xref: /freebsd/sys/cam/cam_xpt.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 #include <sys/param.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/time.h>
43 #include <sys/conf.h>
44 #include <sys/fcntl.h>
45 #include <sys/proc.h>
46 #include <sys/sbuf.h>
47 #include <sys/smp.h>
48 #include <sys/taskqueue.h>
49 
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54 
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_iosched.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67 
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71 
72 #include <machine/stdarg.h>	/* for xpt_print below */
73 
74 #include "opt_cam.h"
75 
76 /* Wild guess based on not wanting to grow the stack too much */
77 #define XPT_PRINT_MAXLEN	512
78 #ifdef PRINTF_BUFR_SIZE
79 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
80 #else
81 #define XPT_PRINT_LEN	128
82 #endif
83 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
84 
85 /*
86  * This is the maximum number of high powered commands (e.g. start unit)
87  * that can be outstanding at a particular time.
88  */
89 #ifndef CAM_MAX_HIGHPOWER
90 #define CAM_MAX_HIGHPOWER  4
91 #endif
92 
93 /* Datastructures internal to the xpt layer */
94 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
95 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
96 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
97 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
98 
99 struct xpt_softc {
100 	uint32_t		xpt_generation;
101 
102 	/* number of high powered commands that can go through right now */
103 	struct mtx		xpt_highpower_lock;
104 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
105 	int			num_highpower;
106 
107 	/* queue for handling async rescan requests. */
108 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
109 	int buses_to_config;
110 	int buses_config_done;
111 
112 	/*
113 	 * Registered buses
114 	 *
115 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
116 	 * "buses" is preferred.
117 	 */
118 	TAILQ_HEAD(,cam_eb)	xpt_busses;
119 	u_int			bus_generation;
120 
121 	int			boot_delay;
122 	struct callout 		boot_callout;
123 	struct task		boot_task;
124 	struct root_hold_token	xpt_rootmount;
125 
126 	struct mtx		xpt_topo_lock;
127 	struct taskqueue	*xpt_taskq;
128 };
129 
130 typedef enum {
131 	DM_RET_COPY		= 0x01,
132 	DM_RET_FLAG_MASK	= 0x0f,
133 	DM_RET_NONE		= 0x00,
134 	DM_RET_STOP		= 0x10,
135 	DM_RET_DESCEND		= 0x20,
136 	DM_RET_ERROR		= 0x30,
137 	DM_RET_ACTION_MASK	= 0xf0
138 } dev_match_ret;
139 
140 typedef enum {
141 	XPT_DEPTH_BUS,
142 	XPT_DEPTH_TARGET,
143 	XPT_DEPTH_DEVICE,
144 	XPT_DEPTH_PERIPH
145 } xpt_traverse_depth;
146 
147 struct xpt_traverse_config {
148 	xpt_traverse_depth	depth;
149 	void			*tr_func;
150 	void			*tr_arg;
151 };
152 
153 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
154 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
155 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
156 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
157 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
158 
159 /* Transport layer configuration information */
160 static struct xpt_softc xsoftc;
161 
162 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
163 
164 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
165            &xsoftc.boot_delay, 0, "Bus registration wait time");
166 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
167 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
168 
169 struct cam_doneq {
170 	struct mtx_padalign	cam_doneq_mtx;
171 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
172 	int			cam_doneq_sleep;
173 };
174 
175 static struct cam_doneq cam_doneqs[MAXCPU];
176 static u_int __read_mostly cam_num_doneqs;
177 static struct proc *cam_proc;
178 static struct cam_doneq cam_async;
179 
180 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
181            &cam_num_doneqs, 0, "Number of completion queues/threads");
182 
183 struct cam_periph *xpt_periph;
184 
185 static periph_init_t xpt_periph_init;
186 
187 static struct periph_driver xpt_driver =
188 {
189 	xpt_periph_init, "xpt",
190 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
191 	CAM_PERIPH_DRV_EARLY
192 };
193 
194 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
195 
196 static d_open_t xptopen;
197 static d_close_t xptclose;
198 static d_ioctl_t xptioctl;
199 static d_ioctl_t xptdoioctl;
200 
201 static struct cdevsw xpt_cdevsw = {
202 	.d_version =	D_VERSION,
203 	.d_flags =	0,
204 	.d_open =	xptopen,
205 	.d_close =	xptclose,
206 	.d_ioctl =	xptioctl,
207 	.d_name =	"xpt",
208 };
209 
210 /* Storage for debugging datastructures */
211 struct cam_path *cam_dpath;
212 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
213 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
214 	&cam_dflags, 0, "Enabled debug flags");
215 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
216 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
217 	&cam_debug_delay, 0, "Delay in us after each debug message");
218 
219 /* Our boot-time initialization hook */
220 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
221 
222 static moduledata_t cam_moduledata = {
223 	"cam",
224 	cam_module_event_handler,
225 	NULL
226 };
227 
228 static int	xpt_init(void *);
229 
230 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
231 MODULE_VERSION(cam, 1);
232 
233 static void		xpt_async_bcast(struct async_list *async_head,
234 					uint32_t async_code,
235 					struct cam_path *path,
236 					void *async_arg);
237 static path_id_t xptnextfreepathid(void);
238 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
239 static union ccb *xpt_get_ccb(struct cam_periph *periph);
240 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
241 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
242 static void	 xpt_run_allocq_task(void *context, int pending);
243 static void	 xpt_run_devq(struct cam_devq *devq);
244 static callout_func_t xpt_release_devq_timeout;
245 static void	 xpt_acquire_bus(struct cam_eb *bus);
246 static void	 xpt_release_bus(struct cam_eb *bus);
247 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
248 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
249 		    int run_queue);
250 static struct cam_et*
251 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
252 static void	 xpt_acquire_target(struct cam_et *target);
253 static void	 xpt_release_target(struct cam_et *target);
254 static struct cam_eb*
255 		 xpt_find_bus(path_id_t path_id);
256 static struct cam_et*
257 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
258 static struct cam_ed*
259 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
260 static void	 xpt_config(void *arg);
261 static void	 xpt_hold_boot_locked(void);
262 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
263 				 uint32_t new_priority);
264 static xpt_devicefunc_t xptpassannouncefunc;
265 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
266 static void	 xptpoll(struct cam_sim *sim);
267 static void	 camisr_runqueue(void);
268 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
269 static void	 xpt_done_td(void *);
270 static void	 xpt_async_td(void *);
271 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
272 				    u_int num_patterns, struct cam_eb *bus);
273 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
274 				       u_int num_patterns,
275 				       struct cam_ed *device);
276 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
277 				       u_int num_patterns,
278 				       struct cam_periph *periph);
279 static xpt_busfunc_t	xptedtbusfunc;
280 static xpt_targetfunc_t	xptedttargetfunc;
281 static xpt_devicefunc_t	xptedtdevicefunc;
282 static xpt_periphfunc_t	xptedtperiphfunc;
283 static xpt_pdrvfunc_t	xptplistpdrvfunc;
284 static xpt_periphfunc_t	xptplistperiphfunc;
285 static int		xptedtmatch(struct ccb_dev_match *cdm);
286 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
287 static int		xptbustraverse(struct cam_eb *start_bus,
288 				       xpt_busfunc_t *tr_func, void *arg);
289 static int		xpttargettraverse(struct cam_eb *bus,
290 					  struct cam_et *start_target,
291 					  xpt_targetfunc_t *tr_func, void *arg);
292 static int		xptdevicetraverse(struct cam_et *target,
293 					  struct cam_ed *start_device,
294 					  xpt_devicefunc_t *tr_func, void *arg);
295 static int		xptperiphtraverse(struct cam_ed *device,
296 					  struct cam_periph *start_periph,
297 					  xpt_periphfunc_t *tr_func, void *arg);
298 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
299 					xpt_pdrvfunc_t *tr_func, void *arg);
300 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
301 					    struct cam_periph *start_periph,
302 					    xpt_periphfunc_t *tr_func,
303 					    void *arg);
304 static xpt_busfunc_t	xptdefbusfunc;
305 static xpt_targetfunc_t	xptdeftargetfunc;
306 static xpt_devicefunc_t	xptdefdevicefunc;
307 static xpt_periphfunc_t	xptdefperiphfunc;
308 static void		xpt_finishconfig_task(void *context, int pending);
309 static void		xpt_dev_async_default(uint32_t async_code,
310 					      struct cam_eb *bus,
311 					      struct cam_et *target,
312 					      struct cam_ed *device,
313 					      void *async_arg);
314 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
315 						 struct cam_et *target,
316 						 lun_id_t lun_id);
317 static xpt_devicefunc_t	xptsetasyncfunc;
318 static xpt_busfunc_t	xptsetasyncbusfunc;
319 static cam_status	xptregister(struct cam_periph *periph,
320 				    void *arg);
321 
322 static __inline int
323 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
324 {
325 	int	retval;
326 
327 	mtx_assert(&devq->send_mtx, MA_OWNED);
328 	if ((dev->ccbq.queue.entries > 0) &&
329 	    (dev->ccbq.dev_openings > 0) &&
330 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
331 		/*
332 		 * The priority of a device waiting for controller
333 		 * resources is that of the highest priority CCB
334 		 * enqueued.
335 		 */
336 		retval =
337 		    xpt_schedule_dev(&devq->send_queue,
338 				     &dev->devq_entry,
339 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
340 	} else {
341 		retval = 0;
342 	}
343 	return (retval);
344 }
345 
346 static __inline int
347 device_is_queued(struct cam_ed *device)
348 {
349 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
350 }
351 
352 static void
353 xpt_periph_init(void)
354 {
355 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
356 }
357 
358 static int
359 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
360 {
361 
362 	/*
363 	 * Only allow read-write access.
364 	 */
365 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
366 		return(EPERM);
367 
368 	/*
369 	 * We don't allow nonblocking access.
370 	 */
371 	if ((flags & O_NONBLOCK) != 0) {
372 		printf("%s: can't do nonblocking access\n", devtoname(dev));
373 		return(ENODEV);
374 	}
375 
376 	return(0);
377 }
378 
379 static int
380 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
381 {
382 
383 	return(0);
384 }
385 
386 /*
387  * Don't automatically grab the xpt softc lock here even though this is going
388  * through the xpt device.  The xpt device is really just a back door for
389  * accessing other devices and SIMs, so the right thing to do is to grab
390  * the appropriate SIM lock once the bus/SIM is located.
391  */
392 static int
393 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
394 {
395 	int error;
396 
397 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
398 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
399 	}
400 	return (error);
401 }
402 
403 static int
404 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
405 {
406 	int error;
407 
408 	error = 0;
409 
410 	switch(cmd) {
411 	/*
412 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
413 	 * to accept CCB types that don't quite make sense to send through a
414 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
415 	 * in the CAM spec.
416 	 */
417 	case CAMIOCOMMAND: {
418 		union ccb *ccb;
419 		union ccb *inccb;
420 		struct cam_eb *bus;
421 
422 		inccb = (union ccb *)addr;
423 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
424 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
425 			inccb->csio.bio = NULL;
426 #endif
427 
428 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
429 			return (EINVAL);
430 
431 		bus = xpt_find_bus(inccb->ccb_h.path_id);
432 		if (bus == NULL)
433 			return (EINVAL);
434 
435 		switch (inccb->ccb_h.func_code) {
436 		case XPT_SCAN_BUS:
437 		case XPT_RESET_BUS:
438 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
439 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
440 				xpt_release_bus(bus);
441 				return (EINVAL);
442 			}
443 			break;
444 		case XPT_SCAN_TGT:
445 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
446 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
447 				xpt_release_bus(bus);
448 				return (EINVAL);
449 			}
450 			break;
451 		default:
452 			break;
453 		}
454 
455 		switch(inccb->ccb_h.func_code) {
456 		case XPT_SCAN_BUS:
457 		case XPT_RESET_BUS:
458 		case XPT_PATH_INQ:
459 		case XPT_ENG_INQ:
460 		case XPT_SCAN_LUN:
461 		case XPT_SCAN_TGT:
462 
463 			ccb = xpt_alloc_ccb();
464 
465 			/*
466 			 * Create a path using the bus, target, and lun the
467 			 * user passed in.
468 			 */
469 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
470 					    inccb->ccb_h.path_id,
471 					    inccb->ccb_h.target_id,
472 					    inccb->ccb_h.target_lun) !=
473 					    CAM_REQ_CMP){
474 				error = EINVAL;
475 				xpt_free_ccb(ccb);
476 				break;
477 			}
478 			/* Ensure all of our fields are correct */
479 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
480 				      inccb->ccb_h.pinfo.priority);
481 			xpt_merge_ccb(ccb, inccb);
482 			xpt_path_lock(ccb->ccb_h.path);
483 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
484 			xpt_path_unlock(ccb->ccb_h.path);
485 			bcopy(ccb, inccb, sizeof(union ccb));
486 			xpt_free_path(ccb->ccb_h.path);
487 			xpt_free_ccb(ccb);
488 			break;
489 
490 		case XPT_DEBUG: {
491 			union ccb ccb;
492 
493 			/*
494 			 * This is an immediate CCB, so it's okay to
495 			 * allocate it on the stack.
496 			 */
497 			memset(&ccb, 0, sizeof(ccb));
498 
499 			/*
500 			 * Create a path using the bus, target, and lun the
501 			 * user passed in.
502 			 */
503 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
504 					    inccb->ccb_h.path_id,
505 					    inccb->ccb_h.target_id,
506 					    inccb->ccb_h.target_lun) !=
507 					    CAM_REQ_CMP){
508 				error = EINVAL;
509 				break;
510 			}
511 			/* Ensure all of our fields are correct */
512 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
513 				      inccb->ccb_h.pinfo.priority);
514 			xpt_merge_ccb(&ccb, inccb);
515 			xpt_action(&ccb);
516 			bcopy(&ccb, inccb, sizeof(union ccb));
517 			xpt_free_path(ccb.ccb_h.path);
518 			break;
519 		}
520 		case XPT_DEV_MATCH: {
521 			struct cam_periph_map_info mapinfo;
522 			struct cam_path *old_path;
523 
524 			/*
525 			 * We can't deal with physical addresses for this
526 			 * type of transaction.
527 			 */
528 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
529 			    CAM_DATA_VADDR) {
530 				error = EINVAL;
531 				break;
532 			}
533 
534 			/*
535 			 * Save this in case the caller had it set to
536 			 * something in particular.
537 			 */
538 			old_path = inccb->ccb_h.path;
539 
540 			/*
541 			 * We really don't need a path for the matching
542 			 * code.  The path is needed because of the
543 			 * debugging statements in xpt_action().  They
544 			 * assume that the CCB has a valid path.
545 			 */
546 			inccb->ccb_h.path = xpt_periph->path;
547 
548 			bzero(&mapinfo, sizeof(mapinfo));
549 
550 			/*
551 			 * Map the pattern and match buffers into kernel
552 			 * virtual address space.
553 			 */
554 			error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
555 
556 			if (error) {
557 				inccb->ccb_h.path = old_path;
558 				break;
559 			}
560 
561 			/*
562 			 * This is an immediate CCB, we can send it on directly.
563 			 */
564 			xpt_action(inccb);
565 
566 			/*
567 			 * Map the buffers back into user space.
568 			 */
569 			cam_periph_unmapmem(inccb, &mapinfo);
570 
571 			inccb->ccb_h.path = old_path;
572 
573 			error = 0;
574 			break;
575 		}
576 		default:
577 			error = ENOTSUP;
578 			break;
579 		}
580 		xpt_release_bus(bus);
581 		break;
582 	}
583 	/*
584 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
585 	 * with the periphal driver name and unit name filled in.  The other
586 	 * fields don't really matter as input.  The passthrough driver name
587 	 * ("pass"), and unit number are passed back in the ccb.  The current
588 	 * device generation number, and the index into the device peripheral
589 	 * driver list, and the status are also passed back.  Note that
590 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
591 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
592 	 * (or rather should be) impossible for the device peripheral driver
593 	 * list to change since we look at the whole thing in one pass, and
594 	 * we do it with lock protection.
595 	 *
596 	 */
597 	case CAMGETPASSTHRU: {
598 		union ccb *ccb;
599 		struct cam_periph *periph;
600 		struct periph_driver **p_drv;
601 		char   *name;
602 		u_int unit;
603 		bool base_periph_found;
604 
605 		ccb = (union ccb *)addr;
606 		unit = ccb->cgdl.unit_number;
607 		name = ccb->cgdl.periph_name;
608 		base_periph_found = false;
609 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
610 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
611 			ccb->csio.bio = NULL;
612 #endif
613 
614 		/*
615 		 * Sanity check -- make sure we don't get a null peripheral
616 		 * driver name.
617 		 */
618 		if (*ccb->cgdl.periph_name == '\0') {
619 			error = EINVAL;
620 			break;
621 		}
622 
623 		/* Keep the list from changing while we traverse it */
624 		xpt_lock_buses();
625 
626 		/* first find our driver in the list of drivers */
627 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
628 			if (strcmp((*p_drv)->driver_name, name) == 0)
629 				break;
630 
631 		if (*p_drv == NULL) {
632 			xpt_unlock_buses();
633 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
634 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
635 			*ccb->cgdl.periph_name = '\0';
636 			ccb->cgdl.unit_number = 0;
637 			error = ENOENT;
638 			break;
639 		}
640 
641 		/*
642 		 * Run through every peripheral instance of this driver
643 		 * and check to see whether it matches the unit passed
644 		 * in by the user.  If it does, get out of the loops and
645 		 * find the passthrough driver associated with that
646 		 * peripheral driver.
647 		 */
648 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
649 		     periph = TAILQ_NEXT(periph, unit_links)) {
650 			if (periph->unit_number == unit)
651 				break;
652 		}
653 		/*
654 		 * If we found the peripheral driver that the user passed
655 		 * in, go through all of the peripheral drivers for that
656 		 * particular device and look for a passthrough driver.
657 		 */
658 		if (periph != NULL) {
659 			struct cam_ed *device;
660 			int i;
661 
662 			base_periph_found = true;
663 			device = periph->path->device;
664 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
665 			     periph != NULL;
666 			     periph = SLIST_NEXT(periph, periph_links), i++) {
667 				/*
668 				 * Check to see whether we have a
669 				 * passthrough device or not.
670 				 */
671 				if (strcmp(periph->periph_name, "pass") == 0) {
672 					/*
673 					 * Fill in the getdevlist fields.
674 					 */
675 					strlcpy(ccb->cgdl.periph_name,
676 					       periph->periph_name,
677 					       sizeof(ccb->cgdl.periph_name));
678 					ccb->cgdl.unit_number =
679 						periph->unit_number;
680 					if (SLIST_NEXT(periph, periph_links))
681 						ccb->cgdl.status =
682 							CAM_GDEVLIST_MORE_DEVS;
683 					else
684 						ccb->cgdl.status =
685 						       CAM_GDEVLIST_LAST_DEVICE;
686 					ccb->cgdl.generation =
687 						device->generation;
688 					ccb->cgdl.index = i;
689 					/*
690 					 * Fill in some CCB header fields
691 					 * that the user may want.
692 					 */
693 					ccb->ccb_h.path_id =
694 						periph->path->bus->path_id;
695 					ccb->ccb_h.target_id =
696 						periph->path->target->target_id;
697 					ccb->ccb_h.target_lun =
698 						periph->path->device->lun_id;
699 					ccb->ccb_h.status = CAM_REQ_CMP;
700 					break;
701 				}
702 			}
703 		}
704 
705 		/*
706 		 * If the periph is null here, one of two things has
707 		 * happened.  The first possibility is that we couldn't
708 		 * find the unit number of the particular peripheral driver
709 		 * that the user is asking about.  e.g. the user asks for
710 		 * the passthrough driver for "da11".  We find the list of
711 		 * "da" peripherals all right, but there is no unit 11.
712 		 * The other possibility is that we went through the list
713 		 * of peripheral drivers attached to the device structure,
714 		 * but didn't find one with the name "pass".  Either way,
715 		 * we return ENOENT, since we couldn't find something.
716 		 */
717 		if (periph == NULL) {
718 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
719 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
720 			*ccb->cgdl.periph_name = '\0';
721 			ccb->cgdl.unit_number = 0;
722 			error = ENOENT;
723 			/*
724 			 * It is unfortunate that this is even necessary,
725 			 * but there are many, many clueless users out there.
726 			 * If this is true, the user is looking for the
727 			 * passthrough driver, but doesn't have one in his
728 			 * kernel.
