xref: /freebsd/sys/cam/cam_xpt.c (revision 23090366f729c56cab62de74c7a51792357e98a9)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_queue.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_xpt_internal.h>
60 #include <cam/cam_debug.h>
61 
62 #include <cam/scsi/scsi_all.h>
63 #include <cam/scsi/scsi_message.h>
64 #include <cam/scsi/scsi_pass.h>
65 
66 #include <machine/md_var.h>	/* geometry translation */
67 #include <machine/stdarg.h>	/* for xpt_print below */
68 
69 #include "opt_cam.h"
70 
71 /*
72  * This is the maximum number of high powered commands (e.g. start unit)
73  * that can be outstanding at a particular time.
74  */
75 #ifndef CAM_MAX_HIGHPOWER
76 #define CAM_MAX_HIGHPOWER  4
77 #endif
78 
79 /* Datastructures internal to the xpt layer */
80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
81 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
82 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
83 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
84 
85 /* Object for defering XPT actions to a taskqueue */
86 struct xpt_task {
87 	struct task	task;
88 	void		*data1;
89 	uintptr_t	data2;
90 };
91 
92 typedef enum {
93 	XPT_FLAG_OPEN		= 0x01
94 } xpt_flags;
95 
96 struct xpt_softc {
97 	xpt_flags		flags;
98 	u_int32_t		xpt_generation;
99 
100 	/* number of high powered commands that can go through right now */
101 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/* Registered busses */
110 	TAILQ_HEAD(,cam_eb)	xpt_busses;
111 	u_int			bus_generation;
112 
113 	struct intr_config_hook	*xpt_config_hook;
114 
115 	int			boot_delay;
116 	struct callout 		boot_callout;
117 
118 	struct mtx		xpt_topo_lock;
119 	struct mtx		xpt_lock;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156            &xsoftc.boot_delay, 0, "Bus registration wait time");
157 
158 /* Queues for our software interrupt handler */
159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161 static cam_simq_t cam_simq;
162 static struct mtx cam_simq_lock;
163 
164 /* Pointers to software interrupt handlers */
165 static void *cambio_ih;
166 
167 struct cam_periph *xpt_periph;
168 
169 static periph_init_t xpt_periph_init;
170 
171 static struct periph_driver xpt_driver =
172 {
173 	xpt_periph_init, "xpt",
174 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175 	CAM_PERIPH_DRV_EARLY
176 };
177 
178 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179 
180 static d_open_t xptopen;
181 static d_close_t xptclose;
182 static d_ioctl_t xptioctl;
183 
184 static struct cdevsw xpt_cdevsw = {
185 	.d_version =	D_VERSION,
186 	.d_flags =	0,
187 	.d_open =	xptopen,
188 	.d_close =	xptclose,
189 	.d_ioctl =	xptioctl,
190 	.d_name =	"xpt",
191 };
192 
193 /* Storage for debugging datastructures */
194 struct cam_path *cam_dpath;
195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
197 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
198 	&cam_dflags, 0, "Enabled debug flags");
199 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
200 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
202 	&cam_debug_delay, 0, "Delay in us after each debug message");
203 
204 /* Our boot-time initialization hook */
205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
206 
207 static moduledata_t cam_moduledata = {
208 	"cam",
209 	cam_module_event_handler,
210 	NULL
211 };
212 
213 static int	xpt_init(void *);
214 
215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
216 MODULE_VERSION(cam, 1);
217 
218 
219 static void		xpt_async_bcast(struct async_list *async_head,
220 					u_int32_t async_code,
221 					struct cam_path *path,
222 					void *async_arg);
223 static path_id_t xptnextfreepathid(void);
224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
225 static union ccb *xpt_get_ccb(struct cam_ed *device);
226 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
227 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
228 static timeout_t xpt_release_devq_timeout;
229 static void	 xpt_release_simq_timeout(void *arg) __unused;
230 static void	 xpt_release_bus(struct cam_eb *bus);
231 static void	 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
232 		    u_int count, int run_queue);
233 static struct cam_et*
234 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
235 static void	 xpt_release_target(struct cam_et *target);
236 static struct cam_eb*
237 		 xpt_find_bus(path_id_t path_id);
238 static struct cam_et*
239 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
240 static struct cam_ed*
241 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
242 static void	 xpt_config(void *arg);
243 static xpt_devicefunc_t xptpassannouncefunc;
244 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
245 static void	 xptpoll(struct cam_sim *sim);
246 static void	 camisr(void *);
247 static void	 camisr_runqueue(void *);
248 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
249 				    u_int num_patterns, struct cam_eb *bus);
250 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
251 				       u_int num_patterns,
252 				       struct cam_ed *device);
253 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
254 				       u_int num_patterns,
255 				       struct cam_periph *periph);
256 static xpt_busfunc_t	xptedtbusfunc;
257 static xpt_targetfunc_t	xptedttargetfunc;
258 static xpt_devicefunc_t	xptedtdevicefunc;
259 static xpt_periphfunc_t	xptedtperiphfunc;
260 static xpt_pdrvfunc_t	xptplistpdrvfunc;
261 static xpt_periphfunc_t	xptplistperiphfunc;
262 static int		xptedtmatch(struct ccb_dev_match *cdm);
263 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
264 static int		xptbustraverse(struct cam_eb *start_bus,
265 				       xpt_busfunc_t *tr_func, void *arg);
266 static int		xpttargettraverse(struct cam_eb *bus,
267 					  struct cam_et *start_target,
268 					  xpt_targetfunc_t *tr_func, void *arg);
269 static int		xptdevicetraverse(struct cam_et *target,
270 					  struct cam_ed *start_device,
271 					  xpt_devicefunc_t *tr_func, void *arg);
272 static int		xptperiphtraverse(struct cam_ed *device,
273 					  struct cam_periph *start_periph,
274 					  xpt_periphfunc_t *tr_func, void *arg);
275 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
276 					xpt_pdrvfunc_t *tr_func, void *arg);
277 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
278 					    struct cam_periph *start_periph,
279 					    xpt_periphfunc_t *tr_func,
280 					    void *arg);
281 static xpt_busfunc_t	xptdefbusfunc;
282 static xpt_targetfunc_t	xptdeftargetfunc;
283 static xpt_devicefunc_t	xptdefdevicefunc;
284 static xpt_periphfunc_t	xptdefperiphfunc;
285 static void		xpt_finishconfig_task(void *context, int pending);
286 static void		xpt_dev_async_default(u_int32_t async_code,
287 					      struct cam_eb *bus,
288 					      struct cam_et *target,
289 					      struct cam_ed *device,
290 					      void *async_arg);
291 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
292 						 struct cam_et *target,
293 						 lun_id_t lun_id);
294 static xpt_devicefunc_t	xptsetasyncfunc;
295 static xpt_busfunc_t	xptsetasyncbusfunc;
296 static cam_status	xptregister(struct cam_periph *periph,
297 				    void *arg);
298 static __inline int periph_is_queued(struct cam_periph *periph);
299 static __inline int device_is_alloc_queued(struct cam_ed *device);
300 static __inline int device_is_send_queued(struct cam_ed *device);
301 
302 static __inline int
303 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
304 {
305 	int retval;
306 
307 	if ((dev->drvq.entries > 0) &&
308 	    (dev->ccbq.devq_openings > 0) &&
309 	    (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
310 		CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
311 		/*
312 		 * The priority of a device waiting for CCB resources
313 		 * is that of the highest priority peripheral driver
314 		 * enqueued.
315 		 */
316 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
317 					  &dev->alloc_ccb_entry.pinfo,
318 					  CAMQ_GET_PRIO(&dev->drvq));
319 	} else {
320 		retval = 0;
321 	}
322 
323 	return (retval);
324 }
325 
326 static __inline int
327 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
328 {
329 	int	retval;
330 
331 	if ((dev->ccbq.queue.entries > 0) &&
332 	    (dev->ccbq.dev_openings > 0) &&
333 	    (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
334 		/*
335 		 * The priority of a device waiting for controller
336 		 * resources is that of the highest priority CCB
337 		 * enqueued.
338 		 */
339 		retval =
340 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
341 				     &dev->send_ccb_entry.pinfo,
342 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
343 	} else {
344 		retval = 0;
345 	}
346 	return (retval);
347 }
348 
349 static __inline int
350 periph_is_queued(struct cam_periph *periph)
351 {
352 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
353 }
354 
355 static __inline int
356 device_is_alloc_queued(struct cam_ed *device)
357 {
358 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
359 }
360 
361 static __inline int
362 device_is_send_queued(struct cam_ed *device)
363 {
364 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
365 }
366 
367 static void
368 xpt_periph_init()
369 {
370 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
371 }
372 
373 static void
374 xptdone(struct cam_periph *periph, union ccb *done_ccb)
375 {
376 	/* Caller will release the CCB */
377 	wakeup(&done_ccb->ccb_h.cbfcnp);
378 }
379 
380 static int
381 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
382 {
383 
384 	/*
385 	 * Only allow read-write access.
386 	 */
387 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
388 		return(EPERM);
389 
390 	/*
391 	 * We don't allow nonblocking access.
392 	 */
393 	if ((flags & O_NONBLOCK) != 0) {
394 		printf("%s: can't do nonblocking access\n", devtoname(dev));
395 		return(ENODEV);
396 	}
397 
398 	/* Mark ourselves open */
399 	mtx_lock(&xsoftc.xpt_lock);
400 	xsoftc.flags |= XPT_FLAG_OPEN;
401 	mtx_unlock(&xsoftc.xpt_lock);
402 
403 	return(0);
404 }
405 
406 static int
407 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
408 {
409 
410 	/* Mark ourselves closed */
411 	mtx_lock(&xsoftc.xpt_lock);
412 	xsoftc.flags &= ~XPT_FLAG_OPEN;
413 	mtx_unlock(&xsoftc.xpt_lock);
414 
415 	return(0);
416 }
417 
418 /*
419  * Don't automatically grab the xpt softc lock here even though this is going
420  * through the xpt device.  The xpt device is really just a back door for
421  * accessing other devices and SIMs, so the right thing to do is to grab
422  * the appropriate SIM lock once the bus/SIM is located.
423  */
424 static int
425 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
426 {
427 	int error;
428 
429 	error = 0;
430 
431 	switch(cmd) {
432 	/*
433 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
434 	 * to accept CCB types that don't quite make sense to send through a
435 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
436 	 * in the CAM spec.
437 	 */
438 	case CAMIOCOMMAND: {
439 		union ccb *ccb;
440 		union ccb *inccb;
441 		struct cam_eb *bus;
442 
443 		inccb = (union ccb *)addr;
444 
445 		bus = xpt_find_bus(inccb->ccb_h.path_id);
446 		if (bus == NULL)
447 			return (EINVAL);
448 
449 		switch (inccb->ccb_h.func_code) {
450 		case XPT_SCAN_BUS:
451 		case XPT_RESET_BUS:
452 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
453 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
454 				xpt_release_bus(bus);
455 				return (EINVAL);
456 			}
457 			break;
458 		case XPT_SCAN_TGT:
459 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
460 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 				xpt_release_bus(bus);
462 				return (EINVAL);
463 			}
464 			break;
465 		default:
466 			break;
467 		}
468 
469 		switch(inccb->ccb_h.func_code) {
470 		case XPT_SCAN_BUS:
471 		case XPT_RESET_BUS:
472 		case XPT_PATH_INQ:
473 		case XPT_ENG_INQ:
474 		case XPT_SCAN_LUN:
475 		case XPT_SCAN_TGT:
476 
477 			ccb = xpt_alloc_ccb();
478 
479 			CAM_SIM_LOCK(bus->sim);
480 
481 			/*
482 			 * Create a path using the bus, target, and lun the
483 			 * user passed in.
484 			 */
485 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
486 					    inccb->ccb_h.path_id,
487 					    inccb->ccb_h.target_id,
488 					    inccb->ccb_h.target_lun) !=
489 					    CAM_REQ_CMP){
490 				error = EINVAL;
491 				CAM_SIM_UNLOCK(bus->sim);
492 				xpt_free_ccb(ccb);
493 				break;
494 			}
495 			/* Ensure all of our fields are correct */
496 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
497 				      inccb->ccb_h.pinfo.priority);
498 			xpt_merge_ccb(ccb, inccb);
499 			ccb->ccb_h.cbfcnp = xptdone;
500 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
501 			bcopy(ccb, inccb, sizeof(union ccb));
502 			xpt_free_path(ccb->ccb_h.path);
503 			xpt_free_ccb(ccb);
504 			CAM_SIM_UNLOCK(bus->sim);
505 			break;
506 
507 		case XPT_DEBUG: {
508 			union ccb ccb;
509 
510 			/*
511 			 * This is an immediate CCB, so it's okay to
512 			 * allocate it on the stack.
513 			 */
514 
515 			CAM_SIM_LOCK(bus->sim);
516 
517 			/*
518 			 * Create a path using the bus, target, and lun the
519 			 * user passed in.
520 			 */
521 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
522 					    inccb->ccb_h.path_id,
523 					    inccb->ccb_h.target_id,
524 					    inccb->ccb_h.target_lun) !=
525 					    CAM_REQ_CMP){
526 				error = EINVAL;
527 				CAM_SIM_UNLOCK(bus->sim);
528 				break;
529 			}
530 			/* Ensure all of our fields are correct */
531 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
532 				      inccb->ccb_h.pinfo.priority);
533 			xpt_merge_ccb(&ccb, inccb);
534 			ccb.ccb_h.cbfcnp = xptdone;
535 			xpt_action(&ccb);
536 			bcopy(&ccb, inccb, sizeof(union ccb));
537 			xpt_free_path(ccb.ccb_h.path);
538 			CAM_SIM_UNLOCK(bus->sim);
539 			break;
540 
541 		}
542 		case XPT_DEV_MATCH: {
543 			struct cam_periph_map_info mapinfo;
544 			struct cam_path *old_path;
545 
546 			/*
547 			 * We can't deal with physical addresses for this
548 			 * type of transaction.
549 			 */
550 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
551 				error = EINVAL;
552 				break;
553 			}
554 
555 			/*
556 			 * Save this in case the caller had it set to
557 			 * something in particular.
558 			 */
559 			old_path = inccb->ccb_h.path;
560 
561 			/*
562 			 * We really don't need a path for the matching
563 			 * code.  The path is needed because of the
564 			 * debugging statements in xpt_action().  They
565 			 * assume that the CCB has a valid path.
566 			 */
567 			inccb->ccb_h.path = xpt_periph->path;
568 
569 			bzero(&mapinfo, sizeof(mapinfo));
570 
571 			/*
572 			 * Map the pattern and match buffers into kernel
573 			 * virtual address space.
574 			 */
575 			error = cam_periph_mapmem(inccb, &mapinfo);
576 
577 			if (error) {
578 				inccb->ccb_h.path = old_path;
579 				break;
580 			}
581 
582 			/*
583 			 * This is an immediate CCB, we can send it on directly.
584 			 */
585 			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
586 			xpt_action(inccb);
587 			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
588 
589 			/*
590 			 * Map the buffers back into user space.
591 			 */
592 			cam_periph_unmapmem(inccb, &mapinfo);
593 
594 			inccb->ccb_h.path = old_path;
595 
596 			error = 0;
597 			break;
598 		}
599 		default:
600 			error = ENOTSUP;
601 			break;
602 		}
603 		xpt_release_bus(bus);
604 		break;
605 	}
606 	/*
607 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
608 	 * with the periphal driver name and unit name filled in.  The other
609 	 * fields don't really matter as input.  The passthrough driver name
610 	 * ("pass"), and unit number are passed back in the ccb.  The current
611 	 * device generation number, and the index into the device peripheral
612 	 * driver list, and the status are also passed back.  Note that
613 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
614 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
615 	 * (or rather should be) impossible for the device peripheral driver
616 	 * list to change since we look at the whole thing in one pass, and
617 	 * we do it with lock protection.
618 	 *
619 	 */
620 	case CAMGETPASSTHRU: {
621 		union ccb *ccb;
622 		struct cam_periph *periph;
623 		struct periph_driver **p_drv;
624 		char   *name;
625 		u_int unit;
626 		u_int cur_generation;
627 		int base_periph_found;
628 		int splbreaknum;
629 
630 		ccb = (union ccb *)addr;
631 		unit = ccb->cgdl.unit_number;
632 		name = ccb->cgdl.periph_name;
633 		/*
634 		 * Every 100 devices, we want to drop our lock protection to
635 		 * give the software interrupt handler a chance to run.
636 		 * Most systems won't run into this check, but this should
637 		 * avoid starvation in the software interrupt handler in
638 		 * large systems.
639 		 */
640 		splbreaknum = 100;
641 
642 		ccb = (union ccb *)addr;
643 
644 		base_periph_found = 0;
645 
646 		/*
647 		 * Sanity check -- make sure we don't get a null peripheral
648 		 * driver name.
649 		 */
650 		if (*ccb->cgdl.periph_name == '\0') {
651 			error = EINVAL;
652 			break;
653 		}
654 
655 		/* Keep the list from changing while we traverse it */
656 		mtx_lock(&xsoftc.xpt_topo_lock);
657 ptstartover:
658 		cur_generation = xsoftc.xpt_generation;
659 
660 		/* first find our driver in the list of drivers */
661 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
662 			if (strcmp((*p_drv)->driver_name, name) == 0)
663 				break;
664 
665 		if (*p_drv == NULL) {
666 			mtx_unlock(&xsoftc.xpt_topo_lock);
667 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
668 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
669 			*ccb->cgdl.periph_name = '\0';
670 			ccb->cgdl.unit_number = 0;
671 			error = ENOENT;
672 			break;
673 		}
674 
675 		/*
676 		 * Run through every peripheral instance of this driver
677 		 * and check to see whether it matches the unit passed
678 		 * in by the user.  If it does, get out of the loops and
679 		 * find the passthrough driver associated with that
680 		 * peripheral driver.
681 		 */
682 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
683 		     periph = TAILQ_NEXT(periph, unit_links)) {
684 
685 			if (periph->unit_number == unit) {
686 				break;
687 			} else if (--splbreaknum == 0) {
688 				mtx_unlock(&xsoftc.xpt_topo_lock);
689 				mtx_lock(&xsoftc.xpt_topo_lock);
690 				splbreaknum = 100;
691 				if (cur_generation != xsoftc.xpt_generation)
692 				       goto ptstartover;
693 			}
694 		}
695 		/*
696 		 * If we found the peripheral driver that the user passed
697 		 * in, go through all of the peripheral drivers for that
698 		 * particular device and look for a passthrough driver.
699 		 */
700 		if (periph != NULL) {
701 			struct cam_ed *device;
702 			int i;
703 
704 			base_periph_found = 1;
705 			device = periph->path->device;
706 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
707 			     periph != NULL;
708 			     periph = SLIST_NEXT(periph, periph_links), i++) {
709 				/*
710 				 * Check to see whether we have a
711 				 * passthrough device or not.
712 				 */
713 				if (strcmp(periph->periph_name, "pass") == 0) {
714 					/*
715 					 * Fill in the getdevlist fields.
