xref: /freebsd/sys/cam/cam_xpt.c (revision 21d30ec18d673020b701750a4d498a4e75cde516)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/reboot.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 
52 #ifdef PC98
53 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 
67 #include <cam/scsi/scsi_all.h>
68 #include <cam/scsi/scsi_message.h>
69 #include <cam/scsi/scsi_pass.h>
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 #include "opt_cam.h"
72 
73 /*
74  * This is the maximum number of high powered commands (e.g. start unit)
75  * that can be outstanding at a particular time.
76  */
77 #ifndef CAM_MAX_HIGHPOWER
78 #define CAM_MAX_HIGHPOWER  4
79 #endif
80 
81 /* Datastructures internal to the xpt layer */
82 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
83 
84 /* Object for defering XPT actions to a taskqueue */
85 struct xpt_task {
86 	struct task	task;
87 	void		*data1;
88 	uintptr_t	data2;
89 };
90 
91 typedef enum {
92 	XPT_FLAG_OPEN		= 0x01
93 } xpt_flags;
94 
95 struct xpt_softc {
96 	xpt_flags		flags;
97 	u_int32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
101 	int			num_highpower;
102 
103 	/* queue for handling async rescan requests. */
104 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 	int buses_to_config;
106 	int buses_config_done;
107 
108 	/* Registered busses */
109 	TAILQ_HEAD(,cam_eb)	xpt_busses;
110 	u_int			bus_generation;
111 
112 	struct intr_config_hook	*xpt_config_hook;
113 
114 	int			boot_delay;
115 	struct callout 		boot_callout;
116 
117 	struct mtx		xpt_topo_lock;
118 	struct mtx		xpt_lock;
119 };
120 
121 typedef enum {
122 	DM_RET_COPY		= 0x01,
123 	DM_RET_FLAG_MASK	= 0x0f,
124 	DM_RET_NONE		= 0x00,
125 	DM_RET_STOP		= 0x10,
126 	DM_RET_DESCEND		= 0x20,
127 	DM_RET_ERROR		= 0x30,
128 	DM_RET_ACTION_MASK	= 0xf0
129 } dev_match_ret;
130 
131 typedef enum {
132 	XPT_DEPTH_BUS,
133 	XPT_DEPTH_TARGET,
134 	XPT_DEPTH_DEVICE,
135 	XPT_DEPTH_PERIPH
136 } xpt_traverse_depth;
137 
138 struct xpt_traverse_config {
139 	xpt_traverse_depth	depth;
140 	void			*tr_func;
141 	void			*tr_arg;
142 };
143 
144 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
145 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
146 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
147 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
148 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
149 
150 /* Transport layer configuration information */
151 static struct xpt_softc xsoftc;
152 
153 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
154 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
155            &xsoftc.boot_delay, 0, "Bus registration wait time");
156 static int	xpt_power_down = 0;
157 TUNABLE_INT("kern.cam.power_down", &xpt_power_down);
158 SYSCTL_INT(_kern_cam, OID_AUTO, power_down, CTLFLAG_RW,
159            &xpt_power_down, 0, "Power down devices on shutdown");
160 
161 /* Queues for our software interrupt handler */
162 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
163 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
164 static cam_simq_t cam_simq;
165 static struct mtx cam_simq_lock;
166 
167 /* Pointers to software interrupt handlers */
168 static void *cambio_ih;
169 
170 struct cam_periph *xpt_periph;
171 
172 static periph_init_t xpt_periph_init;
173 
174 static struct periph_driver xpt_driver =
175 {
176 	xpt_periph_init, "xpt",
177 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
178 	CAM_PERIPH_DRV_EARLY
179 };
180 
181 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
182 
183 static d_open_t xptopen;
184 static d_close_t xptclose;
185 static d_ioctl_t xptioctl;
186 
187 static struct cdevsw xpt_cdevsw = {
188 	.d_version =	D_VERSION,
189 	.d_flags =	0,
190 	.d_open =	xptopen,
191 	.d_close =	xptclose,
192 	.d_ioctl =	xptioctl,
193 	.d_name =	"xpt",
194 };
195 
196 /* Storage for debugging datastructures */
197 #ifdef	CAMDEBUG
198 struct cam_path *cam_dpath;
199 u_int32_t cam_dflags;
200 u_int32_t cam_debug_delay;
201 #endif
202 
203 /* Our boot-time initialization hook */
204 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
205 
206 static moduledata_t cam_moduledata = {
207 	"cam",
208 	cam_module_event_handler,
209 	NULL
210 };
211 
212 static int	xpt_init(void *);
213 
214 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
215 MODULE_VERSION(cam, 1);
216 
217 
218 static void		xpt_async_bcast(struct async_list *async_head,
219 					u_int32_t async_code,
220 					struct cam_path *path,
221 					void *async_arg);
222 static path_id_t xptnextfreepathid(void);
223 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
224 static union ccb *xpt_get_ccb(struct cam_ed *device);
225 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
226 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
227 static timeout_t xpt_release_devq_timeout;
228 static void	 xpt_release_simq_timeout(void *arg) __unused;
229 static void	 xpt_release_bus(struct cam_eb *bus);
230 static void	 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
231 		    u_int count, int run_queue);
232 static struct cam_et*
233 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
234 static void	 xpt_release_target(struct cam_et *target);
235 static struct cam_eb*
236 		 xpt_find_bus(path_id_t path_id);
237 static struct cam_et*
238 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
239 static struct cam_ed*
240 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
241 static void	 xpt_config(void *arg);
242 static xpt_devicefunc_t xptpassannouncefunc;
243 static void	 xpt_shutdown(void *arg, int howto);
244 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
245 static void	 xptpoll(struct cam_sim *sim);
246 static void	 camisr(void *);
247 static void	 camisr_runqueue(void *);
248 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
249 				    u_int num_patterns, struct cam_eb *bus);
250 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
251 				       u_int num_patterns,
252 				       struct cam_ed *device);
253 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
254 				       u_int num_patterns,
255 				       struct cam_periph *periph);
256 static xpt_busfunc_t	xptedtbusfunc;
257 static xpt_targetfunc_t	xptedttargetfunc;
258 static xpt_devicefunc_t	xptedtdevicefunc;
259 static xpt_periphfunc_t	xptedtperiphfunc;
260 static xpt_pdrvfunc_t	xptplistpdrvfunc;
261 static xpt_periphfunc_t	xptplistperiphfunc;
262 static int		xptedtmatch(struct ccb_dev_match *cdm);
263 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
264 static int		xptbustraverse(struct cam_eb *start_bus,
265 				       xpt_busfunc_t *tr_func, void *arg);
266 static int		xpttargettraverse(struct cam_eb *bus,
267 					  struct cam_et *start_target,
268 					  xpt_targetfunc_t *tr_func, void *arg);
269 static int		xptdevicetraverse(struct cam_et *target,
270 					  struct cam_ed *start_device,
271 					  xpt_devicefunc_t *tr_func, void *arg);
272 static int		xptperiphtraverse(struct cam_ed *device,
273 					  struct cam_periph *start_periph,
274 					  xpt_periphfunc_t *tr_func, void *arg);
275 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
276 					xpt_pdrvfunc_t *tr_func, void *arg);
277 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
278 					    struct cam_periph *start_periph,
279 					    xpt_periphfunc_t *tr_func,
280 					    void *arg);
281 static xpt_busfunc_t	xptdefbusfunc;
282 static xpt_targetfunc_t	xptdeftargetfunc;
283 static xpt_devicefunc_t	xptdefdevicefunc;
284 static xpt_periphfunc_t	xptdefperiphfunc;
285 static void		xpt_finishconfig_task(void *context, int pending);
286 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
287 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
288 					    void *arg);
289 static void		xpt_dev_async_default(u_int32_t async_code,
290 					      struct cam_eb *bus,
291 					      struct cam_et *target,
292 					      struct cam_ed *device,
293 					      void *async_arg);
294 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
295 						 struct cam_et *target,
296 						 lun_id_t lun_id);
297 static xpt_devicefunc_t	xptsetasyncfunc;
298 static xpt_busfunc_t	xptsetasyncbusfunc;
299 static cam_status	xptregister(struct cam_periph *periph,
300 				    void *arg);
301 static __inline int periph_is_queued(struct cam_periph *periph);
302 static __inline int device_is_alloc_queued(struct cam_ed *device);
303 static __inline int device_is_send_queued(struct cam_ed *device);
304 
305 static __inline int
306 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
307 {
308 	int retval;
309 
310 	if ((dev->drvq.entries > 0) &&
311 	    (dev->ccbq.devq_openings > 0) &&
312 	    (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
313 		CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
314 		/*
315 		 * The priority of a device waiting for CCB resources
316 		 * is that of the the highest priority peripheral driver
317 		 * enqueued.