729 			 */
730 			if (base_periph_found) {
731 				printf("xptioctl: pass driver is not in the "
732 				       "kernel\n");
733 				printf("xptioctl: put \"device pass\" in "
734 				       "your kernel config file\n");
735 			}
736 		}
737 		xpt_unlock_buses();
738 		break;
739 		}
740 	default:
741 		error = ENOTTY;
742 		break;
743 	}
744 
745 	return(error);
746 }
747 
748 static int
749 cam_module_event_handler(module_t mod, int what, void *arg)
750 {
751 	int error;
752 
753 	switch (what) {
754 	case MOD_LOAD:
755 		if ((error = xpt_init(NULL)) != 0)
756 			return (error);
757 		break;
758 	case MOD_UNLOAD:
759 		return EBUSY;
760 	default:
761 		return EOPNOTSUPP;
762 	}
763 
764 	return 0;
765 }
766 
767 static struct xpt_proto *
768 xpt_proto_find(cam_proto proto)
769 {
770 	struct xpt_proto **pp;
771 
772 	SET_FOREACH(pp, cam_xpt_proto_set) {
773 		if ((*pp)->proto == proto)
774 			return *pp;
775 	}
776 
777 	return NULL;
778 }
779 
780 static void
781 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
782 {
783 
784 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
785 		xpt_free_path(done_ccb->ccb_h.path);
786 		xpt_free_ccb(done_ccb);
787 	} else {
788 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
789 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
790 	}
791 	xpt_release_boot();
792 }
793 
794 /* thread to handle bus rescans */
795 static void
796 xpt_scanner_thread(void *dummy)
797 {
798 	union ccb	*ccb;
799 	struct mtx	*mtx;
800 	struct cam_ed	*device;
801 
802 	xpt_lock_buses();
803 	for (;;) {
804 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
805 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
806 			       "-", 0);
807 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
808 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
809 			xpt_unlock_buses();
810 
811 			/*
812 			 * We need to lock the device's mutex which we use as
813 			 * the path mutex. We can't do it directly because the
814 			 * cam_path in the ccb may wind up going away because
815 			 * the path lock may be dropped and the path retired in
816 			 * the completion callback. We do this directly to keep
817 			 * the reference counts in cam_path sane. We also have
818 			 * to copy the device pointer because ccb_h.path may
819 			 * be freed in the callback.
820 			 */
821 			mtx = xpt_path_mtx(ccb->ccb_h.path);
822 			device = ccb->ccb_h.path->device;
823 			xpt_acquire_device(device);
824 			mtx_lock(mtx);
825 			xpt_action(ccb);
826 			mtx_unlock(mtx);
827 			xpt_release_device(device);
828 
829 			xpt_lock_buses();
830 		}
831 	}
832 }
833 
834 void
835 xpt_rescan(union ccb *ccb)
836 {
837 	struct ccb_hdr *hdr;
838 
839 	/* Prepare request */
840 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
841 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
842 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
843 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
844 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
845 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
846 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
847 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
848 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
849 	else {
850 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
851 		xpt_free_path(ccb->ccb_h.path);
852 		xpt_free_ccb(ccb);
853 		return;
854 	}
855 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
856 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
857  		xpt_action_name(ccb->ccb_h.func_code)));
858 
859 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
860 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
861 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
862 	/* Don't make duplicate entries for the same paths. */
863 	xpt_lock_buses();
864 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
865 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
866 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
867 				wakeup(&xsoftc.ccb_scanq);
868 				xpt_unlock_buses();
869 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
870 				xpt_free_path(ccb->ccb_h.path);
871 				xpt_free_ccb(ccb);
872 				return;
873 			}
874 		}
875 	}
876 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
877 	xpt_hold_boot_locked();
878 	wakeup(&xsoftc.ccb_scanq);
879 	xpt_unlock_buses();
880 }
881 
882 /* Functions accessed by the peripheral drivers */
883 static int
884 xpt_init(void *dummy)
885 {
886 	struct cam_sim *xpt_sim;
887 	struct cam_path *path;
888 	struct cam_devq *devq;
889 	cam_status status;
890 	int error, i;
891 
892 	TAILQ_INIT(&xsoftc.xpt_busses);
893 	TAILQ_INIT(&xsoftc.ccb_scanq);
894 	STAILQ_INIT(&xsoftc.highpowerq);
895 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
896 
897 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
898 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
899 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
900 
901 #ifdef CAM_BOOT_DELAY
902 	/*
903 	 * Override this value at compile time to assist our users
904 	 * who don't use loader to boot a kernel.
905 	 */
906 	xsoftc.boot_delay = CAM_BOOT_DELAY;
907 #endif
908 
909 	/*
910 	 * The xpt layer is, itself, the equivalent of a SIM.
911 	 * Allow 16 ccbs in the ccb pool for it.  This should
912 	 * give decent parallelism when we probe buses and
913 	 * perform other XPT functions.
914 	 */
915 	devq = cam_simq_alloc(16);
916 	xpt_sim = cam_sim_alloc(xptaction,
917 				xptpoll,
918 				"xpt",
919 				/*softc*/NULL,
920 				/*unit*/0,
921 				/*mtx*/NULL,
922 				/*max_dev_transactions*/0,
923 				/*max_tagged_dev_transactions*/0,
924 				devq);
925 	if (xpt_sim == NULL)
926 		return (ENOMEM);
927 
928 	if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
929 		printf("xpt_init: xpt_bus_register failed with errno %d,"
930 		       " failing attach\n", error);
931 		return (EINVAL);
932 	}
933 
934 	/*
935 	 * Looking at the XPT from the SIM layer, the XPT is
936 	 * the equivalent of a peripheral driver.  Allocate
937 	 * a peripheral driver entry for us.
938 	 */
939 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
940 				      CAM_TARGET_WILDCARD,
941 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
942 		printf("xpt_init: xpt_create_path failed with status %#x,"
943 		       " failing attach\n", status);
944 		return (EINVAL);
945 	}
946 	xpt_path_lock(path);
947 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
948 			 path, NULL, 0, xpt_sim);
949 	xpt_path_unlock(path);
950 	xpt_free_path(path);
951 
952 	if (cam_num_doneqs < 1)
953 		cam_num_doneqs = 1 + mp_ncpus / 6;
954 	else if (cam_num_doneqs > MAXCPU)
955 		cam_num_doneqs = MAXCPU;
956 	for (i = 0; i < cam_num_doneqs; i++) {
957 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
958 		    MTX_DEF);
959 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
960 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
961 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
962 		if (error != 0) {
963 			cam_num_doneqs = i;
964 			break;
965 		}
966 	}
967 	if (cam_num_doneqs < 1) {
968 		printf("xpt_init: Cannot init completion queues "
969 		       "- failing attach\n");
970 		return (ENOMEM);
971 	}
972 
973 	mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
974 	STAILQ_INIT(&cam_async.cam_doneq);
975 	if (kproc_kthread_add(xpt_async_td, &cam_async,
976 		&cam_proc, NULL, 0, 0, "cam", "async") != 0) {
977 		printf("xpt_init: Cannot init async thread "
978 		       "- failing attach\n");
979 		return (ENOMEM);
980 	}
981 
982 	/*
983 	 * Register a callback for when interrupts are enabled.
984 	 */
985 	config_intrhook_oneshot(xpt_config, NULL);
986 
987 	return (0);
988 }
989 
990 static cam_status
991 xptregister(struct cam_periph *periph, void *arg)
992 {
993 	struct cam_sim *xpt_sim;
994 
995 	if (periph == NULL) {
996 		printf("xptregister: periph was NULL!!\n");
997 		return(CAM_REQ_CMP_ERR);
998 	}
999 
1000 	xpt_sim = (struct cam_sim *)arg;
1001 	xpt_sim->softc = periph;
1002 	xpt_periph = periph;
1003 	periph->softc = NULL;
1004 
1005 	return(CAM_REQ_CMP);
1006 }
1007 
1008 int32_t
1009 xpt_add_periph(struct cam_periph *periph)
1010 {
1011 	struct cam_ed *device;
1012 	int32_t	 status;
1013 
1014 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1015 	device = periph->path->device;
1016 	status = CAM_REQ_CMP;
1017 	if (device != NULL) {
1018 		mtx_lock(&device->target->bus->eb_mtx);
1019 		device->generation++;
1020 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1021 		mtx_unlock(&device->target->bus->eb_mtx);
1022 		atomic_add_32(&xsoftc.xpt_generation, 1);
1023 	}
1024 
1025 	return (status);
1026 }
1027 
1028 void
1029 xpt_remove_periph(struct cam_periph *periph)
1030 {
1031 	struct cam_ed *device;
1032 
1033 	device = periph->path->device;
1034 	if (device != NULL) {
1035 		mtx_lock(&device->target->bus->eb_mtx);
1036 		device->generation++;
1037 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1038 		mtx_unlock(&device->target->bus->eb_mtx);
1039 		atomic_add_32(&xsoftc.xpt_generation, 1);
1040 	}
1041 }
1042 
1043 void
1044 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1045 {
1046 	char buf[128];
1047 	struct sbuf sb;
1048 
1049 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1050 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1051 	xpt_announce_periph_sbuf(periph, &sb, announce_string);
1052 	(void)sbuf_finish(&sb);
1053 }
1054 
1055 void
1056 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1057     char *announce_string)
1058 {
1059 	struct	cam_path *path = periph->path;
1060 	struct  xpt_proto *proto;
1061 
1062 	cam_periph_assert(periph, MA_OWNED);
1063 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1064 
1065 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1066 	    periph->periph_name, periph->unit_number,
1067 	    path->bus->sim->sim_name,
1068 	    path->bus->sim->unit_number,
1069 	    path->bus->sim->bus_id,
1070 	    path->bus->path_id,
1071 	    path->target->target_id,
1072 	    (uintmax_t)path->device->lun_id);
1073 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1074 	proto = xpt_proto_find(path->device->protocol);
1075 	if (proto)
1076 		proto->ops->announce_sbuf(path->device, sb);
1077 	else
1078 		sbuf_printf(sb, "Unknown protocol device %d\n",
1079 		    path->device->protocol);
1080 	if (path->device->serial_num_len > 0) {
1081 		/* Don't wrap the screen  - print only the first 60 chars */
1082 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1083 		    periph->periph_name, periph->unit_number,
1084 		    path->device->serial_num);
1085 	}
1086 	/* Announce transport details. */
1087 	path->bus->xport->ops->announce_sbuf(periph, sb);
1088 	/* Announce command queueing. */
1089 	if (path->device->inq_flags & SID_CmdQue
1090 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1091 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1092 		    periph->periph_name, periph->unit_number);
1093 	}
1094 	/* Announce caller's details if they've passed in. */
1095 	if (announce_string != NULL)
1096 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1097 		    periph->unit_number, announce_string);
1098 }
1099 
1100 void
1101 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1102 {
1103 	if (quirks != 0) {
1104 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1105 		    periph->unit_number, quirks, bit_string);
1106 	}
1107 }
1108 
1109 void
1110 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1111 			 int quirks, char *bit_string)
1112 {
1113 	if (quirks != 0) {
1114 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1115 		    periph->unit_number, quirks, bit_string);
1116 	}
1117 }
1118 
1119 void
1120 xpt_denounce_periph(struct cam_periph *periph)
1121 {
1122 	char buf[128];
1123 	struct sbuf sb;
1124 
1125 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1126 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1127 	xpt_denounce_periph_sbuf(periph, &sb);
1128 	(void)sbuf_finish(&sb);
1129 }
1130 
1131 void
1132 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1133 {
1134 	struct cam_path *path = periph->path;
1135 	struct xpt_proto *proto;
1136 
1137 	cam_periph_assert(periph, MA_OWNED);
1138 
1139 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1140 	    periph->periph_name, periph->unit_number,
1141 	    path->bus->sim->sim_name,
1142 	    path->bus->sim->unit_number,
1143 	    path->bus->sim->bus_id,
1144 	    path->bus->path_id,
1145 	    path->target->target_id,
1146 	    (uintmax_t)path->device->lun_id);
1147 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1148 	proto = xpt_proto_find(path->device->protocol);
1149 	if (proto)
1150 		proto->ops->denounce_sbuf(path->device, sb);
1151 	else
1152 		sbuf_printf(sb, "Unknown protocol device %d",
1153 		    path->device->protocol);
1154 	if (path->device->serial_num_len > 0)
1155 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1156 	sbuf_printf(sb, " detached\n");
1157 }
1158 
1159 int
1160 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1161 {
1162 	int ret = -1, l, o;
1163 	struct ccb_dev_advinfo cdai;
1164 	struct scsi_vpd_device_id *did;
1165 	struct scsi_vpd_id_descriptor *idd;
1166 
1167 	xpt_path_assert(path, MA_OWNED);
1168 
1169 	memset(&cdai, 0, sizeof(cdai));
1170 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1171 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1172 	cdai.flags = CDAI_FLAG_NONE;
1173 	cdai.bufsiz = len;
1174 	cdai.buf = buf;
1175 
1176 	if (!strcmp(attr, "GEOM::ident"))
1177 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1178 	else if (!strcmp(attr, "GEOM::physpath"))
1179 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1180 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1181 		 strcmp(attr, "GEOM::lunname") == 0) {
1182 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1183 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1184 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1185 		if (cdai.buf == NULL) {
1186 			ret = ENOMEM;
1187 			goto out;
1188 		}
1189 	} else
1190 		goto out;
1191 
1192 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1193 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1194 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1195 	if (cdai.provsiz == 0)
1196 		goto out;
1197 	switch(cdai.buftype) {
1198 	case CDAI_TYPE_SCSI_DEVID:
1199 		did = (struct scsi_vpd_device_id *)cdai.buf;
1200 		if (strcmp(attr, "GEOM::lunid") == 0) {
1201 			idd = scsi_get_devid(did, cdai.provsiz,
1202 			    scsi_devid_is_lun_naa);
1203 			if (idd == NULL)
1204 				idd = scsi_get_devid(did, cdai.provsiz,
1205 				    scsi_devid_is_lun_eui64);
1206 			if (idd == NULL)
1207 				idd = scsi_get_devid(did, cdai.provsiz,
1208 				    scsi_devid_is_lun_uuid);
1209 			if (idd == NULL)
1210 				idd = scsi_get_devid(did, cdai.provsiz,
1211 				    scsi_devid_is_lun_md5);
1212 		} else
1213 			idd = NULL;
1214 
1215 		if (idd == NULL)
1216 			idd = scsi_get_devid(did, cdai.provsiz,
1217 			    scsi_devid_is_lun_t10);
1218 		if (idd == NULL)
1219 			idd = scsi_get_devid(did, cdai.provsiz,
1220 			    scsi_devid_is_lun_name);
1221 		if (idd == NULL)
1222 			break;
1223 
1224 		ret = 0;
1225 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1226 		    SVPD_ID_CODESET_ASCII) {
1227 			if (idd->length < len) {
1228 				for (l = 0; l < idd->length; l++)
1229 					buf[l] = idd->identifier[l] ?
1230 					    idd->identifier[l] : ' ';
1231 				buf[l] = 0;
1232 			} else
1233 				ret = EFAULT;
1234 			break;
1235 		}
1236 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1237 		    SVPD_ID_CODESET_UTF8) {
1238 			l = strnlen(idd->identifier, idd->length);
1239 			if (l < len) {
1240 				bcopy(idd->identifier, buf, l);
1241 				buf[l] = 0;
1242 			} else
1243 				ret = EFAULT;
1244 			break;
1245 		}
1246 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1247 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1248 			if ((idd->length - 2) * 2 + 4 >= len) {
1249 				ret = EFAULT;
1250 				break;
1251 			}
1252 			for (l = 2, o = 0; l < idd->length; l++) {
1253 				if (l == 6 || l == 8 || l == 10 || l == 12)
1254 				    o += sprintf(buf + o, "-");
1255 				o += sprintf(buf + o, "%02x",
1256 				    idd->identifier[l]);
1257 			}
1258 			break;
1259 		}
1260 		if (idd->length * 2 < len) {
1261 			for (l = 0; l < idd->length; l++)
1262 				sprintf(buf + l * 2, "%02x",
1263 				    idd->identifier[l]);
1264 		} else
1265 				ret = EFAULT;
1266 		break;
1267 	default:
1268 		if (cdai.provsiz < len) {
1269 			cdai.buf[cdai.provsiz] = 0;
1270 			ret = 0;
1271 		} else
1272 			ret = EFAULT;
1273 		break;
1274 	}
1275 
1276 out:
1277 	if ((char *)cdai.buf != buf)
1278 		free(cdai.buf, M_CAMXPT);
1279 	return ret;
1280 }
1281 
1282 static dev_match_ret
1283 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1284 	    struct cam_eb *bus)
1285 {
1286 	dev_match_ret retval;
1287 	u_int i;
1288 
1289 	retval = DM_RET_NONE;
1290 
1291 	/*
1292 	 * If we aren't given something to match against, that's an error.
1293 	 */
1294 	if (bus == NULL)
1295 		return(DM_RET_ERROR);
1296 
1297 	/*
1298 	 * If there are no match entries, then this bus matches no
1299 	 * matter what.
1300 	 */
1301 	if ((patterns == NULL) || (num_patterns == 0))
1302 		return(DM_RET_DESCEND | DM_RET_COPY);
1303 
1304 	for (i = 0; i < num_patterns; i++) {
1305 		struct bus_match_pattern *cur_pattern;
1306 		struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1307 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1308 
1309 		/*
1310 		 * If the pattern in question isn't for a bus node, we
1311 		 * aren't interested.  However, we do indicate to the
1312 		 * calling routine that we should continue descending the
1313 		 * tree, since the user wants to match against lower-level
1314 		 * EDT elements.
1315 		 */
1316 		if (patterns[i].type == DEV_MATCH_DEVICE &&
1317 		    (dp->flags & DEV_MATCH_PATH) != 0 &&
1318 		    dp->path_id != bus->path_id)
1319 			continue;
1320 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1321 		    (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1322 		    pp->path_id != bus->path_id)
1323 			continue;
1324 		if (patterns[i].type != DEV_MATCH_BUS) {
1325 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1326 				retval |= DM_RET_DESCEND;
1327 			continue;
1328 		}
1329 
1330 		cur_pattern = &patterns[i].pattern.bus_pattern;
1331 
1332 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1333 		 && (cur_pattern->path_id != bus->path_id))
1334 			continue;
1335 
1336 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1337 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1338 			continue;
1339 
1340 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1341 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1342 			continue;
1343 
1344 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1345 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1346 			     DEV_IDLEN) != 0))
1347 			continue;
1348 
1349 		/*
1350 		 * If we get to this point, the user definitely wants
1351 		 * information on this bus.  So tell the caller to copy the
1352 		 * data out.
1353 		 */
1354 		retval |= DM_RET_COPY;
1355 
1356 		/*
1357 		 * If the return action has been set to descend, then we
1358 		 * know that we've already seen a non-bus matching
1359 		 * expression, therefore we need to further descend the tree.
1360 		 * This won't change by continuing around the loop, so we
1361 		 * go ahead and return.  If we haven't seen a non-bus
1362 		 * matching expression, we keep going around the loop until
1363 		 * we exhaust the matching expressions.  We'll set the stop
1364 		 * flag once we fall out of the loop.
1365 		 */
1366 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1367 			return(retval);
1368 	}
1369 
1370 	/*
1371 	 * If the return action hasn't been set to descend yet, that means
1372 	 * we haven't seen anything other than bus matching patterns.  So
1373 	 * tell the caller to stop descending the tree -- the user doesn't
1374 	 * want to match against lower level tree elements.
1375 	 */
1376 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1377 		retval |= DM_RET_STOP;
1378 
1379 	return(retval);
1380 }
1381 
1382 static dev_match_ret
1383 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1384 	       struct cam_ed *device)
1385 {
1386 	dev_match_ret retval;
1387 	u_int i;
1388 
1389 	retval = DM_RET_NONE;
1390 
1391 	/*
1392 	 * If we aren't given something to match against, that's an error.
1393 	 */
1394 	if (device == NULL)
1395 		return(DM_RET_ERROR);
1396 
1397 	/*
1398 	 * If there are no match entries, then this device matches no
1399 	 * matter what.
1400 	 */
1401 	if ((patterns == NULL) || (num_patterns == 0))
1402 		return(DM_RET_DESCEND | DM_RET_COPY);
1403 
1404 	for (i = 0; i < num_patterns; i++) {
1405 		struct device_match_pattern *cur_pattern;
1406 		struct scsi_vpd_device_id *device_id_page;
1407 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1408 
1409 		/*
1410 		 * If the pattern in question isn't for a device node, we
1411 		 * aren't interested.
