path; 1185 1186 error = 0; 1187 break; 1188 } 1189 default: 1190 error = ENOTSUP; 1191 break; 1192 } 1193 break; 1194 } 1195 /* 1196 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1197 * with the periphal driver name and unit name filled in. The other 1198 * fields don't really matter as input. The passthrough driver name 1199 * ("pass"), and unit number are passed back in the ccb. The current 1200 * device generation number, and the index into the device peripheral 1201 * driver list, and the status are also passed back. Note that 1202 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1203 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1204 * (or rather should be) impossible for the device peripheral driver 1205 * list to change since we look at the whole thing in one pass, and 1206 * we do it with splcam protection. 1207 * 1208 */ 1209 case CAMGETPASSTHRU: { 1210 union ccb *ccb; 1211 struct cam_periph *periph; 1212 struct periph_driver **p_drv; 1213 char *name; 1214 u_int unit; 1215 u_int cur_generation; 1216 int base_periph_found; 1217 int splbreaknum; 1218 int s; 1219 1220 ccb = (union ccb *)addr; 1221 unit = ccb->cgdl.unit_number; 1222 name = ccb->cgdl.periph_name; 1223 /* 1224 * Every 100 devices, we want to drop our spl protection to 1225 * give the software interrupt handler a chance to run. 1226 * Most systems won't run into this check, but this should 1227 * avoid starvation in the software interrupt handler in 1228 * large systems. 1229 */ 1230 splbreaknum = 100; 1231 1232 ccb = (union ccb *)addr; 1233 1234 base_periph_found = 0; 1235 1236 /* 1237 * Sanity check -- make sure we don't get a null peripheral 1238 * driver name. 1239 */ 1240 if (*ccb->cgdl.periph_name == '\0') { 1241 error = EINVAL; 1242 break; 1243 } 1244 1245 /* Keep the list from changing while we traverse it */ 1246 s = splcam(); 1247 ptstartover: 1248 cur_generation = xsoftc.generation; 1249 1250 /* first find our driver in the list of drivers */ 1251 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1252 if (strcmp((*p_drv)->driver_name, name) == 0) 1253 break; 1254 1255 if (*p_drv == NULL) { 1256 splx(s); 1257 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1258 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1259 *ccb->cgdl.periph_name = '\0'; 1260 ccb->cgdl.unit_number = 0; 1261 error = ENOENT; 1262 break; 1263 } 1264 1265 /* 1266 * Run through every peripheral instance of this driver 1267 * and check to see whether it matches the unit passed 1268 * in by the user. If it does, get out of the loops and 1269 * find the passthrough driver associated with that 1270 * peripheral driver. 1271 */ 1272 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1273 periph = TAILQ_NEXT(periph, unit_links)) { 1274 1275 if (periph->unit_number == unit) { 1276 break; 1277 } else if (--splbreaknum == 0) { 1278 splx(s); 1279 s = splcam(); 1280 splbreaknum = 100; 1281 if (cur_generation != xsoftc.generation) 1282 goto ptstartover; 1283 } 1284 } 1285 /* 1286 * If we found the peripheral driver that the user passed 1287 * in, go through all of the peripheral drivers for that 1288 * particular device and look for a passthrough driver. 1289 */ 1290 if (periph != NULL) { 1291 struct cam_ed *device; 1292 int i; 1293 1294 base_periph_found = 1; 1295 device = periph->path->device; 1296 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1297 periph != NULL; 1298 periph = SLIST_NEXT(periph, periph_links), i++) { 1299 /* 1300 * Check to see whether we have a 1301 * passthrough device or not. 1302 */ 1303 if (strcmp(periph->periph_name, "pass") == 0) { 1304 /* 1305 * Fill in the getdevlist fields. 1306 */ 1307 strcpy(ccb->cgdl.periph_name, 1308 periph->periph_name); 1309 ccb->cgdl.unit_number = 1310 periph->unit_number; 1311 if (SLIST_NEXT(periph, periph_links)) 1312 ccb->cgdl.status = 1313 CAM_GDEVLIST_MORE_DEVS; 1314 else 1315 ccb->cgdl.status = 1316 CAM_GDEVLIST_LAST_DEVICE; 1317 ccb->cgdl.generation = 1318 device->generation; 1319 ccb->cgdl.index = i; 1320 /* 1321 * Fill in some CCB header fields 1322 * that the user may want. 1323 */ 1324 ccb->ccb_h.path_id = 1325 periph->path->bus->path_id; 1326 ccb->ccb_h.target_id = 1327 periph->path->target->target_id; 1328 ccb->ccb_h.target_lun = 1329 periph->path->device->lun_id; 1330 ccb->ccb_h.status = CAM_REQ_CMP; 1331 break; 1332 } 1333 } 1334 } 1335 1336 /* 1337 * If the periph is null here, one of two things has 1338 * happened. The first possibility is that we couldn't 1339 * find the unit number of the particular peripheral driver 1340 * that the user is asking about. e.g. the user asks for 1341 * the passthrough driver for "da11". We find the list of 1342 * "da" peripherals all right, but there is no unit 11. 1343 * The other possibility is that we went through the list 1344 * of peripheral drivers attached to the device structure, 1345 * but didn't find one with the name "pass". Either way, 1346 * we return ENOENT, since we couldn't find something. 1347 */ 1348 if (periph == NULL) { 1349 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1350 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1351 *ccb->cgdl.periph_name = '\0'; 1352 ccb->cgdl.unit_number = 0; 1353 error = ENOENT; 1354 /* 1355 * It is unfortunate that this is even necessary, 1356 * but there are many, many clueless users out there. 1357 * If this is true, the user is looking for the 1358 * passthrough driver, but doesn't have one in his 1359 * kernel. 1360 */ 1361 if (base_periph_found == 1) { 1362 printf("xptioctl: pass driver is not in the " 1363 "kernel\n"); 1364 printf("xptioctl: put \"device pass0\" in " 1365 "your kernel config file\n"); 1366 } 1367 } 1368 splx(s); 1369 break; 1370 } 1371 default: 1372 error = ENOTTY; 1373 break; 1374 } 1375 1376 return(error); 1377 } 1378 1379 static int 1380 cam_module_event_handler(module_t mod, int what, void *arg) 1381 { 1382 if (what == MOD_LOAD) { 1383 xpt_init(NULL); 1384 } else if (what == MOD_UNLOAD) { 1385 return EBUSY; 1386 } else { 1387 return EOPNOTSUPP; 1388 } 1389 1390 return 0; 1391 } 1392 1393 /* Functions accessed by the peripheral drivers */ 1394 static void 1395 xpt_init(dummy) 1396 void *dummy; 1397 { 1398 struct cam_sim *xpt_sim; 1399 struct cam_path *path; 1400 struct cam_devq *devq; 1401 cam_status status; 1402 1403 TAILQ_INIT(&xpt_busses); 1404 TAILQ_INIT(&cam_bioq); 1405 SLIST_INIT(&ccb_freeq); 1406 STAILQ_INIT(&highpowerq); 1407 1408 mtx_init(&cam_bioq_lock, "CAM BIOQ lock", NULL, MTX_DEF); 1409 1410 /* 1411 * The xpt layer is, itself, the equivelent of a SIM. 1412 * Allow 16 ccbs in the ccb pool for it. This should 1413 * give decent parallelism when we probe busses and 1414 * perform other XPT functions. 1415 */ 1416 devq = cam_simq_alloc(16); 1417 xpt_sim = cam_sim_alloc(xptaction, 1418 xptpoll, 1419 "xpt", 1420 /*softc*/NULL, 1421 /*unit*/0, 1422 /*max_dev_transactions*/0, 1423 /*max_tagged_dev_transactions*/0, 1424 devq); 1425 xpt_max_ccbs = 16; 1426 1427 xpt_bus_register(xpt_sim, /*bus #*/0); 1428 1429 /* 1430 * Looking at the XPT from the SIM layer, the XPT is 1431 * the equivelent of a peripheral driver. Allocate 1432 * a peripheral driver entry for us. 1433 */ 1434 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1435 CAM_TARGET_WILDCARD, 1436 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1437 printf("xpt_init: xpt_create_path failed with status %#x," 1438 " failing attach\n", status); 1439 return; 1440 } 1441 1442 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1443 path, NULL, 0, NULL); 1444 xpt_free_path(path); 1445 1446 xpt_sim->softc = xpt_periph; 1447 1448 /* 1449 * Register a callback for when interrupts are enabled. 1450 */ 1451 xpt_config_hook = 1452 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1453 M_TEMP, M_NOWAIT | M_ZERO); 1454 if (xpt_config_hook == NULL) { 1455 printf("xpt_init: Cannot malloc config hook " 1456 "- failing attach\n"); 1457 return; 1458 } 1459 1460 xpt_config_hook->ich_func = xpt_config; 1461 if (config_intrhook_establish(xpt_config_hook) != 0) { 1462 free (xpt_config_hook, M_TEMP); 1463 printf("xpt_init: config_intrhook_establish failed " 1464 "- failing attach\n"); 1465 } 1466 1467 /* Install our software interrupt handlers */ 1468 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1469 } 1470 1471 static cam_status 1472 xptregister(struct cam_periph *periph, void *arg) 1473 { 1474 if (periph == NULL) { 1475 printf("xptregister: periph was NULL!!\n"); 1476 return(CAM_REQ_CMP_ERR); 1477 } 1478 1479 periph->softc = NULL; 1480 1481 xpt_periph = periph; 1482 1483 return(CAM_REQ_CMP); 1484 } 1485 1486 int32_t 1487 xpt_add_periph(struct cam_periph *periph) 1488 { 1489 struct cam_ed *device; 1490 int32_t status; 1491 struct periph_list *periph_head; 1492 1493 GIANT_REQUIRED; 1494 1495 device = periph->path->device; 1496 1497 periph_head = &device->periphs; 1498 1499 status = CAM_REQ_CMP; 1500 1501 if (device != NULL) { 1502 int s; 1503 1504 /* 1505 * Make room for this peripheral 1506 * so it will fit in the queue 1507 * when it's scheduled to run 1508 */ 1509 s = splsoftcam(); 1510 status = camq_resize(&device->drvq, 1511 device->drvq.array_size + 1); 1512 1513 device->generation++; 1514 1515 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1516 1517 splx(s); 1518 } 1519 1520 xsoftc.generation++; 1521 1522 return (status); 1523 } 1524 1525 void 1526 xpt_remove_periph(struct cam_periph *periph) 1527 { 1528 struct cam_ed *device; 1529 1530 GIANT_REQUIRED; 1531 1532 device = periph->path->device; 1533 1534 if (device != NULL) { 1535 int s; 1536 struct periph_list *periph_head; 1537 1538 periph_head = &device->periphs; 1539 1540 /* Release the slot for this peripheral */ 1541 s = splsoftcam(); 1542 camq_resize(&device->drvq, device->drvq.array_size - 1); 1543 1544 device->generation++; 1545 1546 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1547 1548 splx(s); 1549 } 1550 1551 xsoftc.generation++; 1552 1553 } 1554 1555 #ifdef CAM_NEW_TRAN_CODE 1556 1557 void 1558 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1559 { 1560 struct ccb_pathinq cpi; 1561 struct ccb_trans_settings cts; 1562 struct cam_path *path; 1563 u_int speed; 1564 u_int freq; 1565 u_int mb; 1566 int s; 1567 1568 GIANT_REQUIRED; 1569 1570 path = periph->path; 1571 /* 1572 * To ensure that this is printed in one piece, 1573 * mask out CAM interrupts. 1574 */ 1575 s = splsoftcam(); 1576 printf("%s%d at %s%d bus %d target %d lun %d\n", 1577 periph->periph_name, periph->unit_number, 1578 path->bus->sim->sim_name, 1579 path->bus->sim->unit_number, 1580 path->bus->sim->bus_id, 1581 path->target->target_id, 1582 path->device->lun_id); 1583 printf("%s%d: ", periph->periph_name, periph->unit_number); 1584 scsi_print_inquiry(&path->device->inq_data); 1585 if (bootverbose && path->device->serial_num_len > 0) { 1586 /* Don't wrap the screen - print only the first 60 chars */ 1587 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1588 periph->unit_number, path->device->serial_num); 1589 } 1590 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1591 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1592 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1593 xpt_action((union ccb*)&cts); 1594 1595 /* Ask the SIM for its base transfer speed */ 1596 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1597 cpi.ccb_h.func_code = XPT_PATH_INQ; 1598 xpt_action((union ccb *)&cpi); 1599 1600 speed = cpi.base_transfer_speed; 1601 freq = 0; 1602 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1603 struct ccb_trans_settings_spi *spi; 1604 1605 spi = &cts.xport_specific.spi; 1606 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1607 && spi->sync_offset != 0) { 1608 freq = scsi_calc_syncsrate(spi->sync_period); 1609 speed = freq; 1610 } 1611 1612 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1613 speed *= (0x01 << spi->bus_width); 1614 } 1615 1616 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1617 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1618 if (fc->valid & CTS_FC_VALID_SPEED) { 1619 speed = fc->bitrate; 1620 } 1621 } 1622 1623 mb = speed / 1000; 1624 if (mb > 0) 1625 printf("%s%d: %d.%03dMB/s transfers", 1626 periph->periph_name, periph->unit_number, 1627 mb, speed % 1000); 1628 else 1629 printf("%s%d: %dKB/s transfers", periph->periph_name, 1630 periph->unit_number, speed); 1631 /* Report additional information about SPI connections */ 1632 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1633 struct ccb_trans_settings_spi *spi; 1634 1635 spi = &cts.xport_specific.spi; 1636 if (freq != 0) { 1637 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1638 freq % 1000, 1639 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1640 ? " DT" : "", 1641 spi->sync_offset); 1642 } 1643 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1644 && spi->bus_width > 0) { 1645 if (freq != 0) { 1646 printf(", "); 1647 } else { 1648 printf(" ("); 1649 } 1650 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1651 } else if (freq != 0) { 1652 printf(")"); 1653 } 1654 } 1655 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1656 struct ccb_trans_settings_fc *fc; 1657 1658 fc = &cts.xport_specific.fc; 1659 if (fc->valid & CTS_FC_VALID_WWNN) 1660 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1661 if (fc->valid & CTS_FC_VALID_WWPN) 1662 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1663 if (fc->valid & CTS_FC_VALID_PORT) 1664 printf(" PortID 0x%x", fc->port); 1665 } 1666 1667 if (path->device->inq_flags & SID_CmdQue 1668 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1669 printf("\n%s%d: Tagged Queueing Enabled", 1670 periph->periph_name, periph->unit_number); 1671 } 1672 printf("\n"); 1673 1674 /* 1675 * We only want to print the caller's announce string if they've 1676 * passed one in.. 1677 */ 1678 if (announce_string != NULL) 1679 printf("%s%d: %s\n", periph->periph_name, 1680 periph->unit_number, announce_string); 1681 splx(s); 1682 } 1683 #else /* CAM_NEW_TRAN_CODE */ 1684 void 1685 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1686 { 1687 int s; 1688 u_int mb; 1689 struct cam_path *path; 1690 struct ccb_trans_settings cts; 1691 1692 GIANT_REQUIRED; 1693 1694 path = periph->path; 1695 /* 1696 * To ensure that this is printed in one piece, 1697 * mask out CAM interrupts. 1698 */ 1699 s = splsoftcam(); 1700 printf("%s%d at %s%d bus %d target %d lun %d\n", 1701 periph->periph_name, periph->unit_number, 1702 path->bus->sim->sim_name, 1703 path->bus->sim->unit_number, 1704 path->bus->sim->bus_id, 1705 path->target->target_id, 1706 path->device->lun_id); 1707 printf("%s%d: ", periph->periph_name, periph->unit_number); 1708 scsi_print_inquiry(&path->device->inq_data); 1709 if ((bootverbose) 1710 && (path->device->serial_num_len > 0)) { 1711 /* Don't wrap the screen - print only the first 60 chars */ 1712 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1713 periph->unit_number, path->device->serial_num); 1714 } 1715 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1716 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1717 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1718 xpt_action((union ccb*)&cts); 1719 if (cts.ccb_h.status == CAM_REQ_CMP) { 1720 u_int speed; 1721 u_int freq; 1722 1723 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1724 && cts.sync_offset != 0) { 1725 freq = scsi_calc_syncsrate(cts.sync_period); 1726 speed = freq; 1727 } else { 1728 struct ccb_pathinq cpi; 1729 1730 /* Ask the SIM for its base transfer speed */ 1731 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1732 cpi.ccb_h.func_code = XPT_PATH_INQ; 1733 xpt_action((union ccb *)&cpi); 1734 1735 speed = cpi.base_transfer_speed; 1736 freq = 0; 1737 } 1738 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1739 speed *= (0x01 << cts.bus_width); 1740 mb = speed / 1000; 1741 if (mb > 0) 1742 printf("%s%d: %d.%03dMB/s transfers", 1743 periph->periph_name, periph->unit_number, 1744 mb, speed % 1000); 1745 else 1746 printf("%s%d: %dKB/s transfers", periph->periph_name, 1747 periph->unit_number, speed); 1748 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1749 && cts.sync_offset != 0) { 1750 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1751 freq % 1000, cts.sync_offset); 1752 } 1753 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1754 && cts.bus_width > 0) { 1755 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1756 && cts.sync_offset != 0) { 1757 printf(", "); 1758 } else { 1759 printf(" ("); 1760 } 1761 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1762 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1763 && cts.sync_offset != 0) { 1764 printf(")"); 1765 } 1766 1767 if (path->device->inq_flags & SID_CmdQue 1768 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1769 printf(", Tagged Queueing Enabled"); 1770 } 1771 1772 printf("\n"); 1773 } else if (path->device->inq_flags & SID_CmdQue 1774 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1775 printf("%s%d: Tagged Queueing Enabled\n", 1776 periph->periph_name, periph->unit_number); 1777 } 1778 1779 /* 1780 * We only want to print the caller's announce string if they've 1781 * passed one in.. 1782 */ 1783 if (announce_string != NULL) 1784 printf("%s%d: %s\n", periph->periph_name, 1785 periph->unit_number, announce_string); 1786 splx(s); 1787 } 1788 1789 #endif /* CAM_NEW_TRAN_CODE */ 1790 1791 static dev_match_ret 1792 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1793 struct cam_eb *bus) 1794 { 1795 dev_match_ret retval; 1796 int i; 1797 1798 retval = DM_RET_NONE; 1799 1800 /* 1801 * If we aren't given something to match against, that's an error. 1802 */ 1803 if (bus == NULL) 1804 return(DM_RET_ERROR); 1805 1806 /* 1807 * If there are no match entries, then this bus matches no 1808 * matter what. 1809 */ 1810 if ((patterns == NULL) || (num_patterns == 0)) 1811 return(DM_RET_DESCEND | DM_RET_COPY); 1812 1813 for (i = 0; i < num_patterns; i++) { 1814 struct bus_match_pattern *cur_pattern; 1815 1816 /* 1817 * If the pattern in question isn't for a bus node, we 1818 * aren't interested. However, we do indicate to the 1819 * calling routine that we should continue descending the 1820 * tree, since the user wants to match against lower-level 1821 * EDT elements. 1822 */ 1823 if (patterns[i].type != DEV_MATCH_BUS) { 1824 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1825 retval |= DM_RET_DESCEND; 1826 continue; 1827 } 1828 1829 cur_pattern = &patterns[i].pattern.bus_pattern; 1830 1831 /* 1832 * If they want to match any bus node, we give them any 1833 * device node. 1834 */ 1835 if (cur_pattern->flags == BUS_MATCH_ANY) { 1836 /* set the copy flag */ 1837 retval |= DM_RET_COPY; 1838 1839 /* 1840 * If we've already decided on an action, go ahead 1841 * and return. 1842 */ 1843 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1844 return(retval); 1845 } 1846 1847 /* 1848 * Not sure why someone would do this... 1849 */ 1850 if (cur_pattern->flags == BUS_MATCH_NONE) 1851 continue; 1852 1853 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1854 && (cur_pattern->path_id != bus->path_id)) 1855 continue; 1856 1857 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1858 && (cur_pattern->bus_id != bus->sim->bus_id)) 1859 continue; 1860 1861 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1862 && (cur_pattern->unit_number != bus->sim->unit_number)) 1863 continue; 1864 1865 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1866 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1867 DEV_IDLEN) != 0)) 1868 continue; 1869 1870 /* 1871 * If we get to this point, the user definitely wants 1872 * information on this bus. So tell the caller to copy the 1873 * data out. 1874 */ 1875 retval |= DM_RET_COPY; 1876 1877 /* 1878 * If the return action has been set to descend, then we 1879 * know that we've already seen a non-bus matching 1880 * expression, therefore we need to further descend the tree. 1881 * This won't change by continuing around the loop, so we 1882 * go ahead and return. If we haven't seen a non-bus 1883 * matching expression, we keep going around the loop until 1884 * we exhaust the matching expressions. We'll set the stop 1885 * flag once we fall out of the loop. 1886 */ 1887 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1888 return(retval); 1889 } 1890 1891 /* 1892 * If the return action hasn't been set to descend yet, that means 1893 * we haven't seen anything other than bus matching patterns. So 1894 * tell the caller to stop descending the tree -- the user doesn't 1895 * want to match against lower level tree elements. 1896 */ 1897 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1898 retval |= DM_RET_STOP; 1899 1900 return(retval); 1901 } 1902 1903 static dev_match_ret 1904 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1905 struct cam_ed *device) 1906 { 1907 dev_match_ret retval; 1908 int i; 1909 1910 retval = DM_RET_NONE; 1911 1912 /* 1913 * If we aren't given something to match against, that's an error. 1914 */ 1915 if (device == NULL) 1916 return(DM_RET_ERROR); 1917 1918 /* 1919 * If there are no match entries, then this device matches no 1920 * matter what. 1921 */ 1922 if ((patterns == NULL) || (num_patterns == 0)) 1923 return(DM_RET_DESCEND | DM_RET_COPY); 1924 1925 for (i = 0; i < num_patterns; i++) { 1926 struct device_match_pattern *cur_pattern; 1927 1928 /* 1929 * If the pattern in question isn't for a device node, we 1930 * aren't interested. 