318 		 */
319 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
320 					  &dev->alloc_ccb_entry.pinfo,
321 					  CAMQ_GET_PRIO(&dev->drvq));
322 	} else {
323 		retval = 0;
324 	}
325 
326 	return (retval);
327 }
328 
329 static __inline int
330 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
331 {
332 	int	retval;
333 
334 	if ((dev->ccbq.queue.entries > 0) &&
335 	    (dev->ccbq.dev_openings > 0) &&
336 	    (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
337 		/*
338 		 * The priority of a device waiting for controller
339 		 * resources is that of the the highest priority CCB
340 		 * enqueued.
341 		 */
342 		retval =
343 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
344 				     &dev->send_ccb_entry.pinfo,
345 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
346 	} else {
347 		retval = 0;
348 	}
349 	return (retval);
350 }
351 
352 static __inline int
353 periph_is_queued(struct cam_periph *periph)
354 {
355 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
356 }
357 
358 static __inline int
359 device_is_alloc_queued(struct cam_ed *device)
360 {
361 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
362 }
363 
364 static __inline int
365 device_is_send_queued(struct cam_ed *device)
366 {
367 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
368 }
369 
370 static void
371 xpt_periph_init()
372 {
373 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
374 }
375 
376 static void
377 xptdone(struct cam_periph *periph, union ccb *done_ccb)
378 {
379 	/* Caller will release the CCB */
380 	wakeup(&done_ccb->ccb_h.cbfcnp);
381 }
382 
383 static int
384 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
385 {
386 
387 	/*
388 	 * Only allow read-write access.
389 	 */
390 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
391 		return(EPERM);
392 
393 	/*
394 	 * We don't allow nonblocking access.
395 	 */
396 	if ((flags & O_NONBLOCK) != 0) {
397 		printf("%s: can't do nonblocking access\n", devtoname(dev));
398 		return(ENODEV);
399 	}
400 
401 	/* Mark ourselves open */
402 	mtx_lock(&xsoftc.xpt_lock);
403 	xsoftc.flags |= XPT_FLAG_OPEN;
404 	mtx_unlock(&xsoftc.xpt_lock);
405 
406 	return(0);
407 }
408 
409 static int
410 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
411 {
412 
413 	/* Mark ourselves closed */
414 	mtx_lock(&xsoftc.xpt_lock);
415 	xsoftc.flags &= ~XPT_FLAG_OPEN;
416 	mtx_unlock(&xsoftc.xpt_lock);
417 
418 	return(0);
419 }
420 
421 /*
422  * Don't automatically grab the xpt softc lock here even though this is going
423  * through the xpt device.  The xpt device is really just a back door for
424  * accessing other devices and SIMs, so the right thing to do is to grab
425  * the appropriate SIM lock once the bus/SIM is located.
426  */
427 static int
428 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
429 {
430 	int error;
431 
432 	error = 0;
433 
434 	switch(cmd) {
435 	/*
436 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
437 	 * to accept CCB types that don't quite make sense to send through a
438 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
439 	 * in the CAM spec.
440 	 */
441 	case CAMIOCOMMAND: {
442 		union ccb *ccb;
443 		union ccb *inccb;
444 		struct cam_eb *bus;
445 
446 		inccb = (union ccb *)addr;
447 
448 		bus = xpt_find_bus(inccb->ccb_h.path_id);
449 		if (bus == NULL)
450 			return (EINVAL);
451 
452 		switch (inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
456 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
457 				xpt_release_bus(bus);
458 				return (EINVAL);
459 			}
460 			break;
461 		case XPT_SCAN_TGT:
462 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
463 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
464 				xpt_release_bus(bus);
465 				return (EINVAL);
466 			}
467 			break;
468 		default:
469 			break;
470 		}
471 
472 		switch(inccb->ccb_h.func_code) {
473 		case XPT_SCAN_BUS:
474 		case XPT_RESET_BUS:
475 		case XPT_PATH_INQ:
476 		case XPT_ENG_INQ:
477 		case XPT_SCAN_LUN:
478 		case XPT_SCAN_TGT:
479 
480 			ccb = xpt_alloc_ccb();
481 
482 			CAM_SIM_LOCK(bus->sim);
483 
484 			/*
485 			 * Create a path using the bus, target, and lun the
486 			 * user passed in.
487 			 */
488 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
489 					    inccb->ccb_h.path_id,
490 					    inccb->ccb_h.target_id,
491 					    inccb->ccb_h.target_lun) !=
492 					    CAM_REQ_CMP){
493 				error = EINVAL;
494 				CAM_SIM_UNLOCK(bus->sim);
495 				xpt_free_ccb(ccb);
496 				break;
497 			}
498 			/* Ensure all of our fields are correct */
499 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
500 				      inccb->ccb_h.pinfo.priority);
501 			xpt_merge_ccb(ccb, inccb);
502 			ccb->ccb_h.cbfcnp = xptdone;
503 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
504 			bcopy(ccb, inccb, sizeof(union ccb));
505 			xpt_free_path(ccb->ccb_h.path);
506 			xpt_free_ccb(ccb);
507 			CAM_SIM_UNLOCK(bus->sim);
508 			break;
509 
510 		case XPT_DEBUG: {
511 			union ccb ccb;
512 
513 			/*
514 			 * This is an immediate CCB, so it's okay to
515 			 * allocate it on the stack.
