xref: /freebsd/sys/cam/cam_xpt.c (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/fcntl.h>
39 #include <sys/md5.h>
40 #include <sys/devicestat.h>
41 #include <sys/interrupt.h>
42 #include <sys/bus.h>
43 
44 #ifdef PC98
45 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
46 #endif
47 
48 #include <machine/clock.h>
49 #include <machine/ipl.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_sim.h>
55 #include <cam/cam_xpt.h>
56 #include <cam/cam_xpt_sim.h>
57 #include <cam/cam_xpt_periph.h>
58 #include <cam/cam_debug.h>
59 
60 #include <cam/scsi/scsi_all.h>
61 #include <cam/scsi/scsi_message.h>
62 #include <cam/scsi/scsi_pass.h>
63 #include "opt_cam.h"
64 
65 /* Datastructures internal to the xpt layer */
66 
67 /*
68  * Definition of an async handler callback block.  These are used to add
69  * SIMs and peripherals to the async callback lists.
70  */
71 struct async_node {
72 	SLIST_ENTRY(async_node)	links;
73 	u_int32_t	event_enable;	/* Async Event enables */
74 	void		(*callback)(void *arg, u_int32_t code,
75 				    struct cam_path *path, void *args);
76 	void		*callback_arg;
77 };
78 
79 SLIST_HEAD(async_list, async_node);
80 SLIST_HEAD(periph_list, cam_periph);
81 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
82 
83 /*
84  * This is the maximum number of high powered commands (e.g. start unit)
85  * that can be outstanding at a particular time.
86  */
87 #ifndef CAM_MAX_HIGHPOWER
88 #define CAM_MAX_HIGHPOWER  4
89 #endif
90 
91 /* number of high powered commands that can go through right now */
92 static int num_highpower = CAM_MAX_HIGHPOWER;
93 
94 /*
95  * Structure for queueing a device in a run queue.
96  * There is one run queue for allocating new ccbs,
97  * and another for sending ccbs to the controller.
98  */
99 struct cam_ed_qinfo {
100 	cam_pinfo pinfo;
101 	struct	  cam_ed *device;
102 };
103 
104 /*
105  * The CAM EDT (Existing Device Table) contains the device information for
106  * all devices for all busses in the system.  The table contains a
107  * cam_ed structure for each device on the bus.
108  */
109 struct cam_ed {
110 	TAILQ_ENTRY(cam_ed) links;
111 	struct	cam_ed_qinfo alloc_ccb_entry;
112 	struct	cam_ed_qinfo send_ccb_entry;
113 	struct	cam_et	 *target;
114 	lun_id_t	 lun_id;
115 	struct	camq drvq;		/*
116 					 * Queue of type drivers wanting to do
117 					 * work on this device.
118 					 */
119 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
120 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
121 	struct	periph_list periphs;	/* All attached devices */
122 	u_int	generation;		/* Generation number */
123 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
124 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
125 					/* Storage for the inquiry data */
126 	struct	scsi_inquiry_data inq_data;
127 	u_int8_t	 inq_flags;	/*
128 					 * Current settings for inquiry flags.
129 					 * This allows us to override settings
130 					 * like disconnection and tagged
131 					 * queuing for a device.
132 					 */
133 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
134 	u_int8_t	 serial_num_len;
135 	u_int8_t	 *serial_num;
136 	u_int32_t	 qfrozen_cnt;
137 	u_int32_t	 flags;
138 #define CAM_DEV_UNCONFIGURED	 	0x01
139 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
140 #define CAM_DEV_REL_ON_COMPLETE		0x04
141 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
142 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
143 #define CAM_DEV_TAG_AFTER_COUNT		0x20
144 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
145 	u_int32_t	 tag_delay_count;
146 #define	CAM_TAG_DELAY_COUNT		5
147 	u_int32_t	 refcount;
148 	struct		 callout_handle c_handle;
149 };
150 
151 /*
152  * Each target is represented by an ET (Existing Target).  These
153  * entries are created when a target is successfully probed with an
154  * identify, and removed when a device fails to respond after a number
155  * of retries, or a bus rescan finds the device missing.
156  */
157 struct cam_et {
158 	TAILQ_HEAD(, cam_ed) ed_entries;
159 	TAILQ_ENTRY(cam_et) links;
160 	struct	cam_eb	*bus;
161 	target_id_t	target_id;
162 	u_int32_t	refcount;
163 	u_int		generation;
164 	struct		timeval last_reset;
165 };
166 
167 /*
168  * Each bus is represented by an EB (Existing Bus).  These entries
169  * are created by calls to xpt_bus_register and deleted by calls to
170  * xpt_bus_deregister.
171  */
172 struct cam_eb {
173 	TAILQ_HEAD(, cam_et) et_entries;
174 	TAILQ_ENTRY(cam_eb)  links;
175 	path_id_t	     path_id;
176 	struct cam_sim	     *sim;
177 	struct timeval	     last_reset;
178 	u_int32_t	     flags;
179 #define	CAM_EB_RUNQ_SCHEDULED	0x01
180 	u_int32_t	     refcount;
181 	u_int		     generation;
182 };
183 
184 struct cam_path {
185 	struct cam_periph *periph;
186 	struct cam_eb	  *bus;
187 	struct cam_et	  *target;
188 	struct cam_ed	  *device;
189 };
190 
191 struct xpt_quirk_entry {
192 	struct scsi_inquiry_pattern inq_pat;
193 	u_int8_t quirks;
194 #define	CAM_QUIRK_NOLUNS	0x01
195 #define	CAM_QUIRK_NOSERIAL	0x02
196 #define	CAM_QUIRK_HILUNS	0x04
197 	u_int mintags;
198 	u_int maxtags;
199 };
200 #define	CAM_SCSI2_MAXLUN	8
201 
202 typedef enum {
203 	XPT_FLAG_OPEN		= 0x01
204 } xpt_flags;
205 
206 struct xpt_softc {
207 	xpt_flags	flags;
208 	u_int32_t	generation;
209 };
210 
211 static const char quantum[] = "QUANTUM";
212 static const char sony[] = "SONY";
213 static const char west_digital[] = "WDIGTL";
214 static const char samsung[] = "SAMSUNG";
215 static const char seagate[] = "SEAGATE";
216 static const char microp[] = "MICROP";
217 
218 static struct xpt_quirk_entry xpt_quirk_table[] =
219 {
220 	{
221 		/* Reports QUEUE FULL for temporary resource shortages */
222 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
223 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
224 	},
225 	{
226 		/* Reports QUEUE FULL for temporary resource shortages */
227 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
228 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
229 	},
230 	{
231 		/* Reports QUEUE FULL for temporary resource shortages */
232 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
233 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
234 	},
235 	{
236 		/* Broken tagged queuing drive */
237 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
238 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
239 	},
240 	{
241 		/* Broken tagged queuing drive */
242 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
243 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
244 	},
245 	{
246 		/* Broken tagged queuing drive */
247 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
248 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
249 	},
250 	{
251 		/*
252 		 * Unfortunately, the Quantum Atlas III has the same
253 		 * problem as the Atlas II drives above.
254 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
255 		 *
256 		 * For future reference, the drive with the problem was:
257 		 * QUANTUM QM39100TD-SW N1B0
258 		 *
259 		 * It's possible that Quantum will fix the problem in later
260 		 * firmware revisions.  If that happens, the quirk entry
261 		 * will need to be made specific to the firmware revisions
262 		 * with the problem.
263 		 *
264 		 */
265 		/* Reports QUEUE FULL for temporary resource shortages */
266 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
267 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
268 	},
269 	{
270 		/*
271 		 * 18 Gig Atlas III, same problem as the 9G version.
272 		 * Reported by: Andre Albsmeier
273 		 *		<andre.albsmeier@mchp.siemens.de>
274 		 *
275 		 * For future reference, the drive with the problem was:
276 		 * QUANTUM QM318000TD-S N491
277 		 */
278 		/* Reports QUEUE FULL for temporary resource shortages */
279 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
280 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
281 	},
282 	{
283 		/*
284 		 * Broken tagged queuing drive
285 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
286 		 *         and: Martin Renters <martin@tdc.on.ca>
287 		 */
288 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
289 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
290 	},
291 		/*
292 		 * The Seagate Medalist Pro drives have very poor write
293 		 * performance with anything more than 2 tags.
294 		 *
295 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
296 		 * Drive:  <SEAGATE ST36530N 1444>
297 		 *
298 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
299 		 * Drive:  <SEAGATE ST34520W 1281>
300 		 *
301 		 * No one has actually reported that the 9G version
302 		 * (ST39140*) of the Medalist Pro has the same problem, but
303 		 * we're assuming that it does because the 4G and 6.5G
304 		 * versions of the drive are broken.
305 		 */
306 	{
307 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
308 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
309 	},
310 	{
311 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
312 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
313 	},
314 	{
315 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
316 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
317 	},
318 	{
319 		/*
320 		 * Slow when tagged queueing is enabled.  Write performance
321 		 * steadily drops off with more and more concurrent
322 		 * transactions.  Best sequential write performance with
323 		 * tagged queueing turned off and write caching turned on.
324 		 *
325 		 * PR:  kern/10398
326 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
327 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
328 		 *
329 		 * The drive with the problem had the "S65A" firmware
330 		 * revision, and has also been reported (by Stephen J.
331 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
332 		 * firmware revision.
333 		 *
334 		 * Although no one has reported problems with the 2 gig
335 		 * version of the DCAS drive, the assumption is that it
336 		 * has the same problems as the 4 gig version.  Therefore
337 		 * this quirk entries disables tagged queueing for all
338 		 * DCAS drives.
339 		 */
340 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
341 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
342 	},
343 	{
344 		/* Broken tagged queuing drive */
345 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
346 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
347 	},
348 	{
349 		/* Broken tagged queuing drive */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 	{
354 		/*
355 		 * Broken tagged queuing drive.
356 		 * Submitted by:
357 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
358 		 * in PR kern/9535
359 		 */
360 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
361 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
362 	},
363         {
364 		/*
365 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
366 		 * 8MB/sec.)
367 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
368 		 * Best performance with these drives is achieved with
369 		 * tagged queueing turned off, and write caching turned on.
370 		 */
371 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
372 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
373         },
374         {
375 		/*
376 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
377 		 * 8MB/sec.)
378 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
379 		 * Best performance with these drives is achieved with
380 		 * tagged queueing turned off, and write caching turned on.
381 		 */
382 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
383 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
384         },
385 	{
386 		/*
387 		 * Doesn't handle queue full condition correctly,
388 		 * so we need to limit maxtags to what the device
389 		 * can handle instead of determining this automatically.
390 		 */
391 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
392 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
393 	},
394 	{
395 		/* Really only one LUN */
396 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" },
397 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
398 	},
399 	{
400 		/* I can't believe we need a quirk for DPT volumes. */
401 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
402 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
403 		/*mintags*/0, /*maxtags*/255
404 	},
405 	{
406 		/*
407 		 * Many Sony CDROM drives don't like multi-LUN probing.
408 		 */
409 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
410 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
411 	},
412 	{
413 		/*
414 		 * This drive doesn't like multiple LUN probing.
415 		 * Submitted by:  Parag Patel <parag@cgt.com>
416 		 */
417 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
419 	},
420 	{
421 		/*
422 		 * The 8200 doesn't like multi-lun probing, and probably
423 		 * don't like serial number requests either.
424 		 */
425 		{
426 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
427 			"EXB-8200*", "*"
428 		},
429 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
430 	},
431 	{
432 		/*
433 		 * This old revision of the TDC3600 is also SCSI-1, and
434 		 * hangs upon serial number probing.
435 		 */
436 		{
437 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
438 			" TDC 3600", "U07:"
439 		},
440 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
441 	},
442 	{
443 		/*
444 		 * Would repond to all LUNs if asked for.
445 		 */
446 		{
447 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
448 			"CP150", "*"
449 		},
450 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
451 	},
452 	{
453 		/*
454 		 * Would repond to all LUNs if asked for.
455 		 */
456 		{
457 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
458 			"96X2*", "*"
459 		},
460 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
461 	},
462 	{
463 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
464 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
465 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
466 	},
467 	{
468 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
469 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
470 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
471 	},
472 	{
473 		/* Default tagged queuing parameters for all devices */
474 		{
475 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
476 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
477 		},
478 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
479 	},
480 };
481 
482 static const int xpt_quirk_table_size =
483 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
484 
485 typedef enum {
486 	DM_RET_COPY		= 0x01,
487 	DM_RET_FLAG_MASK	= 0x0f,
488 	DM_RET_NONE		= 0x00,
489 	DM_RET_STOP		= 0x10,
490 	DM_RET_DESCEND		= 0x20,
491 	DM_RET_ERROR		= 0x30,
492 	DM_RET_ACTION_MASK	= 0xf0
493 } dev_match_ret;
494 
495 typedef enum {
496 	XPT_DEPTH_BUS,
497 	XPT_DEPTH_TARGET,
498 	XPT_DEPTH_DEVICE,
499 	XPT_DEPTH_PERIPH
500 } xpt_traverse_depth;
501 
502 struct xpt_traverse_config {
503 	xpt_traverse_depth	depth;
504 	void			*tr_func;
505 	void			*tr_arg;
506 };
507 
508 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
509 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
510 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
511 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
512 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
513 
514 /* Transport layer configuration information */
515 static struct xpt_softc xsoftc;
516 
517 /* Queues for our software interrupt handler */
518 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
519 static cam_isrq_t cam_bioq;
520 static cam_isrq_t cam_netq;
521 
522 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
523 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
524 static u_int xpt_max_ccbs;	/*
525 				 * Maximum size of ccb pool.  Modified as
526 				 * devices are added/removed or have their
527 				 * opening counts changed.
528 				 */
529 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
530 
531 static periph_init_t xpt_periph_init;
532 
533 static periph_init_t probe_periph_init;
534 
535 static struct periph_driver xpt_driver =
536 {
537 	xpt_periph_init, "xpt",
538 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
539 };
540 
541 static struct periph_driver probe_driver =
542 {
543 	probe_periph_init, "probe",
544 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
545 };
546 
547 DATA_SET(periphdriver_set, xpt_driver);
548 DATA_SET(periphdriver_set, probe_driver);
549 
550 #define XPT_CDEV_MAJOR 104
551 
552 static d_open_t xptopen;
553 static d_close_t xptclose;
554 static d_ioctl_t xptioctl;
555 
556 static struct cdevsw xpt_cdevsw = {
557 	/* open */	xptopen,
558 	/* close */	xptclose,
559 	/* read */	noread,
560 	/* write */	nowrite,
561 	/* ioctl */	xptioctl,
562 	/* poll */	nopoll,
563 	/* mmap */	nommap,
564 	/* strategy */	nostrategy,
565 	/* name */	"xpt",
566 	/* maj */	XPT_CDEV_MAJOR,
567 	/* dump */	nodump,
568 	/* psize */	nopsize,
569 	/* flags */	0,
570 	/* bmaj */	-1
571 };
572 
573 static struct intr_config_hook *xpt_config_hook;
574 
575 /* Registered busses */
576 static TAILQ_HEAD(,cam_eb) xpt_busses;
577 static u_int bus_generation;
578 
579 /* Storage for debugging datastructures */
580 #ifdef	CAMDEBUG
581 struct cam_path *cam_dpath;
582 u_int32_t cam_dflags;
583 u_int32_t cam_debug_delay;
584 #endif
585 
586 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
587 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
588 #endif
589 
590 /*
591  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
592  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
593  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
594  */
595 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
596     || defined(CAM_DEBUG_LUN)
597 #ifdef CAMDEBUG
598 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
599     || !defined(CAM_DEBUG_LUN)
600 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
601         and CAM_DEBUG_LUN"
602 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
603 #else /* !CAMDEBUG */
604 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
605 #endif /* CAMDEBUG */
606 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
607 
608 /* Our boot-time initialization hook */
609 static void	xpt_init(void *);
610 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
611 
612 static cam_status	xpt_compile_path(struct cam_path *new_path,
613 					 struct cam_periph *perph,
614 					 path_id_t path_id,
615 					 target_id_t target_id,
616 					 lun_id_t lun_id);
617 
618 static void		xpt_release_path(struct cam_path *path);
619 
620 static void		xpt_async_bcast(struct async_list *async_head,
621 					u_int32_t async_code,
622 					struct cam_path *path,
623 					void *async_arg);
624 static path_id_t xptnextfreepathid(void);
625 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
626 static union ccb *xpt_get_ccb(struct cam_ed *device);
627 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
628 				  u_int32_t new_priority);
629 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
630 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
631 static timeout_t xpt_release_devq_timeout;
632 static timeout_t xpt_release_simq_timeout;
633 static void	 xpt_release_bus(struct cam_eb *bus);
634 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
635 					 int run_queue);
636 static struct cam_et*
637 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
638 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
639 static struct cam_ed*
640 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
641 				  lun_id_t lun_id);
642 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
643 				    struct cam_ed *device);
644 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
645 static struct cam_eb*
646 		 xpt_find_bus(path_id_t path_id);
647 static struct cam_et*
648 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
649 static struct cam_ed*
650 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
651 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
652 static void	 xpt_scan_lun(struct cam_periph *periph,
653 			      struct cam_path *path, cam_flags flags,
654 			      union ccb *ccb);
655 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
656 static xpt_busfunc_t	xptconfigbuscountfunc;
657 static xpt_busfunc_t	xptconfigfunc;
658 static void	 xpt_config(void *arg);
659 static xpt_devicefunc_t xptpassannouncefunc;
660 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
661 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
662 static void	 xptpoll(struct cam_sim *sim);
663 static swihand_t swi_camnet;
664 static swihand_t swi_cambio;
665 static void	 camisr(cam_isrq_t *queue);
666 #if 0
667 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
668 static void	 xptasync(struct cam_periph *periph,
669 			  u_int32_t code, cam_path *path);
670 #endif
671 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
672 				    int num_patterns, struct cam_eb *bus);
673 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
674 				       int num_patterns, struct cam_ed *device);
675 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
676 				       int num_patterns,
677 				       struct cam_periph *periph);
678 static xpt_busfunc_t	xptedtbusfunc;
679 static xpt_targetfunc_t	xptedttargetfunc;
680 static xpt_devicefunc_t	xptedtdevicefunc;
681 static xpt_periphfunc_t	xptedtperiphfunc;
682 static xpt_pdrvfunc_t	xptplistpdrvfunc;
683 static xpt_periphfunc_t	xptplistperiphfunc;
684 static int		xptedtmatch(struct ccb_dev_match *cdm);
685 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
686 static int		xptbustraverse(struct cam_eb *start_bus,
687 				       xpt_busfunc_t *tr_func, void *arg);
688 static int		xpttargettraverse(struct cam_eb *bus,
689 					  struct cam_et *start_target,
690 					  xpt_targetfunc_t *tr_func, void *arg);
691 static int		xptdevicetraverse(struct cam_et *target,
692 					  struct cam_ed *start_device,
693 					  xpt_devicefunc_t *tr_func, void *arg);
694 static int		xptperiphtraverse(struct cam_ed *device,
695 					  struct cam_periph *start_periph,
696 					  xpt_periphfunc_t *tr_func, void *arg);
697 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
698 					xpt_pdrvfunc_t *tr_func, void *arg);
699 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
700 					    struct cam_periph *start_periph,
701 					    xpt_periphfunc_t *tr_func,
702 					    void *arg);
703 static xpt_busfunc_t	xptdefbusfunc;
704 static xpt_targetfunc_t	xptdeftargetfunc;
705 static xpt_devicefunc_t	xptdefdevicefunc;
706 static xpt_periphfunc_t	xptdefperiphfunc;
707 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
708 #ifdef notusedyet
709 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
710 					    void *arg);
711 #endif
712 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
713 					    void *arg);
714 #ifdef notusedyet
715 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
716 					    void *arg);
717 #endif
718 static xpt_devicefunc_t	xptsetasyncfunc;
719 static xpt_busfunc_t	xptsetasyncbusfunc;
720 static cam_status	xptregister(struct cam_periph *periph,
721 				    void *arg);
722 static cam_status	proberegister(struct cam_periph *periph,
723 				      void *arg);
724 static void	 probeschedule(struct cam_periph *probe_periph);
725 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
726 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
727 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
728 static void	 probecleanup(struct cam_periph *periph);
729 static void	 xpt_find_quirk(struct cam_ed *device);
730 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
731 					   struct cam_ed *device,
732 					   int async_update);
733 static void	 xpt_toggle_tags(struct cam_path *path);
734 static void	 xpt_start_tags(struct cam_path *path);
735 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
736 					    struct cam_ed *dev);
737 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
738 					   struct cam_ed *dev);
739 static __inline int periph_is_queued(struct cam_periph *periph);
740 static __inline int device_is_alloc_queued(struct cam_ed *device);
741 static __inline int device_is_send_queued(struct cam_ed *device);
742 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
743 
744 static __inline int
745 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
746 {
747 	int retval;
748 
749 	if (dev->ccbq.devq_openings > 0) {
750 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
751 			cam_ccbq_resize(&dev->ccbq,
752 					dev->ccbq.dev_openings
753 					+ dev->ccbq.dev_active);
754 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
755 		}
756 		/*
757 		 * The priority of a device waiting for CCB resources
758 		 * is that of the the highest priority peripheral driver
759 		 * enqueued.
760 		 */
761 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
762 					  &dev->alloc_ccb_entry.pinfo,
763 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
764 	} else {
765 		retval = 0;
766 	}
767 
768 	return (retval);
769 }
770 
771 static __inline int
772 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
773 {
774 	int	retval;
775 
776 	if (dev->ccbq.dev_openings > 0) {
777 		/*
778 		 * The priority of a device waiting for controller
779 		 * resources is that of the the highest priority CCB
780 		 * enqueued.
781 		 */
782 		retval =
783 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
784 				     &dev->send_ccb_entry.pinfo,
785 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
786 	} else {
787 		retval = 0;
788 	}
789 	return (retval);
790 }
791 
792 static __inline int
793 periph_is_queued(struct cam_periph *periph)
794 {
795 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
796 }
797 
798 static __inline int
799 device_is_alloc_queued(struct cam_ed *device)
800 {
801 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
802 }
803 
804 static __inline int
805 device_is_send_queued(struct cam_ed *device)
806 {
807 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
808 }
809 
810 static __inline int
811 dev_allocq_is_runnable(struct cam_devq *devq)
812 {
813 	/*
814 	 * Have work to do.
815 	 * Have space to do more work.
816 	 * Allowed to do work.
817 	 */
818 	return ((devq->alloc_queue.qfrozen_cnt == 0)
819 	     && (devq->alloc_queue.entries > 0)
820 	     && (devq->alloc_openings > 0));
821 }
822 
823 static void
824 xpt_periph_init()
825 {
826 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
827 }
828 
829 static void
830 probe_periph_init()
831 {
832 }
833 
834 
835 static void
836 xptdone(struct cam_periph *periph, union ccb *done_ccb)
837 {
838 	/* Caller will release the CCB */
839 	wakeup(&done_ccb->ccb_h.cbfcnp);
840 }
841 
842 static int
843 xptopen(dev_t dev, int flags, int fmt, struct proc *p)
844 {
845 	int unit;
846 
847 	unit = minor(dev) & 0xff;
848 
849 	/*
850 	 * Only allow read-write access.
851 	 */
852 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
853 		return(EPERM);
854 
855 	/*
856 	 * We don't allow nonblocking access.
857 	 */
858 	if ((flags & O_NONBLOCK) != 0) {
859 		printf("xpt%d: can't do nonblocking accesss\n", unit);
860 		return(ENODEV);
861 	}
862 
863 	/*
864 	 * We only have one transport layer right now.  If someone accesses
865 	 * us via something other than minor number 1, point out their
866 	 * mistake.