1412 		 */
1413 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1414 		    (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1415 		    pp->target_id != device->target->target_id)
1416 			continue;
1417 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1418 		    (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1419 		    pp->target_lun != device->lun_id)
1420 			continue;
1421 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1422 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1423 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1424 				retval |= DM_RET_DESCEND;
1425 			continue;
1426 		}
1427 
1428 		cur_pattern = &patterns[i].pattern.device_pattern;
1429 
1430 		/* Error out if mutually exclusive options are specified. */
1431 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1432 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1433 			return(DM_RET_ERROR);
1434 
1435 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1436 		 && (cur_pattern->path_id != device->target->bus->path_id))
1437 			continue;
1438 
1439 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1440 		 && (cur_pattern->target_id != device->target->target_id))
1441 			continue;
1442 
1443 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1444 		 && (cur_pattern->target_lun != device->lun_id))
1445 			continue;
1446 
1447 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1448 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1449 				    (caddr_t)&cur_pattern->data.inq_pat,
1450 				    1, sizeof(cur_pattern->data.inq_pat),
1451 				    scsi_static_inquiry_match) == NULL))
1452 			continue;
1453 
1454 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1455 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1456 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1457 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1458 				      device->device_id_len
1459 				    - SVPD_DEVICE_ID_HDR_LEN,
1460 				      cur_pattern->data.devid_pat.id,
1461 				      cur_pattern->data.devid_pat.id_len) != 0))
1462 			continue;
1463 
1464 		/*
1465 		 * If we get to this point, the user definitely wants
1466 		 * information on this device.  So tell the caller to copy
1467 		 * the data out.
1468 		 */
1469 		retval |= DM_RET_COPY;
1470 
1471 		/*
1472 		 * If the return action has been set to descend, then we
1473 		 * know that we've already seen a peripheral matching
1474 		 * expression, therefore we need to further descend the tree.
1475 		 * This won't change by continuing around the loop, so we
1476 		 * go ahead and return.  If we haven't seen a peripheral
1477 		 * matching expression, we keep going around the loop until
1478 		 * we exhaust the matching expressions.  We'll set the stop
1479 		 * flag once we fall out of the loop.
1480 		 */
1481 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1482 			return(retval);
1483 	}
1484 
1485 	/*
1486 	 * If the return action hasn't been set to descend yet, that means
1487 	 * we haven't seen any peripheral matching patterns.  So tell the
1488 	 * caller to stop descending the tree -- the user doesn't want to
1489 	 * match against lower level tree elements.
1490 	 */
1491 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1492 		retval |= DM_RET_STOP;
1493 
1494 	return(retval);
1495 }
1496 
1497 /*
1498  * Match a single peripheral against any number of match patterns.
1499  */
1500 static dev_match_ret
1501 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1502 	       struct cam_periph *periph)
1503 {
1504 	dev_match_ret retval;
1505 	u_int i;
1506 
1507 	/*
1508 	 * If we aren't given something to match against, that's an error.
1509 	 */
1510 	if (periph == NULL)
1511 		return(DM_RET_ERROR);
1512 
1513 	/*
1514 	 * If there are no match entries, then this peripheral matches no
1515 	 * matter what.
1516 	 */
1517 	if ((patterns == NULL) || (num_patterns == 0))
1518 		return(DM_RET_STOP | DM_RET_COPY);
1519 
1520 	/*
1521 	 * There aren't any nodes below a peripheral node, so there's no
1522 	 * reason to descend the tree any further.
1523 	 */
1524 	retval = DM_RET_STOP;
1525 
1526 	for (i = 0; i < num_patterns; i++) {
1527 		struct periph_match_pattern *cur_pattern;
1528 
1529 		/*
1530 		 * If the pattern in question isn't for a peripheral, we
1531 		 * aren't interested.
1532 		 */
1533 		if (patterns[i].type != DEV_MATCH_PERIPH)
1534 			continue;
1535 
1536 		cur_pattern = &patterns[i].pattern.periph_pattern;
1537 
1538 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1539 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1540 			continue;
1541 
1542 		/*
1543 		 * For the target and lun id's, we have to make sure the
1544 		 * target and lun pointers aren't NULL.  The xpt peripheral
1545 		 * has a wildcard target and device.
1546 		 */
1547 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1548 		 && ((periph->path->target == NULL)
1549 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1550 			continue;
1551 
1552 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1553 		 && ((periph->path->device == NULL)
1554 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1555 			continue;
1556 
1557 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1558 		 && (cur_pattern->unit_number != periph->unit_number))
1559 			continue;
1560 
1561 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1562 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1563 			     DEV_IDLEN) != 0))
1564 			continue;
1565 
1566 		/*
1567 		 * If we get to this point, the user definitely wants
1568 		 * information on this peripheral.  So tell the caller to
1569 		 * copy the data out.
1570 		 */
1571 		retval |= DM_RET_COPY;
1572 
1573 		/*
1574 		 * The return action has already been set to stop, since
1575 		 * peripherals don't have any nodes below them in the EDT.
1576 		 */
1577 		return(retval);
1578 	}
1579 
1580 	/*
1581 	 * If we get to this point, the peripheral that was passed in
1582 	 * doesn't match any of the patterns.
1583 	 */
1584 	return(retval);
1585 }
1586 
1587 static int
1588 xptedtbusfunc(struct cam_eb *bus, void *arg)
1589 {
1590 	struct ccb_dev_match *cdm;
1591 	struct cam_et *target;
1592 	dev_match_ret retval;
1593 
1594 	cdm = (struct ccb_dev_match *)arg;
1595 
1596 	/*
1597 	 * If our position is for something deeper in the tree, that means
1598 	 * that we've already seen this node.  So, we keep going down.
1599 	 */
1600 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1601 	 && (cdm->pos.cookie.bus == bus)
1602 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1603 	 && (cdm->pos.cookie.target != NULL))
1604 		retval = DM_RET_DESCEND;
1605 	else
1606 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1607 
1608 	/*
1609 	 * If we got an error, bail out of the search.
1610 	 */
1611 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1612 		cdm->status = CAM_DEV_MATCH_ERROR;
1613 		return(0);
1614 	}
1615 
1616 	/*
1617 	 * If the copy flag is set, copy this bus out.
1618 	 */
1619 	if (retval & DM_RET_COPY) {
1620 		int spaceleft, j;
1621 
1622 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1623 			sizeof(struct dev_match_result));
1624 
1625 		/*
1626 		 * If we don't have enough space to put in another
1627 		 * match result, save our position and tell the
1628 		 * user there are more devices to check.
1629 		 */
1630 		if (spaceleft < sizeof(struct dev_match_result)) {
1631 			bzero(&cdm->pos, sizeof(cdm->pos));
1632 			cdm->pos.position_type =
1633 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1634 
1635 			cdm->pos.cookie.bus = bus;
1636 			cdm->pos.generations[CAM_BUS_GENERATION]=
1637 				xsoftc.bus_generation;
1638 			cdm->status = CAM_DEV_MATCH_MORE;
1639 			return(0);
1640 		}
1641 		j = cdm->num_matches;
1642 		cdm->num_matches++;
1643 		cdm->matches[j].type = DEV_MATCH_BUS;
1644 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1645 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1646 		cdm->matches[j].result.bus_result.unit_number =
1647 			bus->sim->unit_number;
1648 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1649 			bus->sim->sim_name,
1650 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1651 	}
1652 
1653 	/*
1654 	 * If the user is only interested in buses, there's no
1655 	 * reason to descend to the next level in the tree.
1656 	 */
1657 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1658 		return(1);
1659 
1660 	/*
1661 	 * If there is a target generation recorded, check it to
1662 	 * make sure the target list hasn't changed.
1663 	 */
1664 	mtx_lock(&bus->eb_mtx);
1665 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1666 	 && (cdm->pos.cookie.bus == bus)
1667 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1668 	 && (cdm->pos.cookie.target != NULL)) {
1669 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1670 		    bus->generation)) {
1671 			mtx_unlock(&bus->eb_mtx);
1672 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1673 			return (0);
1674 		}
1675 		target = (struct cam_et *)cdm->pos.cookie.target;
1676 		target->refcount++;
1677 	} else
1678 		target = NULL;
1679 	mtx_unlock(&bus->eb_mtx);
1680 
1681 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1682 }
1683 
1684 static int
1685 xptedttargetfunc(struct cam_et *target, void *arg)
1686 {
1687 	struct ccb_dev_match *cdm;
1688 	struct cam_eb *bus;
1689 	struct cam_ed *device;
1690 
1691 	cdm = (struct ccb_dev_match *)arg;
1692 	bus = target->bus;
1693 
1694 	/*
1695 	 * If there is a device list generation recorded, check it to
1696 	 * make sure the device list hasn't changed.
1697 	 */
1698 	mtx_lock(&bus->eb_mtx);
1699 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1700 	 && (cdm->pos.cookie.bus == bus)
1701 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1702 	 && (cdm->pos.cookie.target == target)
1703 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1704 	 && (cdm->pos.cookie.device != NULL)) {
1705 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1706 		    target->generation) {
1707 			mtx_unlock(&bus->eb_mtx);
1708 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1709 			return(0);
1710 		}
1711 		device = (struct cam_ed *)cdm->pos.cookie.device;
1712 		device->refcount++;
1713 	} else
1714 		device = NULL;
1715 	mtx_unlock(&bus->eb_mtx);
1716 
1717 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1718 }
1719 
1720 static int
1721 xptedtdevicefunc(struct cam_ed *device, void *arg)
1722 {
1723 	struct cam_eb *bus;
1724 	struct cam_periph *periph;
1725 	struct ccb_dev_match *cdm;
1726 	dev_match_ret retval;
1727 
1728 	cdm = (struct ccb_dev_match *)arg;
1729 	bus = device->target->bus;
1730 
1731 	/*
1732 	 * If our position is for something deeper in the tree, that means
1733 	 * that we've already seen this node.  So, we keep going down.
1734 	 */
1735 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1736 	 && (cdm->pos.cookie.device == device)
1737 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1738 	 && (cdm->pos.cookie.periph != NULL))
1739 		retval = DM_RET_DESCEND;
1740 	else
1741 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1742 					device);
1743 
1744 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1745 		cdm->status = CAM_DEV_MATCH_ERROR;
1746 		return(0);
1747 	}
1748 
1749 	/*
1750 	 * If the copy flag is set, copy this device out.
1751 	 */
1752 	if (retval & DM_RET_COPY) {
1753 		int spaceleft, j;
1754 
1755 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1756 			sizeof(struct dev_match_result));
1757 
1758 		/*
1759 		 * If we don't have enough space to put in another
1760 		 * match result, save our position and tell the
1761 		 * user there are more devices to check.
1762 		 */
1763 		if (spaceleft < sizeof(struct dev_match_result)) {
1764 			bzero(&cdm->pos, sizeof(cdm->pos));
1765 			cdm->pos.position_type =
1766 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1767 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1768 
1769 			cdm->pos.cookie.bus = device->target->bus;
1770 			cdm->pos.generations[CAM_BUS_GENERATION]=
1771 				xsoftc.bus_generation;
1772 			cdm->pos.cookie.target = device->target;
1773 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1774 				device->target->bus->generation;
1775 			cdm->pos.cookie.device = device;
1776 			cdm->pos.generations[CAM_DEV_GENERATION] =
1777 				device->target->generation;
1778 			cdm->status = CAM_DEV_MATCH_MORE;
1779 			return(0);
1780 		}
1781 		j = cdm->num_matches;
1782 		cdm->num_matches++;
1783 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1784 		cdm->matches[j].result.device_result.path_id =
1785 			device->target->bus->path_id;
1786 		cdm->matches[j].result.device_result.target_id =
1787 			device->target->target_id;
1788 		cdm->matches[j].result.device_result.target_lun =
1789 			device->lun_id;
1790 		cdm->matches[j].result.device_result.protocol =
1791 			device->protocol;
1792 		bcopy(&device->inq_data,
1793 		      &cdm->matches[j].result.device_result.inq_data,
1794 		      sizeof(struct scsi_inquiry_data));
1795 		bcopy(&device->ident_data,
1796 		      &cdm->matches[j].result.device_result.ident_data,
1797 		      sizeof(struct ata_params));
1798 
1799 		/* Let the user know whether this device is unconfigured */
1800 		if (device->flags & CAM_DEV_UNCONFIGURED)
1801 			cdm->matches[j].result.device_result.flags =
1802 				DEV_RESULT_UNCONFIGURED;
1803 		else
1804 			cdm->matches[j].result.device_result.flags =
1805 				DEV_RESULT_NOFLAG;
1806 	}
1807 
1808 	/*
1809 	 * If the user isn't interested in peripherals, don't descend
1810 	 * the tree any further.
1811 	 */
1812 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1813 		return(1);
1814 
1815 	/*
1816 	 * If there is a peripheral list generation recorded, make sure
1817 	 * it hasn't changed.
1818 	 */
1819 	xpt_lock_buses();
1820 	mtx_lock(&bus->eb_mtx);
1821 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1822 	 && (cdm->pos.cookie.bus == bus)
1823 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1824 	 && (cdm->pos.cookie.target == device->target)
1825 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1826 	 && (cdm->pos.cookie.device == device)
1827 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1828 	 && (cdm->pos.cookie.periph != NULL)) {
1829 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1830 		    device->generation) {
1831 			mtx_unlock(&bus->eb_mtx);
1832 			xpt_unlock_buses();
1833 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1834 			return(0);
1835 		}
1836 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1837 		periph->refcount++;
1838 	} else
1839 		periph = NULL;
1840 	mtx_unlock(&bus->eb_mtx);
1841 	xpt_unlock_buses();
1842 
1843 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1844 }
1845 
1846 static int
1847 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1848 {
1849 	struct ccb_dev_match *cdm;
1850 	dev_match_ret retval;
1851 
1852 	cdm = (struct ccb_dev_match *)arg;
1853 
1854 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1855 
1856 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1857 		cdm->status = CAM_DEV_MATCH_ERROR;
1858 		return(0);
1859 	}
1860 
1861 	/*
1862 	 * If the copy flag is set, copy this peripheral out.
1863 	 */
1864 	if (retval & DM_RET_COPY) {
1865 		int spaceleft, j;
1866 		size_t l;
1867 
1868 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1869 			sizeof(struct dev_match_result));
1870 
1871 		/*
1872 		 * If we don't have enough space to put in another
1873 		 * match result, save our position and tell the
1874 		 * user there are more devices to check.
1875 		 */
1876 		if (spaceleft < sizeof(struct dev_match_result)) {
1877 			bzero(&cdm->pos, sizeof(cdm->pos));
1878 			cdm->pos.position_type =
1879 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1880 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1881 				CAM_DEV_POS_PERIPH;
1882 
1883 			cdm->pos.cookie.bus = periph->path->bus;
1884 			cdm->pos.generations[CAM_BUS_GENERATION]=
1885 				xsoftc.bus_generation;
1886 			cdm->pos.cookie.target = periph->path->target;
1887 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1888 				periph->path->bus->generation;
1889 			cdm->pos.cookie.device = periph->path->device;
1890 			cdm->pos.generations[CAM_DEV_GENERATION] =
1891 				periph->path->target->generation;
1892 			cdm->pos.cookie.periph = periph;
1893 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1894 				periph->path->device->generation;
1895 			cdm->status = CAM_DEV_MATCH_MORE;
1896 			return(0);
1897 		}
1898 
1899 		j = cdm->num_matches;
1900 		cdm->num_matches++;
1901 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1902 		cdm->matches[j].result.periph_result.path_id =
1903 			periph->path->bus->path_id;
1904 		cdm->matches[j].result.periph_result.target_id =
1905 			periph->path->target->target_id;
1906 		cdm->matches[j].result.periph_result.target_lun =
1907 			periph->path->device->lun_id;
1908 		cdm->matches[j].result.periph_result.unit_number =
1909 			periph->unit_number;
1910 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1911 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
1912 			periph->periph_name, l);
1913 	}
1914 
1915 	return(1);
1916 }
1917 
1918 static int
1919 xptedtmatch(struct ccb_dev_match *cdm)
1920 {
1921 	struct cam_eb *bus;
1922 	int ret;
1923 
1924 	cdm->num_matches = 0;
1925 
1926 	/*
1927 	 * Check the bus list generation.  If it has changed, the user
1928 	 * needs to reset everything and start over.
1929 	 */
1930 	xpt_lock_buses();
1931 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1932 	 && (cdm->pos.cookie.bus != NULL)) {
1933 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1934 		    xsoftc.bus_generation) {
1935 			xpt_unlock_buses();
1936 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1937 			return(0);
1938 		}
1939 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1940 		bus->refcount++;
1941 	} else
1942 		bus = NULL;
1943 	xpt_unlock_buses();
1944 
1945 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1946 
1947 	/*
1948 	 * If we get back 0, that means that we had to stop before fully
1949 	 * traversing the EDT.  It also means that one of the subroutines
1950 	 * has set the status field to the proper value.  If we get back 1,
1951 	 * we've fully traversed the EDT and copied out any matching entries.
1952 	 */
1953 	if (ret == 1)
1954 		cdm->status = CAM_DEV_MATCH_LAST;
1955 
1956 	return(ret);
1957 }
1958 
1959 static int
1960 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1961 {
1962 	struct cam_periph *periph;
1963 	struct ccb_dev_match *cdm;
1964 
1965 	cdm = (struct ccb_dev_match *)arg;
1966 
1967 	xpt_lock_buses();
1968 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1969 	 && (cdm->pos.cookie.pdrv == pdrv)
1970 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1971 	 && (cdm->pos.cookie.periph != NULL)) {
1972 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1973 		    (*pdrv)->generation) {
1974 			xpt_unlock_buses();
1975 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1976 			return(0);
1977 		}
1978 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1979 		periph->refcount++;
1980 	} else
1981 		periph = NULL;
1982 	xpt_unlock_buses();
1983 
1984 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1985 }
1986 
1987 static int
1988 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1989 {
1990 	struct ccb_dev_match *cdm;
1991 	dev_match_ret retval;
1992 
1993 	cdm = (struct ccb_dev_match *)arg;
1994 
1995 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1996 
1997 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1998 		cdm->status = CAM_DEV_MATCH_ERROR;
1999 		return(0);
2000 	}
2001 
2002 	/*
2003 	 * If the copy flag is set, copy this peripheral out.
2004 	 */
2005 	if (retval & DM_RET_COPY) {
2006 		int spaceleft, j;
2007 		size_t l;
2008 
2009 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2010 			sizeof(struct dev_match_result));
2011 
2012 		/*
2013 		 * If we don't have enough space to put in another
2014 		 * match result, save our position and tell the
2015 		 * user there are more devices to check.
2016 		 */
2017 		if (spaceleft < sizeof(struct dev_match_result)) {
2018 			struct periph_driver **pdrv;
2019 
2020 			pdrv = NULL;
2021 			bzero(&cdm->pos, sizeof(cdm->pos));
2022 			cdm->pos.position_type =
2023 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2024 				CAM_DEV_POS_PERIPH;
2025 
2026 			/*
2027 			 * This may look a bit non-sensical, but it is
2028 			 * actually quite logical.  There are very few
2029 			 * peripheral drivers, and bloating every peripheral
2030 			 * structure with a pointer back to its parent
2031 			 * peripheral driver linker set entry would cost
2032 			 * more in the long run than doing this quick lookup.
2033 			 */
2034 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2035 				if (strcmp((*pdrv)->driver_name,
2036 				    periph->periph_name) == 0)
2037 					break;
2038 			}
2039 
2040 			if (*pdrv == NULL) {
2041 				cdm->status = CAM_DEV_MATCH_ERROR;
2042 				return(0);
2043 			}
2044 
2045 			cdm->pos.cookie.pdrv = pdrv;
2046 			/*
2047 			 * The periph generation slot does double duty, as
2048 			 * does the periph pointer slot.  They are used for
2049 			 * both edt and pdrv lookups and positioning.
2050 			 */
2051 			cdm->pos.cookie.periph = periph;
2052 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2053 				(*pdrv)->generation;
2054 			cdm->status = CAM_DEV_MATCH_MORE;
2055 			return(0);
2056 		}
2057 
2058 		j = cdm->num_matches;
2059 		cdm->num_matches++;
2060 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2061 		cdm->matches[j].result.periph_result.path_id =
2062 			periph->path->bus->path_id;
2063 
2064 		/*
2065 		 * The transport layer peripheral doesn't have a target or
2066 		 * lun.
2067 		 */
2068 		if (periph->path->target)
2069 			cdm->matches[j].result.periph_result.target_id =
2070 				periph->path->target->target_id;
2071 		else
2072 			cdm->matches[j].result.periph_result.target_id =
2073 				CAM_TARGET_WILDCARD;
2074 
2075 		if (periph->path->device)
2076 			cdm->matches[j].result.periph_result.target_lun =
2077 				periph->path->device->lun_id;
2078 		else
2079 			cdm->matches[j].result.periph_result.target_lun =
2080 				CAM_LUN_WILDCARD;
2081 
2082 		cdm->matches[j].result.periph_result.unit_number =
2083 			periph->unit_number;
2084 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2085 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2086 			periph->periph_name, l);
2087 	}
2088 
2089 	return(1);
2090 }
2091 
2092 static int
2093 xptperiphlistmatch(struct ccb_dev_match *cdm)
2094 {
2095 	int ret;
2096 
2097 	cdm->num_matches = 0;
2098 
2099 	/*
2100 	 * At this point in the edt traversal function, we check the bus
2101 	 * list generation to make sure that no buses have been added or
2102 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2103 	 * For the peripheral driver list traversal function, however, we
2104 	 * don't have to worry about new peripheral driver types coming or
2105 	 * going; they're in a linker set, and therefore can't change
2106 	 * without a recompile.