516 			 */
517 
518 			CAM_SIM_LOCK(bus->sim);
519 
520 			/*
521 			 * Create a path using the bus, target, and lun the
522 			 * user passed in.
523 			 */
524 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
525 					    inccb->ccb_h.path_id,
526 					    inccb->ccb_h.target_id,
527 					    inccb->ccb_h.target_lun) !=
528 					    CAM_REQ_CMP){
529 				error = EINVAL;
530 				CAM_SIM_UNLOCK(bus->sim);
531 				break;
532 			}
533 			/* Ensure all of our fields are correct */
534 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
535 				      inccb->ccb_h.pinfo.priority);
536 			xpt_merge_ccb(&ccb, inccb);
537 			ccb.ccb_h.cbfcnp = xptdone;
538 			xpt_action(&ccb);
539 			CAM_SIM_UNLOCK(bus->sim);
540 			bcopy(&ccb, inccb, sizeof(union ccb));
541 			xpt_free_path(ccb.ccb_h.path);
542 			break;
543 
544 		}
545 		case XPT_DEV_MATCH: {
546 			struct cam_periph_map_info mapinfo;
547 			struct cam_path *old_path;
548 
549 			/*
550 			 * We can't deal with physical addresses for this
551 			 * type of transaction.
552 			 */
553 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
554 				error = EINVAL;
555 				break;
556 			}
557 
558 			/*
559 			 * Save this in case the caller had it set to
560 			 * something in particular.
561 			 */
562 			old_path = inccb->ccb_h.path;
563 
564 			/*
565 			 * We really don't need a path for the matching
566 			 * code.  The path is needed because of the
567 			 * debugging statements in xpt_action().  They
568 			 * assume that the CCB has a valid path.
569 			 */
570 			inccb->ccb_h.path = xpt_periph->path;
571 
572 			bzero(&mapinfo, sizeof(mapinfo));
573 
574 			/*
575 			 * Map the pattern and match buffers into kernel
576 			 * virtual address space.
577 			 */
578 			error = cam_periph_mapmem(inccb, &mapinfo);
579 
580 			if (error) {
581 				inccb->ccb_h.path = old_path;
582 				break;
583 			}
584 
585 			/*
586 			 * This is an immediate CCB, we can send it on directly.
587 			 */
588 			xpt_action(inccb);
589 
590 			/*
591 			 * Map the buffers back into user space.
592 			 */
593 			cam_periph_unmapmem(inccb, &mapinfo);
594 
595 			inccb->ccb_h.path = old_path;
596 
597 			error = 0;
598 			break;
599 		}
600 		default:
601 			error = ENOTSUP;
602 			break;
603 		}
604 		xpt_release_bus(bus);
605 		break;
606 	}
607 	/*
608 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
609 	 * with the periphal driver name and unit name filled in.  The other
610 	 * fields don't really matter as input.  The passthrough driver name
611 	 * ("pass"), and unit number are passed back in the ccb.  The current
612 	 * device generation number, and the index into the device peripheral
613 	 * driver list, and the status are also passed back.  Note that
614 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
615 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
616 	 * (or rather should be) impossible for the device peripheral driver
617 	 * list to change since we look at the whole thing in one pass, and
618 	 * we do it with lock protection.
619 	 *
620 	 */
621 	case CAMGETPASSTHRU: {
622 		union ccb *ccb;
623 		struct cam_periph *periph;
624 		struct periph_driver **p_drv;
625 		char   *name;
626 		u_int unit;
627 		u_int cur_generation;
628 		int base_periph_found;
629 		int splbreaknum;
630 
631 		ccb = (union ccb *)addr;
632 		unit = ccb->cgdl.unit_number;
633 		name = ccb->cgdl.periph_name;
634 		/*
635 		 * Every 100 devices, we want to drop our lock protection to
636 		 * give the software interrupt handler a chance to run.
637 		 * Most systems won't run into this check, but this should
638 		 * avoid starvation in the software interrupt handler in
639 		 * large systems.
640 		 */
641 		splbreaknum = 100;
642 
643 		ccb = (union ccb *)addr;
644 
645 		base_periph_found = 0;
646 
647 		/*
648 		 * Sanity check -- make sure we don't get a null peripheral
649 		 * driver name.
650 		 */
651 		if (*ccb->cgdl.periph_name == '\0') {
652 			error = EINVAL;
653 			break;
654 		}
655 
656 		/* Keep the list from changing while we traverse it */
657 		mtx_lock(&xsoftc.xpt_topo_lock);
658 ptstartover:
659 		cur_generation = xsoftc.xpt_generation;
660 
661 		/* first find our driver in the list of drivers */
662 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
663 			if (strcmp((*p_drv)->driver_name, name) == 0)
664 				break;
665 
666 		if (*p_drv == NULL) {
667 			mtx_unlock(&xsoftc.xpt_topo_lock);
668 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
669 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
670 			*ccb->cgdl.periph_name = '\0';
671 			ccb->cgdl.unit_number = 0;
672 			error = ENOENT;
673 			break;
674 		}
675 
676 		/*
677 		 * Run through every peripheral instance of this driver
678 		 * and check to see whether it matches the unit passed
679 		 * in by the user.  If it does, get out of the loops and
680 		 * find the passthrough driver associated with that
681 		 * peripheral driver.
682 		 */
683 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
684 		     periph = TAILQ_NEXT(periph, unit_links)) {
685 
686 			if (periph->unit_number == unit) {
687 				break;
688 			} else if (--splbreaknum == 0) {
689 				mtx_unlock(&xsoftc.xpt_topo_lock);
690 				mtx_lock(&xsoftc.xpt_topo_lock);
691 				splbreaknum = 100;
692 				if (cur_generation != xsoftc.xpt_generation)
693 				       goto ptstartover;
694 			}
695 		}
696 		/*
697 		 * If we found the peripheral driver that the user passed
698 		 * in, go through all of the peripheral drivers for that
699 		 * particular device and look for a passthrough driver.
700 		 */
701 		if (periph != NULL) {
702 			struct cam_ed *device;
703 			int i;
704 
705 			base_periph_found = 1;
706 			device = periph->path->device;
707 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
708 			     periph != NULL;
709 			     periph = SLIST_NEXT(periph, periph_links), i++) {
710 				/*
711 				 * Check to see whether we have a
712 				 * passthrough device or not.
713 				 */
714 				if (strcmp(periph->periph_name, "pass") == 0) {
715 					/*
716 					 * Fill in the getdevlist fields.