867 	 */
868 	if (unit != 0) {
869 		printf("xptopen: got invalid xpt unit %d\n", unit);
870 		return(ENXIO);
871 	}
872 
873 	/* Mark ourselves open */
874 	xsoftc.flags |= XPT_FLAG_OPEN;
875 
876 	return(0);
877 }
878 
879 static int
880 xptclose(dev_t dev, int flag, int fmt, struct proc *p)
881 {
882 	int unit;
883 
884 	unit = minor(dev) & 0xff;
885 
886 	/*
887 	 * We only have one transport layer right now.  If someone accesses
888 	 * us via something other than minor number 1, point out their
889 	 * mistake.
890 	 */
891 	if (unit != 0) {
892 		printf("xptclose: got invalid xpt unit %d\n", unit);
893 		return(ENXIO);
894 	}
895 
896 	/* Mark ourselves closed */
897 	xsoftc.flags &= ~XPT_FLAG_OPEN;
898 
899 	return(0);
900 }
901 
902 static int
903 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
904 {
905 	int unit, error;
906 
907 	error = 0;
908 	unit = minor(dev) & 0xff;
909 
910 	/*
911 	 * We only have one transport layer right now.  If someone accesses
912 	 * us via something other than minor number 1, point out their
913 	 * mistake.
914 	 */
915 	if (unit != 0) {
916 		printf("xptioctl: got invalid xpt unit %d\n", unit);
917 		return(ENXIO);
918 	}
919 
920 	switch(cmd) {
921 	/*
922 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
923 	 * to accept CCB types that don't quite make sense to send through a
924 	 * passthrough driver.
925 	 */
926 	case CAMIOCOMMAND: {
927 		union ccb *ccb;
928 		union ccb *inccb;
929 
930 		inccb = (union ccb *)addr;
931 
932 		switch(inccb->ccb_h.func_code) {
933 		case XPT_SCAN_BUS:
934 		case XPT_RESET_BUS:
935 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
936 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
937 				error = EINVAL;
938 				break;
939 			}
940 			/* FALLTHROUGH */
941 		case XPT_SCAN_LUN:
942 
943 			ccb = xpt_alloc_ccb();
944 
945 			/*
946 			 * Create a path using the bus, target, and lun the
947 			 * user passed in.
948 			 */
949 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
950 					    inccb->ccb_h.path_id,
951 					    inccb->ccb_h.target_id,
952 					    inccb->ccb_h.target_lun) !=
953 					    CAM_REQ_CMP){
954 				error = EINVAL;
955 				xpt_free_ccb(ccb);
956 				break;
957 			}
958 			/* Ensure all of our fields are correct */
959 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
960 				      inccb->ccb_h.pinfo.priority);
961 			xpt_merge_ccb(ccb, inccb);
962 			ccb->ccb_h.cbfcnp = xptdone;
963 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
964 			bcopy(ccb, inccb, sizeof(union ccb));
965 			xpt_free_path(ccb->ccb_h.path);
966 			xpt_free_ccb(ccb);
967 			break;
968 
969 		case XPT_DEBUG: {
970 			union ccb ccb;
971 
972 			/*
973 			 * This is an immediate CCB, so it's okay to
974 			 * allocate it on the stack.
975 			 */
976 
977 			/*
978 			 * Create a path using the bus, target, and lun the
979 			 * user passed in.
980 			 */
981 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
982 					    inccb->ccb_h.path_id,
983 					    inccb->ccb_h.target_id,
984 					    inccb->ccb_h.target_lun) !=
985 					    CAM_REQ_CMP){
986 				error = EINVAL;
987 				break;
988 			}
989 			/* Ensure all of our fields are correct */
990 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
991 				      inccb->ccb_h.pinfo.priority);
992 			xpt_merge_ccb(&ccb, inccb);
993 			ccb.ccb_h.cbfcnp = xptdone;
994 			xpt_action(&ccb);
995 			bcopy(&ccb, inccb, sizeof(union ccb));
996 			xpt_free_path(ccb.ccb_h.path);
997 			break;
998 
999 		}
1000 		case XPT_DEV_MATCH: {
1001 			struct cam_periph_map_info mapinfo;
1002 			struct cam_path *old_path;
1003 
1004 			/*
1005 			 * We can't deal with physical addresses for this
1006 			 * type of transaction.
1007 			 */
1008 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1009 				error = EINVAL;
1010 				break;
1011 			}
1012 
1013 			/*
1014 			 * Save this in case the caller had it set to
1015 			 * something in particular.
1016 			 */
1017 			old_path = inccb->ccb_h.path;
1018 
1019 			/*
1020 			 * We really don't need a path for the matching
1021 			 * code.  The path is needed because of the
1022 			 * debugging statements in xpt_action().  They
1023 			 * assume that the CCB has a valid path.
1024 			 */
1025 			inccb->ccb_h.path = xpt_periph->path;
1026 
1027 			bzero(&mapinfo, sizeof(mapinfo));
1028 
1029 			/*
1030 			 * Map the pattern and match buffers into kernel
1031 			 * virtual address space.
1032 			 */
1033 			error = cam_periph_mapmem(inccb, &mapinfo);
1034 
1035 			if (error) {
1036 				inccb->ccb_h.path = old_path;
1037 				break;
1038 			}
1039 
1040 			/*
1041 			 * This is an immediate CCB, we can send it on directly.
1042 			 */
1043 			xpt_action(inccb);
1044 
1045 			/*
1046 			 * Map the buffers back into user space.
1047 			 */
1048 			cam_periph_unmapmem(inccb, &mapinfo);
1049 
1050 			inccb->ccb_h.path = old_path;
1051 
1052 			error = 0;
1053 			break;
1054 		}
1055 		default:
1056 			error = EINVAL;
1057 			break;
1058 		}
1059 		break;
1060 	}
1061 	/*
1062 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1063 	 * with the periphal driver name and unit name filled in.  The other
1064 	 * fields don't really matter as input.  The passthrough driver name
1065 	 * ("pass"), and unit number are passed back in the ccb.  The current
1066 	 * device generation number, and the index into the device peripheral
1067 	 * driver list, and the status are also passed back.  Note that
1068 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1069 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1070 	 * (or rather should be) impossible for the device peripheral driver
1071 	 * list to change since we look at the whole thing in one pass, and
1072 	 * we do it with splcam protection.
1073 	 *
1074 	 */
1075 	case CAMGETPASSTHRU: {
1076 		union ccb *ccb;
1077 		struct cam_periph *periph;
1078 		struct periph_driver **p_drv;
1079 		char   *name;
1080 		int unit;
1081 		int cur_generation;
1082 		int base_periph_found;
1083 		int splbreaknum;
1084 		int s;
1085 
1086 		ccb = (union ccb *)addr;
1087 		unit = ccb->cgdl.unit_number;
1088 		name = ccb->cgdl.periph_name;
1089 		/*
1090 		 * Every 100 devices, we want to drop our spl protection to
1091 		 * give the software interrupt handler a chance to run.
1092 		 * Most systems won't run into this check, but this should
1093 		 * avoid starvation in the software interrupt handler in
1094 		 * large systems.
1095 		 */
1096 		splbreaknum = 100;
1097 
1098 		ccb = (union ccb *)addr;
1099 
1100 		base_periph_found = 0;
1101 
1102 		/*
1103 		 * Sanity check -- make sure we don't get a null peripheral
1104 		 * driver name.
1105 		 */
1106 		if (*ccb->cgdl.periph_name == '\0') {
1107 			error = EINVAL;
1108 			break;
1109 		}
1110 
1111 		/* Keep the list from changing while we traverse it */
1112 		s = splcam();
1113 ptstartover:
1114 		cur_generation = xsoftc.generation;
1115 
1116 		/* first find our driver in the list of drivers */
1117 		for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
1118 		     *p_drv != NULL; p_drv++)
1119 			if (strcmp((*p_drv)->driver_name, name) == 0)
1120 				break;
1121 
1122 		if (*p_drv == NULL) {
1123 			splx(s);
1124 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1125 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1126 			*ccb->cgdl.periph_name = '\0';
1127 			ccb->cgdl.unit_number = 0;
1128 			error = ENOENT;
1129 			break;
1130 		}
1131 
1132 		/*
1133 		 * Run through every peripheral instance of this driver
1134 		 * and check to see whether it matches the unit passed
1135 		 * in by the user.  If it does, get out of the loops and
1136 		 * find the passthrough driver associated with that
1137 		 * peripheral driver.
1138 		 */
1139 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1140 		     periph = TAILQ_NEXT(periph, unit_links)) {
1141 
1142 			if (periph->unit_number == unit) {
1143 				break;
1144 			} else if (--splbreaknum == 0) {
1145 				splx(s);
1146 				s = splcam();
1147 				splbreaknum = 100;
1148 				if (cur_generation != xsoftc.generation)
1149 				       goto ptstartover;
1150 			}
1151 		}
1152 		/*
1153 		 * If we found the peripheral driver that the user passed
1154 		 * in, go through all of the peripheral drivers for that
1155 		 * particular device and look for a passthrough driver.
1156 		 */
1157 		if (periph != NULL) {
1158 			struct cam_ed *device;
1159 			int i;
1160 
1161 			base_periph_found = 1;
1162 			device = periph->path->device;
1163 			for (i = 0, periph = device->periphs.slh_first;
1164 			     periph != NULL;
1165 			     periph = periph->periph_links.sle_next, i++) {
1166 				/*
1167 				 * Check to see whether we have a
1168 				 * passthrough device or not.
1169 				 */
1170 				if (strcmp(periph->periph_name, "pass") == 0) {
1171 					/*
1172 					 * Fill in the getdevlist fields.
1173 					 */
1174 					strcpy(ccb->cgdl.periph_name,
1175 					       periph->periph_name);
1176 					ccb->cgdl.unit_number =
1177 						periph->unit_number;
1178 					if (periph->periph_links.sle_next)
1179 						ccb->cgdl.status =
1180 							CAM_GDEVLIST_MORE_DEVS;
1181 					else
1182 						ccb->cgdl.status =
1183 						       CAM_GDEVLIST_LAST_DEVICE;
1184 					ccb->cgdl.generation =
1185 						device->generation;
1186 					ccb->cgdl.index = i;
1187 					/*
1188 					 * Fill in some CCB header fields
1189 					 * that the user may want.
1190 					 */
1191 					ccb->ccb_h.path_id =
1192 						periph->path->bus->path_id;
1193 					ccb->ccb_h.target_id =
1194 						periph->path->target->target_id;
1195 					ccb->ccb_h.target_lun =
1196 						periph->path->device->lun_id;
1197 					ccb->ccb_h.status = CAM_REQ_CMP;
1198 					break;
1199 				}
1200 			}
1201 		}
1202 
1203 		/*
1204 		 * If the periph is null here, one of two things has
1205 		 * happened.  The first possibility is that we couldn't
1206 		 * find the unit number of the particular peripheral driver
1207 		 * that the user is asking about.  e.g. the user asks for
1208 		 * the passthrough driver for "da11".  We find the list of
1209 		 * "da" peripherals all right, but there is no unit 11.
1210 		 * The other possibility is that we went through the list
1211 		 * of peripheral drivers attached to the device structure,
1212 		 * but didn't find one with the name "pass".  Either way,
1213 		 * we return ENOENT, since we couldn't find something.
1214 		 */
1215 		if (periph == NULL) {
1216 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1217 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1218 			*ccb->cgdl.periph_name = '\0';
1219 			ccb->cgdl.unit_number = 0;
1220 			error = ENOENT;
1221 			/*
1222 			 * It is unfortunate that this is even necessary,
1223 			 * but there are many, many clueless users out there.
1224 			 * If this is true, the user is looking for the
1225 			 * passthrough driver, but doesn't have one in his
1226 			 * kernel.
1227 			 */
1228 			if (base_periph_found == 1) {
1229 				printf("xptioctl: pass driver is not in the "
1230 				       "kernel\n");
1231 				printf("xptioctl: put \"device pass0\" in "
1232 				       "your kernel config file\n");
1233 			}
1234 		}
1235 		splx(s);
1236 		break;
1237 		}
1238 	default:
1239 		error = ENOTTY;
1240 		break;
1241 	}
1242 
1243 	return(error);
1244 }
1245 
1246 /* Functions accessed by the peripheral drivers */
1247 static void
1248 xpt_init(dummy)
1249 	void *dummy;
1250 {
1251 	struct cam_sim *xpt_sim;
1252 	struct cam_path *path;
1253 	struct cam_devq *devq;
1254 	cam_status status;
1255 
1256 	TAILQ_INIT(&xpt_busses);
1257 	TAILQ_INIT(&cam_bioq);
1258 	TAILQ_INIT(&cam_netq);
1259 	SLIST_INIT(&ccb_freeq);
1260 	STAILQ_INIT(&highpowerq);
1261 
1262 	/*
1263 	 * The xpt layer is, itself, the equivelent of a SIM.
1264 	 * Allow 16 ccbs in the ccb pool for it.  This should
1265 	 * give decent parallelism when we probe busses and
1266 	 * perform other XPT functions.
1267 	 */
1268 	devq = cam_simq_alloc(16);
1269 	xpt_sim = cam_sim_alloc(xptaction,
1270 				xptpoll,
1271 				"xpt",
1272 				/*softc*/NULL,
1273 				/*unit*/0,
1274 				/*max_dev_transactions*/0,
1275 				/*max_tagged_dev_transactions*/0,
1276 				devq);
1277 	xpt_max_ccbs = 16;
1278 
1279 	xpt_bus_register(xpt_sim, /*bus #*/0);
1280 
1281 	/*
1282 	 * Looking at the XPT from the SIM layer, the XPT is
1283 	 * the equivelent of a peripheral driver.  Allocate
1284 	 * a peripheral driver entry for us.
1285 	 */
1286 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1287 				      CAM_TARGET_WILDCARD,
1288 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1289 		printf("xpt_init: xpt_create_path failed with status %#x,"
1290 		       " failing attach\n", status);
1291 		return;
1292 	}
1293 
1294 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1295 			 path, NULL, 0, NULL);
1296 	xpt_free_path(path);
1297 
1298 	xpt_sim->softc = xpt_periph;
1299 
1300 	/*
1301 	 * Register a callback for when interrupts are enabled.
1302 	 */
1303 	xpt_config_hook =
1304 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1305 					      M_TEMP, M_NOWAIT);
1306 	if (xpt_config_hook == NULL) {
1307 		printf("xpt_init: Cannot malloc config hook "
1308 		       "- failing attach\n");
1309 		return;
1310 	}
1311 	bzero(xpt_config_hook, sizeof(*xpt_config_hook));
1312 
1313 	xpt_config_hook->ich_func = xpt_config;
1314 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1315 		free (xpt_config_hook, M_TEMP);
1316 		printf("xpt_init: config_intrhook_establish failed "
1317 		       "- failing attach\n");
1318 	}
1319 
1320 	/* Install our software interrupt handlers */
1321 	register_swi(SWI_CAMNET, swi_camnet);
1322 	register_swi(SWI_CAMBIO, swi_cambio);
1323 }
1324 
1325 static cam_status
1326 xptregister(struct cam_periph *periph, void *arg)
1327 {
1328 	if (periph == NULL) {
1329 		printf("xptregister: periph was NULL!!\n");
1330 		return(CAM_REQ_CMP_ERR);
1331 	}
1332 
1333 	periph->softc = NULL;
1334 
1335 	xpt_periph = periph;
1336 
1337 	return(CAM_REQ_CMP);
1338 }
1339 
1340 int32_t
1341 xpt_add_periph(struct cam_periph *periph)
1342 {
1343 	struct cam_ed *device;
1344 	int32_t	 status;
1345 	struct periph_list *periph_head;
1346 
1347 	device = periph->path->device;
1348 
1349 	periph_head = &device->periphs;
1350 
1351 	status = CAM_REQ_CMP;
1352 
1353 	if (device != NULL) {
1354 		int s;
1355 
1356 		/*
1357 		 * Make room for this peripheral
1358 		 * so it will fit in the queue
1359 		 * when it's scheduled to run
1360 		 */
1361 		s = splsoftcam();
1362 		status = camq_resize(&device->drvq,
1363 				     device->drvq.array_size + 1);
1364 
1365 		device->generation++;
1366 
1367 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1368 
1369 		splx(s);
1370 	}
1371 
1372 	xsoftc.generation++;
1373 
1374 	return (status);
1375 }
1376 
1377 void
1378 xpt_remove_periph(struct cam_periph *periph)
1379 {
1380 	struct cam_ed *device;
1381 
1382 	device = periph->path->device;
1383 
1384 	if (device != NULL) {
1385 		int s;
1386 		struct periph_list *periph_head;
1387 
1388 		periph_head = &device->periphs;
1389 
1390 		/* Release the slot for this peripheral */
1391 		s = splsoftcam();
1392 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1393 
1394 		device->generation++;
1395 
1396 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1397 
1398 		splx(s);
1399 	}
1400 
1401 	xsoftc.generation++;
1402 
1403 }
1404 
1405 void
1406 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1407 {
1408 	int s;
1409 	u_int mb;
1410 	struct cam_path *path;
1411 	struct ccb_trans_settings cts;
1412 
1413 	path = periph->path;
1414 	/*
1415 	 * To ensure that this is printed in one piece,
1416 	 * mask out CAM interrupts.
1417 	 */
1418 	s = splsoftcam();
1419 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1420 	       periph->periph_name, periph->unit_number,
1421 	       path->bus->sim->sim_name,
1422 	       path->bus->sim->unit_number,
1423 	       path->bus->sim->bus_id,
1424 	       path->target->target_id,
1425 	       path->device->lun_id);
1426 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1427 	scsi_print_inquiry(&path->device->inq_data);
1428 	if ((bootverbose)
1429 	 && (path->device->serial_num_len > 0)) {
1430 		/* Don't wrap the screen  - print only the first 60 chars */
1431 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1432 		       periph->unit_number, path->device->serial_num);
1433 	}
1434 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1435 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1436 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1437 	xpt_action((union ccb*)&cts);
1438 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1439 		u_int speed;
1440 		u_int freq;
1441 
1442 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1443 		  && cts.sync_offset != 0) {
1444 			freq = scsi_calc_syncsrate(cts.sync_period);
1445 			speed = freq;
1446 		} else {
1447 			struct ccb_pathinq cpi;
1448 
1449 			/* Ask the SIM for its base transfer speed */
1450 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1451 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1452 			xpt_action((union ccb *)&cpi);
1453 
1454 			speed = cpi.base_transfer_speed;
1455 			freq = 0;
1456 		}
1457 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1458 			speed *= (0x01 << cts.bus_width);
1459 		mb = speed / 1000;
1460 		if (mb > 0)
1461 			printf("%s%d: %d.%03dMB/s transfers",
1462 			       periph->periph_name, periph->unit_number,
1463 			       mb, speed % 1000);
1464 		else
1465 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1466 			       periph->unit_number, speed);
1467 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1468 		 && cts.sync_offset != 0) {
1469 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1470 			       freq % 1000, cts.sync_offset);
1471 		}
1472 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1473 		 && cts.bus_width > 0) {
1474 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1475 			 && cts.sync_offset != 0) {
1476 				printf(", ");
1477 			} else {
1478 				printf(" (");
1479 			}
1480 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1481 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1482 			&& cts.sync_offset != 0) {
1483 			printf(")");
1484 		}
1485 
1486 		if (path->device->inq_flags & SID_CmdQue
1487 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1488 			printf(", Tagged Queueing Enabled");
1489 		}
1490 
1491 		printf("\n");
1492 	} else if (path->device->inq_flags & SID_CmdQue
1493    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1494 		printf("%s%d: Tagged Queueing Enabled\n",
1495 		       periph->periph_name, periph->unit_number);
1496 	}
1497 
1498 	/*
1499 	 * We only want to print the caller's announce string if they've
1500 	 * passed one in..
1501 	 */
1502 	if (announce_string != NULL)
1503 		printf("%s%d: %s\n", periph->periph_name,
1504 		       periph->unit_number, announce_string);
1505 	splx(s);
1506 }
1507 
1508 
1509 static dev_match_ret
1510 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1511 	    struct cam_eb *bus)
1512 {
1513 	dev_match_ret retval;
1514 	int i;
1515 
1516 	retval = DM_RET_NONE;
1517 
1518 	/*
1519 	 * If we aren't given something to match against, that's an error.
1520 	 */
1521 	if (bus == NULL)
1522 		return(DM_RET_ERROR);
1523 
1524 	/*
1525 	 * If there are no match entries, then this bus matches no
1526 	 * matter what.
1527 	 */
1528 	if ((patterns == NULL) || (num_patterns == 0))
1529 		return(DM_RET_DESCEND | DM_RET_COPY);
1530 
1531 	for (i = 0; i < num_patterns; i++) {
1532 		struct bus_match_pattern *cur_pattern;
1533 
1534 		/*
1535 		 * If the pattern in question isn't for a bus node, we
1536 		 * aren't interested.  However, we do indicate to the
1537 		 * calling routine that we should continue descending the
1538 		 * tree, since the user wants to match against lower-level
1539 		 * EDT elements.
1540 		 */
1541 		if (patterns[i].type != DEV_MATCH_BUS) {
1542 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1543 				retval |= DM_RET_DESCEND;
1544 			continue;
1545 		}
1546 
1547 		cur_pattern = &patterns[i].pattern.bus_pattern;
1548 
1549 		/*
1550 		 * If they want to match any bus node, we give them any
1551 		 * device node.
1552 		 */
1553 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1554 			/* set the copy flag */
1555 			retval |= DM_RET_COPY;
1556 
1557 			/*
1558 			 * If we've already decided on an action, go ahead
1559 			 * and return.
1560 			 */
1561 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1562 				return(retval);
1563 		}
1564 
1565 		/*
1566 		 * Not sure why someone would do this...
1567 		 */
1568 		if (cur_pattern->flags == BUS_MATCH_NONE)
1569 			continue;
1570 
1571 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1572 		 && (cur_pattern->path_id != bus->path_id))
1573 			continue;
1574 
1575 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1576 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1577 			continue;
1578 
1579 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1580 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1581 			continue;
1582 
1583 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1584 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1585 			     DEV_IDLEN) != 0))
1586 			continue;
1587 
1588 		/*
1589 		 * If we get to this point, the user definitely wants
1590 		 * information on this bus.  So tell the caller to copy the
1591 		 * data out.
1592 		 */
1593 		retval |= DM_RET_COPY;
1594 
1595 		/*
1596 		 * If the return action has been set to descend, then we
1597 		 * know that we've already seen a non-bus matching
1598 		 * expression, therefore we need to further descend the tree.
1599 		 * This won't change by continuing around the loop, so we
1600 		 * go ahead and return.  If we haven't seen a non-bus
1601 		 * matching expression, we keep going around the loop until
1602 		 * we exhaust the matching expressions.  We'll set the stop
1603 		 * flag once we fall out of the loop.
1604 		 */
1605 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1606 			return(retval);
1607 	}
1608 
1609 	/*
1610 	 * If the return action hasn't been set to descend yet, that means
1611 	 * we haven't seen anything other than bus matching patterns.  So
1612 	 * tell the caller to stop descending the tree -- the user doesn't
1613 	 * want to match against lower level tree elements.
1614 	 */
1615 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1616 		retval |= DM_RET_STOP;
1617 
1618 	return(retval);
1619 }
1620 
1621 static dev_match_ret
1622 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1623 	       struct cam_ed *device)
1624 {
1625 	dev_match_ret retval;
1626 	int i;
1627 
1628 	retval = DM_RET_NONE;
1629 
1630 	/*
1631 	 * If we aren't given something to match against, that's an error.
1632 	 */
1633 	if (device == NULL)
1634 		return(DM_RET_ERROR);
1635 
1636 	/*
1637 	 * If there are no match entries, then this device matches no
1638 	 * matter what.