716 					 */
717 					strcpy(ccb->cgdl.periph_name,
718 					       periph->periph_name);
719 					ccb->cgdl.unit_number =
720 						periph->unit_number;
721 					if (SLIST_NEXT(periph, periph_links))
722 						ccb->cgdl.status =
723 							CAM_GDEVLIST_MORE_DEVS;
724 					else
725 						ccb->cgdl.status =
726 						       CAM_GDEVLIST_LAST_DEVICE;
727 					ccb->cgdl.generation =
728 						device->generation;
729 					ccb->cgdl.index = i;
730 					/*
731 					 * Fill in some CCB header fields
732 					 * that the user may want.
733 					 */
734 					ccb->ccb_h.path_id =
735 						periph->path->bus->path_id;
736 					ccb->ccb_h.target_id =
737 						periph->path->target->target_id;
738 					ccb->ccb_h.target_lun =
739 						periph->path->device->lun_id;
740 					ccb->ccb_h.status = CAM_REQ_CMP;
741 					break;
742 				}
743 			}
744 		}
745 
746 		/*
747 		 * If the periph is null here, one of two things has
748 		 * happened.  The first possibility is that we couldn't
749 		 * find the unit number of the particular peripheral driver
750 		 * that the user is asking about.  e.g. the user asks for
751 		 * the passthrough driver for "da11".  We find the list of
752 		 * "da" peripherals all right, but there is no unit 11.
753 		 * The other possibility is that we went through the list
754 		 * of peripheral drivers attached to the device structure,
755 		 * but didn't find one with the name "pass".  Either way,
756 		 * we return ENOENT, since we couldn't find something.
757 		 */
758 		if (periph == NULL) {
759 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
760 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
761 			*ccb->cgdl.periph_name = '\0';
762 			ccb->cgdl.unit_number = 0;
763 			error = ENOENT;
764 			/*
765 			 * It is unfortunate that this is even necessary,
766 			 * but there are many, many clueless users out there.
767 			 * If this is true, the user is looking for the
768 			 * passthrough driver, but doesn't have one in his
769 			 * kernel.
770 			 */
771 			if (base_periph_found == 1) {
772 				printf("xptioctl: pass driver is not in the "
773 				       "kernel\n");
774 				printf("xptioctl: put \"device pass\" in "
775 				       "your kernel config file\n");
776 			}
777 		}
778 		mtx_unlock(&xsoftc.xpt_topo_lock);
779 		break;
780 		}
781 	default:
782 		error = ENOTTY;
783 		break;
784 	}
785 
786 	return(error);
787 }
788 
789 static int
790 cam_module_event_handler(module_t mod, int what, void *arg)
791 {
792 	int error;
793 
794 	switch (what) {
795 	case MOD_LOAD:
796 		if ((error = xpt_init(NULL)) != 0)
797 			return (error);
798 		break;
799 	case MOD_UNLOAD:
800 		return EBUSY;
801 	default:
802 		return EOPNOTSUPP;
803 	}
804 
805 	return 0;
806 }
807 
808 static void
809 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
810 {
811 
812 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
813 		xpt_free_path(done_ccb->ccb_h.path);
814 		xpt_free_ccb(done_ccb);
815 	} else {
816 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
817 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
818 	}
819 	xpt_release_boot();
820 }
821 
822 /* thread to handle bus rescans */
823 static void
824 xpt_scanner_thread(void *dummy)
825 {
826 	union ccb	*ccb;
827 	struct cam_sim	*sim;
828 
829 	xpt_lock_buses();
830 	for (;;) {
831 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
832 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
833 			       "ccb_scanq", 0);
834 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
835 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
836 			xpt_unlock_buses();
837 
838 			sim = ccb->ccb_h.path->bus->sim;
839 			CAM_SIM_LOCK(sim);
840 			xpt_action(ccb);
841 			CAM_SIM_UNLOCK(sim);
842 
843 			xpt_lock_buses();
844 		}
845 	}
846 }
847 
848 void
849 xpt_rescan(union ccb *ccb)
850 {
851 	struct ccb_hdr *hdr;
852 
853 	/* Prepare request */
854 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
855 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
856 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
857 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
858 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
859 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
860 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
861 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
862 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
863 	else {
864 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
865 		xpt_free_path(ccb->ccb_h.path);
866 		xpt_free_ccb(ccb);
867 		return;
868 	}
869 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
870 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
871 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
872 	/* Don't make duplicate entries for the same paths. */
873 	xpt_lock_buses();
874 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
875 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
876 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
877 				wakeup(&xsoftc.ccb_scanq);
878 				xpt_unlock_buses();
879 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
880 				xpt_free_path(ccb->ccb_h.path);
881 				xpt_free_ccb(ccb);
882 				return;
883 			}
884 		}
885 	}
886 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
887 	xsoftc.buses_to_config++;
888 	wakeup(&xsoftc.ccb_scanq);
889 	xpt_unlock_buses();
890 }
891 
892 /* Functions accessed by the peripheral drivers */
893 static int
894 xpt_init(void *dummy)
895 {
896 	struct cam_sim *xpt_sim;
897 	struct cam_path *path;
898 	struct cam_devq *devq;
899 	cam_status status;
900 
901 	TAILQ_INIT(&xsoftc.xpt_busses);
902 	TAILQ_INIT(&cam_simq);
903 	TAILQ_INIT(&xsoftc.ccb_scanq);
904 	STAILQ_INIT(&xsoftc.highpowerq);
905 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
906 
907 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
908 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
909 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
910 
911 	/*
912 	 * The xpt layer is, itself, the equivelent of a SIM.
913 	 * Allow 16 ccbs in the ccb pool for it.  This should
914 	 * give decent parallelism when we probe busses and
915 	 * perform other XPT functions.
916 	 */
917 	devq = cam_simq_alloc(16);
918 	xpt_sim = cam_sim_alloc(xptaction,
919 				xptpoll,
920 				"xpt",
921 				/*softc*/NULL,
922 				/*unit*/0,
923 				/*mtx*/&xsoftc.xpt_lock,
924 				/*max_dev_transactions*/0,
925 				/*max_tagged_dev_transactions*/0,
926 				devq);
927 	if (xpt_sim == NULL)
928 		return (ENOMEM);
929 
930 	mtx_lock(&xsoftc.xpt_lock);
931 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
932 		mtx_unlock(&xsoftc.xpt_lock);
933 		printf("xpt_init: xpt_bus_register failed with status %#x,"
934 		       " failing attach\n", status);
935 		return (EINVAL);
936 	}
937 
938 	/*
939 	 * Looking at the XPT from the SIM layer, the XPT is
940 	 * the equivelent of a peripheral driver.  Allocate
941 	 * a peripheral driver entry for us.
942 	 */
943 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
944 				      CAM_TARGET_WILDCARD,
945 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
946 		mtx_unlock(&xsoftc.xpt_lock);
947 		printf("xpt_init: xpt_create_path failed with status %#x,"
948 		       " failing attach\n", status);
949 		return (EINVAL);
950 	}
951 
952 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
953 			 path, NULL, 0, xpt_sim);
954 	xpt_free_path(path);
955 	mtx_unlock(&xsoftc.xpt_lock);
956 	/* Install our software interrupt handlers */
957 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
958 	/*
959 	 * Register a callback for when interrupts are enabled.
960 	 */
961 	xsoftc.xpt_config_hook =
962 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
963 					      M_CAMXPT, M_NOWAIT | M_ZERO);
964 	if (xsoftc.xpt_config_hook == NULL) {
965 		printf("xpt_init: Cannot malloc config hook "
966 		       "- failing attach\n");
967 		return (ENOMEM);
968 	}
969 	xsoftc.xpt_config_hook->ich_func = xpt_config;
970 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
971 		free (xsoftc.xpt_config_hook, M_CAMXPT);
972 		printf("xpt_init: config_intrhook_establish failed "
973 		       "- failing attach\n");
974 	}
975 
976 	return (0);
977 }
978 
979 static cam_status
980 xptregister(struct cam_periph *periph, void *arg)
981 {
982 	struct cam_sim *xpt_sim;
983 
984 	if (periph == NULL) {
985 		printf("xptregister: periph was NULL!!\n");
986 		return(CAM_REQ_CMP_ERR);
987 	}
988 
989 	xpt_sim = (struct cam_sim *)arg;
990 	xpt_sim->softc = periph;
991 	xpt_periph = periph;
992 	periph->softc = NULL;
993 
994 	return(CAM_REQ_CMP);
995 }
996 
997 int32_t
998 xpt_add_periph(struct cam_periph *periph)
999 {
1000 	struct cam_ed *device;
1001 	int32_t	 status;
1002 	struct periph_list *periph_head;
1003 
1004 	mtx_assert(periph->sim->mtx, MA_OWNED);
1005 
1006 	device = periph->path->device;
1007 
1008 	periph_head = &device->periphs;
1009 
1010 	status = CAM_REQ_CMP;
1011 
1012 	if (device != NULL) {
1013 		/*
1014 		 * Make room for this peripheral
1015 		 * so it will fit in the queue
1016 		 * when it's scheduled to run
1017 		 */
1018 		status = camq_resize(&device->drvq,
1019 				     device->drvq.array_size + 1);
1020 
1021 		device->generation++;
1022 
1023 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1024 	}
1025 
1026 	mtx_lock(&xsoftc.xpt_topo_lock);
1027 	xsoftc.xpt_generation++;
1028 	mtx_unlock(&xsoftc.xpt_topo_lock);
1029 
1030 	return (status);
1031 }
1032 
1033 void
1034 xpt_remove_periph(struct cam_periph *periph, int topology_lock_held)
1035 {
1036 	struct cam_ed *device;
1037 
1038 	mtx_assert(periph->sim->mtx, MA_OWNED);
1039 
1040 	device = periph->path->device;
1041 
1042 	if (device != NULL) {
1043 		struct periph_list *periph_head;
1044 
1045 		periph_head = &device->periphs;
1046 
1047 		/* Release the slot for this peripheral */
1048 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1049 
1050 		device->generation++;
1051 
1052 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1053 	}
1054 
1055 	if (topology_lock_held == 0)
1056 		mtx_lock(&xsoftc.xpt_topo_lock);
1057 
1058 	xsoftc.xpt_generation++;
1059 
1060 	if (topology_lock_held == 0)
1061 		mtx_unlock(&xsoftc.xpt_topo_lock);
1062 }
1063 
1064 
1065 void
1066 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1067 {
1068 	struct	cam_path *path = periph->path;
1069 
1070 	mtx_assert(periph->sim->mtx, MA_OWNED);
1071 
1072 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1073 	       periph->periph_name, periph->unit_number,
1074 	       path->bus->sim->sim_name,
1075 	       path->bus->sim->unit_number,
1076 	       path->bus->sim->bus_id,
1077 	       path->bus->path_id,
1078 	       path->target->target_id,
1079 	       path->device->lun_id);
1080 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1081 	if (path->device->protocol == PROTO_SCSI)
1082 		scsi_print_inquiry(&path->device->inq_data);
1083 	else if (path->device->protocol == PROTO_ATA ||
1084 	    path->device->protocol == PROTO_SATAPM)
1085 		ata_print_ident(&path->device->ident_data);
1086 	else if (path->device->protocol == PROTO_SEMB)
1087 		semb_print_ident(
1088 		    (struct sep_identify_data *)&path->device->ident_data);
1089 	else
1090 		printf("Unknown protocol device\n");
1091 	if (bootverbose && path->device->serial_num_len > 0) {
1092 		/* Don't wrap the screen  - print only the first 60 chars */
1093 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1094 		       periph->unit_number, path->device->serial_num);
1095 	}
1096 	/* Announce transport details. */
1097 	(*(path->bus->xport->announce))(periph);
1098 	/* Announce command queueing. */
1099 	if (path->device->inq_flags & SID_CmdQue
1100 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1101 		printf("%s%d: Command Queueing enabled\n",
1102 		       periph->periph_name, periph->unit_number);
1103 	}
1104 	/* Announce caller's details if they've passed in. */
1105 	if (announce_string != NULL)
1106 		printf("%s%d: %s\n", periph->periph_name,
1107 		       periph->unit_number, announce_string);
1108 }
1109 
1110 int
1111 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1112 {
1113 	int ret = -1;
1114 	struct ccb_dev_advinfo cdai;
1115 
1116 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1117 
1118 	memset(&cdai, 0, sizeof(cdai));
1119 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1120 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1121 	cdai.bufsiz = len;
1122 
1123 	if (!strcmp(attr, "GEOM::ident"))
1124 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1125 	else if (!strcmp(attr, "GEOM::physpath"))
1126 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1127 	else
1128 		goto out;
1129 
1130 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1131 	if (cdai.buf == NULL) {
1132 		ret = ENOMEM;
1133 		goto out;
1134 	}
1135 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1136 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1137 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1138 	if (cdai.provsiz == 0)
1139 		goto out;
1140 	ret = 0;
1141 	if (strlcpy(buf, cdai.buf, len) >= len)
1142 		ret = EFAULT;
1143 
1144 out:
1145 	if (cdai.buf != NULL)
1146 		free(cdai.buf, M_CAMXPT);
1147 	return ret;
1148 }
1149 
1150 static dev_match_ret
1151 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1152 	    struct cam_eb *bus)
1153 {
1154 	dev_match_ret retval;
1155 	int i;
1156 
1157 	retval = DM_RET_NONE;
1158 
1159 	/*
1160 	 * If we aren't given something to match against, that's an error.
1161 	 */
1162 	if (bus == NULL)
1163 		return(DM_RET_ERROR);
1164 
1165 	/*
1166 	 * If there are no match entries, then this bus matches no
1167 	 * matter what.
1168 	 */
1169 	if ((patterns == NULL) || (num_patterns == 0))
1170 		return(DM_RET_DESCEND | DM_RET_COPY);
1171 
1172 	for (i = 0; i < num_patterns; i++) {
1173 		struct bus_match_pattern *cur_pattern;
1174 
1175 		/*
1176 		 * If the pattern in question isn't for a bus node, we
1177 		 * aren't interested.  However, we do indicate to the
1178 		 * calling routine that we should continue descending the
1179 		 * tree, since the user wants to match against lower-level
1180 		 * EDT elements.
1181 		 */
1182 		if (patterns[i].type != DEV_MATCH_BUS) {
1183 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1184 				retval |= DM_RET_DESCEND;
1185 			continue;
1186 		}
1187 
1188 		cur_pattern = &patterns[i].pattern.bus_pattern;
1189 
1190 		/*
1191 		 * If they want to match any bus node, we give them any
1192 		 * device node.
1193 		 */
1194 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1195 			/* set the copy flag */
1196 			retval |= DM_RET_COPY;
1197 
1198 			/*
1199 			 * If we've already decided on an action, go ahead
1200 			 * and return.
1201 			 */
1202 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1203 				return(retval);
1204 		}
1205 
1206 		/*
1207 		 * Not sure why someone would do this...
1208 		 */
1209 		if (cur_pattern->flags == BUS_MATCH_NONE)
1210 			continue;
1211 
1212 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1213 		 && (cur_pattern->path_id != bus->path_id))
1214 			continue;
1215 
1216 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1217 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1218 			continue;
1219 
1220 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1221 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1222 			continue;
1223 
1224 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1225 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1226 			     DEV_IDLEN) != 0))
1227 			continue;
1228 
1229 		/*
1230 		 * If we get to this point, the user definitely wants
1231 		 * information on this bus.  So tell the caller to copy the
1232 		 * data out.
1233 		 */
1234 		retval |= DM_RET_COPY;
1235 
1236 		/*
1237 		 * If the return action has been set to descend, then we
1238 		 * know that we've already seen a non-bus matching
1239 		 * expression, therefore we need to further descend the tree.
1240 		 * This won't change by continuing around the loop, so we
1241 		 * go ahead and return.  If we haven't seen a non-bus
1242 		 * matching expression, we keep going around the loop until
1243 		 * we exhaust the matching expressions.  We'll set the stop
1244 		 * flag once we fall out of the loop.
1245 		 */
1246 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1247 			return(retval);
1248 	}
1249 
1250 	/*
1251 	 * If the return action hasn't been set to descend yet, that means
1252 	 * we haven't seen anything other than bus matching patterns.  So
1253 	 * tell the caller to stop descending the tree -- the user doesn't
1254 	 * want to match against lower level tree elements.
1255 	 */
1256 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1257 		retval |= DM_RET_STOP;
1258 
1259 	return(retval);
1260 }
1261 
1262 static dev_match_ret
1263 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1264 	       struct cam_ed *device)
1265 {
1266 	dev_match_ret retval;
1267 	int i;
1268 
1269 	retval = DM_RET_NONE;
1270 
1271 	/*
1272 	 * If we aren't given something to match against, that's an error.
1273 	 */
1274 	if (device == NULL)
1275 		return(DM_RET_ERROR);
1276 
1277 	/*
1278 	 * If there are no match entries, then this device matches no
1279 	 * matter what.
1280 	 */
1281 	if ((patterns == NULL) || (num_patterns == 0))
1282 		return(DM_RET_DESCEND | DM_RET_COPY);
1283 
1284 	for (i = 0; i < num_patterns; i++) {
1285 		struct device_match_pattern *cur_pattern;
1286 		struct scsi_vpd_device_id *device_id_page;
1287 
1288 		/*
1289 		 * If the pattern in question isn't for a device node, we
1290 		 * aren't interested.
1291 		 */
1292 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1293 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1294 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1295 				retval |= DM_RET_DESCEND;
1296 			continue;
1297 		}
1298 
1299 		cur_pattern = &patterns[i].pattern.device_pattern;
1300 
1301 		/* Error out if mutually exclusive options are specified. */
1302 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1303 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1304 			return(DM_RET_ERROR);
1305 
1306 		/*
1307 		 * If they want to match any device node, we give them any
1308 		 * device node.
1309 		 */
1310 		if (cur_pattern->flags == DEV_MATCH_ANY)
1311 			goto copy_dev_node;
1312 
1313 		/*
1314 		 * Not sure why someone would do this...
1315 		 */
1316 		if (cur_pattern->flags == DEV_MATCH_NONE)
1317 			continue;
1318 
1319 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1320 		 && (cur_pattern->path_id != device->target->bus->path_id))
1321 			continue;
1322 
1323 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1324 		 && (cur_pattern->target_id != device->target->target_id))
1325 			continue;
1326 
1327 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1328 		 && (cur_pattern->target_lun != device->lun_id))
1329 			continue;
1330 
1331 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1332 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1333 				    (caddr_t)&cur_pattern->data.inq_pat,
1334 				    1, sizeof(cur_pattern->data.inq_pat),
1335 				    scsi_static_inquiry_match) == NULL))
1336 			continue;
1337 
1338 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1339 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1340 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1341 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1342 				      device->device_id_len
1343 				    - SVPD_DEVICE_ID_HDR_LEN,
1344 				      cur_pattern->data.devid_pat.id,
1345 				      cur_pattern->data.devid_pat.id_len) != 0))
1346 			continue;
1347 
1348 copy_dev_node:
1349 		/*
1350 		 * If we get to this point, the user definitely wants
1351 		 * information on this device.  So tell the caller to copy
1352 		 * the data out.