717 					 */
718 					strcpy(ccb->cgdl.periph_name,
719 					       periph->periph_name);
720 					ccb->cgdl.unit_number =
721 						periph->unit_number;
722 					if (SLIST_NEXT(periph, periph_links))
723 						ccb->cgdl.status =
724 							CAM_GDEVLIST_MORE_DEVS;
725 					else
726 						ccb->cgdl.status =
727 						       CAM_GDEVLIST_LAST_DEVICE;
728 					ccb->cgdl.generation =
729 						device->generation;
730 					ccb->cgdl.index = i;
731 					/*
732 					 * Fill in some CCB header fields
733 					 * that the user may want.
734 					 */
735 					ccb->ccb_h.path_id =
736 						periph->path->bus->path_id;
737 					ccb->ccb_h.target_id =
738 						periph->path->target->target_id;
739 					ccb->ccb_h.target_lun =
740 						periph->path->device->lun_id;
741 					ccb->ccb_h.status = CAM_REQ_CMP;
742 					break;
743 				}
744 			}
745 		}
746 
747 		/*
748 		 * If the periph is null here, one of two things has
749 		 * happened.  The first possibility is that we couldn't
750 		 * find the unit number of the particular peripheral driver
751 		 * that the user is asking about.  e.g. the user asks for
752 		 * the passthrough driver for "da11".  We find the list of
753 		 * "da" peripherals all right, but there is no unit 11.
754 		 * The other possibility is that we went through the list
755 		 * of peripheral drivers attached to the device structure,
756 		 * but didn't find one with the name "pass".  Either way,
757 		 * we return ENOENT, since we couldn't find something.
758 		 */
759 		if (periph == NULL) {
760 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
761 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
762 			*ccb->cgdl.periph_name = '\0';
763 			ccb->cgdl.unit_number = 0;
764 			error = ENOENT;
765 			/*
766 			 * It is unfortunate that this is even necessary,
767 			 * but there are many, many clueless users out there.
768 			 * If this is true, the user is looking for the
769 			 * passthrough driver, but doesn't have one in his
770 			 * kernel.
771 			 */
772 			if (base_periph_found == 1) {
773 				printf("xptioctl: pass driver is not in the "
774 				       "kernel\n");
775 				printf("xptioctl: put \"device pass\" in "
776 				       "your kernel config file\n");
777 			}
778 		}
779 		mtx_unlock(&xsoftc.xpt_topo_lock);
780 		break;
781 		}
782 	default:
783 		error = ENOTTY;
784 		break;
785 	}
786 
787 	return(error);
788 }
789 
790 static int
791 cam_module_event_handler(module_t mod, int what, void *arg)
792 {
793 	int error;
794 
795 	switch (what) {
796 	case MOD_LOAD:
797 		if ((error = xpt_init(NULL)) != 0)
798 			return (error);
799 		break;
800 	case MOD_UNLOAD:
801 		return EBUSY;
802 	default:
803 		return EOPNOTSUPP;
804 	}
805 
806 	return 0;
807 }
808 
809 static void
810 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
811 {
812 
813 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
814 		xpt_free_path(done_ccb->ccb_h.path);
815 		xpt_free_ccb(done_ccb);
816 	} else {
817 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
818 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
819 	}
820 	xpt_release_boot();
821 }
822 
823 /* thread to handle bus rescans */
824 static void
825 xpt_scanner_thread(void *dummy)
826 {
827 	union ccb	*ccb;
828 	struct cam_sim	*sim;
829 
830 	xpt_lock_buses();
831 	for (;;) {
832 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
833 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
834 			       "ccb_scanq", 0);
835 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
836 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
837 			xpt_unlock_buses();
838 
839 			sim = ccb->ccb_h.path->bus->sim;
840 			CAM_SIM_LOCK(sim);
841 			xpt_action(ccb);
842 			CAM_SIM_UNLOCK(sim);
843 
844 			xpt_lock_buses();
845 		}
846 	}
847 }
848 
849 void
850 xpt_rescan(union ccb *ccb)
851 {
852 	struct ccb_hdr *hdr;
853 
854 	/* Prepare request */
855 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
856 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
857 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
858 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
859 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
860 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
861 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
862 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
863 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
864 	else {
865 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
866 		xpt_free_path(ccb->ccb_h.path);
867 		xpt_free_ccb(ccb);
868 		return;
869 	}
870 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
871 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
872 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
873 	/* Don't make duplicate entries for the same paths. */
874 	xpt_lock_buses();
875 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
876 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
877 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
878 				wakeup(&xsoftc.ccb_scanq);
879 				xpt_unlock_buses();
880 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
881 				xpt_free_path(ccb->ccb_h.path);
882 				xpt_free_ccb(ccb);
883 				return;
884 			}
885 		}
886 	}
887 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
888 	xsoftc.buses_to_config++;
889 	wakeup(&xsoftc.ccb_scanq);
890 	xpt_unlock_buses();
891 }
892 
893 /* Functions accessed by the peripheral drivers */
894 static int
895 xpt_init(void *dummy)
896 {
897 	struct cam_sim *xpt_sim;
898 	struct cam_path *path;
899 	struct cam_devq *devq;
900 	cam_status status;
901 
902 	TAILQ_INIT(&xsoftc.xpt_busses);
903 	TAILQ_INIT(&cam_simq);
904 	TAILQ_INIT(&xsoftc.ccb_scanq);
905 	STAILQ_INIT(&xsoftc.highpowerq);
906 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
907 
908 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
909 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
910 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
911 
912 	/*
913 	 * The xpt layer is, itself, the equivelent of a SIM.
914 	 * Allow 16 ccbs in the ccb pool for it.  This should
915 	 * give decent parallelism when we probe busses and
916 	 * perform other XPT functions.
917 	 */
918 	devq = cam_simq_alloc(16);
919 	xpt_sim = cam_sim_alloc(xptaction,
920 				xptpoll,
921 				"xpt",
922 				/*softc*/NULL,
923 				/*unit*/0,
924 				/*mtx*/&xsoftc.xpt_lock,
925 				/*max_dev_transactions*/0,
926 				/*max_tagged_dev_transactions*/0,
927 				devq);
928 	if (xpt_sim == NULL)
929 		return (ENOMEM);
930 
931 	mtx_lock(&xsoftc.xpt_lock);
932 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
933 		mtx_unlock(&xsoftc.xpt_lock);
934 		printf("xpt_init: xpt_bus_register failed with status %#x,"
935 		       " failing attach\n", status);
936 		return (EINVAL);
937 	}
938 
939 	/*
940 	 * Looking at the XPT from the SIM layer, the XPT is
941 	 * the equivelent of a peripheral driver.  Allocate
942 	 * a peripheral driver entry for us.