1639 	 */
1640 	if ((patterns == NULL) || (patterns == 0))
1641 		return(DM_RET_DESCEND | DM_RET_COPY);
1642 
1643 	for (i = 0; i < num_patterns; i++) {
1644 		struct device_match_pattern *cur_pattern;
1645 
1646 		/*
1647 		 * If the pattern in question isn't for a device node, we
1648 		 * aren't interested.
1649 		 */
1650 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1651 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1652 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1653 				retval |= DM_RET_DESCEND;
1654 			continue;
1655 		}
1656 
1657 		cur_pattern = &patterns[i].pattern.device_pattern;
1658 
1659 		/*
1660 		 * If they want to match any device node, we give them any
1661 		 * device node.
1662 		 */
1663 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1664 			/* set the copy flag */
1665 			retval |= DM_RET_COPY;
1666 
1667 
1668 			/*
1669 			 * If we've already decided on an action, go ahead
1670 			 * and return.
1671 			 */
1672 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1673 				return(retval);
1674 		}
1675 
1676 		/*
1677 		 * Not sure why someone would do this...
1678 		 */
1679 		if (cur_pattern->flags == DEV_MATCH_NONE)
1680 			continue;
1681 
1682 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1683 		 && (cur_pattern->path_id != device->target->bus->path_id))
1684 			continue;
1685 
1686 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1687 		 && (cur_pattern->target_id != device->target->target_id))
1688 			continue;
1689 
1690 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1691 		 && (cur_pattern->target_lun != device->lun_id))
1692 			continue;
1693 
1694 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1695 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1696 				    (caddr_t)&cur_pattern->inq_pat,
1697 				    1, sizeof(cur_pattern->inq_pat),
1698 				    scsi_static_inquiry_match) == NULL))
1699 			continue;
1700 
1701 		/*
1702 		 * If we get to this point, the user definitely wants
1703 		 * information on this device.  So tell the caller to copy
1704 		 * the data out.
1705 		 */
1706 		retval |= DM_RET_COPY;
1707 
1708 		/*
1709 		 * If the return action has been set to descend, then we
1710 		 * know that we've already seen a peripheral matching
1711 		 * expression, therefore we need to further descend the tree.
1712 		 * This won't change by continuing around the loop, so we
1713 		 * go ahead and return.  If we haven't seen a peripheral
1714 		 * matching expression, we keep going around the loop until
1715 		 * we exhaust the matching expressions.  We'll set the stop
1716 		 * flag once we fall out of the loop.
1717 		 */
1718 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1719 			return(retval);
1720 	}
1721 
1722 	/*
1723 	 * If the return action hasn't been set to descend yet, that means
1724 	 * we haven't seen any peripheral matching patterns.  So tell the
1725 	 * caller to stop descending the tree -- the user doesn't want to
1726 	 * match against lower level tree elements.
1727 	 */
1728 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1729 		retval |= DM_RET_STOP;
1730 
1731 	return(retval);
1732 }
1733 
1734 /*
1735  * Match a single peripheral against any number of match patterns.
1736  */
1737 static dev_match_ret
1738 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1739 	       struct cam_periph *periph)
1740 {
1741 	dev_match_ret retval;
1742 	int i;
1743 
1744 	/*
1745 	 * If we aren't given something to match against, that's an error.
1746 	 */
1747 	if (periph == NULL)
1748 		return(DM_RET_ERROR);
1749 
1750 	/*
1751 	 * If there are no match entries, then this peripheral matches no
1752 	 * matter what.
1753 	 */
1754 	if ((patterns == NULL) || (num_patterns == 0))
1755 		return(DM_RET_STOP | DM_RET_COPY);
1756 
1757 	/*
1758 	 * There aren't any nodes below a peripheral node, so there's no
1759 	 * reason to descend the tree any further.
1760 	 */
1761 	retval = DM_RET_STOP;
1762 
1763 	for (i = 0; i < num_patterns; i++) {
1764 		struct periph_match_pattern *cur_pattern;
1765 
1766 		/*
1767 		 * If the pattern in question isn't for a peripheral, we
1768 		 * aren't interested.
1769 		 */
1770 		if (patterns[i].type != DEV_MATCH_PERIPH)
1771 			continue;
1772 
1773 		cur_pattern = &patterns[i].pattern.periph_pattern;
1774 
1775 		/*
1776 		 * If they want to match on anything, then we will do so.
1777 		 */
1778 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1779 			/* set the copy flag */
1780 			retval |= DM_RET_COPY;
1781 
1782 			/*
1783 			 * We've already set the return action to stop,
1784 			 * since there are no nodes below peripherals in
1785 			 * the tree.
1786 			 */
1787 			return(retval);
1788 		}
1789 
1790 		/*
1791 		 * Not sure why someone would do this...
1792 		 */
1793 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1794 			continue;
1795 
1796 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1797 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1798 			continue;
1799 
1800 		/*
1801 		 * For the target and lun id's, we have to make sure the
1802 		 * target and lun pointers aren't NULL.  The xpt peripheral
1803 		 * has a wildcard target and device.
1804 		 */
1805 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1806 		 && ((periph->path->target == NULL)
1807 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1808 			continue;
1809 
1810 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1811 		 && ((periph->path->device == NULL)
1812 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1813 			continue;
1814 
1815 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1816 		 && (cur_pattern->unit_number != periph->unit_number))
1817 			continue;
1818 
1819 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1820 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1821 			     DEV_IDLEN) != 0))
1822 			continue;
1823 
1824 		/*
1825 		 * If we get to this point, the user definitely wants
1826 		 * information on this peripheral.  So tell the caller to
1827 		 * copy the data out.
1828 		 */
1829 		retval |= DM_RET_COPY;
1830 
1831 		/*
1832 		 * The return action has already been set to stop, since
1833 		 * peripherals don't have any nodes below them in the EDT.
1834 		 */
1835 		return(retval);
1836 	}
1837 
1838 	/*
1839 	 * If we get to this point, the peripheral that was passed in
1840 	 * doesn't match any of the patterns.
1841 	 */
1842 	return(retval);
1843 }
1844 
1845 static int
1846 xptedtbusfunc(struct cam_eb *bus, void *arg)
1847 {
1848 	struct ccb_dev_match *cdm;
1849 	dev_match_ret retval;
1850 
1851 	cdm = (struct ccb_dev_match *)arg;
1852 
1853 	/*
1854 	 * If our position is for something deeper in the tree, that means
1855 	 * that we've already seen this node.  So, we keep going down.
1856 	 */
1857 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1858 	 && (cdm->pos.cookie.bus == bus)
1859 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1860 	 && (cdm->pos.cookie.target != NULL))
1861 		retval = DM_RET_DESCEND;
1862 	else
1863 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1864 
1865 	/*
1866 	 * If we got an error, bail out of the search.
1867 	 */
1868 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1869 		cdm->status = CAM_DEV_MATCH_ERROR;
1870 		return(0);
1871 	}
1872 
1873 	/*
1874 	 * If the copy flag is set, copy this bus out.
1875 	 */
1876 	if (retval & DM_RET_COPY) {
1877 		int spaceleft, j;
1878 
1879 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1880 			sizeof(struct dev_match_result));
1881 
1882 		/*
1883 		 * If we don't have enough space to put in another
1884 		 * match result, save our position and tell the
1885 		 * user there are more devices to check.
1886 		 */
1887 		if (spaceleft < sizeof(struct dev_match_result)) {
1888 			bzero(&cdm->pos, sizeof(cdm->pos));
1889 			cdm->pos.position_type =
1890 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1891 
1892 			cdm->pos.cookie.bus = bus;
1893 			cdm->pos.generations[CAM_BUS_GENERATION]=
1894 				bus_generation;
1895 			cdm->status = CAM_DEV_MATCH_MORE;
1896 			return(0);
1897 		}
1898 		j = cdm->num_matches;
1899 		cdm->num_matches++;
1900 		cdm->matches[j].type = DEV_MATCH_BUS;
1901 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1902 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1903 		cdm->matches[j].result.bus_result.unit_number =
1904 			bus->sim->unit_number;
1905 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1906 			bus->sim->sim_name, DEV_IDLEN);
1907 	}
1908 
1909 	/*
1910 	 * If the user is only interested in busses, there's no
1911 	 * reason to descend to the next level in the tree.
1912 	 */
1913 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1914 		return(1);
1915 
1916 	/*
1917 	 * If there is a target generation recorded, check it to
1918 	 * make sure the target list hasn't changed.
1919 	 */
1920 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1921 	 && (bus == cdm->pos.cookie.bus)
1922 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1923 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1924 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1925 	     bus->generation)) {
1926 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1927 		return(0);
1928 	}
1929 
1930 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1931 	 && (cdm->pos.cookie.bus == bus)
1932 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1933 	 && (cdm->pos.cookie.target != NULL))
1934 		return(xpttargettraverse(bus,
1935 					(struct cam_et *)cdm->pos.cookie.target,
1936 					 xptedttargetfunc, arg));
1937 	else
1938 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1939 }
1940 
1941 static int
1942 xptedttargetfunc(struct cam_et *target, void *arg)
1943 {
1944 	struct ccb_dev_match *cdm;
1945 
1946 	cdm = (struct ccb_dev_match *)arg;
1947 
1948 	/*
1949 	 * If there is a device list generation recorded, check it to
1950 	 * make sure the device list hasn't changed.
1951 	 */
1952 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1953 	 && (cdm->pos.cookie.bus == target->bus)
1954 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1955 	 && (cdm->pos.cookie.target == target)
1956 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1957 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1958 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1959 	     target->generation)) {
1960 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1961 		return(0);
1962 	}
1963 
1964 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1965 	 && (cdm->pos.cookie.bus == target->bus)
1966 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1967 	 && (cdm->pos.cookie.target == target)
1968 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1969 	 && (cdm->pos.cookie.device != NULL))
1970 		return(xptdevicetraverse(target,
1971 					(struct cam_ed *)cdm->pos.cookie.device,
1972 					 xptedtdevicefunc, arg));
1973 	else
1974 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1975 }
1976 
1977 static int
1978 xptedtdevicefunc(struct cam_ed *device, void *arg)
1979 {
1980 
1981 	struct ccb_dev_match *cdm;
1982 	dev_match_ret retval;
1983 
1984 	cdm = (struct ccb_dev_match *)arg;
1985 
1986 	/*
1987 	 * If our position is for something deeper in the tree, that means
1988 	 * that we've already seen this node.  So, we keep going down.
1989 	 */
1990 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1991 	 && (cdm->pos.cookie.device == device)
1992 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1993 	 && (cdm->pos.cookie.periph != NULL))
1994 		retval = DM_RET_DESCEND;
1995 	else
1996 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1997 					device);
1998 
1999 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2000 		cdm->status = CAM_DEV_MATCH_ERROR;
2001 		return(0);
2002 	}
2003 
2004 	/*
2005 	 * If the copy flag is set, copy this device out.
2006 	 */
2007 	if (retval & DM_RET_COPY) {
2008 		int spaceleft, j;
2009 
2010 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2011 			sizeof(struct dev_match_result));
2012 
2013 		/*
2014 		 * If we don't have enough space to put in another
2015 		 * match result, save our position and tell the
2016 		 * user there are more devices to check.
2017 		 */
2018 		if (spaceleft < sizeof(struct dev_match_result)) {
2019 			bzero(&cdm->pos, sizeof(cdm->pos));
2020 			cdm->pos.position_type =
2021 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2022 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2023 
2024 			cdm->pos.cookie.bus = device->target->bus;
2025 			cdm->pos.generations[CAM_BUS_GENERATION]=
2026 				bus_generation;
2027 			cdm->pos.cookie.target = device->target;
2028 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2029 				device->target->bus->generation;
2030 			cdm->pos.cookie.device = device;
2031 			cdm->pos.generations[CAM_DEV_GENERATION] =
2032 				device->target->generation;
2033 			cdm->status = CAM_DEV_MATCH_MORE;
2034 			return(0);
2035 		}
2036 		j = cdm->num_matches;
2037 		cdm->num_matches++;
2038 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2039 		cdm->matches[j].result.device_result.path_id =
2040 			device->target->bus->path_id;
2041 		cdm->matches[j].result.device_result.target_id =
2042 			device->target->target_id;
2043 		cdm->matches[j].result.device_result.target_lun =
2044 			device->lun_id;
2045 		bcopy(&device->inq_data,
2046 		      &cdm->matches[j].result.device_result.inq_data,
2047 		      sizeof(struct scsi_inquiry_data));
2048 
2049 		/* Let the user know whether this device is unconfigured */
2050 		if (device->flags & CAM_DEV_UNCONFIGURED)
2051 			cdm->matches[j].result.device_result.flags =
2052 				DEV_RESULT_UNCONFIGURED;
2053 		else
2054 			cdm->matches[j].result.device_result.flags =
2055 				DEV_RESULT_NOFLAG;
2056 	}
2057 
2058 	/*
2059 	 * If the user isn't interested in peripherals, don't descend
2060 	 * the tree any further.
2061 	 */
2062 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2063 		return(1);
2064 
2065 	/*
2066 	 * If there is a peripheral list generation recorded, make sure
2067 	 * it hasn't changed.
2068 	 */
2069 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2070 	 && (device->target->bus == cdm->pos.cookie.bus)
2071 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2072 	 && (device->target == cdm->pos.cookie.target)
2073 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2074 	 && (device == cdm->pos.cookie.device)
2075 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2076 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2077 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2078 	     device->generation)){
2079 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2080 		return(0);
2081 	}
2082 
2083 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2084 	 && (cdm->pos.cookie.bus == device->target->bus)
2085 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2086 	 && (cdm->pos.cookie.target == device->target)
2087 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2088 	 && (cdm->pos.cookie.device == device)
2089 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2090 	 && (cdm->pos.cookie.periph != NULL))
2091 		return(xptperiphtraverse(device,
2092 				(struct cam_periph *)cdm->pos.cookie.periph,
2093 				xptedtperiphfunc, arg));
2094 	else
2095 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2096 }
2097 
2098 static int
2099 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2100 {
2101 	struct ccb_dev_match *cdm;
2102 	dev_match_ret retval;
2103 
2104 	cdm = (struct ccb_dev_match *)arg;
2105 
2106 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2107 
2108 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2109 		cdm->status = CAM_DEV_MATCH_ERROR;
2110 		return(0);
2111 	}
2112 
2113 	/*
2114 	 * If the copy flag is set, copy this peripheral out.
2115 	 */
2116 	if (retval & DM_RET_COPY) {
2117 		int spaceleft, j;
2118 
2119 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2120 			sizeof(struct dev_match_result));
2121 
2122 		/*
2123 		 * If we don't have enough space to put in another
2124 		 * match result, save our position and tell the
2125 		 * user there are more devices to check.
2126 		 */
2127 		if (spaceleft < sizeof(struct dev_match_result)) {
2128 			bzero(&cdm->pos, sizeof(cdm->pos));
2129 			cdm->pos.position_type =
2130 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2131 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2132 				CAM_DEV_POS_PERIPH;
2133 
2134 			cdm->pos.cookie.bus = periph->path->bus;
2135 			cdm->pos.generations[CAM_BUS_GENERATION]=
2136 				bus_generation;
2137 			cdm->pos.cookie.target = periph->path->target;
2138 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2139 				periph->path->bus->generation;
2140 			cdm->pos.cookie.device = periph->path->device;
2141 			cdm->pos.generations[CAM_DEV_GENERATION] =
2142 				periph->path->target->generation;
2143 			cdm->pos.cookie.periph = periph;
2144 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2145 				periph->path->device->generation;
2146 			cdm->status = CAM_DEV_MATCH_MORE;
2147 			return(0);
2148 		}
2149 
2150 		j = cdm->num_matches;
2151 		cdm->num_matches++;
2152 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2153 		cdm->matches[j].result.periph_result.path_id =
2154 			periph->path->bus->path_id;
2155 		cdm->matches[j].result.periph_result.target_id =
2156 			periph->path->target->target_id;
2157 		cdm->matches[j].result.periph_result.target_lun =
2158 			periph->path->device->lun_id;
2159 		cdm->matches[j].result.periph_result.unit_number =
2160 			periph->unit_number;
2161 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2162 			periph->periph_name, DEV_IDLEN);
2163 	}
2164 
2165 	return(1);
2166 }
2167 
2168 static int
2169 xptedtmatch(struct ccb_dev_match *cdm)
2170 {
2171 	int ret;
2172 
2173 	cdm->num_matches = 0;
2174 
2175 	/*
2176 	 * Check the bus list generation.  If it has changed, the user
2177 	 * needs to reset everything and start over.
2178 	 */
2179 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2180 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2181 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2182 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2183 		return(0);
2184 	}
2185 
2186 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2187 	 && (cdm->pos.cookie.bus != NULL))
2188 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2189 				     xptedtbusfunc, cdm);
2190 	else
2191 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2192 
2193 	/*
2194 	 * If we get back 0, that means that we had to stop before fully
2195 	 * traversing the EDT.  It also means that one of the subroutines
2196 	 * has set the status field to the proper value.  If we get back 1,
2197 	 * we've fully traversed the EDT and copied out any matching entries.
2198 	 */
2199 	if (ret == 1)
2200 		cdm->status = CAM_DEV_MATCH_LAST;
2201 
2202 	return(ret);
2203 }
2204 
2205 static int
2206 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2207 {
2208 	struct ccb_dev_match *cdm;
2209 
2210 	cdm = (struct ccb_dev_match *)arg;
2211 
2212 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2213 	 && (cdm->pos.cookie.pdrv == pdrv)
2214 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2215 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2216 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2217 	     (*pdrv)->generation)) {
2218 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2219 		return(0);
2220 	}
2221 
2222 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2223 	 && (cdm->pos.cookie.pdrv == pdrv)
2224 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2225 	 && (cdm->pos.cookie.periph != NULL))
2226 		return(xptpdperiphtraverse(pdrv,
2227 				(struct cam_periph *)cdm->pos.cookie.periph,
2228 				xptplistperiphfunc, arg));
2229 	else
2230 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2231 }
2232 
2233 static int
2234 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2235 {
2236 	struct ccb_dev_match *cdm;
2237 	dev_match_ret retval;
2238 
2239 	cdm = (struct ccb_dev_match *)arg;
2240 
2241 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2242 
2243 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2244 		cdm->status = CAM_DEV_MATCH_ERROR;
2245 		return(0);
2246 	}
2247 
2248 	/*
2249 	 * If the copy flag is set, copy this peripheral out.
2250 	 */
2251 	if (retval & DM_RET_COPY) {
2252 		int spaceleft, j;
2253 
2254 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2255 			sizeof(struct dev_match_result));
2256 
2257 		/*
2258 		 * If we don't have enough space to put in another
2259 		 * match result, save our position and tell the
2260 		 * user there are more devices to check.
2261 		 */
2262 		if (spaceleft < sizeof(struct dev_match_result)) {
2263 			struct periph_driver **pdrv;
2264 
2265 			pdrv = NULL;
2266 			bzero(&cdm->pos, sizeof(cdm->pos));
2267 			cdm->pos.position_type =
2268 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2269 				CAM_DEV_POS_PERIPH;
2270 
2271 			/*
2272 			 * This may look a bit non-sensical, but it is
2273 			 * actually quite logical.  There are very few
2274 			 * peripheral drivers, and bloating every peripheral
2275 			 * structure with a pointer back to its parent
2276 			 * peripheral driver linker set entry would cost
2277 			 * more in the long run than doing this quick lookup.
2278 			 */
2279 			for (pdrv =
2280 			     (struct periph_driver **)periphdriver_set.ls_items;
2281 			     *pdrv != NULL; pdrv++) {
2282 				if (strcmp((*pdrv)->driver_name,
2283 				    periph->periph_name) == 0)
2284 					break;
2285 			}
2286 
2287 			if (pdrv == NULL) {
2288 				cdm->status = CAM_DEV_MATCH_ERROR;
2289 				return(0);
2290 			}
2291 
2292 			cdm->pos.cookie.pdrv = pdrv;
2293 			/*
2294 			 * The periph generation slot does double duty, as
2295 			 * does the periph pointer slot.  They are used for
2296 			 * both edt and pdrv lookups and positioning.
2297 			 */
2298 			cdm->pos.cookie.periph = periph;
2299 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2300 				(*pdrv)->generation;
2301 			cdm->status = CAM_DEV_MATCH_MORE;
2302 			return(0);
2303 		}
2304 
2305 		j = cdm->num_matches;
2306 		cdm->num_matches++;
2307 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2308 		cdm->matches[j].result.periph_result.path_id =
2309 			periph->path->bus->path_id;
2310 
2311 		/*
2312 		 * The transport layer peripheral doesn't have a target or
2313 		 * lun.
2314 		 */
2315 		if (periph->path->target)
2316 			cdm->matches[j].result.periph_result.target_id =
2317 				periph->path->target->target_id;
2318 		else
2319 			cdm->matches[j].result.periph_result.target_id = -1;
2320 
2321 		if (periph->path->device)
2322 			cdm->matches[j].result.periph_result.target_lun =
2323 				periph->path->device->lun_id;
2324 		else
2325 			cdm->matches[j].result.periph_result.target_lun = -1;
2326 
2327 		cdm->matches[j].result.periph_result.unit_number =
2328 			periph->unit_number;
2329 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2330 			periph->periph_name, DEV_IDLEN);
2331 	}
2332 
2333 	return(1);
2334 }
2335 
2336 static int
2337 xptperiphlistmatch(struct ccb_dev_match *cdm)
2338 {
2339 	int ret;
2340 
2341 	cdm->num_matches = 0;
2342 
2343 	/*
2344 	 * At this point in the edt traversal function, we check the bus
2345 	 * list generation to make sure that no busses have been added or
2346 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2347 	 * For the peripheral driver list traversal function, however, we
2348 	 * don't have to worry about new peripheral driver types coming or
2349 	 * going; they're in a linker set, and therefore can't change
2350 	 * without a recompile.
2351 	 */
2352 
2353 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2354 	 && (cdm->pos.cookie.pdrv != NULL))
2355 		ret = xptpdrvtraverse(
2356 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2357 				xptplistpdrvfunc, cdm);
2358 	else
2359 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2360 
2361 	/*
2362 	 * If we get back 0, that means that we had to stop before fully
2363 	 * traversing the peripheral driver tree.  It also means that one of
2364 	 * the subroutines has set the status field to the proper value.  If
2365 	 * we get back 1, we've fully traversed the EDT and copied out any
2366 	 * matching entries.