1931 */ 1932 if (patterns[i].type != DEV_MATCH_DEVICE) { 1933 if ((patterns[i].type == DEV_MATCH_PERIPH) 1934 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1935 retval |= DM_RET_DESCEND; 1936 continue; 1937 } 1938 1939 cur_pattern = &patterns[i].pattern.device_pattern; 1940 1941 /* 1942 * If they want to match any device node, we give them any 1943 * device node. 1944 */ 1945 if (cur_pattern->flags == DEV_MATCH_ANY) { 1946 /* set the copy flag */ 1947 retval |= DM_RET_COPY; 1948 1949 1950 /* 1951 * If we've already decided on an action, go ahead 1952 * and return. 1953 */ 1954 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1955 return(retval); 1956 } 1957 1958 /* 1959 * Not sure why someone would do this... 1960 */ 1961 if (cur_pattern->flags == DEV_MATCH_NONE) 1962 continue; 1963 1964 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1965 && (cur_pattern->path_id != device->target->bus->path_id)) 1966 continue; 1967 1968 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1969 && (cur_pattern->target_id != device->target->target_id)) 1970 continue; 1971 1972 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1973 && (cur_pattern->target_lun != device->lun_id)) 1974 continue; 1975 1976 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1977 && (cam_quirkmatch((caddr_t)&device->inq_data, 1978 (caddr_t)&cur_pattern->inq_pat, 1979 1, sizeof(cur_pattern->inq_pat), 1980 scsi_static_inquiry_match) == NULL)) 1981 continue; 1982 1983 /* 1984 * If we get to this point, the user definitely wants 1985 * information on this device. So tell the caller to copy 1986 * the data out. 1987 */ 1988 retval |= DM_RET_COPY; 1989 1990 /* 1991 * If the return action has been set to descend, then we 1992 * know that we've already seen a peripheral matching 1993 * expression, therefore we need to further descend the tree. 1994 * This won't change by continuing around the loop, so we 1995 * go ahead and return. If we haven't seen a peripheral 1996 * matching expression, we keep going around the loop until 1997 * we exhaust the matching expressions. We'll set the stop 1998 * flag once we fall out of the loop. 1999 */ 2000 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 2001 return(retval); 2002 } 2003 2004 /* 2005 * If the return action hasn't been set to descend yet, that means 2006 * we haven't seen any peripheral matching patterns. So tell the 2007 * caller to stop descending the tree -- the user doesn't want to 2008 * match against lower level tree elements. 2009 */ 2010 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 2011 retval |= DM_RET_STOP; 2012 2013 return(retval); 2014 } 2015 2016 /* 2017 * Match a single peripheral against any number of match patterns. 2018 */ 2019 static dev_match_ret 2020 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 2021 struct cam_periph *periph) 2022 { 2023 dev_match_ret retval; 2024 int i; 2025 2026 /* 2027 * If we aren't given something to match against, that's an error. 2028 */ 2029 if (periph == NULL) 2030 return(DM_RET_ERROR); 2031 2032 /* 2033 * If there are no match entries, then this peripheral matches no 2034 * matter what. 2035 */ 2036 if ((patterns == NULL) || (num_patterns == 0)) 2037 return(DM_RET_STOP | DM_RET_COPY); 2038 2039 /* 2040 * There aren't any nodes below a peripheral node, so there's no 2041 * reason to descend the tree any further. 2042 */ 2043 retval = DM_RET_STOP; 2044 2045 for (i = 0; i < num_patterns; i++) { 2046 struct periph_match_pattern *cur_pattern; 2047 2048 /* 2049 * If the pattern in question isn't for a peripheral, we 2050 * aren't interested. 2051 */ 2052 if (patterns[i].type != DEV_MATCH_PERIPH) 2053 continue; 2054 2055 cur_pattern = &patterns[i].pattern.periph_pattern; 2056 2057 /* 2058 * If they want to match on anything, then we will do so. 2059 */ 2060 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2061 /* set the copy flag */ 2062 retval |= DM_RET_COPY; 2063 2064 /* 2065 * We've already set the return action to stop, 2066 * since there are no nodes below peripherals in 2067 * the tree. 2068 */ 2069 return(retval); 2070 } 2071 2072 /* 2073 * Not sure why someone would do this... 2074 */ 2075 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2076 continue; 2077 2078 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2079 && (cur_pattern->path_id != periph->path->bus->path_id)) 2080 continue; 2081 2082 /* 2083 * For the target and lun id's, we have to make sure the 2084 * target and lun pointers aren't NULL. The xpt peripheral 2085 * has a wildcard target and device. 2086 */ 2087 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2088 && ((periph->path->target == NULL) 2089 ||(cur_pattern->target_id != periph->path->target->target_id))) 2090 continue; 2091 2092 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2093 && ((periph->path->device == NULL) 2094 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2095 continue; 2096 2097 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2098 && (cur_pattern->unit_number != periph->unit_number)) 2099 continue; 2100 2101 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2102 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2103 DEV_IDLEN) != 0)) 2104 continue; 2105 2106 /* 2107 * If we get to this point, the user definitely wants 2108 * information on this peripheral. So tell the caller to 2109 * copy the data out. 2110 */ 2111 retval |= DM_RET_COPY; 2112 2113 /* 2114 * The return action has already been set to stop, since 2115 * peripherals don't have any nodes below them in the EDT. 2116 */ 2117 return(retval); 2118 } 2119 2120 /* 2121 * If we get to this point, the peripheral that was passed in 2122 * doesn't match any of the patterns. 2123 */ 2124 return(retval); 2125 } 2126 2127 static int 2128 xptedtbusfunc(struct cam_eb *bus, void *arg) 2129 { 2130 struct ccb_dev_match *cdm; 2131 dev_match_ret retval; 2132 2133 cdm = (struct ccb_dev_match *)arg; 2134 2135 /* 2136 * If our position is for something deeper in the tree, that means 2137 * that we've already seen this node. So, we keep going down. 2138 */ 2139 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2140 && (cdm->pos.cookie.bus == bus) 2141 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2142 && (cdm->pos.cookie.target != NULL)) 2143 retval = DM_RET_DESCEND; 2144 else 2145 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2146 2147 /* 2148 * If we got an error, bail out of the search. 2149 */ 2150 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2151 cdm->status = CAM_DEV_MATCH_ERROR; 2152 return(0); 2153 } 2154 2155 /* 2156 * If the copy flag is set, copy this bus out. 2157 */ 2158 if (retval & DM_RET_COPY) { 2159 int spaceleft, j; 2160 2161 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2162 sizeof(struct dev_match_result)); 2163 2164 /* 2165 * If we don't have enough space to put in another 2166 * match result, save our position and tell the 2167 * user there are more devices to check. 2168 */ 2169 if (spaceleft < sizeof(struct dev_match_result)) { 2170 bzero(&cdm->pos, sizeof(cdm->pos)); 2171 cdm->pos.position_type = 2172 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2173 2174 cdm->pos.cookie.bus = bus; 2175 cdm->pos.generations[CAM_BUS_GENERATION]= 2176 bus_generation; 2177 cdm->status = CAM_DEV_MATCH_MORE; 2178 return(0); 2179 } 2180 j = cdm->num_matches; 2181 cdm->num_matches++; 2182 cdm->matches[j].type = DEV_MATCH_BUS; 2183 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2184 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2185 cdm->matches[j].result.bus_result.unit_number = 2186 bus->sim->unit_number; 2187 strncpy(cdm->matches[j].result.bus_result.dev_name, 2188 bus->sim->sim_name, DEV_IDLEN); 2189 } 2190 2191 /* 2192 * If the user is only interested in busses, there's no 2193 * reason to descend to the next level in the tree. 2194 */ 2195 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2196 return(1); 2197 2198 /* 2199 * If there is a target generation recorded, check it to 2200 * make sure the target list hasn't changed. 2201 */ 2202 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2203 && (bus == cdm->pos.cookie.bus) 2204 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2205 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2206 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2207 bus->generation)) { 2208 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2209 return(0); 2210 } 2211 2212 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2213 && (cdm->pos.cookie.bus == bus) 2214 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2215 && (cdm->pos.cookie.target != NULL)) 2216 return(xpttargettraverse(bus, 2217 (struct cam_et *)cdm->pos.cookie.target, 2218 xptedttargetfunc, arg)); 2219 else 2220 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2221 } 2222 2223 static int 2224 xptedttargetfunc(struct cam_et *target, void *arg) 2225 { 2226 struct ccb_dev_match *cdm; 2227 2228 cdm = (struct ccb_dev_match *)arg; 2229 2230 /* 2231 * If there is a device list generation recorded, check it to 2232 * make sure the device list hasn't changed. 2233 */ 2234 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2235 && (cdm->pos.cookie.bus == target->bus) 2236 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2237 && (cdm->pos.cookie.target == target) 2238 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2239 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2240 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2241 target->generation)) { 2242 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2243 return(0); 2244 } 2245 2246 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2247 && (cdm->pos.cookie.bus == target->bus) 2248 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2249 && (cdm->pos.cookie.target == target) 2250 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2251 && (cdm->pos.cookie.device != NULL)) 2252 return(xptdevicetraverse(target, 2253 (struct cam_ed *)cdm->pos.cookie.device, 2254 xptedtdevicefunc, arg)); 2255 else 2256 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2257 } 2258 2259 static int 2260 xptedtdevicefunc(struct cam_ed *device, void *arg) 2261 { 2262 2263 struct ccb_dev_match *cdm; 2264 dev_match_ret retval; 2265 2266 cdm = (struct ccb_dev_match *)arg; 2267 2268 /* 2269 * If our position is for something deeper in the tree, that means 2270 * that we've already seen this node. So, we keep going down. 2271 */ 2272 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2273 && (cdm->pos.cookie.device == device) 2274 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2275 && (cdm->pos.cookie.periph != NULL)) 2276 retval = DM_RET_DESCEND; 2277 else 2278 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2279 device); 2280 2281 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2282 cdm->status = CAM_DEV_MATCH_ERROR; 2283 return(0); 2284 } 2285 2286 /* 2287 * If the copy flag is set, copy this device out. 2288 */ 2289 if (retval & DM_RET_COPY) { 2290 int spaceleft, j; 2291 2292 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2293 sizeof(struct dev_match_result)); 2294 2295 /* 2296 * If we don't have enough space to put in another 2297 * match result, save our position and tell the 2298 * user there are more devices to check. 2299 */ 2300 if (spaceleft < sizeof(struct dev_match_result)) { 2301 bzero(&cdm->pos, sizeof(cdm->pos)); 2302 cdm->pos.position_type = 2303 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2304 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2305 2306 cdm->pos.cookie.bus = device->target->bus; 2307 cdm->pos.generations[CAM_BUS_GENERATION]= 2308 bus_generation; 2309 cdm->pos.cookie.target = device->target; 2310 cdm->pos.generations[CAM_TARGET_GENERATION] = 2311 device->target->bus->generation; 2312 cdm->pos.cookie.device = device; 2313 cdm->pos.generations[CAM_DEV_GENERATION] = 2314 device->target->generation; 2315 cdm->status = CAM_DEV_MATCH_MORE; 2316 return(0); 2317 } 2318 j = cdm->num_matches; 2319 cdm->num_matches++; 2320 cdm->matches[j].type = DEV_MATCH_DEVICE; 2321 cdm->matches[j].result.device_result.path_id = 2322 device->target->bus->path_id; 2323 cdm->matches[j].result.device_result.target_id = 2324 device->target->target_id; 2325 cdm->matches[j].result.device_result.target_lun = 2326 device->lun_id; 2327 bcopy(&device->inq_data, 2328 &cdm->matches[j].result.device_result.inq_data, 2329 sizeof(struct scsi_inquiry_data)); 2330 2331 /* Let the user know whether this device is unconfigured */ 2332 if (device->flags & CAM_DEV_UNCONFIGURED) 2333 cdm->matches[j].result.device_result.flags = 2334 DEV_RESULT_UNCONFIGURED; 2335 else 2336 cdm->matches[j].result.device_result.flags = 2337 DEV_RESULT_NOFLAG; 2338 } 2339 2340 /* 2341 * If the user isn't interested in peripherals, don't descend 2342 * the tree any further. 2343 */ 2344 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2345 return(1); 2346 2347 /* 2348 * If there is a peripheral list generation recorded, make sure 2349 * it hasn't changed. 2350 */ 2351 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2352 && (device->target->bus == cdm->pos.cookie.bus) 2353 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2354 && (device->target == cdm->pos.cookie.target) 2355 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2356 && (device == cdm->pos.cookie.device) 2357 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2358 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2359 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2360 device->generation)){ 2361 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2362 return(0); 2363 } 2364 2365 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2366 && (cdm->pos.cookie.bus == device->target->bus) 2367 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2368 && (cdm->pos.cookie.target == device->target) 2369 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2370 && (cdm->pos.cookie.device == device) 2371 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2372 && (cdm->pos.cookie.periph != NULL)) 2373 return(xptperiphtraverse(device, 2374 (struct cam_periph *)cdm->pos.cookie.periph, 2375 xptedtperiphfunc, arg)); 2376 else 2377 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2378 } 2379 2380 static int 2381 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2382 { 2383 struct ccb_dev_match *cdm; 2384 dev_match_ret retval; 2385 2386 cdm = (struct ccb_dev_match *)arg; 2387 2388 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2389 2390 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2391 cdm->status = CAM_DEV_MATCH_ERROR; 2392 return(0); 2393 } 2394 2395 /* 2396 * If the copy flag is set, copy this peripheral out. 2397 */ 2398 if (retval & DM_RET_COPY) { 2399 int spaceleft, j; 2400 2401 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2402 sizeof(struct dev_match_result)); 2403 2404 /* 2405 * If we don't have enough space to put in another 2406 * match result, save our position and tell the 2407 * user there are more devices to check. 2408 */ 2409 if (spaceleft < sizeof(struct dev_match_result)) { 2410 bzero(&cdm->pos, sizeof(cdm->pos)); 2411 cdm->pos.position_type = 2412 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2413 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2414 CAM_DEV_POS_PERIPH; 2415 2416 cdm->pos.cookie.bus = periph->path->bus; 2417 cdm->pos.generations[CAM_BUS_GENERATION]= 2418 bus_generation; 2419 cdm->pos.cookie.target = periph->path->target; 2420 cdm->pos.generations[CAM_TARGET_GENERATION] = 2421 periph->path->bus->generation; 2422 cdm->pos.cookie.device = periph->path->device; 2423 cdm->pos.generations[CAM_DEV_GENERATION] = 2424 periph->path->target->generation; 2425 cdm->pos.cookie.periph = periph; 2426 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2427 periph->path->device->generation; 2428 cdm->status = CAM_DEV_MATCH_MORE; 2429 return(0); 2430 } 2431 2432 j = cdm->num_matches; 2433 cdm->num_matches++; 2434 cdm->matches[j].type = DEV_MATCH_PERIPH; 2435 cdm->matches[j].result.periph_result.path_id = 2436 periph->path->bus->path_id; 2437 cdm->matches[j].result.periph_result.target_id = 2438 periph->path->target->target_id; 2439 cdm->matches[j].result.periph_result.target_lun = 2440 periph->path->device->lun_id; 2441 cdm->matches[j].result.periph_result.unit_number = 2442 periph->unit_number; 2443 strncpy(cdm->matches[j].result.periph_result.periph_name, 2444 periph->periph_name, DEV_IDLEN); 2445 } 2446 2447 return(1); 2448 } 2449 2450 static int 2451 xptedtmatch(struct ccb_dev_match *cdm) 2452 { 2453 int ret; 2454 2455 cdm->num_matches = 0; 2456 2457 /* 2458 * Check the bus list generation. If it has changed, the user 2459 * needs to reset everything and start over. 2460 */ 2461 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2462 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2463 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2464 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2465 return(0); 2466 } 2467 2468 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2469 && (cdm->pos.cookie.bus != NULL)) 2470 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2471 xptedtbusfunc, cdm); 2472 else 2473 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2474 2475 /* 2476 * If we get back 0, that means that we had to stop before fully 2477 * traversing the EDT. It also means that one of the subroutines 2478 * has set the status field to the proper value. If we get back 1, 2479 * we've fully traversed the EDT and copied out any matching entries. 2480 */ 2481 if (ret == 1) 2482 cdm->status = CAM_DEV_MATCH_LAST; 2483 2484 return(ret); 2485 } 2486 2487 static int 2488 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2489 { 2490 struct ccb_dev_match *cdm; 2491 2492 cdm = (struct ccb_dev_match *)arg; 2493 2494 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2495 && (cdm->pos.cookie.pdrv == pdrv) 2496 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2497 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2498 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2499 (*pdrv)->generation)) { 2500 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2501 return(0); 2502 } 2503 2504 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2505 && (cdm->pos.cookie.pdrv == pdrv) 2506 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2507 && (cdm->pos.cookie.periph != NULL)) 2508 return(xptpdperiphtraverse(pdrv, 2509 (struct cam_periph *)cdm->pos.cookie.periph, 2510 xptplistperiphfunc, arg)); 2511 else 2512 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2513 } 2514 2515 static int 2516 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2517 { 2518 struct ccb_dev_match *cdm; 2519 dev_match_ret retval; 2520 2521 cdm = (struct ccb_dev_match *)arg; 2522 2523 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2524 2525 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2526 cdm->status = CAM_DEV_MATCH_ERROR; 2527 return(0); 2528 } 2529 2530 /* 2531 * If the copy flag is set, copy this peripheral out. 2532 */ 2533 if (retval & DM_RET_COPY) { 2534 int spaceleft, j; 2535 2536 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2537 sizeof(struct dev_match_result)); 2538 2539 /* 2540 * If we don't have enough space to put in another 2541 * match result, save our position and tell the 2542 * user there are more devices to check. 2543 */ 2544 if (spaceleft < sizeof(struct dev_match_result)) { 2545 struct periph_driver **pdrv; 2546 2547 pdrv = NULL; 2548 bzero(&cdm->pos, sizeof(cdm->pos)); 2549 cdm->pos.position_type = 2550 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2551 CAM_DEV_POS_PERIPH; 2552 2553 /* 2554 * This may look a bit non-sensical, but it is 2555 * actually quite logical. There are very few 2556 * peripheral drivers, and bloating every peripheral 2557 * structure with a pointer back to its parent 2558 * peripheral driver linker set entry would cost 2559 * more in the long run than doing this quick lookup. 2560 */ 2561 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2562 if (strcmp((*pdrv)->driver_name, 2563 periph->periph_name) == 0) 2564 break; 2565 } 2566 2567 if (*pdrv == NULL) { 2568 cdm->status = CAM_DEV_MATCH_ERROR; 2569 return(0); 2570 } 2571 2572 cdm->pos.cookie.pdrv = pdrv; 2573 /* 2574 * The periph generation slot does double duty, as 2575 * does the periph pointer slot. They are used for 2576 * both edt and pdrv lookups and positioning. 2577 */ 2578 cdm->pos.cookie.periph = periph; 2579 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2580 (*pdrv)->generation; 2581 cdm->status = CAM_DEV_MATCH_MORE; 2582 return(0); 2583 } 2584 2585 j = cdm->num_matches; 2586 cdm->num_matches++; 2587 cdm->matches[j].type = DEV_MATCH_PERIPH; 2588 cdm->matches[j].result.periph_result.path_id = 2589 periph->path->bus->path_id; 2590 2591 /* 2592 * The transport layer peripheral doesn't have a target or 2593 * lun. 2594 */ 2595 if (periph->path->target) 2596 cdm->matches[j].result.periph_result.target_id = 2597 periph->path->target->target_id; 2598 else 2599 cdm->matches[j].result.periph_result.target_id = -1; 2600 2601 if (periph->path->device) 2602 cdm->matches[j].result.periph_result.target_lun = 2603 periph->path->device->lun_id; 2604 else 2605 cdm->matches[j].result.periph_result.target_lun = -1; 2606 2607 cdm->matches[j].result.periph_result.unit_number = 2608 periph->unit_number; 2609 strncpy(cdm->matches[j].result.periph_result.periph_name, 2610 periph->periph_name, DEV_IDLEN); 2611 } 2612 2613 return(1); 2614 } 2615 2616 static int 2617 xptperiphlistmatch(struct ccb_dev_match *cdm) 2618 { 2619 int ret; 2620 2621 cdm->num_matches = 0; 2622 2623 /* 2624 * At this point in the edt traversal function, we check the bus 2625 * list generation to make sure that no busses have been added or 2626 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2627 * For the peripheral driver list traversal function, however, we 2628 * don't have to worry about new peripheral driver types coming or 2629 * going; they're in a linker set, and therefore can't change 2630 * without a recompile. 