1353 		 */
1354 		retval |= DM_RET_COPY;
1355 
1356 		/*
1357 		 * If the return action has been set to descend, then we
1358 		 * know that we've already seen a peripheral matching
1359 		 * expression, therefore we need to further descend the tree.
1360 		 * This won't change by continuing around the loop, so we
1361 		 * go ahead and return.  If we haven't seen a peripheral
1362 		 * matching expression, we keep going around the loop until
1363 		 * we exhaust the matching expressions.  We'll set the stop
1364 		 * flag once we fall out of the loop.
1365 		 */
1366 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1367 			return(retval);
1368 	}
1369 
1370 	/*
1371 	 * If the return action hasn't been set to descend yet, that means
1372 	 * we haven't seen any peripheral matching patterns.  So tell the
1373 	 * caller to stop descending the tree -- the user doesn't want to
1374 	 * match against lower level tree elements.
1375 	 */
1376 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1377 		retval |= DM_RET_STOP;
1378 
1379 	return(retval);
1380 }
1381 
1382 /*
1383  * Match a single peripheral against any number of match patterns.
1384  */
1385 static dev_match_ret
1386 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1387 	       struct cam_periph *periph)
1388 {
1389 	dev_match_ret retval;
1390 	int i;
1391 
1392 	/*
1393 	 * If we aren't given something to match against, that's an error.
1394 	 */
1395 	if (periph == NULL)
1396 		return(DM_RET_ERROR);
1397 
1398 	/*
1399 	 * If there are no match entries, then this peripheral matches no
1400 	 * matter what.
1401 	 */
1402 	if ((patterns == NULL) || (num_patterns == 0))
1403 		return(DM_RET_STOP | DM_RET_COPY);
1404 
1405 	/*
1406 	 * There aren't any nodes below a peripheral node, so there's no
1407 	 * reason to descend the tree any further.
1408 	 */
1409 	retval = DM_RET_STOP;
1410 
1411 	for (i = 0; i < num_patterns; i++) {
1412 		struct periph_match_pattern *cur_pattern;
1413 
1414 		/*
1415 		 * If the pattern in question isn't for a peripheral, we
1416 		 * aren't interested.
1417 		 */
1418 		if (patterns[i].type != DEV_MATCH_PERIPH)
1419 			continue;
1420 
1421 		cur_pattern = &patterns[i].pattern.periph_pattern;
1422 
1423 		/*
1424 		 * If they want to match on anything, then we will do so.
1425 		 */
1426 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1427 			/* set the copy flag */
1428 			retval |= DM_RET_COPY;
1429 
1430 			/*
1431 			 * We've already set the return action to stop,
1432 			 * since there are no nodes below peripherals in
1433 			 * the tree.
1434 			 */
1435 			return(retval);
1436 		}
1437 
1438 		/*
1439 		 * Not sure why someone would do this...
1440 		 */
1441 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1442 			continue;
1443 
1444 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1445 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1446 			continue;
1447 
1448 		/*
1449 		 * For the target and lun id's, we have to make sure the
1450 		 * target and lun pointers aren't NULL.  The xpt peripheral
1451 		 * has a wildcard target and device.
1452 		 */
1453 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1454 		 && ((periph->path->target == NULL)
1455 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1456 			continue;
1457 
1458 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1459 		 && ((periph->path->device == NULL)
1460 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1461 			continue;
1462 
1463 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1464 		 && (cur_pattern->unit_number != periph->unit_number))
1465 			continue;
1466 
1467 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1468 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1469 			     DEV_IDLEN) != 0))
1470 			continue;
1471 
1472 		/*
1473 		 * If we get to this point, the user definitely wants
1474 		 * information on this peripheral.  So tell the caller to
1475 		 * copy the data out.
1476 		 */
1477 		retval |= DM_RET_COPY;
1478 
1479 		/*
1480 		 * The return action has already been set to stop, since
1481 		 * peripherals don't have any nodes below them in the EDT.
1482 		 */
1483 		return(retval);
1484 	}
1485 
1486 	/*
1487 	 * If we get to this point, the peripheral that was passed in
1488 	 * doesn't match any of the patterns.
1489 	 */
1490 	return(retval);
1491 }
1492 
1493 static int
1494 xptedtbusfunc(struct cam_eb *bus, void *arg)
1495 {
1496 	struct ccb_dev_match *cdm;
1497 	dev_match_ret retval;
1498 
1499 	cdm = (struct ccb_dev_match *)arg;
1500 
1501 	/*
1502 	 * If our position is for something deeper in the tree, that means
1503 	 * that we've already seen this node.  So, we keep going down.
1504 	 */
1505 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1506 	 && (cdm->pos.cookie.bus == bus)
1507 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1508 	 && (cdm->pos.cookie.target != NULL))
1509 		retval = DM_RET_DESCEND;
1510 	else
1511 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1512 
1513 	/*
1514 	 * If we got an error, bail out of the search.
1515 	 */
1516 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1517 		cdm->status = CAM_DEV_MATCH_ERROR;
1518 		return(0);
1519 	}
1520 
1521 	/*
1522 	 * If the copy flag is set, copy this bus out.
1523 	 */
1524 	if (retval & DM_RET_COPY) {
1525 		int spaceleft, j;
1526 
1527 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1528 			sizeof(struct dev_match_result));
1529 
1530 		/*
1531 		 * If we don't have enough space to put in another
1532 		 * match result, save our position and tell the
1533 		 * user there are more devices to check.
1534 		 */
1535 		if (spaceleft < sizeof(struct dev_match_result)) {
1536 			bzero(&cdm->pos, sizeof(cdm->pos));
1537 			cdm->pos.position_type =
1538 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1539 
1540 			cdm->pos.cookie.bus = bus;
1541 			cdm->pos.generations[CAM_BUS_GENERATION]=
1542 				xsoftc.bus_generation;
1543 			cdm->status = CAM_DEV_MATCH_MORE;
1544 			return(0);
1545 		}
1546 		j = cdm->num_matches;
1547 		cdm->num_matches++;
1548 		cdm->matches[j].type = DEV_MATCH_BUS;
1549 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1550 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1551 		cdm->matches[j].result.bus_result.unit_number =
1552 			bus->sim->unit_number;
1553 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1554 			bus->sim->sim_name, DEV_IDLEN);
1555 	}
1556 
1557 	/*
1558 	 * If the user is only interested in busses, there's no
1559 	 * reason to descend to the next level in the tree.
1560 	 */
1561 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1562 		return(1);
1563 
1564 	/*
1565 	 * If there is a target generation recorded, check it to
1566 	 * make sure the target list hasn't changed.
1567 	 */
1568 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1569 	 && (bus == cdm->pos.cookie.bus)
1570 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1571 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1572 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1573 	     bus->generation)) {
1574 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1575 		return(0);
1576 	}
1577 
1578 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1579 	 && (cdm->pos.cookie.bus == bus)
1580 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1581 	 && (cdm->pos.cookie.target != NULL))
1582 		return(xpttargettraverse(bus,
1583 					(struct cam_et *)cdm->pos.cookie.target,
1584 					 xptedttargetfunc, arg));
1585 	else
1586 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1587 }
1588 
1589 static int
1590 xptedttargetfunc(struct cam_et *target, void *arg)
1591 {
1592 	struct ccb_dev_match *cdm;
1593 
1594 	cdm = (struct ccb_dev_match *)arg;
1595 
1596 	/*
1597 	 * If there is a device list generation recorded, check it to
1598 	 * make sure the device list hasn't changed.
1599 	 */
1600 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1601 	 && (cdm->pos.cookie.bus == target->bus)
1602 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1603 	 && (cdm->pos.cookie.target == target)
1604 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1605 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1606 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1607 	     target->generation)) {
1608 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1609 		return(0);
1610 	}
1611 
1612 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1613 	 && (cdm->pos.cookie.bus == target->bus)
1614 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1615 	 && (cdm->pos.cookie.target == target)
1616 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1617 	 && (cdm->pos.cookie.device != NULL))
1618 		return(xptdevicetraverse(target,
1619 					(struct cam_ed *)cdm->pos.cookie.device,
1620 					 xptedtdevicefunc, arg));
1621 	else
1622 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1623 }
1624 
1625 static int
1626 xptedtdevicefunc(struct cam_ed *device, void *arg)
1627 {
1628 
1629 	struct ccb_dev_match *cdm;
1630 	dev_match_ret retval;
1631 
1632 	cdm = (struct ccb_dev_match *)arg;
1633 
1634 	/*
1635 	 * If our position is for something deeper in the tree, that means
1636 	 * that we've already seen this node.  So, we keep going down.
1637 	 */
1638 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1639 	 && (cdm->pos.cookie.device == device)
1640 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1641 	 && (cdm->pos.cookie.periph != NULL))
1642 		retval = DM_RET_DESCEND;
1643 	else
1644 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1645 					device);
1646 
1647 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1648 		cdm->status = CAM_DEV_MATCH_ERROR;
1649 		return(0);
1650 	}
1651 
1652 	/*
1653 	 * If the copy flag is set, copy this device out.
1654 	 */
1655 	if (retval & DM_RET_COPY) {
1656 		int spaceleft, j;
1657 
1658 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1659 			sizeof(struct dev_match_result));
1660 
1661 		/*
1662 		 * If we don't have enough space to put in another
1663 		 * match result, save our position and tell the
1664 		 * user there are more devices to check.
1665 		 */
1666 		if (spaceleft < sizeof(struct dev_match_result)) {
1667 			bzero(&cdm->pos, sizeof(cdm->pos));
1668 			cdm->pos.position_type =
1669 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1670 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1671 
1672 			cdm->pos.cookie.bus = device->target->bus;
1673 			cdm->pos.generations[CAM_BUS_GENERATION]=
1674 				xsoftc.bus_generation;
1675 			cdm->pos.cookie.target = device->target;
1676 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1677 				device->target->bus->generation;
1678 			cdm->pos.cookie.device = device;
1679 			cdm->pos.generations[CAM_DEV_GENERATION] =
1680 				device->target->generation;
1681 			cdm->status = CAM_DEV_MATCH_MORE;
1682 			return(0);
1683 		}
1684 		j = cdm->num_matches;
1685 		cdm->num_matches++;
1686 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1687 		cdm->matches[j].result.device_result.path_id =
1688 			device->target->bus->path_id;
1689 		cdm->matches[j].result.device_result.target_id =
1690 			device->target->target_id;
1691 		cdm->matches[j].result.device_result.target_lun =
1692 			device->lun_id;
1693 		cdm->matches[j].result.device_result.protocol =
1694 			device->protocol;
1695 		bcopy(&device->inq_data,
1696 		      &cdm->matches[j].result.device_result.inq_data,
1697 		      sizeof(struct scsi_inquiry_data));
1698 		bcopy(&device->ident_data,
1699 		      &cdm->matches[j].result.device_result.ident_data,
1700 		      sizeof(struct ata_params));
1701 
1702 		/* Let the user know whether this device is unconfigured */
1703 		if (device->flags & CAM_DEV_UNCONFIGURED)
1704 			cdm->matches[j].result.device_result.flags =
1705 				DEV_RESULT_UNCONFIGURED;
1706 		else
1707 			cdm->matches[j].result.device_result.flags =
1708 				DEV_RESULT_NOFLAG;
1709 	}
1710 
1711 	/*
1712 	 * If the user isn't interested in peripherals, don't descend
1713 	 * the tree any further.
1714 	 */
1715 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1716 		return(1);
1717 
1718 	/*
1719 	 * If there is a peripheral list generation recorded, make sure
1720 	 * it hasn't changed.
1721 	 */
1722 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1723 	 && (device->target->bus == cdm->pos.cookie.bus)
1724 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1725 	 && (device->target == cdm->pos.cookie.target)
1726 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1727 	 && (device == cdm->pos.cookie.device)
1728 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1729 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1730 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1731 	     device->generation)){
1732 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1733 		return(0);
1734 	}
1735 
1736 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1737 	 && (cdm->pos.cookie.bus == device->target->bus)
1738 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1739 	 && (cdm->pos.cookie.target == device->target)
1740 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1741 	 && (cdm->pos.cookie.device == device)
1742 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1743 	 && (cdm->pos.cookie.periph != NULL))
1744 		return(xptperiphtraverse(device,
1745 				(struct cam_periph *)cdm->pos.cookie.periph,
1746 				xptedtperiphfunc, arg));
1747 	else
1748 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1749 }
1750 
1751 static int
1752 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1753 {
1754 	struct ccb_dev_match *cdm;
1755 	dev_match_ret retval;
1756 
1757 	cdm = (struct ccb_dev_match *)arg;
1758 
1759 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1760 
1761 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1762 		cdm->status = CAM_DEV_MATCH_ERROR;
1763 		return(0);
1764 	}
1765 
1766 	/*
1767 	 * If the copy flag is set, copy this peripheral out.
1768 	 */
1769 	if (retval & DM_RET_COPY) {
1770 		int spaceleft, j;
1771 
1772 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1773 			sizeof(struct dev_match_result));
1774 
1775 		/*
1776 		 * If we don't have enough space to put in another
1777 		 * match result, save our position and tell the
1778 		 * user there are more devices to check.
1779 		 */
1780 		if (spaceleft < sizeof(struct dev_match_result)) {
1781 			bzero(&cdm->pos, sizeof(cdm->pos));
1782 			cdm->pos.position_type =
1783 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1784 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1785 				CAM_DEV_POS_PERIPH;
1786 
1787 			cdm->pos.cookie.bus = periph->path->bus;
1788 			cdm->pos.generations[CAM_BUS_GENERATION]=
1789 				xsoftc.bus_generation;
1790 			cdm->pos.cookie.target = periph->path->target;
1791 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1792 				periph->path->bus->generation;
1793 			cdm->pos.cookie.device = periph->path->device;
1794 			cdm->pos.generations[CAM_DEV_GENERATION] =
1795 				periph->path->target->generation;
1796 			cdm->pos.cookie.periph = periph;
1797 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1798 				periph->path->device->generation;
1799 			cdm->status = CAM_DEV_MATCH_MORE;
1800 			return(0);
1801 		}
1802 
1803 		j = cdm->num_matches;
1804 		cdm->num_matches++;
1805 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1806 		cdm->matches[j].result.periph_result.path_id =
1807 			periph->path->bus->path_id;
1808 		cdm->matches[j].result.periph_result.target_id =
1809 			periph->path->target->target_id;
1810 		cdm->matches[j].result.periph_result.target_lun =
1811 			periph->path->device->lun_id;
1812 		cdm->matches[j].result.periph_result.unit_number =
1813 			periph->unit_number;
1814 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1815 			periph->periph_name, DEV_IDLEN);
1816 	}
1817 
1818 	return(1);
1819 }
1820 
1821 static int
1822 xptedtmatch(struct ccb_dev_match *cdm)
1823 {
1824 	int ret;
1825 
1826 	cdm->num_matches = 0;
1827 
1828 	/*
1829 	 * Check the bus list generation.  If it has changed, the user
1830 	 * needs to reset everything and start over.
1831 	 */
1832 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1833 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1834 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1835 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1836 		return(0);
1837 	}
1838 
1839 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1840 	 && (cdm->pos.cookie.bus != NULL))
1841 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1842 				     xptedtbusfunc, cdm);
1843 	else
1844 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1845 
1846 	/*
1847 	 * If we get back 0, that means that we had to stop before fully
1848 	 * traversing the EDT.  It also means that one of the subroutines
1849 	 * has set the status field to the proper value.  If we get back 1,
1850 	 * we've fully traversed the EDT and copied out any matching entries.
1851 	 */
1852 	if (ret == 1)
1853 		cdm->status = CAM_DEV_MATCH_LAST;
1854 
1855 	return(ret);
1856 }
1857 
1858 static int
1859 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1860 {
1861 	struct ccb_dev_match *cdm;
1862 
1863 	cdm = (struct ccb_dev_match *)arg;
1864 
1865 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1866 	 && (cdm->pos.cookie.pdrv == pdrv)
1867 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1868 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1869 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1870 	     (*pdrv)->generation)) {
1871 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1872 		return(0);
1873 	}
1874 
1875 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1876 	 && (cdm->pos.cookie.pdrv == pdrv)
1877 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1878 	 && (cdm->pos.cookie.periph != NULL))
1879 		return(xptpdperiphtraverse(pdrv,
1880 				(struct cam_periph *)cdm->pos.cookie.periph,
1881 				xptplistperiphfunc, arg));
1882 	else
1883 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1884 }
1885 
1886 static int
1887 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1888 {
1889 	struct ccb_dev_match *cdm;
1890 	dev_match_ret retval;
1891 
1892 	cdm = (struct ccb_dev_match *)arg;
1893 
1894 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1895 
1896 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1897 		cdm->status = CAM_DEV_MATCH_ERROR;
1898 		return(0);
1899 	}
1900 
1901 	/*
1902 	 * If the copy flag is set, copy this peripheral out.
1903 	 */
1904 	if (retval & DM_RET_COPY) {
1905 		int spaceleft, j;
1906 
1907 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1908 			sizeof(struct dev_match_result));
1909 
1910 		/*
1911 		 * If we don't have enough space to put in another
1912 		 * match result, save our position and tell the
1913 		 * user there are more devices to check.
1914 		 */
1915 		if (spaceleft < sizeof(struct dev_match_result)) {
1916 			struct periph_driver **pdrv;
1917 
1918 			pdrv = NULL;
1919 			bzero(&cdm->pos, sizeof(cdm->pos));
1920 			cdm->pos.position_type =
1921 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1922 				CAM_DEV_POS_PERIPH;
1923 
1924 			/*
1925 			 * This may look a bit non-sensical, but it is
1926 			 * actually quite logical.  There are very few
1927 			 * peripheral drivers, and bloating every peripheral
1928 			 * structure with a pointer back to its parent
1929 			 * peripheral driver linker set entry would cost
1930 			 * more in the long run than doing this quick lookup.
1931 			 */
1932 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1933 				if (strcmp((*pdrv)->driver_name,
1934 				    periph->periph_name) == 0)
1935 					break;
1936 			}
1937 
1938 			if (*pdrv == NULL) {
1939 				cdm->status = CAM_DEV_MATCH_ERROR;
1940 				return(0);
1941 			}
1942 
1943 			cdm->pos.cookie.pdrv = pdrv;
1944 			/*
1945 			 * The periph generation slot does double duty, as
1946 			 * does the periph pointer slot.  They are used for
1947 			 * both edt and pdrv lookups and positioning.
1948 			 */
1949 			cdm->pos.cookie.periph = periph;
1950 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1951 				(*pdrv)->generation;
1952 			cdm->status = CAM_DEV_MATCH_MORE;
1953 			return(0);
1954 		}
1955 
1956 		j = cdm->num_matches;
1957 		cdm->num_matches++;
1958 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1959 		cdm->matches[j].result.periph_result.path_id =
1960 			periph->path->bus->path_id;
1961 
1962 		/*
1963 		 * The transport layer peripheral doesn't have a target or
1964 		 * lun.