943 	 */
944 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
945 				      CAM_TARGET_WILDCARD,
946 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
947 		mtx_unlock(&xsoftc.xpt_lock);
948 		printf("xpt_init: xpt_create_path failed with status %#x,"
949 		       " failing attach\n", status);
950 		return (EINVAL);
951 	}
952 
953 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
954 			 path, NULL, 0, xpt_sim);
955 	xpt_free_path(path);
956 	mtx_unlock(&xsoftc.xpt_lock);
957 	/* Install our software interrupt handlers */
958 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
959 	/*
960 	 * Register a callback for when interrupts are enabled.
961 	 */
962 	xsoftc.xpt_config_hook =
963 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
964 					      M_CAMXPT, M_NOWAIT | M_ZERO);
965 	if (xsoftc.xpt_config_hook == NULL) {
966 		printf("xpt_init: Cannot malloc config hook "
967 		       "- failing attach\n");
968 		return (ENOMEM);
969 	}
970 	xsoftc.xpt_config_hook->ich_func = xpt_config;
971 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
972 		free (xsoftc.xpt_config_hook, M_CAMXPT);
973 		printf("xpt_init: config_intrhook_establish failed "
974 		       "- failing attach\n");
975 	}
976 
977 	return (0);
978 }
979 
980 static cam_status
981 xptregister(struct cam_periph *periph, void *arg)
982 {
983 	struct cam_sim *xpt_sim;
984 
985 	if (periph == NULL) {
986 		printf("xptregister: periph was NULL!!\n");
987 		return(CAM_REQ_CMP_ERR);
988 	}
989 
990 	xpt_sim = (struct cam_sim *)arg;
991 	xpt_sim->softc = periph;
992 	xpt_periph = periph;
993 	periph->softc = NULL;
994 
995 	return(CAM_REQ_CMP);
996 }
997 
998 int32_t
999 xpt_add_periph(struct cam_periph *periph)
1000 {
1001 	struct cam_ed *device;
1002 	int32_t	 status;
1003 	struct periph_list *periph_head;
1004 
1005 	mtx_assert(periph->sim->mtx, MA_OWNED);
1006 
1007 	device = periph->path->device;
1008 
1009 	periph_head = &device->periphs;
1010 
1011 	status = CAM_REQ_CMP;
1012 
1013 	if (device != NULL) {
1014 		/*
1015 		 * Make room for this peripheral
1016 		 * so it will fit in the queue
1017 		 * when it's scheduled to run
1018 		 */
1019 		status = camq_resize(&device->drvq,
1020 				     device->drvq.array_size + 1);
1021 
1022 		device->generation++;
1023 
1024 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1025 	}
1026 
1027 	mtx_lock(&xsoftc.xpt_topo_lock);
1028 	xsoftc.xpt_generation++;
1029 	mtx_unlock(&xsoftc.xpt_topo_lock);
1030 
1031 	return (status);
1032 }
1033 
1034 void
1035 xpt_remove_periph(struct cam_periph *periph)
1036 {
1037 	struct cam_ed *device;
1038 
1039 	mtx_assert(periph->sim->mtx, MA_OWNED);
1040 
1041 	device = periph->path->device;
1042 
1043 	if (device != NULL) {
1044 		struct periph_list *periph_head;
1045 
1046 		periph_head = &device->periphs;
1047 
1048 		/* Release the slot for this peripheral */
1049 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1050 
1051 		device->generation++;
1052 
1053 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1054 	}
1055 
1056 	mtx_lock(&xsoftc.xpt_topo_lock);
1057 	xsoftc.xpt_generation++;
1058 	mtx_unlock(&xsoftc.xpt_topo_lock);
1059 }
1060 
1061 
1062 void
1063 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1064 {
1065 	struct	cam_path *path = periph->path;
1066 
1067 	mtx_assert(periph->sim->mtx, MA_OWNED);
1068 
1069 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1070 	       periph->periph_name, periph->unit_number,
1071 	       path->bus->sim->sim_name,
1072 	       path->bus->sim->unit_number,
1073 	       path->bus->sim->bus_id,
1074 	       path->bus->path_id,
1075 	       path->target->target_id,
1076 	       path->device->lun_id);
1077 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1078 	if (path->device->protocol == PROTO_SCSI)
1079 		scsi_print_inquiry(&path->device->inq_data);
1080 	else if (path->device->protocol == PROTO_ATA ||
1081 	    path->device->protocol == PROTO_SATAPM)
1082 		ata_print_ident(&path->device->ident_data);
1083 	else
1084 		printf("Unknown protocol device\n");
1085 	if (bootverbose && path->device->serial_num_len > 0) {
1086 		/* Don't wrap the screen  - print only the first 60 chars */
1087 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1088 		       periph->unit_number, path->device->serial_num);
1089 	}
1090 	/* Announce transport details. */
1091 	(*(path->bus->xport->announce))(periph);
1092 	/* Announce command queueing. */
1093 	if (path->device->inq_flags & SID_CmdQue
1094 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1095 		printf("%s%d: Command Queueing enabled\n",
1096 		       periph->periph_name, periph->unit_number);
1097 	}
1098 	/* Announce caller's details if they've passed in. */
1099 	if (announce_string != NULL)
1100 		printf("%s%d: %s\n", periph->periph_name,
1101 		       periph->unit_number, announce_string);
1102 }
1103 
1104 static dev_match_ret
1105 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1106 	    struct cam_eb *bus)
1107 {
1108 	dev_match_ret retval;
1109 	int i;
1110 
1111 	retval = DM_RET_NONE;
1112 
1113 	/*
1114 	 * If we aren't given something to match against, that's an error.
1115 	 */
1116 	if (bus == NULL)
1117 		return(DM_RET_ERROR);
1118 
1119 	/*
1120 	 * If there are no match entries, then this bus matches no
1121 	 * matter what.
1122 	 */
1123 	if ((patterns == NULL) || (num_patterns == 0))
1124 		return(DM_RET_DESCEND | DM_RET_COPY);
1125 
1126 	for (i = 0; i < num_patterns; i++) {
1127 		struct bus_match_pattern *cur_pattern;
1128 
1129 		/*
1130 		 * If the pattern in question isn't for a bus node, we
1131 		 * aren't interested.  However, we do indicate to the
1132 		 * calling routine that we should continue descending the
1133 		 * tree, since the user wants to match against lower-level
1134 		 * EDT elements.
1135 		 */
1136 		if (patterns[i].type != DEV_MATCH_BUS) {
1137 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1138 				retval |= DM_RET_DESCEND;
1139 			continue;
1140 		}
1141 
1142 		cur_pattern = &patterns[i].pattern.bus_pattern;
1143 
1144 		/*
1145 		 * If they want to match any bus node, we give them any
1146 		 * device node.
1147 		 */
1148 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1149 			/* set the copy flag */
1150 			retval |= DM_RET_COPY;
1151 
1152 			/*
1153 			 * If we've already decided on an action, go ahead
1154 			 * and return.
1155 			 */
1156 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1157 				return(retval);
1158 		}
1159 
1160 		/*
1161 		 * Not sure why someone would do this...