2107 	 */
2108 
2109 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2110 	 && (cdm->pos.cookie.pdrv != NULL))
2111 		ret = xptpdrvtraverse(
2112 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2113 				xptplistpdrvfunc, cdm);
2114 	else
2115 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2116 
2117 	/*
2118 	 * If we get back 0, that means that we had to stop before fully
2119 	 * traversing the peripheral driver tree.  It also means that one of
2120 	 * the subroutines has set the status field to the proper value.  If
2121 	 * we get back 1, we've fully traversed the EDT and copied out any
2122 	 * matching entries.
2123 	 */
2124 	if (ret == 1)
2125 		cdm->status = CAM_DEV_MATCH_LAST;
2126 
2127 	return(ret);
2128 }
2129 
2130 static int
2131 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2132 {
2133 	struct cam_eb *bus, *next_bus;
2134 	int retval;
2135 
2136 	retval = 1;
2137 	if (start_bus)
2138 		bus = start_bus;
2139 	else {
2140 		xpt_lock_buses();
2141 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2142 		if (bus == NULL) {
2143 			xpt_unlock_buses();
2144 			return (retval);
2145 		}
2146 		bus->refcount++;
2147 		xpt_unlock_buses();
2148 	}
2149 	for (; bus != NULL; bus = next_bus) {
2150 		retval = tr_func(bus, arg);
2151 		if (retval == 0) {
2152 			xpt_release_bus(bus);
2153 			break;
2154 		}
2155 		xpt_lock_buses();
2156 		next_bus = TAILQ_NEXT(bus, links);
2157 		if (next_bus)
2158 			next_bus->refcount++;
2159 		xpt_unlock_buses();
2160 		xpt_release_bus(bus);
2161 	}
2162 	return(retval);
2163 }
2164 
2165 static int
2166 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2167 		  xpt_targetfunc_t *tr_func, void *arg)
2168 {
2169 	struct cam_et *target, *next_target;
2170 	int retval;
2171 
2172 	retval = 1;
2173 	if (start_target)
2174 		target = start_target;
2175 	else {
2176 		mtx_lock(&bus->eb_mtx);
2177 		target = TAILQ_FIRST(&bus->et_entries);
2178 		if (target == NULL) {
2179 			mtx_unlock(&bus->eb_mtx);
2180 			return (retval);
2181 		}
2182 		target->refcount++;
2183 		mtx_unlock(&bus->eb_mtx);
2184 	}
2185 	for (; target != NULL; target = next_target) {
2186 		retval = tr_func(target, arg);
2187 		if (retval == 0) {
2188 			xpt_release_target(target);
2189 			break;
2190 		}
2191 		mtx_lock(&bus->eb_mtx);
2192 		next_target = TAILQ_NEXT(target, links);
2193 		if (next_target)
2194 			next_target->refcount++;
2195 		mtx_unlock(&bus->eb_mtx);
2196 		xpt_release_target(target);
2197 	}
2198 	return(retval);
2199 }
2200 
2201 static int
2202 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2203 		  xpt_devicefunc_t *tr_func, void *arg)
2204 {
2205 	struct cam_eb *bus;
2206 	struct cam_ed *device, *next_device;
2207 	int retval;
2208 
2209 	retval = 1;
2210 	bus = target->bus;
2211 	if (start_device)
2212 		device = start_device;
2213 	else {
2214 		mtx_lock(&bus->eb_mtx);
2215 		device = TAILQ_FIRST(&target->ed_entries);
2216 		if (device == NULL) {
2217 			mtx_unlock(&bus->eb_mtx);
2218 			return (retval);
2219 		}
2220 		device->refcount++;
2221 		mtx_unlock(&bus->eb_mtx);
2222 	}
2223 	for (; device != NULL; device = next_device) {
2224 		mtx_lock(&device->device_mtx);
2225 		retval = tr_func(device, arg);
2226 		mtx_unlock(&device->device_mtx);
2227 		if (retval == 0) {
2228 			xpt_release_device(device);
2229 			break;
2230 		}
2231 		mtx_lock(&bus->eb_mtx);
2232 		next_device = TAILQ_NEXT(device, links);
2233 		if (next_device)
2234 			next_device->refcount++;
2235 		mtx_unlock(&bus->eb_mtx);
2236 		xpt_release_device(device);
2237 	}
2238 	return(retval);
2239 }
2240 
2241 static int
2242 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2243 		  xpt_periphfunc_t *tr_func, void *arg)
2244 {
2245 	struct cam_eb *bus;
2246 	struct cam_periph *periph, *next_periph;
2247 	int retval;
2248 
2249 	retval = 1;
2250 
2251 	bus = device->target->bus;
2252 	if (start_periph)
2253 		periph = start_periph;
2254 	else {
2255 		xpt_lock_buses();
2256 		mtx_lock(&bus->eb_mtx);
2257 		periph = SLIST_FIRST(&device->periphs);
2258 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2259 			periph = SLIST_NEXT(periph, periph_links);
2260 		if (periph == NULL) {
2261 			mtx_unlock(&bus->eb_mtx);
2262 			xpt_unlock_buses();
2263 			return (retval);
2264 		}
2265 		periph->refcount++;
2266 		mtx_unlock(&bus->eb_mtx);
2267 		xpt_unlock_buses();
2268 	}
2269 	for (; periph != NULL; periph = next_periph) {
2270 		retval = tr_func(periph, arg);
2271 		if (retval == 0) {
2272 			cam_periph_release_locked(periph);
2273 			break;
2274 		}
2275 		xpt_lock_buses();
2276 		mtx_lock(&bus->eb_mtx);
2277 		next_periph = SLIST_NEXT(periph, periph_links);
2278 		while (next_periph != NULL &&
2279 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2280 			next_periph = SLIST_NEXT(next_periph, periph_links);
2281 		if (next_periph)
2282 			next_periph->refcount++;
2283 		mtx_unlock(&bus->eb_mtx);
2284 		xpt_unlock_buses();
2285 		cam_periph_release_locked(periph);
2286 	}
2287 	return(retval);
2288 }
2289 
2290 static int
2291 xptpdrvtraverse(struct periph_driver **start_pdrv,
2292 		xpt_pdrvfunc_t *tr_func, void *arg)
2293 {
2294 	struct periph_driver **pdrv;
2295 	int retval;
2296 
2297 	retval = 1;
2298 
2299 	/*
2300 	 * We don't traverse the peripheral driver list like we do the
2301 	 * other lists, because it is a linker set, and therefore cannot be
2302 	 * changed during runtime.  If the peripheral driver list is ever
2303 	 * re-done to be something other than a linker set (i.e. it can
2304 	 * change while the system is running), the list traversal should
2305 	 * be modified to work like the other traversal functions.
2306 	 */
2307 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2308 	     *pdrv != NULL; pdrv++) {
2309 		retval = tr_func(pdrv, arg);
2310 
2311 		if (retval == 0)
2312 			return(retval);
2313 	}
2314 
2315 	return(retval);
2316 }
2317 
2318 static int
2319 xptpdperiphtraverse(struct periph_driver **pdrv,
2320 		    struct cam_periph *start_periph,
2321 		    xpt_periphfunc_t *tr_func, void *arg)
2322 {
2323 	struct cam_periph *periph, *next_periph;
2324 	int retval;
2325 
2326 	retval = 1;
2327 
2328 	if (start_periph)
2329 		periph = start_periph;
2330 	else {
2331 		xpt_lock_buses();
2332 		periph = TAILQ_FIRST(&(*pdrv)->units);
2333 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2334 			periph = TAILQ_NEXT(periph, unit_links);
2335 		if (periph == NULL) {
2336 			xpt_unlock_buses();
2337 			return (retval);
2338 		}
2339 		periph->refcount++;
2340 		xpt_unlock_buses();
2341 	}
2342 	for (; periph != NULL; periph = next_periph) {
2343 		cam_periph_lock(periph);
2344 		retval = tr_func(periph, arg);
2345 		cam_periph_unlock(periph);
2346 		if (retval == 0) {
2347 			cam_periph_release(periph);
2348 			break;
2349 		}
2350 		xpt_lock_buses();
2351 		next_periph = TAILQ_NEXT(periph, unit_links);
2352 		while (next_periph != NULL &&
2353 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2354 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2355 		if (next_periph)
2356 			next_periph->refcount++;
2357 		xpt_unlock_buses();
2358 		cam_periph_release(periph);
2359 	}
2360 	return(retval);
2361 }
2362 
2363 static int
2364 xptdefbusfunc(struct cam_eb *bus, void *arg)
2365 {
2366 	struct xpt_traverse_config *tr_config;
2367 
2368 	tr_config = (struct xpt_traverse_config *)arg;
2369 
2370 	if (tr_config->depth == XPT_DEPTH_BUS) {
2371 		xpt_busfunc_t *tr_func;
2372 
2373 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2374 
2375 		return(tr_func(bus, tr_config->tr_arg));
2376 	} else
2377 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2378 }
2379 
2380 static int
2381 xptdeftargetfunc(struct cam_et *target, void *arg)
2382 {
2383 	struct xpt_traverse_config *tr_config;
2384 
2385 	tr_config = (struct xpt_traverse_config *)arg;
2386 
2387 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2388 		xpt_targetfunc_t *tr_func;
2389 
2390 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2391 
2392 		return(tr_func(target, tr_config->tr_arg));
2393 	} else
2394 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2395 }
2396 
2397 static int
2398 xptdefdevicefunc(struct cam_ed *device, void *arg)
2399 {
2400 	struct xpt_traverse_config *tr_config;
2401 
2402 	tr_config = (struct xpt_traverse_config *)arg;
2403 
2404 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2405 		xpt_devicefunc_t *tr_func;
2406 
2407 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2408 
2409 		return(tr_func(device, tr_config->tr_arg));
2410 	} else
2411 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2412 }
2413 
2414 static int
2415 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2416 {
2417 	struct xpt_traverse_config *tr_config;
2418 	xpt_periphfunc_t *tr_func;
2419 
2420 	tr_config = (struct xpt_traverse_config *)arg;
2421 
2422 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2423 
2424 	/*
2425 	 * Unlike the other default functions, we don't check for depth
2426 	 * here.  The peripheral driver level is the last level in the EDT,
2427 	 * so if we're here, we should execute the function in question.
2428 	 */
2429 	return(tr_func(periph, tr_config->tr_arg));
2430 }
2431 
2432 /*
2433  * Execute the given function for every bus in the EDT.
2434  */
2435 static int
2436 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2437 {
2438 	struct xpt_traverse_config tr_config;
2439 
2440 	tr_config.depth = XPT_DEPTH_BUS;
2441 	tr_config.tr_func = tr_func;
2442 	tr_config.tr_arg = arg;
2443 
2444 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2445 }
2446 
2447 /*
2448  * Execute the given function for every device in the EDT.
2449  */
2450 static int
2451 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2452 {
2453 	struct xpt_traverse_config tr_config;
2454 
2455 	tr_config.depth = XPT_DEPTH_DEVICE;
2456 	tr_config.tr_func = tr_func;
2457 	tr_config.tr_arg = arg;
2458 
2459 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2460 }
2461 
2462 static int
2463 xptsetasyncfunc(struct cam_ed *device, void *arg)
2464 {
2465 	struct cam_path path;
2466 	struct ccb_getdev cgd;
2467 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2468 
2469 	/*
2470 	 * Don't report unconfigured devices (Wildcard devs,
2471 	 * devices only for target mode, device instances
2472 	 * that have been invalidated but are waiting for
2473 	 * their last reference count to be released).
2474 	 */
2475 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2476 		return (1);
2477 
2478 	memset(&cgd, 0, sizeof(cgd));
2479 	xpt_compile_path(&path,
2480 			 NULL,
2481 			 device->target->bus->path_id,
2482 			 device->target->target_id,
2483 			 device->lun_id);
2484 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2485 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2486 	xpt_action((union ccb *)&cgd);
2487 	csa->callback(csa->callback_arg,
2488 			    AC_FOUND_DEVICE,
2489 			    &path, &cgd);
2490 	xpt_release_path(&path);
2491 
2492 	return(1);
2493 }
2494 
2495 static int
2496 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2497 {
2498 	struct cam_path path;
2499 	struct ccb_pathinq cpi;
2500 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2501 
2502 	xpt_compile_path(&path, /*periph*/NULL,
2503 			 bus->path_id,
2504 			 CAM_TARGET_WILDCARD,
2505 			 CAM_LUN_WILDCARD);
2506 	xpt_path_lock(&path);
2507 	xpt_path_inq(&cpi, &path);
2508 	csa->callback(csa->callback_arg,
2509 			    AC_PATH_REGISTERED,
2510 			    &path, &cpi);
2511 	xpt_path_unlock(&path);
2512 	xpt_release_path(&path);
2513 
2514 	return(1);
2515 }
2516 
2517 void
2518 xpt_action(union ccb *start_ccb)
2519 {
2520 
2521 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2522 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2523 		xpt_action_name(start_ccb->ccb_h.func_code)));
2524 
2525 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2526 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2527 }
2528 
2529 void
2530 xpt_action_default(union ccb *start_ccb)
2531 {
2532 	struct cam_path *path;
2533 	struct cam_sim *sim;
2534 	struct mtx *mtx;
2535 
2536 	path = start_ccb->ccb_h.path;
2537 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2538 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2539 		xpt_action_name(start_ccb->ccb_h.func_code)));
2540 
2541 	switch (start_ccb->ccb_h.func_code) {
2542 	case XPT_SCSI_IO:
2543 	{
2544 		struct cam_ed *device;
2545 
2546 		/*
2547 		 * For the sake of compatibility with SCSI-1
2548 		 * devices that may not understand the identify
2549 		 * message, we include lun information in the
2550 		 * second byte of all commands.  SCSI-1 specifies
2551 		 * that luns are a 3 bit value and reserves only 3
2552 		 * bits for lun information in the CDB.  Later
2553 		 * revisions of the SCSI spec allow for more than 8
2554 		 * luns, but have deprecated lun information in the
2555 		 * CDB.  So, if the lun won't fit, we must omit.
2556 		 *
2557 		 * Also be aware that during initial probing for devices,
2558 		 * the inquiry information is unknown but initialized to 0.
2559 		 * This means that this code will be exercised while probing
2560 		 * devices with an ANSI revision greater than 2.
2561 		 */
2562 		device = path->device;
2563 		if (device->protocol_version <= SCSI_REV_2
2564 		 && start_ccb->ccb_h.target_lun < 8
2565 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2566 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2567 			    start_ccb->ccb_h.target_lun << 5;
2568 		}
2569 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2570 	}
2571 	/* FALLTHROUGH */
2572 	case XPT_TARGET_IO:
2573 	case XPT_CONT_TARGET_IO:
2574 		start_ccb->csio.sense_resid = 0;
2575 		start_ccb->csio.resid = 0;
2576 		/* FALLTHROUGH */
2577 	case XPT_ATA_IO:
2578 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2579 			start_ccb->ataio.resid = 0;
2580 		/* FALLTHROUGH */
2581 	case XPT_NVME_IO:
2582 	case XPT_NVME_ADMIN:
2583 	case XPT_MMC_IO:
2584 	case XPT_MMC_GET_TRAN_SETTINGS:
2585 	case XPT_MMC_SET_TRAN_SETTINGS:
2586 	case XPT_RESET_DEV:
2587 	case XPT_ENG_EXEC:
2588 	case XPT_SMP_IO:
2589 	{
2590 		struct cam_devq *devq;
2591 
2592 		devq = path->bus->sim->devq;
2593 		mtx_lock(&devq->send_mtx);
2594 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2595 		if (xpt_schedule_devq(devq, path->device) != 0)
2596 			xpt_run_devq(devq);
2597 		mtx_unlock(&devq->send_mtx);
2598 		break;
2599 	}
2600 	case XPT_CALC_GEOMETRY:
2601 		/* Filter out garbage */
2602 		if (start_ccb->ccg.block_size == 0
2603 		 || start_ccb->ccg.volume_size == 0) {
2604 			start_ccb->ccg.cylinders = 0;
2605 			start_ccb->ccg.heads = 0;
2606 			start_ccb->ccg.secs_per_track = 0;
2607 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2608 			break;
2609 		}
2610 		goto call_sim;
2611 	case XPT_ABORT:
2612 	{
2613 		union ccb* abort_ccb;
2614 
2615 		abort_ccb = start_ccb->cab.abort_ccb;
2616 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2617 			struct cam_ed *device;
2618 			struct cam_devq *devq;
2619 
2620 			device = abort_ccb->ccb_h.path->device;
2621 			devq = device->sim->devq;
2622 
2623 			mtx_lock(&devq->send_mtx);
2624 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2625 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2626 				abort_ccb->ccb_h.status =
2627 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2628 				xpt_freeze_devq_device(device, 1);
2629 				mtx_unlock(&devq->send_mtx);
2630 				xpt_done(abort_ccb);
2631 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2632 				break;
2633 			}
2634 			mtx_unlock(&devq->send_mtx);
2635 
2636 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2637 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2638 				/*
2639 				 * We've caught this ccb en route to
2640 				 * the SIM.  Flag it for abort and the
2641 				 * SIM will do so just before starting
2642 				 * real work on the CCB.
2643 				 */
2644 				abort_ccb->ccb_h.status =
2645 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2646 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2647 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2648 				break;
2649 			}
2650 		}
2651 		if (XPT_FC_IS_QUEUED(abort_ccb)
2652 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2653 			/*
2654 			 * It's already completed but waiting
2655 			 * for our SWI to get to it.
2656 			 */
2657 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2658 			break;
2659 		}
2660 		/*
2661 		 * If we weren't able to take care of the abort request
2662 		 * in the XPT, pass the request down to the SIM for processing.
2663 		 */
2664 	}
2665 	/* FALLTHROUGH */
2666 	case XPT_ACCEPT_TARGET_IO:
2667 	case XPT_EN_LUN:
2668 	case XPT_IMMED_NOTIFY:
2669 	case XPT_NOTIFY_ACK:
2670 	case XPT_RESET_BUS:
2671 	case XPT_IMMEDIATE_NOTIFY:
2672 	case XPT_NOTIFY_ACKNOWLEDGE:
2673 	case XPT_GET_SIM_KNOB_OLD:
2674 	case XPT_GET_SIM_KNOB:
2675 	case XPT_SET_SIM_KNOB:
2676 	case XPT_GET_TRAN_SETTINGS:
2677 	case XPT_SET_TRAN_SETTINGS:
2678 	case XPT_PATH_INQ:
2679 call_sim:
2680 		sim = path->bus->sim;
2681 		mtx = sim->mtx;
2682 		if (mtx && !mtx_owned(mtx))
2683 			mtx_lock(mtx);
2684 		else
2685 			mtx = NULL;
2686 
2687 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2688 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2689 		(*(sim->sim_action))(sim, start_ccb);
2690 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2691 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2692 		if (mtx)
2693 			mtx_unlock(mtx);
2694 		break;
2695 	case XPT_PATH_STATS:
2696 		start_ccb->cpis.last_reset = path->bus->last_reset;
2697 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2698 		break;
2699 	case XPT_GDEV_TYPE:
2700 	{
2701 		struct cam_ed *dev;
2702 
2703 		dev = path->device;
2704 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2705 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2706 		} else {
2707 			struct ccb_getdev *cgd;
2708 
2709 			cgd = &start_ccb->cgd;
2710 			cgd->protocol = dev->protocol;
2711 			cgd->inq_data = dev->inq_data;
2712 			cgd->ident_data = dev->ident_data;
2713 			cgd->inq_flags = dev->inq_flags;
2714 			cgd->ccb_h.status = CAM_REQ_CMP;
2715 			cgd->serial_num_len = dev->serial_num_len;
2716 			if ((dev->serial_num_len > 0)
2717 			 && (dev->serial_num != NULL))
2718 				bcopy(dev->serial_num, cgd->serial_num,
2719 				      dev->serial_num_len);
2720 		}
2721 		break;
2722 	}
2723 	case XPT_GDEV_STATS:
2724 	{
2725 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2726 		struct cam_ed *dev = path->device;
2727 		struct cam_eb *bus = path->bus;
2728 		struct cam_et *tar = path->target;
2729 		struct cam_devq *devq = bus->sim->devq;
2730 
2731 		mtx_lock(&devq->send_mtx);
2732 		cgds->dev_openings = dev->ccbq.dev_openings;
2733 		cgds->dev_active = dev->ccbq.dev_active;
2734 		cgds->allocated = dev->ccbq.allocated;
2735 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2736 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2737 		cgds->last_reset = tar->last_reset;
2738 		cgds->maxtags = dev->maxtags;
2739 		cgds->mintags = dev->mintags;
2740 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2741 			cgds->last_reset = bus->last_reset;
2742 		mtx_unlock(&devq->send_mtx);
2743 		cgds->ccb_h.status = CAM_REQ_CMP;
2744 		break;
2745 	}
2746 	case XPT_GDEVLIST:
2747 	{
2748 		struct cam_periph	*nperiph;
2749 		struct periph_list	*periph_head;
2750 		struct ccb_getdevlist	*cgdl;
2751 		u_int			i;
2752 		struct cam_ed		*device;
2753 		bool			found;
2754 
2755 		found = false;
2756 
2757 		/*
2758 		 * Don't want anyone mucking with our data.