1965 		 */
1966 		if (periph->path->target)
1967 			cdm->matches[j].result.periph_result.target_id =
1968 				periph->path->target->target_id;
1969 		else
1970 			cdm->matches[j].result.periph_result.target_id = -1;
1971 
1972 		if (periph->path->device)
1973 			cdm->matches[j].result.periph_result.target_lun =
1974 				periph->path->device->lun_id;
1975 		else
1976 			cdm->matches[j].result.periph_result.target_lun = -1;
1977 
1978 		cdm->matches[j].result.periph_result.unit_number =
1979 			periph->unit_number;
1980 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1981 			periph->periph_name, DEV_IDLEN);
1982 	}
1983 
1984 	return(1);
1985 }
1986 
1987 static int
1988 xptperiphlistmatch(struct ccb_dev_match *cdm)
1989 {
1990 	int ret;
1991 
1992 	cdm->num_matches = 0;
1993 
1994 	/*
1995 	 * At this point in the edt traversal function, we check the bus
1996 	 * list generation to make sure that no busses have been added or
1997 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1998 	 * For the peripheral driver list traversal function, however, we
1999 	 * don't have to worry about new peripheral driver types coming or
2000 	 * going; they're in a linker set, and therefore can't change
2001 	 * without a recompile.
2002 	 */
2003 
2004 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2005 	 && (cdm->pos.cookie.pdrv != NULL))
2006 		ret = xptpdrvtraverse(
2007 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2008 				xptplistpdrvfunc, cdm);
2009 	else
2010 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2011 
2012 	/*
2013 	 * If we get back 0, that means that we had to stop before fully
2014 	 * traversing the peripheral driver tree.  It also means that one of
2015 	 * the subroutines has set the status field to the proper value.  If
2016 	 * we get back 1, we've fully traversed the EDT and copied out any
2017 	 * matching entries.
2018 	 */
2019 	if (ret == 1)
2020 		cdm->status = CAM_DEV_MATCH_LAST;
2021 
2022 	return(ret);
2023 }
2024 
2025 static int
2026 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2027 {
2028 	struct cam_eb *bus, *next_bus;
2029 	int retval;
2030 
2031 	retval = 1;
2032 
2033 	mtx_lock(&xsoftc.xpt_topo_lock);
2034 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2035 	     bus != NULL;
2036 	     bus = next_bus) {
2037 
2038 		bus->refcount++;
2039 
2040 		/*
2041 		 * XXX The locking here is obviously very complex.  We
2042 		 * should work to simplify it.
2043 		 */
2044 		mtx_unlock(&xsoftc.xpt_topo_lock);
2045 		CAM_SIM_LOCK(bus->sim);
2046 		retval = tr_func(bus, arg);
2047 		CAM_SIM_UNLOCK(bus->sim);
2048 
2049 		mtx_lock(&xsoftc.xpt_topo_lock);
2050 		next_bus = TAILQ_NEXT(bus, links);
2051 		mtx_unlock(&xsoftc.xpt_topo_lock);
2052 
2053 		xpt_release_bus(bus);
2054 
2055 		if (retval == 0)
2056 			return(retval);
2057 		mtx_lock(&xsoftc.xpt_topo_lock);
2058 	}
2059 	mtx_unlock(&xsoftc.xpt_topo_lock);
2060 
2061 	return(retval);
2062 }
2063 
2064 int
2065 xpt_sim_opened(struct cam_sim *sim)
2066 {
2067 	struct cam_eb *bus;
2068 	struct cam_et *target;
2069 	struct cam_ed *device;
2070 	struct cam_periph *periph;
2071 
2072 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2073 	mtx_assert(sim->mtx, MA_OWNED);
2074 
2075 	mtx_lock(&xsoftc.xpt_topo_lock);
2076 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2077 		if (bus->sim != sim)
2078 			continue;
2079 
2080 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2081 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2082 				SLIST_FOREACH(periph, &device->periphs,
2083 				    periph_links) {
2084 					if (periph->refcount > 0) {
2085 						mtx_unlock(&xsoftc.xpt_topo_lock);
2086 						return (1);
2087 					}
2088 				}
2089 			}
2090 		}
2091 	}
2092 
2093 	mtx_unlock(&xsoftc.xpt_topo_lock);
2094 	return (0);
2095 }
2096 
2097 static int
2098 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2099 		  xpt_targetfunc_t *tr_func, void *arg)
2100 {
2101 	struct cam_et *target, *next_target;
2102 	int retval;
2103 
2104 	retval = 1;
2105 	for (target = (start_target ? start_target :
2106 		       TAILQ_FIRST(&bus->et_entries));
2107 	     target != NULL; target = next_target) {
2108 
2109 		target->refcount++;
2110 
2111 		retval = tr_func(target, arg);
2112 
2113 		next_target = TAILQ_NEXT(target, links);
2114 
2115 		xpt_release_target(target);
2116 
2117 		if (retval == 0)
2118 			return(retval);
2119 	}
2120 
2121 	return(retval);
2122 }
2123 
2124 static int
2125 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2126 		  xpt_devicefunc_t *tr_func, void *arg)
2127 {
2128 	struct cam_ed *device, *next_device;
2129 	int retval;
2130 
2131 	retval = 1;
2132 	for (device = (start_device ? start_device :
2133 		       TAILQ_FIRST(&target->ed_entries));
2134 	     device != NULL;
2135 	     device = next_device) {
2136 
2137 		/*
2138 		 * Hold a reference so the current device does not go away
2139 		 * on us.
2140 		 */
2141 		device->refcount++;
2142 
2143 		retval = tr_func(device, arg);
2144 
2145 		/*
2146 		 * Grab our next pointer before we release the current
2147 		 * device.
2148 		 */
2149 		next_device = TAILQ_NEXT(device, links);
2150 
2151 		xpt_release_device(device);
2152 
2153 		if (retval == 0)
2154 			return(retval);
2155 	}
2156 
2157 	return(retval);
2158 }
2159 
2160 static int
2161 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2162 		  xpt_periphfunc_t *tr_func, void *arg)
2163 {
2164 	struct cam_periph *periph, *next_periph;
2165 	int retval;
2166 
2167 	retval = 1;
2168 
2169 	xpt_lock_buses();
2170 	for (periph = (start_periph ? start_periph :
2171 		       SLIST_FIRST(&device->periphs));
2172 	     periph != NULL;
2173 	     periph = next_periph) {
2174 
2175 
2176 		/*
2177 		 * In this case, we want to show peripherals that have been
2178 		 * invalidated, but not peripherals that are scheduled to
2179 		 * be freed.  So instead of calling cam_periph_acquire(),
2180 		 * which will fail if the periph has been invalidated, we
2181 		 * just check for the free flag here.  If it is free, we
2182 		 * skip to the next periph.
2183 		 */
2184 		if (periph->flags & CAM_PERIPH_FREE) {
2185 			next_periph = SLIST_NEXT(periph, periph_links);
2186 			continue;
2187 		}
2188 
2189 		/*
2190 		 * Acquire a reference to this periph while we call the
2191 		 * traversal function, so it can't go away.
2192 		 */
2193 		periph->refcount++;
2194 
2195 		xpt_unlock_buses();
2196 
2197 		retval = tr_func(periph, arg);
2198 
2199 		/*
2200 		 * We need the lock for list traversal.
2201 		 */
2202 		xpt_lock_buses();
2203 
2204 		/*
2205 		 * Grab the next peripheral before we release this one, so
2206 		 * our next pointer is still valid.
2207 		 */
2208 		next_periph = SLIST_NEXT(periph, periph_links);
2209 
2210 		cam_periph_release_locked_buses(periph);
2211 
2212 		if (retval == 0)
2213 			goto bailout_done;
2214 	}
2215 
2216 bailout_done:
2217 
2218 	xpt_unlock_buses();
2219 
2220 	return(retval);
2221 }
2222 
2223 static int
2224 xptpdrvtraverse(struct periph_driver **start_pdrv,
2225 		xpt_pdrvfunc_t *tr_func, void *arg)
2226 {
2227 	struct periph_driver **pdrv;
2228 	int retval;
2229 
2230 	retval = 1;
2231 
2232 	/*
2233 	 * We don't traverse the peripheral driver list like we do the
2234 	 * other lists, because it is a linker set, and therefore cannot be
2235 	 * changed during runtime.  If the peripheral driver list is ever
2236 	 * re-done to be something other than a linker set (i.e. it can
2237 	 * change while the system is running), the list traversal should
2238 	 * be modified to work like the other traversal functions.
2239 	 */
2240 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2241 	     *pdrv != NULL; pdrv++) {
2242 		retval = tr_func(pdrv, arg);
2243 
2244 		if (retval == 0)
2245 			return(retval);
2246 	}
2247 
2248 	return(retval);
2249 }
2250 
2251 static int
2252 xptpdperiphtraverse(struct periph_driver **pdrv,
2253 		    struct cam_periph *start_periph,
2254 		    xpt_periphfunc_t *tr_func, void *arg)
2255 {
2256 	struct cam_periph *periph, *next_periph;
2257 	int retval;
2258 
2259 	retval = 1;
2260 
2261 	xpt_lock_buses();
2262 	for (periph = (start_periph ? start_periph :
2263 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2264 	     periph = next_periph) {
2265 
2266 
2267 		/*
2268 		 * In this case, we want to show peripherals that have been
2269 		 * invalidated, but not peripherals that are scheduled to
2270 		 * be freed.  So instead of calling cam_periph_acquire(),
2271 		 * which will fail if the periph has been invalidated, we
2272 		 * just check for the free flag here.  If it is free, we
2273 		 * skip to the next periph.
2274 		 */
2275 		if (periph->flags & CAM_PERIPH_FREE) {
2276 			next_periph = TAILQ_NEXT(periph, unit_links);
2277 			continue;
2278 		}
2279 
2280 		/*
2281 		 * Acquire a reference to this periph while we call the
2282 		 * traversal function, so it can't go away.
2283 		 */
2284 		periph->refcount++;
2285 
2286 		/*
2287 		 * XXX KDM we have the toplogy lock here, but in
2288 		 * xptperiphtraverse(), we drop it before calling the
2289 		 * traversal function.  Which is correct?
2290 		 */
2291 		retval = tr_func(periph, arg);
2292 
2293 		/*
2294 		 * Grab the next peripheral before we release this one, so
2295 		 * our next pointer is still valid.
2296 		 */
2297 		next_periph = TAILQ_NEXT(periph, unit_links);
2298 
2299 		cam_periph_release_locked_buses(periph);
2300 
2301 		if (retval == 0)
2302 			goto bailout_done;
2303 	}
2304 bailout_done:
2305 
2306 	xpt_unlock_buses();
2307 
2308 	return(retval);
2309 }
2310 
2311 static int
2312 xptdefbusfunc(struct cam_eb *bus, void *arg)
2313 {
2314 	struct xpt_traverse_config *tr_config;
2315 
2316 	tr_config = (struct xpt_traverse_config *)arg;
2317 
2318 	if (tr_config->depth == XPT_DEPTH_BUS) {
2319 		xpt_busfunc_t *tr_func;
2320 
2321 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2322 
2323 		return(tr_func(bus, tr_config->tr_arg));
2324 	} else
2325 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2326 }
2327 
2328 static int
2329 xptdeftargetfunc(struct cam_et *target, void *arg)
2330 {
2331 	struct xpt_traverse_config *tr_config;
2332 
2333 	tr_config = (struct xpt_traverse_config *)arg;
2334 
2335 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2336 		xpt_targetfunc_t *tr_func;
2337 
2338 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2339 
2340 		return(tr_func(target, tr_config->tr_arg));
2341 	} else
2342 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2343 }
2344 
2345 static int
2346 xptdefdevicefunc(struct cam_ed *device, void *arg)
2347 {
2348 	struct xpt_traverse_config *tr_config;
2349 
2350 	tr_config = (struct xpt_traverse_config *)arg;
2351 
2352 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2353 		xpt_devicefunc_t *tr_func;
2354 
2355 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2356 
2357 		return(tr_func(device, tr_config->tr_arg));
2358 	} else
2359 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2360 }
2361 
2362 static int
2363 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2364 {
2365 	struct xpt_traverse_config *tr_config;
2366 	xpt_periphfunc_t *tr_func;
2367 
2368 	tr_config = (struct xpt_traverse_config *)arg;
2369 
2370 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2371 
2372 	/*
2373 	 * Unlike the other default functions, we don't check for depth
2374 	 * here.  The peripheral driver level is the last level in the EDT,
2375 	 * so if we're here, we should execute the function in question.
2376 	 */
2377 	return(tr_func(periph, tr_config->tr_arg));
2378 }
2379 
2380 /*
2381  * Execute the given function for every bus in the EDT.
2382  */
2383 static int
2384 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2385 {
2386 	struct xpt_traverse_config tr_config;
2387 
2388 	tr_config.depth = XPT_DEPTH_BUS;
2389 	tr_config.tr_func = tr_func;
2390 	tr_config.tr_arg = arg;
2391 
2392 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2393 }
2394 
2395 /*
2396  * Execute the given function for every device in the EDT.
2397  */
2398 static int
2399 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2400 {
2401 	struct xpt_traverse_config tr_config;
2402 
2403 	tr_config.depth = XPT_DEPTH_DEVICE;
2404 	tr_config.tr_func = tr_func;
2405 	tr_config.tr_arg = arg;
2406 
2407 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2408 }
2409 
2410 static int
2411 xptsetasyncfunc(struct cam_ed *device, void *arg)
2412 {
2413 	struct cam_path path;
2414 	struct ccb_getdev cgd;
2415 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2416 
2417 	/*
2418 	 * Don't report unconfigured devices (Wildcard devs,
2419 	 * devices only for target mode, device instances
2420 	 * that have been invalidated but are waiting for
2421 	 * their last reference count to be released).
2422 	 */
2423 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2424 		return (1);
2425 
2426 	xpt_compile_path(&path,
2427 			 NULL,
2428 			 device->target->bus->path_id,
2429 			 device->target->target_id,
2430 			 device->lun_id);
2431 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2432 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2433 	xpt_action((union ccb *)&cgd);
2434 	csa->callback(csa->callback_arg,
2435 			    AC_FOUND_DEVICE,
2436 			    &path, &cgd);
2437 	xpt_release_path(&path);
2438 
2439 	return(1);
2440 }
2441 
2442 static int
2443 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2444 {
2445 	struct cam_path path;
2446 	struct ccb_pathinq cpi;
2447 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2448 
2449 	xpt_compile_path(&path, /*periph*/NULL,
2450 			 bus->sim->path_id,
2451 			 CAM_TARGET_WILDCARD,
2452 			 CAM_LUN_WILDCARD);
2453 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2454 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2455 	xpt_action((union ccb *)&cpi);
2456 	csa->callback(csa->callback_arg,
2457 			    AC_PATH_REGISTERED,
2458 			    &path, &cpi);
2459 	xpt_release_path(&path);
2460 
2461 	return(1);
2462 }
2463 
2464 void
2465 xpt_action(union ccb *start_ccb)
2466 {
2467 
2468 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2469 
2470 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2471 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2472 }
2473 
2474 void
2475 xpt_action_default(union ccb *start_ccb)
2476 {
2477 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2478 	struct cam_path *path;
2479 
2480 	path = start_ccb->ccb_h.path;
2481 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2482 
2483 	switch (start_ccb->ccb_h.func_code) {
2484 	case XPT_SCSI_IO:
2485 	{
2486 		struct cam_ed *device;
2487 
2488 		/*
2489 		 * For the sake of compatibility with SCSI-1
2490 		 * devices that may not understand the identify
2491 		 * message, we include lun information in the
2492 		 * second byte of all commands.  SCSI-1 specifies
2493 		 * that luns are a 3 bit value and reserves only 3
2494 		 * bits for lun information in the CDB.  Later
2495 		 * revisions of the SCSI spec allow for more than 8
2496 		 * luns, but have deprecated lun information in the
2497 		 * CDB.  So, if the lun won't fit, we must omit.
2498 		 *
2499 		 * Also be aware that during initial probing for devices,
2500 		 * the inquiry information is unknown but initialized to 0.
2501 		 * This means that this code will be exercised while probing
2502 		 * devices with an ANSI revision greater than 2.
2503 		 */
2504 		device = path->device;
2505 		if (device->protocol_version <= SCSI_REV_2
2506 		 && start_ccb->ccb_h.target_lun < 8
2507 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2508 
2509 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2510 			    start_ccb->ccb_h.target_lun << 5;
2511 		}
2512 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2513 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2514 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2515 			  	       &path->device->inq_data),
2516 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2517 					  cdb_str, sizeof(cdb_str))));
2518 	}
2519 	/* FALLTHROUGH */
2520 	case XPT_TARGET_IO:
2521 	case XPT_CONT_TARGET_IO:
2522 		start_ccb->csio.sense_resid = 0;
2523 		start_ccb->csio.resid = 0;
2524 		/* FALLTHROUGH */
2525 	case XPT_ATA_IO:
2526 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2527 			start_ccb->ataio.resid = 0;
2528 			CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n",
2529 			    ata_op_string(&start_ccb->ataio.cmd),
2530 			    ata_cmd_string(&start_ccb->ataio.cmd,
2531 					  cdb_str, sizeof(cdb_str))));
2532 		}
2533 		/* FALLTHROUGH */
2534 	case XPT_RESET_DEV:
2535 	case XPT_ENG_EXEC:
2536 	case XPT_SMP_IO:
2537 	{
2538 		int frozen;
2539 
2540 		frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2541 		path->device->sim->devq->alloc_openings += frozen;
2542 		if (frozen > 0)
2543 			xpt_run_dev_allocq(path->bus);
2544 		if (xpt_schedule_dev_sendq(path->bus, path->device))
2545 			xpt_run_dev_sendq(path->bus);
2546 		break;
2547 	}
2548 	case XPT_CALC_GEOMETRY:
2549 	{
2550 		struct cam_sim *sim;
2551 
2552 		/* Filter out garbage */
2553 		if (start_ccb->ccg.block_size == 0
2554 		 || start_ccb->ccg.volume_size == 0) {
2555 			start_ccb->ccg.cylinders = 0;
2556 			start_ccb->ccg.heads = 0;
2557 			start_ccb->ccg.secs_per_track = 0;
2558 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2559 			break;
2560 		}
2561 #if defined(PC98) || defined(__sparc64__)
2562 		/*
2563 		 * In a PC-98 system, geometry translation depens on
2564 		 * the "real" device geometry obtained from mode page 4.
2565 		 * SCSI geometry translation is performed in the
2566 		 * initialization routine of the SCSI BIOS and the result
2567 		 * stored in host memory.  If the translation is available
2568 		 * in host memory, use it.  If not, rely on the default
2569 		 * translation the device driver performs.
2570 		 * For sparc64, we may need adjust the geometry of large
2571 		 * disks in order to fit the limitations of the 16-bit
2572 		 * fields of the VTOC8 disk label.