2367 	 */
2368 	if (ret == 1)
2369 		cdm->status = CAM_DEV_MATCH_LAST;
2370 
2371 	return(ret);
2372 }
2373 
2374 static int
2375 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2376 {
2377 	struct cam_eb *bus, *next_bus;
2378 	int retval;
2379 
2380 	retval = 1;
2381 
2382 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2383 	     bus != NULL;
2384 	     bus = next_bus) {
2385 		next_bus = TAILQ_NEXT(bus, links);
2386 
2387 		retval = tr_func(bus, arg);
2388 		if (retval == 0)
2389 			return(retval);
2390 	}
2391 
2392 	return(retval);
2393 }
2394 
2395 static int
2396 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2397 		  xpt_targetfunc_t *tr_func, void *arg)
2398 {
2399 	struct cam_et *target, *next_target;
2400 	int retval;
2401 
2402 	retval = 1;
2403 	for (target = (start_target ? start_target :
2404 		       TAILQ_FIRST(&bus->et_entries));
2405 	     target != NULL; target = next_target) {
2406 
2407 		next_target = TAILQ_NEXT(target, links);
2408 
2409 		retval = tr_func(target, arg);
2410 
2411 		if (retval == 0)
2412 			return(retval);
2413 	}
2414 
2415 	return(retval);
2416 }
2417 
2418 static int
2419 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2420 		  xpt_devicefunc_t *tr_func, void *arg)
2421 {
2422 	struct cam_ed *device, *next_device;
2423 	int retval;
2424 
2425 	retval = 1;
2426 	for (device = (start_device ? start_device :
2427 		       TAILQ_FIRST(&target->ed_entries));
2428 	     device != NULL;
2429 	     device = next_device) {
2430 
2431 		next_device = TAILQ_NEXT(device, links);
2432 
2433 		retval = tr_func(device, arg);
2434 
2435 		if (retval == 0)
2436 			return(retval);
2437 	}
2438 
2439 	return(retval);
2440 }
2441 
2442 static int
2443 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2444 		  xpt_periphfunc_t *tr_func, void *arg)
2445 {
2446 	struct cam_periph *periph, *next_periph;
2447 	int retval;
2448 
2449 	retval = 1;
2450 
2451 	for (periph = (start_periph ? start_periph :
2452 		       SLIST_FIRST(&device->periphs));
2453 	     periph != NULL;
2454 	     periph = next_periph) {
2455 
2456 		next_periph = SLIST_NEXT(periph, periph_links);
2457 
2458 		retval = tr_func(periph, arg);
2459 		if (retval == 0)
2460 			return(retval);
2461 	}
2462 
2463 	return(retval);
2464 }
2465 
2466 static int
2467 xptpdrvtraverse(struct periph_driver **start_pdrv,
2468 		xpt_pdrvfunc_t *tr_func, void *arg)
2469 {
2470 	struct periph_driver **pdrv;
2471 	int retval;
2472 
2473 	retval = 1;
2474 
2475 	/*
2476 	 * We don't traverse the peripheral driver list like we do the
2477 	 * other lists, because it is a linker set, and therefore cannot be
2478 	 * changed during runtime.  If the peripheral driver list is ever
2479 	 * re-done to be something other than a linker set (i.e. it can
2480 	 * change while the system is running), the list traversal should
2481 	 * be modified to work like the other traversal functions.
2482 	 */
2483 	for (pdrv = (start_pdrv ? start_pdrv :
2484 	     (struct periph_driver **)periphdriver_set.ls_items);
2485 	     *pdrv != NULL; pdrv++) {
2486 		retval = tr_func(pdrv, arg);
2487 
2488 		if (retval == 0)
2489 			return(retval);
2490 	}
2491 
2492 	return(retval);
2493 }
2494 
2495 static int
2496 xptpdperiphtraverse(struct periph_driver **pdrv,
2497 		    struct cam_periph *start_periph,
2498 		    xpt_periphfunc_t *tr_func, void *arg)
2499 {
2500 	struct cam_periph *periph, *next_periph;
2501 	int retval;
2502 
2503 	retval = 1;
2504 
2505 	for (periph = (start_periph ? start_periph :
2506 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2507 	     periph = next_periph) {
2508 
2509 		next_periph = TAILQ_NEXT(periph, unit_links);
2510 
2511 		retval = tr_func(periph, arg);
2512 		if (retval == 0)
2513 			return(retval);
2514 	}
2515 	return(retval);
2516 }
2517 
2518 static int
2519 xptdefbusfunc(struct cam_eb *bus, void *arg)
2520 {
2521 	struct xpt_traverse_config *tr_config;
2522 
2523 	tr_config = (struct xpt_traverse_config *)arg;
2524 
2525 	if (tr_config->depth == XPT_DEPTH_BUS) {
2526 		xpt_busfunc_t *tr_func;
2527 
2528 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2529 
2530 		return(tr_func(bus, tr_config->tr_arg));
2531 	} else
2532 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2533 }
2534 
2535 static int
2536 xptdeftargetfunc(struct cam_et *target, void *arg)
2537 {
2538 	struct xpt_traverse_config *tr_config;
2539 
2540 	tr_config = (struct xpt_traverse_config *)arg;
2541 
2542 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2543 		xpt_targetfunc_t *tr_func;
2544 
2545 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2546 
2547 		return(tr_func(target, tr_config->tr_arg));
2548 	} else
2549 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2550 }
2551 
2552 static int
2553 xptdefdevicefunc(struct cam_ed *device, void *arg)
2554 {
2555 	struct xpt_traverse_config *tr_config;
2556 
2557 	tr_config = (struct xpt_traverse_config *)arg;
2558 
2559 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2560 		xpt_devicefunc_t *tr_func;
2561 
2562 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2563 
2564 		return(tr_func(device, tr_config->tr_arg));
2565 	} else
2566 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2567 }
2568 
2569 static int
2570 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2571 {
2572 	struct xpt_traverse_config *tr_config;
2573 	xpt_periphfunc_t *tr_func;
2574 
2575 	tr_config = (struct xpt_traverse_config *)arg;
2576 
2577 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2578 
2579 	/*
2580 	 * Unlike the other default functions, we don't check for depth
2581 	 * here.  The peripheral driver level is the last level in the EDT,
2582 	 * so if we're here, we should execute the function in question.
2583 	 */
2584 	return(tr_func(periph, tr_config->tr_arg));
2585 }
2586 
2587 /*
2588  * Execute the given function for every bus in the EDT.
2589  */
2590 static int
2591 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2592 {
2593 	struct xpt_traverse_config tr_config;
2594 
2595 	tr_config.depth = XPT_DEPTH_BUS;
2596 	tr_config.tr_func = tr_func;
2597 	tr_config.tr_arg = arg;
2598 
2599 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2600 }
2601 
2602 #ifdef notusedyet
2603 /*
2604  * Execute the given function for every target in the EDT.
2605  */
2606 static int
2607 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2608 {
2609 	struct xpt_traverse_config tr_config;
2610 
2611 	tr_config.depth = XPT_DEPTH_TARGET;
2612 	tr_config.tr_func = tr_func;
2613 	tr_config.tr_arg = arg;
2614 
2615 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2616 }
2617 #endif /* notusedyet */
2618 
2619 /*
2620  * Execute the given function for every device in the EDT.
2621  */
2622 static int
2623 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2624 {
2625 	struct xpt_traverse_config tr_config;
2626 
2627 	tr_config.depth = XPT_DEPTH_DEVICE;
2628 	tr_config.tr_func = tr_func;
2629 	tr_config.tr_arg = arg;
2630 
2631 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2632 }
2633 
2634 #ifdef notusedyet
2635 /*
2636  * Execute the given function for every peripheral in the EDT.
2637  */
2638 static int
2639 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2640 {
2641 	struct xpt_traverse_config tr_config;
2642 
2643 	tr_config.depth = XPT_DEPTH_PERIPH;
2644 	tr_config.tr_func = tr_func;
2645 	tr_config.tr_arg = arg;
2646 
2647 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2648 }
2649 #endif /* notusedyet */
2650 
2651 static int
2652 xptsetasyncfunc(struct cam_ed *device, void *arg)
2653 {
2654 	struct cam_path path;
2655 	struct ccb_getdev cgd;
2656 	struct async_node *cur_entry;
2657 
2658 	cur_entry = (struct async_node *)arg;
2659 
2660 	/*
2661 	 * Don't report unconfigured devices (Wildcard devs,
2662 	 * devices only for target mode, device instances
2663 	 * that have been invalidated but are waiting for
2664 	 * their last reference count to be released).
2665 	 */
2666 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2667 		return (1);
2668 
2669 	xpt_compile_path(&path,
2670 			 NULL,
2671 			 device->target->bus->path_id,
2672 			 device->target->target_id,
2673 			 device->lun_id);
2674 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2675 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2676 	xpt_action((union ccb *)&cgd);
2677 	cur_entry->callback(cur_entry->callback_arg,
2678 			    AC_FOUND_DEVICE,
2679 			    &path, &cgd);
2680 	xpt_release_path(&path);
2681 
2682 	return(1);
2683 }
2684 
2685 static int
2686 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2687 {
2688 	struct cam_path path;
2689 	struct ccb_pathinq cpi;
2690 	struct async_node *cur_entry;
2691 
2692 	cur_entry = (struct async_node *)arg;
2693 
2694 	xpt_compile_path(&path, /*periph*/NULL,
2695 			 bus->sim->path_id,
2696 			 CAM_TARGET_WILDCARD,
2697 			 CAM_LUN_WILDCARD);
2698 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2699 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2700 	xpt_action((union ccb *)&cpi);
2701 	cur_entry->callback(cur_entry->callback_arg,
2702 			    AC_PATH_REGISTERED,
2703 			    &path, &cpi);
2704 	xpt_release_path(&path);
2705 
2706 	return(1);
2707 }
2708 
2709 void
2710 xpt_action(union ccb *start_ccb)
2711 {
2712 	int iopl;
2713 
2714 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2715 
2716 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2717 
2718 	iopl = splsoftcam();
2719 	switch (start_ccb->ccb_h.func_code) {
2720 	case XPT_SCSI_IO:
2721 	{
2722 #ifdef CAMDEBUG
2723 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2724 		struct cam_path *path;
2725 
2726 		path = start_ccb->ccb_h.path;
2727 #endif
2728 
2729 		/*
2730 		 * For the sake of compatibility with SCSI-1
2731 		 * devices that may not understand the identify
2732 		 * message, we include lun information in the
2733 		 * second byte of all commands.  SCSI-1 specifies
2734 		 * that luns are a 3 bit value and reserves only 3
2735 		 * bits for lun information in the CDB.  Later
2736 		 * revisions of the SCSI spec allow for more than 8
2737 		 * luns, but have deprecated lun information in the
2738 		 * CDB.  So, if the lun won't fit, we must omit.
2739 		 *
2740 		 * Also be aware that during initial probing for devices,
2741 		 * the inquiry information is unknown but initialized to 0.
2742 		 * This means that this code will be exercised while probing
2743 		 * devices with an ANSI revision greater than 2.
2744 		 */
2745 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2746 		 && start_ccb->ccb_h.target_lun < 8
2747 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2748 
2749 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2750 			    start_ccb->ccb_h.target_lun << 5;
2751 		}
2752 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2753 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2754 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2755 			  	       &path->device->inq_data),
2756 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2757 					  cdb_str, sizeof(cdb_str))));
2758 		/* FALLTHROUGH */
2759 	}
2760 	case XPT_TARGET_IO:
2761 	case XPT_CONT_TARGET_IO:
2762 		start_ccb->csio.sense_resid = 0;
2763 		start_ccb->csio.resid = 0;
2764 		/* FALLTHROUGH */
2765 	case XPT_RESET_DEV:
2766 	case XPT_ENG_EXEC:
2767 	{
2768 		struct cam_path *path;
2769 		int s;
2770 		int runq;
2771 
2772 		path = start_ccb->ccb_h.path;
2773 		s = splsoftcam();
2774 
2775 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2776 		if (path->device->qfrozen_cnt == 0)
2777 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2778 		else
2779 			runq = 0;
2780 		splx(s);
2781 		if (runq != 0)
2782 			xpt_run_dev_sendq(path->bus);
2783 		break;
2784 	}
2785 	case XPT_SET_TRAN_SETTINGS:
2786 	{
2787 		xpt_set_transfer_settings(&start_ccb->cts,
2788 					  start_ccb->ccb_h.path->device,
2789 					  /*async_update*/FALSE);
2790 		break;
2791 	}
2792 	case XPT_CALC_GEOMETRY:
2793 	{
2794 		struct cam_sim *sim;
2795 
2796 		/* Filter out garbage */
2797 		if (start_ccb->ccg.block_size == 0
2798 		 || start_ccb->ccg.volume_size == 0) {
2799 			start_ccb->ccg.cylinders = 0;
2800 			start_ccb->ccg.heads = 0;
2801 			start_ccb->ccg.secs_per_track = 0;
2802 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2803 			break;
2804 		}
2805 #ifdef PC98
2806 		/*
2807 		 * In a PC-98 system, geometry translation depens on
2808 		 * the "real" device geometry obtained from mode page 4.
2809 		 * SCSI geometry translation is performed in the
2810 		 * initialization routine of the SCSI BIOS and the result
2811 		 * stored in host memory.  If the translation is available
2812 		 * in host memory, use it.  If not, rely on the default
2813 		 * translation the device driver performs.
2814 		 */
2815 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2816 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2817 			break;
2818 		}
2819 #endif
2820 		sim = start_ccb->ccb_h.path->bus->sim;
2821 		(*(sim->sim_action))(sim, start_ccb);
2822 		break;
2823 	}
2824 	case XPT_ABORT:
2825 	{
2826 		union ccb* abort_ccb;
2827 		int s;
2828 
2829 		abort_ccb = start_ccb->cab.abort_ccb;
2830 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2831 
2832 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2833 				struct cam_ccbq *ccbq;
2834 
2835 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2836 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2837 				abort_ccb->ccb_h.status =
2838 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2839 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2840 				s = splcam();
2841 				xpt_done(abort_ccb);
2842 				splx(s);
2843 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2844 				break;
2845 			}
2846 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2847 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2848 				/*
2849 				 * We've caught this ccb en route to
2850 				 * the SIM.  Flag it for abort and the
2851 				 * SIM will do so just before starting
2852 				 * real work on the CCB.
2853 				 */
2854 				abort_ccb->ccb_h.status =
2855 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2856 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2857 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2858 				break;
2859 			}
2860 		}
2861 		if (XPT_FC_IS_QUEUED(abort_ccb)
2862 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2863 			/*
2864 			 * It's already completed but waiting
2865 			 * for our SWI to get to it.
2866 			 */
2867 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2868 			break;
2869 		}
2870 		/*
2871 		 * If we weren't able to take care of the abort request
2872 		 * in the XPT, pass the request down to the SIM for processing.
2873 		 */
2874 		/* FALLTHROUGH */
2875 	}
2876 	case XPT_ACCEPT_TARGET_IO:
2877 	case XPT_EN_LUN:
2878 	case XPT_IMMED_NOTIFY:
2879 	case XPT_NOTIFY_ACK:
2880 	case XPT_GET_TRAN_SETTINGS:
2881 	case XPT_RESET_BUS:
2882 	{
2883 		struct cam_sim *sim;
2884 
2885 		sim = start_ccb->ccb_h.path->bus->sim;
2886 		(*(sim->sim_action))(sim, start_ccb);
2887 		break;
2888 	}
2889 	case XPT_PATH_INQ:
2890 	{
2891 		struct cam_sim *sim;
2892 
2893 		sim = start_ccb->ccb_h.path->bus->sim;
2894 		(*(sim->sim_action))(sim, start_ccb);
2895 		break;
2896 	}
2897 	case XPT_PATH_STATS:
2898 		start_ccb->cpis.last_reset =
2899 			start_ccb->ccb_h.path->bus->last_reset;
2900 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2901 		break;
2902 	case XPT_GDEV_TYPE:
2903 	{
2904 		struct cam_ed *dev;
2905 		int s;
2906 
2907 		dev = start_ccb->ccb_h.path->device;
2908 		s = splcam();
2909 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2910 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2911 		} else {
2912 			struct ccb_getdev *cgd;
2913 			struct cam_eb *bus;
2914 			struct cam_et *tar;
2915 
2916 			cgd = &start_ccb->cgd;
2917 			bus = cgd->ccb_h.path->bus;
2918 			tar = cgd->ccb_h.path->target;
2919 			cgd->inq_data = dev->inq_data;
2920 			cgd->ccb_h.status = CAM_REQ_CMP;
2921 			cgd->serial_num_len = dev->serial_num_len;
2922 			if ((dev->serial_num_len > 0)
2923 			 && (dev->serial_num != NULL))
2924 				bcopy(dev->serial_num, cgd->serial_num,
2925 				      dev->serial_num_len);
2926 		}
2927 		splx(s);
2928 		break;
2929 	}
2930 	case XPT_GDEV_STATS:
2931 	{
2932 		struct cam_ed *dev;
2933 		int s;
2934 
2935 		dev = start_ccb->ccb_h.path->device;
2936 		s = splcam();
2937 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2938 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2939 		} else {
2940 			struct ccb_getdevstats *cgds;
2941 			struct cam_eb *bus;
2942 			struct cam_et *tar;
2943 
2944 			cgds = &start_ccb->cgds;
2945 			bus = cgds->ccb_h.path->bus;
2946 			tar = cgds->ccb_h.path->target;
2947 			cgds->dev_openings = dev->ccbq.dev_openings;
2948 			cgds->dev_active = dev->ccbq.dev_active;
2949 			cgds->devq_openings = dev->ccbq.devq_openings;
2950 			cgds->devq_queued = dev->ccbq.queue.entries;
2951 			cgds->held = dev->ccbq.held;
2952 			cgds->last_reset = tar->last_reset;
2953 			cgds->maxtags = dev->quirk->maxtags;
2954 			cgds->mintags = dev->quirk->mintags;
2955 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2956 				cgds->last_reset = bus->last_reset;
2957 			cgds->ccb_h.status = CAM_REQ_CMP;
2958 		}
2959 		splx(s);
2960 		break;
2961 	}
2962 	case XPT_GDEVLIST:
2963 	{
2964 		struct cam_periph	*nperiph;
2965 		struct periph_list	*periph_head;
2966 		struct ccb_getdevlist	*cgdl;
2967 		int			i;
2968 		int			s;
2969 		struct cam_ed		*device;
2970 		int			found;
2971 
2972 
2973 		found = 0;
2974 
2975 		/*
2976 		 * Don't want anyone mucking with our data.
2977 		 */
2978 		s = splcam();
2979 		device = start_ccb->ccb_h.path->device;
2980 		periph_head = &device->periphs;
2981 		cgdl = &start_ccb->cgdl;
2982 
2983 		/*
2984 		 * Check and see if the list has changed since the user
2985 		 * last requested a list member.  If so, tell them that the
2986 		 * list has changed, and therefore they need to start over
2987 		 * from the beginning.
2988 		 */
2989 		if ((cgdl->index != 0) &&
2990 		    (cgdl->generation != device->generation)) {
2991 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2992 			splx(s);
2993 			break;
2994 		}
2995 
2996 		/*
2997 		 * Traverse the list of peripherals and attempt to find
2998 		 * the requested peripheral.
2999 		 */
3000 		for (nperiph = periph_head->slh_first, i = 0;
3001 		     (nperiph != NULL) && (i <= cgdl->index);
3002 		     nperiph = nperiph->periph_links.sle_next, i++) {
3003 			if (i == cgdl->index) {
3004 				strncpy(cgdl->periph_name,
3005 					nperiph->periph_name,
3006 					DEV_IDLEN);
3007 				cgdl->unit_number = nperiph->unit_number;
3008 				found = 1;
3009 			}
3010 		}
3011 		if (found == 0) {
3012 			cgdl->status = CAM_GDEVLIST_ERROR;
3013 			splx(s);
3014 			break;
3015 		}
3016 
3017 		if (nperiph == NULL)
3018 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3019 		else
3020 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3021 
3022 		cgdl->index++;
3023 		cgdl->generation = device->generation;
3024 
3025 		splx(s);
3026 		cgdl->ccb_h.status = CAM_REQ_CMP;
3027 		break;
3028 	}
3029 	case XPT_DEV_MATCH:
3030 	{
3031 		int s;
3032 		dev_pos_type position_type;
3033 		struct ccb_dev_match *cdm;
3034 		int ret;
3035 
3036 		cdm = &start_ccb->cdm;
3037 
3038 		/*
3039 		 * Prevent EDT changes while we traverse it.
3040 		 */
3041 		s = splcam();
3042 		/*
3043 		 * There are two ways of getting at information in the EDT.
3044 		 * The first way is via the primary EDT tree.  It starts
3045 		 * with a list of busses, then a list of targets on a bus,
3046 		 * then devices/luns on a target, and then peripherals on a
3047 		 * device/lun.  The "other" way is by the peripheral driver
3048 		 * lists.  The peripheral driver lists are organized by
3049 		 * peripheral driver.  (obviously)  So it makes sense to
3050 		 * use the peripheral driver list if the user is looking
3051 		 * for something like "da1", or all "da" devices.  If the
3052 		 * user is looking for something on a particular bus/target
3053 		 * or lun, it's generally better to go through the EDT tree.
3054 		 */
3055 
3056 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3057 			position_type = cdm->pos.position_type;
3058 		else {
3059 			int i;
3060 
3061 			position_type = CAM_DEV_POS_NONE;
3062 
3063 			for (i = 0; i < cdm->num_patterns; i++) {
3064 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3065 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3066 					position_type = CAM_DEV_POS_EDT;
3067 					break;
3068 				}
3069 			}
3070 
3071 			if (cdm->num_patterns == 0)
3072 				position_type = CAM_DEV_POS_EDT;
3073 			else if (position_type == CAM_DEV_POS_NONE)
3074 				position_type = CAM_DEV_POS_PDRV;
3075 		}
3076 
3077 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3078 		case CAM_DEV_POS_EDT:
3079 			ret = xptedtmatch(cdm);
3080 			break;
3081 		case CAM_DEV_POS_PDRV:
3082 			ret = xptperiphlistmatch(cdm);
3083 			break;
3084 		default:
3085 			cdm->status = CAM_DEV_MATCH_ERROR;
3086 			break;
3087 		}
3088 
3089 		splx(s);
3090 
3091 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3092 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3093 		else
3094 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3095 
3096 		break;
3097 	}
3098 	case XPT_SASYNC_CB:
3099 	{
3100 		struct ccb_setasync *csa;
3101 		struct async_node *cur_entry;
3102 		struct async_list *async_head;
3103 		u_int32_t added;
3104 		int s;
3105 
3106 		csa = &start_ccb->csa;
3107 		added = csa->event_enable;
3108 		async_head = &csa->ccb_h.path->device->asyncs;
3109 
3110 		/*
3111 		 * If there is already an entry for us, simply
3112 		 * update it.
3113 		 */
3114 		s = splcam();
3115 		cur_entry = SLIST_FIRST(async_head);
3116 		while (cur_entry != NULL) {
3117 			if ((cur_entry->callback_arg == csa->callback_arg)
3118 			 && (cur_entry->callback == csa->callback))
3119 				break;
3120 			cur_entry = SLIST_NEXT(cur_entry, links);
3121 		}
3122 
3123 		if (cur_entry != NULL) {
3124 		 	/*
3125 			 * If the request has no flags set,
3126 			 * remove the entry.
3127 			 */
3128 			added &= ~cur_entry->event_enable;
3129 			if (csa->event_enable == 0) {
3130 				SLIST_REMOVE(async_head, cur_entry,
3131 					     async_node, links);
3132 				csa->ccb_h.path->device->refcount--;
3133 				free(cur_entry, M_DEVBUF);
3134 			} else {
3135 				cur_entry->event_enable = csa->event_enable;
3136 			}
3137 		} else {
3138 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3139 					   M_NOWAIT);
3140 			if (cur_entry == NULL) {
3141 				splx(s);
3142 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3143 				break;
3144 			}
3145 			cur_entry->event_enable = csa->event_enable;
3146 			cur_entry->callback_arg = csa->callback_arg;
3147 			cur_entry->callback = csa->callback;
3148 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3149 			csa->ccb_h.path->device->refcount++;
3150 		}
3151 
3152 		if ((added & AC_FOUND_DEVICE) != 0) {
3153 			/*
3154 			 * Get this peripheral up to date with all
3155 			 * the currently existing devices.
3156 			 */
3157 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3158 		}
3159 		if ((added & AC_PATH_REGISTERED) != 0) {
3160 			/*
3161 			 * Get this peripheral up to date with all
3162 			 * the currently existing busses.