2759 		 */
2760 		device = path->device;
2761 		periph_head = &device->periphs;
2762 		cgdl = &start_ccb->cgdl;
2763 
2764 		/*
2765 		 * Check and see if the list has changed since the user
2766 		 * last requested a list member.  If so, tell them that the
2767 		 * list has changed, and therefore they need to start over
2768 		 * from the beginning.
2769 		 */
2770 		if ((cgdl->index != 0) &&
2771 		    (cgdl->generation != device->generation)) {
2772 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2773 			break;
2774 		}
2775 
2776 		/*
2777 		 * Traverse the list of peripherals and attempt to find
2778 		 * the requested peripheral.
2779 		 */
2780 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2781 		     (nperiph != NULL) && (i <= cgdl->index);
2782 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2783 			if (i == cgdl->index) {
2784 				strlcpy(cgdl->periph_name,
2785 					nperiph->periph_name,
2786 					sizeof(cgdl->periph_name));
2787 				cgdl->unit_number = nperiph->unit_number;
2788 				found = true;
2789 			}
2790 		}
2791 		if (!found) {
2792 			cgdl->status = CAM_GDEVLIST_ERROR;
2793 			break;
2794 		}
2795 
2796 		if (nperiph == NULL)
2797 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2798 		else
2799 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2800 
2801 		cgdl->index++;
2802 		cgdl->generation = device->generation;
2803 
2804 		cgdl->ccb_h.status = CAM_REQ_CMP;
2805 		break;
2806 	}
2807 	case XPT_DEV_MATCH:
2808 	{
2809 		dev_pos_type position_type;
2810 		struct ccb_dev_match *cdm;
2811 
2812 		cdm = &start_ccb->cdm;
2813 
2814 		/*
2815 		 * There are two ways of getting at information in the EDT.
2816 		 * The first way is via the primary EDT tree.  It starts
2817 		 * with a list of buses, then a list of targets on a bus,
2818 		 * then devices/luns on a target, and then peripherals on a
2819 		 * device/lun.  The "other" way is by the peripheral driver
2820 		 * lists.  The peripheral driver lists are organized by
2821 		 * peripheral driver.  (obviously)  So it makes sense to
2822 		 * use the peripheral driver list if the user is looking
2823 		 * for something like "da1", or all "da" devices.  If the
2824 		 * user is looking for something on a particular bus/target
2825 		 * or lun, it's generally better to go through the EDT tree.
2826 		 */
2827 
2828 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2829 			position_type = cdm->pos.position_type;
2830 		else {
2831 			u_int i;
2832 
2833 			position_type = CAM_DEV_POS_NONE;
2834 
2835 			for (i = 0; i < cdm->num_patterns; i++) {
2836 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2837 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2838 					position_type = CAM_DEV_POS_EDT;
2839 					break;
2840 				}
2841 			}
2842 
2843 			if (cdm->num_patterns == 0)
2844 				position_type = CAM_DEV_POS_EDT;
2845 			else if (position_type == CAM_DEV_POS_NONE)
2846 				position_type = CAM_DEV_POS_PDRV;
2847 		}
2848 
2849 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2850 		case CAM_DEV_POS_EDT:
2851 			xptedtmatch(cdm);
2852 			break;
2853 		case CAM_DEV_POS_PDRV:
2854 			xptperiphlistmatch(cdm);
2855 			break;
2856 		default:
2857 			cdm->status = CAM_DEV_MATCH_ERROR;
2858 			break;
2859 		}
2860 
2861 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2862 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2863 		else
2864 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2865 
2866 		break;
2867 	}
2868 	case XPT_SASYNC_CB:
2869 	{
2870 		struct ccb_setasync *csa;
2871 		struct async_node *cur_entry;
2872 		struct async_list *async_head;
2873 		uint32_t added;
2874 
2875 		csa = &start_ccb->csa;
2876 		added = csa->event_enable;
2877 		async_head = &path->device->asyncs;
2878 
2879 		/*
2880 		 * If there is already an entry for us, simply
2881 		 * update it.
2882 		 */
2883 		cur_entry = SLIST_FIRST(async_head);
2884 		while (cur_entry != NULL) {
2885 			if ((cur_entry->callback_arg == csa->callback_arg)
2886 			 && (cur_entry->callback == csa->callback))
2887 				break;
2888 			cur_entry = SLIST_NEXT(cur_entry, links);
2889 		}
2890 
2891 		if (cur_entry != NULL) {
2892 		 	/*
2893 			 * If the request has no flags set,
2894 			 * remove the entry.
2895 			 */
2896 			added &= ~cur_entry->event_enable;
2897 			if (csa->event_enable == 0) {
2898 				SLIST_REMOVE(async_head, cur_entry,
2899 					     async_node, links);
2900 				xpt_release_device(path->device);
2901 				free(cur_entry, M_CAMXPT);
2902 			} else {
2903 				cur_entry->event_enable = csa->event_enable;
2904 			}
2905 			csa->event_enable = added;
2906 		} else {
2907 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2908 					   M_NOWAIT);
2909 			if (cur_entry == NULL) {
2910 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2911 				break;
2912 			}
2913 			cur_entry->event_enable = csa->event_enable;
2914 			cur_entry->event_lock = (path->bus->sim->mtx &&
2915 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2916 			cur_entry->callback_arg = csa->callback_arg;
2917 			cur_entry->callback = csa->callback;
2918 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2919 			xpt_acquire_device(path->device);
2920 		}
2921 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2922 		break;
2923 	}
2924 	case XPT_REL_SIMQ:
2925 	{
2926 		struct ccb_relsim *crs;
2927 		struct cam_ed *dev;
2928 
2929 		crs = &start_ccb->crs;
2930 		dev = path->device;
2931 		if (dev == NULL) {
2932 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2933 			break;
2934 		}
2935 
2936 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2937 			/* Don't ever go below one opening */
2938 			if (crs->openings > 0) {
2939 				xpt_dev_ccbq_resize(path, crs->openings);
2940 				if (bootverbose) {
2941 					xpt_print(path,
2942 					    "number of openings is now %d\n",
2943 					    crs->openings);
2944 				}
2945 			}
2946 		}
2947 
2948 		mtx_lock(&dev->sim->devq->send_mtx);
2949 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2950 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2951 				/*
2952 				 * Just extend the old timeout and decrement
2953 				 * the freeze count so that a single timeout
2954 				 * is sufficient for releasing the queue.
2955 				 */
2956 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2957 				callout_stop(&dev->callout);
2958 			} else {
2959 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2960 			}
2961 
2962 			callout_reset_sbt(&dev->callout,
2963 			    SBT_1MS * crs->release_timeout, SBT_1MS,
2964 			    xpt_release_devq_timeout, dev, 0);
2965 
2966 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2967 		}
2968 
2969 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2970 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2971 				/*
2972 				 * Decrement the freeze count so that a single
2973 				 * completion is still sufficient to unfreeze
2974 				 * the queue.
2975 				 */
2976 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2977 			} else {
2978 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2979 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2980 			}
2981 		}
2982 
2983 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2984 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2985 			 || (dev->ccbq.dev_active == 0)) {
2986 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2987 			} else {
2988 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2989 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2990 			}
2991 		}
2992 		mtx_unlock(&dev->sim->devq->send_mtx);
2993 
2994 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2995 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2996 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2997 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2998 		break;
2999 	}
3000 	case XPT_DEBUG: {
3001 		struct cam_path *oldpath;
3002 
3003 		/* Check that all request bits are supported. */
3004 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3005 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3006 			break;
3007 		}
3008 
3009 		cam_dflags = CAM_DEBUG_NONE;
3010 		if (cam_dpath != NULL) {
3011 			oldpath = cam_dpath;
3012 			cam_dpath = NULL;
3013 			xpt_free_path(oldpath);
3014 		}
3015 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3016 			if (xpt_create_path(&cam_dpath, NULL,
3017 					    start_ccb->ccb_h.path_id,
3018 					    start_ccb->ccb_h.target_id,
3019 					    start_ccb->ccb_h.target_lun) !=
3020 					    CAM_REQ_CMP) {
3021 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3022 			} else {
3023 				cam_dflags = start_ccb->cdbg.flags;
3024 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3025 				xpt_print(cam_dpath, "debugging flags now %x\n",
3026 				    cam_dflags);
3027 			}
3028 		} else
3029 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3030 		break;
3031 	}
3032 	case XPT_NOOP:
3033 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3034 			xpt_freeze_devq(path, 1);
3035 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3036 		break;
3037 	case XPT_REPROBE_LUN:
3038 		xpt_async(AC_INQ_CHANGED, path, NULL);
3039 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3040 		xpt_done(start_ccb);
3041 		break;
3042 	case XPT_ASYNC:
3043 		/*
3044 		 * Queue the async operation so it can be run from a sleepable
3045 		 * context.
3046 		 */
3047 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3048 		mtx_lock(&cam_async.cam_doneq_mtx);
3049 		STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3050 		start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3051 		mtx_unlock(&cam_async.cam_doneq_mtx);
3052 		wakeup(&cam_async.cam_doneq);
3053 		break;
3054 	default:
3055 	case XPT_SDEV_TYPE:
3056 	case XPT_TERM_IO:
3057 	case XPT_ENG_INQ:
3058 		/* XXX Implement */
3059 		xpt_print(start_ccb->ccb_h.path,
3060 		    "%s: CCB type %#x %s not supported\n", __func__,
3061 		    start_ccb->ccb_h.func_code,
3062 		    xpt_action_name(start_ccb->ccb_h.func_code));
3063 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3064 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3065 			xpt_done(start_ccb);
3066 		}
3067 		break;
3068 	}
3069 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3070 	    ("xpt_action_default: func= %#x %s status %#x\n",
3071 		start_ccb->ccb_h.func_code,
3072  		xpt_action_name(start_ccb->ccb_h.func_code),
3073 		start_ccb->ccb_h.status));
3074 }
3075 
3076 /*
3077  * Call the sim poll routine to allow the sim to complete
3078  * any inflight requests, then call camisr_runqueue to
3079  * complete any CCB that the polling completed.
3080  */
3081 void
3082 xpt_sim_poll(struct cam_sim *sim)
3083 {
3084 	struct mtx *mtx;
3085 
3086 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3087 	mtx = sim->mtx;
3088 	if (mtx)
3089 		mtx_lock(mtx);
3090 	(*(sim->sim_poll))(sim);
3091 	if (mtx)
3092 		mtx_unlock(mtx);
3093 	camisr_runqueue();
3094 }
3095 
3096 uint32_t
3097 xpt_poll_setup(union ccb *start_ccb)
3098 {
3099 	uint32_t timeout;
3100 	struct	  cam_sim *sim;
3101 	struct	  cam_devq *devq;
3102 	struct	  cam_ed *dev;
3103 
3104 	timeout = start_ccb->ccb_h.timeout * 10;
3105 	sim = start_ccb->ccb_h.path->bus->sim;
3106 	devq = sim->devq;
3107 	dev = start_ccb->ccb_h.path->device;
3108 
3109 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3110 
3111 	/*
3112 	 * Steal an opening so that no other queued requests
3113 	 * can get it before us while we simulate interrupts.
3114 	 */
3115 	mtx_lock(&devq->send_mtx);
3116 	dev->ccbq.dev_openings--;
3117 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3118 	    (--timeout > 0)) {
3119 		mtx_unlock(&devq->send_mtx);
3120 		DELAY(100);
3121 		xpt_sim_poll(sim);
3122 		mtx_lock(&devq->send_mtx);
3123 	}
3124 	dev->ccbq.dev_openings++;
3125 	mtx_unlock(&devq->send_mtx);
3126 
3127 	return (timeout);
3128 }
3129 
3130 void
3131 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3132 {
3133 
3134 	KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3135 	    ("%s: non-pollable sim", __func__));
3136 	while (--timeout > 0) {
3137 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3138 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3139 		    != CAM_REQ_INPROG)
3140 			break;
3141 		DELAY(100);
3142 	}
3143 
3144 	if (timeout == 0) {
3145 		/*
3146 		 * XXX Is it worth adding a sim_timeout entry
3147 		 * point so we can attempt recovery?  If
3148 		 * this is only used for dumps, I don't think
3149 		 * it is.
3150 		 */
3151 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3152 	}
3153 }
3154 
3155 /*
3156  * Schedule a peripheral driver to receive a ccb when its
3157  * target device has space for more transactions.
3158  */
3159 void
3160 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3161 {
3162 
3163 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3164 	cam_periph_assert(periph, MA_OWNED);
3165 	if (new_priority < periph->scheduled_priority) {
3166 		periph->scheduled_priority = new_priority;
3167 		xpt_run_allocq(periph, 0);
3168 	}
3169 }
3170 
3171 /*
3172  * Schedule a device to run on a given queue.
3173  * If the device was inserted as a new entry on the queue,
3174  * return 1 meaning the device queue should be run. If we
3175  * were already queued, implying someone else has already
3176  * started the queue, return 0 so the caller doesn't attempt
3177  * to run the queue.
3178  */
3179 static int
3180 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3181 		 uint32_t new_priority)
3182 {
3183 	int retval;
3184 	uint32_t old_priority;
3185 
3186 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3187 
3188 	old_priority = pinfo->priority;
3189 
3190 	/*
3191 	 * Are we already queued?
3192 	 */
3193 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3194 		/* Simply reorder based on new priority */
3195 		if (new_priority < old_priority) {
3196 			camq_change_priority(queue, pinfo->index,
3197 					     new_priority);
3198 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3199 					("changed priority to %d\n",
3200 					 new_priority));
3201 			retval = 1;
3202 		} else
3203 			retval = 0;
3204 	} else {
3205 		/* New entry on the queue */
3206 		if (new_priority < old_priority)
3207 			pinfo->priority = new_priority;
3208 
3209 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3210 				("Inserting onto queue\n"));
3211 		pinfo->generation = ++queue->generation;
3212 		camq_insert(queue, pinfo);
3213 		retval = 1;
3214 	}
3215 	return (retval);
3216 }
3217 
3218 static void
3219 xpt_run_allocq_task(void *context, int pending)
3220 {
3221 	struct cam_periph *periph = context;
3222 
3223 	cam_periph_lock(periph);
3224 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3225 	xpt_run_allocq(periph, 1);
3226 	cam_periph_unlock(periph);
3227 	cam_periph_release(periph);
3228 }
3229 
3230 static void
3231 xpt_run_allocq(struct cam_periph *periph, int sleep)
3232 {
3233 	struct cam_ed	*device;
3234 	union ccb	*ccb;
3235 	uint32_t	 prio;
3236 
3237 	cam_periph_assert(periph, MA_OWNED);
3238 	if (periph->periph_allocating)
3239 		return;
3240 	cam_periph_doacquire(periph);
3241 	periph->periph_allocating = 1;
3242 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3243 	device = periph->path->device;
3244 	ccb = NULL;
3245 restart:
3246 	while ((prio = min(periph->scheduled_priority,
3247 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3248 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3249 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3250 		if (ccb == NULL &&
3251 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3252 			if (sleep) {
3253 				ccb = xpt_get_ccb(periph);
3254 				goto restart;
3255 			}
3256 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3257 				break;
3258 			cam_periph_doacquire(periph);
3259 			periph->flags |= CAM_PERIPH_RUN_TASK;
3260 			taskqueue_enqueue(xsoftc.xpt_taskq,
3261 			    &periph->periph_run_task);
3262 			break;
3263 		}
3264 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3265 		if (prio == periph->immediate_priority) {
3266 			periph->immediate_priority = CAM_PRIORITY_NONE;
3267 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3268 					("waking cam_periph_getccb()\n"));
3269 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3270 					  periph_links.sle);
3271 			wakeup(&periph->ccb_list);
3272 		} else {
3273 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3274 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3275 					("calling periph_start()\n"));
3276 			periph->periph_start(periph, ccb);
3277 		}
3278 		ccb = NULL;
3279 	}
3280 	if (ccb != NULL)
3281 		xpt_release_ccb(ccb);
3282 	periph->periph_allocating = 0;
3283 	cam_periph_release_locked(periph);
3284 }
3285 
3286 static void
3287 xpt_run_devq(struct cam_devq *devq)
3288 {
3289 	struct mtx *mtx;
3290 
3291 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3292 
3293 	devq->send_queue.qfrozen_cnt++;
3294 	while ((devq->send_queue.entries > 0)
3295 	    && (devq->send_openings > 0)
3296 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3297 		struct	cam_ed *device;
3298 		union ccb *work_ccb;
3299 		struct	cam_sim *sim;
3300 		struct xpt_proto *proto;
3301 
3302 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3303 							   CAMQ_HEAD);
3304 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3305 				("running device %p\n", device));
3306 
3307 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3308 		if (work_ccb == NULL) {
3309 			printf("device on run queue with no ccbs???\n");
3310 			continue;
3311 		}
3312 
3313 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3314 			mtx_lock(&xsoftc.xpt_highpower_lock);
3315 		 	if (xsoftc.num_highpower <= 0) {
3316 				/*
3317 				 * We got a high power command, but we
3318 				 * don't have any available slots.  Freeze
3319 				 * the device queue until we have a slot
3320 				 * available.
3321 				 */
3322 				xpt_freeze_devq_device(device, 1);
3323 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3324 						   highpowerq_entry);
3325 
3326 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3327 				continue;
3328 			} else {
3329 				/*
3330 				 * Consume a high power slot while
3331 				 * this ccb runs.
3332 				 */
3333 				xsoftc.num_highpower--;
3334 			}
3335 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3336 		}
3337 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3338 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3339 		devq->send_openings--;
3340 		devq->send_active++;
3341 		xpt_schedule_devq(devq, device);
3342 		mtx_unlock(&devq->send_mtx);
3343 
3344 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3345 			/*
3346 			 * The client wants to freeze the queue
3347 			 * after this CCB is sent.
3348 			 */
3349 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3350 		}
3351 
3352 		/* In Target mode, the peripheral driver knows best... */
3353 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3354 			if ((device->inq_flags & SID_CmdQue) != 0
3355 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3356 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3357 			else
3358 				/*
3359 				 * Clear this in case of a retried CCB that
3360 				 * failed due to a rejected tag.
3361 				 */
3362 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3363 		}
3364 
3365 		KASSERT(device == work_ccb->ccb_h.path->device,
3366 		    ("device (%p) / path->device (%p) mismatch",
3367 			device, work_ccb->ccb_h.path->device));
3368 		proto = xpt_proto_find(device->protocol);
3369 		if (proto && proto->ops->debug_out)
3370 			proto->ops->debug_out(work_ccb);
3371 
3372 		/*
3373 		 * Device queues can be shared among multiple SIM instances
3374 		 * that reside on different buses.  Use the SIM from the
3375 		 * queued device, rather than the one from the calling bus.
3376 		 */
3377 		sim = device->sim;
3378 		mtx = sim->mtx;
3379 		if (mtx && !mtx_owned(mtx))
3380 			mtx_lock(mtx);
3381 		else
3382 			mtx = NULL;
3383 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3384 		(*(sim->sim_action))(sim, work_ccb);
3385 		if (mtx)
3386 			mtx_unlock(mtx);
3387 		mtx_lock(&devq->send_mtx);
3388 	}
3389 	devq->send_queue.qfrozen_cnt--;
3390 }
3391 
3392 /*
3393  * This function merges stuff from the src ccb into the dst ccb, while keeping
3394  * important fields in the dst ccb constant.
3395  */
3396 void
3397 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3398 {
3399 
3400 	/*
3401 	 * Pull fields that are valid for peripheral drivers to set
3402 	 * into the dst CCB along with the CCB "payload".