1162 		 */
1163 		if (cur_pattern->flags == BUS_MATCH_NONE)
1164 			continue;
1165 
1166 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1167 		 && (cur_pattern->path_id != bus->path_id))
1168 			continue;
1169 
1170 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1171 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1172 			continue;
1173 
1174 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1175 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1176 			continue;
1177 
1178 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1179 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1180 			     DEV_IDLEN) != 0))
1181 			continue;
1182 
1183 		/*
1184 		 * If we get to this point, the user definitely wants
1185 		 * information on this bus.  So tell the caller to copy the
1186 		 * data out.
1187 		 */
1188 		retval |= DM_RET_COPY;
1189 
1190 		/*
1191 		 * If the return action has been set to descend, then we
1192 		 * know that we've already seen a non-bus matching
1193 		 * expression, therefore we need to further descend the tree.
1194 		 * This won't change by continuing around the loop, so we
1195 		 * go ahead and return.  If we haven't seen a non-bus
1196 		 * matching expression, we keep going around the loop until
1197 		 * we exhaust the matching expressions.  We'll set the stop
1198 		 * flag once we fall out of the loop.
1199 		 */
1200 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1201 			return(retval);
1202 	}
1203 
1204 	/*
1205 	 * If the return action hasn't been set to descend yet, that means
1206 	 * we haven't seen anything other than bus matching patterns.  So
1207 	 * tell the caller to stop descending the tree -- the user doesn't
1208 	 * want to match against lower level tree elements.
1209 	 */
1210 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1211 		retval |= DM_RET_STOP;
1212 
1213 	return(retval);
1214 }
1215 
1216 static dev_match_ret
1217 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1218 	       struct cam_ed *device)
1219 {
1220 	dev_match_ret retval;
1221 	int i;
1222 
1223 	retval = DM_RET_NONE;
1224 
1225 	/*
1226 	 * If we aren't given something to match against, that's an error.
1227 	 */
1228 	if (device == NULL)
1229 		return(DM_RET_ERROR);
1230 
1231 	/*
1232 	 * If there are no match entries, then this device matches no
1233 	 * matter what.
1234 	 */
1235 	if ((patterns == NULL) || (num_patterns == 0))
1236 		return(DM_RET_DESCEND | DM_RET_COPY);
1237 
1238 	for (i = 0; i < num_patterns; i++) {
1239 		struct device_match_pattern *cur_pattern;
1240 
1241 		/*
1242 		 * If the pattern in question isn't for a device node, we
1243 		 * aren't interested.
1244 		 */
1245 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1246 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1247 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1248 				retval |= DM_RET_DESCEND;
1249 			continue;
1250 		}
1251 
1252 		cur_pattern = &patterns[i].pattern.device_pattern;
1253 
1254 		/*
1255 		 * If they want to match any device node, we give them any
1256 		 * device node.
1257 		 */
1258 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1259 			/* set the copy flag */
1260 			retval |= DM_RET_COPY;
1261 
1262 
1263 			/*
1264 			 * If we've already decided on an action, go ahead
1265 			 * and return.
1266 			 */
1267 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1268 				return(retval);
1269 		}
1270 
1271 		/*
1272 		 * Not sure why someone would do this...
1273 		 */
1274 		if (cur_pattern->flags == DEV_MATCH_NONE)
1275 			continue;
1276 
1277 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1278 		 && (cur_pattern->path_id != device->target->bus->path_id))
1279 			continue;
1280 
1281 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1282 		 && (cur_pattern->target_id != device->target->target_id))
1283 			continue;
1284 
1285 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1286 		 && (cur_pattern->target_lun != device->lun_id))
1287 			continue;
1288 
1289 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1290 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1291 				    (caddr_t)&cur_pattern->inq_pat,
1292 				    1, sizeof(cur_pattern->inq_pat),
1293 				    scsi_static_inquiry_match) == NULL))
1294 			continue;
1295 
1296 		/*
1297 		 * If we get to this point, the user definitely wants
1298 		 * information on this device.  So tell the caller to copy
1299 		 * the data out.
1300 		 */
1301 		retval |= DM_RET_COPY;
1302 
1303 		/*
1304 		 * If the return action has been set to descend, then we
1305 		 * know that we've already seen a peripheral matching
1306 		 * expression, therefore we need to further descend the tree.
1307 		 * This won't change by continuing around the loop, so we
1308 		 * go ahead and return.  If we haven't seen a peripheral
1309 		 * matching expression, we keep going around the loop until
1310 		 * we exhaust the matching expressions.  We'll set the stop
1311 		 * flag once we fall out of the loop.
1312 		 */
1313 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1314 			return(retval);
1315 	}
1316 
1317 	/*
1318 	 * If the return action hasn't been set to descend yet, that means
1319 	 * we haven't seen any peripheral matching patterns.  So tell the
1320 	 * caller to stop descending the tree -- the user doesn't want to
1321 	 * match against lower level tree elements.
1322 	 */
1323 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1324 		retval |= DM_RET_STOP;
1325 
1326 	return(retval);
1327 }
1328 
1329 /*
1330  * Match a single peripheral against any number of match patterns.
1331  */
1332 static dev_match_ret
1333 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1334 	       struct cam_periph *periph)
1335 {
1336 	dev_match_ret retval;
1337 	int i;
1338 
1339 	/*
1340 	 * If we aren't given something to match against, that's an error.
1341 	 */
1342 	if (periph == NULL)
1343 		return(DM_RET_ERROR);
1344 
1345 	/*
1346 	 * If there are no match entries, then this peripheral matches no
1347 	 * matter what.
1348 	 */
1349 	if ((patterns == NULL) || (num_patterns == 0))
1350 		return(DM_RET_STOP | DM_RET_COPY);
1351 
1352 	/*
1353 	 * There aren't any nodes below a peripheral node, so there's no
1354 	 * reason to descend the tree any further.
1355 	 */
1356 	retval = DM_RET_STOP;
1357 
1358 	for (i = 0; i < num_patterns; i++) {
1359 		struct periph_match_pattern *cur_pattern;
1360 
1361 		/*
1362 		 * If the pattern in question isn't for a peripheral, we
1363 		 * aren't interested.
1364 		 */
1365 		if (patterns[i].type != DEV_MATCH_PERIPH)
1366 			continue;
1367 
1368 		cur_pattern = &patterns[i].pattern.periph_pattern;
1369 
1370 		/*
1371 		 * If they want to match on anything, then we will do so.
1372 		 */
1373 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1374 			/* set the copy flag */
1375 			retval |= DM_RET_COPY;
1376 
1377 			/*
1378 			 * We've already set the return action to stop,
1379 			 * since there are no nodes below peripherals in
1380 			 * the tree.
1381 			 */
1382 			return(retval);
1383 		}
1384 
1385 		/*
1386 		 * Not sure why someone would do this...
1387 		 */
1388 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1389 			continue;
1390 
1391 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1392 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1393 			continue;
1394 
1395 		/*
1396 		 * For the target and lun id's, we have to make sure the
1397 		 * target and lun pointers aren't NULL.  The xpt peripheral
1398 		 * has a wildcard target and device.