3163 			 */
3164 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3165 		}
3166 		splx(s);
3167 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3168 		break;
3169 	}
3170 	case XPT_REL_SIMQ:
3171 	{
3172 		struct ccb_relsim *crs;
3173 		struct cam_ed *dev;
3174 		int s;
3175 
3176 		crs = &start_ccb->crs;
3177 		dev = crs->ccb_h.path->device;
3178 		if (dev == NULL) {
3179 
3180 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3181 			break;
3182 		}
3183 
3184 		s = splcam();
3185 
3186 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3187 
3188  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3189 
3190 				/* Don't ever go below one opening */
3191 				if (crs->openings > 0) {
3192 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3193 							    crs->openings);
3194 
3195 					if (bootverbose) {
3196 						xpt_print_path(crs->ccb_h.path);
3197 						printf("tagged openings "
3198 						       "now %d\n",
3199 						       crs->openings);
3200 					}
3201 				}
3202 			}
3203 		}
3204 
3205 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3206 
3207 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3208 
3209 				/*
3210 				 * Just extend the old timeout and decrement
3211 				 * the freeze count so that a single timeout
3212 				 * is sufficient for releasing the queue.
3213 				 */
3214 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3215 				untimeout(xpt_release_devq_timeout,
3216 					  dev, dev->c_handle);
3217 			} else {
3218 
3219 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3220 			}
3221 
3222 			dev->c_handle =
3223 				timeout(xpt_release_devq_timeout,
3224 					dev,
3225 					(crs->release_timeout * hz) / 1000);
3226 
3227 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3228 
3229 		}
3230 
3231 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3232 
3233 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3234 				/*
3235 				 * Decrement the freeze count so that a single
3236 				 * completion is still sufficient to unfreeze
3237 				 * the queue.
3238 				 */
3239 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3240 			} else {
3241 
3242 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3243 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3244 			}
3245 		}
3246 
3247 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3248 
3249 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3250 			 || (dev->ccbq.dev_active == 0)) {
3251 
3252 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3253 			} else {
3254 
3255 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3256 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3257 			}
3258 		}
3259 		splx(s);
3260 
3261 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3262 
3263 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3264 					 /*run_queue*/TRUE);
3265 		}
3266 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3267 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3268 		break;
3269 	}
3270 	case XPT_SCAN_BUS:
3271 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3272 		break;
3273 	case XPT_SCAN_LUN:
3274 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3275 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3276 			     start_ccb);
3277 		break;
3278 	case XPT_DEBUG: {
3279 #ifdef CAMDEBUG
3280 		int s;
3281 
3282 		s = splcam();
3283 #ifdef CAM_DEBUG_DELAY
3284 		cam_debug_delay = CAM_DEBUG_DELAY;
3285 #endif
3286 		cam_dflags = start_ccb->cdbg.flags;
3287 		if (cam_dpath != NULL) {
3288 			xpt_free_path(cam_dpath);
3289 			cam_dpath = NULL;
3290 		}
3291 
3292 		if (cam_dflags != CAM_DEBUG_NONE) {
3293 			if (xpt_create_path(&cam_dpath, xpt_periph,
3294 					    start_ccb->ccb_h.path_id,
3295 					    start_ccb->ccb_h.target_id,
3296 					    start_ccb->ccb_h.target_lun) !=
3297 					    CAM_REQ_CMP) {
3298 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3299 				cam_dflags = CAM_DEBUG_NONE;
3300 			} else {
3301 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3302 				xpt_print_path(cam_dpath);
3303 				printf("debugging flags now %x\n", cam_dflags);
3304 			}
3305 		} else {
3306 			cam_dpath = NULL;
3307 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3308 		}
3309 		splx(s);
3310 #else /* !CAMDEBUG */
3311 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3312 #endif /* CAMDEBUG */
3313 		break;
3314 	}
3315 	case XPT_NOOP:
3316 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3317 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3318 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3319 		break;
3320 	default:
3321 	case XPT_SDEV_TYPE:
3322 	case XPT_TERM_IO:
3323 	case XPT_ENG_INQ:
3324 		/* XXX Implement */
3325 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3326 		break;
3327 	}
3328 	splx(iopl);
3329 }
3330 
3331 void
3332 xpt_polled_action(union ccb *start_ccb)
3333 {
3334 	int	  s;
3335 	u_int32_t timeout;
3336 	struct	  cam_sim *sim;
3337 	struct	  cam_devq *devq;
3338 	struct	  cam_ed *dev;
3339 
3340 	timeout = start_ccb->ccb_h.timeout;
3341 	sim = start_ccb->ccb_h.path->bus->sim;
3342 	devq = sim->devq;
3343 	dev = start_ccb->ccb_h.path->device;
3344 
3345 	s = splcam();
3346 
3347 	/*
3348 	 * Steal an opening so that no other queued requests
3349 	 * can get it before us while we simulate interrupts.
3350 	 */
3351 	dev->ccbq.devq_openings--;
3352 	dev->ccbq.dev_openings--;
3353 
3354 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3355 	   && (--timeout > 0)) {
3356 		DELAY(1000);
3357 		(*(sim->sim_poll))(sim);
3358 		swi_camnet();
3359 		swi_cambio();
3360 	}
3361 
3362 	dev->ccbq.devq_openings++;
3363 	dev->ccbq.dev_openings++;
3364 
3365 	if (timeout != 0) {
3366 		xpt_action(start_ccb);
3367 		while(--timeout > 0) {
3368 			(*(sim->sim_poll))(sim);
3369 			swi_camnet();
3370 			swi_cambio();
3371 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3372 			    != CAM_REQ_INPROG)
3373 				break;
3374 			DELAY(1000);
3375 		}
3376 		if (timeout == 0) {
3377 			/*
3378 			 * XXX Is it worth adding a sim_timeout entry
3379 			 * point so we can attempt recovery?  If
3380 			 * this is only used for dumps, I don't think
3381 			 * it is.
3382 			 */
3383 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3384 		}
3385 	} else {
3386 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3387 	}
3388 	splx(s);
3389 }
3390 
3391 /*
3392  * Schedule a peripheral driver to receive a ccb when it's
3393  * target device has space for more transactions.
3394  */
3395 void
3396 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3397 {
3398 	struct cam_ed *device;
3399 	int s;
3400 	int runq;
3401 
3402 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3403 	device = perph->path->device;
3404 	s = splsoftcam();
3405 	if (periph_is_queued(perph)) {
3406 		/* Simply reorder based on new priority */
3407 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3408 			  ("   change priority to %d\n", new_priority));
3409 		if (new_priority < perph->pinfo.priority) {
3410 			camq_change_priority(&device->drvq,
3411 					     perph->pinfo.index,
3412 					     new_priority);
3413 		}
3414 		runq = 0;
3415 	} else {
3416 		/* New entry on the queue */
3417 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3418 			  ("   added periph to queue\n"));
3419 		perph->pinfo.priority = new_priority;
3420 		perph->pinfo.generation = ++device->drvq.generation;
3421 		camq_insert(&device->drvq, &perph->pinfo);
3422 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3423 	}
3424 	splx(s);
3425 	if (runq != 0) {
3426 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3427 			  ("   calling xpt_run_devq\n"));
3428 		xpt_run_dev_allocq(perph->path->bus);
3429 	}
3430 }
3431 
3432 
3433 /*
3434  * Schedule a device to run on a given queue.
3435  * If the device was inserted as a new entry on the queue,
3436  * return 1 meaning the device queue should be run. If we
3437  * were already queued, implying someone else has already
3438  * started the queue, return 0 so the caller doesn't attempt
3439  * to run the queue.  Must be run at either splsoftcam
3440  * (or splcam since that encompases splsoftcam).
3441  */
3442 static int
3443 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3444 		 u_int32_t new_priority)
3445 {
3446 	int retval;
3447 	u_int32_t old_priority;
3448 
3449 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3450 
3451 	old_priority = pinfo->priority;
3452 
3453 	/*
3454 	 * Are we already queued?
3455 	 */
3456 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3457 		/* Simply reorder based on new priority */
3458 		if (new_priority < old_priority) {
3459 			camq_change_priority(queue, pinfo->index,
3460 					     new_priority);
3461 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3462 					("changed priority to %d\n",
3463 					 new_priority));
3464 		}
3465 		retval = 0;
3466 	} else {
3467 		/* New entry on the queue */
3468 		if (new_priority < old_priority)
3469 			pinfo->priority = new_priority;
3470 
3471 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3472 				("Inserting onto queue\n"));
3473 		pinfo->generation = ++queue->generation;
3474 		camq_insert(queue, pinfo);
3475 		retval = 1;
3476 	}
3477 	return (retval);
3478 }
3479 
3480 static void
3481 xpt_run_dev_allocq(struct cam_eb *bus)
3482 {
3483 	struct	cam_devq *devq;
3484 	int	s;
3485 
3486 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3487 	devq = bus->sim->devq;
3488 
3489 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3490 			("   qfrozen_cnt == 0x%x, entries == %d, "
3491 			 "openings == %d, active == %d\n",
3492 			 devq->alloc_queue.qfrozen_cnt,
3493 			 devq->alloc_queue.entries,
3494 			 devq->alloc_openings,
3495 			 devq->alloc_active));
3496 
3497 	s = splsoftcam();
3498 	devq->alloc_queue.qfrozen_cnt++;
3499 	while ((devq->alloc_queue.entries > 0)
3500 	    && (devq->alloc_openings > 0)
3501 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3502 		struct	cam_ed_qinfo *qinfo;
3503 		struct	cam_ed *device;
3504 		union	ccb *work_ccb;
3505 		struct	cam_periph *drv;
3506 		struct	camq *drvq;
3507 
3508 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3509 							   CAMQ_HEAD);
3510 		device = qinfo->device;
3511 
3512 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3513 				("running device %p\n", device));
3514 
3515 		drvq = &device->drvq;
3516 
3517 #ifdef CAMDEBUG
3518 		if (drvq->entries <= 0) {
3519 			panic("xpt_run_dev_allocq: "
3520 			      "Device on queue without any work to do");
3521 		}
3522 #endif
3523 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3524 			devq->alloc_openings--;
3525 			devq->alloc_active++;
3526 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3527 			splx(s);
3528 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3529 				      drv->pinfo.priority);
3530 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3531 					("calling periph start\n"));
3532 			drv->periph_start(drv, work_ccb);
3533 		} else {
3534 			/*
3535 			 * Malloc failure in alloc_ccb
3536 			 */
3537 			/*
3538 			 * XXX add us to a list to be run from free_ccb
3539 			 * if we don't have any ccbs active on this
3540 			 * device queue otherwise we may never get run
3541 			 * again.
3542 			 */
3543 			break;
3544 		}
3545 
3546 		/* Raise IPL for possible insertion and test at top of loop */
3547 		s = splsoftcam();
3548 
3549 		if (drvq->entries > 0) {
3550 			/* We have more work.  Attempt to reschedule */
3551 			xpt_schedule_dev_allocq(bus, device);
3552 		}
3553 	}
3554 	devq->alloc_queue.qfrozen_cnt--;
3555 	splx(s);
3556 }
3557 
3558 static void
3559 xpt_run_dev_sendq(struct cam_eb *bus)
3560 {
3561 	struct	cam_devq *devq;
3562 	int	s;
3563 
3564 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3565 
3566 	devq = bus->sim->devq;
3567 
3568 	s = splcam();
3569 	devq->send_queue.qfrozen_cnt++;
3570 	splx(s);
3571 	s = splsoftcam();
3572 	while ((devq->send_queue.entries > 0)
3573 	    && (devq->send_openings > 0)) {
3574 		struct	cam_ed_qinfo *qinfo;
3575 		struct	cam_ed *device;
3576 		union ccb *work_ccb;
3577 		struct	cam_sim *sim;
3578 		int	ospl;
3579 
3580 		ospl = splcam();
3581 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3582 			splx(ospl);
3583 			break;
3584 		}
3585 
3586 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3587 							   CAMQ_HEAD);
3588 		device = qinfo->device;
3589 
3590 		/*
3591 		 * If the device has been "frozen", don't attempt
3592 		 * to run it.
3593 		 */
3594 		if (device->qfrozen_cnt > 0) {
3595 			splx(ospl);
3596 			continue;
3597 		}
3598 
3599 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3600 				("running device %p\n", device));
3601 
3602 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3603 		if (work_ccb == NULL) {
3604 			printf("device on run queue with no ccbs???");
3605 			splx(ospl);
3606 			continue;
3607 		}
3608 
3609 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3610 
3611 		 	if (num_highpower <= 0) {
3612 				/*
3613 				 * We got a high power command, but we
3614 				 * don't have any available slots.  Freeze
3615 				 * the device queue until we have a slot
3616 				 * available.
3617 				 */
3618 				device->qfrozen_cnt++;
3619 				STAILQ_INSERT_TAIL(&highpowerq,
3620 						   &work_ccb->ccb_h,
3621 						   xpt_links.stqe);
3622 
3623 				splx(ospl);
3624 				continue;
3625 			} else {
3626 				/*
3627 				 * Consume a high power slot while
3628 				 * this ccb runs.
3629 				 */
3630 				num_highpower--;
3631 			}
3632 		}
3633 		devq->active_dev = device;
3634 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3635 
3636 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3637 		splx(ospl);
3638 
3639 		devq->send_openings--;
3640 		devq->send_active++;
3641 
3642 		if (device->ccbq.queue.entries > 0)
3643 			xpt_schedule_dev_sendq(bus, device);
3644 
3645 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3646 			/*
3647 			 * The client wants to freeze the queue
3648 			 * after this CCB is sent.
3649 			 */
3650 			ospl = splcam();
3651 			device->qfrozen_cnt++;
3652 			splx(ospl);
3653 		}
3654 
3655 		splx(s);
3656 
3657 		if ((device->inq_flags & SID_CmdQue) != 0)
3658 			work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3659 		else
3660 			/*
3661 			 * Clear this in case of a retried CCB that failed
3662 			 * due to a rejected tag.
3663 			 */
3664 			work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3665 
3666 		/*
3667 		 * Device queues can be shared among multiple sim instances
3668 		 * that reside on different busses.  Use the SIM in the queue
3669 		 * CCB's path, rather than the one in the bus that was passed
3670 		 * into this function.
3671 		 */
3672 		sim = work_ccb->ccb_h.path->bus->sim;
3673 		(*(sim->sim_action))(sim, work_ccb);
3674 
3675 		ospl = splcam();
3676 		devq->active_dev = NULL;
3677 		splx(ospl);
3678 		/* Raise IPL for possible insertion and test at top of loop */
3679 		s = splsoftcam();
3680 	}
3681 	splx(s);
3682 	s = splcam();
3683 	devq->send_queue.qfrozen_cnt--;
3684 	splx(s);
3685 }
3686 
3687 /*
3688  * This function merges stuff from the slave ccb into the master ccb, while
3689  * keeping important fields in the master ccb constant.
3690  */
3691 void
3692 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3693 {
3694 	/*
3695 	 * Pull fields that are valid for peripheral drivers to set
3696 	 * into the master CCB along with the CCB "payload".
3697 	 */
3698 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3699 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3700 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3701 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3702 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3703 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3704 }
3705 
3706 void
3707 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3708 {
3709 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3710 	ccb_h->pinfo.priority = priority;
3711 	ccb_h->path = path;
3712 	ccb_h->path_id = path->bus->path_id;
3713 	if (path->target)
3714 		ccb_h->target_id = path->target->target_id;
3715 	else
3716 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3717 	if (path->device) {
3718 		ccb_h->target_lun = path->device->lun_id;
3719 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3720 	} else {
3721 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3722 	}
3723 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3724 	ccb_h->flags = 0;
3725 }
3726 
3727 /* Path manipulation functions */
3728 cam_status
3729 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3730 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3731 {
3732 	struct	   cam_path *path;
3733 	cam_status status;
3734 
3735 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3736 
3737 	if (path == NULL) {
3738 		status = CAM_RESRC_UNAVAIL;
3739 		return(status);
3740 	}
3741 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3742 	if (status != CAM_REQ_CMP) {
3743 		free(path, M_DEVBUF);
3744 		path = NULL;
3745 	}
3746 	*new_path_ptr = path;
3747 	return (status);
3748 }
3749 
3750 static cam_status
3751 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3752 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3753 {
3754 	struct	     cam_eb *bus;
3755 	struct	     cam_et *target;
3756 	struct	     cam_ed *device;
3757 	cam_status   status;
3758 	int	     s;
3759 
3760 	status = CAM_REQ_CMP;	/* Completed without error */
3761 	target = NULL;		/* Wildcarded */
3762 	device = NULL;		/* Wildcarded */
3763 
3764 	/*
3765 	 * We will potentially modify the EDT, so block interrupts
3766 	 * that may attempt to create cam paths.
3767 	 */
3768 	s = splcam();
3769 	bus = xpt_find_bus(path_id);
3770 	if (bus == NULL) {
3771 		status = CAM_PATH_INVALID;
3772 	} else {
3773 		target = xpt_find_target(bus, target_id);
3774 		if (target == NULL) {
3775 			/* Create one */
3776 			struct cam_et *new_target;
3777 
3778 			new_target = xpt_alloc_target(bus, target_id);
3779 			if (new_target == NULL) {
3780 				status = CAM_RESRC_UNAVAIL;
3781 			} else {
3782 				target = new_target;
3783 			}
3784 		}
3785 		if (target != NULL) {
3786 			device = xpt_find_device(target, lun_id);
3787 			if (device == NULL) {
3788 				/* Create one */
3789 				struct cam_ed *new_device;
3790 
3791 				new_device = xpt_alloc_device(bus,
3792 							      target,
3793 							      lun_id);
3794 				if (new_device == NULL) {
3795 					status = CAM_RESRC_UNAVAIL;
3796 				} else {
3797 					device = new_device;
3798 				}
3799 			}
3800 		}
3801 	}
3802 	splx(s);
3803 
3804 	/*
3805 	 * Only touch the user's data if we are successful.
3806 	 */
3807 	if (status == CAM_REQ_CMP) {
3808 		new_path->periph = perph;
3809 		new_path->bus = bus;
3810 		new_path->target = target;
3811 		new_path->device = device;
3812 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3813 	} else {
3814 		if (device != NULL)
3815 			xpt_release_device(bus, target, device);
3816 		if (target != NULL)
3817 			xpt_release_target(bus, target);
3818 		if (bus != NULL)
3819 			xpt_release_bus(bus);
3820 	}
3821 	return (status);
3822 }
3823 
3824 static void
3825 xpt_release_path(struct cam_path *path)
3826 {
3827 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3828 	if (path->device != NULL) {
3829 		xpt_release_device(path->bus, path->target, path->device);
3830 		path->device = NULL;
3831 	}
3832 	if (path->target != NULL) {
3833 		xpt_release_target(path->bus, path->target);
3834 		path->target = NULL;
3835 	}
3836 	if (path->bus != NULL) {
3837 		xpt_release_bus(path->bus);
3838 		path->bus = NULL;
3839 	}
3840 }
3841 
3842 void
3843 xpt_free_path(struct cam_path *path)
3844 {
3845 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3846 	xpt_release_path(path);
3847 	free(path, M_DEVBUF);
3848 }
3849 
3850 
3851 /*
3852  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3853  * in path1, 2 for match with wildcards in path2.
3854  */
3855 int
3856 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3857 {
3858 	int retval = 0;
3859 
3860 	if (path1->bus != path2->bus) {
3861 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3862 			retval = 1;
3863 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3864 			retval = 2;
3865 		else
3866 			return (-1);
3867 	}
3868 	if (path1->target != path2->target) {
3869 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3870 			if (retval == 0)
3871 				retval = 1;
3872 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3873 			retval = 2;
3874 		else
3875 			return (-1);
3876 	}
3877 	if (path1->device != path2->device) {
3878 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3879 			if (retval == 0)
3880 				retval = 1;
3881 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3882 			retval = 2;
3883 		else
3884 			return (-1);
3885 	}
3886 	return (retval);
3887 }
3888 
3889 void
3890 xpt_print_path(struct cam_path *path)
3891 {
3892 	if (path == NULL)
3893 		printf("(nopath): ");
3894 	else {
3895 		if (path->periph != NULL)
3896 			printf("(%s%d:", path->periph->periph_name,
3897 			       path->periph->unit_number);
3898 		else
3899 			printf("(noperiph:");
3900 
3901 		if (path->bus != NULL)
3902 			printf("%s%d:%d:", path->bus->sim->sim_name,
3903 			       path->bus->sim->unit_number,
3904 			       path->bus->sim->bus_id);
3905 		else
3906 			printf("nobus:");
3907 
3908 		if (path->target != NULL)
3909 			printf("%d:", path->target->target_id);
3910 		else
3911 			printf("X:");
3912 
3913 		if (path->device != NULL)
3914 			printf("%d): ", path->device->lun_id);
3915 		else
3916 			printf("X): ");
3917 	}
3918 }
3919 
3920 path_id_t
3921 xpt_path_path_id(struct cam_path *path)
3922 {
3923 	return(path->bus->path_id);
3924 }
3925 
3926 target_id_t
3927 xpt_path_target_id(struct cam_path *path)
3928 {
3929 	if (path->target != NULL)
3930 		return (path->target->target_id);
3931 	else
3932 		return (CAM_TARGET_WILDCARD);
3933 }
3934 
3935 lun_id_t
3936 xpt_path_lun_id(struct cam_path *path)
3937 {
3938 	if (path->device != NULL)
3939 		return (path->device->lun_id);
3940 	else
3941 		return (CAM_LUN_WILDCARD);
3942 }
3943 
3944 struct cam_sim *
3945 xpt_path_sim(struct cam_path *path)
3946 {
3947 	return (path->bus->sim);
3948 }
3949 
3950 struct cam_periph*
3951 xpt_path_periph(struct cam_path *path)
3952 {
3953 	return (path->periph);
3954 }
3955 
3956 /*
3957  * Release a CAM control block for the caller.  Remit the cost of the structure
3958  * to the device referenced by the path.  If the this device had no 'credits'
3959  * and peripheral drivers have registered async callbacks for this notification
3960  * call them now.
3961  */
3962 void
3963 xpt_release_ccb(union ccb *free_ccb)
3964 {
3965 	int	 s;
3966 	struct	 cam_path *path;
3967 	struct	 cam_ed *device;
3968 	struct	 cam_eb *bus;
3969 
3970 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3971 	path = free_ccb->ccb_h.path;
3972 	device = path->device;
3973 	bus = path->bus;
3974 	s = splsoftcam();
3975 	cam_ccbq_release_opening(&device->ccbq);
3976 	if (xpt_ccb_count > xpt_max_ccbs) {
3977 		xpt_free_ccb(free_ccb);
3978 		xpt_ccb_count--;
3979 	} else {
3980 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
3981 	}
3982 	bus->sim->devq->alloc_openings++;
3983 	bus->sim->devq->alloc_active--;
3984 	/* XXX Turn this into an inline function - xpt_run_device?? */
3985 	if ((device_is_alloc_queued(device) == 0)
3986 	 && (device->drvq.entries > 0)) {
3987 		xpt_schedule_dev_allocq(bus, device);
3988 	}
3989 	splx(s);
3990 	if (dev_allocq_is_runnable(bus->sim->devq))
3991 		xpt_run_dev_allocq(bus);
3992 }
3993 
3994 /* Functions accessed by SIM drivers */
3995 
3996 /*
3997  * A sim structure, listing the SIM entry points and instance
3998  * identification info is passed to xpt_bus_register to hook the SIM
3999  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4000  * for this new bus and places it in the array of busses and assigns
4001  * it a path_id.  The path_id may be influenced by "hard wiring"
4002  * information specified by the user.  Once interrupt services are
4003  * availible, the bus will be probed.