3403 	 */
3404 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3405 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3406 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3407 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3408 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3409 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3410 }
3411 
3412 void
3413 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3414 		    uint32_t priority, uint32_t flags)
3415 {
3416 
3417 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3418 	ccb_h->pinfo.priority = priority;
3419 	ccb_h->path = path;
3420 	ccb_h->path_id = path->bus->path_id;
3421 	if (path->target)
3422 		ccb_h->target_id = path->target->target_id;
3423 	else
3424 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3425 	if (path->device) {
3426 		ccb_h->target_lun = path->device->lun_id;
3427 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3428 	} else {
3429 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3430 	}
3431 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3432 	ccb_h->flags = flags;
3433 	ccb_h->xflags = 0;
3434 }
3435 
3436 void
3437 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3438 {
3439 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3440 }
3441 
3442 /* Path manipulation functions */
3443 cam_status
3444 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3445 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3446 {
3447 	struct	   cam_path *path;
3448 	cam_status status;
3449 
3450 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3451 
3452 	if (path == NULL) {
3453 		status = CAM_RESRC_UNAVAIL;
3454 		return(status);
3455 	}
3456 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3457 	if (status != CAM_REQ_CMP) {
3458 		free(path, M_CAMPATH);
3459 		path = NULL;
3460 	}
3461 	*new_path_ptr = path;
3462 	return (status);
3463 }
3464 
3465 cam_status
3466 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3467 			 struct cam_periph *periph, path_id_t path_id,
3468 			 target_id_t target_id, lun_id_t lun_id)
3469 {
3470 
3471 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3472 	    lun_id));
3473 }
3474 
3475 cam_status
3476 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3477 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3478 {
3479 	struct	     cam_eb *bus;
3480 	struct	     cam_et *target;
3481 	struct	     cam_ed *device;
3482 	cam_status   status;
3483 
3484 	status = CAM_REQ_CMP;	/* Completed without error */
3485 	target = NULL;		/* Wildcarded */
3486 	device = NULL;		/* Wildcarded */
3487 
3488 	/*
3489 	 * We will potentially modify the EDT, so block interrupts
3490 	 * that may attempt to create cam paths.
3491 	 */
3492 	bus = xpt_find_bus(path_id);
3493 	if (bus == NULL) {
3494 		status = CAM_PATH_INVALID;
3495 	} else {
3496 		xpt_lock_buses();
3497 		mtx_lock(&bus->eb_mtx);
3498 		target = xpt_find_target(bus, target_id);
3499 		if (target == NULL) {
3500 			/* Create one */
3501 			struct cam_et *new_target;
3502 
3503 			new_target = xpt_alloc_target(bus, target_id);
3504 			if (new_target == NULL) {
3505 				status = CAM_RESRC_UNAVAIL;
3506 			} else {
3507 				target = new_target;
3508 			}
3509 		}
3510 		xpt_unlock_buses();
3511 		if (target != NULL) {
3512 			device = xpt_find_device(target, lun_id);
3513 			if (device == NULL) {
3514 				/* Create one */
3515 				struct cam_ed *new_device;
3516 
3517 				new_device =
3518 				    (*(bus->xport->ops->alloc_device))(bus,
3519 								       target,
3520 								       lun_id);
3521 				if (new_device == NULL) {
3522 					status = CAM_RESRC_UNAVAIL;
3523 				} else {
3524 					device = new_device;
3525 				}
3526 			}
3527 		}
3528 		mtx_unlock(&bus->eb_mtx);
3529 	}
3530 
3531 	/*
3532 	 * Only touch the user's data if we are successful.
3533 	 */
3534 	if (status == CAM_REQ_CMP) {
3535 		new_path->periph = perph;
3536 		new_path->bus = bus;
3537 		new_path->target = target;
3538 		new_path->device = device;
3539 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3540 	} else {
3541 		if (device != NULL)
3542 			xpt_release_device(device);
3543 		if (target != NULL)
3544 			xpt_release_target(target);
3545 		if (bus != NULL)
3546 			xpt_release_bus(bus);
3547 	}
3548 	return (status);
3549 }
3550 
3551 int
3552 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3553 {
3554 	struct	   cam_path *new_path;
3555 
3556 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3557 	if (new_path == NULL)
3558 		return (ENOMEM);
3559 	*new_path = *path;
3560 	if (path->bus != NULL)
3561 		xpt_acquire_bus(path->bus);
3562 	if (path->target != NULL)
3563 		xpt_acquire_target(path->target);
3564 	if (path->device != NULL)
3565 		xpt_acquire_device(path->device);
3566 	*new_path_ptr = new_path;
3567 	return (0);
3568 }
3569 
3570 void
3571 xpt_release_path(struct cam_path *path)
3572 {
3573 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3574 	if (path->device != NULL) {
3575 		xpt_release_device(path->device);
3576 		path->device = NULL;
3577 	}
3578 	if (path->target != NULL) {
3579 		xpt_release_target(path->target);
3580 		path->target = NULL;
3581 	}
3582 	if (path->bus != NULL) {
3583 		xpt_release_bus(path->bus);
3584 		path->bus = NULL;
3585 	}
3586 }
3587 
3588 void
3589 xpt_free_path(struct cam_path *path)
3590 {
3591 
3592 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3593 	xpt_release_path(path);
3594 	free(path, M_CAMPATH);
3595 }
3596 
3597 void
3598 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3599     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3600 {
3601 
3602 	xpt_lock_buses();
3603 	if (bus_ref) {
3604 		if (path->bus)
3605 			*bus_ref = path->bus->refcount;
3606 		else
3607 			*bus_ref = 0;
3608 	}
3609 	if (periph_ref) {
3610 		if (path->periph)
3611 			*periph_ref = path->periph->refcount;
3612 		else
3613 			*periph_ref = 0;
3614 	}
3615 	xpt_unlock_buses();
3616 	if (target_ref) {
3617 		if (path->target)
3618 			*target_ref = path->target->refcount;
3619 		else
3620 			*target_ref = 0;
3621 	}
3622 	if (device_ref) {
3623 		if (path->device)
3624 			*device_ref = path->device->refcount;
3625 		else
3626 			*device_ref = 0;
3627 	}
3628 }
3629 
3630 /*
3631  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3632  * in path1, 2 for match with wildcards in path2.
3633  */
3634 int
3635 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3636 {
3637 	int retval = 0;
3638 
3639 	if (path1->bus != path2->bus) {
3640 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3641 			retval = 1;
3642 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3643 			retval = 2;
3644 		else
3645 			return (-1);
3646 	}
3647 	if (path1->target != path2->target) {
3648 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3649 			if (retval == 0)
3650 				retval = 1;
3651 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3652 			retval = 2;
3653 		else
3654 			return (-1);
3655 	}
3656 	if (path1->device != path2->device) {
3657 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3658 			if (retval == 0)
3659 				retval = 1;
3660 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3661 			retval = 2;
3662 		else
3663 			return (-1);
3664 	}
3665 	return (retval);
3666 }
3667 
3668 int
3669 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3670 {
3671 	int retval = 0;
3672 
3673 	if (path->bus != dev->target->bus) {
3674 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3675 			retval = 1;
3676 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3677 			retval = 2;
3678 		else
3679 			return (-1);
3680 	}
3681 	if (path->target != dev->target) {
3682 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3683 			if (retval == 0)
3684 				retval = 1;
3685 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3686 			retval = 2;
3687 		else
3688 			return (-1);
3689 	}
3690 	if (path->device != dev) {
3691 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3692 			if (retval == 0)
3693 				retval = 1;
3694 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3695 			retval = 2;
3696 		else
3697 			return (-1);
3698 	}
3699 	return (retval);
3700 }
3701 
3702 void
3703 xpt_print_path(struct cam_path *path)
3704 {
3705 	struct sbuf sb;
3706 	char buffer[XPT_PRINT_LEN];
3707 
3708 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3709 	xpt_path_sbuf(path, &sb);
3710 	sbuf_finish(&sb);
3711 	printf("%s", sbuf_data(&sb));
3712 	sbuf_delete(&sb);
3713 }
3714 
3715 void
3716 xpt_print_device(struct cam_ed *device)
3717 {
3718 
3719 	if (device == NULL)
3720 		printf("(nopath): ");
3721 	else {
3722 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3723 		       device->sim->unit_number,
3724 		       device->sim->bus_id,
3725 		       device->target->target_id,
3726 		       (uintmax_t)device->lun_id);
3727 	}
3728 }
3729 
3730 void
3731 xpt_print(struct cam_path *path, const char *fmt, ...)
3732 {
3733 	va_list ap;
3734 	struct sbuf sb;
3735 	char buffer[XPT_PRINT_LEN];
3736 
3737 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3738 
3739 	xpt_path_sbuf(path, &sb);
3740 	va_start(ap, fmt);
3741 	sbuf_vprintf(&sb, fmt, ap);
3742 	va_end(ap);
3743 
3744 	sbuf_finish(&sb);
3745 	printf("%s", sbuf_data(&sb));
3746 	sbuf_delete(&sb);
3747 }
3748 
3749 int
3750 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3751 {
3752 	struct sbuf sb;
3753 	int len;
3754 
3755 	sbuf_new(&sb, str, str_len, 0);
3756 	len = xpt_path_sbuf(path, &sb);
3757 	sbuf_finish(&sb);
3758 	return (len);
3759 }
3760 
3761 int
3762 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3763 {
3764 
3765 	if (path == NULL)
3766 		sbuf_printf(sb, "(nopath): ");
3767 	else {
3768 		if (path->periph != NULL)
3769 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3770 				    path->periph->unit_number);
3771 		else
3772 			sbuf_printf(sb, "(noperiph:");
3773 
3774 		if (path->bus != NULL)
3775 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3776 				    path->bus->sim->unit_number,
3777 				    path->bus->sim->bus_id);
3778 		else
3779 			sbuf_printf(sb, "nobus:");
3780 
3781 		if (path->target != NULL)
3782 			sbuf_printf(sb, "%d:", path->target->target_id);
3783 		else
3784 			sbuf_printf(sb, "X:");
3785 
3786 		if (path->device != NULL)
3787 			sbuf_printf(sb, "%jx): ",
3788 			    (uintmax_t)path->device->lun_id);
3789 		else
3790 			sbuf_printf(sb, "X): ");
3791 	}
3792 
3793 	return(sbuf_len(sb));
3794 }
3795 
3796 path_id_t
3797 xpt_path_path_id(struct cam_path *path)
3798 {
3799 	return(path->bus->path_id);
3800 }
3801 
3802 target_id_t
3803 xpt_path_target_id(struct cam_path *path)
3804 {
3805 	if (path->target != NULL)
3806 		return (path->target->target_id);
3807 	else
3808 		return (CAM_TARGET_WILDCARD);
3809 }
3810 
3811 lun_id_t
3812 xpt_path_lun_id(struct cam_path *path)
3813 {
3814 	if (path->device != NULL)
3815 		return (path->device->lun_id);
3816 	else
3817 		return (CAM_LUN_WILDCARD);
3818 }
3819 
3820 struct cam_sim *
3821 xpt_path_sim(struct cam_path *path)
3822 {
3823 
3824 	return (path->bus->sim);
3825 }
3826 
3827 struct cam_periph*
3828 xpt_path_periph(struct cam_path *path)
3829 {
3830 
3831 	return (path->periph);
3832 }
3833 
3834 /*
3835  * Release a CAM control block for the caller.  Remit the cost of the structure
3836  * to the device referenced by the path.  If the this device had no 'credits'
3837  * and peripheral drivers have registered async callbacks for this notification
3838  * call them now.
3839  */
3840 void
3841 xpt_release_ccb(union ccb *free_ccb)
3842 {
3843 	struct	 cam_ed *device;
3844 	struct	 cam_periph *periph;
3845 
3846 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3847 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3848 	device = free_ccb->ccb_h.path->device;
3849 	periph = free_ccb->ccb_h.path->periph;
3850 
3851 	xpt_free_ccb(free_ccb);
3852 	periph->periph_allocated--;
3853 	cam_ccbq_release_opening(&device->ccbq);
3854 	xpt_run_allocq(periph, 0);
3855 }
3856 
3857 /* Functions accessed by SIM drivers */
3858 
3859 static struct xpt_xport_ops xport_default_ops = {
3860 	.alloc_device = xpt_alloc_device_default,
3861 	.action = xpt_action_default,
3862 	.async = xpt_dev_async_default,
3863 };
3864 static struct xpt_xport xport_default = {
3865 	.xport = XPORT_UNKNOWN,
3866 	.name = "unknown",
3867 	.ops = &xport_default_ops,
3868 };
3869 
3870 CAM_XPT_XPORT(xport_default);
3871 
3872 /*
3873  * A sim structure, listing the SIM entry points and instance
3874  * identification info is passed to xpt_bus_register to hook the SIM
3875  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3876  * for this new bus and places it in the array of buses and assigns
3877  * it a path_id.  The path_id may be influenced by "hard wiring"
3878  * information specified by the user.  Once interrupt services are
3879  * available, the bus will be probed.
3880  */
3881 int
3882 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3883 {
3884 	struct cam_eb *new_bus;
3885 	struct cam_eb *old_bus;
3886 	struct ccb_pathinq cpi;
3887 	struct cam_path *path;
3888 	cam_status status;
3889 
3890 	sim->bus_id = bus;
3891 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3892 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3893 	if (new_bus == NULL) {
3894 		/* Couldn't satisfy request */
3895 		return (ENOMEM);
3896 	}
3897 
3898 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3899 	TAILQ_INIT(&new_bus->et_entries);
3900 	cam_sim_hold(sim);
3901 	new_bus->sim = sim;
3902 	timevalclear(&new_bus->last_reset);
3903 	new_bus->flags = 0;
3904 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3905 	new_bus->generation = 0;
3906 	new_bus->parent_dev = parent;
3907 
3908 	xpt_lock_buses();
3909 	sim->path_id = new_bus->path_id =
3910 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3911 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3912 	while (old_bus != NULL
3913 	    && old_bus->path_id < new_bus->path_id)
3914 		old_bus = TAILQ_NEXT(old_bus, links);
3915 	if (old_bus != NULL)
3916 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3917 	else
3918 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3919 	xsoftc.bus_generation++;
3920 	xpt_unlock_buses();
3921 
3922 	/*
3923 	 * Set a default transport so that a PATH_INQ can be issued to
3924 	 * the SIM.  This will then allow for probing and attaching of
3925 	 * a more appropriate transport.
3926 	 */
3927 	new_bus->xport = &xport_default;
3928 
3929 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3930 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3931 	if (status != CAM_REQ_CMP) {
3932 		xpt_release_bus(new_bus);
3933 		return (ENOMEM);
3934 	}
3935 
3936 	xpt_path_inq(&cpi, path);
3937 
3938 	/*
3939 	 * Use the results of PATH_INQ to pick a transport.  Note that
3940 	 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3941 	 * xport_default instead of a transport from
3942 	 * cam_xpt_port_set.
3943 	 */
3944 	if (cam_ccb_success((union ccb *)&cpi) &&
3945 	    cpi.transport != XPORT_UNSPECIFIED) {
3946 		struct xpt_xport **xpt;
3947 
3948 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3949 			if ((*xpt)->xport == cpi.transport) {
3950 				new_bus->xport = *xpt;
3951 				break;
3952 			}
3953 		}
3954 		if (new_bus->xport == &xport_default) {
3955 			xpt_print(path,
3956 			    "No transport found for %d\n", cpi.transport);
3957 			xpt_release_bus(new_bus);
3958 			xpt_free_path(path);
3959 			return (EINVAL);
3960 		}
3961 	}
3962 
3963 	/* Notify interested parties */
3964 	if (sim->path_id != CAM_XPT_PATH_ID) {
3965 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3966 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3967 			union	ccb *scan_ccb;
3968 
3969 			/* Initiate bus rescan. */
3970 			scan_ccb = xpt_alloc_ccb_nowait();
3971 			if (scan_ccb != NULL) {
3972 				scan_ccb->ccb_h.path = path;
3973 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3974 				scan_ccb->crcn.flags = 0;
3975 				xpt_rescan(scan_ccb);
3976 			} else {
3977 				xpt_print(path,
3978 					  "Can't allocate CCB to scan bus\n");
3979 				xpt_free_path(path);
3980 			}
3981 		} else
3982 			xpt_free_path(path);
3983 	} else
3984 		xpt_free_path(path);
3985 	return (CAM_SUCCESS);
3986 }
3987 
3988 int
3989 xpt_bus_deregister(path_id_t pathid)
3990 {
3991 	struct cam_path bus_path;
3992 	cam_status status;
3993 
3994 	status = xpt_compile_path(&bus_path, NULL, pathid,
3995 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3996 	if (status != CAM_REQ_CMP)
3997 		return (ENOMEM);
3998 
3999 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4000 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4001 
4002 	/* Release the reference count held while registered. */
4003 	xpt_release_bus(bus_path.bus);
4004 	xpt_release_path(&bus_path);
4005 
4006 	return (CAM_SUCCESS);
4007 }
4008 
4009 static path_id_t
4010 xptnextfreepathid(void)
4011 {
4012 	struct cam_eb *bus;
4013 	path_id_t pathid;
4014 	const char *strval;
4015 
4016 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4017 	pathid = 0;
4018 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4019 retry:
4020 	/* Find an unoccupied pathid */
4021 	while (bus != NULL && bus->path_id <= pathid) {
4022 		if (bus->path_id == pathid)
4023 			pathid++;
4024 		bus = TAILQ_NEXT(bus, links);
4025 	}
4026 
4027 	/*
4028 	 * Ensure that this pathid is not reserved for
4029 	 * a bus that may be registered in the future.
4030 	 */
4031 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4032 		++pathid;
4033 		/* Start the search over */
4034 		goto retry;
4035 	}
4036 	return (pathid);
4037 }
4038 
4039 static path_id_t
4040 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4041 {
4042 	path_id_t pathid;
4043 	int i, dunit, val;
4044 	char buf[32];
4045 	const char *dname;
4046 
4047 	pathid = CAM_XPT_PATH_ID;
4048 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4049 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4050 		return (pathid);
4051 	i = 0;
4052 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4053 		if (strcmp(dname, "scbus")) {
4054 			/* Avoid a bit of foot shooting. */
4055 			continue;
4056 		}
4057 		if (dunit < 0)		/* unwired?! */
4058 			continue;
4059 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4060 			if (sim_bus == val) {
4061 				pathid = dunit;
4062 				break;
4063 			}
4064 		} else if (sim_bus == 0) {
4065 			/* Unspecified matches bus 0 */
4066 			pathid = dunit;
4067 			break;
4068 		} else {
4069 			printf("Ambiguous scbus configuration for %s%d "
4070 			       "bus %d, cannot wire down.  The kernel "
4071 			       "config entry for scbus%d should "
4072 			       "specify a controller bus.\n"
4073 			       "Scbus will be assigned dynamically.\n",
4074 			       sim_name, sim_unit, sim_bus, dunit);
4075 			break;
4076 		}
4077 	}
4078 
4079 	if (pathid == CAM_XPT_PATH_ID)
4080 		pathid = xptnextfreepathid();
4081 	return (pathid);
4082 }
4083 
4084 static const char *
4085 xpt_async_string(uint32_t async_code)
4086 {
4087 
4088 	switch (async_code) {
4089 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4090 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4091 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4092 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4093 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4094 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4095 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4096 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4097 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4098 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4099 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4100 	case AC_CONTRACT: return ("AC_CONTRACT");
4101 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4102 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4103 	}
4104 	return ("AC_UNKNOWN");
4105 }
4106 
4107 static int
4108 xpt_async_size(uint32_t async_code)
4109 {
4110 
4111 	switch (async_code) {
4112 	case AC_BUS_RESET: return (0);
4113 	case AC_UNSOL_RESEL: return (0);
4114 	case AC_SCSI_AEN: return (0);
4115 	case AC_SENT_BDR: return (0);
4116 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4117 	case AC_PATH_DEREGISTERED: return (0);
4118 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4119 	case AC_LOST_DEVICE: return (0);
4120 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4121 	case AC_INQ_CHANGED: return (0);
4122 	case AC_GETDEV_CHANGED: return (0);
4123 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4124 	case AC_ADVINFO_CHANGED: return (-1);
4125 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4126 	}
4127 	return (0);
4128 }
4129 
4130 static int
4131 xpt_async_process_dev(struct cam_ed *device, void *arg)
4132 {
4133 	union ccb *ccb = arg;
4134 	struct cam_path *path = ccb->ccb_h.path;
4135 	void *async_arg = ccb->casync.async_arg_ptr;
4136 	uint32_t async_code = ccb->casync.async_code;
4137 	bool relock;
4138 
4139 	if (path->device != device
4140 	 && path->device->lun_id != CAM_LUN_WILDCARD
4141 	 && device->lun_id != CAM_LUN_WILDCARD)
4142 		return (1);
4143 
4144 	/*
4145 	 * The async callback could free the device.