2631 */ 2632 2633 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2634 && (cdm->pos.cookie.pdrv != NULL)) 2635 ret = xptpdrvtraverse( 2636 (struct periph_driver **)cdm->pos.cookie.pdrv, 2637 xptplistpdrvfunc, cdm); 2638 else 2639 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2640 2641 /* 2642 * If we get back 0, that means that we had to stop before fully 2643 * traversing the peripheral driver tree. It also means that one of 2644 * the subroutines has set the status field to the proper value. If 2645 * we get back 1, we've fully traversed the EDT and copied out any 2646 * matching entries. 2647 */ 2648 if (ret == 1) 2649 cdm->status = CAM_DEV_MATCH_LAST; 2650 2651 return(ret); 2652 } 2653 2654 static int 2655 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2656 { 2657 struct cam_eb *bus, *next_bus; 2658 int retval; 2659 2660 retval = 1; 2661 2662 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2663 bus != NULL; 2664 bus = next_bus) { 2665 next_bus = TAILQ_NEXT(bus, links); 2666 2667 retval = tr_func(bus, arg); 2668 if (retval == 0) 2669 return(retval); 2670 } 2671 2672 return(retval); 2673 } 2674 2675 static int 2676 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2677 xpt_targetfunc_t *tr_func, void *arg) 2678 { 2679 struct cam_et *target, *next_target; 2680 int retval; 2681 2682 retval = 1; 2683 for (target = (start_target ? start_target : 2684 TAILQ_FIRST(&bus->et_entries)); 2685 target != NULL; target = next_target) { 2686 2687 next_target = TAILQ_NEXT(target, links); 2688 2689 retval = tr_func(target, arg); 2690 2691 if (retval == 0) 2692 return(retval); 2693 } 2694 2695 return(retval); 2696 } 2697 2698 static int 2699 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2700 xpt_devicefunc_t *tr_func, void *arg) 2701 { 2702 struct cam_ed *device, *next_device; 2703 int retval; 2704 2705 retval = 1; 2706 for (device = (start_device ? start_device : 2707 TAILQ_FIRST(&target->ed_entries)); 2708 device != NULL; 2709 device = next_device) { 2710 2711 next_device = TAILQ_NEXT(device, links); 2712 2713 retval = tr_func(device, arg); 2714 2715 if (retval == 0) 2716 return(retval); 2717 } 2718 2719 return(retval); 2720 } 2721 2722 static int 2723 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2724 xpt_periphfunc_t *tr_func, void *arg) 2725 { 2726 struct cam_periph *periph, *next_periph; 2727 int retval; 2728 2729 retval = 1; 2730 2731 for (periph = (start_periph ? start_periph : 2732 SLIST_FIRST(&device->periphs)); 2733 periph != NULL; 2734 periph = next_periph) { 2735 2736 next_periph = SLIST_NEXT(periph, periph_links); 2737 2738 retval = tr_func(periph, arg); 2739 if (retval == 0) 2740 return(retval); 2741 } 2742 2743 return(retval); 2744 } 2745 2746 static int 2747 xptpdrvtraverse(struct periph_driver **start_pdrv, 2748 xpt_pdrvfunc_t *tr_func, void *arg) 2749 { 2750 struct periph_driver **pdrv; 2751 int retval; 2752 2753 retval = 1; 2754 2755 /* 2756 * We don't traverse the peripheral driver list like we do the 2757 * other lists, because it is a linker set, and therefore cannot be 2758 * changed during runtime. If the peripheral driver list is ever 2759 * re-done to be something other than a linker set (i.e. it can 2760 * change while the system is running), the list traversal should 2761 * be modified to work like the other traversal functions. 2762 */ 2763 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2764 *pdrv != NULL; pdrv++) { 2765 retval = tr_func(pdrv, arg); 2766 2767 if (retval == 0) 2768 return(retval); 2769 } 2770 2771 return(retval); 2772 } 2773 2774 static int 2775 xptpdperiphtraverse(struct periph_driver **pdrv, 2776 struct cam_periph *start_periph, 2777 xpt_periphfunc_t *tr_func, void *arg) 2778 { 2779 struct cam_periph *periph, *next_periph; 2780 int retval; 2781 2782 retval = 1; 2783 2784 for (periph = (start_periph ? start_periph : 2785 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2786 periph = next_periph) { 2787 2788 next_periph = TAILQ_NEXT(periph, unit_links); 2789 2790 retval = tr_func(periph, arg); 2791 if (retval == 0) 2792 return(retval); 2793 } 2794 return(retval); 2795 } 2796 2797 static int 2798 xptdefbusfunc(struct cam_eb *bus, void *arg) 2799 { 2800 struct xpt_traverse_config *tr_config; 2801 2802 tr_config = (struct xpt_traverse_config *)arg; 2803 2804 if (tr_config->depth == XPT_DEPTH_BUS) { 2805 xpt_busfunc_t *tr_func; 2806 2807 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2808 2809 return(tr_func(bus, tr_config->tr_arg)); 2810 } else 2811 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2812 } 2813 2814 static int 2815 xptdeftargetfunc(struct cam_et *target, void *arg) 2816 { 2817 struct xpt_traverse_config *tr_config; 2818 2819 tr_config = (struct xpt_traverse_config *)arg; 2820 2821 if (tr_config->depth == XPT_DEPTH_TARGET) { 2822 xpt_targetfunc_t *tr_func; 2823 2824 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2825 2826 return(tr_func(target, tr_config->tr_arg)); 2827 } else 2828 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2829 } 2830 2831 static int 2832 xptdefdevicefunc(struct cam_ed *device, void *arg) 2833 { 2834 struct xpt_traverse_config *tr_config; 2835 2836 tr_config = (struct xpt_traverse_config *)arg; 2837 2838 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2839 xpt_devicefunc_t *tr_func; 2840 2841 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2842 2843 return(tr_func(device, tr_config->tr_arg)); 2844 } else 2845 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2846 } 2847 2848 static int 2849 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2850 { 2851 struct xpt_traverse_config *tr_config; 2852 xpt_periphfunc_t *tr_func; 2853 2854 tr_config = (struct xpt_traverse_config *)arg; 2855 2856 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2857 2858 /* 2859 * Unlike the other default functions, we don't check for depth 2860 * here. The peripheral driver level is the last level in the EDT, 2861 * so if we're here, we should execute the function in question. 2862 */ 2863 return(tr_func(periph, tr_config->tr_arg)); 2864 } 2865 2866 /* 2867 * Execute the given function for every bus in the EDT. 2868 */ 2869 static int 2870 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2871 { 2872 struct xpt_traverse_config tr_config; 2873 2874 tr_config.depth = XPT_DEPTH_BUS; 2875 tr_config.tr_func = tr_func; 2876 tr_config.tr_arg = arg; 2877 2878 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2879 } 2880 2881 #ifdef notusedyet 2882 /* 2883 * Execute the given function for every target in the EDT. 2884 */ 2885 static int 2886 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2887 { 2888 struct xpt_traverse_config tr_config; 2889 2890 tr_config.depth = XPT_DEPTH_TARGET; 2891 tr_config.tr_func = tr_func; 2892 tr_config.tr_arg = arg; 2893 2894 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2895 } 2896 #endif /* notusedyet */ 2897 2898 /* 2899 * Execute the given function for every device in the EDT. 2900 */ 2901 static int 2902 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2903 { 2904 struct xpt_traverse_config tr_config; 2905 2906 tr_config.depth = XPT_DEPTH_DEVICE; 2907 tr_config.tr_func = tr_func; 2908 tr_config.tr_arg = arg; 2909 2910 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2911 } 2912 2913 #ifdef notusedyet 2914 /* 2915 * Execute the given function for every peripheral in the EDT. 2916 */ 2917 static int 2918 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2919 { 2920 struct xpt_traverse_config tr_config; 2921 2922 tr_config.depth = XPT_DEPTH_PERIPH; 2923 tr_config.tr_func = tr_func; 2924 tr_config.tr_arg = arg; 2925 2926 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2927 } 2928 #endif /* notusedyet */ 2929 2930 static int 2931 xptsetasyncfunc(struct cam_ed *device, void *arg) 2932 { 2933 struct cam_path path; 2934 struct ccb_getdev cgd; 2935 struct async_node *cur_entry; 2936 2937 cur_entry = (struct async_node *)arg; 2938 2939 /* 2940 * Don't report unconfigured devices (Wildcard devs, 2941 * devices only for target mode, device instances 2942 * that have been invalidated but are waiting for 2943 * their last reference count to be released). 2944 */ 2945 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2946 return (1); 2947 2948 xpt_compile_path(&path, 2949 NULL, 2950 device->target->bus->path_id, 2951 device->target->target_id, 2952 device->lun_id); 2953 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2954 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2955 xpt_action((union ccb *)&cgd); 2956 cur_entry->callback(cur_entry->callback_arg, 2957 AC_FOUND_DEVICE, 2958 &path, &cgd); 2959 xpt_release_path(&path); 2960 2961 return(1); 2962 } 2963 2964 static int 2965 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2966 { 2967 struct cam_path path; 2968 struct ccb_pathinq cpi; 2969 struct async_node *cur_entry; 2970 2971 cur_entry = (struct async_node *)arg; 2972 2973 xpt_compile_path(&path, /*periph*/NULL, 2974 bus->sim->path_id, 2975 CAM_TARGET_WILDCARD, 2976 CAM_LUN_WILDCARD); 2977 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2978 cpi.ccb_h.func_code = XPT_PATH_INQ; 2979 xpt_action((union ccb *)&cpi); 2980 cur_entry->callback(cur_entry->callback_arg, 2981 AC_PATH_REGISTERED, 2982 &path, &cpi); 2983 xpt_release_path(&path); 2984 2985 return(1); 2986 } 2987 2988 void 2989 xpt_action(union ccb *start_ccb) 2990 { 2991 int iopl; 2992 2993 GIANT_REQUIRED; 2994 2995 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2996 2997 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2998 2999 iopl = splsoftcam(); 3000 switch (start_ccb->ccb_h.func_code) { 3001 case XPT_SCSI_IO: 3002 { 3003 #ifdef CAM_NEW_TRAN_CODE 3004 struct cam_ed *device; 3005 #endif /* CAM_NEW_TRAN_CODE */ 3006 #ifdef CAMDEBUG 3007 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3008 struct cam_path *path; 3009 3010 path = start_ccb->ccb_h.path; 3011 #endif 3012 3013 /* 3014 * For the sake of compatibility with SCSI-1 3015 * devices that may not understand the identify 3016 * message, we include lun information in the 3017 * second byte of all commands. SCSI-1 specifies 3018 * that luns are a 3 bit value and reserves only 3 3019 * bits for lun information in the CDB. Later 3020 * revisions of the SCSI spec allow for more than 8 3021 * luns, but have deprecated lun information in the 3022 * CDB. So, if the lun won't fit, we must omit. 3023 * 3024 * Also be aware that during initial probing for devices, 3025 * the inquiry information is unknown but initialized to 0. 3026 * This means that this code will be exercised while probing 3027 * devices with an ANSI revision greater than 2. 3028 */ 3029 #ifdef CAM_NEW_TRAN_CODE 3030 device = start_ccb->ccb_h.path->device; 3031 if (device->protocol_version <= SCSI_REV_2 3032 #else /* CAM_NEW_TRAN_CODE */ 3033 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 3034 #endif /* CAM_NEW_TRAN_CODE */ 3035 && start_ccb->ccb_h.target_lun < 8 3036 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3037 3038 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3039 start_ccb->ccb_h.target_lun << 5; 3040 } 3041 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3042 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3043 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3044 &path->device->inq_data), 3045 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3046 cdb_str, sizeof(cdb_str)))); 3047 } 3048 /* FALLTHROUGH */ 3049 case XPT_TARGET_IO: 3050 case XPT_CONT_TARGET_IO: 3051 start_ccb->csio.sense_resid = 0; 3052 start_ccb->csio.resid = 0; 3053 /* FALLTHROUGH */ 3054 case XPT_RESET_DEV: 3055 case XPT_ENG_EXEC: 3056 { 3057 struct cam_path *path; 3058 int s; 3059 int runq; 3060 3061 path = start_ccb->ccb_h.path; 3062 s = splsoftcam(); 3063 3064 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3065 if (path->device->qfrozen_cnt == 0) 3066 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3067 else 3068 runq = 0; 3069 splx(s); 3070 if (runq != 0) 3071 xpt_run_dev_sendq(path->bus); 3072 break; 3073 } 3074 case XPT_SET_TRAN_SETTINGS: 3075 { 3076 xpt_set_transfer_settings(&start_ccb->cts, 3077 start_ccb->ccb_h.path->device, 3078 /*async_update*/FALSE); 3079 break; 3080 } 3081 case XPT_CALC_GEOMETRY: 3082 { 3083 struct cam_sim *sim; 3084 3085 /* Filter out garbage */ 3086 if (start_ccb->ccg.block_size == 0 3087 || start_ccb->ccg.volume_size == 0) { 3088 start_ccb->ccg.cylinders = 0; 3089 start_ccb->ccg.heads = 0; 3090 start_ccb->ccg.secs_per_track = 0; 3091 start_ccb->ccb_h.status = CAM_REQ_CMP; 3092 break; 3093 } 3094 #ifdef PC98 3095 /* 3096 * In a PC-98 system, geometry translation depens on 3097 * the "real" device geometry obtained from mode page 4. 3098 * SCSI geometry translation is performed in the 3099 * initialization routine of the SCSI BIOS and the result 3100 * stored in host memory. If the translation is available 3101 * in host memory, use it. If not, rely on the default 3102 * translation the device driver performs. 3103 */ 3104 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3105 start_ccb->ccb_h.status = CAM_REQ_CMP; 3106 break; 3107 } 3108 #endif 3109 sim = start_ccb->ccb_h.path->bus->sim; 3110 (*(sim->sim_action))(sim, start_ccb); 3111 break; 3112 } 3113 case XPT_ABORT: 3114 { 3115 union ccb* abort_ccb; 3116 int s; 3117 3118 abort_ccb = start_ccb->cab.abort_ccb; 3119 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3120 3121 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3122 struct cam_ccbq *ccbq; 3123 3124 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3125 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3126 abort_ccb->ccb_h.status = 3127 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3128 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3129 s = splcam(); 3130 xpt_done(abort_ccb); 3131 splx(s); 3132 start_ccb->ccb_h.status = CAM_REQ_CMP; 3133 break; 3134 } 3135 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3136 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3137 /* 3138 * We've caught this ccb en route to 3139 * the SIM. Flag it for abort and the 3140 * SIM will do so just before starting 3141 * real work on the CCB. 3142 */ 3143 abort_ccb->ccb_h.status = 3144 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3145 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3146 start_ccb->ccb_h.status = CAM_REQ_CMP; 3147 break; 3148 } 3149 } 3150 if (XPT_FC_IS_QUEUED(abort_ccb) 3151 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3152 /* 3153 * It's already completed but waiting 3154 * for our SWI to get to it. 3155 */ 3156 start_ccb->ccb_h.status = CAM_UA_ABORT; 3157 break; 3158 } 3159 /* 3160 * If we weren't able to take care of the abort request 3161 * in the XPT, pass the request down to the SIM for processing. 3162 */ 3163 } 3164 /* FALLTHROUGH */ 3165 case XPT_ACCEPT_TARGET_IO: 3166 case XPT_EN_LUN: 3167 case XPT_IMMED_NOTIFY: 3168 case XPT_NOTIFY_ACK: 3169 case XPT_GET_TRAN_SETTINGS: 3170 case XPT_RESET_BUS: 3171 { 3172 struct cam_sim *sim; 3173 3174 sim = start_ccb->ccb_h.path->bus->sim; 3175 (*(sim->sim_action))(sim, start_ccb); 3176 break; 3177 } 3178 case XPT_PATH_INQ: 3179 { 3180 struct cam_sim *sim; 3181 3182 sim = start_ccb->ccb_h.path->bus->sim; 3183 (*(sim->sim_action))(sim, start_ccb); 3184 break; 3185 } 3186 case XPT_PATH_STATS: 3187 start_ccb->cpis.last_reset = 3188 start_ccb->ccb_h.path->bus->last_reset; 3189 start_ccb->ccb_h.status = CAM_REQ_CMP; 3190 break; 3191 case XPT_GDEV_TYPE: 3192 { 3193 struct cam_ed *dev; 3194 int s; 3195 3196 dev = start_ccb->ccb_h.path->device; 3197 s = splcam(); 3198 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3199 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3200 } else { 3201 struct ccb_getdev *cgd; 3202 struct cam_eb *bus; 3203 struct cam_et *tar; 3204 3205 cgd = &start_ccb->cgd; 3206 bus = cgd->ccb_h.path->bus; 3207 tar = cgd->ccb_h.path->target; 3208 cgd->inq_data = dev->inq_data; 3209 cgd->ccb_h.status = CAM_REQ_CMP; 3210 cgd->serial_num_len = dev->serial_num_len; 3211 if ((dev->serial_num_len > 0) 3212 && (dev->serial_num != NULL)) 3213 bcopy(dev->serial_num, cgd->serial_num, 3214 dev->serial_num_len); 3215 } 3216 splx(s); 3217 break; 3218 } 3219 case XPT_GDEV_STATS: 3220 { 3221 struct cam_ed *dev; 3222 int s; 3223 3224 dev = start_ccb->ccb_h.path->device; 3225 s = splcam(); 3226 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3227 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3228 } else { 3229 struct ccb_getdevstats *cgds; 3230 struct cam_eb *bus; 3231 struct cam_et *tar; 3232 3233 cgds = &start_ccb->cgds; 3234 bus = cgds->ccb_h.path->bus; 3235 tar = cgds->ccb_h.path->target; 3236 cgds->dev_openings = dev->ccbq.dev_openings; 3237 cgds->dev_active = dev->ccbq.dev_active; 3238 cgds->devq_openings = dev->ccbq.devq_openings; 3239 cgds->devq_queued = dev->ccbq.queue.entries; 3240 cgds->held = dev->ccbq.held; 3241 cgds->last_reset = tar->last_reset; 3242 cgds->maxtags = dev->quirk->maxtags; 3243 cgds->mintags = dev->quirk->mintags; 3244 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3245 cgds->last_reset = bus->last_reset; 3246 cgds->ccb_h.status = CAM_REQ_CMP; 3247 } 3248 splx(s); 3249 break; 3250 } 3251 case XPT_GDEVLIST: 3252 { 3253 struct cam_periph *nperiph; 3254 struct periph_list *periph_head; 3255 struct ccb_getdevlist *cgdl; 3256 u_int i; 3257 int s; 3258 struct cam_ed *device; 3259 int found; 3260 3261 3262 found = 0; 3263 3264 /* 3265 * Don't want anyone mucking with our data. 3266 */ 3267 s = splcam(); 3268 device = start_ccb->ccb_h.path->device; 3269 periph_head = &device->periphs; 3270 cgdl = &start_ccb->cgdl; 3271 3272 /* 3273 * Check and see if the list has changed since the user 3274 * last requested a list member. If so, tell them that the 3275 * list has changed, and therefore they need to start over 3276 * from the beginning. 3277 */ 3278 if ((cgdl->index != 0) && 3279 (cgdl->generation != device->generation)) { 3280 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3281 splx(s); 3282 break; 3283 } 3284 3285 /* 3286 * Traverse the list of peripherals and attempt to find 3287 * the requested peripheral. 3288 */ 3289 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3290 (nperiph != NULL) && (i <= cgdl->index); 3291 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3292 if (i == cgdl->index) { 3293 strncpy(cgdl->periph_name, 3294 nperiph->periph_name, 3295 DEV_IDLEN); 3296 cgdl->unit_number = nperiph->unit_number; 3297 found = 1; 3298 } 3299 } 3300 if (found == 0) { 3301 cgdl->status = CAM_GDEVLIST_ERROR; 3302 splx(s); 3303 break; 3304 } 3305 3306 if (nperiph == NULL) 3307 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3308 else 3309 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3310 3311 cgdl->index++; 3312 cgdl->generation = device->generation; 3313 3314 splx(s); 3315 cgdl->ccb_h.status = CAM_REQ_CMP; 3316 break; 3317 } 3318 case XPT_DEV_MATCH: 3319 { 3320 int s; 3321 dev_pos_type position_type; 3322 struct ccb_dev_match *cdm; 3323 3324 cdm = &start_ccb->cdm; 3325 3326 /* 3327 * Prevent EDT changes while we traverse it. 3328 */ 3329 s = splcam(); 3330 /* 3331 * There are two ways of getting at information in the EDT. 3332 * The first way is via the primary EDT tree. It starts 3333 * with a list of busses, then a list of targets on a bus, 3334 * then devices/luns on a target, and then peripherals on a 3335 * device/lun. The "other" way is by the peripheral driver 3336 * lists. The peripheral driver lists are organized by 3337 * peripheral driver. (obviously) So it makes sense to 3338 * use the peripheral driver list if the user is looking 3339 * for something like "da1", or all "da" devices. If the 3340 * user is looking for something on a particular bus/target 3341 * or lun, it's generally better to go through the EDT tree. 3342 */ 3343 3344 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3345 position_type = cdm->pos.position_type; 3346 else { 3347 u_int i; 3348 3349 position_type = CAM_DEV_POS_NONE; 3350 3351 for (i = 0; i < cdm->num_patterns; i++) { 3352 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3353 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3354 position_type = CAM_DEV_POS_EDT; 3355 break; 3356 } 3357 } 3358 3359 if (cdm->num_patterns == 0) 3360 position_type = CAM_DEV_POS_EDT; 3361 else if (position_type == CAM_DEV_POS_NONE) 3362 position_type = CAM_DEV_POS_PDRV; 3363 } 3364 3365 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3366 case CAM_DEV_POS_EDT: 3367 xptedtmatch(cdm); 3368 break; 3369 case CAM_DEV_POS_PDRV: 3370 xptperiphlistmatch(cdm); 3371 break; 3372 default: 3373 cdm->status = CAM_DEV_MATCH_ERROR; 3374 break; 3375 } 3376 3377 splx(s); 3378 3379 if (cdm->status == CAM_DEV_MATCH_ERROR) 3380 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3381 else 3382 start_ccb->ccb_h.status = CAM_REQ_CMP; 3383 3384 break; 3385 } 3386 case XPT_SASYNC_CB: 3387 { 3388 struct ccb_setasync *csa; 3389 struct async_node *cur_entry; 3390 struct async_list *async_head; 3391 u_int32_t added; 3392 int s; 3393 3394 csa = &start_ccb->csa; 3395 added = csa->event_enable; 3396 async_head = &csa->ccb_h.path->device->asyncs; 3397 3398 /* 3399 * If there is already an entry for us, simply 3400 * update it. 3401 */ 3402 s = splcam(); 3403 cur_entry = SLIST_FIRST(async_head); 3404 while (cur_entry != NULL) { 3405 if ((cur_entry->callback_arg == csa->callback_arg) 3406 && (cur_entry->callback == csa->callback)) 3407 break; 3408 cur_entry = SLIST_NEXT(cur_entry, links); 3409 } 3410 3411 if (cur_entry != NULL) { 3412 /* 3413 * If the request has no flags set, 3414 * remove the entry. 