4004  */
4005 int32_t
4006 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4007 {
4008 	struct cam_eb *new_bus;
4009 	struct cam_eb *old_bus;
4010 	struct ccb_pathinq cpi;
4011 	int s;
4012 
4013 	sim->bus_id = bus;
4014 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4015 					  M_DEVBUF, M_NOWAIT);
4016 	if (new_bus == NULL) {
4017 		/* Couldn't satisfy request */
4018 		return (CAM_RESRC_UNAVAIL);
4019 	}
4020 
4021 	if (strcmp(sim->sim_name, "xpt") != 0) {
4022 
4023 		sim->path_id =
4024 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4025 	}
4026 
4027 	TAILQ_INIT(&new_bus->et_entries);
4028 	new_bus->path_id = sim->path_id;
4029 	new_bus->sim = sim;
4030 	timevalclear(&new_bus->last_reset);
4031 	new_bus->flags = 0;
4032 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4033 	new_bus->generation = 0;
4034 	s = splcam();
4035 	old_bus = TAILQ_FIRST(&xpt_busses);
4036 	while (old_bus != NULL
4037 	    && old_bus->path_id < new_bus->path_id)
4038 		old_bus = TAILQ_NEXT(old_bus, links);
4039 	if (old_bus != NULL)
4040 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4041 	else
4042 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4043 	bus_generation++;
4044 	splx(s);
4045 
4046 	/* Notify interested parties */
4047 	if (sim->path_id != CAM_XPT_PATH_ID) {
4048 		struct cam_path path;
4049 
4050 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4051 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4052 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4053 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4054 		xpt_action((union ccb *)&cpi);
4055 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4056 		xpt_release_path(&path);
4057 	}
4058 	return (CAM_SUCCESS);
4059 }
4060 
4061 int32_t
4062 xpt_bus_deregister(path_id_t pathid)
4063 {
4064 	struct cam_path bus_path;
4065 	cam_status status;
4066 
4067 	status = xpt_compile_path(&bus_path, NULL, pathid,
4068 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4069 	if (status != CAM_REQ_CMP)
4070 		return (status);
4071 
4072 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4073 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4074 
4075 	/* Release the reference count held while registered. */
4076 	xpt_release_bus(bus_path.bus);
4077 	xpt_release_path(&bus_path);
4078 
4079 	return (CAM_REQ_CMP);
4080 }
4081 
4082 static path_id_t
4083 xptnextfreepathid(void)
4084 {
4085 	struct cam_eb *bus;
4086 	path_id_t pathid;
4087 	char *strval;
4088 
4089 	pathid = 0;
4090 	bus = TAILQ_FIRST(&xpt_busses);
4091 retry:
4092 	/* Find an unoccupied pathid */
4093 	while (bus != NULL
4094 	    && bus->path_id <= pathid) {
4095 		if (bus->path_id == pathid)
4096 			pathid++;
4097 		bus = TAILQ_NEXT(bus, links);
4098 	}
4099 
4100 	/*
4101 	 * Ensure that this pathid is not reserved for
4102 	 * a bus that may be registered in the future.
4103 	 */
4104 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4105 		++pathid;
4106 		/* Start the search over */
4107 		goto retry;
4108 	}
4109 	return (pathid);
4110 }
4111 
4112 static path_id_t
4113 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4114 {
4115 	path_id_t pathid;
4116 	int i, dunit, val;
4117 	char buf[32], *strval;
4118 
4119 	pathid = CAM_XPT_PATH_ID;
4120 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4121 	i = -1;
4122 	while ((i = resource_locate(i, "scbus")) != -1) {
4123 		dunit = resource_query_unit(i);
4124 		if (dunit < 0)		/* unwired?! */
4125 			continue;
4126 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4127 			continue;
4128 		if (strcmp(buf, strval) != 0)
4129 			continue;
4130 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4131 			if (sim_bus == val) {
4132 				pathid = dunit;
4133 				break;
4134 			}
4135 		} else if (sim_bus == 0) {
4136 			/* Unspecified matches bus 0 */
4137 			pathid = dunit;
4138 			break;
4139 		} else {
4140 			printf("Ambiguous scbus configuration for %s%d "
4141 			       "bus %d, cannot wire down.  The kernel "
4142 			       "config entry for scbus%d should "
4143 			       "specify a controller bus.\n"
4144 			       "Scbus will be assigned dynamically.\n",
4145 			       sim_name, sim_unit, sim_bus, dunit);
4146 			break;
4147 		}
4148 	}
4149 
4150 	if (pathid == CAM_XPT_PATH_ID)
4151 		pathid = xptnextfreepathid();
4152 	return (pathid);
4153 }
4154 
4155 void
4156 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4157 {
4158 	struct cam_eb *bus;
4159 	struct cam_et *target, *next_target;
4160 	struct cam_ed *device, *next_device;
4161 	int s;
4162 
4163 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4164 
4165 	/*
4166 	 * Most async events come from a CAM interrupt context.  In
4167 	 * a few cases, the error recovery code at the peripheral layer,
4168 	 * which may run from our SWI or a process context, may signal
4169 	 * deferred events with a call to xpt_async. Ensure async
4170 	 * notifications are serialized by blocking cam interrupts.
4171 	 */
4172 	s = splcam();
4173 
4174 	bus = path->bus;
4175 
4176 	if (async_code == AC_BUS_RESET) {
4177 		int s;
4178 
4179 		s = splclock();
4180 		/* Update our notion of when the last reset occurred */
4181 		microtime(&bus->last_reset);
4182 		splx(s);
4183 	}
4184 
4185 	for (target = TAILQ_FIRST(&bus->et_entries);
4186 	     target != NULL;
4187 	     target = next_target) {
4188 
4189 		next_target = TAILQ_NEXT(target, links);
4190 
4191 		if (path->target != target
4192 		 && path->target->target_id != CAM_TARGET_WILDCARD)
4193 			continue;
4194 
4195 		if (async_code == AC_SENT_BDR) {
4196 			int s;
4197 
4198 			/* Update our notion of when the last reset occurred */
4199 			s = splclock();
4200 			microtime(&path->target->last_reset);
4201 			splx(s);
4202 		}
4203 
4204 		for (device = TAILQ_FIRST(&target->ed_entries);
4205 		     device != NULL;
4206 		     device = next_device) {
4207 			cam_status status;
4208 			struct cam_path newpath;
4209 
4210 			next_device = TAILQ_NEXT(device, links);
4211 
4212 			if (path->device != device
4213 			 && path->device->lun_id != CAM_LUN_WILDCARD)
4214 				continue;
4215 
4216 			/*
4217 			 * We need our own path with wildcards expanded to
4218 			 * handle certain types of events.
4219 			 */
4220 			if ((async_code == AC_SENT_BDR)
4221 			 || (async_code == AC_BUS_RESET)
4222 			 || (async_code == AC_INQ_CHANGED))
4223 				status = xpt_compile_path(&newpath, NULL,
4224 							  bus->path_id,
4225 							  target->target_id,
4226 							  device->lun_id);
4227 			else
4228 				status = CAM_REQ_CMP_ERR;
4229 
4230 			if (status == CAM_REQ_CMP) {
4231 
4232 				/*
4233 				 * Allow transfer negotiation to occur in a
4234 				 * tag free environment.
4235 				 */
4236 				if (async_code == AC_SENT_BDR
4237 				  || async_code == AC_BUS_RESET)
4238 					xpt_toggle_tags(&newpath);
4239 
4240 				if (async_code == AC_INQ_CHANGED) {
4241 					/*
4242 					 * We've sent a start unit command, or
4243 					 * something similar to a device that
4244 					 * may have caused its inquiry data to
4245 					 * change. So we re-scan the device to
4246 					 * refresh the inquiry data for it.
4247 					 */
4248 					xpt_scan_lun(newpath.periph, &newpath,
4249 						     CAM_EXPECT_INQ_CHANGE,
4250 						     NULL);
4251 				}
4252 				xpt_release_path(&newpath);
4253 			} else if (async_code == AC_LOST_DEVICE) {
4254 				device->flags |= CAM_DEV_UNCONFIGURED;
4255 			} else if (async_code == AC_TRANSFER_NEG) {
4256 				struct ccb_trans_settings *settings;
4257 
4258 				settings =
4259 				    (struct ccb_trans_settings *)async_arg;
4260 				xpt_set_transfer_settings(settings, device,
4261 							  /*async_update*/TRUE);
4262 			}
4263 
4264 			xpt_async_bcast(&device->asyncs,
4265 					async_code,
4266 					path,
4267 					async_arg);
4268 		}
4269 	}
4270 
4271 	/*
4272 	 * If this wasn't a fully wildcarded async, tell all
4273 	 * clients that want all async events.
4274 	 */
4275 	if (bus != xpt_periph->path->bus)
4276 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4277 				path, async_arg);
4278 	splx(s);
4279 }
4280 
4281 static void
4282 xpt_async_bcast(struct async_list *async_head,
4283 		u_int32_t async_code,
4284 		struct cam_path *path, void *async_arg)
4285 {
4286 	struct async_node *cur_entry;
4287 
4288 	cur_entry = SLIST_FIRST(async_head);
4289 	while (cur_entry != NULL) {
4290 		struct async_node *next_entry;
4291 		/*
4292 		 * Grab the next list entry before we call the current
4293 		 * entry's callback.  This is because the callback function
4294 		 * can delete its async callback entry.
4295 		 */
4296 		next_entry = SLIST_NEXT(cur_entry, links);
4297 		if ((cur_entry->event_enable & async_code) != 0)
4298 			cur_entry->callback(cur_entry->callback_arg,
4299 					    async_code, path,
4300 					    async_arg);
4301 		cur_entry = next_entry;
4302 	}
4303 }
4304 
4305 u_int32_t
4306 xpt_freeze_devq(struct cam_path *path, u_int count)
4307 {
4308 	int s;
4309 	struct ccb_hdr *ccbh;
4310 
4311 	s = splcam();
4312 	path->device->qfrozen_cnt += count;
4313 
4314 	/*
4315 	 * Mark the last CCB in the queue as needing
4316 	 * to be requeued if the driver hasn't
4317 	 * changed it's state yet.  This fixes a race
4318 	 * where a ccb is just about to be queued to
4319 	 * a controller driver when it's interrupt routine
4320 	 * freezes the queue.  To completly close the
4321 	 * hole, controller drives must check to see
4322 	 * if a ccb's status is still CAM_REQ_INPROG
4323 	 * under spl protection just before they queue
4324 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4325 	 * an example.
4326 	 */
4327 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4328 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4329 		ccbh->status = CAM_REQUEUE_REQ;
4330 	splx(s);
4331 	return (path->device->qfrozen_cnt);
4332 }
4333 
4334 u_int32_t
4335 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4336 {
4337 	sim->devq->send_queue.qfrozen_cnt += count;
4338 	if (sim->devq->active_dev != NULL) {
4339 		struct ccb_hdr *ccbh;
4340 
4341 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4342 				  ccb_hdr_tailq);
4343 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4344 			ccbh->status = CAM_REQUEUE_REQ;
4345 	}
4346 	return (sim->devq->send_queue.qfrozen_cnt);
4347 }
4348 
4349 static void
4350 xpt_release_devq_timeout(void *arg)
4351 {
4352 	struct cam_ed *device;
4353 
4354 	device = (struct cam_ed *)arg;
4355 
4356 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4357 }
4358 
4359 void
4360 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4361 {
4362 	xpt_release_devq_device(path->device, count, run_queue);
4363 }
4364 
4365 static void
4366 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4367 {
4368 	int	rundevq;
4369 	int	s0, s1;
4370 
4371 	rundevq = 0;
4372 	s0 = splsoftcam();
4373 	s1 = splcam();
4374 	if (dev->qfrozen_cnt > 0) {
4375 
4376 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4377 		dev->qfrozen_cnt -= count;
4378 		if (dev->qfrozen_cnt == 0) {
4379 
4380 			/*
4381 			 * No longer need to wait for a successful
4382 			 * command completion.
4383 			 */
4384 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4385 
4386 			/*
4387 			 * Remove any timeouts that might be scheduled
4388 			 * to release this queue.
4389 			 */
4390 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4391 				untimeout(xpt_release_devq_timeout, dev,
4392 					  dev->c_handle);
4393 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4394 			}
4395 
4396 			/*
4397 			 * Now that we are unfrozen schedule the
4398 			 * device so any pending transactions are
4399 			 * run.
4400 			 */
4401 			if ((dev->ccbq.queue.entries > 0)
4402 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4403 			 && (run_queue != 0)) {
4404 				rundevq = 1;
4405 			}
4406 		}
4407 	}
4408 	splx(s1);
4409 	if (rundevq != 0)
4410 		xpt_run_dev_sendq(dev->target->bus);
4411 	splx(s0);
4412 }
4413 
4414 void
4415 xpt_release_simq(struct cam_sim *sim, int run_queue)
4416 {
4417 	int	s;
4418 	struct	camq *sendq;
4419 
4420 	sendq = &(sim->devq->send_queue);
4421 	s = splcam();
4422 	if (sendq->qfrozen_cnt > 0) {
4423 
4424 		sendq->qfrozen_cnt--;
4425 		if (sendq->qfrozen_cnt == 0) {
4426 			struct cam_eb *bus;
4427 
4428 			/*
4429 			 * If there is a timeout scheduled to release this
4430 			 * sim queue, remove it.  The queue frozen count is
4431 			 * already at 0.
4432 			 */
4433 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4434 				untimeout(xpt_release_simq_timeout, sim,
4435 					  sim->c_handle);
4436 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4437 			}
4438 			bus = xpt_find_bus(sim->path_id);
4439 			splx(s);
4440 
4441 			if (run_queue) {
4442 				/*
4443 				 * Now that we are unfrozen run the send queue.
4444 				 */
4445 				xpt_run_dev_sendq(bus);
4446 			}
4447 			xpt_release_bus(bus);
4448 		} else
4449 			splx(s);
4450 	} else
4451 		splx(s);
4452 }
4453 
4454 static void
4455 xpt_release_simq_timeout(void *arg)
4456 {
4457 	struct cam_sim *sim;
4458 
4459 	sim = (struct cam_sim *)arg;
4460 	xpt_release_simq(sim, /* run_queue */ TRUE);
4461 }
4462 
4463 void
4464 xpt_done(union ccb *done_ccb)
4465 {
4466 	int s;
4467 
4468 	s = splcam();
4469 
4470 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4471 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4472 		/*
4473 		 * Queue up the request for handling by our SWI handler
4474 		 * any of the "non-immediate" type of ccbs.
4475 		 */
4476 		switch (done_ccb->ccb_h.path->periph->type) {
4477 		case CAM_PERIPH_BIO:
4478 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4479 					  sim_links.tqe);
4480 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4481 			setsoftcambio();
4482 			break;
4483 		case CAM_PERIPH_NET:
4484 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4485 					  sim_links.tqe);
4486 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4487 			setsoftcamnet();
4488 			break;
4489 		}
4490 	}
4491 	splx(s);
4492 }
4493 
4494 union ccb *
4495 xpt_alloc_ccb()
4496 {
4497 	union ccb *new_ccb;
4498 
4499 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4500 	return (new_ccb);
4501 }
4502 
4503 void
4504 xpt_free_ccb(union ccb *free_ccb)
4505 {
4506 	free(free_ccb, M_DEVBUF);
4507 }
4508 
4509 
4510 
4511 /* Private XPT functions */
4512 
4513 /*
4514  * Get a CAM control block for the caller. Charge the structure to the device
4515  * referenced by the path.  If the this device has no 'credits' then the
4516  * device already has the maximum number of outstanding operations under way
4517  * and we return NULL. If we don't have sufficient resources to allocate more
4518  * ccbs, we also return NULL.
4519  */
4520 static union ccb *
4521 xpt_get_ccb(struct cam_ed *device)
4522 {
4523 	union ccb *new_ccb;
4524 	int s;
4525 
4526 	s = splsoftcam();
4527 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4528 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4529                 if (new_ccb == NULL) {
4530 			splx(s);
4531 			return (NULL);
4532 		}
4533 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4534 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4535 				  xpt_links.sle);
4536 		xpt_ccb_count++;
4537 	}
4538 	cam_ccbq_take_opening(&device->ccbq);
4539 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4540 	splx(s);
4541 	return (new_ccb);
4542 }
4543 
4544 static void
4545 xpt_release_bus(struct cam_eb *bus)
4546 {
4547 	int s;
4548 
4549 	s = splcam();
4550 	if ((--bus->refcount == 0)
4551 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4552 		TAILQ_REMOVE(&xpt_busses, bus, links);
4553 		bus_generation++;
4554 		splx(s);
4555 		free(bus, M_DEVBUF);
4556 	} else
4557 		splx(s);
4558 }
4559 
4560 static struct cam_et *
4561 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4562 {
4563 	struct cam_et *target;
4564 
4565 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4566 	if (target != NULL) {
4567 		struct cam_et *cur_target;
4568 
4569 		TAILQ_INIT(&target->ed_entries);
4570 		target->bus = bus;
4571 		target->target_id = target_id;
4572 		target->refcount = 1;
4573 		target->generation = 0;
4574 		timevalclear(&target->last_reset);
4575 		/*
4576 		 * Hold a reference to our parent bus so it
4577 		 * will not go away before we do.
4578 		 */
4579 		bus->refcount++;
4580 
4581 		/* Insertion sort into our bus's target list */
4582 		cur_target = TAILQ_FIRST(&bus->et_entries);
4583 		while (cur_target != NULL && cur_target->target_id < target_id)
4584 			cur_target = TAILQ_NEXT(cur_target, links);
4585 
4586 		if (cur_target != NULL) {
4587 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4588 		} else {
4589 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4590 		}
4591 		bus->generation++;
4592 	}
4593 	return (target);
4594 }
4595 
4596 static void
4597 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4598 {
4599 	int s;
4600 
4601 	s = splcam();
4602 	if ((--target->refcount == 0)
4603 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4604 		TAILQ_REMOVE(&bus->et_entries, target, links);
4605 		bus->generation++;
4606 		splx(s);
4607 		free(target, M_DEVBUF);
4608 		xpt_release_bus(bus);
4609 	} else
4610 		splx(s);
4611 }
4612 
4613 static struct cam_ed *
4614 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4615 {
4616 	struct	   cam_ed *device;
4617 	struct	   cam_devq *devq;
4618 	cam_status status;
4619 
4620 	/* Make space for us in the device queue on our bus */
4621 	devq = bus->sim->devq;
4622 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4623 
4624 	if (status != CAM_REQ_CMP) {
4625 		device = NULL;
4626 	} else {
4627 		device = (struct cam_ed *)malloc(sizeof(*device),
4628 						 M_DEVBUF, M_NOWAIT);
4629 	}
4630 
4631 	if (device != NULL) {
4632 		struct cam_ed *cur_device;
4633 
4634 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4635 		device->alloc_ccb_entry.device = device;
4636 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4637 		device->send_ccb_entry.device = device;
4638 		device->target = target;
4639 		device->lun_id = lun_id;
4640 		/* Initialize our queues */
4641 		if (camq_init(&device->drvq, 0) != 0) {
4642 			free(device, M_DEVBUF);
4643 			return (NULL);
4644 		}
4645 		if (cam_ccbq_init(&device->ccbq,
4646 				  bus->sim->max_dev_openings) != 0) {
4647 			camq_fini(&device->drvq);
4648 			free(device, M_DEVBUF);
4649 			return (NULL);
4650 		}
4651 		SLIST_INIT(&device->asyncs);
4652 		SLIST_INIT(&device->periphs);
4653 		device->generation = 0;
4654 		device->owner = NULL;
4655 		/*
4656 		 * Take the default quirk entry until we have inquiry
4657 		 * data and can determine a better quirk to use.
4658 		 */
4659 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4660 		bzero(&device->inq_data, sizeof(device->inq_data));
4661 		device->inq_flags = 0;
4662 		device->queue_flags = 0;
4663 		device->serial_num = NULL;
4664 		device->serial_num_len = 0;
4665 		device->qfrozen_cnt = 0;
4666 		device->flags = CAM_DEV_UNCONFIGURED;
4667 		device->tag_delay_count = 0;
4668 		device->refcount = 1;
4669 		callout_handle_init(&device->c_handle);
4670 
4671 		/*
4672 		 * Hold a reference to our parent target so it
4673 		 * will not go away before we do.
4674 		 */
4675 		target->refcount++;
4676 
4677 		/*
4678 		 * XXX should be limited by number of CCBs this bus can
4679 		 * do.
4680 		 */
4681 		xpt_max_ccbs += device->ccbq.devq_openings;
4682 		/* Insertion sort into our target's device list */
4683 		cur_device = TAILQ_FIRST(&target->ed_entries);
4684 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4685 			cur_device = TAILQ_NEXT(cur_device, links);
4686 		if (cur_device != NULL) {
4687 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4688 		} else {
4689 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4690 		}
4691 		target->generation++;
4692 	}
4693 	return (device);
4694 }
4695 
4696 static void
4697 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4698 		   struct cam_ed *device)
4699 {
4700 	int s;
4701 
4702 	s = splcam();
4703 	if ((--device->refcount == 0)
4704 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4705 		struct cam_devq *devq;
4706 
4707 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4708 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4709 			panic("Removing device while still queued for ccbs");
4710 
4711 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4712 				untimeout(xpt_release_devq_timeout, device,
4713 					  device->c_handle);
4714 
4715 		TAILQ_REMOVE(&target->ed_entries, device,links);
4716 		target->generation++;
4717 		xpt_max_ccbs -= device->ccbq.devq_openings;
4718 		/* Release our slot in the devq */
4719 		devq = bus->sim->devq;
4720 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4721 		splx(s);
4722 		free(device, M_DEVBUF);
4723 		xpt_release_target(bus, target);
4724 	} else
4725 		splx(s);
4726 }
4727 
4728 static u_int32_t
4729 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4730 {
4731 	int	s;
4732 	int	diff;
4733 	int	result;
4734 	struct	cam_ed *dev;
4735 
4736 	dev = path->device;
4737 	s = splsoftcam();
4738 
4739 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4740 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4741 	if (result == CAM_REQ_CMP && (diff < 0)) {
4742 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4743 	}
4744 	/* Adjust the global limit */
4745 	xpt_max_ccbs += diff;
4746 	splx(s);
4747 	return (result);
4748 }
4749 
4750 static struct cam_eb *
4751 xpt_find_bus(path_id_t path_id)
4752 {
4753 	struct cam_eb *bus;
4754 
4755 	for (bus = TAILQ_FIRST(&xpt_busses);
4756 	     bus != NULL;
4757 	     bus = TAILQ_NEXT(bus, links)) {
4758 		if (bus->path_id == path_id) {
4759 			bus->refcount++;
4760 			break;
4761 		}
4762 	}
4763 	return (bus);
4764 }
4765 
4766 static struct cam_et *
4767 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4768 {
4769 	struct cam_et *target;
4770 
4771 	for (target = TAILQ_FIRST(&bus->et_entries);
4772 	     target != NULL;
4773 	     target = TAILQ_NEXT(target, links)) {
4774 		if (target->target_id == target_id) {
4775 			target->refcount++;
4776 			break;
4777 		}
4778 	}
4779 	return (target);
4780 }
4781 
4782 static struct cam_ed *
4783 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4784 {
4785 	struct cam_ed *device;
4786 
4787 	for (device = TAILQ_FIRST(&target->ed_entries);
4788 	     device != NULL;
4789 	     device = TAILQ_NEXT(device, links)) {
4790 		if (device->lun_id == lun_id) {
4791 			device->refcount++;
4792 			break;
4793 		}
4794 	}
4795 	return (device);
4796 }
4797 
4798 typedef struct {
4799 	union	ccb *request_ccb;
4800 	struct 	ccb_pathinq *cpi;
4801 	int	pending_count;
4802 } xpt_scan_bus_info;
4803 
4804 /*
4805  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4806  * As the scan progresses, xpt_scan_bus is used as the
4807  * callback on completion function.