1399 		 */
1400 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1401 		 && ((periph->path->target == NULL)
1402 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1403 			continue;
1404 
1405 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1406 		 && ((periph->path->device == NULL)
1407 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1408 			continue;
1409 
1410 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1411 		 && (cur_pattern->unit_number != periph->unit_number))
1412 			continue;
1413 
1414 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1415 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1416 			     DEV_IDLEN) != 0))
1417 			continue;
1418 
1419 		/*
1420 		 * If we get to this point, the user definitely wants
1421 		 * information on this peripheral.  So tell the caller to
1422 		 * copy the data out.
1423 		 */
1424 		retval |= DM_RET_COPY;
1425 
1426 		/*
1427 		 * The return action has already been set to stop, since
1428 		 * peripherals don't have any nodes below them in the EDT.
1429 		 */
1430 		return(retval);
1431 	}
1432 
1433 	/*
1434 	 * If we get to this point, the peripheral that was passed in
1435 	 * doesn't match any of the patterns.
1436 	 */
1437 	return(retval);
1438 }
1439 
1440 static int
1441 xptedtbusfunc(struct cam_eb *bus, void *arg)
1442 {
1443 	struct ccb_dev_match *cdm;
1444 	dev_match_ret retval;
1445 
1446 	cdm = (struct ccb_dev_match *)arg;
1447 
1448 	/*
1449 	 * If our position is for something deeper in the tree, that means
1450 	 * that we've already seen this node.  So, we keep going down.
1451 	 */
1452 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1453 	 && (cdm->pos.cookie.bus == bus)
1454 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1455 	 && (cdm->pos.cookie.target != NULL))
1456 		retval = DM_RET_DESCEND;
1457 	else
1458 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1459 
1460 	/*
1461 	 * If we got an error, bail out of the search.
1462 	 */
1463 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1464 		cdm->status = CAM_DEV_MATCH_ERROR;
1465 		return(0);
1466 	}
1467 
1468 	/*
1469 	 * If the copy flag is set, copy this bus out.
1470 	 */
1471 	if (retval & DM_RET_COPY) {
1472 		int spaceleft, j;
1473 
1474 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1475 			sizeof(struct dev_match_result));
1476 
1477 		/*
1478 		 * If we don't have enough space to put in another
1479 		 * match result, save our position and tell the
1480 		 * user there are more devices to check.
1481 		 */
1482 		if (spaceleft < sizeof(struct dev_match_result)) {
1483 			bzero(&cdm->pos, sizeof(cdm->pos));
1484 			cdm->pos.position_type =
1485 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1486 
1487 			cdm->pos.cookie.bus = bus;
1488 			cdm->pos.generations[CAM_BUS_GENERATION]=
1489 				xsoftc.bus_generation;
1490 			cdm->status = CAM_DEV_MATCH_MORE;
1491 			return(0);
1492 		}
1493 		j = cdm->num_matches;
1494 		cdm->num_matches++;
1495 		cdm->matches[j].type = DEV_MATCH_BUS;
1496 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1497 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1498 		cdm->matches[j].result.bus_result.unit_number =
1499 			bus->sim->unit_number;
1500 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1501 			bus->sim->sim_name, DEV_IDLEN);
1502 	}
1503 
1504 	/*
1505 	 * If the user is only interested in busses, there's no
1506 	 * reason to descend to the next level in the tree.
1507 	 */
1508 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1509 		return(1);
1510 
1511 	/*
1512 	 * If there is a target generation recorded, check it to
1513 	 * make sure the target list hasn't changed.
1514 	 */
1515 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1516 	 && (bus == cdm->pos.cookie.bus)
1517 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1518 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1519 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1520 	     bus->generation)) {
1521 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1522 		return(0);
1523 	}
1524 
1525 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1526 	 && (cdm->pos.cookie.bus == bus)
1527 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1528 	 && (cdm->pos.cookie.target != NULL))
1529 		return(xpttargettraverse(bus,
1530 					(struct cam_et *)cdm->pos.cookie.target,
1531 					 xptedttargetfunc, arg));
1532 	else
1533 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1534 }
1535 
1536 static int
1537 xptedttargetfunc(struct cam_et *target, void *arg)
1538 {
1539 	struct ccb_dev_match *cdm;
1540 
1541 	cdm = (struct ccb_dev_match *)arg;
1542 
1543 	/*
1544 	 * If there is a device list generation recorded, check it to
1545 	 * make sure the device list hasn't changed.
1546 	 */
1547 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1548 	 && (cdm->pos.cookie.bus == target->bus)
1549 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1550 	 && (cdm->pos.cookie.target == target)
1551 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1552 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1553 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1554 	     target->generation)) {
1555 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1556 		return(0);
1557 	}
1558 
1559 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1560 	 && (cdm->pos.cookie.bus == target->bus)
1561 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1562 	 && (cdm->pos.cookie.target == target)
1563 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1564 	 && (cdm->pos.cookie.device != NULL))
1565 		return(xptdevicetraverse(target,
1566 					(struct cam_ed *)cdm->pos.cookie.device,
1567 					 xptedtdevicefunc, arg));
1568 	else
1569 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1570 }
1571 
1572 static int
1573 xptedtdevicefunc(struct cam_ed *device, void *arg)
1574 {
1575 
1576 	struct ccb_dev_match *cdm;
1577 	dev_match_ret retval;
1578 
1579 	cdm = (struct ccb_dev_match *)arg;
1580 
1581 	/*
1582 	 * If our position is for something deeper in the tree, that means
1583 	 * that we've already seen this node.  So, we keep going down.
1584 	 */
1585 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1586 	 && (cdm->pos.cookie.device == device)
1587 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1588 	 && (cdm->pos.cookie.periph != NULL))
1589 		retval = DM_RET_DESCEND;
1590 	else
1591 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1592 					device);
1593 
1594 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1595 		cdm->status = CAM_DEV_MATCH_ERROR;
1596 		return(0);
1597 	}
1598 
1599 	/*
1600 	 * If the copy flag is set, copy this device out.
1601 	 */
1602 	if (retval & DM_RET_COPY) {
1603 		int spaceleft, j;
1604 
1605 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1606 			sizeof(struct dev_match_result));
1607 
1608 		/*
1609 		 * If we don't have enough space to put in another
1610 		 * match result, save our position and tell the
1611 		 * user there are more devices to check.