3415 */ 3416 added &= ~cur_entry->event_enable; 3417 if (csa->event_enable == 0) { 3418 SLIST_REMOVE(async_head, cur_entry, 3419 async_node, links); 3420 csa->ccb_h.path->device->refcount--; 3421 free(cur_entry, M_CAMXPT); 3422 } else { 3423 cur_entry->event_enable = csa->event_enable; 3424 } 3425 } else { 3426 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3427 M_NOWAIT); 3428 if (cur_entry == NULL) { 3429 splx(s); 3430 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3431 break; 3432 } 3433 cur_entry->event_enable = csa->event_enable; 3434 cur_entry->callback_arg = csa->callback_arg; 3435 cur_entry->callback = csa->callback; 3436 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3437 csa->ccb_h.path->device->refcount++; 3438 } 3439 3440 if ((added & AC_FOUND_DEVICE) != 0) { 3441 /* 3442 * Get this peripheral up to date with all 3443 * the currently existing devices. 3444 */ 3445 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3446 } 3447 if ((added & AC_PATH_REGISTERED) != 0) { 3448 /* 3449 * Get this peripheral up to date with all 3450 * the currently existing busses. 3451 */ 3452 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3453 } 3454 splx(s); 3455 start_ccb->ccb_h.status = CAM_REQ_CMP; 3456 break; 3457 } 3458 case XPT_REL_SIMQ: 3459 { 3460 struct ccb_relsim *crs; 3461 struct cam_ed *dev; 3462 int s; 3463 3464 crs = &start_ccb->crs; 3465 dev = crs->ccb_h.path->device; 3466 if (dev == NULL) { 3467 3468 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3469 break; 3470 } 3471 3472 s = splcam(); 3473 3474 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3475 3476 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3477 3478 /* Don't ever go below one opening */ 3479 if (crs->openings > 0) { 3480 xpt_dev_ccbq_resize(crs->ccb_h.path, 3481 crs->openings); 3482 3483 if (bootverbose) { 3484 xpt_print_path(crs->ccb_h.path); 3485 printf("tagged openings " 3486 "now %d\n", 3487 crs->openings); 3488 } 3489 } 3490 } 3491 } 3492 3493 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3494 3495 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3496 3497 /* 3498 * Just extend the old timeout and decrement 3499 * the freeze count so that a single timeout 3500 * is sufficient for releasing the queue. 3501 */ 3502 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3503 untimeout(xpt_release_devq_timeout, 3504 dev, dev->c_handle); 3505 } else { 3506 3507 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3508 } 3509 3510 dev->c_handle = 3511 timeout(xpt_release_devq_timeout, 3512 dev, 3513 (crs->release_timeout * hz) / 1000); 3514 3515 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3516 3517 } 3518 3519 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3520 3521 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3522 /* 3523 * Decrement the freeze count so that a single 3524 * completion is still sufficient to unfreeze 3525 * the queue. 3526 */ 3527 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3528 } else { 3529 3530 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3531 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3532 } 3533 } 3534 3535 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3536 3537 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3538 || (dev->ccbq.dev_active == 0)) { 3539 3540 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3541 } else { 3542 3543 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3544 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3545 } 3546 } 3547 splx(s); 3548 3549 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3550 3551 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3552 /*run_queue*/TRUE); 3553 } 3554 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3555 start_ccb->ccb_h.status = CAM_REQ_CMP; 3556 break; 3557 } 3558 case XPT_SCAN_BUS: 3559 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3560 break; 3561 case XPT_SCAN_LUN: 3562 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3563 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3564 start_ccb); 3565 break; 3566 case XPT_DEBUG: { 3567 #ifdef CAMDEBUG 3568 int s; 3569 3570 s = splcam(); 3571 #ifdef CAM_DEBUG_DELAY 3572 cam_debug_delay = CAM_DEBUG_DELAY; 3573 #endif 3574 cam_dflags = start_ccb->cdbg.flags; 3575 if (cam_dpath != NULL) { 3576 xpt_free_path(cam_dpath); 3577 cam_dpath = NULL; 3578 } 3579 3580 if (cam_dflags != CAM_DEBUG_NONE) { 3581 if (xpt_create_path(&cam_dpath, xpt_periph, 3582 start_ccb->ccb_h.path_id, 3583 start_ccb->ccb_h.target_id, 3584 start_ccb->ccb_h.target_lun) != 3585 CAM_REQ_CMP) { 3586 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3587 cam_dflags = CAM_DEBUG_NONE; 3588 } else { 3589 start_ccb->ccb_h.status = CAM_REQ_CMP; 3590 xpt_print_path(cam_dpath); 3591 printf("debugging flags now %x\n", cam_dflags); 3592 } 3593 } else { 3594 cam_dpath = NULL; 3595 start_ccb->ccb_h.status = CAM_REQ_CMP; 3596 } 3597 splx(s); 3598 #else /* !CAMDEBUG */ 3599 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3600 #endif /* CAMDEBUG */ 3601 break; 3602 } 3603 case XPT_NOOP: 3604 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3605 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3606 start_ccb->ccb_h.status = CAM_REQ_CMP; 3607 break; 3608 default: 3609 case XPT_SDEV_TYPE: 3610 case XPT_TERM_IO: 3611 case XPT_ENG_INQ: 3612 /* XXX Implement */ 3613 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3614 break; 3615 } 3616 splx(iopl); 3617 } 3618 3619 void 3620 xpt_polled_action(union ccb *start_ccb) 3621 { 3622 int s; 3623 u_int32_t timeout; 3624 struct cam_sim *sim; 3625 struct cam_devq *devq; 3626 struct cam_ed *dev; 3627 3628 GIANT_REQUIRED; 3629 3630 timeout = start_ccb->ccb_h.timeout; 3631 sim = start_ccb->ccb_h.path->bus->sim; 3632 devq = sim->devq; 3633 dev = start_ccb->ccb_h.path->device; 3634 3635 s = splcam(); 3636 3637 /* 3638 * Steal an opening so that no other queued requests 3639 * can get it before us while we simulate interrupts. 3640 */ 3641 dev->ccbq.devq_openings--; 3642 dev->ccbq.dev_openings--; 3643 3644 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) 3645 && (--timeout > 0)) { 3646 DELAY(1000); 3647 (*(sim->sim_poll))(sim); 3648 camisr(&cam_bioq); 3649 } 3650 3651 dev->ccbq.devq_openings++; 3652 dev->ccbq.dev_openings++; 3653 3654 if (timeout != 0) { 3655 xpt_action(start_ccb); 3656 while(--timeout > 0) { 3657 (*(sim->sim_poll))(sim); 3658 camisr(&cam_bioq); 3659 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3660 != CAM_REQ_INPROG) 3661 break; 3662 DELAY(1000); 3663 } 3664 if (timeout == 0) { 3665 /* 3666 * XXX Is it worth adding a sim_timeout entry 3667 * point so we can attempt recovery? If 3668 * this is only used for dumps, I don't think 3669 * it is. 3670 */ 3671 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3672 } 3673 } else { 3674 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3675 } 3676 splx(s); 3677 } 3678 3679 /* 3680 * Schedule a peripheral driver to receive a ccb when it's 3681 * target device has space for more transactions. 3682 */ 3683 void 3684 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3685 { 3686 struct cam_ed *device; 3687 int s; 3688 int runq; 3689 3690 GIANT_REQUIRED; 3691 3692 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3693 device = perph->path->device; 3694 s = splsoftcam(); 3695 if (periph_is_queued(perph)) { 3696 /* Simply reorder based on new priority */ 3697 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3698 (" change priority to %d\n", new_priority)); 3699 if (new_priority < perph->pinfo.priority) { 3700 camq_change_priority(&device->drvq, 3701 perph->pinfo.index, 3702 new_priority); 3703 } 3704 runq = 0; 3705 } else { 3706 /* New entry on the queue */ 3707 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3708 (" added periph to queue\n")); 3709 perph->pinfo.priority = new_priority; 3710 perph->pinfo.generation = ++device->drvq.generation; 3711 camq_insert(&device->drvq, &perph->pinfo); 3712 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3713 } 3714 splx(s); 3715 if (runq != 0) { 3716 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3717 (" calling xpt_run_devq\n")); 3718 xpt_run_dev_allocq(perph->path->bus); 3719 } 3720 } 3721 3722 3723 /* 3724 * Schedule a device to run on a given queue. 3725 * If the device was inserted as a new entry on the queue, 3726 * return 1 meaning the device queue should be run. If we 3727 * were already queued, implying someone else has already 3728 * started the queue, return 0 so the caller doesn't attempt 3729 * to run the queue. Must be run at either splsoftcam 3730 * (or splcam since that encompases splsoftcam). 3731 */ 3732 static int 3733 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3734 u_int32_t new_priority) 3735 { 3736 int retval; 3737 u_int32_t old_priority; 3738 3739 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3740 3741 old_priority = pinfo->priority; 3742 3743 /* 3744 * Are we already queued? 3745 */ 3746 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3747 /* Simply reorder based on new priority */ 3748 if (new_priority < old_priority) { 3749 camq_change_priority(queue, pinfo->index, 3750 new_priority); 3751 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3752 ("changed priority to %d\n", 3753 new_priority)); 3754 } 3755 retval = 0; 3756 } else { 3757 /* New entry on the queue */ 3758 if (new_priority < old_priority) 3759 pinfo->priority = new_priority; 3760 3761 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3762 ("Inserting onto queue\n")); 3763 pinfo->generation = ++queue->generation; 3764 camq_insert(queue, pinfo); 3765 retval = 1; 3766 } 3767 return (retval); 3768 } 3769 3770 static void 3771 xpt_run_dev_allocq(struct cam_eb *bus) 3772 { 3773 struct cam_devq *devq; 3774 int s; 3775 3776 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3777 devq = bus->sim->devq; 3778 3779 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3780 (" qfrozen_cnt == 0x%x, entries == %d, " 3781 "openings == %d, active == %d\n", 3782 devq->alloc_queue.qfrozen_cnt, 3783 devq->alloc_queue.entries, 3784 devq->alloc_openings, 3785 devq->alloc_active)); 3786 3787 s = splsoftcam(); 3788 devq->alloc_queue.qfrozen_cnt++; 3789 while ((devq->alloc_queue.entries > 0) 3790 && (devq->alloc_openings > 0) 3791 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3792 struct cam_ed_qinfo *qinfo; 3793 struct cam_ed *device; 3794 union ccb *work_ccb; 3795 struct cam_periph *drv; 3796 struct camq *drvq; 3797 3798 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3799 CAMQ_HEAD); 3800 device = qinfo->device; 3801 3802 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3803 ("running device %p\n", device)); 3804 3805 drvq = &device->drvq; 3806 3807 #ifdef CAMDEBUG 3808 if (drvq->entries <= 0) { 3809 panic("xpt_run_dev_allocq: " 3810 "Device on queue without any work to do"); 3811 } 3812 #endif 3813 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3814 devq->alloc_openings--; 3815 devq->alloc_active++; 3816 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3817 splx(s); 3818 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3819 drv->pinfo.priority); 3820 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3821 ("calling periph start\n")); 3822 drv->periph_start(drv, work_ccb); 3823 } else { 3824 /* 3825 * Malloc failure in alloc_ccb 3826 */ 3827 /* 3828 * XXX add us to a list to be run from free_ccb 3829 * if we don't have any ccbs active on this 3830 * device queue otherwise we may never get run 3831 * again. 3832 */ 3833 break; 3834 } 3835 3836 /* Raise IPL for possible insertion and test at top of loop */ 3837 s = splsoftcam(); 3838 3839 if (drvq->entries > 0) { 3840 /* We have more work. Attempt to reschedule */ 3841 xpt_schedule_dev_allocq(bus, device); 3842 } 3843 } 3844 devq->alloc_queue.qfrozen_cnt--; 3845 splx(s); 3846 } 3847 3848 static void 3849 xpt_run_dev_sendq(struct cam_eb *bus) 3850 { 3851 struct cam_devq *devq; 3852 int s; 3853 3854 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3855 3856 devq = bus->sim->devq; 3857 3858 s = splcam(); 3859 devq->send_queue.qfrozen_cnt++; 3860 splx(s); 3861 s = splsoftcam(); 3862 while ((devq->send_queue.entries > 0) 3863 && (devq->send_openings > 0)) { 3864 struct cam_ed_qinfo *qinfo; 3865 struct cam_ed *device; 3866 union ccb *work_ccb; 3867 struct cam_sim *sim; 3868 int ospl; 3869 3870 ospl = splcam(); 3871 if (devq->send_queue.qfrozen_cnt > 1) { 3872 splx(ospl); 3873 break; 3874 } 3875 3876 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3877 CAMQ_HEAD); 3878 device = qinfo->device; 3879 3880 /* 3881 * If the device has been "frozen", don't attempt 3882 * to run it. 3883 */ 3884 if (device->qfrozen_cnt > 0) { 3885 splx(ospl); 3886 continue; 3887 } 3888 3889 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3890 ("running device %p\n", device)); 3891 3892 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3893 if (work_ccb == NULL) { 3894 printf("device on run queue with no ccbs???\n"); 3895 splx(ospl); 3896 continue; 3897 } 3898 3899 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3900 3901 if (num_highpower <= 0) { 3902 /* 3903 * We got a high power command, but we 3904 * don't have any available slots. Freeze 3905 * the device queue until we have a slot 3906 * available. 3907 */ 3908 device->qfrozen_cnt++; 3909 STAILQ_INSERT_TAIL(&highpowerq, 3910 &work_ccb->ccb_h, 3911 xpt_links.stqe); 3912 3913 splx(ospl); 3914 continue; 3915 } else { 3916 /* 3917 * Consume a high power slot while 3918 * this ccb runs. 3919 */ 3920 num_highpower--; 3921 } 3922 } 3923 devq->active_dev = device; 3924 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3925 3926 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3927 splx(ospl); 3928 3929 devq->send_openings--; 3930 devq->send_active++; 3931 3932 if (device->ccbq.queue.entries > 0) 3933 xpt_schedule_dev_sendq(bus, device); 3934 3935 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3936 /* 3937 * The client wants to freeze the queue 3938 * after this CCB is sent. 3939 */ 3940 ospl = splcam(); 3941 device->qfrozen_cnt++; 3942 splx(ospl); 3943 } 3944 3945 splx(s); 3946 3947 /* In Target mode, the peripheral driver knows best... */ 3948 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3949 if ((device->inq_flags & SID_CmdQue) != 0 3950 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3951 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3952 else 3953 /* 3954 * Clear this in case of a retried CCB that 3955 * failed due to a rejected tag. 3956 */ 3957 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3958 } 3959 3960 /* 3961 * Device queues can be shared among multiple sim instances 3962 * that reside on different busses. Use the SIM in the queue 3963 * CCB's path, rather than the one in the bus that was passed 3964 * into this function. 3965 */ 3966 sim = work_ccb->ccb_h.path->bus->sim; 3967 (*(sim->sim_action))(sim, work_ccb); 3968 3969 ospl = splcam(); 3970 devq->active_dev = NULL; 3971 splx(ospl); 3972 /* Raise IPL for possible insertion and test at top of loop */ 3973 s = splsoftcam(); 3974 } 3975 splx(s); 3976 s = splcam(); 3977 devq->send_queue.qfrozen_cnt--; 3978 splx(s); 3979 } 3980 3981 /* 3982 * This function merges stuff from the slave ccb into the master ccb, while 3983 * keeping important fields in the master ccb constant. 3984 */ 3985 void 3986 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3987 { 3988 GIANT_REQUIRED; 3989 3990 /* 3991 * Pull fields that are valid for peripheral drivers to set 3992 * into the master CCB along with the CCB "payload". 3993 */ 3994 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3995 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3996 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3997 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3998 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3999 sizeof(union ccb) - sizeof(struct ccb_hdr)); 4000 } 4001 4002 void 4003 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 4004 { 4005 GIANT_REQUIRED; 4006 4007 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 4008 ccb_h->pinfo.priority = priority; 4009 ccb_h->path = path; 4010 ccb_h->path_id = path->bus->path_id; 4011 if (path->target) 4012 ccb_h->target_id = path->target->target_id; 4013 else 4014 ccb_h->target_id = CAM_TARGET_WILDCARD; 4015 if (path->device) { 4016 ccb_h->target_lun = path->device->lun_id; 4017 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 4018 } else { 4019 ccb_h->target_lun = CAM_TARGET_WILDCARD; 4020 } 4021 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4022 ccb_h->flags = 0; 4023 } 4024 4025 /* Path manipulation functions */ 4026 cam_status 4027 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 4028 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4029 { 4030 struct cam_path *path; 4031 cam_status status; 4032 4033 GIANT_REQUIRED; 4034 4035 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 4036 4037 if (path == NULL) { 4038 status = CAM_RESRC_UNAVAIL; 4039 return(status); 4040 } 4041 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 4042 if (status != CAM_REQ_CMP) { 4043 free(path, M_CAMXPT); 4044 path = NULL; 4045 } 4046 *new_path_ptr = path; 4047 return (status); 4048 } 4049 4050 static cam_status 4051 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 4052 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4053 { 4054 struct cam_eb *bus; 4055 struct cam_et *target; 4056 struct cam_ed *device; 4057 cam_status status; 4058 int s; 4059 4060 status = CAM_REQ_CMP; /* Completed without error */ 4061 target = NULL; /* Wildcarded */ 4062 device = NULL; /* Wildcarded */ 4063 4064 /* 4065 * We will potentially modify the EDT, so block interrupts 4066 * that may attempt to create cam paths. 4067 */ 4068 s = splcam(); 4069 bus = xpt_find_bus(path_id); 4070 if (bus == NULL) { 4071 status = CAM_PATH_INVALID; 4072 } else { 4073 target = xpt_find_target(bus, target_id); 4074 if (target == NULL) { 4075 /* Create one */ 4076 struct cam_et *new_target; 4077 4078 new_target = xpt_alloc_target(bus, target_id); 4079 if (new_target == NULL) { 4080 status = CAM_RESRC_UNAVAIL; 4081 } else { 4082 target = new_target; 4083 } 4084 } 4085 if (target != NULL) { 4086 device = xpt_find_device(target, lun_id); 4087 if (device == NULL) { 4088 /* Create one */ 4089 struct cam_ed *new_device; 4090 4091 new_device = xpt_alloc_device(bus, 4092 target, 4093 lun_id); 4094 if (new_device == NULL) { 4095 status = CAM_RESRC_UNAVAIL; 4096 } else { 4097 device = new_device; 4098 } 4099 } 4100 } 4101 } 4102 splx(s); 4103 4104 /* 4105 * Only touch the user's data if we are successful. 4106 */ 4107 if (status == CAM_REQ_CMP) { 4108 new_path->periph = perph; 4109 new_path->bus = bus; 4110 new_path->target = target; 4111 new_path->device = device; 4112 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4113 } else { 4114 if (device != NULL) 4115 xpt_release_device(bus, target, device); 4116 if (target != NULL) 4117 xpt_release_target(bus, target); 4118 if (bus != NULL) 4119 xpt_release_bus(bus); 4120 } 4121 return (status); 4122 } 4123 4124 static void 4125 xpt_release_path(struct cam_path *path) 4126 { 4127 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4128 if (path->device != NULL) { 4129 xpt_release_device(path->bus, path->target, path->device); 4130 path->device = NULL; 4131 } 4132 if (path->target != NULL) { 4133 xpt_release_target(path->bus, path->target); 4134 path->target = NULL; 4135 } 4136 if (path->bus != NULL) { 4137 xpt_release_bus(path->bus); 4138 path->bus = NULL; 4139 } 4140 } 4141 4142 void 4143 xpt_free_path(struct cam_path *path) 4144 { 4145 GIANT_REQUIRED; 4146 4147 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4148 xpt_release_path(path); 4149 free(path, M_CAMXPT); 4150 } 4151 4152 4153 /* 4154 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4155 * in path1, 2 for match with wildcards in path2. 