4808  */
4809 static void
4810 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4811 {
4812 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4813 		  ("xpt_scan_bus\n"));
4814 	switch (request_ccb->ccb_h.func_code) {
4815 	case XPT_SCAN_BUS:
4816 	{
4817 		xpt_scan_bus_info *scan_info;
4818 		union	ccb *work_ccb;
4819 		struct	cam_path *path;
4820 		u_int	i;
4821 		u_int	max_target;
4822 		u_int	initiator_id;
4823 
4824 		/* Find out the characteristics of the bus */
4825 		work_ccb = xpt_alloc_ccb();
4826 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4827 			      request_ccb->ccb_h.pinfo.priority);
4828 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4829 		xpt_action(work_ccb);
4830 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4831 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4832 			xpt_free_ccb(work_ccb);
4833 			xpt_done(request_ccb);
4834 			return;
4835 		}
4836 
4837 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4838 			/*
4839 			 * Can't scan the bus on an adapter that
4840 			 * cannot perform the initiator role.
4841 			 */
4842 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4843 			xpt_free_ccb(work_ccb);
4844 			xpt_done(request_ccb);
4845 			return;
4846 		}
4847 
4848 		/* Save some state for use while we probe for devices */
4849 		scan_info = (xpt_scan_bus_info *)
4850 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
4851 		scan_info->request_ccb = request_ccb;
4852 		scan_info->cpi = &work_ccb->cpi;
4853 
4854 		/* Cache on our stack so we can work asynchronously */
4855 		max_target = scan_info->cpi->max_target;
4856 		initiator_id = scan_info->cpi->initiator_id;
4857 
4858 		/*
4859 		 * Don't count the initiator if the
4860 		 * initiator is addressable.
4861 		 */
4862 		scan_info->pending_count = max_target + 1;
4863 		if (initiator_id <= max_target)
4864 			scan_info->pending_count--;
4865 
4866 		for (i = 0; i <= max_target; i++) {
4867 			cam_status status;
4868 		 	if (i == initiator_id)
4869 				continue;
4870 
4871 			status = xpt_create_path(&path, xpt_periph,
4872 						 request_ccb->ccb_h.path_id,
4873 						 i, 0);
4874 			if (status != CAM_REQ_CMP) {
4875 				printf("xpt_scan_bus: xpt_create_path failed"
4876 				       " with status %#x, bus scan halted\n",
4877 				       status);
4878 				break;
4879 			}
4880 			work_ccb = xpt_alloc_ccb();
4881 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4882 				      request_ccb->ccb_h.pinfo.priority);
4883 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4884 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4885 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4886 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4887 #if 0
4888 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4889 				request_ccb->ccb_h.path_id, i, 0);
4890 #endif
4891 			xpt_action(work_ccb);
4892 		}
4893 		break;
4894 	}
4895 	case XPT_SCAN_LUN:
4896 	{
4897 		xpt_scan_bus_info *scan_info;
4898 		path_id_t path_id;
4899 		target_id_t target_id;
4900 		lun_id_t lun_id;
4901 
4902 		/* Reuse the same CCB to query if a device was really found */
4903 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4904 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4905 			      request_ccb->ccb_h.pinfo.priority);
4906 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4907 
4908 		path_id = request_ccb->ccb_h.path_id;
4909 		target_id = request_ccb->ccb_h.target_id;
4910 		lun_id = request_ccb->ccb_h.target_lun;
4911 		xpt_action(request_ccb);
4912 
4913 #if 0
4914 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4915 			path_id, target_id, lun_id);
4916 #endif
4917 
4918 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4919 			struct cam_ed *device;
4920 			struct cam_et *target;
4921 			int s, phl;
4922 
4923 			/*
4924 			 * If we already probed lun 0 successfully, or
4925 			 * we have additional configured luns on this
4926 			 * target that might have "gone away", go onto
4927 			 * the next lun.
4928 			 */
4929 			target = request_ccb->ccb_h.path->target;
4930 			/*
4931 			 * We may touch devices that we don't
4932 			 * hold references too, so ensure they
4933 			 * don't disappear out from under us.
4934 			 * The target above is referenced by the
4935 			 * path in the request ccb.
4936 			 */
4937 			phl = 0;
4938 			s = splcam();
4939 			device = TAILQ_FIRST(&target->ed_entries);
4940 			if (device != NULL) {
4941 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
4942 				if (device->lun_id == 0)
4943 					device = TAILQ_NEXT(device, links);
4944 			}
4945 			splx(s);
4946 			if ((lun_id != 0) || (device != NULL)) {
4947 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
4948 					lun_id++;
4949 			}
4950 		} else {
4951 			struct cam_ed *device;
4952 
4953 			device = request_ccb->ccb_h.path->device;
4954 
4955 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
4956 				/* Try the next lun */
4957 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
4958 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
4959 					lun_id++;
4960 			}
4961 		}
4962 
4963 		xpt_free_path(request_ccb->ccb_h.path);
4964 
4965 		/* Check Bounds */
4966 		if ((lun_id == request_ccb->ccb_h.target_lun)
4967 		 || lun_id > scan_info->cpi->max_lun) {
4968 			/* We're done */
4969 
4970 			xpt_free_ccb(request_ccb);
4971 			scan_info->pending_count--;
4972 			if (scan_info->pending_count == 0) {
4973 				xpt_free_ccb((union ccb *)scan_info->cpi);
4974 				request_ccb = scan_info->request_ccb;
4975 				free(scan_info, M_TEMP);
4976 				request_ccb->ccb_h.status = CAM_REQ_CMP;
4977 				xpt_done(request_ccb);
4978 			}
4979 		} else {
4980 			/* Try the next device */
4981 			struct cam_path *path;
4982 			cam_status status;
4983 
4984 			path = request_ccb->ccb_h.path;
4985 			status = xpt_create_path(&path, xpt_periph,
4986 						 path_id, target_id, lun_id);
4987 			if (status != CAM_REQ_CMP) {
4988 				printf("xpt_scan_bus: xpt_create_path failed "
4989 				       "with status %#x, halting LUN scan\n",
4990 			 	       status);
4991 				xpt_free_ccb(request_ccb);
4992 				scan_info->pending_count--;
4993 				if (scan_info->pending_count == 0) {
4994 					xpt_free_ccb(
4995 						(union ccb *)scan_info->cpi);
4996 					request_ccb = scan_info->request_ccb;
4997 					free(scan_info, M_TEMP);
4998 					request_ccb->ccb_h.status = CAM_REQ_CMP;
4999 					xpt_done(request_ccb);
5000 					break;
5001 				}
5002 			}
5003 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5004 				      request_ccb->ccb_h.pinfo.priority);
5005 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5006 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5007 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5008 			request_ccb->crcn.flags =
5009 				scan_info->request_ccb->crcn.flags;
5010 #if 0
5011 			xpt_print_path(path);
5012 			printf("xpt_scan bus probing\n");
5013 #endif
5014 			xpt_action(request_ccb);
5015 		}
5016 		break;
5017 	}
5018 	default:
5019 		break;
5020 	}
5021 }
5022 
5023 typedef enum {
5024 	PROBE_TUR,
5025 	PROBE_INQUIRY,
5026 	PROBE_FULL_INQUIRY,
5027 	PROBE_MODE_SENSE,
5028 	PROBE_SERIAL_NUM,
5029 	PROBE_TUR_FOR_NEGOTIATION
5030 } probe_action;
5031 
5032 typedef enum {
5033 	PROBE_INQUIRY_CKSUM	= 0x01,
5034 	PROBE_SERIAL_CKSUM	= 0x02,
5035 	PROBE_NO_ANNOUNCE	= 0x04
5036 } probe_flags;
5037 
5038 typedef struct {
5039 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5040 	probe_action	action;
5041 	union ccb	saved_ccb;
5042 	probe_flags	flags;
5043 	MD5_CTX		context;
5044 	u_int8_t	digest[16];
5045 } probe_softc;
5046 
5047 static void
5048 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5049 	     cam_flags flags, union ccb *request_ccb)
5050 {
5051 	struct ccb_pathinq cpi;
5052 	cam_status status;
5053 	struct cam_path *new_path;
5054 	struct cam_periph *old_periph;
5055 	int s;
5056 
5057 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5058 		  ("xpt_scan_lun\n"));
5059 
5060 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5061 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5062 	xpt_action((union ccb *)&cpi);
5063 
5064 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5065 		if (request_ccb != NULL) {
5066 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5067 			xpt_done(request_ccb);
5068 		}
5069 		return;
5070 	}
5071 
5072 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5073 		/*
5074 		 * Can't scan the bus on an adapter that
5075 		 * cannot perform the initiator role.
5076 		 */
5077 		if (request_ccb != NULL) {
5078 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5079 			xpt_done(request_ccb);
5080 		}
5081 		return;
5082 	}
5083 
5084 	if (request_ccb == NULL) {
5085 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5086 		if (request_ccb == NULL) {
5087 			xpt_print_path(path);
5088 			printf("xpt_scan_lun: can't allocate CCB, can't "
5089 			       "continue\n");
5090 			return;
5091 		}
5092 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5093 		if (new_path == NULL) {
5094 			xpt_print_path(path);
5095 			printf("xpt_scan_lun: can't allocate path, can't "
5096 			       "continue\n");
5097 			free(request_ccb, M_TEMP);
5098 			return;
5099 		}
5100 		status = xpt_compile_path(new_path, xpt_periph,
5101 					  path->bus->path_id,
5102 					  path->target->target_id,
5103 					  path->device->lun_id);
5104 
5105 		if (status != CAM_REQ_CMP) {
5106 			xpt_print_path(path);
5107 			printf("xpt_scan_lun: can't compile path, can't "
5108 			       "continue\n");
5109 			free(request_ccb, M_TEMP);
5110 			free(new_path, M_TEMP);
5111 			return;
5112 		}
5113 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5114 		request_ccb->ccb_h.cbfcnp = xptscandone;
5115 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5116 		request_ccb->crcn.flags = flags;
5117 	}
5118 
5119 	s = splsoftcam();
5120 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5121 		probe_softc *softc;
5122 
5123 		softc = (probe_softc *)old_periph->softc;
5124 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5125 				  periph_links.tqe);
5126 	} else {
5127 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5128 					  probestart, "probe",
5129 					  CAM_PERIPH_BIO,
5130 					  request_ccb->ccb_h.path, NULL, 0,
5131 					  request_ccb);
5132 
5133 		if (status != CAM_REQ_CMP) {
5134 			xpt_print_path(path);
5135 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5136 			       "error, can't continue probe\n");
5137 			request_ccb->ccb_h.status = status;
5138 			xpt_done(request_ccb);
5139 		}
5140 	}
5141 	splx(s);
5142 }
5143 
5144 static void
5145 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5146 {
5147 	xpt_release_path(done_ccb->ccb_h.path);
5148 	free(done_ccb->ccb_h.path, M_TEMP);
5149 	free(done_ccb, M_TEMP);
5150 }
5151 
5152 static cam_status
5153 proberegister(struct cam_periph *periph, void *arg)
5154 {
5155 	union ccb *request_ccb;	/* CCB representing the probe request */
5156 	probe_softc *softc;
5157 
5158 	request_ccb = (union ccb *)arg;
5159 	if (periph == NULL) {
5160 		printf("proberegister: periph was NULL!!\n");
5161 		return(CAM_REQ_CMP_ERR);
5162 	}
5163 
5164 	if (request_ccb == NULL) {
5165 		printf("proberegister: no probe CCB, "
5166 		       "can't register device\n");
5167 		return(CAM_REQ_CMP_ERR);
5168 	}
5169 
5170 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5171 
5172 	if (softc == NULL) {
5173 		printf("proberegister: Unable to probe new device. "
5174 		       "Unable to allocate softc\n");
5175 		return(CAM_REQ_CMP_ERR);
5176 	}
5177 	TAILQ_INIT(&softc->request_ccbs);
5178 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5179 			  periph_links.tqe);
5180 	softc->flags = 0;
5181 	periph->softc = softc;
5182 	cam_periph_acquire(periph);
5183 	/*
5184 	 * Ensure we've waited at least a bus settle
5185 	 * delay before attempting to probe the device.
5186 	 * For HBAs that don't do bus resets, this won't make a difference.
5187 	 */
5188 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5189 				      SCSI_DELAY);
5190 	probeschedule(periph);
5191 	return(CAM_REQ_CMP);
5192 }
5193 
5194 static void
5195 probeschedule(struct cam_periph *periph)
5196 {
5197 	struct ccb_pathinq cpi;
5198 	union ccb *ccb;
5199 	probe_softc *softc;
5200 
5201 	softc = (probe_softc *)periph->softc;
5202 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5203 
5204 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5205 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5206 	xpt_action((union ccb *)&cpi);
5207 
5208 	/*
5209 	 * If a device has gone away and another device, or the same one,
5210 	 * is back in the same place, it should have a unit attention
5211 	 * condition pending.  It will not report the unit attention in
5212 	 * response to an inquiry, which may leave invalid transfer
5213 	 * negotiations in effect.  The TUR will reveal the unit attention
5214 	 * condition.  Only send the TUR for lun 0, since some devices
5215 	 * will get confused by commands other than inquiry to non-existent
5216 	 * luns.  If you think a device has gone away start your scan from
5217 	 * lun 0.  This will insure that any bogus transfer settings are
5218 	 * invalidated.
5219 	 *
5220 	 * If we haven't seen the device before and the controller supports
5221 	 * some kind of transfer negotiation, negotiate with the first
5222 	 * sent command if no bus reset was performed at startup.  This
5223 	 * ensures that the device is not confused by transfer negotiation
5224 	 * settings left over by loader or BIOS action.
5225 	 */
5226 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5227 	 && (ccb->ccb_h.target_lun == 0)) {
5228 		softc->action = PROBE_TUR;
5229 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5230 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5231 		proberequestdefaultnegotiation(periph);
5232 		softc->action = PROBE_INQUIRY;
5233 	} else {
5234 		softc->action = PROBE_INQUIRY;
5235 	}
5236 
5237 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5238 		softc->flags |= PROBE_NO_ANNOUNCE;
5239 	else
5240 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5241 
5242 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5243 }
5244 
5245 static void
5246 probestart(struct cam_periph *periph, union ccb *start_ccb)
5247 {
5248 	/* Probe the device that our peripheral driver points to */
5249 	struct ccb_scsiio *csio;
5250 	probe_softc *softc;
5251 
5252 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5253 
5254 	softc = (probe_softc *)periph->softc;
5255 	csio = &start_ccb->csio;
5256 
5257 	switch (softc->action) {
5258 	case PROBE_TUR:
5259 	case PROBE_TUR_FOR_NEGOTIATION:
5260 	{
5261 		scsi_test_unit_ready(csio,
5262 				     /*retries*/4,
5263 				     probedone,
5264 				     MSG_SIMPLE_Q_TAG,
5265 				     SSD_FULL_SIZE,
5266 				     /*timeout*/60000);
5267 		break;
5268 	}
5269 	case PROBE_INQUIRY:
5270 	case PROBE_FULL_INQUIRY:
5271 	{
5272 		u_int inquiry_len;
5273 		struct scsi_inquiry_data *inq_buf;
5274 
5275 		inq_buf = &periph->path->device->inq_data;
5276 		/*
5277 		 * If the device is currently configured, we calculate an
5278 		 * MD5 checksum of the inquiry data, and if the serial number
5279 		 * length is greater than 0, add the serial number data
5280 		 * into the checksum as well.  Once the inquiry and the
5281 		 * serial number check finish, we attempt to figure out
5282 		 * whether we still have the same device.
5283 		 */
5284 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5285 
5286 			MD5Init(&softc->context);
5287 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5288 				  sizeof(struct scsi_inquiry_data));
5289 			softc->flags |= PROBE_INQUIRY_CKSUM;
5290 			if (periph->path->device->serial_num_len > 0) {
5291 				MD5Update(&softc->context,
5292 					  periph->path->device->serial_num,
5293 					  periph->path->device->serial_num_len);
5294 				softc->flags |= PROBE_SERIAL_CKSUM;
5295 			}
5296 			MD5Final(softc->digest, &softc->context);
5297 		}
5298 
5299 		if (softc->action == PROBE_INQUIRY)
5300 			inquiry_len = SHORT_INQUIRY_LENGTH;
5301 		else
5302 			inquiry_len = inq_buf->additional_length + 4;
5303 
5304 		scsi_inquiry(csio,
5305 			     /*retries*/4,
5306 			     probedone,
5307 			     MSG_SIMPLE_Q_TAG,
5308 			     (u_int8_t *)inq_buf,
5309 			     inquiry_len,
5310 			     /*evpd*/FALSE,
5311 			     /*page_code*/0,
5312 			     SSD_MIN_SIZE,
5313 			     /*timeout*/60 * 1000);
5314 		break;
5315 	}
5316 	case PROBE_MODE_SENSE:
5317 	{
5318 		void  *mode_buf;
5319 		int    mode_buf_len;
5320 
5321 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5322 			     + sizeof(struct scsi_mode_blk_desc)
5323 			     + sizeof(struct scsi_control_page);
5324 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5325 		if (mode_buf != NULL) {
5326 	                scsi_mode_sense(csio,
5327 					/*retries*/4,
5328 					probedone,
5329 					MSG_SIMPLE_Q_TAG,
5330 					/*dbd*/FALSE,
5331 					SMS_PAGE_CTRL_CURRENT,
5332 					SMS_CONTROL_MODE_PAGE,
5333 					mode_buf,
5334 					mode_buf_len,
5335 					SSD_FULL_SIZE,
5336 					/*timeout*/60000);
5337 			break;
5338 		}
5339 		xpt_print_path(periph->path);
5340 		printf("Unable to mode sense control page - malloc failure\n");
5341 		softc->action = PROBE_SERIAL_NUM;
5342 		/* FALLTHROUGH */
5343 	}
5344 	case PROBE_SERIAL_NUM:
5345 	{
5346 		struct scsi_vpd_unit_serial_number *serial_buf;
5347 		struct cam_ed* device;
5348 
5349 		serial_buf = NULL;
5350 		device = periph->path->device;
5351 		device->serial_num = NULL;
5352 		device->serial_num_len = 0;
5353 
5354 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5355 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5356 				malloc(sizeof(*serial_buf), M_TEMP, M_NOWAIT);
5357 
5358 		if (serial_buf != NULL) {
5359 			bzero(serial_buf, sizeof(*serial_buf));
5360 			scsi_inquiry(csio,
5361 				     /*retries*/4,
5362 				     probedone,
5363 				     MSG_SIMPLE_Q_TAG,
5364 				     (u_int8_t *)serial_buf,
5365 				     sizeof(*serial_buf),
5366 				     /*evpd*/TRUE,
5367 				     SVPD_UNIT_SERIAL_NUMBER,
5368 				     SSD_MIN_SIZE,
5369 				     /*timeout*/60 * 1000);
5370 			break;
5371 		}
5372 		/*
5373 		 * We'll have to do without, let our probedone
5374 		 * routine finish up for us.
5375 		 */
5376 		start_ccb->csio.data_ptr = NULL;
5377 		probedone(periph, start_ccb);
5378 		return;
5379 	}
5380 	}
5381 	xpt_action(start_ccb);
5382 }
5383 
5384 static void
5385 proberequestdefaultnegotiation(struct cam_periph *periph)
5386 {
5387 	struct ccb_trans_settings cts;
5388 
5389 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5390 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5391 	cts.flags = CCB_TRANS_USER_SETTINGS;
5392 	xpt_action((union ccb *)&cts);
5393 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5394 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5395 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5396 	xpt_action((union ccb *)&cts);
5397 }
5398 
5399 static void
5400 probedone(struct cam_periph *periph, union ccb *done_ccb)
5401 {
5402 	probe_softc *softc;
5403 	struct cam_path *path;
5404 	u_int32_t  priority;
5405 
5406 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5407 
5408 	softc = (probe_softc *)periph->softc;
5409 	path = done_ccb->ccb_h.path;
5410 	priority = done_ccb->ccb_h.pinfo.priority;
5411 
5412 	switch (softc->action) {
5413 	case PROBE_TUR:
5414 	{
5415 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5416 
5417 			if (cam_periph_error(done_ccb, 0,
5418 					     SF_NO_PRINT, NULL) == ERESTART)
5419 				return;
5420 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5421 				/* Don't wedge the queue */
5422 				xpt_release_devq(done_ccb->ccb_h.path,
5423 						 /*count*/1,
5424 						 /*run_queue*/TRUE);
5425 		}
5426 		softc->action = PROBE_INQUIRY;
5427 		xpt_release_ccb(done_ccb);
5428 		xpt_schedule(periph, priority);
5429 		return;
5430 	}
5431 	case PROBE_INQUIRY:
5432 	case PROBE_FULL_INQUIRY:
5433 	{
5434 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5435 			struct scsi_inquiry_data *inq_buf;
5436 			u_int8_t periph_qual;
5437 			u_int8_t periph_dtype;
5438 
5439 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5440 			inq_buf = &path->device->inq_data;
5441 
5442 			periph_qual = SID_QUAL(inq_buf);
5443 			periph_dtype = SID_TYPE(inq_buf);
5444 
5445 			if (periph_dtype != T_NODEVICE) {
5446 				switch(periph_qual) {
5447 				case SID_QUAL_LU_CONNECTED:
5448 				{
5449 					u_int8_t alen;
5450 
5451 					/*
5452 					 * We conservatively request only
5453 					 * SHORT_INQUIRY_LEN bytes of inquiry
5454 					 * information during our first try
5455 					 * at sending an INQUIRY. If the device
5456 					 * has more information to give,
5457 					 * perform a second request specifying
5458 					 * the amount of information the device
5459 					 * is willing to give.
5460 					 */
5461 					alen = inq_buf->additional_length;
5462 					if (softc->action == PROBE_INQUIRY
5463 					 && alen > (SHORT_INQUIRY_LENGTH - 4)) {
5464 						softc->action =
5465 						    PROBE_FULL_INQUIRY;
5466 						xpt_release_ccb(done_ccb);
5467 						xpt_schedule(periph, priority);
5468 						return;
5469 					}
5470 
5471 					xpt_find_quirk(path->device);
5472 
5473 					if ((inq_buf->flags & SID_CmdQue) != 0)
5474 						softc->action =
5475 						    PROBE_MODE_SENSE;
5476 					else
5477 						softc->action =
5478 						    PROBE_SERIAL_NUM;
5479 
5480 					path->device->flags &=
5481 						~CAM_DEV_UNCONFIGURED;
5482 
5483 					xpt_release_ccb(done_ccb);
5484 					xpt_schedule(periph, priority);
5485 					return;
5486 				}
5487 				default:
5488 					break;
5489 				}
5490 			}
5491 		} else if (cam_periph_error(done_ccb, 0,
5492 					    done_ccb->ccb_h.target_lun > 0
5493 					    ? SF_RETRY_UA|SF_QUIET_IR
5494 					    : SF_RETRY_UA,
5495 					    &softc->saved_ccb) == ERESTART) {
5496 			return;
5497 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5498 			/* Don't wedge the queue */
5499 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5500 					 /*run_queue*/TRUE);
5501 		}
5502 		/*
5503 		 * If we get to this point, we got an error status back
5504 		 * from the inquiry and the error status doesn't require
5505 		 * automatically retrying the command.  Therefore, the
5506 		 * inquiry failed.  If we had inquiry information before
5507 		 * for this device, but this latest inquiry command failed,
5508 		 * the device has probably gone away.  If this device isn't
5509 		 * already marked unconfigured, notify the peripheral
5510 		 * drivers that this device is no more.