2573 		 */
2574 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2575 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2576 			break;
2577 		}
2578 #endif
2579 		sim = path->bus->sim;
2580 		(*(sim->sim_action))(sim, start_ccb);
2581 		break;
2582 	}
2583 	case XPT_ABORT:
2584 	{
2585 		union ccb* abort_ccb;
2586 
2587 		abort_ccb = start_ccb->cab.abort_ccb;
2588 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2589 
2590 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2591 				struct cam_ccbq *ccbq;
2592 				struct cam_ed *device;
2593 
2594 				device = abort_ccb->ccb_h.path->device;
2595 				ccbq = &device->ccbq;
2596 				device->sim->devq->alloc_openings -=
2597 				    cam_ccbq_remove_ccb(ccbq, abort_ccb);
2598 				abort_ccb->ccb_h.status =
2599 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2600 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2601 				xpt_done(abort_ccb);
2602 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2603 				break;
2604 			}
2605 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2606 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2607 				/*
2608 				 * We've caught this ccb en route to
2609 				 * the SIM.  Flag it for abort and the
2610 				 * SIM will do so just before starting
2611 				 * real work on the CCB.
2612 				 */
2613 				abort_ccb->ccb_h.status =
2614 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2615 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2616 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2617 				break;
2618 			}
2619 		}
2620 		if (XPT_FC_IS_QUEUED(abort_ccb)
2621 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2622 			/*
2623 			 * It's already completed but waiting
2624 			 * for our SWI to get to it.
2625 			 */
2626 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2627 			break;
2628 		}
2629 		/*
2630 		 * If we weren't able to take care of the abort request
2631 		 * in the XPT, pass the request down to the SIM for processing.
2632 		 */
2633 	}
2634 	/* FALLTHROUGH */
2635 	case XPT_ACCEPT_TARGET_IO:
2636 	case XPT_EN_LUN:
2637 	case XPT_IMMED_NOTIFY:
2638 	case XPT_NOTIFY_ACK:
2639 	case XPT_RESET_BUS:
2640 	case XPT_IMMEDIATE_NOTIFY:
2641 	case XPT_NOTIFY_ACKNOWLEDGE:
2642 	case XPT_GET_SIM_KNOB:
2643 	case XPT_SET_SIM_KNOB:
2644 	{
2645 		struct cam_sim *sim;
2646 
2647 		sim = path->bus->sim;
2648 		(*(sim->sim_action))(sim, start_ccb);
2649 		break;
2650 	}
2651 	case XPT_PATH_INQ:
2652 	{
2653 		struct cam_sim *sim;
2654 
2655 		sim = path->bus->sim;
2656 		(*(sim->sim_action))(sim, start_ccb);
2657 		break;
2658 	}
2659 	case XPT_PATH_STATS:
2660 		start_ccb->cpis.last_reset = path->bus->last_reset;
2661 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2662 		break;
2663 	case XPT_GDEV_TYPE:
2664 	{
2665 		struct cam_ed *dev;
2666 
2667 		dev = path->device;
2668 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2669 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2670 		} else {
2671 			struct ccb_getdev *cgd;
2672 
2673 			cgd = &start_ccb->cgd;
2674 			cgd->protocol = dev->protocol;
2675 			cgd->inq_data = dev->inq_data;
2676 			cgd->ident_data = dev->ident_data;
2677 			cgd->inq_flags = dev->inq_flags;
2678 			cgd->ccb_h.status = CAM_REQ_CMP;
2679 			cgd->serial_num_len = dev->serial_num_len;
2680 			if ((dev->serial_num_len > 0)
2681 			 && (dev->serial_num != NULL))
2682 				bcopy(dev->serial_num, cgd->serial_num,
2683 				      dev->serial_num_len);
2684 		}
2685 		break;
2686 	}
2687 	case XPT_GDEV_STATS:
2688 	{
2689 		struct cam_ed *dev;
2690 
2691 		dev = path->device;
2692 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2693 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2694 		} else {
2695 			struct ccb_getdevstats *cgds;
2696 			struct cam_eb *bus;
2697 			struct cam_et *tar;
2698 
2699 			cgds = &start_ccb->cgds;
2700 			bus = path->bus;
2701 			tar = path->target;
2702 			cgds->dev_openings = dev->ccbq.dev_openings;
2703 			cgds->dev_active = dev->ccbq.dev_active;
2704 			cgds->devq_openings = dev->ccbq.devq_openings;
2705 			cgds->devq_queued = dev->ccbq.queue.entries;
2706 			cgds->held = dev->ccbq.held;
2707 			cgds->last_reset = tar->last_reset;
2708 			cgds->maxtags = dev->maxtags;
2709 			cgds->mintags = dev->mintags;
2710 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2711 				cgds->last_reset = bus->last_reset;
2712 			cgds->ccb_h.status = CAM_REQ_CMP;
2713 		}
2714 		break;
2715 	}
2716 	case XPT_GDEVLIST:
2717 	{
2718 		struct cam_periph	*nperiph;
2719 		struct periph_list	*periph_head;
2720 		struct ccb_getdevlist	*cgdl;
2721 		u_int			i;
2722 		struct cam_ed		*device;
2723 		int			found;
2724 
2725 
2726 		found = 0;
2727 
2728 		/*
2729 		 * Don't want anyone mucking with our data.
2730 		 */
2731 		device = path->device;
2732 		periph_head = &device->periphs;
2733 		cgdl = &start_ccb->cgdl;
2734 
2735 		/*
2736 		 * Check and see if the list has changed since the user
2737 		 * last requested a list member.  If so, tell them that the
2738 		 * list has changed, and therefore they need to start over
2739 		 * from the beginning.
2740 		 */
2741 		if ((cgdl->index != 0) &&
2742 		    (cgdl->generation != device->generation)) {
2743 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2744 			break;
2745 		}
2746 
2747 		/*
2748 		 * Traverse the list of peripherals and attempt to find
2749 		 * the requested peripheral.
2750 		 */
2751 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2752 		     (nperiph != NULL) && (i <= cgdl->index);
2753 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2754 			if (i == cgdl->index) {
2755 				strncpy(cgdl->periph_name,
2756 					nperiph->periph_name,
2757 					DEV_IDLEN);
2758 				cgdl->unit_number = nperiph->unit_number;
2759 				found = 1;
2760 			}
2761 		}
2762 		if (found == 0) {
2763 			cgdl->status = CAM_GDEVLIST_ERROR;
2764 			break;
2765 		}
2766 
2767 		if (nperiph == NULL)
2768 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2769 		else
2770 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2771 
2772 		cgdl->index++;
2773 		cgdl->generation = device->generation;
2774 
2775 		cgdl->ccb_h.status = CAM_REQ_CMP;
2776 		break;
2777 	}
2778 	case XPT_DEV_MATCH:
2779 	{
2780 		dev_pos_type position_type;
2781 		struct ccb_dev_match *cdm;
2782 
2783 		cdm = &start_ccb->cdm;
2784 
2785 		/*
2786 		 * There are two ways of getting at information in the EDT.
2787 		 * The first way is via the primary EDT tree.  It starts
2788 		 * with a list of busses, then a list of targets on a bus,
2789 		 * then devices/luns on a target, and then peripherals on a
2790 		 * device/lun.  The "other" way is by the peripheral driver
2791 		 * lists.  The peripheral driver lists are organized by
2792 		 * peripheral driver.  (obviously)  So it makes sense to
2793 		 * use the peripheral driver list if the user is looking
2794 		 * for something like "da1", or all "da" devices.  If the
2795 		 * user is looking for something on a particular bus/target
2796 		 * or lun, it's generally better to go through the EDT tree.
2797 		 */
2798 
2799 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2800 			position_type = cdm->pos.position_type;
2801 		else {
2802 			u_int i;
2803 
2804 			position_type = CAM_DEV_POS_NONE;
2805 
2806 			for (i = 0; i < cdm->num_patterns; i++) {
2807 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2808 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2809 					position_type = CAM_DEV_POS_EDT;
2810 					break;
2811 				}
2812 			}
2813 
2814 			if (cdm->num_patterns == 0)
2815 				position_type = CAM_DEV_POS_EDT;
2816 			else if (position_type == CAM_DEV_POS_NONE)
2817 				position_type = CAM_DEV_POS_PDRV;
2818 		}
2819 
2820 		/*
2821 		 * Note that we drop the SIM lock here, because the EDT
2822 		 * traversal code needs to do its own locking.
2823 		 */
2824 		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2825 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2826 		case CAM_DEV_POS_EDT:
2827 			xptedtmatch(cdm);
2828 			break;
2829 		case CAM_DEV_POS_PDRV:
2830 			xptperiphlistmatch(cdm);
2831 			break;
2832 		default:
2833 			cdm->status = CAM_DEV_MATCH_ERROR;
2834 			break;
2835 		}
2836 		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2837 
2838 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2839 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2840 		else
2841 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2842 
2843 		break;
2844 	}
2845 	case XPT_SASYNC_CB:
2846 	{
2847 		struct ccb_setasync *csa;
2848 		struct async_node *cur_entry;
2849 		struct async_list *async_head;
2850 		u_int32_t added;
2851 
2852 		csa = &start_ccb->csa;
2853 		added = csa->event_enable;
2854 		async_head = &path->device->asyncs;
2855 
2856 		/*
2857 		 * If there is already an entry for us, simply
2858 		 * update it.
2859 		 */
2860 		cur_entry = SLIST_FIRST(async_head);
2861 		while (cur_entry != NULL) {
2862 			if ((cur_entry->callback_arg == csa->callback_arg)
2863 			 && (cur_entry->callback == csa->callback))
2864 				break;
2865 			cur_entry = SLIST_NEXT(cur_entry, links);
2866 		}
2867 
2868 		if (cur_entry != NULL) {
2869 		 	/*
2870 			 * If the request has no flags set,
2871 			 * remove the entry.
2872 			 */
2873 			added &= ~cur_entry->event_enable;
2874 			if (csa->event_enable == 0) {
2875 				SLIST_REMOVE(async_head, cur_entry,
2876 					     async_node, links);
2877 				xpt_release_device(path->device);
2878 				free(cur_entry, M_CAMXPT);
2879 			} else {
2880 				cur_entry->event_enable = csa->event_enable;
2881 			}
2882 			csa->event_enable = added;
2883 		} else {
2884 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2885 					   M_NOWAIT);
2886 			if (cur_entry == NULL) {
2887 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2888 				break;
2889 			}
2890 			cur_entry->event_enable = csa->event_enable;
2891 			cur_entry->callback_arg = csa->callback_arg;
2892 			cur_entry->callback = csa->callback;
2893 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2894 			xpt_acquire_device(path->device);
2895 		}
2896 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2897 		break;
2898 	}
2899 	case XPT_REL_SIMQ:
2900 	{
2901 		struct ccb_relsim *crs;
2902 		struct cam_ed *dev;
2903 
2904 		crs = &start_ccb->crs;
2905 		dev = path->device;
2906 		if (dev == NULL) {
2907 
2908 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2909 			break;
2910 		}
2911 
2912 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2913 
2914 			/* Don't ever go below one opening */
2915 			if (crs->openings > 0) {
2916 				xpt_dev_ccbq_resize(path, crs->openings);
2917 				if (bootverbose) {
2918 					xpt_print(path,
2919 					    "number of openings is now %d\n",
2920 					    crs->openings);
2921 				}
2922 			}
2923 		}
2924 
2925 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2926 
2927 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2928 
2929 				/*
2930 				 * Just extend the old timeout and decrement
2931 				 * the freeze count so that a single timeout
2932 				 * is sufficient for releasing the queue.
2933 				 */
2934 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2935 				callout_stop(&dev->callout);
2936 			} else {
2937 
2938 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2939 			}
2940 
2941 			callout_reset(&dev->callout,
2942 			    (crs->release_timeout * hz) / 1000,
2943 			    xpt_release_devq_timeout, dev);
2944 
2945 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2946 
2947 		}
2948 
2949 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2950 
2951 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2952 				/*
2953 				 * Decrement the freeze count so that a single
2954 				 * completion is still sufficient to unfreeze
2955 				 * the queue.
2956 				 */
2957 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2958 			} else {
2959 
2960 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2961 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2962 			}
2963 		}
2964 
2965 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2966 
2967 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2968 			 || (dev->ccbq.dev_active == 0)) {
2969 
2970 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2971 			} else {
2972 
2973 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2974 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2975 			}
2976 		}
2977 
2978 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2979 			xpt_release_devq_rl(path, /*runlevel*/
2980 			    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2981 				crs->release_timeout : 0,
2982 			    /*count*/1, /*run_queue*/TRUE);
2983 		}
2984 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2985 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2986 		break;
2987 	}
2988 	case XPT_DEBUG: {
2989 		struct cam_path *oldpath;
2990 		struct cam_sim *oldsim;
2991 
2992 		/* Check that all request bits are supported. */
2993 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2994 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2995 			break;
2996 		}
2997 
2998 		cam_dflags = CAM_DEBUG_NONE;
2999 		if (cam_dpath != NULL) {
3000 			/* To release the old path we must hold proper lock. */
3001 			oldpath = cam_dpath;
3002 			cam_dpath = NULL;
3003 			oldsim = xpt_path_sim(oldpath);
3004 			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
3005 			CAM_SIM_LOCK(oldsim);
3006 			xpt_free_path(oldpath);
3007 			CAM_SIM_UNLOCK(oldsim);
3008 			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
3009 		}
3010 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3011 			if (xpt_create_path(&cam_dpath, xpt_periph,
3012 					    start_ccb->ccb_h.path_id,
3013 					    start_ccb->ccb_h.target_id,
3014 					    start_ccb->ccb_h.target_lun) !=
3015 					    CAM_REQ_CMP) {
3016 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3017 			} else {
3018 				cam_dflags = start_ccb->cdbg.flags;
3019 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3020 				xpt_print(cam_dpath, "debugging flags now %x\n",
3021 				    cam_dflags);
3022 			}
3023 		} else
3024 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3025 		break;
3026 	}
3027 	case XPT_FREEZE_QUEUE:
3028 	{
3029 		struct ccb_relsim *crs = &start_ccb->crs;
3030 
3031 		xpt_freeze_devq_rl(path, /*runlevel*/
3032 		    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
3033 		    crs->release_timeout : 0, /*count*/1);
3034 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3035 		break;
3036 	}
3037 	case XPT_NOOP:
3038 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3039 			xpt_freeze_devq(path, 1);
3040 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3041 		break;
3042 	default:
3043 	case XPT_SDEV_TYPE:
3044 	case XPT_TERM_IO:
3045 	case XPT_ENG_INQ:
3046 		/* XXX Implement */
3047 		printf("%s: CCB type %#x not supported\n", __func__,
3048 		       start_ccb->ccb_h.func_code);
3049 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3050 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3051 			xpt_done(start_ccb);
3052 		}
3053 		break;
3054 	}
3055 }
3056 
3057 void
3058 xpt_polled_action(union ccb *start_ccb)
3059 {
3060 	u_int32_t timeout;
3061 	struct	  cam_sim *sim;
3062 	struct	  cam_devq *devq;
3063 	struct	  cam_ed *dev;
3064 
3065 
3066 	timeout = start_ccb->ccb_h.timeout * 10;
3067 	sim = start_ccb->ccb_h.path->bus->sim;
3068 	devq = sim->devq;
3069 	dev = start_ccb->ccb_h.path->device;
3070 
3071 	mtx_assert(sim->mtx, MA_OWNED);
3072 
3073 	/* Don't use ISR for this SIM while polling. */
3074 	sim->flags |= CAM_SIM_POLLED;
3075 
3076 	/*
3077 	 * Steal an opening so that no other queued requests
3078 	 * can get it before us while we simulate interrupts.
3079 	 */
3080 	dev->ccbq.devq_openings--;
3081 	dev->ccbq.dev_openings--;
3082 
3083 	while(((devq != NULL && devq->send_openings <= 0) ||
3084 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3085 		DELAY(100);
3086 		(*(sim->sim_poll))(sim);
3087 		camisr_runqueue(&sim->sim_doneq);
3088 	}
3089 
3090 	dev->ccbq.devq_openings++;
3091 	dev->ccbq.dev_openings++;
3092 
3093 	if (timeout != 0) {
3094 		xpt_action(start_ccb);
3095 		while(--timeout > 0) {
3096 			(*(sim->sim_poll))(sim);
3097 			camisr_runqueue(&sim->sim_doneq);
3098 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3099 			    != CAM_REQ_INPROG)
3100 				break;
3101 			DELAY(100);
3102 		}
3103 		if (timeout == 0) {
3104 			/*
3105 			 * XXX Is it worth adding a sim_timeout entry
3106 			 * point so we can attempt recovery?  If
3107 			 * this is only used for dumps, I don't think
3108 			 * it is.
3109 			 */
3110 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3111 		}
3112 	} else {
3113 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3114 	}
3115 
3116 	/* We will use CAM ISR for this SIM again. */
3117 	sim->flags &= ~CAM_SIM_POLLED;
3118 }
3119 
3120 /*
3121  * Schedule a peripheral driver to receive a ccb when it's
3122  * target device has space for more transactions.
3123  */
3124 void
3125 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3126 {
3127 	struct cam_ed *device;
3128 	int runq = 0;
3129 
3130 	mtx_assert(perph->sim->mtx, MA_OWNED);
3131 
3132 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3133 	device = perph->path->device;
3134 	if (periph_is_queued(perph)) {
3135 		/* Simply reorder based on new priority */
3136 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3137 			  ("   change priority to %d\n", new_priority));
3138 		if (new_priority < perph->pinfo.priority) {
3139 			camq_change_priority(&device->drvq,
3140 					     perph->pinfo.index,
3141 					     new_priority);
3142 			runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3143 		}
3144 	} else {
3145 		/* New entry on the queue */
3146 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3147 			  ("   added periph to queue\n"));
3148 		perph->pinfo.priority = new_priority;
3149 		perph->pinfo.generation = ++device->drvq.generation;
3150 		camq_insert(&device->drvq, &perph->pinfo);
3151 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3152 	}
3153 	if (runq != 0) {
3154 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3155 			  ("   calling xpt_run_devq\n"));
3156 		xpt_run_dev_allocq(perph->path->bus);
3157 	}
3158 }
3159 
3160 
3161 /*
3162  * Schedule a device to run on a given queue.
3163  * If the device was inserted as a new entry on the queue,
3164  * return 1 meaning the device queue should be run. If we
3165  * were already queued, implying someone else has already
3166  * started the queue, return 0 so the caller doesn't attempt
3167  * to run the queue.
3168  */
3169 int
3170 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3171 		 u_int32_t new_priority)
3172 {
3173 	int retval;
3174 	u_int32_t old_priority;
3175 
3176 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3177 
3178 	old_priority = pinfo->priority;
3179 
3180 	/*
3181 	 * Are we already queued?