4156 */ 4157 int 4158 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4159 { 4160 GIANT_REQUIRED; 4161 4162 int retval = 0; 4163 4164 if (path1->bus != path2->bus) { 4165 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4166 retval = 1; 4167 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4168 retval = 2; 4169 else 4170 return (-1); 4171 } 4172 if (path1->target != path2->target) { 4173 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4174 if (retval == 0) 4175 retval = 1; 4176 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4177 retval = 2; 4178 else 4179 return (-1); 4180 } 4181 if (path1->device != path2->device) { 4182 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4183 if (retval == 0) 4184 retval = 1; 4185 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4186 retval = 2; 4187 else 4188 return (-1); 4189 } 4190 return (retval); 4191 } 4192 4193 void 4194 xpt_print_path(struct cam_path *path) 4195 { 4196 GIANT_REQUIRED; 4197 4198 if (path == NULL) 4199 printf("(nopath): "); 4200 else { 4201 if (path->periph != NULL) 4202 printf("(%s%d:", path->periph->periph_name, 4203 path->periph->unit_number); 4204 else 4205 printf("(noperiph:"); 4206 4207 if (path->bus != NULL) 4208 printf("%s%d:%d:", path->bus->sim->sim_name, 4209 path->bus->sim->unit_number, 4210 path->bus->sim->bus_id); 4211 else 4212 printf("nobus:"); 4213 4214 if (path->target != NULL) 4215 printf("%d:", path->target->target_id); 4216 else 4217 printf("X:"); 4218 4219 if (path->device != NULL) 4220 printf("%d): ", path->device->lun_id); 4221 else 4222 printf("X): "); 4223 } 4224 } 4225 4226 int 4227 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4228 { 4229 struct sbuf sb; 4230 4231 GIANT_REQUIRED; 4232 4233 sbuf_new(&sb, str, str_len, 0); 4234 4235 if (path == NULL) 4236 sbuf_printf(&sb, "(nopath): "); 4237 else { 4238 if (path->periph != NULL) 4239 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4240 path->periph->unit_number); 4241 else 4242 sbuf_printf(&sb, "(noperiph:"); 4243 4244 if (path->bus != NULL) 4245 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4246 path->bus->sim->unit_number, 4247 path->bus->sim->bus_id); 4248 else 4249 sbuf_printf(&sb, "nobus:"); 4250 4251 if (path->target != NULL) 4252 sbuf_printf(&sb, "%d:", path->target->target_id); 4253 else 4254 sbuf_printf(&sb, "X:"); 4255 4256 if (path->device != NULL) 4257 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4258 else 4259 sbuf_printf(&sb, "X): "); 4260 } 4261 sbuf_finish(&sb); 4262 4263 return(sbuf_len(&sb)); 4264 } 4265 4266 path_id_t 4267 xpt_path_path_id(struct cam_path *path) 4268 { 4269 GIANT_REQUIRED; 4270 4271 return(path->bus->path_id); 4272 } 4273 4274 target_id_t 4275 xpt_path_target_id(struct cam_path *path) 4276 { 4277 GIANT_REQUIRED; 4278 4279 if (path->target != NULL) 4280 return (path->target->target_id); 4281 else 4282 return (CAM_TARGET_WILDCARD); 4283 } 4284 4285 lun_id_t 4286 xpt_path_lun_id(struct cam_path *path) 4287 { 4288 GIANT_REQUIRED; 4289 4290 if (path->device != NULL) 4291 return (path->device->lun_id); 4292 else 4293 return (CAM_LUN_WILDCARD); 4294 } 4295 4296 struct cam_sim * 4297 xpt_path_sim(struct cam_path *path) 4298 { 4299 GIANT_REQUIRED; 4300 4301 return (path->bus->sim); 4302 } 4303 4304 struct cam_periph* 4305 xpt_path_periph(struct cam_path *path) 4306 { 4307 GIANT_REQUIRED; 4308 4309 return (path->periph); 4310 } 4311 4312 /* 4313 * Release a CAM control block for the caller. Remit the cost of the structure 4314 * to the device referenced by the path. If the this device had no 'credits' 4315 * and peripheral drivers have registered async callbacks for this notification 4316 * call them now. 4317 */ 4318 void 4319 xpt_release_ccb(union ccb *free_ccb) 4320 { 4321 int s; 4322 struct cam_path *path; 4323 struct cam_ed *device; 4324 struct cam_eb *bus; 4325 4326 GIANT_REQUIRED; 4327 4328 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4329 path = free_ccb->ccb_h.path; 4330 device = path->device; 4331 bus = path->bus; 4332 s = splsoftcam(); 4333 cam_ccbq_release_opening(&device->ccbq); 4334 if (xpt_ccb_count > xpt_max_ccbs) { 4335 xpt_free_ccb(free_ccb); 4336 xpt_ccb_count--; 4337 } else { 4338 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4339 } 4340 bus->sim->devq->alloc_openings++; 4341 bus->sim->devq->alloc_active--; 4342 /* XXX Turn this into an inline function - xpt_run_device?? */ 4343 if ((device_is_alloc_queued(device) == 0) 4344 && (device->drvq.entries > 0)) { 4345 xpt_schedule_dev_allocq(bus, device); 4346 } 4347 splx(s); 4348 if (dev_allocq_is_runnable(bus->sim->devq)) 4349 xpt_run_dev_allocq(bus); 4350 } 4351 4352 /* Functions accessed by SIM drivers */ 4353 4354 /* 4355 * A sim structure, listing the SIM entry points and instance 4356 * identification info is passed to xpt_bus_register to hook the SIM 4357 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4358 * for this new bus and places it in the array of busses and assigns 4359 * it a path_id. The path_id may be influenced by "hard wiring" 4360 * information specified by the user. Once interrupt services are 4361 * availible, the bus will be probed. 4362 */ 4363 int32_t 4364 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4365 { 4366 struct cam_eb *new_bus; 4367 struct cam_eb *old_bus; 4368 struct ccb_pathinq cpi; 4369 int s; 4370 4371 GIANT_REQUIRED; 4372 4373 sim->bus_id = bus; 4374 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4375 M_CAMXPT, M_NOWAIT); 4376 if (new_bus == NULL) { 4377 /* Couldn't satisfy request */ 4378 return (CAM_RESRC_UNAVAIL); 4379 } 4380 4381 if (strcmp(sim->sim_name, "xpt") != 0) { 4382 4383 sim->path_id = 4384 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4385 } 4386 4387 TAILQ_INIT(&new_bus->et_entries); 4388 new_bus->path_id = sim->path_id; 4389 new_bus->sim = sim; 4390 timevalclear(&new_bus->last_reset); 4391 new_bus->flags = 0; 4392 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4393 new_bus->generation = 0; 4394 s = splcam(); 4395 old_bus = TAILQ_FIRST(&xpt_busses); 4396 while (old_bus != NULL 4397 && old_bus->path_id < new_bus->path_id) 4398 old_bus = TAILQ_NEXT(old_bus, links); 4399 if (old_bus != NULL) 4400 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4401 else 4402 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4403 bus_generation++; 4404 splx(s); 4405 4406 /* Notify interested parties */ 4407 if (sim->path_id != CAM_XPT_PATH_ID) { 4408 struct cam_path path; 4409 4410 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4411 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4412 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4413 cpi.ccb_h.func_code = XPT_PATH_INQ; 4414 xpt_action((union ccb *)&cpi); 4415 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4416 xpt_release_path(&path); 4417 } 4418 return (CAM_SUCCESS); 4419 } 4420 4421 int32_t 4422 xpt_bus_deregister(path_id_t pathid) 4423 { 4424 struct cam_path bus_path; 4425 cam_status status; 4426 4427 GIANT_REQUIRED; 4428 4429 status = xpt_compile_path(&bus_path, NULL, pathid, 4430 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4431 if (status != CAM_REQ_CMP) 4432 return (status); 4433 4434 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4435 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4436 4437 /* Release the reference count held while registered. */ 4438 xpt_release_bus(bus_path.bus); 4439 xpt_release_path(&bus_path); 4440 4441 return (CAM_REQ_CMP); 4442 } 4443 4444 static path_id_t 4445 xptnextfreepathid(void) 4446 { 4447 struct cam_eb *bus; 4448 path_id_t pathid; 4449 const char *strval; 4450 4451 pathid = 0; 4452 bus = TAILQ_FIRST(&xpt_busses); 4453 retry: 4454 /* Find an unoccupied pathid */ 4455 while (bus != NULL 4456 && bus->path_id <= pathid) { 4457 if (bus->path_id == pathid) 4458 pathid++; 4459 bus = TAILQ_NEXT(bus, links); 4460 } 4461 4462 /* 4463 * Ensure that this pathid is not reserved for 4464 * a bus that may be registered in the future. 4465 */ 4466 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4467 ++pathid; 4468 /* Start the search over */ 4469 goto retry; 4470 } 4471 return (pathid); 4472 } 4473 4474 static path_id_t 4475 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4476 { 4477 path_id_t pathid; 4478 int i, dunit, val; 4479 char buf[32]; 4480 const char *dname; 4481 4482 pathid = CAM_XPT_PATH_ID; 4483 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4484 i = 0; 4485 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4486 if (strcmp(dname, "scbus")) { 4487 /* Avoid a bit of foot shooting. */ 4488 continue; 4489 } 4490 if (dunit < 0) /* unwired?! */ 4491 continue; 4492 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4493 if (sim_bus == val) { 4494 pathid = dunit; 4495 break; 4496 } 4497 } else if (sim_bus == 0) { 4498 /* Unspecified matches bus 0 */ 4499 pathid = dunit; 4500 break; 4501 } else { 4502 printf("Ambiguous scbus configuration for %s%d " 4503 "bus %d, cannot wire down. The kernel " 4504 "config entry for scbus%d should " 4505 "specify a controller bus.\n" 4506 "Scbus will be assigned dynamically.\n", 4507 sim_name, sim_unit, sim_bus, dunit); 4508 break; 4509 } 4510 } 4511 4512 if (pathid == CAM_XPT_PATH_ID) 4513 pathid = xptnextfreepathid(); 4514 return (pathid); 4515 } 4516 4517 void 4518 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4519 { 4520 struct cam_eb *bus; 4521 struct cam_et *target, *next_target; 4522 struct cam_ed *device, *next_device; 4523 int s; 4524 4525 GIANT_REQUIRED; 4526 4527 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4528 4529 /* 4530 * Most async events come from a CAM interrupt context. In 4531 * a few cases, the error recovery code at the peripheral layer, 4532 * which may run from our SWI or a process context, may signal 4533 * deferred events with a call to xpt_async. Ensure async 4534 * notifications are serialized by blocking cam interrupts. 4535 */ 4536 s = splcam(); 4537 4538 bus = path->bus; 4539 4540 if (async_code == AC_BUS_RESET) { 4541 int s; 4542 4543 s = splclock(); 4544 /* Update our notion of when the last reset occurred */ 4545 microtime(&bus->last_reset); 4546 splx(s); 4547 } 4548 4549 for (target = TAILQ_FIRST(&bus->et_entries); 4550 target != NULL; 4551 target = next_target) { 4552 4553 next_target = TAILQ_NEXT(target, links); 4554 4555 if (path->target != target 4556 && path->target->target_id != CAM_TARGET_WILDCARD 4557 && target->target_id != CAM_TARGET_WILDCARD) 4558 continue; 4559 4560 if (async_code == AC_SENT_BDR) { 4561 int s; 4562 4563 /* Update our notion of when the last reset occurred */ 4564 s = splclock(); 4565 microtime(&path->target->last_reset); 4566 splx(s); 4567 } 4568 4569 for (device = TAILQ_FIRST(&target->ed_entries); 4570 device != NULL; 4571 device = next_device) { 4572 4573 next_device = TAILQ_NEXT(device, links); 4574 4575 if (path->device != device 4576 && path->device->lun_id != CAM_LUN_WILDCARD 4577 && device->lun_id != CAM_LUN_WILDCARD) 4578 continue; 4579 4580 xpt_dev_async(async_code, bus, target, 4581 device, async_arg); 4582 4583 xpt_async_bcast(&device->asyncs, async_code, 4584 path, async_arg); 4585 } 4586 } 4587 4588 /* 4589 * If this wasn't a fully wildcarded async, tell all 4590 * clients that want all async events. 4591 */ 4592 if (bus != xpt_periph->path->bus) 4593 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4594 path, async_arg); 4595 splx(s); 4596 } 4597 4598 static void 4599 xpt_async_bcast(struct async_list *async_head, 4600 u_int32_t async_code, 4601 struct cam_path *path, void *async_arg) 4602 { 4603 struct async_node *cur_entry; 4604 4605 cur_entry = SLIST_FIRST(async_head); 4606 while (cur_entry != NULL) { 4607 struct async_node *next_entry; 4608 /* 4609 * Grab the next list entry before we call the current 4610 * entry's callback. This is because the callback function 4611 * can delete its async callback entry. 4612 */ 4613 next_entry = SLIST_NEXT(cur_entry, links); 4614 if ((cur_entry->event_enable & async_code) != 0) 4615 cur_entry->callback(cur_entry->callback_arg, 4616 async_code, path, 4617 async_arg); 4618 cur_entry = next_entry; 4619 } 4620 } 4621 4622 /* 4623 * Handle any per-device event notifications that require action by the XPT. 4624 */ 4625 static void 4626 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4627 struct cam_ed *device, void *async_arg) 4628 { 4629 cam_status status; 4630 struct cam_path newpath; 4631 4632 /* 4633 * We only need to handle events for real devices. 4634 */ 4635 if (target->target_id == CAM_TARGET_WILDCARD 4636 || device->lun_id == CAM_LUN_WILDCARD) 4637 return; 4638 4639 /* 4640 * We need our own path with wildcards expanded to 4641 * handle certain types of events. 4642 */ 4643 if ((async_code == AC_SENT_BDR) 4644 || (async_code == AC_BUS_RESET) 4645 || (async_code == AC_INQ_CHANGED)) 4646 status = xpt_compile_path(&newpath, NULL, 4647 bus->path_id, 4648 target->target_id, 4649 device->lun_id); 4650 else 4651 status = CAM_REQ_CMP_ERR; 4652 4653 if (status == CAM_REQ_CMP) { 4654 4655 /* 4656 * Allow transfer negotiation to occur in a 4657 * tag free environment. 4658 */ 4659 if (async_code == AC_SENT_BDR 4660 || async_code == AC_BUS_RESET) 4661 xpt_toggle_tags(&newpath); 4662 4663 if (async_code == AC_INQ_CHANGED) { 4664 /* 4665 * We've sent a start unit command, or 4666 * something similar to a device that 4667 * may have caused its inquiry data to 4668 * change. So we re-scan the device to 4669 * refresh the inquiry data for it. 4670 */ 4671 xpt_scan_lun(newpath.periph, &newpath, 4672 CAM_EXPECT_INQ_CHANGE, NULL); 4673 } 4674 xpt_release_path(&newpath); 4675 } else if (async_code == AC_LOST_DEVICE) { 4676 device->flags |= CAM_DEV_UNCONFIGURED; 4677 } else if (async_code == AC_TRANSFER_NEG) { 4678 struct ccb_trans_settings *settings; 4679 4680 settings = (struct ccb_trans_settings *)async_arg; 4681 xpt_set_transfer_settings(settings, device, 4682 /*async_update*/TRUE); 4683 } 4684 } 4685 4686 u_int32_t 4687 xpt_freeze_devq(struct cam_path *path, u_int count) 4688 { 4689 int s; 4690 struct ccb_hdr *ccbh; 4691 4692 GIANT_REQUIRED; 4693 4694 s = splcam(); 4695 path->device->qfrozen_cnt += count; 4696 4697 /* 4698 * Mark the last CCB in the queue as needing 4699 * to be requeued if the driver hasn't 4700 * changed it's state yet. This fixes a race 4701 * where a ccb is just about to be queued to 4702 * a controller driver when it's interrupt routine 4703 * freezes the queue. To completly close the 4704 * hole, controller drives must check to see 4705 * if a ccb's status is still CAM_REQ_INPROG 4706 * under spl protection just before they queue 4707 * the CCB. See ahc_action/ahc_freeze_devq for 4708 * an example. 4709 */ 4710 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4711 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4712 ccbh->status = CAM_REQUEUE_REQ; 4713 splx(s); 4714 return (path->device->qfrozen_cnt); 4715 } 4716 4717 u_int32_t 4718 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4719 { 4720 GIANT_REQUIRED; 4721 4722 sim->devq->send_queue.qfrozen_cnt += count; 4723 if (sim->devq->active_dev != NULL) { 4724 struct ccb_hdr *ccbh; 4725 4726 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4727 ccb_hdr_tailq); 4728 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4729 ccbh->status = CAM_REQUEUE_REQ; 4730 } 4731 return (sim->devq->send_queue.qfrozen_cnt); 4732 } 4733 4734 static void 4735 xpt_release_devq_timeout(void *arg) 4736 { 4737 struct cam_ed *device; 4738 4739 device = (struct cam_ed *)arg; 4740 4741 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4742 } 4743 4744 void 4745 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4746 { 4747 GIANT_REQUIRED; 4748 4749 xpt_release_devq_device(path->device, count, run_queue); 4750 } 4751 4752 static void 4753 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4754 { 4755 int rundevq; 4756 int s0, s1; 4757 4758 rundevq = 0; 4759 s0 = splsoftcam(); 4760 s1 = splcam(); 4761 if (dev->qfrozen_cnt > 0) { 4762 4763 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4764 dev->qfrozen_cnt -= count; 4765 if (dev->qfrozen_cnt == 0) { 4766 4767 /* 4768 * No longer need to wait for a successful 4769 * command completion. 4770 */ 4771 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4772 4773 /* 4774 * Remove any timeouts that might be scheduled 4775 * to release this queue. 4776 */ 4777 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4778 untimeout(xpt_release_devq_timeout, dev, 4779 dev->c_handle); 4780 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4781 } 4782 4783 /* 4784 * Now that we are unfrozen schedule the 4785 * device so any pending transactions are 4786 * run. 4787 */ 4788 if ((dev->ccbq.queue.entries > 0) 4789 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4790 && (run_queue != 0)) { 4791 rundevq = 1; 4792 } 4793 } 4794 } 4795 splx(s1); 4796 if (rundevq != 0) 4797 xpt_run_dev_sendq(dev->target->bus); 4798 splx(s0); 4799 } 4800 4801 void 4802 xpt_release_simq(struct cam_sim *sim, int run_queue) 4803 { 4804 int s; 4805 struct camq *sendq; 4806 4807 GIANT_REQUIRED; 4808 4809 sendq = &(sim->devq->send_queue); 4810 s = splcam(); 4811 if (sendq->qfrozen_cnt > 0) { 4812 4813 sendq->qfrozen_cnt--; 4814 if (sendq->qfrozen_cnt == 0) { 4815 struct cam_eb *bus; 4816 4817 /* 4818 * If there is a timeout scheduled to release this 4819 * sim queue, remove it. The queue frozen count is 4820 * already at 0. 4821 */ 4822 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4823 untimeout(xpt_release_simq_timeout, sim, 4824 sim->c_handle); 4825 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4826 } 4827 bus = xpt_find_bus(sim->path_id); 4828 splx(s); 4829 4830 if (run_queue) { 4831 /* 4832 * Now that we are unfrozen run the send queue. 4833 */ 4834 xpt_run_dev_sendq(bus); 4835 } 4836 xpt_release_bus(bus); 4837 } else 4838 splx(s); 4839 } else 4840 splx(s); 4841 } 4842 4843 static void 4844 xpt_release_simq_timeout(void *arg) 4845 { 4846 struct cam_sim *sim; 4847 4848 sim = (struct cam_sim *)arg; 4849 xpt_release_simq(sim, /* run_queue */ TRUE); 4850 } 4851 4852 void 4853 xpt_done(union ccb *done_ccb) 4854 { 4855 int s; 4856 4857 s = splcam(); 4858 4859 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4860 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4861 /* 4862 * Queue up the request for handling by our SWI handler 4863 * any of the "non-immediate" type of ccbs. 4864 */ 4865 switch (done_ccb->ccb_h.path->periph->type) { 4866 case CAM_PERIPH_BIO: 4867 mtx_lock(&cam_bioq_lock); 4868 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4869 sim_links.tqe); 4870 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4871 mtx_unlock(&cam_bioq_lock); 4872 swi_sched(cambio_ih, 0); 4873 break; 4874 default: 4875 panic("unknown periph type %d", 4876 done_ccb->ccb_h.path->periph->type); 4877 } 4878 } 4879 splx(s); 4880 } 4881 4882 union ccb * 4883 xpt_alloc_ccb() 4884 { 4885 union ccb *new_ccb; 4886 4887 GIANT_REQUIRED; 4888 4889 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_WAITOK); 4890 return (new_ccb); 4891 } 4892 4893 union ccb * 4894 xpt_alloc_ccb_nowait() 4895 { 4896 union ccb *new_ccb; 4897 4898 GIANT_REQUIRED; 4899 4900 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_NOWAIT); 4901 return (new_ccb); 4902 } 4903 4904 void 4905 xpt_free_ccb(union ccb *free_ccb) 4906 { 4907 free(free_ccb, M_CAMXPT); 4908 } 4909 4910 4911 4912 /* Private XPT functions */ 4913 4914 /* 4915 * Get a CAM control block for the caller. Charge the structure to the device 4916 * referenced by the path. If the this device has no 'credits' then the 4917 * device already has the maximum number of outstanding operations under way 4918 * and we return NULL. If we don't have sufficient resources to allocate more 4919 * ccbs, we also return NULL. 4920 */ 4921 static union ccb * 4922 xpt_get_ccb(struct cam_ed *device) 4923 { 4924 union ccb *new_ccb; 4925 int s; 4926 4927 s = splsoftcam(); 4928 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 4929 new_ccb = xpt_alloc_ccb_nowait(); 4930 if (new_ccb == NULL) { 4931 splx(s); 4932 return (NULL); 4933 } 4934 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4935 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4936 xpt_links.sle); 4937 xpt_ccb_count++; 4938 } 4939 cam_ccbq_take_opening(&device->ccbq); 4940 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4941 splx(s); 4942 return (new_ccb); 4943 } 4944 4945 static void 4946 xpt_release_bus(struct cam_eb *bus) 4947 { 4948 int s; 4949 4950 s = splcam(); 4951 if ((--bus->refcount == 0) 4952 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4953 TAILQ_REMOVE(&xpt_busses, bus, links); 4954 bus_generation++; 4955 splx(s); 4956 free(bus, M_CAMXPT); 4957 } else 4958 splx(s); 4959 } 4960 4961 static struct cam_et * 4962 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4963 { 4964 struct cam_et *target; 4965 4966 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4967 if (target != NULL) { 4968 struct cam_et *cur_target; 4969 4970 TAILQ_INIT(&target->ed_entries); 4971 target->bus = bus; 4972 target->target_id = target_id; 4973 target->refcount = 1; 4974 target->generation = 0; 4975 timevalclear(&target->last_reset); 4976 /* 4977 * Hold a reference to our parent bus so it 4978 * will not go away before we do. 4979 */ 4980 bus->refcount++; 4981 4982 /* Insertion sort into our bus's target list */ 4983 cur_target = TAILQ_FIRST(&bus->et_entries); 4984 while (cur_target != NULL && cur_target->target_id < target_id) 4985 cur_target = TAILQ_NEXT(cur_target, links); 4986 4987 if (cur_target != NULL) { 4988 TAILQ_INSERT_BEFORE(cur_target, target, links); 4989 } else { 4990 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4991 } 4992 bus->generation++; 4993 } 4994 return (target); 4995 } 4996 4997 static void 4998 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4999 { 5000 int s; 5001 5002 s = splcam(); 5003 if ((--target->refcount == 0) 5004 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 5005 TAILQ_REMOVE(&bus->et_entries, target, links); 5006 bus->generation++; 5007 splx(s); 5008 free(target, M_CAMXPT); 5009 xpt_release_bus(bus); 5010 } else 5011 splx(s); 5012 } 5013 5014 static struct cam_ed * 5015 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 5016 { 5017 #ifdef CAM_NEW_TRAN_CODE 5018 struct cam_path path; 5019 #endif /* CAM_NEW_TRAN_CODE */ 5020 struct cam_ed *device; 5021 struct cam_devq *devq; 5022 cam_status status; 5023 5024 /* Make space for us in the device queue on our bus */ 5025 devq = bus->sim->devq; 5026 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 5027 5028 if (status != CAM_REQ_CMP) { 5029 device = NULL; 5030 } else { 5031 device = (struct cam_ed *)malloc(sizeof(*device), 