5511 		 */
5512 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5513 			/* Send the async notification. */
5514 			xpt_async(AC_LOST_DEVICE, path, NULL);
5515 
5516 		xpt_release_ccb(done_ccb);
5517 		break;
5518 	}
5519 	case PROBE_MODE_SENSE:
5520 	{
5521 		struct ccb_scsiio *csio;
5522 		struct scsi_mode_header_6 *mode_hdr;
5523 
5524 		csio = &done_ccb->csio;
5525 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5526 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5527 			struct scsi_control_page *page;
5528 			u_int8_t *offset;
5529 
5530 			offset = ((u_int8_t *)&mode_hdr[1])
5531 			    + mode_hdr->blk_desc_len;
5532 			page = (struct scsi_control_page *)offset;
5533 			path->device->queue_flags = page->queue_flags;
5534 		} else if (cam_periph_error(done_ccb, 0,
5535 					    SF_RETRY_UA|SF_NO_PRINT,
5536 					    &softc->saved_ccb) == ERESTART) {
5537 			return;
5538 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5539 			/* Don't wedge the queue */
5540 			xpt_release_devq(done_ccb->ccb_h.path,
5541 					 /*count*/1, /*run_queue*/TRUE);
5542 		}
5543 		xpt_release_ccb(done_ccb);
5544 		free(mode_hdr, M_TEMP);
5545 		softc->action = PROBE_SERIAL_NUM;
5546 		xpt_schedule(periph, priority);
5547 		return;
5548 	}
5549 	case PROBE_SERIAL_NUM:
5550 	{
5551 		struct ccb_scsiio *csio;
5552 		struct scsi_vpd_unit_serial_number *serial_buf;
5553 		u_int32_t  priority;
5554 		int changed;
5555 		int have_serialnum;
5556 
5557 		changed = 1;
5558 		have_serialnum = 0;
5559 		csio = &done_ccb->csio;
5560 		priority = done_ccb->ccb_h.pinfo.priority;
5561 		serial_buf =
5562 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5563 
5564 		/* Clean up from previous instance of this device */
5565 		if (path->device->serial_num != NULL) {
5566 			free(path->device->serial_num, M_DEVBUF);
5567 			path->device->serial_num = NULL;
5568 			path->device->serial_num_len = 0;
5569 		}
5570 
5571 		if (serial_buf == NULL) {
5572 			/*
5573 			 * Don't process the command as it was never sent
5574 			 */
5575 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5576 			&& (serial_buf->length > 0)) {
5577 
5578 			have_serialnum = 1;
5579 			path->device->serial_num =
5580 				(u_int8_t *)malloc((serial_buf->length + 1),
5581 						   M_DEVBUF, M_NOWAIT);
5582 			if (path->device->serial_num != NULL) {
5583 				bcopy(serial_buf->serial_num,
5584 				      path->device->serial_num,
5585 				      serial_buf->length);
5586 				path->device->serial_num_len =
5587 				    serial_buf->length;
5588 				path->device->serial_num[serial_buf->length]
5589 				    = '\0';
5590 			}
5591 		} else if (cam_periph_error(done_ccb, 0,
5592 					    SF_RETRY_UA|SF_NO_PRINT,
5593 					    &softc->saved_ccb) == ERESTART) {
5594 			return;
5595 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5596 			/* Don't wedge the queue */
5597 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5598 					 /*run_queue*/TRUE);
5599 		}
5600 
5601 		/*
5602 		 * Let's see if we have seen this device before.
5603 		 */
5604 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5605 			MD5_CTX context;
5606 			u_int8_t digest[16];
5607 
5608 			MD5Init(&context);
5609 
5610 			MD5Update(&context,
5611 				  (unsigned char *)&path->device->inq_data,
5612 				  sizeof(struct scsi_inquiry_data));
5613 
5614 			if (have_serialnum)
5615 				MD5Update(&context, serial_buf->serial_num,
5616 					  serial_buf->length);
5617 
5618 			MD5Final(digest, &context);
5619 			if (bcmp(softc->digest, digest, 16) == 0)
5620 				changed = 0;
5621 
5622 			/*
5623 			 * XXX Do we need to do a TUR in order to ensure
5624 			 *     that the device really hasn't changed???
5625 			 */
5626 			if ((changed != 0)
5627 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5628 				xpt_async(AC_LOST_DEVICE, path, NULL);
5629 		}
5630 		if (serial_buf != NULL)
5631 			free(serial_buf, M_TEMP);
5632 
5633 		if (changed != 0) {
5634 			/*
5635 			 * Now that we have all the necessary
5636 			 * information to safely perform transfer
5637 			 * negotiations... Controllers don't perform
5638 			 * any negotiation or tagged queuing until
5639 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5640 			 * received.  So, on a new device, just retreive
5641 			 * the user settings, and set them as the current
5642 			 * settings to set the device up.
5643 			 */
5644 			proberequestdefaultnegotiation(periph);
5645 			xpt_release_ccb(done_ccb);
5646 
5647 			/*
5648 			 * Perform a TUR to allow the controller to
5649 			 * perform any necessary transfer negotiation.
5650 			 */
5651 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5652 			xpt_schedule(periph, priority);
5653 			return;
5654 		}
5655 		xpt_release_ccb(done_ccb);
5656 		break;
5657 	}
5658 	case PROBE_TUR_FOR_NEGOTIATION:
5659 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5660 			/* Don't wedge the queue */
5661 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5662 					 /*run_queue*/TRUE);
5663 		}
5664 
5665 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5666 
5667 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5668 			/* Inform the XPT that a new device has been found */
5669 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5670 			xpt_action(done_ccb);
5671 
5672 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5673 		}
5674 		xpt_release_ccb(done_ccb);
5675 		break;
5676 	}
5677 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5678 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5679 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5680 	xpt_done(done_ccb);
5681 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5682 		cam_periph_invalidate(periph);
5683 		cam_periph_release(periph);
5684 	} else {
5685 		probeschedule(periph);
5686 	}
5687 }
5688 
5689 static void
5690 probecleanup(struct cam_periph *periph)
5691 {
5692 	free(periph->softc, M_TEMP);
5693 }
5694 
5695 static void
5696 xpt_find_quirk(struct cam_ed *device)
5697 {
5698 	caddr_t	match;
5699 
5700 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5701 			       (caddr_t)xpt_quirk_table,
5702 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5703 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5704 
5705 	if (match == NULL)
5706 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5707 
5708 	device->quirk = (struct xpt_quirk_entry *)match;
5709 }
5710 
5711 static void
5712 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5713 			  int async_update)
5714 {
5715 	struct	cam_sim *sim;
5716 	int	qfrozen;
5717 
5718 	sim = cts->ccb_h.path->bus->sim;
5719 	if (async_update == FALSE) {
5720 		struct	scsi_inquiry_data *inq_data;
5721 		struct	ccb_pathinq cpi;
5722 		struct	ccb_trans_settings cur_cts;
5723 
5724 		if (device == NULL) {
5725 			cts->ccb_h.status = CAM_PATH_INVALID;
5726 			xpt_done((union ccb *)cts);
5727 			return;
5728 		}
5729 
5730 		/*
5731 		 * Perform sanity checking against what the
5732 		 * controller and device can do.
5733 		 */
5734 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5735 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5736 		xpt_action((union ccb *)&cpi);
5737 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5738 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5739 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5740 		xpt_action((union ccb *)&cur_cts);
5741 		inq_data = &device->inq_data;
5742 
5743 		/* Fill in any gaps in what the user gave us */
5744 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5745 			cts->sync_period = cur_cts.sync_period;
5746 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5747 			cts->sync_offset = cur_cts.sync_offset;
5748 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5749 			cts->bus_width = cur_cts.bus_width;
5750 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5751 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5752 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5753 		}
5754 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5755 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5756 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5757 		}
5758 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5759 		  && (inq_data->flags & SID_Sync) == 0)
5760 		 || (cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
5761 			/* Force async */
5762 			cts->sync_period = 0;
5763 			cts->sync_offset = 0;
5764 		}
5765 
5766 		switch (cts->bus_width) {
5767 		case MSG_EXT_WDTR_BUS_32_BIT:
5768 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5769 			  || (inq_data->flags & SID_WBus32) != 0)
5770 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5771 				break;
5772 			/* Fall Through to 16-bit */
5773 		case MSG_EXT_WDTR_BUS_16_BIT:
5774 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5775 			  || (inq_data->flags & SID_WBus16) != 0)
5776 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5777 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5778 				break;
5779 			}
5780 			/* Fall Through to 8-bit */
5781 		default: /* New bus width?? */
5782 		case MSG_EXT_WDTR_BUS_8_BIT:
5783 			/* All targets can do this */
5784 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5785 			break;
5786 		}
5787 
5788 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5789 			/*
5790 			 * Can't tag queue without disconnection.
5791 			 */
5792 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5793 			cts->valid |= CCB_TRANS_TQ_VALID;
5794 		}
5795 
5796 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5797 		 || (inq_data->flags & SID_CmdQue) == 0
5798 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5799 		 || (device->quirk->mintags == 0)) {
5800 			/*
5801 			 * Can't tag on hardware that doesn't support,
5802 			 * doesn't have it enabled, or has broken tag support.
5803 			 */
5804 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5805 		}
5806 	}
5807 
5808 	qfrozen = FALSE;
5809 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0
5810 	 && (async_update == FALSE)) {
5811 		int device_tagenb;
5812 
5813 		/*
5814 		 * If we are transitioning from tags to no-tags or
5815 		 * vice-versa, we need to carefully freeze and restart
5816 		 * the queue so that we don't overlap tagged and non-tagged
5817 		 * commands.  We also temporarily stop tags if there is
5818 		 * a change in transfer negotiation settings to allow
5819 		 * "tag-less" negotiation.
5820 		 */
5821 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5822 		 || (device->inq_flags & SID_CmdQue) != 0)
5823 			device_tagenb = TRUE;
5824 		else
5825 			device_tagenb = FALSE;
5826 
5827 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5828 		  && device_tagenb == FALSE)
5829 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5830 		  && device_tagenb == TRUE)) {
5831 
5832 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5833 				/*
5834 				 * Delay change to use tags until after a
5835 				 * few commands have gone to this device so
5836 				 * the controller has time to perform transfer
5837 				 * negotiations without tagged messages getting
5838 				 * in the way.
5839 				 */
5840 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5841 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5842 			} else {
5843 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5844 				qfrozen = TRUE;
5845 		  		device->inq_flags &= ~SID_CmdQue;
5846 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5847 						    sim->max_dev_openings);
5848 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5849 				device->tag_delay_count = 0;
5850 			}
5851 		}
5852 	}
5853 
5854 	if (async_update == FALSE) {
5855 		/*
5856 		 * If we are currently performing tagged transactions to
5857 		 * this device and want to change its negotiation parameters,
5858 		 * go non-tagged for a bit to give the controller a chance to
5859 		 * negotiate unhampered by tag messages.
5860 		 */
5861 		if ((device->inq_flags & SID_CmdQue) != 0
5862 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5863 				   CCB_TRANS_SYNC_OFFSET_VALID|
5864 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5865 			xpt_toggle_tags(cts->ccb_h.path);
5866 
5867 		(*(sim->sim_action))(sim, (union ccb *)cts);
5868 	}
5869 
5870 	if (qfrozen) {
5871 		struct ccb_relsim crs;
5872 
5873 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5874 			      /*priority*/1);
5875 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5876 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5877 		crs.openings
5878 		    = crs.release_timeout
5879 		    = crs.qfrozen_cnt
5880 		    = 0;
5881 		xpt_action((union ccb *)&crs);
5882 	}
5883 }
5884 
5885 static void
5886 xpt_toggle_tags(struct cam_path *path)
5887 {
5888 	struct cam_ed *dev;
5889 
5890 	/*
5891 	 * Give controllers a chance to renegotiate
5892 	 * before starting tag operations.  We
5893 	 * "toggle" tagged queuing off then on
5894 	 * which causes the tag enable command delay
5895 	 * counter to come into effect.
5896 	 */
5897 	dev = path->device;
5898 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5899 	 || ((dev->inq_flags & SID_CmdQue) != 0
5900  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5901 		struct ccb_trans_settings cts;
5902 
5903 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5904 		cts.flags = 0;
5905 		cts.valid = CCB_TRANS_TQ_VALID;
5906 		xpt_set_transfer_settings(&cts, path->device,
5907 					  /*async_update*/TRUE);
5908 		cts.flags = CCB_TRANS_TAG_ENB;
5909 		xpt_set_transfer_settings(&cts, path->device,
5910 					  /*async_update*/TRUE);
5911 	}
5912 }
5913 
5914 static void
5915 xpt_start_tags(struct cam_path *path)
5916 {
5917 	struct ccb_relsim crs;
5918 	struct cam_ed *device;
5919 	struct cam_sim *sim;
5920 	int    newopenings;
5921 
5922 	device = path->device;
5923 	sim = path->bus->sim;
5924 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5925 	xpt_freeze_devq(path, /*count*/1);
5926 	device->inq_flags |= SID_CmdQue;
5927 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
5928 	xpt_dev_ccbq_resize(path, newopenings);
5929 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
5930 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5931 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5932 	crs.openings
5933 	    = crs.release_timeout
5934 	    = crs.qfrozen_cnt
5935 	    = 0;
5936 	xpt_action((union ccb *)&crs);
5937 }
5938 
5939 static int busses_to_config;
5940 static int busses_to_reset;
5941 
5942 static int
5943 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
5944 {
5945 	if (bus->path_id != CAM_XPT_PATH_ID) {
5946 		struct cam_path path;
5947 		struct ccb_pathinq cpi;
5948 		int can_negotiate;
5949 
5950 		busses_to_config++;
5951 		xpt_compile_path(&path, NULL, bus->path_id,
5952 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5953 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
5954 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5955 		xpt_action((union ccb *)&cpi);
5956 		can_negotiate = cpi.hba_inquiry;
5957 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5958 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
5959 		 && can_negotiate)
5960 			busses_to_reset++;
5961 		xpt_release_path(&path);
5962 	}
5963 
5964 	return(1);
5965 }
5966 
5967 static int
5968 xptconfigfunc(struct cam_eb *bus, void *arg)
5969 {
5970 	struct	cam_path *path;
5971 	union	ccb *work_ccb;
5972 
5973 	if (bus->path_id != CAM_XPT_PATH_ID) {
5974 		cam_status status;
5975 		int can_negotiate;
5976 
5977 		work_ccb = xpt_alloc_ccb();
5978 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
5979 					      CAM_TARGET_WILDCARD,
5980 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
5981 			printf("xptconfigfunc: xpt_create_path failed with "
5982 			       "status %#x for bus %d\n", status, bus->path_id);
5983 			printf("xptconfigfunc: halting bus configuration\n");
5984 			xpt_free_ccb(work_ccb);
5985 			busses_to_config--;
5986 			xpt_finishconfig(xpt_periph, NULL);
5987 			return(0);
5988 		}
5989 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
5990 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5991 		xpt_action(work_ccb);
5992 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5993 			printf("xptconfigfunc: CPI failed on bus %d "
5994 			       "with status %d\n", bus->path_id,
5995 			       work_ccb->ccb_h.status);
5996 			xpt_finishconfig(xpt_periph, work_ccb);
5997 			return(1);
5998 		}
5999 
6000 		can_negotiate = work_ccb->cpi.hba_inquiry;
6001 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6002 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6003 		 && (can_negotiate != 0)) {
6004 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6005 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6006 			work_ccb->ccb_h.cbfcnp = NULL;
6007 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6008 				  ("Resetting Bus\n"));
6009 			xpt_action(work_ccb);
6010 			xpt_finishconfig(xpt_periph, work_ccb);
6011 		} else {
6012 			/* Act as though we performed a successful BUS RESET */
6013 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6014 			xpt_finishconfig(xpt_periph, work_ccb);
6015 		}
6016 	}
6017 
6018 	return(1);
6019 }
6020 
6021 static void
6022 xpt_config(void *arg)
6023 {
6024 	/* Now that interrupts are enabled, go find our devices */
6025 
6026 #ifdef CAMDEBUG
6027 	/* Setup debugging flags and path */
6028 #ifdef CAM_DEBUG_FLAGS
6029 	cam_dflags = CAM_DEBUG_FLAGS;
6030 #else /* !CAM_DEBUG_FLAGS */
6031 	cam_dflags = CAM_DEBUG_NONE;
6032 #endif /* CAM_DEBUG_FLAGS */
6033 #ifdef CAM_DEBUG_BUS
6034 	if (cam_dflags != CAM_DEBUG_NONE) {
6035 		if (xpt_create_path(&cam_dpath, xpt_periph,
6036 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6037 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6038 			printf("xpt_config: xpt_create_path() failed for debug"
6039 			       " target %d:%d:%d, debugging disabled\n",
6040 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6041 			cam_dflags = CAM_DEBUG_NONE;
6042 		}
6043 	} else
6044 		cam_dpath = NULL;
6045 #else /* !CAM_DEBUG_BUS */
6046 	cam_dpath = NULL;
6047 #endif /* CAM_DEBUG_BUS */
6048 #endif /* CAMDEBUG */
6049 
6050 	/*
6051 	 * Scan all installed busses.
6052 	 */
6053 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6054 
6055 	if (busses_to_config == 0) {
6056 		/* Call manually because we don't have any busses */
6057 		xpt_finishconfig(xpt_periph, NULL);
6058 	} else  {
6059 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6060 			printf("Waiting %d seconds for SCSI "
6061 			       "devices to settle\n", SCSI_DELAY/1000);
6062 		}
6063 		xpt_for_all_busses(xptconfigfunc, NULL);
6064 	}
6065 }
6066 
6067 /*
6068  * If the given device only has one peripheral attached to it, and if that
6069  * peripheral is the passthrough driver, announce it.  This insures that the
6070  * user sees some sort of announcement for every peripheral in their system.
6071  */
6072 static int
6073 xptpassannouncefunc(struct cam_ed *device, void *arg)
6074 {
6075 	struct cam_periph *periph;
6076 	int i;
6077 
6078 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6079 	     periph = SLIST_NEXT(periph, periph_links), i++);
6080 
6081 	periph = SLIST_FIRST(&device->periphs);
6082 	if ((i == 1)
6083 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6084 		xpt_announce_periph(periph, NULL);
6085 
6086 	return(1);
6087 }
6088 
6089 static void
6090 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6091 {
6092 	struct	periph_driver **p_drv;
6093 	int	i;
6094 
6095 	if (done_ccb != NULL) {
6096 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6097 			  ("xpt_finishconfig\n"));
6098 		switch(done_ccb->ccb_h.func_code) {
6099 		case XPT_RESET_BUS:
6100 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6101 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6102 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6103 				xpt_action(done_ccb);
6104 				return;
6105 			}
6106 			/* FALLTHROUGH */
6107 		case XPT_SCAN_BUS:
6108 		default:
6109 			xpt_free_path(done_ccb->ccb_h.path);
6110 			busses_to_config--;
6111 			break;
6112 		}
6113 	}
6114 
6115 	if (busses_to_config == 0) {
6116 		/* Register all the peripheral drivers */
6117 		/* XXX This will have to change when we have loadable modules */
6118 		p_drv = (struct periph_driver **)periphdriver_set.ls_items;
6119 		for (i = 0; p_drv[i] != NULL; i++) {
6120 			(*p_drv[i]->init)();
6121 		}
6122 
6123 		/*
6124 		 * Check for devices with no "standard" peripheral driver
6125 		 * attached.  For any devices like that, announce the
6126 		 * passthrough driver so the user will see something.
6127 		 */
6128 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6129 
6130 		/* Release our hook so that the boot can continue. */
6131 		config_intrhook_disestablish(xpt_config_hook);
6132 		free(xpt_config_hook, M_TEMP);
6133 		xpt_config_hook = NULL;
6134 	}
6135 	if (done_ccb != NULL)
6136 		xpt_free_ccb(done_ccb);
6137 }
6138 
6139 static void
6140 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6141 {
6142 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6143 
6144 	switch (work_ccb->ccb_h.func_code) {
6145 	/* Common cases first */
6146 	case XPT_PATH_INQ:		/* Path routing inquiry */
6147 	{
6148 		struct ccb_pathinq *cpi;
6149 
6150 		cpi = &work_ccb->cpi;
6151 		cpi->version_num = 1; /* XXX??? */
6152 		cpi->hba_inquiry = 0;
6153 		cpi->target_sprt = 0;
6154 		cpi->hba_misc = 0;
6155 		cpi->hba_eng_cnt = 0;
6156 		cpi->max_target = 0;
6157 		cpi->max_lun = 0;
6158 		cpi->initiator_id = 0;
6159 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6160 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6161 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6162 		cpi->unit_number = sim->unit_number;
6163 		cpi->bus_id = sim->bus_id;
6164 		cpi->base_transfer_speed = 0;
6165 		cpi->ccb_h.status = CAM_REQ_CMP;
6166 		xpt_done(work_ccb);
6167 		break;
6168 	}
6169 	default:
6170 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6171 		xpt_done(work_ccb);
6172 		break;
6173 	}
6174 }
6175 
6176 /*
6177  * The xpt as a "controller" has no interrupt sources, so polling
6178  * is a no-op.
6179  */
6180 static void
6181 xptpoll(struct cam_sim *sim)
6182 {
6183 }
6184 
6185 /*
6186  * Should only be called by the machine interrupt dispatch routines,
6187  * so put these prototypes here instead of in the header.
6188  */
6189 
6190 static void
6191 swi_camnet(void)
6192 {
6193 	camisr(&cam_netq);
6194 }
6195 
6196 static void
6197 swi_cambio(void)
6198 {
6199 	camisr(&cam_bioq);
6200 }
6201 
6202 static void
6203 camisr(cam_isrq_t *queue)
6204 {
6205 	int	s;
6206 	struct	ccb_hdr *ccb_h;
6207 
6208 	s = splcam();
6209 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6210 		int	runq;
6211 
6212 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6213 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6214 		splx(s);
6215 
6216 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6217 			  ("camisr"));
6218 
6219 		runq = FALSE;
6220 
6221 		if (ccb_h->flags & CAM_HIGH_POWER) {
6222 			struct highpowerlist	*hphead;
6223 			struct cam_ed		*device;
6224 			union ccb		*send_ccb;
6225 
6226 			hphead = &highpowerq;
6227 
6228 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6229 
6230 			/*
6231 			 * Increment the count since this command is done.
6232 			 */
6233 			num_highpower++;
6234 
6235 			/*
6236 			 * Any high powered commands queued up?
6237 			 */
6238 			if (send_ccb != NULL) {
6239 				device = send_ccb->ccb_h.path->device;
6240 
6241 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6242 
6243 				xpt_release_devq(send_ccb->ccb_h.path,
6244 						 /*count*/1, /*runqueue*/TRUE);
6245 			}
6246 		}
6247 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6248 			struct cam_ed *dev;
6249 
6250 			dev = ccb_h->path->device;
6251 
6252 			s = splcam();
6253 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6254 
6255 			ccb_h->path->bus->sim->devq->send_active--;
6256 			ccb_h->path->bus->sim->devq->send_openings++;
6257 			splx(s);
6258 
6259 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6260 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6261 			  && (dev->ccbq.dev_active == 0))) {
6262 
6263 				xpt_release_devq(ccb_h->path, /*count*/1,
6264 						 /*run_queue*/TRUE);
6265 			}
6266 
6267 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6268 			 && (--dev->tag_delay_count == 0))
6269 				xpt_start_tags(ccb_h->path);
6270 
6271 			if ((dev->ccbq.queue.entries > 0)
6272 			 && (dev->qfrozen_cnt == 0)
6273 			 && (device_is_send_queued(dev) == 0)) {
6274 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6275 							      dev);
6276 			}
6277 		}
6278 
6279 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6280 			xpt_release_simq(ccb_h->path->bus->sim,
6281 					 /*run_queue*/TRUE);
6282 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6283 			runq = FALSE;
6284 		}
6285 
6286 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6287 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6288 			xpt_release_devq(ccb_h->path, /*count*/1,
6289 					 /*run_queue*/TRUE);
6290 			ccb_h->status &= ~CAM_DEV_QFRZN;
6291 		} else if (runq) {
6292 			xpt_run_dev_sendq(ccb_h->path->bus);
6293 		}
6294 
6295 		/* Call the peripheral driver's callback */
6296 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6297 
6298 		/* Raise IPL for while test */
6299 		s = splcam();
6300 	}
6301 	splx(s);
6302 }
6303