4146 	 * If it is a broadcast async, it doesn't hold
4147 	 * device reference, so take our own reference.
4148 	 */
4149 	xpt_acquire_device(device);
4150 
4151 	/*
4152 	 * If async for specific device is to be delivered to
4153 	 * the wildcard client, take the specific device lock.
4154 	 * XXX: We may need a way for client to specify it.
4155 	 */
4156 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4157 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4158 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4159 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4160 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4161 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4162 		mtx_unlock(&device->device_mtx);
4163 		xpt_path_lock(path);
4164 		relock = true;
4165 	} else
4166 		relock = false;
4167 
4168 	(*(device->target->bus->xport->ops->async))(async_code,
4169 	    device->target->bus, device->target, device, async_arg);
4170 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4171 
4172 	if (relock) {
4173 		xpt_path_unlock(path);
4174 		mtx_lock(&device->device_mtx);
4175 	}
4176 	xpt_release_device(device);
4177 	return (1);
4178 }
4179 
4180 static int
4181 xpt_async_process_tgt(struct cam_et *target, void *arg)
4182 {
4183 	union ccb *ccb = arg;
4184 	struct cam_path *path = ccb->ccb_h.path;
4185 
4186 	if (path->target != target
4187 	 && path->target->target_id != CAM_TARGET_WILDCARD
4188 	 && target->target_id != CAM_TARGET_WILDCARD)
4189 		return (1);
4190 
4191 	if (ccb->casync.async_code == AC_SENT_BDR) {
4192 		/* Update our notion of when the last reset occurred */
4193 		microtime(&target->last_reset);
4194 	}
4195 
4196 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4197 }
4198 
4199 static void
4200 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4201 {
4202 	struct cam_eb *bus;
4203 	struct cam_path *path;
4204 	void *async_arg;
4205 	uint32_t async_code;
4206 
4207 	path = ccb->ccb_h.path;
4208 	async_code = ccb->casync.async_code;
4209 	async_arg = ccb->casync.async_arg_ptr;
4210 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4211 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4212 	bus = path->bus;
4213 
4214 	if (async_code == AC_BUS_RESET) {
4215 		/* Update our notion of when the last reset occurred */
4216 		microtime(&bus->last_reset);
4217 	}
4218 
4219 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4220 
4221 	/*
4222 	 * If this wasn't a fully wildcarded async, tell all
4223 	 * clients that want all async events.
4224 	 */
4225 	if (bus != xpt_periph->path->bus) {
4226 		xpt_path_lock(xpt_periph->path);
4227 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4228 		xpt_path_unlock(xpt_periph->path);
4229 	}
4230 
4231 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4232 		xpt_release_devq(path, 1, TRUE);
4233 	else
4234 		xpt_release_simq(path->bus->sim, TRUE);
4235 	if (ccb->casync.async_arg_size > 0)
4236 		free(async_arg, M_CAMXPT);
4237 	xpt_free_path(path);
4238 	xpt_free_ccb(ccb);
4239 }
4240 
4241 static void
4242 xpt_async_bcast(struct async_list *async_head,
4243 		uint32_t async_code,
4244 		struct cam_path *path, void *async_arg)
4245 {
4246 	struct async_node *cur_entry;
4247 	struct mtx *mtx;
4248 
4249 	cur_entry = SLIST_FIRST(async_head);
4250 	while (cur_entry != NULL) {
4251 		struct async_node *next_entry;
4252 		/*
4253 		 * Grab the next list entry before we call the current
4254 		 * entry's callback.  This is because the callback function
4255 		 * can delete its async callback entry.
4256 		 */
4257 		next_entry = SLIST_NEXT(cur_entry, links);
4258 		if ((cur_entry->event_enable & async_code) != 0) {
4259 			mtx = cur_entry->event_lock ?
4260 			    path->device->sim->mtx : NULL;
4261 			if (mtx)
4262 				mtx_lock(mtx);
4263 			cur_entry->callback(cur_entry->callback_arg,
4264 					    async_code, path,
4265 					    async_arg);
4266 			if (mtx)
4267 				mtx_unlock(mtx);
4268 		}
4269 		cur_entry = next_entry;
4270 	}
4271 }
4272 
4273 void
4274 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4275 {
4276 	union ccb *ccb;
4277 	int size;
4278 
4279 	ccb = xpt_alloc_ccb_nowait();
4280 	if (ccb == NULL) {
4281 		xpt_print(path, "Can't allocate CCB to send %s\n",
4282 		    xpt_async_string(async_code));
4283 		return;
4284 	}
4285 
4286 	if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4287 		xpt_print(path, "Can't allocate path to send %s\n",
4288 		    xpt_async_string(async_code));
4289 		xpt_free_ccb(ccb);
4290 		return;
4291 	}
4292 	ccb->ccb_h.path->periph = NULL;
4293 	ccb->ccb_h.func_code = XPT_ASYNC;
4294 	ccb->ccb_h.cbfcnp = xpt_async_process;
4295 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4296 	ccb->casync.async_code = async_code;
4297 	ccb->casync.async_arg_size = 0;
4298 	size = xpt_async_size(async_code);
4299 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4300 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4301 		ccb->ccb_h.func_code,
4302 		xpt_action_name(ccb->ccb_h.func_code),
4303 		async_code,
4304 		xpt_async_string(async_code)));
4305 	if (size > 0 && async_arg != NULL) {
4306 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4307 		if (ccb->casync.async_arg_ptr == NULL) {
4308 			xpt_print(path, "Can't allocate argument to send %s\n",
4309 			    xpt_async_string(async_code));
4310 			xpt_free_path(ccb->ccb_h.path);
4311 			xpt_free_ccb(ccb);
4312 			return;
4313 		}
4314 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4315 		ccb->casync.async_arg_size = size;
4316 	} else if (size < 0) {
4317 		ccb->casync.async_arg_ptr = async_arg;
4318 		ccb->casync.async_arg_size = size;
4319 	}
4320 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4321 		xpt_freeze_devq(path, 1);
4322 	else
4323 		xpt_freeze_simq(path->bus->sim, 1);
4324 	xpt_action(ccb);
4325 }
4326 
4327 static void
4328 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4329 		      struct cam_et *target, struct cam_ed *device,
4330 		      void *async_arg)
4331 {
4332 
4333 	/*
4334 	 * We only need to handle events for real devices.
4335 	 */
4336 	if (target->target_id == CAM_TARGET_WILDCARD
4337 	 || device->lun_id == CAM_LUN_WILDCARD)
4338 		return;
4339 
4340 	printf("%s called\n", __func__);
4341 }
4342 
4343 static uint32_t
4344 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4345 {
4346 	struct cam_devq	*devq;
4347 	uint32_t freeze;
4348 
4349 	devq = dev->sim->devq;
4350 	mtx_assert(&devq->send_mtx, MA_OWNED);
4351 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4352 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4353 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4354 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4355 	/* Remove frozen device from sendq. */
4356 	if (device_is_queued(dev))
4357 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4358 	return (freeze);
4359 }
4360 
4361 uint32_t
4362 xpt_freeze_devq(struct cam_path *path, u_int count)
4363 {
4364 	struct cam_ed	*dev = path->device;
4365 	struct cam_devq	*devq;
4366 	uint32_t	 freeze;
4367 
4368 	devq = dev->sim->devq;
4369 	mtx_lock(&devq->send_mtx);
4370 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4371 	freeze = xpt_freeze_devq_device(dev, count);
4372 	mtx_unlock(&devq->send_mtx);
4373 	return (freeze);
4374 }
4375 
4376 uint32_t
4377 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4378 {
4379 	struct cam_devq	*devq;
4380 	uint32_t	 freeze;
4381 
4382 	devq = sim->devq;
4383 	mtx_lock(&devq->send_mtx);
4384 	freeze = (devq->send_queue.qfrozen_cnt += count);
4385 	mtx_unlock(&devq->send_mtx);
4386 	return (freeze);
4387 }
4388 
4389 static void
4390 xpt_release_devq_timeout(void *arg)
4391 {
4392 	struct cam_ed *dev;
4393 	struct cam_devq *devq;
4394 
4395 	dev = (struct cam_ed *)arg;
4396 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4397 	devq = dev->sim->devq;
4398 	mtx_assert(&devq->send_mtx, MA_OWNED);
4399 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4400 		xpt_run_devq(devq);
4401 }
4402 
4403 void
4404 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4405 {
4406 	struct cam_ed *dev;
4407 	struct cam_devq *devq;
4408 
4409 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4410 	    count, run_queue));
4411 	dev = path->device;
4412 	devq = dev->sim->devq;
4413 	mtx_lock(&devq->send_mtx);
4414 	if (xpt_release_devq_device(dev, count, run_queue))
4415 		xpt_run_devq(dev->sim->devq);
4416 	mtx_unlock(&devq->send_mtx);
4417 }
4418 
4419 static int
4420 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4421 {
4422 
4423 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4424 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4425 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4426 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4427 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4428 #ifdef INVARIANTS
4429 		printf("xpt_release_devq(): requested %u > present %u\n",
4430 		    count, dev->ccbq.queue.qfrozen_cnt);
4431 #endif
4432 		count = dev->ccbq.queue.qfrozen_cnt;
4433 	}
4434 	dev->ccbq.queue.qfrozen_cnt -= count;
4435 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4436 		/*
4437 		 * No longer need to wait for a successful
4438 		 * command completion.
4439 		 */
4440 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4441 		/*
4442 		 * Remove any timeouts that might be scheduled
4443 		 * to release this queue.
4444 		 */
4445 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4446 			callout_stop(&dev->callout);
4447 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4448 		}
4449 		/*
4450 		 * Now that we are unfrozen schedule the
4451 		 * device so any pending transactions are
4452 		 * run.
4453 		 */
4454 		xpt_schedule_devq(dev->sim->devq, dev);
4455 	} else
4456 		run_queue = 0;
4457 	return (run_queue);
4458 }
4459 
4460 void
4461 xpt_release_simq(struct cam_sim *sim, int run_queue)
4462 {
4463 	struct cam_devq	*devq;
4464 
4465 	devq = sim->devq;
4466 	mtx_lock(&devq->send_mtx);
4467 	if (devq->send_queue.qfrozen_cnt <= 0) {
4468 #ifdef INVARIANTS
4469 		printf("xpt_release_simq: requested 1 > present %u\n",
4470 		    devq->send_queue.qfrozen_cnt);
4471 #endif
4472 	} else
4473 		devq->send_queue.qfrozen_cnt--;
4474 	if (devq->send_queue.qfrozen_cnt == 0) {
4475 		if (run_queue) {
4476 			/*
4477 			 * Now that we are unfrozen run the send queue.
4478 			 */
4479 			xpt_run_devq(sim->devq);
4480 		}
4481 	}
4482 	mtx_unlock(&devq->send_mtx);
4483 }
4484 
4485 void
4486 xpt_done(union ccb *done_ccb)
4487 {
4488 	struct cam_doneq *queue;
4489 	int	run, hash;
4490 
4491 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4492 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4493 	    done_ccb->csio.bio != NULL)
4494 		biotrack(done_ccb->csio.bio, __func__);
4495 #endif
4496 
4497 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4498 	    ("xpt_done: func= %#x %s status %#x\n",
4499 		done_ccb->ccb_h.func_code,
4500 		xpt_action_name(done_ccb->ccb_h.func_code),
4501 		done_ccb->ccb_h.status));
4502 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4503 		return;
4504 
4505 	/* Store the time the ccb was in the sim */
4506 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4507 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4508 	hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4509 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4510 	queue = &cam_doneqs[hash];
4511 	mtx_lock(&queue->cam_doneq_mtx);
4512 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4513 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4514 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4515 	mtx_unlock(&queue->cam_doneq_mtx);
4516 	if (run && !dumping)
4517 		wakeup(&queue->cam_doneq);
4518 }
4519 
4520 void
4521 xpt_done_direct(union ccb *done_ccb)
4522 {
4523 
4524 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4525 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4526 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4527 		return;
4528 
4529 	/* Store the time the ccb was in the sim */
4530 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4531 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4532 	xpt_done_process(&done_ccb->ccb_h);
4533 }
4534 
4535 union ccb *
4536 xpt_alloc_ccb(void)
4537 {
4538 	union ccb *new_ccb;
4539 
4540 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4541 	return (new_ccb);
4542 }
4543 
4544 union ccb *
4545 xpt_alloc_ccb_nowait(void)
4546 {
4547 	union ccb *new_ccb;
4548 
4549 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4550 	return (new_ccb);
4551 }
4552 
4553 void
4554 xpt_free_ccb(union ccb *free_ccb)
4555 {
4556 	struct cam_periph *periph;
4557 
4558 	if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4559 		/*
4560 		 * Looks like a CCB allocated from a periph UMA zone.
4561 		 */
4562 		periph = free_ccb->ccb_h.path->periph;
4563 		uma_zfree(periph->ccb_zone, free_ccb);
4564 	} else {
4565 		free(free_ccb, M_CAMCCB);
4566 	}
4567 }
4568 
4569 /* Private XPT functions */
4570 
4571 /*
4572  * Get a CAM control block for the caller. Charge the structure to the device
4573  * referenced by the path.  If we don't have sufficient resources to allocate
4574  * more ccbs, we return NULL.
4575  */
4576 static union ccb *
4577 xpt_get_ccb_nowait(struct cam_periph *periph)
4578 {
4579 	union ccb *new_ccb;
4580 	int alloc_flags;
4581 
4582 	if (periph->ccb_zone != NULL) {
4583 		alloc_flags = CAM_CCB_FROM_UMA;
4584 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4585 	} else {
4586 		alloc_flags = 0;
4587 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4588 	}
4589 	if (new_ccb == NULL)
4590 		return (NULL);
4591 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4592 	periph->periph_allocated++;
4593 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4594 	return (new_ccb);
4595 }
4596 
4597 static union ccb *
4598 xpt_get_ccb(struct cam_periph *periph)
4599 {
4600 	union ccb *new_ccb;
4601 	int alloc_flags;
4602 
4603 	cam_periph_unlock(periph);
4604 	if (periph->ccb_zone != NULL) {
4605 		alloc_flags = CAM_CCB_FROM_UMA;
4606 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4607 	} else {
4608 		alloc_flags = 0;
4609 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4610 	}
4611 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4612 	cam_periph_lock(periph);
4613 	periph->periph_allocated++;
4614 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4615 	return (new_ccb);
4616 }
4617 
4618 union ccb *
4619 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4620 {
4621 	struct ccb_hdr *ccb_h;
4622 
4623 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4624 	cam_periph_assert(periph, MA_OWNED);
4625 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4626 	    ccb_h->pinfo.priority != priority) {
4627 		if (priority < periph->immediate_priority) {
4628 			periph->immediate_priority = priority;
4629 			xpt_run_allocq(periph, 0);
4630 		} else
4631 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4632 			    "cgticb", 0);
4633 	}
4634 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4635 	return ((union ccb *)ccb_h);
4636 }
4637 
4638 static void
4639 xpt_acquire_bus(struct cam_eb *bus)
4640 {
4641 
4642 	xpt_lock_buses();
4643 	bus->refcount++;
4644 	xpt_unlock_buses();
4645 }
4646 
4647 static void
4648 xpt_release_bus(struct cam_eb *bus)
4649 {
4650 
4651 	xpt_lock_buses();
4652 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4653 	if (--bus->refcount > 0) {
4654 		xpt_unlock_buses();
4655 		return;
4656 	}
4657 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4658 	xsoftc.bus_generation++;
4659 	xpt_unlock_buses();
4660 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4661 	    ("destroying bus, but target list is not empty"));
4662 	cam_sim_release(bus->sim);
4663 	mtx_destroy(&bus->eb_mtx);
4664 	free(bus, M_CAMXPT);
4665 }
4666 
4667 static struct cam_et *
4668 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4669 {
4670 	struct cam_et *cur_target, *target;
4671 
4672 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4673 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4674 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4675 					 M_NOWAIT|M_ZERO);
4676 	if (target == NULL)
4677 		return (NULL);
4678 
4679 	TAILQ_INIT(&target->ed_entries);
4680 	target->bus = bus;
4681 	target->target_id = target_id;
4682 	target->refcount = 1;
4683 	target->generation = 0;
4684 	target->luns = NULL;
4685 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4686 	timevalclear(&target->last_reset);
4687 	/*
4688 	 * Hold a reference to our parent bus so it
4689 	 * will not go away before we do.
4690 	 */
4691 	bus->refcount++;
4692 
4693 	/* Insertion sort into our bus's target list */
4694 	cur_target = TAILQ_FIRST(&bus->et_entries);
4695 	while (cur_target != NULL && cur_target->target_id < target_id)
4696 		cur_target = TAILQ_NEXT(cur_target, links);
4697 	if (cur_target != NULL) {
4698 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4699 	} else {
4700 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4701 	}
4702 	bus->generation++;
4703 	return (target);
4704 }
4705 
4706 static void
4707 xpt_acquire_target(struct cam_et *target)
4708 {
4709 	struct cam_eb *bus = target->bus;
4710 
4711 	mtx_lock(&bus->eb_mtx);
4712 	target->refcount++;
4713 	mtx_unlock(&bus->eb_mtx);
4714 }
4715 
4716 static void
4717 xpt_release_target(struct cam_et *target)
4718 {
4719 	struct cam_eb *bus = target->bus;
4720 
4721 	mtx_lock(&bus->eb_mtx);
4722 	if (--target->refcount > 0) {
4723 		mtx_unlock(&bus->eb_mtx);
4724 		return;
4725 	}
4726 	TAILQ_REMOVE(&bus->et_entries, target, links);
4727 	bus->generation++;
4728 	mtx_unlock(&bus->eb_mtx);
4729 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4730 	    ("destroying target, but device list is not empty"));
4731 	xpt_release_bus(bus);
4732 	mtx_destroy(&target->luns_mtx);
4733 	if (target->luns)
4734 		free(target->luns, M_CAMXPT);
4735 	free(target, M_CAMXPT);
4736 }
4737 
4738 static struct cam_ed *
4739 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4740 			 lun_id_t lun_id)
4741 {
4742 	struct cam_ed *device;
4743 
4744 	device = xpt_alloc_device(bus, target, lun_id);
4745 	if (device == NULL)
4746 		return (NULL);
4747 
4748 	device->mintags = 1;
4749 	device->maxtags = 1;
4750 	return (device);
4751 }
4752 
4753 static void
4754 xpt_destroy_device(void *context, int pending)
4755 {
4756 	struct cam_ed	*device = context;
4757 
4758 	mtx_lock(&device->device_mtx);
4759 	mtx_destroy(&device->device_mtx);
4760 	free(device, M_CAMDEV);
4761 }
4762 
4763 struct cam_ed *
4764 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4765 {
4766 	struct cam_ed	*cur_device, *device;
4767 	struct cam_devq	*devq;
4768 	cam_status status;
4769 
4770 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4771 	/* Make space for us in the device queue on our bus */
4772 	devq = bus->sim->devq;
4773 	mtx_lock(&devq->send_mtx);
4774 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4775 	mtx_unlock(&devq->send_mtx);
4776 	if (status != CAM_REQ_CMP)
4777 		return (NULL);
4778 
4779 	device = (struct cam_ed *)malloc(sizeof(*device),
4780 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4781 	if (device == NULL)
4782 		return (NULL);
4783 
4784 	cam_init_pinfo(&device->devq_entry);
4785 	device->target = target;
4786 	device->lun_id = lun_id;
4787 	device->sim = bus->sim;
4788 	if (cam_ccbq_init(&device->ccbq,
4789 			  bus->sim->max_dev_openings) != 0) {
4790 		free(device, M_CAMDEV);
4791 		return (NULL);
4792 	}
4793 	SLIST_INIT(&device->asyncs);
4794 	SLIST_INIT(&device->periphs);
4795 	device->generation = 0;
4796 	device->flags = CAM_DEV_UNCONFIGURED;
4797 	device->tag_delay_count = 0;
4798 	device->tag_saved_openings = 0;
4799 	device->refcount = 1;
4800 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4801 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4802 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4803 	/*
4804 	 * Hold a reference to our parent bus so it
4805 	 * will not go away before we do.