5032 M_CAMXPT, M_NOWAIT); 5033 } 5034 5035 if (device != NULL) { 5036 struct cam_ed *cur_device; 5037 5038 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 5039 device->alloc_ccb_entry.device = device; 5040 cam_init_pinfo(&device->send_ccb_entry.pinfo); 5041 device->send_ccb_entry.device = device; 5042 device->target = target; 5043 device->lun_id = lun_id; 5044 /* Initialize our queues */ 5045 if (camq_init(&device->drvq, 0) != 0) { 5046 free(device, M_CAMXPT); 5047 return (NULL); 5048 } 5049 if (cam_ccbq_init(&device->ccbq, 5050 bus->sim->max_dev_openings) != 0) { 5051 camq_fini(&device->drvq); 5052 free(device, M_CAMXPT); 5053 return (NULL); 5054 } 5055 SLIST_INIT(&device->asyncs); 5056 SLIST_INIT(&device->periphs); 5057 device->generation = 0; 5058 device->owner = NULL; 5059 /* 5060 * Take the default quirk entry until we have inquiry 5061 * data and can determine a better quirk to use. 5062 */ 5063 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5064 bzero(&device->inq_data, sizeof(device->inq_data)); 5065 device->inq_flags = 0; 5066 device->queue_flags = 0; 5067 device->serial_num = NULL; 5068 device->serial_num_len = 0; 5069 device->qfrozen_cnt = 0; 5070 device->flags = CAM_DEV_UNCONFIGURED; 5071 device->tag_delay_count = 0; 5072 device->tag_saved_openings = 0; 5073 device->refcount = 1; 5074 callout_handle_init(&device->c_handle); 5075 5076 /* 5077 * Hold a reference to our parent target so it 5078 * will not go away before we do. 5079 */ 5080 target->refcount++; 5081 5082 /* 5083 * XXX should be limited by number of CCBs this bus can 5084 * do. 5085 */ 5086 xpt_max_ccbs += device->ccbq.devq_openings; 5087 /* Insertion sort into our target's device list */ 5088 cur_device = TAILQ_FIRST(&target->ed_entries); 5089 while (cur_device != NULL && cur_device->lun_id < lun_id) 5090 cur_device = TAILQ_NEXT(cur_device, links); 5091 if (cur_device != NULL) { 5092 TAILQ_INSERT_BEFORE(cur_device, device, links); 5093 } else { 5094 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5095 } 5096 target->generation++; 5097 #ifdef CAM_NEW_TRAN_CODE 5098 if (lun_id != CAM_LUN_WILDCARD) { 5099 xpt_compile_path(&path, 5100 NULL, 5101 bus->path_id, 5102 target->target_id, 5103 lun_id); 5104 xpt_devise_transport(&path); 5105 xpt_release_path(&path); 5106 } 5107 #endif /* CAM_NEW_TRAN_CODE */ 5108 } 5109 return (device); 5110 } 5111 5112 static void 5113 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5114 struct cam_ed *device) 5115 { 5116 int s; 5117 5118 s = splcam(); 5119 if ((--device->refcount == 0) 5120 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5121 struct cam_devq *devq; 5122 5123 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5124 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5125 panic("Removing device while still queued for ccbs"); 5126 5127 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5128 untimeout(xpt_release_devq_timeout, device, 5129 device->c_handle); 5130 5131 TAILQ_REMOVE(&target->ed_entries, device,links); 5132 target->generation++; 5133 xpt_max_ccbs -= device->ccbq.devq_openings; 5134 /* Release our slot in the devq */ 5135 devq = bus->sim->devq; 5136 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5137 splx(s); 5138 camq_fini(&device->drvq); 5139 camq_fini(&device->ccbq.queue); 5140 free(device, M_CAMXPT); 5141 xpt_release_target(bus, target); 5142 } else 5143 splx(s); 5144 } 5145 5146 static u_int32_t 5147 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5148 { 5149 int s; 5150 int diff; 5151 int result; 5152 struct cam_ed *dev; 5153 5154 dev = path->device; 5155 s = splsoftcam(); 5156 5157 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5158 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5159 if (result == CAM_REQ_CMP && (diff < 0)) { 5160 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5161 } 5162 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5163 || (dev->inq_flags & SID_CmdQue) != 0) 5164 dev->tag_saved_openings = newopenings; 5165 /* Adjust the global limit */ 5166 xpt_max_ccbs += diff; 5167 splx(s); 5168 return (result); 5169 } 5170 5171 static struct cam_eb * 5172 xpt_find_bus(path_id_t path_id) 5173 { 5174 struct cam_eb *bus; 5175 5176 for (bus = TAILQ_FIRST(&xpt_busses); 5177 bus != NULL; 5178 bus = TAILQ_NEXT(bus, links)) { 5179 if (bus->path_id == path_id) { 5180 bus->refcount++; 5181 break; 5182 } 5183 } 5184 return (bus); 5185 } 5186 5187 static struct cam_et * 5188 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5189 { 5190 struct cam_et *target; 5191 5192 for (target = TAILQ_FIRST(&bus->et_entries); 5193 target != NULL; 5194 target = TAILQ_NEXT(target, links)) { 5195 if (target->target_id == target_id) { 5196 target->refcount++; 5197 break; 5198 } 5199 } 5200 return (target); 5201 } 5202 5203 static struct cam_ed * 5204 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5205 { 5206 struct cam_ed *device; 5207 5208 for (device = TAILQ_FIRST(&target->ed_entries); 5209 device != NULL; 5210 device = TAILQ_NEXT(device, links)) { 5211 if (device->lun_id == lun_id) { 5212 device->refcount++; 5213 break; 5214 } 5215 } 5216 return (device); 5217 } 5218 5219 typedef struct { 5220 union ccb *request_ccb; 5221 struct ccb_pathinq *cpi; 5222 int pending_count; 5223 } xpt_scan_bus_info; 5224 5225 /* 5226 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5227 * As the scan progresses, xpt_scan_bus is used as the 5228 * callback on completion function. 5229 */ 5230 static void 5231 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5232 { 5233 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5234 ("xpt_scan_bus\n")); 5235 switch (request_ccb->ccb_h.func_code) { 5236 case XPT_SCAN_BUS: 5237 { 5238 xpt_scan_bus_info *scan_info; 5239 union ccb *work_ccb; 5240 struct cam_path *path; 5241 u_int i; 5242 u_int max_target; 5243 u_int initiator_id; 5244 5245 /* Find out the characteristics of the bus */ 5246 work_ccb = xpt_alloc_ccb(); 5247 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5248 request_ccb->ccb_h.pinfo.priority); 5249 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5250 xpt_action(work_ccb); 5251 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5252 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5253 xpt_free_ccb(work_ccb); 5254 xpt_done(request_ccb); 5255 return; 5256 } 5257 5258 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5259 /* 5260 * Can't scan the bus on an adapter that 5261 * cannot perform the initiator role. 5262 */ 5263 request_ccb->ccb_h.status = CAM_REQ_CMP; 5264 xpt_free_ccb(work_ccb); 5265 xpt_done(request_ccb); 5266 return; 5267 } 5268 5269 /* Save some state for use while we probe for devices */ 5270 scan_info = (xpt_scan_bus_info *) 5271 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5272 scan_info->request_ccb = request_ccb; 5273 scan_info->cpi = &work_ccb->cpi; 5274 5275 /* Cache on our stack so we can work asynchronously */ 5276 max_target = scan_info->cpi->max_target; 5277 initiator_id = scan_info->cpi->initiator_id; 5278 5279 /* 5280 * Don't count the initiator if the 5281 * initiator is addressable. 5282 */ 5283 scan_info->pending_count = max_target + 1; 5284 if (initiator_id <= max_target) 5285 scan_info->pending_count--; 5286 5287 for (i = 0; i <= max_target; i++) { 5288 cam_status status; 5289 if (i == initiator_id) 5290 continue; 5291 5292 status = xpt_create_path(&path, xpt_periph, 5293 request_ccb->ccb_h.path_id, 5294 i, 0); 5295 if (status != CAM_REQ_CMP) { 5296 printf("xpt_scan_bus: xpt_create_path failed" 5297 " with status %#x, bus scan halted\n", 5298 status); 5299 break; 5300 } 5301 work_ccb = xpt_alloc_ccb(); 5302 xpt_setup_ccb(&work_ccb->ccb_h, path, 5303 request_ccb->ccb_h.pinfo.priority); 5304 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5305 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5306 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5307 work_ccb->crcn.flags = request_ccb->crcn.flags; 5308 xpt_action(work_ccb); 5309 } 5310 break; 5311 } 5312 case XPT_SCAN_LUN: 5313 { 5314 xpt_scan_bus_info *scan_info; 5315 path_id_t path_id; 5316 target_id_t target_id; 5317 lun_id_t lun_id; 5318 5319 /* Reuse the same CCB to query if a device was really found */ 5320 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5321 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5322 request_ccb->ccb_h.pinfo.priority); 5323 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5324 5325 path_id = request_ccb->ccb_h.path_id; 5326 target_id = request_ccb->ccb_h.target_id; 5327 lun_id = request_ccb->ccb_h.target_lun; 5328 xpt_action(request_ccb); 5329 5330 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5331 struct cam_ed *device; 5332 struct cam_et *target; 5333 int s, phl; 5334 5335 /* 5336 * If we already probed lun 0 successfully, or 5337 * we have additional configured luns on this 5338 * target that might have "gone away", go onto 5339 * the next lun. 5340 */ 5341 target = request_ccb->ccb_h.path->target; 5342 /* 5343 * We may touch devices that we don't 5344 * hold references too, so ensure they 5345 * don't disappear out from under us. 5346 * The target above is referenced by the 5347 * path in the request ccb. 5348 */ 5349 phl = 0; 5350 s = splcam(); 5351 device = TAILQ_FIRST(&target->ed_entries); 5352 if (device != NULL) { 5353 phl = CAN_SRCH_HI_SPARSE(device); 5354 if (device->lun_id == 0) 5355 device = TAILQ_NEXT(device, links); 5356 } 5357 splx(s); 5358 if ((lun_id != 0) || (device != NULL)) { 5359 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5360 lun_id++; 5361 } 5362 } else { 5363 struct cam_ed *device; 5364 5365 device = request_ccb->ccb_h.path->device; 5366 5367 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5368 /* Try the next lun */ 5369 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5370 || CAN_SRCH_HI_DENSE(device)) 5371 lun_id++; 5372 } 5373 } 5374 5375 xpt_free_path(request_ccb->ccb_h.path); 5376 5377 /* Check Bounds */ 5378 if ((lun_id == request_ccb->ccb_h.target_lun) 5379 || lun_id > scan_info->cpi->max_lun) { 5380 /* We're done */ 5381 5382 xpt_free_ccb(request_ccb); 5383 scan_info->pending_count--; 5384 if (scan_info->pending_count == 0) { 5385 xpt_free_ccb((union ccb *)scan_info->cpi); 5386 request_ccb = scan_info->request_ccb; 5387 free(scan_info, M_TEMP); 5388 request_ccb->ccb_h.status = CAM_REQ_CMP; 5389 xpt_done(request_ccb); 5390 } 5391 } else { 5392 /* Try the next device */ 5393 struct cam_path *path; 5394 cam_status status; 5395 5396 status = xpt_create_path(&path, xpt_periph, 5397 path_id, target_id, lun_id); 5398 if (status != CAM_REQ_CMP) { 5399 printf("xpt_scan_bus: xpt_create_path failed " 5400 "with status %#x, halting LUN scan\n", 5401 status); 5402 xpt_free_ccb(request_ccb); 5403 scan_info->pending_count--; 5404 if (scan_info->pending_count == 0) { 5405 xpt_free_ccb( 5406 (union ccb *)scan_info->cpi); 5407 request_ccb = scan_info->request_ccb; 5408 free(scan_info, M_TEMP); 5409 request_ccb->ccb_h.status = CAM_REQ_CMP; 5410 xpt_done(request_ccb); 5411 } 5412 break; 5413 } 5414 xpt_setup_ccb(&request_ccb->ccb_h, path, 5415 request_ccb->ccb_h.pinfo.priority); 5416 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5417 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5418 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5419 request_ccb->crcn.flags = 5420 scan_info->request_ccb->crcn.flags; 5421 xpt_action(request_ccb); 5422 } 5423 break; 5424 } 5425 default: 5426 break; 5427 } 5428 } 5429 5430 typedef enum { 5431 PROBE_TUR, 5432 PROBE_INQUIRY, 5433 PROBE_FULL_INQUIRY, 5434 PROBE_MODE_SENSE, 5435 PROBE_SERIAL_NUM, 5436 PROBE_TUR_FOR_NEGOTIATION 5437 } probe_action; 5438 5439 typedef enum { 5440 PROBE_INQUIRY_CKSUM = 0x01, 5441 PROBE_SERIAL_CKSUM = 0x02, 5442 PROBE_NO_ANNOUNCE = 0x04 5443 } probe_flags; 5444 5445 typedef struct { 5446 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5447 probe_action action; 5448 union ccb saved_ccb; 5449 probe_flags flags; 5450 MD5_CTX context; 5451 u_int8_t digest[16]; 5452 } probe_softc; 5453 5454 static void 5455 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5456 cam_flags flags, union ccb *request_ccb) 5457 { 5458 struct ccb_pathinq cpi; 5459 cam_status status; 5460 struct cam_path *new_path; 5461 struct cam_periph *old_periph; 5462 int s; 5463 5464 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5465 ("xpt_scan_lun\n")); 5466 5467 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5468 cpi.ccb_h.func_code = XPT_PATH_INQ; 5469 xpt_action((union ccb *)&cpi); 5470 5471 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5472 if (request_ccb != NULL) { 5473 request_ccb->ccb_h.status = cpi.ccb_h.status; 5474 xpt_done(request_ccb); 5475 } 5476 return; 5477 } 5478 5479 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5480 /* 5481 * Can't scan the bus on an adapter that 5482 * cannot perform the initiator role. 5483 */ 5484 if (request_ccb != NULL) { 5485 request_ccb->ccb_h.status = CAM_REQ_CMP; 5486 xpt_done(request_ccb); 5487 } 5488 return; 5489 } 5490 5491 if (request_ccb == NULL) { 5492 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5493 if (request_ccb == NULL) { 5494 xpt_print_path(path); 5495 printf("xpt_scan_lun: can't allocate CCB, can't " 5496 "continue\n"); 5497 return; 5498 } 5499 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5500 if (new_path == NULL) { 5501 xpt_print_path(path); 5502 printf("xpt_scan_lun: can't allocate path, can't " 5503 "continue\n"); 5504 free(request_ccb, M_TEMP); 5505 return; 5506 } 5507 status = xpt_compile_path(new_path, xpt_periph, 5508 path->bus->path_id, 5509 path->target->target_id, 5510 path->device->lun_id); 5511 5512 if (status != CAM_REQ_CMP) { 5513 xpt_print_path(path); 5514 printf("xpt_scan_lun: can't compile path, can't " 5515 "continue\n"); 5516 free(request_ccb, M_TEMP); 5517 free(new_path, M_TEMP); 5518 return; 5519 } 5520 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5521 request_ccb->ccb_h.cbfcnp = xptscandone; 5522 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5523 request_ccb->crcn.flags = flags; 5524 } 5525 5526 s = splsoftcam(); 5527 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5528 probe_softc *softc; 5529 5530 softc = (probe_softc *)old_periph->softc; 5531 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5532 periph_links.tqe); 5533 } else { 5534 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5535 probestart, "probe", 5536 CAM_PERIPH_BIO, 5537 request_ccb->ccb_h.path, NULL, 0, 5538 request_ccb); 5539 5540 if (status != CAM_REQ_CMP) { 5541 xpt_print_path(path); 5542 printf("xpt_scan_lun: cam_alloc_periph returned an " 5543 "error, can't continue probe\n"); 5544 request_ccb->ccb_h.status = status; 5545 xpt_done(request_ccb); 5546 } 5547 } 5548 splx(s); 5549 } 5550 5551 static void 5552 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5553 { 5554 xpt_release_path(done_ccb->ccb_h.path); 5555 free(done_ccb->ccb_h.path, M_TEMP); 5556 free(done_ccb, M_TEMP); 5557 } 5558 5559 static cam_status 5560 proberegister(struct cam_periph *periph, void *arg) 5561 { 5562 union ccb *request_ccb; /* CCB representing the probe request */ 5563 probe_softc *softc; 5564 5565 request_ccb = (union ccb *)arg; 5566 if (periph == NULL) { 5567 printf("proberegister: periph was NULL!!\n"); 5568 return(CAM_REQ_CMP_ERR); 5569 } 5570 5571 if (request_ccb == NULL) { 5572 printf("proberegister: no probe CCB, " 5573 "can't register device\n"); 5574 return(CAM_REQ_CMP_ERR); 5575 } 5576 5577 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5578 5579 if (softc == NULL) { 5580 printf("proberegister: Unable to probe new device. " 5581 "Unable to allocate softc\n"); 5582 return(CAM_REQ_CMP_ERR); 5583 } 5584 TAILQ_INIT(&softc->request_ccbs); 5585 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5586 periph_links.tqe); 5587 softc->flags = 0; 5588 periph->softc = softc; 5589 cam_periph_acquire(periph); 5590 /* 5591 * Ensure we've waited at least a bus settle 5592 * delay before attempting to probe the device. 5593 * For HBAs that don't do bus resets, this won't make a difference. 5594 */ 5595 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5596 scsi_delay); 5597 probeschedule(periph); 5598 return(CAM_REQ_CMP); 5599 } 5600 5601 static void 5602 probeschedule(struct cam_periph *periph) 5603 { 5604 struct ccb_pathinq cpi; 5605 union ccb *ccb; 5606 probe_softc *softc; 5607 5608 softc = (probe_softc *)periph->softc; 5609 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5610 5611 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5612 cpi.ccb_h.func_code = XPT_PATH_INQ; 5613 xpt_action((union ccb *)&cpi); 5614 5615 /* 5616 * If a device has gone away and another device, or the same one, 5617 * is back in the same place, it should have a unit attention 5618 * condition pending. It will not report the unit attention in 5619 * response to an inquiry, which may leave invalid transfer 5620 * negotiations in effect. The TUR will reveal the unit attention 5621 * condition. Only send the TUR for lun 0, since some devices 5622 * will get confused by commands other than inquiry to non-existent 5623 * luns. If you think a device has gone away start your scan from 5624 * lun 0. This will insure that any bogus transfer settings are 5625 * invalidated. 5626 * 5627 * If we haven't seen the device before and the controller supports 5628 * some kind of transfer negotiation, negotiate with the first 5629 * sent command if no bus reset was performed at startup. This 5630 * ensures that the device is not confused by transfer negotiation 5631 * settings left over by loader or BIOS action. 5632 */ 5633 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5634 && (ccb->ccb_h.target_lun == 0)) { 5635 softc->action = PROBE_TUR; 5636 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5637 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5638 proberequestdefaultnegotiation(periph); 5639 softc->action = PROBE_INQUIRY; 5640 } else { 5641 softc->action = PROBE_INQUIRY; 5642 } 5643 5644 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5645 softc->flags |= PROBE_NO_ANNOUNCE; 5646 else 5647 softc->flags &= ~PROBE_NO_ANNOUNCE; 5648 5649 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5650 } 5651 5652 static void 5653 probestart(struct cam_periph *periph, union ccb *start_ccb) 5654 { 5655 /* Probe the device that our peripheral driver points to */ 5656 struct ccb_scsiio *csio; 5657 probe_softc *softc; 5658 5659 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5660 5661 softc = (probe_softc *)periph->softc; 5662 csio = &start_ccb->csio; 5663 5664 switch (softc->action) { 5665 case PROBE_TUR: 5666 case PROBE_TUR_FOR_NEGOTIATION: 5667 { 5668 scsi_test_unit_ready(csio, 5669 /*retries*/4, 5670 probedone, 5671 MSG_SIMPLE_Q_TAG, 5672 SSD_FULL_SIZE, 5673 /*timeout*/60000); 5674 break; 5675 } 5676 case PROBE_INQUIRY: 5677 case PROBE_FULL_INQUIRY: 5678 { 5679 u_int inquiry_len; 5680 struct scsi_inquiry_data *inq_buf; 5681 5682 inq_buf = &periph->path->device->inq_data; 5683 /* 5684 * If the device is currently configured, we calculate an 5685 * MD5 checksum of the inquiry data, and if the serial number 5686 * length is greater than 0, add the serial number data 5687 * into the checksum as well. Once the inquiry and the 5688 * serial number check finish, we attempt to figure out 5689 * whether we still have the same device. 