3182 	 */
3183 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3184 		/* Simply reorder based on new priority */
3185 		if (new_priority < old_priority) {
3186 			camq_change_priority(queue, pinfo->index,
3187 					     new_priority);
3188 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3189 					("changed priority to %d\n",
3190 					 new_priority));
3191 			retval = 1;
3192 		} else
3193 			retval = 0;
3194 	} else {
3195 		/* New entry on the queue */
3196 		if (new_priority < old_priority)
3197 			pinfo->priority = new_priority;
3198 
3199 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3200 				("Inserting onto queue\n"));
3201 		pinfo->generation = ++queue->generation;
3202 		camq_insert(queue, pinfo);
3203 		retval = 1;
3204 	}
3205 	return (retval);
3206 }
3207 
3208 static void
3209 xpt_run_dev_allocq(struct cam_eb *bus)
3210 {
3211 	struct	cam_devq *devq;
3212 
3213 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3214 	devq = bus->sim->devq;
3215 
3216 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3217 			("   qfrozen_cnt == 0x%x, entries == %d, "
3218 			 "openings == %d, active == %d\n",
3219 			 devq->alloc_queue.qfrozen_cnt[0],
3220 			 devq->alloc_queue.entries,
3221 			 devq->alloc_openings,
3222 			 devq->alloc_active));
3223 
3224 	devq->alloc_queue.qfrozen_cnt[0]++;
3225 	while ((devq->alloc_queue.entries > 0)
3226 	    && (devq->alloc_openings > 0)
3227 	    && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3228 		struct	cam_ed_qinfo *qinfo;
3229 		struct	cam_ed *device;
3230 		union	ccb *work_ccb;
3231 		struct	cam_periph *drv;
3232 		struct	camq *drvq;
3233 
3234 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3235 							   CAMQ_HEAD);
3236 		device = qinfo->device;
3237 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3238 				("running device %p\n", device));
3239 
3240 		drvq = &device->drvq;
3241 		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3242 		    "Device on queue without any work to do"));
3243 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3244 			devq->alloc_openings--;
3245 			devq->alloc_active++;
3246 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3247 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3248 				      drv->pinfo.priority);
3249 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3250 					("calling periph start\n"));
3251 			drv->periph_start(drv, work_ccb);
3252 		} else {
3253 			/*
3254 			 * Malloc failure in alloc_ccb
3255 			 */
3256 			/*
3257 			 * XXX add us to a list to be run from free_ccb
3258 			 * if we don't have any ccbs active on this
3259 			 * device queue otherwise we may never get run
3260 			 * again.
3261 			 */
3262 			break;
3263 		}
3264 
3265 		/* We may have more work. Attempt to reschedule. */
3266 		xpt_schedule_dev_allocq(bus, device);
3267 	}
3268 	devq->alloc_queue.qfrozen_cnt[0]--;
3269 }
3270 
3271 static void
3272 xpt_run_dev_sendq(struct cam_eb *bus)
3273 {
3274 	struct	cam_devq *devq;
3275 
3276 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3277 
3278 	devq = bus->sim->devq;
3279 
3280 	devq->send_queue.qfrozen_cnt[0]++;
3281 	while ((devq->send_queue.entries > 0)
3282 	    && (devq->send_openings > 0)
3283 	    && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3284 		struct	cam_ed_qinfo *qinfo;
3285 		struct	cam_ed *device;
3286 		union ccb *work_ccb;
3287 		struct	cam_sim *sim;
3288 
3289 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3290 							   CAMQ_HEAD);
3291 		device = qinfo->device;
3292 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3293 				("running device %p\n", device));
3294 
3295 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3296 		if (work_ccb == NULL) {
3297 			printf("device on run queue with no ccbs???\n");
3298 			continue;
3299 		}
3300 
3301 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3302 
3303 			mtx_lock(&xsoftc.xpt_lock);
3304 		 	if (xsoftc.num_highpower <= 0) {
3305 				/*
3306 				 * We got a high power command, but we
3307 				 * don't have any available slots.  Freeze
3308 				 * the device queue until we have a slot
3309 				 * available.
3310 				 */
3311 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3312 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3313 						   &work_ccb->ccb_h,
3314 						   xpt_links.stqe);
3315 
3316 				mtx_unlock(&xsoftc.xpt_lock);
3317 				continue;
3318 			} else {
3319 				/*
3320 				 * Consume a high power slot while
3321 				 * this ccb runs.
3322 				 */
3323 				xsoftc.num_highpower--;
3324 			}
3325 			mtx_unlock(&xsoftc.xpt_lock);
3326 		}
3327 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3328 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3329 
3330 		devq->send_openings--;
3331 		devq->send_active++;
3332 
3333 		xpt_schedule_dev_sendq(bus, device);
3334 
3335 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3336 			/*
3337 			 * The client wants to freeze the queue
3338 			 * after this CCB is sent.
3339 			 */
3340 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3341 		}
3342 
3343 		/* In Target mode, the peripheral driver knows best... */
3344 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3345 			if ((device->inq_flags & SID_CmdQue) != 0
3346 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3347 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3348 			else
3349 				/*
3350 				 * Clear this in case of a retried CCB that
3351 				 * failed due to a rejected tag.
3352 				 */
3353 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3354 		}
3355 
3356 		/*
3357 		 * Device queues can be shared among multiple sim instances
3358 		 * that reside on different busses.  Use the SIM in the queue
3359 		 * CCB's path, rather than the one in the bus that was passed
3360 		 * into this function.
3361 		 */
3362 		sim = work_ccb->ccb_h.path->bus->sim;
3363 		(*(sim->sim_action))(sim, work_ccb);
3364 	}
3365 	devq->send_queue.qfrozen_cnt[0]--;
3366 }
3367 
3368 /*
3369  * This function merges stuff from the slave ccb into the master ccb, while
3370  * keeping important fields in the master ccb constant.
3371  */
3372 void
3373 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3374 {
3375 
3376 	/*
3377 	 * Pull fields that are valid for peripheral drivers to set
3378 	 * into the master CCB along with the CCB "payload".
3379 	 */
3380 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3381 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3382 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3383 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3384 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3385 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3386 }
3387 
3388 void
3389 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3390 {
3391 
3392 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3393 	ccb_h->pinfo.priority = priority;
3394 	ccb_h->path = path;
3395 	ccb_h->path_id = path->bus->path_id;
3396 	if (path->target)
3397 		ccb_h->target_id = path->target->target_id;
3398 	else
3399 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3400 	if (path->device) {
3401 		ccb_h->target_lun = path->device->lun_id;
3402 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3403 	} else {
3404 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3405 	}
3406 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3407 	ccb_h->flags = 0;
3408 }
3409 
3410 /* Path manipulation functions */
3411 cam_status
3412 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3413 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3414 {
3415 	struct	   cam_path *path;
3416 	cam_status status;
3417 
3418 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3419 
3420 	if (path == NULL) {
3421 		status = CAM_RESRC_UNAVAIL;
3422 		return(status);
3423 	}
3424 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3425 	if (status != CAM_REQ_CMP) {
3426 		free(path, M_CAMPATH);
3427 		path = NULL;
3428 	}
3429 	*new_path_ptr = path;
3430 	return (status);
3431 }
3432 
3433 cam_status
3434 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3435 			 struct cam_periph *periph, path_id_t path_id,
3436 			 target_id_t target_id, lun_id_t lun_id)
3437 {
3438 	struct	   cam_path *path;
3439 	struct	   cam_eb *bus = NULL;
3440 	cam_status status;
3441 
3442 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3443 
3444 	bus = xpt_find_bus(path_id);
3445 	if (bus != NULL)
3446 		CAM_SIM_LOCK(bus->sim);
3447 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3448 	if (bus != NULL) {
3449 		CAM_SIM_UNLOCK(bus->sim);
3450 		xpt_release_bus(bus);
3451 	}
3452 	if (status != CAM_REQ_CMP) {
3453 		free(path, M_CAMPATH);
3454 		path = NULL;
3455 	}
3456 	*new_path_ptr = path;
3457 	return (status);
3458 }
3459 
3460 cam_status
3461 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3462 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3463 {
3464 	struct	     cam_eb *bus;
3465 	struct	     cam_et *target;
3466 	struct	     cam_ed *device;
3467 	cam_status   status;
3468 
3469 	status = CAM_REQ_CMP;	/* Completed without error */
3470 	target = NULL;		/* Wildcarded */
3471 	device = NULL;		/* Wildcarded */
3472 
3473 	/*
3474 	 * We will potentially modify the EDT, so block interrupts
3475 	 * that may attempt to create cam paths.
3476 	 */
3477 	bus = xpt_find_bus(path_id);
3478 	if (bus == NULL) {
3479 		status = CAM_PATH_INVALID;
3480 	} else {
3481 		target = xpt_find_target(bus, target_id);
3482 		if (target == NULL) {
3483 			/* Create one */
3484 			struct cam_et *new_target;
3485 
3486 			new_target = xpt_alloc_target(bus, target_id);
3487 			if (new_target == NULL) {
3488 				status = CAM_RESRC_UNAVAIL;
3489 			} else {
3490 				target = new_target;
3491 			}
3492 		}
3493 		if (target != NULL) {
3494 			device = xpt_find_device(target, lun_id);
3495 			if (device == NULL) {
3496 				/* Create one */
3497 				struct cam_ed *new_device;
3498 
3499 				new_device =
3500 				    (*(bus->xport->alloc_device))(bus,
3501 								      target,
3502 								      lun_id);
3503 				if (new_device == NULL) {
3504 					status = CAM_RESRC_UNAVAIL;
3505 				} else {
3506 					device = new_device;
3507 				}
3508 			}
3509 		}
3510 	}
3511 
3512 	/*
3513 	 * Only touch the user's data if we are successful.
3514 	 */
3515 	if (status == CAM_REQ_CMP) {
3516 		new_path->periph = perph;
3517 		new_path->bus = bus;
3518 		new_path->target = target;
3519 		new_path->device = device;
3520 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3521 	} else {
3522 		if (device != NULL)
3523 			xpt_release_device(device);
3524 		if (target != NULL)
3525 			xpt_release_target(target);
3526 		if (bus != NULL)
3527 			xpt_release_bus(bus);
3528 	}
3529 	return (status);
3530 }
3531 
3532 void
3533 xpt_release_path(struct cam_path *path)
3534 {
3535 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3536 	if (path->device != NULL) {
3537 		xpt_release_device(path->device);
3538 		path->device = NULL;
3539 	}
3540 	if (path->target != NULL) {
3541 		xpt_release_target(path->target);
3542 		path->target = NULL;
3543 	}
3544 	if (path->bus != NULL) {
3545 		xpt_release_bus(path->bus);
3546 		path->bus = NULL;
3547 	}
3548 }
3549 
3550 void
3551 xpt_free_path(struct cam_path *path)
3552 {
3553 
3554 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3555 	xpt_release_path(path);
3556 	free(path, M_CAMPATH);
3557 }
3558 
3559 void
3560 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3561     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3562 {
3563 
3564 	mtx_lock(&xsoftc.xpt_topo_lock);
3565 	if (bus_ref) {
3566 		if (path->bus)
3567 			*bus_ref = path->bus->refcount;
3568 		else
3569 			*bus_ref = 0;
3570 	}
3571 	mtx_unlock(&xsoftc.xpt_topo_lock);
3572 	if (periph_ref) {
3573 		if (path->periph)
3574 			*periph_ref = path->periph->refcount;
3575 		else
3576 			*periph_ref = 0;
3577 	}
3578 	if (target_ref) {
3579 		if (path->target)
3580 			*target_ref = path->target->refcount;
3581 		else
3582 			*target_ref = 0;
3583 	}
3584 	if (device_ref) {
3585 		if (path->device)
3586 			*device_ref = path->device->refcount;
3587 		else
3588 			*device_ref = 0;
3589 	}
3590 }
3591 
3592 /*
3593  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3594  * in path1, 2 for match with wildcards in path2.
3595  */
3596 int
3597 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3598 {
3599 	int retval = 0;
3600 
3601 	if (path1->bus != path2->bus) {
3602 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3603 			retval = 1;
3604 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3605 			retval = 2;
3606 		else
3607 			return (-1);
3608 	}
3609 	if (path1->target != path2->target) {
3610 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3611 			if (retval == 0)
3612 				retval = 1;
3613 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3614 			retval = 2;
3615 		else
3616 			return (-1);
3617 	}
3618 	if (path1->device != path2->device) {
3619 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3620 			if (retval == 0)
3621 				retval = 1;
3622 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3623 			retval = 2;
3624 		else
3625 			return (-1);
3626 	}
3627 	return (retval);
3628 }
3629 
3630 void
3631 xpt_print_path(struct cam_path *path)
3632 {
3633 
3634 	if (path == NULL)
3635 		printf("(nopath): ");
3636 	else {
3637 		if (path->periph != NULL)
3638 			printf("(%s%d:", path->periph->periph_name,
3639 			       path->periph->unit_number);
3640 		else
3641 			printf("(noperiph:");
3642 
3643 		if (path->bus != NULL)
3644 			printf("%s%d:%d:", path->bus->sim->sim_name,
3645 			       path->bus->sim->unit_number,
3646 			       path->bus->sim->bus_id);
3647 		else
3648 			printf("nobus:");
3649 
3650 		if (path->target != NULL)
3651 			printf("%d:", path->target->target_id);
3652 		else
3653 			printf("X:");
3654 
3655 		if (path->device != NULL)
3656 			printf("%d): ", path->device->lun_id);
3657 		else
3658 			printf("X): ");
3659 	}
3660 }
3661 
3662 void
3663 xpt_print(struct cam_path *path, const char *fmt, ...)
3664 {
3665 	va_list ap;
3666 	xpt_print_path(path);
3667 	va_start(ap, fmt);
3668 	vprintf(fmt, ap);
3669 	va_end(ap);
3670 }
3671 
3672 int
3673 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3674 {
3675 	struct sbuf sb;
3676 
3677 #ifdef INVARIANTS
3678 	if (path != NULL && path->bus != NULL)
3679 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3680 #endif
3681 
3682 	sbuf_new(&sb, str, str_len, 0);
3683 
3684 	if (path == NULL)
3685 		sbuf_printf(&sb, "(nopath): ");
3686 	else {
3687 		if (path->periph != NULL)
3688 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3689 				    path->periph->unit_number);
3690 		else
3691 			sbuf_printf(&sb, "(noperiph:");
3692 
3693 		if (path->bus != NULL)
3694 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3695 				    path->bus->sim->unit_number,
3696 				    path->bus->sim->bus_id);
3697 		else
3698 			sbuf_printf(&sb, "nobus:");
3699 
3700 		if (path->target != NULL)
3701 			sbuf_printf(&sb, "%d:", path->target->target_id);
3702 		else
3703 			sbuf_printf(&sb, "X:");
3704 
3705 		if (path->device != NULL)
3706 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3707 		else
3708 			sbuf_printf(&sb, "X): ");
3709 	}
3710 	sbuf_finish(&sb);
3711 
3712 	return(sbuf_len(&sb));
3713 }
3714 
3715 path_id_t
3716 xpt_path_path_id(struct cam_path *path)
3717 {
3718 	return(path->bus->path_id);
3719 }
3720 
3721 target_id_t
3722 xpt_path_target_id(struct cam_path *path)
3723 {
3724 	if (path->target != NULL)
3725 		return (path->target->target_id);
3726 	else
3727 		return (CAM_TARGET_WILDCARD);
3728 }
3729 
3730 lun_id_t
3731 xpt_path_lun_id(struct cam_path *path)
3732 {
3733 	if (path->device != NULL)
3734 		return (path->device->lun_id);
3735 	else
3736 		return (CAM_LUN_WILDCARD);
3737 }
3738 
3739 struct cam_sim *
3740 xpt_path_sim(struct cam_path *path)
3741 {
3742 
3743 	return (path->bus->sim);
3744 }
3745 
3746 struct cam_periph*
3747 xpt_path_periph(struct cam_path *path)
3748 {
3749 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3750 
3751 	return (path->periph);
3752 }
3753 
3754 int
3755 xpt_path_legacy_ata_id(struct cam_path *path)
3756 {
3757 	struct cam_eb *bus;
3758 	int bus_id;
3759 
3760 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3761 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3762 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3763 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3764 		return (-1);
3765 
3766 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3767 	    path->bus->sim->unit_number < 2) {
3768 		bus_id = path->bus->sim->unit_number;
3769 	} else {
3770 		bus_id = 2;
3771 		xpt_lock_buses();
3772 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3773 			if (bus == path->bus)
3774 				break;
3775 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3776 			     bus->sim->unit_number >= 2) ||
3777 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3778 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3779 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3780 				bus_id++;
3781 		}
3782 		xpt_unlock_buses();
3783 	}
3784 	if (path->target != NULL) {
3785 		if (path->target->target_id < 2)
3786 			return (bus_id * 2 + path->target->target_id);
3787 		else
3788 			return (-1);
3789 	} else
3790 		return (bus_id * 2);
3791 }
3792 
3793 /*
3794  * Release a CAM control block for the caller.  Remit the cost of the structure
3795  * to the device referenced by the path.  If the this device had no 'credits'
3796  * and peripheral drivers have registered async callbacks for this notification
3797  * call them now.
3798  */
3799 void
3800 xpt_release_ccb(union ccb *free_ccb)
3801 {
3802 	struct	 cam_path *path;
3803 	struct	 cam_ed *device;
3804 	struct	 cam_eb *bus;
3805 	struct   cam_sim *sim;
3806 
3807 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3808 	path = free_ccb->ccb_h.path;
3809 	device = path->device;
3810 	bus = path->bus;
3811 	sim = bus->sim;
3812 
3813 	mtx_assert(sim->mtx, MA_OWNED);
3814 
3815 	cam_ccbq_release_opening(&device->ccbq);
3816 	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3817 		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3818 		cam_ccbq_resize(&device->ccbq,
3819 		    device->ccbq.dev_openings + device->ccbq.dev_active);
3820 	}
3821 	if (sim->ccb_count > sim->max_ccbs) {
3822 		xpt_free_ccb(free_ccb);
3823 		sim->ccb_count--;
3824 	} else {
3825 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3826 		    xpt_links.sle);
3827 	}
3828 	if (sim->devq == NULL) {
3829 		return;
3830 	}
3831 	sim->devq->alloc_openings++;
3832 	sim->devq->alloc_active--;
3833 	if (device_is_alloc_queued(device) == 0)
3834 		xpt_schedule_dev_allocq(bus, device);
3835 	xpt_run_dev_allocq(bus);
3836 }
3837 
3838 /* Functions accessed by SIM drivers */
3839 
3840 static struct xpt_xport xport_default = {
3841 	.alloc_device = xpt_alloc_device_default,
3842 	.action = xpt_action_default,
3843 	.async = xpt_dev_async_default,
3844 };
3845 
3846 /*
3847  * A sim structure, listing the SIM entry points and instance
3848  * identification info is passed to xpt_bus_register to hook the SIM
3849  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3850  * for this new bus and places it in the array of busses and assigns
3851  * it a path_id.  The path_id may be influenced by "hard wiring"
3852  * information specified by the user.  Once interrupt services are
3853  * available, the bus will be probed.