4806 	 */
4807 	target->refcount++;
4808 
4809 	cur_device = TAILQ_FIRST(&target->ed_entries);
4810 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4811 		cur_device = TAILQ_NEXT(cur_device, links);
4812 	if (cur_device != NULL)
4813 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4814 	else
4815 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4816 	target->generation++;
4817 	return (device);
4818 }
4819 
4820 void
4821 xpt_acquire_device(struct cam_ed *device)
4822 {
4823 	struct cam_eb *bus = device->target->bus;
4824 
4825 	mtx_lock(&bus->eb_mtx);
4826 	device->refcount++;
4827 	mtx_unlock(&bus->eb_mtx);
4828 }
4829 
4830 void
4831 xpt_release_device(struct cam_ed *device)
4832 {
4833 	struct cam_eb *bus = device->target->bus;
4834 	struct cam_devq *devq;
4835 
4836 	mtx_lock(&bus->eb_mtx);
4837 	if (--device->refcount > 0) {
4838 		mtx_unlock(&bus->eb_mtx);
4839 		return;
4840 	}
4841 
4842 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4843 	device->target->generation++;
4844 	mtx_unlock(&bus->eb_mtx);
4845 
4846 	/* Release our slot in the devq */
4847 	devq = bus->sim->devq;
4848 	mtx_lock(&devq->send_mtx);
4849 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4850 
4851 	KASSERT(SLIST_EMPTY(&device->periphs),
4852 	    ("destroying device, but periphs list is not empty"));
4853 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4854 	    ("destroying device while still queued for ccbs"));
4855 
4856 	/* The send_mtx must be held when accessing the callout */
4857 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4858 		callout_stop(&device->callout);
4859 
4860 	mtx_unlock(&devq->send_mtx);
4861 
4862 	xpt_release_target(device->target);
4863 
4864 	cam_ccbq_fini(&device->ccbq);
4865 	/*
4866 	 * Free allocated memory.  free(9) does nothing if the
4867 	 * supplied pointer is NULL, so it is safe to call without
4868 	 * checking.
4869 	 */
4870 	free(device->supported_vpds, M_CAMXPT);
4871 	free(device->device_id, M_CAMXPT);
4872 	free(device->ext_inq, M_CAMXPT);
4873 	free(device->physpath, M_CAMXPT);
4874 	free(device->rcap_buf, M_CAMXPT);
4875 	free(device->serial_num, M_CAMXPT);
4876 	free(device->nvme_data, M_CAMXPT);
4877 	free(device->nvme_cdata, M_CAMXPT);
4878 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4879 }
4880 
4881 uint32_t
4882 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4883 {
4884 	int	result;
4885 	struct	cam_ed *dev;
4886 
4887 	dev = path->device;
4888 	mtx_lock(&dev->sim->devq->send_mtx);
4889 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4890 	mtx_unlock(&dev->sim->devq->send_mtx);
4891 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4892 	 || (dev->inq_flags & SID_CmdQue) != 0)
4893 		dev->tag_saved_openings = newopenings;
4894 	return (result);
4895 }
4896 
4897 static struct cam_eb *
4898 xpt_find_bus(path_id_t path_id)
4899 {
4900 	struct cam_eb *bus;
4901 
4902 	xpt_lock_buses();
4903 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4904 	     bus != NULL;
4905 	     bus = TAILQ_NEXT(bus, links)) {
4906 		if (bus->path_id == path_id) {
4907 			bus->refcount++;
4908 			break;
4909 		}
4910 	}
4911 	xpt_unlock_buses();
4912 	return (bus);
4913 }
4914 
4915 static struct cam_et *
4916 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4917 {
4918 	struct cam_et *target;
4919 
4920 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4921 	for (target = TAILQ_FIRST(&bus->et_entries);
4922 	     target != NULL;
4923 	     target = TAILQ_NEXT(target, links)) {
4924 		if (target->target_id == target_id) {
4925 			target->refcount++;
4926 			break;
4927 		}
4928 	}
4929 	return (target);
4930 }
4931 
4932 static struct cam_ed *
4933 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4934 {
4935 	struct cam_ed *device;
4936 
4937 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4938 	for (device = TAILQ_FIRST(&target->ed_entries);
4939 	     device != NULL;
4940 	     device = TAILQ_NEXT(device, links)) {
4941 		if (device->lun_id == lun_id) {
4942 			device->refcount++;
4943 			break;
4944 		}
4945 	}
4946 	return (device);
4947 }
4948 
4949 void
4950 xpt_start_tags(struct cam_path *path)
4951 {
4952 	struct ccb_relsim crs;
4953 	struct cam_ed *device;
4954 	struct cam_sim *sim;
4955 	int    newopenings;
4956 
4957 	device = path->device;
4958 	sim = path->bus->sim;
4959 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4960 	xpt_freeze_devq(path, /*count*/1);
4961 	device->inq_flags |= SID_CmdQue;
4962 	if (device->tag_saved_openings != 0)
4963 		newopenings = device->tag_saved_openings;
4964 	else
4965 		newopenings = min(device->maxtags,
4966 				  sim->max_tagged_dev_openings);
4967 	xpt_dev_ccbq_resize(path, newopenings);
4968 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4969 	memset(&crs, 0, sizeof(crs));
4970 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4971 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4972 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4973 	crs.openings
4974 	    = crs.release_timeout
4975 	    = crs.qfrozen_cnt
4976 	    = 0;
4977 	xpt_action((union ccb *)&crs);
4978 }
4979 
4980 void
4981 xpt_stop_tags(struct cam_path *path)
4982 {
4983 	struct ccb_relsim crs;
4984 	struct cam_ed *device;
4985 	struct cam_sim *sim;
4986 
4987 	device = path->device;
4988 	sim = path->bus->sim;
4989 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4990 	device->tag_delay_count = 0;
4991 	xpt_freeze_devq(path, /*count*/1);
4992 	device->inq_flags &= ~SID_CmdQue;
4993 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4994 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4995 	memset(&crs, 0, sizeof(crs));
4996 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4997 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4998 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4999 	crs.openings
5000 	    = crs.release_timeout
5001 	    = crs.qfrozen_cnt
5002 	    = 0;
5003 	xpt_action((union ccb *)&crs);
5004 }
5005 
5006 /*
5007  * Assume all possible buses are detected by this time, so allow boot
5008  * as soon as they all are scanned.
5009  */
5010 static void
5011 xpt_boot_delay(void *arg)
5012 {
5013 
5014 	xpt_release_boot();
5015 }
5016 
5017 /*
5018  * Now that all config hooks have completed, start boot_delay timer,
5019  * waiting for possibly still undetected buses (USB) to appear.
5020  */
5021 static void
5022 xpt_ch_done(void *arg)
5023 {
5024 
5025 	callout_init(&xsoftc.boot_callout, 1);
5026 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5027 	    SBT_1MS, xpt_boot_delay, NULL, 0);
5028 }
5029 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5030 
5031 /*
5032  * Now that interrupts are enabled, go find our devices
5033  */
5034 static void
5035 xpt_config(void *arg)
5036 {
5037 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5038 		printf("xpt_config: failed to create taskqueue thread.\n");
5039 
5040 	/* Setup debugging path */
5041 	if (cam_dflags != CAM_DEBUG_NONE) {
5042 		if (xpt_create_path(&cam_dpath, NULL,
5043 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5044 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5045 			printf("xpt_config: xpt_create_path() failed for debug"
5046 			       " target %d:%d:%d, debugging disabled\n",
5047 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5048 			cam_dflags = CAM_DEBUG_NONE;
5049 		}
5050 	} else
5051 		cam_dpath = NULL;
5052 
5053 	periphdriver_init(1);
5054 	xpt_hold_boot();
5055 
5056 	/* Fire up rescan thread. */
5057 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5058 	    "cam", "scanner")) {
5059 		printf("xpt_config: failed to create rescan thread.\n");
5060 	}
5061 }
5062 
5063 void
5064 xpt_hold_boot_locked(void)
5065 {
5066 
5067 	if (xsoftc.buses_to_config++ == 0)
5068 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5069 }
5070 
5071 void
5072 xpt_hold_boot(void)
5073 {
5074 
5075 	xpt_lock_buses();
5076 	xpt_hold_boot_locked();
5077 	xpt_unlock_buses();
5078 }
5079 
5080 void
5081 xpt_release_boot(void)
5082 {
5083 
5084 	xpt_lock_buses();
5085 	if (--xsoftc.buses_to_config == 0) {
5086 		if (xsoftc.buses_config_done == 0) {
5087 			xsoftc.buses_config_done = 1;
5088 			xsoftc.buses_to_config++;
5089 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5090 			    NULL);
5091 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5092 		} else
5093 			root_mount_rel(&xsoftc.xpt_rootmount);
5094 	}
5095 	xpt_unlock_buses();
5096 }
5097 
5098 /*
5099  * If the given device only has one peripheral attached to it, and if that
5100  * peripheral is the passthrough driver, announce it.  This insures that the
5101  * user sees some sort of announcement for every peripheral in their system.
5102  */
5103 static int
5104 xptpassannouncefunc(struct cam_ed *device, void *arg)
5105 {
5106 	struct cam_periph *periph;
5107 	int i;
5108 
5109 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5110 	     periph = SLIST_NEXT(periph, periph_links), i++);
5111 
5112 	periph = SLIST_FIRST(&device->periphs);
5113 	if ((i == 1)
5114 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5115 		xpt_announce_periph(periph, NULL);
5116 
5117 	return(1);
5118 }
5119 
5120 static void
5121 xpt_finishconfig_task(void *context, int pending)
5122 {
5123 
5124 	periphdriver_init(2);
5125 	/*
5126 	 * Check for devices with no "standard" peripheral driver
5127 	 * attached.  For any devices like that, announce the
5128 	 * passthrough driver so the user will see something.
5129 	 */
5130 	if (!bootverbose)
5131 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5132 
5133 	xpt_release_boot();
5134 }
5135 
5136 cam_status
5137 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5138 		   struct cam_path *path)
5139 {
5140 	struct ccb_setasync csa;
5141 	cam_status status;
5142 	bool xptpath = false;
5143 
5144 	if (path == NULL) {
5145 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5146 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5147 		if (status != CAM_REQ_CMP)
5148 			return (status);
5149 		xpt_path_lock(path);
5150 		xptpath = true;
5151 	}
5152 
5153 	memset(&csa, 0, sizeof(csa));
5154 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5155 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5156 	csa.event_enable = event;
5157 	csa.callback = cbfunc;
5158 	csa.callback_arg = cbarg;
5159 	xpt_action((union ccb *)&csa);
5160 	status = csa.ccb_h.status;
5161 
5162 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5163 	    ("xpt_register_async: func %p\n", cbfunc));
5164 
5165 	if (xptpath) {
5166 		xpt_path_unlock(path);
5167 		xpt_free_path(path);
5168 	}
5169 
5170 	if ((status == CAM_REQ_CMP) &&
5171 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5172 		/*
5173 		 * Get this peripheral up to date with all
5174 		 * the currently existing devices.
5175 		 */
5176 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5177 	}
5178 	if ((status == CAM_REQ_CMP) &&
5179 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5180 		/*
5181 		 * Get this peripheral up to date with all
5182 		 * the currently existing buses.
5183 		 */
5184 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5185 	}
5186 
5187 	return (status);
5188 }
5189 
5190 static void
5191 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5192 {
5193 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5194 
5195 	switch (work_ccb->ccb_h.func_code) {
5196 	/* Common cases first */
5197 	case XPT_PATH_INQ:		/* Path routing inquiry */
5198 	{
5199 		struct ccb_pathinq *cpi;
5200 
5201 		cpi = &work_ccb->cpi;
5202 		cpi->version_num = 1; /* XXX??? */
5203 		cpi->hba_inquiry = 0;
5204 		cpi->target_sprt = 0;
5205 		cpi->hba_misc = 0;
5206 		cpi->hba_eng_cnt = 0;
5207 		cpi->max_target = 0;
5208 		cpi->max_lun = 0;
5209 		cpi->initiator_id = 0;
5210 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5211 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5212 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5213 		cpi->unit_number = sim->unit_number;
5214 		cpi->bus_id = sim->bus_id;
5215 		cpi->base_transfer_speed = 0;
5216 		cpi->protocol = PROTO_UNSPECIFIED;
5217 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5218 		cpi->transport = XPORT_UNSPECIFIED;
5219 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5220 		cpi->ccb_h.status = CAM_REQ_CMP;
5221 		break;
5222 	}
5223 	default:
5224 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5225 		break;
5226 	}
5227 	xpt_done(work_ccb);
5228 }
5229 
5230 /*
5231  * The xpt as a "controller" has no interrupt sources, so polling
5232  * is a no-op.
5233  */
5234 static void
5235 xptpoll(struct cam_sim *sim)
5236 {
5237 }
5238 
5239 void
5240 xpt_lock_buses(void)
5241 {
5242 	mtx_lock(&xsoftc.xpt_topo_lock);
5243 }
5244 
5245 void
5246 xpt_unlock_buses(void)
5247 {
5248 	mtx_unlock(&xsoftc.xpt_topo_lock);
5249 }
5250 
5251 struct mtx *
5252 xpt_path_mtx(struct cam_path *path)
5253 {
5254 
5255 	return (&path->device->device_mtx);
5256 }
5257 
5258 static void
5259 xpt_done_process(struct ccb_hdr *ccb_h)
5260 {
5261 	struct cam_sim *sim = NULL;
5262 	struct cam_devq *devq = NULL;
5263 	struct mtx *mtx = NULL;
5264 
5265 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5266 	struct ccb_scsiio *csio;
5267 
5268 	if (ccb_h->func_code == XPT_SCSI_IO) {
5269 		csio = &((union ccb *)ccb_h)->csio;
5270 		if (csio->bio != NULL)
5271 			biotrack(csio->bio, __func__);
5272 	}
5273 #endif
5274 
5275 	if (ccb_h->flags & CAM_HIGH_POWER) {
5276 		struct highpowerlist	*hphead;
5277 		struct cam_ed		*device;
5278 
5279 		mtx_lock(&xsoftc.xpt_highpower_lock);
5280 		hphead = &xsoftc.highpowerq;
5281 
5282 		device = STAILQ_FIRST(hphead);
5283 
5284 		/*
5285 		 * Increment the count since this command is done.
5286 		 */
5287 		xsoftc.num_highpower++;
5288 
5289 		/*
5290 		 * Any high powered commands queued up?
5291 		 */
5292 		if (device != NULL) {
5293 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5294 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5295 
5296 			mtx_lock(&device->sim->devq->send_mtx);
5297 			xpt_release_devq_device(device,
5298 					 /*count*/1, /*runqueue*/TRUE);
5299 			mtx_unlock(&device->sim->devq->send_mtx);
5300 		} else
5301 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5302 	}
5303 
5304 	/*
5305 	 * Insulate against a race where the periph is destroyed but CCBs are
5306 	 * still not all processed. This shouldn't happen, but allows us better
5307 	 * bug diagnostic when it does.
5308 	 */
5309 	if (ccb_h->path->bus)
5310 		sim = ccb_h->path->bus->sim;
5311 
5312 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5313 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5314 		xpt_release_simq(sim, /*run_queue*/FALSE);
5315 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5316 	}
5317 
5318 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5319 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5320 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5321 		ccb_h->status &= ~CAM_DEV_QFRZN;
5322 	}
5323 
5324 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5325 		struct cam_ed *dev = ccb_h->path->device;
5326 
5327 		if (sim)
5328 			devq = sim->devq;
5329 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5330 			ccb_h, xpt_action_name(ccb_h->func_code)));
5331 
5332 		mtx_lock(&devq->send_mtx);
5333 		devq->send_active--;
5334 		devq->send_openings++;
5335 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5336 
5337 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5338 		  && (dev->ccbq.dev_active == 0))) {
5339 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5340 			xpt_release_devq_device(dev, /*count*/1,
5341 					 /*run_queue*/FALSE);
5342 		}
5343 
5344 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5345 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5346 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5347 			xpt_release_devq_device(dev, /*count*/1,
5348 					 /*run_queue*/FALSE);
5349 		}
5350 
5351 		if (!device_is_queued(dev))
5352 			(void)xpt_schedule_devq(devq, dev);
5353 		xpt_run_devq(devq);
5354 		mtx_unlock(&devq->send_mtx);
5355 
5356 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5357 			mtx = xpt_path_mtx(ccb_h->path);
5358 			mtx_lock(mtx);
5359 
5360 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5361 			 && (--dev->tag_delay_count == 0))
5362 				xpt_start_tags(ccb_h->path);
5363 		}
5364 	}
5365 
5366 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5367 		if (mtx == NULL) {
5368 			mtx = xpt_path_mtx(ccb_h->path);
5369 			mtx_lock(mtx);
5370 		}
5371 	} else {
5372 		if (mtx != NULL) {
5373 			mtx_unlock(mtx);
5374 			mtx = NULL;
5375 		}
5376 	}
5377 
5378 	/* Call the peripheral driver's callback */
5379 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5380 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5381 	if (mtx != NULL)
5382 		mtx_unlock(mtx);
5383 }
5384 
5385 /*
5386  * Parameterize instead and use xpt_done_td?
5387  */
5388 static void
5389 xpt_async_td(void *arg)
5390 {
5391 	struct cam_doneq *queue = arg;
5392 	struct ccb_hdr *ccb_h;
5393 	STAILQ_HEAD(, ccb_hdr)	doneq;
5394 
5395 	STAILQ_INIT(&doneq);
5396 	mtx_lock(&queue->cam_doneq_mtx);
5397 	while (1) {
5398 		while (STAILQ_EMPTY(&queue->cam_doneq))
5399 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5400 			    PRIBIO, "-", 0);
5401 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5402 		mtx_unlock(&queue->cam_doneq_mtx);
5403 
5404 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5405 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5406 			xpt_done_process(ccb_h);
5407 		}
5408 
5409 		mtx_lock(&queue->cam_doneq_mtx);
5410 	}
5411 }
5412 
5413 void
5414 xpt_done_td(void *arg)
5415 {
5416 	struct cam_doneq *queue = arg;
5417 	struct ccb_hdr *ccb_h;
5418 	STAILQ_HEAD(, ccb_hdr)	doneq;
5419 
5420 	STAILQ_INIT(&doneq);
5421 	mtx_lock(&queue->cam_doneq_mtx);
5422 	while (1) {
5423 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5424 			queue->cam_doneq_sleep = 1;
5425 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5426 			    PRIBIO, "-", 0);
5427 			queue->cam_doneq_sleep = 0;
5428 		}
5429 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5430 		mtx_unlock(&queue->cam_doneq_mtx);
5431 
5432 		THREAD_NO_SLEEPING();
5433 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5434 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5435 			xpt_done_process(ccb_h);
5436 		}
5437 		THREAD_SLEEPING_OK();
5438 
5439 		mtx_lock(&queue->cam_doneq_mtx);
5440 	}
5441 }
5442 
5443 static void
5444 camisr_runqueue(void)
5445 {
5446 	struct	ccb_hdr *ccb_h;
5447 	struct cam_doneq *queue;
5448 	int i;
5449 
5450 	/* Process global queues. */
5451 	for (i = 0; i < cam_num_doneqs; i++) {
5452 		queue = &cam_doneqs[i];
5453 		mtx_lock(&queue->cam_doneq_mtx);
5454 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5455 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5456 			mtx_unlock(&queue->cam_doneq_mtx);
5457 			xpt_done_process(ccb_h);
5458 			mtx_lock(&queue->cam_doneq_mtx);
5459 		}
5460 		mtx_unlock(&queue->cam_doneq_mtx);
5461 	}
5462 }
5463 
5464 /**
5465  * @brief Return the device_t associated with the path
5466  *
5467  * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5468  * stored in the internal cam_eb bus structure. There is no guarnatee any given
5469  * path will have a @c device_t associated with it (it's legal to call @c
5470  * xpt_bus_register with a @c NULL @c device_t.
5471  *
5472  * @param path		Path to return the device_t for.
5473  */
5474 device_t
5475 xpt_path_sim_device(const struct cam_path *path)
5476 {
5477 	return (path->bus->parent_dev);
5478 }
5479 
5480 struct kv
5481 {
5482 	uint32_t v;
5483 	const char *name;
5484 };
5485 
5486 static struct kv map[] = {
5487 	{ XPT_NOOP, "XPT_NOOP" },
5488 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5489 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5490 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5491 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5492 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5493 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5494 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5495 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5496 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5497 	{ XPT_DEBUG, "XPT_DEBUG" },
5498 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5499 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5500 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5501 	{ XPT_ASYNC, "XPT_ASYNC" },
5502 	{ XPT_ABORT, "XPT_ABORT" },
5503 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5504 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5505 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5506 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5507 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5508 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5509 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5510 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5511 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5512 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5513 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5514 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5515 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5516 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5517 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5518 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5519 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5520 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5521 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5522 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5523 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5524 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5525 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5526 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5527 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5528 	{ 0, 0 }
5529 };
5530 
5531 const char *
5532 xpt_action_name(uint32_t action)
5533 {
5534 	static char buffer[32];	/* Only for unknown messages -- racy */
5535 	struct kv *walker = map;
5536 
5537 	while (walker->name != NULL) {
5538 		if (walker->v == action)
5539 			return (walker->name);
5540 		walker++;
5541 	}
5542 
5543 	snprintf(buffer, sizeof(buffer), "%#x", action);
5544 	return (buffer);
5545 }
5546