5690 */ 5691 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5692 5693 MD5Init(&softc->context); 5694 MD5Update(&softc->context, (unsigned char *)inq_buf, 5695 sizeof(struct scsi_inquiry_data)); 5696 softc->flags |= PROBE_INQUIRY_CKSUM; 5697 if (periph->path->device->serial_num_len > 0) { 5698 MD5Update(&softc->context, 5699 periph->path->device->serial_num, 5700 periph->path->device->serial_num_len); 5701 softc->flags |= PROBE_SERIAL_CKSUM; 5702 } 5703 MD5Final(softc->digest, &softc->context); 5704 } 5705 5706 if (softc->action == PROBE_INQUIRY) 5707 inquiry_len = SHORT_INQUIRY_LENGTH; 5708 else 5709 inquiry_len = inq_buf->additional_length 5710 + offsetof(struct scsi_inquiry_data, 5711 additional_length) + 1; 5712 5713 /* 5714 * Some parallel SCSI devices fail to send an 5715 * ignore wide residue message when dealing with 5716 * odd length inquiry requests. Round up to be 5717 * safe. 5718 */ 5719 inquiry_len = roundup2(inquiry_len, 2); 5720 5721 scsi_inquiry(csio, 5722 /*retries*/4, 5723 probedone, 5724 MSG_SIMPLE_Q_TAG, 5725 (u_int8_t *)inq_buf, 5726 inquiry_len, 5727 /*evpd*/FALSE, 5728 /*page_code*/0, 5729 SSD_MIN_SIZE, 5730 /*timeout*/60 * 1000); 5731 break; 5732 } 5733 case PROBE_MODE_SENSE: 5734 { 5735 void *mode_buf; 5736 int mode_buf_len; 5737 5738 mode_buf_len = sizeof(struct scsi_mode_header_6) 5739 + sizeof(struct scsi_mode_blk_desc) 5740 + sizeof(struct scsi_control_page); 5741 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5742 if (mode_buf != NULL) { 5743 scsi_mode_sense(csio, 5744 /*retries*/4, 5745 probedone, 5746 MSG_SIMPLE_Q_TAG, 5747 /*dbd*/FALSE, 5748 SMS_PAGE_CTRL_CURRENT, 5749 SMS_CONTROL_MODE_PAGE, 5750 mode_buf, 5751 mode_buf_len, 5752 SSD_FULL_SIZE, 5753 /*timeout*/60000); 5754 break; 5755 } 5756 xpt_print_path(periph->path); 5757 printf("Unable to mode sense control page - malloc failure\n"); 5758 softc->action = PROBE_SERIAL_NUM; 5759 } 5760 /* FALLTHROUGH */ 5761 case PROBE_SERIAL_NUM: 5762 { 5763 struct scsi_vpd_unit_serial_number *serial_buf; 5764 struct cam_ed* device; 5765 5766 serial_buf = NULL; 5767 device = periph->path->device; 5768 device->serial_num = NULL; 5769 device->serial_num_len = 0; 5770 5771 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5772 serial_buf = (struct scsi_vpd_unit_serial_number *) 5773 malloc(sizeof(*serial_buf), M_TEMP, 5774 M_NOWAIT | M_ZERO); 5775 5776 if (serial_buf != NULL) { 5777 scsi_inquiry(csio, 5778 /*retries*/4, 5779 probedone, 5780 MSG_SIMPLE_Q_TAG, 5781 (u_int8_t *)serial_buf, 5782 sizeof(*serial_buf), 5783 /*evpd*/TRUE, 5784 SVPD_UNIT_SERIAL_NUMBER, 5785 SSD_MIN_SIZE, 5786 /*timeout*/60 * 1000); 5787 break; 5788 } 5789 /* 5790 * We'll have to do without, let our probedone 5791 * routine finish up for us. 5792 */ 5793 start_ccb->csio.data_ptr = NULL; 5794 probedone(periph, start_ccb); 5795 return; 5796 } 5797 } 5798 xpt_action(start_ccb); 5799 } 5800 5801 static void 5802 proberequestdefaultnegotiation(struct cam_periph *periph) 5803 { 5804 struct ccb_trans_settings cts; 5805 5806 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5807 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5808 #ifdef CAM_NEW_TRAN_CODE 5809 cts.type = CTS_TYPE_USER_SETTINGS; 5810 #else /* CAM_NEW_TRAN_CODE */ 5811 cts.flags = CCB_TRANS_USER_SETTINGS; 5812 #endif /* CAM_NEW_TRAN_CODE */ 5813 xpt_action((union ccb *)&cts); 5814 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5815 #ifdef CAM_NEW_TRAN_CODE 5816 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5817 #else /* CAM_NEW_TRAN_CODE */ 5818 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5819 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5820 #endif /* CAM_NEW_TRAN_CODE */ 5821 xpt_action((union ccb *)&cts); 5822 } 5823 5824 static void 5825 probedone(struct cam_periph *periph, union ccb *done_ccb) 5826 { 5827 probe_softc *softc; 5828 struct cam_path *path; 5829 u_int32_t priority; 5830 5831 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5832 5833 softc = (probe_softc *)periph->softc; 5834 path = done_ccb->ccb_h.path; 5835 priority = done_ccb->ccb_h.pinfo.priority; 5836 5837 switch (softc->action) { 5838 case PROBE_TUR: 5839 { 5840 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5841 5842 if (cam_periph_error(done_ccb, 0, 5843 SF_NO_PRINT, NULL) == ERESTART) 5844 return; 5845 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5846 /* Don't wedge the queue */ 5847 xpt_release_devq(done_ccb->ccb_h.path, 5848 /*count*/1, 5849 /*run_queue*/TRUE); 5850 } 5851 softc->action = PROBE_INQUIRY; 5852 xpt_release_ccb(done_ccb); 5853 xpt_schedule(periph, priority); 5854 return; 5855 } 5856 case PROBE_INQUIRY: 5857 case PROBE_FULL_INQUIRY: 5858 { 5859 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5860 struct scsi_inquiry_data *inq_buf; 5861 u_int8_t periph_qual; 5862 5863 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5864 inq_buf = &path->device->inq_data; 5865 5866 periph_qual = SID_QUAL(inq_buf); 5867 5868 switch(periph_qual) { 5869 case SID_QUAL_LU_CONNECTED: 5870 { 5871 u_int8_t len; 5872 5873 /* 5874 * We conservatively request only 5875 * SHORT_INQUIRY_LEN bytes of inquiry 5876 * information during our first try 5877 * at sending an INQUIRY. If the device 5878 * has more information to give, 5879 * perform a second request specifying 5880 * the amount of information the device 5881 * is willing to give. 5882 */ 5883 len = inq_buf->additional_length 5884 + offsetof(struct scsi_inquiry_data, 5885 additional_length) + 1; 5886 if (softc->action == PROBE_INQUIRY 5887 && len > SHORT_INQUIRY_LENGTH) { 5888 softc->action = PROBE_FULL_INQUIRY; 5889 xpt_release_ccb(done_ccb); 5890 xpt_schedule(periph, priority); 5891 return; 5892 } 5893 5894 xpt_find_quirk(path->device); 5895 5896 #ifdef CAM_NEW_TRAN_CODE 5897 xpt_devise_transport(path); 5898 #endif /* CAM_NEW_TRAN_CODE */ 5899 if ((inq_buf->flags & SID_CmdQue) != 0) 5900 softc->action = PROBE_MODE_SENSE; 5901 else 5902 softc->action = PROBE_SERIAL_NUM; 5903 5904 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5905 5906 xpt_release_ccb(done_ccb); 5907 xpt_schedule(periph, priority); 5908 return; 5909 } 5910 default: 5911 break; 5912 } 5913 } else if (cam_periph_error(done_ccb, 0, 5914 done_ccb->ccb_h.target_lun > 0 5915 ? SF_RETRY_UA|SF_QUIET_IR 5916 : SF_RETRY_UA, 5917 &softc->saved_ccb) == ERESTART) { 5918 return; 5919 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5920 /* Don't wedge the queue */ 5921 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5922 /*run_queue*/TRUE); 5923 } 5924 /* 5925 * If we get to this point, we got an error status back 5926 * from the inquiry and the error status doesn't require 5927 * automatically retrying the command. Therefore, the 5928 * inquiry failed. If we had inquiry information before 5929 * for this device, but this latest inquiry command failed, 5930 * the device has probably gone away. If this device isn't 5931 * already marked unconfigured, notify the peripheral 5932 * drivers that this device is no more. 5933 */ 5934 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5935 /* Send the async notification. */ 5936 xpt_async(AC_LOST_DEVICE, path, NULL); 5937 5938 xpt_release_ccb(done_ccb); 5939 break; 5940 } 5941 case PROBE_MODE_SENSE: 5942 { 5943 struct ccb_scsiio *csio; 5944 struct scsi_mode_header_6 *mode_hdr; 5945 5946 csio = &done_ccb->csio; 5947 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 5948 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5949 struct scsi_control_page *page; 5950 u_int8_t *offset; 5951 5952 offset = ((u_int8_t *)&mode_hdr[1]) 5953 + mode_hdr->blk_desc_len; 5954 page = (struct scsi_control_page *)offset; 5955 path->device->queue_flags = page->queue_flags; 5956 } else if (cam_periph_error(done_ccb, 0, 5957 SF_RETRY_UA|SF_NO_PRINT, 5958 &softc->saved_ccb) == ERESTART) { 5959 return; 5960 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5961 /* Don't wedge the queue */ 5962 xpt_release_devq(done_ccb->ccb_h.path, 5963 /*count*/1, /*run_queue*/TRUE); 5964 } 5965 xpt_release_ccb(done_ccb); 5966 free(mode_hdr, M_TEMP); 5967 softc->action = PROBE_SERIAL_NUM; 5968 xpt_schedule(periph, priority); 5969 return; 5970 } 5971 case PROBE_SERIAL_NUM: 5972 { 5973 struct ccb_scsiio *csio; 5974 struct scsi_vpd_unit_serial_number *serial_buf; 5975 u_int32_t priority; 5976 int changed; 5977 int have_serialnum; 5978 5979 changed = 1; 5980 have_serialnum = 0; 5981 csio = &done_ccb->csio; 5982 priority = done_ccb->ccb_h.pinfo.priority; 5983 serial_buf = 5984 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 5985 5986 /* Clean up from previous instance of this device */ 5987 if (path->device->serial_num != NULL) { 5988 free(path->device->serial_num, M_CAMXPT); 5989 path->device->serial_num = NULL; 5990 path->device->serial_num_len = 0; 5991 } 5992 5993 if (serial_buf == NULL) { 5994 /* 5995 * Don't process the command as it was never sent 5996 */ 5997 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 5998 && (serial_buf->length > 0)) { 5999 6000 have_serialnum = 1; 6001 path->device->serial_num = 6002 (u_int8_t *)malloc((serial_buf->length + 1), 6003 M_CAMXPT, M_NOWAIT); 6004 if (path->device->serial_num != NULL) { 6005 bcopy(serial_buf->serial_num, 6006 path->device->serial_num, 6007 serial_buf->length); 6008 path->device->serial_num_len = 6009 serial_buf->length; 6010 path->device->serial_num[serial_buf->length] 6011 = '\0'; 6012 } 6013 } else if (cam_periph_error(done_ccb, 0, 6014 SF_RETRY_UA|SF_NO_PRINT, 6015 &softc->saved_ccb) == ERESTART) { 6016 return; 6017 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6018 /* Don't wedge the queue */ 6019 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6020 /*run_queue*/TRUE); 6021 } 6022 6023 /* 6024 * Let's see if we have seen this device before. 6025 */ 6026 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6027 MD5_CTX context; 6028 u_int8_t digest[16]; 6029 6030 MD5Init(&context); 6031 6032 MD5Update(&context, 6033 (unsigned char *)&path->device->inq_data, 6034 sizeof(struct scsi_inquiry_data)); 6035 6036 if (have_serialnum) 6037 MD5Update(&context, serial_buf->serial_num, 6038 serial_buf->length); 6039 6040 MD5Final(digest, &context); 6041 if (bcmp(softc->digest, digest, 16) == 0) 6042 changed = 0; 6043 6044 /* 6045 * XXX Do we need to do a TUR in order to ensure 6046 * that the device really hasn't changed??? 6047 */ 6048 if ((changed != 0) 6049 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6050 xpt_async(AC_LOST_DEVICE, path, NULL); 6051 } 6052 if (serial_buf != NULL) 6053 free(serial_buf, M_TEMP); 6054 6055 if (changed != 0) { 6056 /* 6057 * Now that we have all the necessary 6058 * information to safely perform transfer 6059 * negotiations... Controllers don't perform 6060 * any negotiation or tagged queuing until 6061 * after the first XPT_SET_TRAN_SETTINGS ccb is 6062 * received. So, on a new device, just retreive 6063 * the user settings, and set them as the current 6064 * settings to set the device up. 6065 */ 6066 proberequestdefaultnegotiation(periph); 6067 xpt_release_ccb(done_ccb); 6068 6069 /* 6070 * Perform a TUR to allow the controller to 6071 * perform any necessary transfer negotiation. 6072 */ 6073 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6074 xpt_schedule(periph, priority); 6075 return; 6076 } 6077 xpt_release_ccb(done_ccb); 6078 break; 6079 } 6080 case PROBE_TUR_FOR_NEGOTIATION: 6081 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6082 /* Don't wedge the queue */ 6083 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6084 /*run_queue*/TRUE); 6085 } 6086 6087 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6088 6089 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6090 /* Inform the XPT that a new device has been found */ 6091 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6092 xpt_action(done_ccb); 6093 6094 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6095 done_ccb); 6096 } 6097 xpt_release_ccb(done_ccb); 6098 break; 6099 } 6100 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6101 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6102 done_ccb->ccb_h.status = CAM_REQ_CMP; 6103 xpt_done(done_ccb); 6104 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6105 cam_periph_invalidate(periph); 6106 cam_periph_release(periph); 6107 } else { 6108 probeschedule(periph); 6109 } 6110 } 6111 6112 static void 6113 probecleanup(struct cam_periph *periph) 6114 { 6115 free(periph->softc, M_TEMP); 6116 } 6117 6118 static void 6119 xpt_find_quirk(struct cam_ed *device) 6120 { 6121 caddr_t match; 6122 6123 match = cam_quirkmatch((caddr_t)&device->inq_data, 6124 (caddr_t)xpt_quirk_table, 6125 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6126 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6127 6128 if (match == NULL) 6129 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6130 6131 device->quirk = (struct xpt_quirk_entry *)match; 6132 } 6133 6134 static int 6135 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6136 { 6137 int error, bool; 6138 6139 bool = cam_srch_hi; 6140 error = sysctl_handle_int(oidp, &bool, sizeof(bool), req); 6141 if (error != 0 || req->newptr == NULL) 6142 return (error); 6143 if (bool == 0 || bool == 1) { 6144 cam_srch_hi = bool; 6145 return (0); 6146 } else { 6147 return (EINVAL); 6148 } 6149 } 6150 6151 #ifdef CAM_NEW_TRAN_CODE 6152 6153 static void 6154 xpt_devise_transport(struct cam_path *path) 6155 { 6156 struct ccb_pathinq cpi; 6157 struct ccb_trans_settings cts; 6158 struct scsi_inquiry_data *inq_buf; 6159 6160 /* Get transport information from the SIM */ 6161 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6162 cpi.ccb_h.func_code = XPT_PATH_INQ; 6163 xpt_action((union ccb *)&cpi); 6164 6165 inq_buf = NULL; 6166 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6167 inq_buf = &path->device->inq_data; 6168 path->device->protocol = PROTO_SCSI; 6169 path->device->protocol_version = 6170 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6171 path->device->transport = cpi.transport; 6172 path->device->transport_version = cpi.transport_version; 6173 6174 /* 6175 * Any device not using SPI3 features should 6176 * be considered SPI2 or lower. 6177 */ 6178 if (inq_buf != NULL) { 6179 if (path->device->transport == XPORT_SPI 6180 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6181 && path->device->transport_version > 2) 6182 path->device->transport_version = 2; 6183 } else { 6184 struct cam_ed* otherdev; 6185 6186 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6187 otherdev != NULL; 6188 otherdev = TAILQ_NEXT(otherdev, links)) { 6189 if (otherdev != path->device) 6190 break; 6191 } 6192 6193 if (otherdev != NULL) { 6194 /* 6195 * Initially assume the same versioning as 6196 * prior luns for this target. 6197 */ 6198 path->device->protocol_version = 6199 otherdev->protocol_version; 6200 path->device->transport_version = 6201 otherdev->transport_version; 6202 } else { 6203 /* Until we know better, opt for safty */ 6204 path->device->protocol_version = 2; 6205 if (path->device->transport == XPORT_SPI) 6206 path->device->transport_version = 2; 6207 else 6208 path->device->transport_version = 0; 6209 } 6210 } 6211 6212 /* 6213 * XXX 6214 * For a device compliant with SPC-2 we should be able 6215 * to determine the transport version supported by 6216 * scrutinizing the version descriptors in the 6217 * inquiry buffer. 6218 */ 6219 6220 /* Tell the controller what we think */ 6221 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6222 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6223 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6224 cts.transport = path->device->transport; 6225 cts.transport_version = path->device->transport_version; 6226 cts.protocol = path->device->protocol; 6227 cts.protocol_version = path->device->protocol_version; 6228 cts.proto_specific.valid = 0; 6229 cts.xport_specific.valid = 0; 6230 xpt_action((union ccb *)&cts); 6231 } 6232 6233 static void 6234 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6235 int async_update) 6236 { 6237 struct ccb_pathinq cpi; 6238 struct ccb_trans_settings cur_cts; 6239 struct ccb_trans_settings_scsi *scsi; 6240 struct ccb_trans_settings_scsi *cur_scsi; 6241 struct cam_sim *sim; 6242 struct scsi_inquiry_data *inq_data; 6243 6244 if (device == NULL) { 6245 cts->ccb_h.status = CAM_PATH_INVALID; 6246 xpt_done((union ccb *)cts); 6247 return; 6248 } 6249 6250 if (cts->protocol == PROTO_UNKNOWN 6251 || cts->protocol == PROTO_UNSPECIFIED) { 6252 cts->protocol = device->protocol; 6253 cts->protocol_version = device->protocol_version; 6254 } 6255 6256 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6257 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6258 cts->protocol_version = device->protocol_version; 6259 6260 if (cts->protocol != device->protocol) { 6261 xpt_print_path(cts->ccb_h.path); 6262 printf("Uninitialized Protocol %x:%x?\n", 6263 cts->protocol, device->protocol); 6264 cts->protocol = device->protocol; 6265 } 6266 6267 if (cts->protocol_version > device->protocol_version) { 6268 if (bootverbose) { 6269 xpt_print_path(cts->ccb_h.path); 6270 printf("Down reving Protocol Version from %d to %d?\n", 6271 cts->protocol_version, device->protocol_version); 6272 } 6273 cts->protocol_version = device->protocol_version; 6274 } 6275 6276 if (cts->transport == XPORT_UNKNOWN 6277 || cts->transport == XPORT_UNSPECIFIED) { 6278 cts->transport = device->transport; 6279 cts->transport_version = device->transport_version; 6280 } 6281 6282 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6283 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6284 cts->transport_version = device->transport_version; 6285 6286 if (cts->transport != device->transport) { 6287 xpt_print_path(cts->ccb_h.path); 6288 printf("Uninitialized Transport %x:%x?\n", 6289 cts->transport, device->transport); 6290 cts->transport = device->transport; 6291 } 6292 6293 if (cts->transport_version > device->transport_version) { 6294 if (bootverbose) { 6295 xpt_print_path(cts->ccb_h.path); 6296 printf("Down reving Transport Version from %d to %d?\n", 6297 cts->transport_version, 6298 device->transport_version); 6299 } 6300 cts->transport_version = device->transport_version; 6301 } 6302 6303 sim = cts->ccb_h.path->bus->sim; 6304 6305 /* 6306 * Nothing more of interest to do unless 6307 * this is a device connected via the 6308 * SCSI protocol. 6309 */ 6310 if (cts->protocol != PROTO_SCSI) { 6311 if (async_update == FALSE) 6312 (*(sim->sim_action))(sim, (union ccb *)cts); 6313 return; 6314 } 6315 6316 inq_data = &device->inq_data; 6317 scsi = &cts->proto_specific.scsi; 6318 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6319 cpi.ccb_h.func_code = XPT_PATH_INQ; 6320 xpt_action((union ccb *)&cpi); 6321 6322 /* SCSI specific sanity checking */ 6323 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6324 || (inq_data->flags & SID_CmdQue) == 0 6325 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6326 || (device->quirk->mintags == 0)) { 6327 /* 6328 * Can't tag on hardware that doesn't support tags, 6329 * doesn't have it enabled, or has broken tag support. 6330 */ 6331 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6332 } 6333 6334 if (async_update == FALSE) { 6335 /* 6336 * Perform sanity checking against what the 6337 * controller and device can do. 6338 */ 6339 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6340 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6341 cur_cts.type = cts->type; 6342 xpt_action((union ccb *)&cur_cts); 6343 6344 cur_scsi = &cur_cts.proto_specific.scsi; 6345 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6346 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6347 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6348 } 6349 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6350 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6351 } 6352 6353 /* SPI specific sanity checking */ 6354 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6355 u_int spi3caps; 6356 struct ccb_trans_settings_spi *spi; 6357 struct ccb_trans_settings_spi *cur_spi; 6358 6359 spi = &cts->xport_specific.spi; 6360 6361 cur_spi = &cur_cts.xport_specific.spi; 6362 6363 /* Fill in any gaps in what the user gave us */ 6364 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6365 spi->sync_period = cur_spi->sync_period; 6366 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6367 spi->sync_period = 0; 6368 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6369 spi->sync_offset = cur_spi->sync_offset; 6370 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6371 spi->sync_offset = 0; 6372 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6373 spi->ppr_options = cur_spi->ppr_options; 6374 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6375 spi->ppr_options = 0; 6376 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6377 spi->bus_width = cur_spi->bus_width; 6378 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6379 spi->bus_width = 0; 6380 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6381 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6382 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6383 } 6384 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6385 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6386 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6387 && (inq_data->flags & SID_Sync) == 0 6388 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6389 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6390 || (cur_spi->sync_offset == 0) 6391 || (cur_spi->sync_period == 0)) { 6392 /* Force async */ 6393 spi->sync_period = 0; 6394 spi->sync_offset = 0; 6395 } 6396 6397 switch (spi->bus_width) { 6398 case MSG_EXT_WDTR_BUS_32_BIT: 6399 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6400 || (inq_data->flags & SID_WBus32) != 0 6401 || cts->type == CTS_TYPE_USER_SETTINGS) 6402 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6403 break; 6404 /* Fall Through to 16-bit */ 6405 case MSG_EXT_WDTR_BUS_16_BIT: 6406 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6407 || (inq_data->flags & SID_WBus16) != 0 6408 || cts->type == CTS_TYPE_USER_SETTINGS) 6409 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6410 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6411 break; 6412 } 6413 /* Fall Through to 8-bit */ 6414 default: /* New bus width?? */ 6415 case MSG_EXT_WDTR_BUS_8_BIT: 6416 /* All targets can do this */ 6417 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6418 break; 6419 } 6420 6421 spi3caps = cpi.xport_specific.spi.ppr_options; 6422 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6423 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6424 spi3caps &= inq_data->spi3data; 6425 6426 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6427 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6428 6429 if ((spi3caps & SID_SPI_IUS) == 0) 6430 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6431 6432 if ((spi3caps & SID_SPI_QAS) == 0) 6433 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6434 6435 /* No SPI Transfer settings are allowed unless we are wide */ 6436 if (spi->bus_width == 0) 6437 spi->ppr_options = 0; 6438 6439 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6440 /* 6441 * Can't tag queue without disconnection. 6442 */ 6443 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6444 scsi->valid |= CTS_SCSI_VALID_TQ; 6445 } 6446 6447 /* 6448 * If we are currently performing tagged transactions to 6449 * this device and want to change its negotiation parameters, 6450 * go non-tagged for a bit to give the controller a chance to 6451 * negotiate unhampered by tag messages. 