3854  */
3855 int32_t
3856 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3857 {
3858 	struct cam_eb *new_bus;
3859 	struct cam_eb *old_bus;
3860 	struct ccb_pathinq cpi;
3861 	struct cam_path *path;
3862 	cam_status status;
3863 
3864 	mtx_assert(sim->mtx, MA_OWNED);
3865 
3866 	sim->bus_id = bus;
3867 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3868 					  M_CAMXPT, M_NOWAIT);
3869 	if (new_bus == NULL) {
3870 		/* Couldn't satisfy request */
3871 		return (CAM_RESRC_UNAVAIL);
3872 	}
3873 	if (strcmp(sim->sim_name, "xpt") != 0) {
3874 		sim->path_id =
3875 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3876 	}
3877 
3878 	TAILQ_INIT(&new_bus->et_entries);
3879 	new_bus->path_id = sim->path_id;
3880 	cam_sim_hold(sim);
3881 	new_bus->sim = sim;
3882 	timevalclear(&new_bus->last_reset);
3883 	new_bus->flags = 0;
3884 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3885 	new_bus->generation = 0;
3886 
3887 	mtx_lock(&xsoftc.xpt_topo_lock);
3888 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3889 	while (old_bus != NULL
3890 	    && old_bus->path_id < new_bus->path_id)
3891 		old_bus = TAILQ_NEXT(old_bus, links);
3892 	if (old_bus != NULL)
3893 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3894 	else
3895 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3896 	xsoftc.bus_generation++;
3897 	mtx_unlock(&xsoftc.xpt_topo_lock);
3898 
3899 	/*
3900 	 * Set a default transport so that a PATH_INQ can be issued to
3901 	 * the SIM.  This will then allow for probing and attaching of
3902 	 * a more appropriate transport.
3903 	 */
3904 	new_bus->xport = &xport_default;
3905 
3906 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3907 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3908 	if (status != CAM_REQ_CMP) {
3909 		xpt_release_bus(new_bus);
3910 		free(path, M_CAMXPT);
3911 		return (CAM_RESRC_UNAVAIL);
3912 	}
3913 
3914 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3915 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3916 	xpt_action((union ccb *)&cpi);
3917 
3918 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3919 		switch (cpi.transport) {
3920 		case XPORT_SPI:
3921 		case XPORT_SAS:
3922 		case XPORT_FC:
3923 		case XPORT_USB:
3924 		case XPORT_ISCSI:
3925 		case XPORT_PPB:
3926 			new_bus->xport = scsi_get_xport();
3927 			break;
3928 		case XPORT_ATA:
3929 		case XPORT_SATA:
3930 			new_bus->xport = ata_get_xport();
3931 			break;
3932 		default:
3933 			new_bus->xport = &xport_default;
3934 			break;
3935 		}
3936 	}
3937 
3938 	/* Notify interested parties */
3939 	if (sim->path_id != CAM_XPT_PATH_ID) {
3940 		union	ccb *scan_ccb;
3941 
3942 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3943 		/* Initiate bus rescan. */
3944 		scan_ccb = xpt_alloc_ccb_nowait();
3945 		scan_ccb->ccb_h.path = path;
3946 		scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3947 		scan_ccb->crcn.flags = 0;
3948 		xpt_rescan(scan_ccb);
3949 	} else
3950 		xpt_free_path(path);
3951 	return (CAM_SUCCESS);
3952 }
3953 
3954 int32_t
3955 xpt_bus_deregister(path_id_t pathid)
3956 {
3957 	struct cam_path bus_path;
3958 	cam_status status;
3959 
3960 	status = xpt_compile_path(&bus_path, NULL, pathid,
3961 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3962 	if (status != CAM_REQ_CMP)
3963 		return (status);
3964 
3965 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3966 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3967 
3968 	/* Release the reference count held while registered. */
3969 	xpt_release_bus(bus_path.bus);
3970 	xpt_release_path(&bus_path);
3971 
3972 	return (CAM_REQ_CMP);
3973 }
3974 
3975 static path_id_t
3976 xptnextfreepathid(void)
3977 {
3978 	struct cam_eb *bus;
3979 	path_id_t pathid;
3980 	const char *strval;
3981 
3982 	pathid = 0;
3983 	mtx_lock(&xsoftc.xpt_topo_lock);
3984 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3985 retry:
3986 	/* Find an unoccupied pathid */
3987 	while (bus != NULL && bus->path_id <= pathid) {
3988 		if (bus->path_id == pathid)
3989 			pathid++;
3990 		bus = TAILQ_NEXT(bus, links);
3991 	}
3992 	mtx_unlock(&xsoftc.xpt_topo_lock);
3993 
3994 	/*
3995 	 * Ensure that this pathid is not reserved for
3996 	 * a bus that may be registered in the future.
3997 	 */
3998 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3999 		++pathid;
4000 		/* Start the search over */
4001 		mtx_lock(&xsoftc.xpt_topo_lock);
4002 		goto retry;
4003 	}
4004 	return (pathid);
4005 }
4006 
4007 static path_id_t
4008 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4009 {
4010 	path_id_t pathid;
4011 	int i, dunit, val;
4012 	char buf[32];
4013 	const char *dname;
4014 
4015 	pathid = CAM_XPT_PATH_ID;
4016 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4017 	i = 0;
4018 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4019 		if (strcmp(dname, "scbus")) {
4020 			/* Avoid a bit of foot shooting. */
4021 			continue;
4022 		}
4023 		if (dunit < 0)		/* unwired?! */
4024 			continue;
4025 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4026 			if (sim_bus == val) {
4027 				pathid = dunit;
4028 				break;
4029 			}
4030 		} else if (sim_bus == 0) {
4031 			/* Unspecified matches bus 0 */
4032 			pathid = dunit;
4033 			break;
4034 		} else {
4035 			printf("Ambiguous scbus configuration for %s%d "
4036 			       "bus %d, cannot wire down.  The kernel "
4037 			       "config entry for scbus%d should "
4038 			       "specify a controller bus.\n"
4039 			       "Scbus will be assigned dynamically.\n",
4040 			       sim_name, sim_unit, sim_bus, dunit);
4041 			break;
4042 		}
4043 	}
4044 
4045 	if (pathid == CAM_XPT_PATH_ID)
4046 		pathid = xptnextfreepathid();
4047 	return (pathid);
4048 }
4049 
4050 static const char *
4051 xpt_async_string(u_int32_t async_code)
4052 {
4053 
4054 	switch (async_code) {
4055 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4056 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4057 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4058 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4059 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4060 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4061 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4062 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4063 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4064 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4065 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4066 	case AC_CONTRACT: return ("AC_CONTRACT");
4067 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4068 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4069 	}
4070 	return ("AC_UNKNOWN");
4071 }
4072 
4073 void
4074 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4075 {
4076 	struct cam_eb *bus;
4077 	struct cam_et *target, *next_target;
4078 	struct cam_ed *device, *next_device;
4079 
4080 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4081 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4082 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4083 
4084 	/*
4085 	 * Most async events come from a CAM interrupt context.  In
4086 	 * a few cases, the error recovery code at the peripheral layer,
4087 	 * which may run from our SWI or a process context, may signal
4088 	 * deferred events with a call to xpt_async.
4089 	 */
4090 
4091 	bus = path->bus;
4092 
4093 	if (async_code == AC_BUS_RESET) {
4094 		/* Update our notion of when the last reset occurred */
4095 		microtime(&bus->last_reset);
4096 	}
4097 
4098 	for (target = TAILQ_FIRST(&bus->et_entries);
4099 	     target != NULL;
4100 	     target = next_target) {
4101 
4102 		next_target = TAILQ_NEXT(target, links);
4103 
4104 		if (path->target != target
4105 		 && path->target->target_id != CAM_TARGET_WILDCARD
4106 		 && target->target_id != CAM_TARGET_WILDCARD)
4107 			continue;
4108 
4109 		if (async_code == AC_SENT_BDR) {
4110 			/* Update our notion of when the last reset occurred */
4111 			microtime(&path->target->last_reset);
4112 		}
4113 
4114 		for (device = TAILQ_FIRST(&target->ed_entries);
4115 		     device != NULL;
4116 		     device = next_device) {
4117 
4118 			next_device = TAILQ_NEXT(device, links);
4119 
4120 			if (path->device != device
4121 			 && path->device->lun_id != CAM_LUN_WILDCARD
4122 			 && device->lun_id != CAM_LUN_WILDCARD)
4123 				continue;
4124 			/*
4125 			 * The async callback could free the device.
4126 			 * If it is a broadcast async, it doesn't hold
4127 			 * device reference, so take our own reference.
4128 			 */
4129 			xpt_acquire_device(device);
4130 			(*(bus->xport->async))(async_code, bus,
4131 					       target, device,
4132 					       async_arg);
4133 
4134 			xpt_async_bcast(&device->asyncs, async_code,
4135 					path, async_arg);
4136 			xpt_release_device(device);
4137 		}
4138 	}
4139 
4140 	/*
4141 	 * If this wasn't a fully wildcarded async, tell all
4142 	 * clients that want all async events.
4143 	 */
4144 	if (bus != xpt_periph->path->bus)
4145 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4146 				path, async_arg);
4147 }
4148 
4149 static void
4150 xpt_async_bcast(struct async_list *async_head,
4151 		u_int32_t async_code,
4152 		struct cam_path *path, void *async_arg)
4153 {
4154 	struct async_node *cur_entry;
4155 
4156 	cur_entry = SLIST_FIRST(async_head);
4157 	while (cur_entry != NULL) {
4158 		struct async_node *next_entry;
4159 		/*
4160 		 * Grab the next list entry before we call the current
4161 		 * entry's callback.  This is because the callback function
4162 		 * can delete its async callback entry.
4163 		 */
4164 		next_entry = SLIST_NEXT(cur_entry, links);
4165 		if ((cur_entry->event_enable & async_code) != 0)
4166 			cur_entry->callback(cur_entry->callback_arg,
4167 					    async_code, path,
4168 					    async_arg);
4169 		cur_entry = next_entry;
4170 	}
4171 }
4172 
4173 static void
4174 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4175 		      struct cam_et *target, struct cam_ed *device,
4176 		      void *async_arg)
4177 {
4178 	printf("%s called\n", __func__);
4179 }
4180 
4181 u_int32_t
4182 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
4183 {
4184 	struct cam_ed *dev = path->device;
4185 
4186 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4187 	dev->sim->devq->alloc_openings +=
4188 	    cam_ccbq_freeze(&dev->ccbq, rl, count);
4189 	/* Remove frozen device from allocq. */
4190 	if (device_is_alloc_queued(dev) &&
4191 	    cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4192 	     CAMQ_GET_PRIO(&dev->drvq)))) {
4193 		camq_remove(&dev->sim->devq->alloc_queue,
4194 		    dev->alloc_ccb_entry.pinfo.index);
4195 	}
4196 	/* Remove frozen device from sendq. */
4197 	if (device_is_send_queued(dev) &&
4198 	    cam_ccbq_frozen_top(&dev->ccbq)) {
4199 		camq_remove(&dev->sim->devq->send_queue,
4200 		    dev->send_ccb_entry.pinfo.index);
4201 	}
4202 	return (dev->ccbq.queue.qfrozen_cnt[rl]);
4203 }
4204 
4205 u_int32_t
4206 xpt_freeze_devq(struct cam_path *path, u_int count)
4207 {
4208 
4209 	return (xpt_freeze_devq_rl(path, 0, count));
4210 }
4211 
4212 u_int32_t
4213 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4214 {
4215 
4216 	mtx_assert(sim->mtx, MA_OWNED);
4217 	sim->devq->send_queue.qfrozen_cnt[0] += count;
4218 	return (sim->devq->send_queue.qfrozen_cnt[0]);
4219 }
4220 
4221 static void
4222 xpt_release_devq_timeout(void *arg)
4223 {
4224 	struct cam_ed *device;
4225 
4226 	device = (struct cam_ed *)arg;
4227 
4228 	xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
4229 }
4230 
4231 void
4232 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4233 {
4234 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4235 
4236 	xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4237 }
4238 
4239 void
4240 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4241 {
4242 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4243 
4244 	xpt_release_devq_device(path->device, rl, count, run_queue);
4245 }
4246 
4247 static void
4248 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4249 {
4250 
4251 	if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4252 #ifdef INVARIANTS
4253 		printf("xpt_release_devq(%d): requested %u > present %u\n",
4254 		    rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4255 #endif
4256 		count = dev->ccbq.queue.qfrozen_cnt[rl];
4257 	}
4258 	dev->sim->devq->alloc_openings -=
4259 	    cam_ccbq_release(&dev->ccbq, rl, count);
4260 	if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4261 	    CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4262 		if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4263 			xpt_run_dev_allocq(dev->target->bus);
4264 	}
4265 	if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4266 		/*
4267 		 * No longer need to wait for a successful
4268 		 * command completion.
4269 		 */
4270 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4271 		/*
4272 		 * Remove any timeouts that might be scheduled
4273 		 * to release this queue.
4274 		 */
4275 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4276 			callout_stop(&dev->callout);
4277 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4278 		}
4279 		if (run_queue == 0)
4280 			return;
4281 		/*
4282 		 * Now that we are unfrozen schedule the
4283 		 * device so any pending transactions are
4284 		 * run.
4285 		 */
4286 		if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4287 			xpt_run_dev_sendq(dev->target->bus);
4288 	}
4289 }
4290 
4291 void
4292 xpt_release_simq(struct cam_sim *sim, int run_queue)
4293 {
4294 	struct	camq *sendq;
4295 
4296 	mtx_assert(sim->mtx, MA_OWNED);
4297 	sendq = &(sim->devq->send_queue);
4298 	if (sendq->qfrozen_cnt[0] <= 0) {
4299 #ifdef INVARIANTS
4300 		printf("xpt_release_simq: requested 1 > present %u\n",
4301 		    sendq->qfrozen_cnt[0]);
4302 #endif
4303 	} else
4304 		sendq->qfrozen_cnt[0]--;
4305 	if (sendq->qfrozen_cnt[0] == 0) {
4306 		/*
4307 		 * If there is a timeout scheduled to release this
4308 		 * sim queue, remove it.  The queue frozen count is
4309 		 * already at 0.
4310 		 */
4311 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4312 			callout_stop(&sim->callout);
4313 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4314 		}
4315 		if (run_queue) {
4316 			struct cam_eb *bus;
4317 
4318 			/*
4319 			 * Now that we are unfrozen run the send queue.
4320 			 */
4321 			bus = xpt_find_bus(sim->path_id);
4322 			xpt_run_dev_sendq(bus);
4323 			xpt_release_bus(bus);
4324 		}
4325 	}
4326 }
4327 
4328 /*
4329  * XXX Appears to be unused.
4330  */
4331 static void
4332 xpt_release_simq_timeout(void *arg)
4333 {
4334 	struct cam_sim *sim;
4335 
4336 	sim = (struct cam_sim *)arg;
4337 	xpt_release_simq(sim, /* run_queue */ TRUE);
4338 }
4339 
4340 void
4341 xpt_done(union ccb *done_ccb)
4342 {
4343 	struct cam_sim *sim;
4344 	int	first;
4345 
4346 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4347 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4348 		/*
4349 		 * Queue up the request for handling by our SWI handler
4350 		 * any of the "non-immediate" type of ccbs.
4351 		 */
4352 		sim = done_ccb->ccb_h.path->bus->sim;
4353 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4354 		    sim_links.tqe);
4355 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4356 		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4357 		    CAM_SIM_BATCH)) == 0) {
4358 			mtx_lock(&cam_simq_lock);
4359 			first = TAILQ_EMPTY(&cam_simq);
4360 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4361 			mtx_unlock(&cam_simq_lock);
4362 			sim->flags |= CAM_SIM_ON_DONEQ;
4363 			if (first)
4364 				swi_sched(cambio_ih, 0);
4365 		}
4366 	}
4367 }
4368 
4369 void
4370 xpt_batch_start(struct cam_sim *sim)
4371 {
4372 
4373 	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4374 	sim->flags |= CAM_SIM_BATCH;
4375 }
4376 
4377 void
4378 xpt_batch_done(struct cam_sim *sim)
4379 {
4380 
4381 	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4382 	sim->flags &= ~CAM_SIM_BATCH;
4383 	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4384 	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4385 		camisr_runqueue(&sim->sim_doneq);
4386 }
4387 
4388 union ccb *
4389 xpt_alloc_ccb()
4390 {
4391 	union ccb *new_ccb;
4392 
4393 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4394 	return (new_ccb);
4395 }
4396 
4397 union ccb *
4398 xpt_alloc_ccb_nowait()
4399 {
4400 	union ccb *new_ccb;
4401 
4402 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4403 	return (new_ccb);
4404 }
4405 
4406 void
4407 xpt_free_ccb(union ccb *free_ccb)
4408 {
4409 	free(free_ccb, M_CAMCCB);
4410 }
4411 
4412 
4413 
4414 /* Private XPT functions */
4415 
4416 /*
4417  * Get a CAM control block for the caller. Charge the structure to the device
4418  * referenced by the path.  If the this device has no 'credits' then the
4419  * device already has the maximum number of outstanding operations under way
4420  * and we return NULL. If we don't have sufficient resources to allocate more
4421  * ccbs, we also return NULL.
4422  */
4423 static union ccb *
4424 xpt_get_ccb(struct cam_ed *device)
4425 {
4426 	union ccb *new_ccb;
4427 	struct cam_sim *sim;
4428 
4429 	sim = device->sim;
4430 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4431 		new_ccb = xpt_alloc_ccb_nowait();
4432                 if (new_ccb == NULL) {
4433 			return (NULL);
4434 		}
4435 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4436 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4437 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4438 				  xpt_links.sle);
4439 		sim->ccb_count++;
4440 	}
4441 	cam_ccbq_take_opening(&device->ccbq);
4442 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4443 	return (new_ccb);
4444 }
4445 
4446 static void
4447 xpt_release_bus(struct cam_eb *bus)
4448 {
4449 
4450 	mtx_lock(&xsoftc.xpt_topo_lock);
4451 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4452 	if ((--bus->refcount == 0)
4453 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4454 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4455 		xsoftc.bus_generation++;
4456 		mtx_unlock(&xsoftc.xpt_topo_lock);
4457 		cam_sim_release(bus->sim);
4458 		free(bus, M_CAMXPT);
4459 	} else
4460 		mtx_unlock(&xsoftc.xpt_topo_lock);
4461 }
4462 
4463 static struct cam_et *
4464 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4465 {
4466 	struct cam_et *target;
4467 
4468 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4469 					 M_NOWAIT|M_ZERO);
4470 	if (target != NULL) {
4471 		struct cam_et *cur_target;
4472 
4473 		TAILQ_INIT(&target->ed_entries);
4474 		target->bus = bus;
4475 		target->target_id = target_id;
4476 		target->refcount = 1;
4477 		target->generation = 0;
4478 		target->luns = NULL;
4479 		timevalclear(&target->last_reset);
4480 		/*
4481 		 * Hold a reference to our parent bus so it
4482 		 * will not go away before we do.