6452 */ 6453 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6454 && (device->inq_flags & SID_CmdQue) != 0 6455 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6456 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6457 CTS_SPI_VALID_SYNC_OFFSET| 6458 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6459 xpt_toggle_tags(cts->ccb_h.path); 6460 } 6461 6462 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6463 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6464 int device_tagenb; 6465 6466 /* 6467 * If we are transitioning from tags to no-tags or 6468 * vice-versa, we need to carefully freeze and restart 6469 * the queue so that we don't overlap tagged and non-tagged 6470 * commands. We also temporarily stop tags if there is 6471 * a change in transfer negotiation settings to allow 6472 * "tag-less" negotiation. 6473 */ 6474 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6475 || (device->inq_flags & SID_CmdQue) != 0) 6476 device_tagenb = TRUE; 6477 else 6478 device_tagenb = FALSE; 6479 6480 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6481 && device_tagenb == FALSE) 6482 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6483 && device_tagenb == TRUE)) { 6484 6485 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6486 /* 6487 * Delay change to use tags until after a 6488 * few commands have gone to this device so 6489 * the controller has time to perform transfer 6490 * negotiations without tagged messages getting 6491 * in the way. 6492 */ 6493 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6494 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6495 } else { 6496 struct ccb_relsim crs; 6497 6498 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6499 device->inq_flags &= ~SID_CmdQue; 6500 xpt_dev_ccbq_resize(cts->ccb_h.path, 6501 sim->max_dev_openings); 6502 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6503 device->tag_delay_count = 0; 6504 6505 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6506 /*priority*/1); 6507 crs.ccb_h.func_code = XPT_REL_SIMQ; 6508 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6509 crs.openings 6510 = crs.release_timeout 6511 = crs.qfrozen_cnt 6512 = 0; 6513 xpt_action((union ccb *)&crs); 6514 } 6515 } 6516 } 6517 if (async_update == FALSE) 6518 (*(sim->sim_action))(sim, (union ccb *)cts); 6519 } 6520 6521 #else /* CAM_NEW_TRAN_CODE */ 6522 6523 static void 6524 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6525 int async_update) 6526 { 6527 struct cam_sim *sim; 6528 int qfrozen; 6529 6530 sim = cts->ccb_h.path->bus->sim; 6531 if (async_update == FALSE) { 6532 struct scsi_inquiry_data *inq_data; 6533 struct ccb_pathinq cpi; 6534 struct ccb_trans_settings cur_cts; 6535 6536 if (device == NULL) { 6537 cts->ccb_h.status = CAM_PATH_INVALID; 6538 xpt_done((union ccb *)cts); 6539 return; 6540 } 6541 6542 /* 6543 * Perform sanity checking against what the 6544 * controller and device can do. 6545 */ 6546 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6547 cpi.ccb_h.func_code = XPT_PATH_INQ; 6548 xpt_action((union ccb *)&cpi); 6549 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6550 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6551 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 6552 xpt_action((union ccb *)&cur_cts); 6553 inq_data = &device->inq_data; 6554 6555 /* Fill in any gaps in what the user gave us */ 6556 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 6557 cts->sync_period = cur_cts.sync_period; 6558 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 6559 cts->sync_offset = cur_cts.sync_offset; 6560 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 6561 cts->bus_width = cur_cts.bus_width; 6562 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 6563 cts->flags &= ~CCB_TRANS_DISC_ENB; 6564 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 6565 } 6566 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 6567 cts->flags &= ~CCB_TRANS_TAG_ENB; 6568 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 6569 } 6570 6571 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6572 && (inq_data->flags & SID_Sync) == 0) 6573 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6574 || (cts->sync_offset == 0) 6575 || (cts->sync_period == 0)) { 6576 /* Force async */ 6577 cts->sync_period = 0; 6578 cts->sync_offset = 0; 6579 } else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6580 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 6581 && cts->sync_period <= 0x9) { 6582 /* 6583 * Don't allow DT transmission rates if the 6584 * device does not support it. 6585 */ 6586 cts->sync_period = 0xa; 6587 } 6588 6589 switch (cts->bus_width) { 6590 case MSG_EXT_WDTR_BUS_32_BIT: 6591 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6592 || (inq_data->flags & SID_WBus32) != 0) 6593 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6594 break; 6595 /* FALLTHROUGH to 16-bit */ 6596 case MSG_EXT_WDTR_BUS_16_BIT: 6597 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6598 || (inq_data->flags & SID_WBus16) != 0) 6599 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6600 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6601 break; 6602 } 6603 /* FALLTHROUGH to 8-bit */ 6604 default: /* New bus width?? */ 6605 case MSG_EXT_WDTR_BUS_8_BIT: 6606 /* All targets can do this */ 6607 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6608 break; 6609 } 6610 6611 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 6612 /* 6613 * Can't tag queue without disconnection. 6614 */ 6615 cts->flags &= ~CCB_TRANS_TAG_ENB; 6616 cts->valid |= CCB_TRANS_TQ_VALID; 6617 } 6618 6619 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6620 || (inq_data->flags & SID_CmdQue) == 0 6621 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6622 || (device->quirk->mintags == 0)) { 6623 /* 6624 * Can't tag on hardware that doesn't support, 6625 * doesn't have it enabled, or has broken tag support. 6626 */ 6627 cts->flags &= ~CCB_TRANS_TAG_ENB; 6628 } 6629 } 6630 6631 qfrozen = FALSE; 6632 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 6633 int device_tagenb; 6634 6635 /* 6636 * If we are transitioning from tags to no-tags or 6637 * vice-versa, we need to carefully freeze and restart 6638 * the queue so that we don't overlap tagged and non-tagged 6639 * commands. We also temporarily stop tags if there is 6640 * a change in transfer negotiation settings to allow 6641 * "tag-less" negotiation. 6642 */ 6643 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6644 || (device->inq_flags & SID_CmdQue) != 0) 6645 device_tagenb = TRUE; 6646 else 6647 device_tagenb = FALSE; 6648 6649 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 6650 && device_tagenb == FALSE) 6651 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 6652 && device_tagenb == TRUE)) { 6653 6654 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 6655 /* 6656 * Delay change to use tags until after a 6657 * few commands have gone to this device so 6658 * the controller has time to perform transfer 6659 * negotiations without tagged messages getting 6660 * in the way. 6661 */ 6662 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6663 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6664 } else { 6665 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6666 qfrozen = TRUE; 6667 device->inq_flags &= ~SID_CmdQue; 6668 xpt_dev_ccbq_resize(cts->ccb_h.path, 6669 sim->max_dev_openings); 6670 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6671 device->tag_delay_count = 0; 6672 } 6673 } 6674 } 6675 6676 if (async_update == FALSE) { 6677 /* 6678 * If we are currently performing tagged transactions to 6679 * this device and want to change its negotiation parameters, 6680 * go non-tagged for a bit to give the controller a chance to 6681 * negotiate unhampered by tag messages. 6682 */ 6683 if ((device->inq_flags & SID_CmdQue) != 0 6684 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 6685 CCB_TRANS_SYNC_OFFSET_VALID| 6686 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 6687 xpt_toggle_tags(cts->ccb_h.path); 6688 6689 (*(sim->sim_action))(sim, (union ccb *)cts); 6690 } 6691 6692 if (qfrozen) { 6693 struct ccb_relsim crs; 6694 6695 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6696 /*priority*/1); 6697 crs.ccb_h.func_code = XPT_REL_SIMQ; 6698 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6699 crs.openings 6700 = crs.release_timeout 6701 = crs.qfrozen_cnt 6702 = 0; 6703 xpt_action((union ccb *)&crs); 6704 } 6705 } 6706 6707 6708 #endif /* CAM_NEW_TRAN_CODE */ 6709 6710 static void 6711 xpt_toggle_tags(struct cam_path *path) 6712 { 6713 struct cam_ed *dev; 6714 6715 /* 6716 * Give controllers a chance to renegotiate 6717 * before starting tag operations. We 6718 * "toggle" tagged queuing off then on 6719 * which causes the tag enable command delay 6720 * counter to come into effect. 6721 */ 6722 dev = path->device; 6723 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6724 || ((dev->inq_flags & SID_CmdQue) != 0 6725 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6726 struct ccb_trans_settings cts; 6727 6728 xpt_setup_ccb(&cts.ccb_h, path, 1); 6729 #ifdef CAM_NEW_TRAN_CODE 6730 cts.protocol = PROTO_SCSI; 6731 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6732 cts.transport = XPORT_UNSPECIFIED; 6733 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6734 cts.proto_specific.scsi.flags = 0; 6735 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6736 #else /* CAM_NEW_TRAN_CODE */ 6737 cts.flags = 0; 6738 cts.valid = CCB_TRANS_TQ_VALID; 6739 #endif /* CAM_NEW_TRAN_CODE */ 6740 xpt_set_transfer_settings(&cts, path->device, 6741 /*async_update*/TRUE); 6742 #ifdef CAM_NEW_TRAN_CODE 6743 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6744 #else /* CAM_NEW_TRAN_CODE */ 6745 cts.flags = CCB_TRANS_TAG_ENB; 6746 #endif /* CAM_NEW_TRAN_CODE */ 6747 xpt_set_transfer_settings(&cts, path->device, 6748 /*async_update*/TRUE); 6749 } 6750 } 6751 6752 static void 6753 xpt_start_tags(struct cam_path *path) 6754 { 6755 struct ccb_relsim crs; 6756 struct cam_ed *device; 6757 struct cam_sim *sim; 6758 int newopenings; 6759 6760 device = path->device; 6761 sim = path->bus->sim; 6762 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6763 xpt_freeze_devq(path, /*count*/1); 6764 device->inq_flags |= SID_CmdQue; 6765 if (device->tag_saved_openings != 0) 6766 newopenings = device->tag_saved_openings; 6767 else 6768 newopenings = min(device->quirk->maxtags, 6769 sim->max_tagged_dev_openings); 6770 xpt_dev_ccbq_resize(path, newopenings); 6771 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6772 crs.ccb_h.func_code = XPT_REL_SIMQ; 6773 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6774 crs.openings 6775 = crs.release_timeout 6776 = crs.qfrozen_cnt 6777 = 0; 6778 xpt_action((union ccb *)&crs); 6779 } 6780 6781 static int busses_to_config; 6782 static int busses_to_reset; 6783 6784 static int 6785 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6786 { 6787 if (bus->path_id != CAM_XPT_PATH_ID) { 6788 struct cam_path path; 6789 struct ccb_pathinq cpi; 6790 int can_negotiate; 6791 6792 busses_to_config++; 6793 xpt_compile_path(&path, NULL, bus->path_id, 6794 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6795 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6796 cpi.ccb_h.func_code = XPT_PATH_INQ; 6797 xpt_action((union ccb *)&cpi); 6798 can_negotiate = cpi.hba_inquiry; 6799 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6800 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6801 && can_negotiate) 6802 busses_to_reset++; 6803 xpt_release_path(&path); 6804 } 6805 6806 return(1); 6807 } 6808 6809 static int 6810 xptconfigfunc(struct cam_eb *bus, void *arg) 6811 { 6812 struct cam_path *path; 6813 union ccb *work_ccb; 6814 6815 if (bus->path_id != CAM_XPT_PATH_ID) { 6816 cam_status status; 6817 int can_negotiate; 6818 6819 work_ccb = xpt_alloc_ccb(); 6820 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6821 CAM_TARGET_WILDCARD, 6822 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6823 printf("xptconfigfunc: xpt_create_path failed with " 6824 "status %#x for bus %d\n", status, bus->path_id); 6825 printf("xptconfigfunc: halting bus configuration\n"); 6826 xpt_free_ccb(work_ccb); 6827 busses_to_config--; 6828 xpt_finishconfig(xpt_periph, NULL); 6829 return(0); 6830 } 6831 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6832 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6833 xpt_action(work_ccb); 6834 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6835 printf("xptconfigfunc: CPI failed on bus %d " 6836 "with status %d\n", bus->path_id, 6837 work_ccb->ccb_h.status); 6838 xpt_finishconfig(xpt_periph, work_ccb); 6839 return(1); 6840 } 6841 6842 can_negotiate = work_ccb->cpi.hba_inquiry; 6843 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6844 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6845 && (can_negotiate != 0)) { 6846 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6847 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6848 work_ccb->ccb_h.cbfcnp = NULL; 6849 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6850 ("Resetting Bus\n")); 6851 xpt_action(work_ccb); 6852 xpt_finishconfig(xpt_periph, work_ccb); 6853 } else { 6854 /* Act as though we performed a successful BUS RESET */ 6855 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6856 xpt_finishconfig(xpt_periph, work_ccb); 6857 } 6858 } 6859 6860 return(1); 6861 } 6862 6863 static void 6864 xpt_config(void *arg) 6865 { 6866 /* 6867 * Now that interrupts are enabled, go find our devices 6868 */ 6869 6870 #ifdef CAMDEBUG 6871 /* Setup debugging flags and path */ 6872 #ifdef CAM_DEBUG_FLAGS 6873 cam_dflags = CAM_DEBUG_FLAGS; 6874 #else /* !CAM_DEBUG_FLAGS */ 6875 cam_dflags = CAM_DEBUG_NONE; 6876 #endif /* CAM_DEBUG_FLAGS */ 6877 #ifdef CAM_DEBUG_BUS 6878 if (cam_dflags != CAM_DEBUG_NONE) { 6879 if (xpt_create_path(&cam_dpath, xpt_periph, 6880 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6881 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6882 printf("xpt_config: xpt_create_path() failed for debug" 6883 " target %d:%d:%d, debugging disabled\n", 6884 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6885 cam_dflags = CAM_DEBUG_NONE; 6886 } 6887 } else 6888 cam_dpath = NULL; 6889 #else /* !CAM_DEBUG_BUS */ 6890 cam_dpath = NULL; 6891 #endif /* CAM_DEBUG_BUS */ 6892 #endif /* CAMDEBUG */ 6893 6894 /* 6895 * Scan all installed busses. 6896 */ 6897 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6898 6899 if (busses_to_config == 0) { 6900 /* Call manually because we don't have any busses */ 6901 xpt_finishconfig(xpt_periph, NULL); 6902 } else { 6903 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6904 printf("Waiting %d seconds for SCSI " 6905 "devices to settle\n", scsi_delay/1000); 6906 } 6907 xpt_for_all_busses(xptconfigfunc, NULL); 6908 } 6909 } 6910 6911 /* 6912 * If the given device only has one peripheral attached to it, and if that 6913 * peripheral is the passthrough driver, announce it. This insures that the 6914 * user sees some sort of announcement for every peripheral in their system. 6915 */ 6916 static int 6917 xptpassannouncefunc(struct cam_ed *device, void *arg) 6918 { 6919 struct cam_periph *periph; 6920 int i; 6921 6922 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6923 periph = SLIST_NEXT(periph, periph_links), i++); 6924 6925 periph = SLIST_FIRST(&device->periphs); 6926 if ((i == 1) 6927 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6928 xpt_announce_periph(periph, NULL); 6929 6930 return(1); 6931 } 6932 6933 static void 6934 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6935 { 6936 struct periph_driver **p_drv; 6937 int i; 6938 6939 if (done_ccb != NULL) { 6940 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6941 ("xpt_finishconfig\n")); 6942 switch(done_ccb->ccb_h.func_code) { 6943 case XPT_RESET_BUS: 6944 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6945 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6946 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6947 done_ccb->crcn.flags = 0; 6948 xpt_action(done_ccb); 6949 return; 6950 } 6951 /* FALLTHROUGH */ 6952 case XPT_SCAN_BUS: 6953 default: 6954 xpt_free_path(done_ccb->ccb_h.path); 6955 busses_to_config--; 6956 break; 6957 } 6958 } 6959 6960 if (busses_to_config == 0) { 6961 /* Register all the peripheral drivers */ 6962 /* XXX This will have to change when we have loadable modules */ 6963 p_drv = periph_drivers; 6964 for (i = 0; p_drv[i] != NULL; i++) { 6965 (*p_drv[i]->init)(); 6966 } 6967 6968 /* 6969 * Check for devices with no "standard" peripheral driver 6970 * attached. For any devices like that, announce the 6971 * passthrough driver so the user will see something. 6972 */ 6973 xpt_for_all_devices(xptpassannouncefunc, NULL); 6974 6975 /* Release our hook so that the boot can continue. */ 6976 config_intrhook_disestablish(xpt_config_hook); 6977 free(xpt_config_hook, M_TEMP); 6978 xpt_config_hook = NULL; 6979 } 6980 if (done_ccb != NULL) 6981 xpt_free_ccb(done_ccb); 6982 } 6983 6984 static void 6985 xptaction(struct cam_sim *sim, union ccb *work_ccb) 6986 { 6987 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 6988 6989 switch (work_ccb->ccb_h.func_code) { 6990 /* Common cases first */ 6991 case XPT_PATH_INQ: /* Path routing inquiry */ 6992 { 6993 struct ccb_pathinq *cpi; 6994 6995 cpi = &work_ccb->cpi; 6996 cpi->version_num = 1; /* XXX??? */ 6997 cpi->hba_inquiry = 0; 6998 cpi->target_sprt = 0; 6999 cpi->hba_misc = 0; 7000 cpi->hba_eng_cnt = 0; 7001 cpi->max_target = 0; 7002 cpi->max_lun = 0; 7003 cpi->initiator_id = 0; 7004 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7005 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7006 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7007 cpi->unit_number = sim->unit_number; 7008 cpi->bus_id = sim->bus_id; 7009 cpi->base_transfer_speed = 0; 7010 #ifdef CAM_NEW_TRAN_CODE 7011 cpi->protocol = PROTO_UNSPECIFIED; 7012 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7013 cpi->transport = XPORT_UNSPECIFIED; 7014 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7015 #endif /* CAM_NEW_TRAN_CODE */ 7016 cpi->ccb_h.status = CAM_REQ_CMP; 7017 xpt_done(work_ccb); 7018 break; 7019 } 7020 default: 7021 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7022 xpt_done(work_ccb); 7023 break; 7024 } 7025 } 7026 7027 /* 7028 * The xpt as a "controller" has no interrupt sources, so polling 7029 * is a no-op. 7030 */ 7031 static void 7032 xptpoll(struct cam_sim *sim) 7033 { 7034 } 7035 7036 static void 7037 camisr(void *V_queue) 7038 { 7039 cam_isrq_t *oqueue = V_queue; 7040 cam_isrq_t queue; 7041 int s; 7042 struct ccb_hdr *ccb_h; 7043 7044 /* 7045 * Transfer the ccb_bioq list to a temporary list so we can operate 7046 * on it without needing to lock/unlock on every loop. The concat 7047 * function with re-init the real list for us. 7048 */ 7049 s = splcam(); 7050 mtx_lock(&cam_bioq_lock); 7051 TAILQ_INIT(&queue); 7052 TAILQ_CONCAT(&queue, oqueue, sim_links.tqe); 7053 mtx_unlock(&cam_bioq_lock); 7054 7055 while ((ccb_h = TAILQ_FIRST(&queue)) != NULL) { 7056 int runq; 7057 7058 TAILQ_REMOVE(&queue, ccb_h, sim_links.tqe); 7059 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7060 splx(s); 7061 7062 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7063 ("camisr\n")); 7064 7065 runq = FALSE; 7066 7067 if (ccb_h->flags & CAM_HIGH_POWER) { 7068 struct highpowerlist *hphead; 7069 union ccb *send_ccb; 7070 7071 hphead = &highpowerq; 7072 7073 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7074 7075 /* 7076 * Increment the count since this command is done. 7077 */ 7078 num_highpower++; 7079 7080 /* 7081 * Any high powered commands queued up? 7082 */ 7083 if (send_ccb != NULL) { 7084 7085 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7086 7087 xpt_release_devq(send_ccb->ccb_h.path, 7088 /*count*/1, /*runqueue*/TRUE); 7089 } 7090 } 7091 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7092 struct cam_ed *dev; 7093 7094 dev = ccb_h->path->device; 7095 7096 s = splcam(); 7097 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7098 7099 ccb_h->path->bus->sim->devq->send_active--; 7100 ccb_h->path->bus->sim->devq->send_openings++; 7101 splx(s); 7102 7103 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7104 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7105 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7106 && (dev->ccbq.dev_active == 0))) { 7107 7108 xpt_release_devq(ccb_h->path, /*count*/1, 7109 /*run_queue*/TRUE); 7110 } 7111 7112 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7113 && (--dev->tag_delay_count == 0)) 7114 xpt_start_tags(ccb_h->path); 7115 7116 if ((dev->ccbq.queue.entries > 0) 7117 && (dev->qfrozen_cnt == 0) 7118 && (device_is_send_queued(dev) == 0)) { 7119 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7120 dev); 7121 } 7122 } 7123 7124 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7125 xpt_release_simq(ccb_h->path->bus->sim, 7126 /*run_queue*/TRUE); 7127 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7128 runq = FALSE; 7129 } 7130 7131 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7132 && (ccb_h->status & CAM_DEV_QFRZN)) { 7133 xpt_release_devq(ccb_h->path, /*count*/1, 7134 /*run_queue*/TRUE); 7135 ccb_h->status &= ~CAM_DEV_QFRZN; 7136 } else if (runq) { 7137 xpt_run_dev_sendq(ccb_h->path->bus); 7138 } 7139 7140 /* Call the peripheral driver's callback */ 7141 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7142 7143 /* Raise IPL for while test */ 7144 s = splcam(); 7145 } 7146 splx(s); 7147 } 7148