4483 		 */
4484 		mtx_lock(&xsoftc.xpt_topo_lock);
4485 		bus->refcount++;
4486 		mtx_unlock(&xsoftc.xpt_topo_lock);
4487 
4488 		/* Insertion sort into our bus's target list */
4489 		cur_target = TAILQ_FIRST(&bus->et_entries);
4490 		while (cur_target != NULL && cur_target->target_id < target_id)
4491 			cur_target = TAILQ_NEXT(cur_target, links);
4492 
4493 		if (cur_target != NULL) {
4494 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4495 		} else {
4496 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4497 		}
4498 		bus->generation++;
4499 	}
4500 	return (target);
4501 }
4502 
4503 static void
4504 xpt_release_target(struct cam_et *target)
4505 {
4506 
4507 	if (target->refcount == 1) {
4508 		if (TAILQ_FIRST(&target->ed_entries) == NULL) {
4509 			TAILQ_REMOVE(&target->bus->et_entries, target, links);
4510 			target->bus->generation++;
4511 			xpt_release_bus(target->bus);
4512 			if (target->luns)
4513 				free(target->luns, M_CAMXPT);
4514 			free(target, M_CAMXPT);
4515 		}
4516 	} else
4517 		target->refcount--;
4518 }
4519 
4520 static struct cam_ed *
4521 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4522 			 lun_id_t lun_id)
4523 {
4524 	struct cam_ed *device, *cur_device;
4525 
4526 	device = xpt_alloc_device(bus, target, lun_id);
4527 	if (device == NULL)
4528 		return (NULL);
4529 
4530 	device->mintags = 1;
4531 	device->maxtags = 1;
4532 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4533 	cur_device = TAILQ_FIRST(&target->ed_entries);
4534 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4535 		cur_device = TAILQ_NEXT(cur_device, links);
4536 	if (cur_device != NULL) {
4537 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4538 	} else {
4539 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4540 	}
4541 	target->generation++;
4542 
4543 	return (device);
4544 }
4545 
4546 struct cam_ed *
4547 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4548 {
4549 	struct	   cam_ed *device;
4550 	struct	   cam_devq *devq;
4551 	cam_status status;
4552 
4553 	/* Make space for us in the device queue on our bus */
4554 	devq = bus->sim->devq;
4555 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4556 
4557 	if (status != CAM_REQ_CMP) {
4558 		device = NULL;
4559 	} else {
4560 		device = (struct cam_ed *)malloc(sizeof(*device),
4561 						 M_CAMDEV, M_NOWAIT|M_ZERO);
4562 	}
4563 
4564 	if (device != NULL) {
4565 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4566 		device->alloc_ccb_entry.device = device;
4567 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4568 		device->send_ccb_entry.device = device;
4569 		device->target = target;
4570 		device->lun_id = lun_id;
4571 		device->sim = bus->sim;
4572 		/* Initialize our queues */
4573 		if (camq_init(&device->drvq, 0) != 0) {
4574 			free(device, M_CAMDEV);
4575 			return (NULL);
4576 		}
4577 		if (cam_ccbq_init(&device->ccbq,
4578 				  bus->sim->max_dev_openings) != 0) {
4579 			camq_fini(&device->drvq);
4580 			free(device, M_CAMDEV);
4581 			return (NULL);
4582 		}
4583 		SLIST_INIT(&device->asyncs);
4584 		SLIST_INIT(&device->periphs);
4585 		device->generation = 0;
4586 		device->owner = NULL;
4587 		device->flags = CAM_DEV_UNCONFIGURED;
4588 		device->tag_delay_count = 0;
4589 		device->tag_saved_openings = 0;
4590 		device->refcount = 1;
4591 		callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4592 
4593 		/*
4594 		 * Hold a reference to our parent target so it
4595 		 * will not go away before we do.
4596 		 */
4597 		target->refcount++;
4598 
4599 	}
4600 	return (device);
4601 }
4602 
4603 void
4604 xpt_acquire_device(struct cam_ed *device)
4605 {
4606 
4607 	device->refcount++;
4608 }
4609 
4610 void
4611 xpt_release_device(struct cam_ed *device)
4612 {
4613 
4614 	if (device->refcount == 1) {
4615 		struct cam_devq *devq;
4616 
4617 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4618 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4619 			panic("Removing device while still queued for ccbs");
4620 
4621 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4622 			callout_stop(&device->callout);
4623 
4624 		TAILQ_REMOVE(&device->target->ed_entries, device,links);
4625 		device->target->generation++;
4626 		device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4627 		/* Release our slot in the devq */
4628 		devq = device->target->bus->sim->devq;
4629 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4630 		camq_fini(&device->drvq);
4631 		cam_ccbq_fini(&device->ccbq);
4632 		/*
4633 		 * Free allocated memory.  free(9) does nothing if the
4634 		 * supplied pointer is NULL, so it is safe to call without
4635 		 * checking.
4636 		 */
4637 		free(device->supported_vpds, M_CAMXPT);
4638 		free(device->device_id, M_CAMXPT);
4639 		free(device->physpath, M_CAMXPT);
4640 		free(device->rcap_buf, M_CAMXPT);
4641 		free(device->serial_num, M_CAMXPT);
4642 
4643 		xpt_release_target(device->target);
4644 		free(device, M_CAMDEV);
4645 	} else
4646 		device->refcount--;
4647 }
4648 
4649 u_int32_t
4650 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4651 {
4652 	int	diff;
4653 	int	result;
4654 	struct	cam_ed *dev;
4655 
4656 	dev = path->device;
4657 
4658 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4659 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4660 	if (result == CAM_REQ_CMP && (diff < 0)) {
4661 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4662 	}
4663 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4664 	 || (dev->inq_flags & SID_CmdQue) != 0)
4665 		dev->tag_saved_openings = newopenings;
4666 	/* Adjust the global limit */
4667 	dev->sim->max_ccbs += diff;
4668 	return (result);
4669 }
4670 
4671 static struct cam_eb *
4672 xpt_find_bus(path_id_t path_id)
4673 {
4674 	struct cam_eb *bus;
4675 
4676 	mtx_lock(&xsoftc.xpt_topo_lock);
4677 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4678 	     bus != NULL;
4679 	     bus = TAILQ_NEXT(bus, links)) {
4680 		if (bus->path_id == path_id) {
4681 			bus->refcount++;
4682 			break;
4683 		}
4684 	}
4685 	mtx_unlock(&xsoftc.xpt_topo_lock);
4686 	return (bus);
4687 }
4688 
4689 static struct cam_et *
4690 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4691 {
4692 	struct cam_et *target;
4693 
4694 	for (target = TAILQ_FIRST(&bus->et_entries);
4695 	     target != NULL;
4696 	     target = TAILQ_NEXT(target, links)) {
4697 		if (target->target_id == target_id) {
4698 			target->refcount++;
4699 			break;
4700 		}
4701 	}
4702 	return (target);
4703 }
4704 
4705 static struct cam_ed *
4706 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4707 {
4708 	struct cam_ed *device;
4709 
4710 	for (device = TAILQ_FIRST(&target->ed_entries);
4711 	     device != NULL;
4712 	     device = TAILQ_NEXT(device, links)) {
4713 		if (device->lun_id == lun_id) {
4714 			device->refcount++;
4715 			break;
4716 		}
4717 	}
4718 	return (device);
4719 }
4720 
4721 void
4722 xpt_start_tags(struct cam_path *path)
4723 {
4724 	struct ccb_relsim crs;
4725 	struct cam_ed *device;
4726 	struct cam_sim *sim;
4727 	int    newopenings;
4728 
4729 	device = path->device;
4730 	sim = path->bus->sim;
4731 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4732 	xpt_freeze_devq(path, /*count*/1);
4733 	device->inq_flags |= SID_CmdQue;
4734 	if (device->tag_saved_openings != 0)
4735 		newopenings = device->tag_saved_openings;
4736 	else
4737 		newopenings = min(device->maxtags,
4738 				  sim->max_tagged_dev_openings);
4739 	xpt_dev_ccbq_resize(path, newopenings);
4740 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4741 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4742 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4743 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4744 	crs.openings
4745 	    = crs.release_timeout
4746 	    = crs.qfrozen_cnt
4747 	    = 0;
4748 	xpt_action((union ccb *)&crs);
4749 }
4750 
4751 void
4752 xpt_stop_tags(struct cam_path *path)
4753 {
4754 	struct ccb_relsim crs;
4755 	struct cam_ed *device;
4756 	struct cam_sim *sim;
4757 
4758 	device = path->device;
4759 	sim = path->bus->sim;
4760 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4761 	device->tag_delay_count = 0;
4762 	xpt_freeze_devq(path, /*count*/1);
4763 	device->inq_flags &= ~SID_CmdQue;
4764 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4765 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4766 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4767 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4768 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4769 	crs.openings
4770 	    = crs.release_timeout
4771 	    = crs.qfrozen_cnt
4772 	    = 0;
4773 	xpt_action((union ccb *)&crs);
4774 }
4775 
4776 static void
4777 xpt_boot_delay(void *arg)
4778 {
4779 
4780 	xpt_release_boot();
4781 }
4782 
4783 static void
4784 xpt_config(void *arg)
4785 {
4786 	/*
4787 	 * Now that interrupts are enabled, go find our devices
4788 	 */
4789 
4790 	/* Setup debugging path */
4791 	if (cam_dflags != CAM_DEBUG_NONE) {
4792 		if (xpt_create_path_unlocked(&cam_dpath, xpt_periph,
4793 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4794 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4795 			printf("xpt_config: xpt_create_path() failed for debug"
4796 			       " target %d:%d:%d, debugging disabled\n",
4797 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4798 			cam_dflags = CAM_DEBUG_NONE;
4799 		}
4800 	} else
4801 		cam_dpath = NULL;
4802 
4803 	periphdriver_init(1);
4804 	xpt_hold_boot();
4805 	callout_init(&xsoftc.boot_callout, 1);
4806 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4807 	    xpt_boot_delay, NULL);
4808 	/* Fire up rescan thread. */
4809 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4810 		printf("xpt_config: failed to create rescan thread.\n");
4811 	}
4812 }
4813 
4814 void
4815 xpt_hold_boot(void)
4816 {
4817 	xpt_lock_buses();
4818 	xsoftc.buses_to_config++;
4819 	xpt_unlock_buses();
4820 }
4821 
4822 void
4823 xpt_release_boot(void)
4824 {
4825 	xpt_lock_buses();
4826 	xsoftc.buses_to_config--;
4827 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4828 		struct	xpt_task *task;
4829 
4830 		xsoftc.buses_config_done = 1;
4831 		xpt_unlock_buses();
4832 		/* Call manually because we don't have any busses */
4833 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4834 		if (task != NULL) {
4835 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4836 			taskqueue_enqueue(taskqueue_thread, &task->task);
4837 		}
4838 	} else
4839 		xpt_unlock_buses();
4840 }
4841 
4842 /*
4843  * If the given device only has one peripheral attached to it, and if that
4844  * peripheral is the passthrough driver, announce it.  This insures that the
4845  * user sees some sort of announcement for every peripheral in their system.
4846  */
4847 static int
4848 xptpassannouncefunc(struct cam_ed *device, void *arg)
4849 {
4850 	struct cam_periph *periph;
4851 	int i;
4852 
4853 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4854 	     periph = SLIST_NEXT(periph, periph_links), i++);
4855 
4856 	periph = SLIST_FIRST(&device->periphs);
4857 	if ((i == 1)
4858 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4859 		xpt_announce_periph(periph, NULL);
4860 
4861 	return(1);
4862 }
4863 
4864 static void
4865 xpt_finishconfig_task(void *context, int pending)
4866 {
4867 
4868 	periphdriver_init(2);
4869 	/*
4870 	 * Check for devices with no "standard" peripheral driver
4871 	 * attached.  For any devices like that, announce the
4872 	 * passthrough driver so the user will see something.
4873 	 */
4874 	if (!bootverbose)
4875 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4876 
4877 	/* Release our hook so that the boot can continue. */
4878 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4879 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4880 	xsoftc.xpt_config_hook = NULL;
4881 
4882 	free(context, M_CAMXPT);
4883 }
4884 
4885 cam_status
4886 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4887 		   struct cam_path *path)
4888 {
4889 	struct ccb_setasync csa;
4890 	cam_status status;
4891 	int xptpath = 0;
4892 
4893 	if (path == NULL) {
4894 		mtx_lock(&xsoftc.xpt_lock);
4895 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4896 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4897 		if (status != CAM_REQ_CMP) {
4898 			mtx_unlock(&xsoftc.xpt_lock);
4899 			return (status);
4900 		}
4901 		xptpath = 1;
4902 	}
4903 
4904 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4905 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4906 	csa.event_enable = event;
4907 	csa.callback = cbfunc;
4908 	csa.callback_arg = cbarg;
4909 	xpt_action((union ccb *)&csa);
4910 	status = csa.ccb_h.status;
4911 
4912 	if (xptpath) {
4913 		xpt_free_path(path);
4914 		mtx_unlock(&xsoftc.xpt_lock);
4915 	}
4916 
4917 	if ((status == CAM_REQ_CMP) &&
4918 	    (csa.event_enable & AC_FOUND_DEVICE)) {
4919 		/*
4920 		 * Get this peripheral up to date with all
4921 		 * the currently existing devices.
4922 		 */
4923 		xpt_for_all_devices(xptsetasyncfunc, &csa);
4924 	}
4925 	if ((status == CAM_REQ_CMP) &&
4926 	    (csa.event_enable & AC_PATH_REGISTERED)) {
4927 		/*
4928 		 * Get this peripheral up to date with all
4929 		 * the currently existing busses.
4930 		 */
4931 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4932 	}
4933 
4934 	return (status);
4935 }
4936 
4937 static void
4938 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4939 {
4940 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4941 
4942 	switch (work_ccb->ccb_h.func_code) {
4943 	/* Common cases first */
4944 	case XPT_PATH_INQ:		/* Path routing inquiry */
4945 	{
4946 		struct ccb_pathinq *cpi;
4947 
4948 		cpi = &work_ccb->cpi;
4949 		cpi->version_num = 1; /* XXX??? */
4950 		cpi->hba_inquiry = 0;
4951 		cpi->target_sprt = 0;
4952 		cpi->hba_misc = 0;
4953 		cpi->hba_eng_cnt = 0;
4954 		cpi->max_target = 0;
4955 		cpi->max_lun = 0;
4956 		cpi->initiator_id = 0;
4957 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4958 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4959 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4960 		cpi->unit_number = sim->unit_number;
4961 		cpi->bus_id = sim->bus_id;
4962 		cpi->base_transfer_speed = 0;
4963 		cpi->protocol = PROTO_UNSPECIFIED;
4964 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4965 		cpi->transport = XPORT_UNSPECIFIED;
4966 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4967 		cpi->ccb_h.status = CAM_REQ_CMP;
4968 		xpt_done(work_ccb);
4969 		break;
4970 	}
4971 	default:
4972 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4973 		xpt_done(work_ccb);
4974 		break;
4975 	}
4976 }
4977 
4978 /*
4979  * The xpt as a "controller" has no interrupt sources, so polling
4980  * is a no-op.
4981  */
4982 static void
4983 xptpoll(struct cam_sim *sim)
4984 {
4985 }
4986 
4987 void
4988 xpt_lock_buses(void)
4989 {
4990 	mtx_lock(&xsoftc.xpt_topo_lock);
4991 }
4992 
4993 void
4994 xpt_unlock_buses(void)
4995 {
4996 	mtx_unlock(&xsoftc.xpt_topo_lock);
4997 }
4998 
4999 static void
5000 camisr(void *dummy)
5001 {
5002 	cam_simq_t queue;
5003 	struct cam_sim *sim;
5004 
5005 	mtx_lock(&cam_simq_lock);
5006 	TAILQ_INIT(&queue);
5007 	while (!TAILQ_EMPTY(&cam_simq)) {
5008 		TAILQ_CONCAT(&queue, &cam_simq, links);
5009 		mtx_unlock(&cam_simq_lock);
5010 
5011 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
5012 			TAILQ_REMOVE(&queue, sim, links);
5013 			CAM_SIM_LOCK(sim);
5014 			camisr_runqueue(&sim->sim_doneq);
5015 			sim->flags &= ~CAM_SIM_ON_DONEQ;
5016 			CAM_SIM_UNLOCK(sim);
5017 		}
5018 		mtx_lock(&cam_simq_lock);
5019 	}
5020 	mtx_unlock(&cam_simq_lock);
5021 }
5022 
5023 static void
5024 camisr_runqueue(void *V_queue)
5025 {
5026 	cam_isrq_t *queue = V_queue;
5027 	struct	ccb_hdr *ccb_h;
5028 
5029 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
5030 		int	runq;
5031 
5032 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
5033 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5034 
5035 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
5036 			  ("camisr\n"));
5037 
5038 		runq = FALSE;
5039 
5040 		if (ccb_h->flags & CAM_HIGH_POWER) {
5041 			struct highpowerlist	*hphead;
5042 			union ccb		*send_ccb;
5043 
5044 			mtx_lock(&xsoftc.xpt_lock);
5045 			hphead = &xsoftc.highpowerq;
5046 
5047 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
5048 
5049 			/*
5050 			 * Increment the count since this command is done.
5051 			 */
5052 			xsoftc.num_highpower++;
5053 
5054 			/*
5055 			 * Any high powered commands queued up?
5056 			 */
5057 			if (send_ccb != NULL) {
5058 
5059 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
5060 				mtx_unlock(&xsoftc.xpt_lock);
5061 
5062 				xpt_release_devq(send_ccb->ccb_h.path,
5063 						 /*count*/1, /*runqueue*/TRUE);
5064 			} else
5065 				mtx_unlock(&xsoftc.xpt_lock);
5066 		}
5067 
5068 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5069 			struct cam_ed *dev;
5070 
5071 			dev = ccb_h->path->device;
5072 
5073 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5074 			ccb_h->path->bus->sim->devq->send_active--;
5075 			ccb_h->path->bus->sim->devq->send_openings++;
5076 			runq = TRUE;
5077 
5078 			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5079 			  && (dev->ccbq.dev_active == 0))) {
5080 				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5081 				xpt_release_devq(ccb_h->path, /*count*/1,
5082 						 /*run_queue*/FALSE);
5083 			}
5084 
5085 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5086 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5087 				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5088 				xpt_release_devq(ccb_h->path, /*count*/1,
5089 						 /*run_queue*/FALSE);
5090 			}
5091 
5092 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5093 			 && (--dev->tag_delay_count == 0))
5094 				xpt_start_tags(ccb_h->path);
5095 			if (!device_is_send_queued(dev)) {
5096 				(void)xpt_schedule_dev_sendq(ccb_h->path->bus,
5097 							     dev);
5098 			}
5099 		}
5100 
5101 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5102 			xpt_release_simq(ccb_h->path->bus->sim,
5103 					 /*run_queue*/TRUE);
5104 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5105 			runq = FALSE;
5106 		}
5107 
5108 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5109 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5110 			xpt_release_devq(ccb_h->path, /*count*/1,
5111 					 /*run_queue*/TRUE);
5112 			ccb_h->status &= ~CAM_DEV_QFRZN;
5113 		} else if (runq) {
5114 			xpt_run_dev_sendq(ccb_h->path->bus);
5115 		}
5116 
5117 		/* Call the peripheral driver's callback */
5118 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5119 	}
5120 }
5121