1612 		 */
1613 		if (spaceleft < sizeof(struct dev_match_result)) {
1614 			bzero(&cdm->pos, sizeof(cdm->pos));
1615 			cdm->pos.position_type =
1616 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1617 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1618 
1619 			cdm->pos.cookie.bus = device->target->bus;
1620 			cdm->pos.generations[CAM_BUS_GENERATION]=
1621 				xsoftc.bus_generation;
1622 			cdm->pos.cookie.target = device->target;
1623 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1624 				device->target->bus->generation;
1625 			cdm->pos.cookie.device = device;
1626 			cdm->pos.generations[CAM_DEV_GENERATION] =
1627 				device->target->generation;
1628 			cdm->status = CAM_DEV_MATCH_MORE;
1629 			return(0);
1630 		}
1631 		j = cdm->num_matches;
1632 		cdm->num_matches++;
1633 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1634 		cdm->matches[j].result.device_result.path_id =
1635 			device->target->bus->path_id;
1636 		cdm->matches[j].result.device_result.target_id =
1637 			device->target->target_id;
1638 		cdm->matches[j].result.device_result.target_lun =
1639 			device->lun_id;
1640 		cdm->matches[j].result.device_result.protocol =
1641 			device->protocol;
1642 		bcopy(&device->inq_data,
1643 		      &cdm->matches[j].result.device_result.inq_data,
1644 		      sizeof(struct scsi_inquiry_data));
1645 		bcopy(&device->ident_data,
1646 		      &cdm->matches[j].result.device_result.ident_data,
1647 		      sizeof(struct ata_params));
1648 
1649 		/* Let the user know whether this device is unconfigured */
1650 		if (device->flags & CAM_DEV_UNCONFIGURED)
1651 			cdm->matches[j].result.device_result.flags =
1652 				DEV_RESULT_UNCONFIGURED;
1653 		else
1654 			cdm->matches[j].result.device_result.flags =
1655 				DEV_RESULT_NOFLAG;
1656 	}
1657 
1658 	/*
1659 	 * If the user isn't interested in peripherals, don't descend
1660 	 * the tree any further.
1661 	 */
1662 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1663 		return(1);
1664 
1665 	/*
1666 	 * If there is a peripheral list generation recorded, make sure
1667 	 * it hasn't changed.
1668 	 */
1669 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1670 	 && (device->target->bus == cdm->pos.cookie.bus)
1671 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1672 	 && (device->target == cdm->pos.cookie.target)
1673 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1674 	 && (device == cdm->pos.cookie.device)
1675 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1676 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1677 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1678 	     device->generation)){
1679 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1680 		return(0);
1681 	}
1682 
1683 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1684 	 && (cdm->pos.cookie.bus == device->target->bus)
1685 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1686 	 && (cdm->pos.cookie.target == device->target)
1687 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1688 	 && (cdm->pos.cookie.device == device)
1689 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1690 	 && (cdm->pos.cookie.periph != NULL))
1691 		return(xptperiphtraverse(device,
1692 				(struct cam_periph *)cdm->pos.cookie.periph,
1693 				xptedtperiphfunc, arg));
1694 	else
1695 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1696 }
1697 
1698 static int
1699 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1700 {
1701 	struct ccb_dev_match *cdm;
1702 	dev_match_ret retval;
1703 
1704 	cdm = (struct ccb_dev_match *)arg;
1705 
1706 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1707 
1708 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1709 		cdm->status = CAM_DEV_MATCH_ERROR;
1710 		return(0);
1711 	}
1712 
1713 	/*
1714 	 * If the copy flag is set, copy this peripheral out.
1715 	 */
1716 	if (retval & DM_RET_COPY) {
1717 		int spaceleft, j;
1718 
1719 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1720 			sizeof(struct dev_match_result));
1721 
1722 		/*
1723 		 * If we don't have enough space to put in another
1724 		 * match result, save our position and tell the
1725 		 * user there are more devices to check.
1726 		 */
1727 		if (spaceleft < sizeof(struct dev_match_result)) {
1728 			bzero(&cdm->pos, sizeof(cdm->pos));
1729 			cdm->pos.position_type =
1730 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1731 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1732 				CAM_DEV_POS_PERIPH;
1733 
1734 			cdm->pos.cookie.bus = periph->path->bus;
1735 			cdm->pos.generations[CAM_BUS_GENERATION]=
1736 				xsoftc.bus_generation;
1737 			cdm->pos.cookie.target = periph->path->target;
1738 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1739 				periph->path->bus->generation;
1740 			cdm->pos.cookie.device = periph->path->device;
1741 			cdm->pos.generations[CAM_DEV_GENERATION] =
1742 				periph->path->target->generation;
1743 			cdm->pos.cookie.periph = periph;
1744 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1745 				periph->path->device->generation;
1746 			cdm->status = CAM_DEV_MATCH_MORE;
1747 			return(0);
1748 		}
1749 
1750 		j = cdm->num_matches;
1751 		cdm->num_matches++;
1752 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1753 		cdm->matches[j].result.periph_result.path_id =
1754 			periph->path->bus->path_id;
1755 		cdm->matches[j].result.periph_result.target_id =
1756 			periph->path->target->target_id;
1757 		cdm->matches[j].result.periph_result.target_lun =
1758 			periph->path->device->lun_id;
1759 		cdm->matches[j].result.periph_result.unit_number =
1760 			periph->unit_number;
1761 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1762 			periph->periph_name, DEV_IDLEN);
1763 	}
1764 
1765 	return(1);
1766 }
1767 
1768 static int
1769 xptedtmatch(struct ccb_dev_match *cdm)
1770 {
1771 	int ret;
1772 
1773 	cdm->num_matches = 0;
1774 
1775 	/*
1776 	 * Check the bus list generation.  If it has changed, the user
1777 	 * needs to reset everything and start over.
1778 	 */
1779 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1780 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1781 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1782 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1783 		return(0);
1784 	}
1785 
1786 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1787 	 && (cdm->pos.cookie.bus != NULL))
1788 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1789 				     xptedtbusfunc, cdm);
1790 	else
1791 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1792 
1793 	/*
1794 	 * If we get back 0, that means that we had to stop before fully
1795 	 * traversing the EDT.  It also means that one of the subroutines
1796 	 * has set the status field to the proper value.  If we get back 1,
1797 	 * we've fully traversed the EDT and copied out any matching entries.
1798 	 */
1799 	if (ret == 1)
1800 		cdm->status = CAM_DEV_MATCH_LAST;
1801 
1802 	return(ret);
1803 }
1804 
1805 static int
1806 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1807 {
1808 	struct ccb_dev_match *cdm;
1809 
1810 	cdm = (struct ccb_dev_match *)arg;
1811 
1812 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1813 	 && (cdm->pos.cookie.pdrv == pdrv)
1814 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1815 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1816 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1817 	     (*pdrv)->generation)) {
1818 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1819 		return(0);
1820 	}
1821 
1822 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1823 	 && (cdm->pos.cookie.pdrv == pdrv)
1824 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1825 	 && (cdm->pos.cookie.periph != NULL))
1826 		return(xptpdperiphtraverse(pdrv,
1827 				(struct cam_periph *)cdm->pos.cookie.periph,
1828 				xptplistperiphfunc, arg));
1829 	else
1830 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1831 }
1832 
1833 static int
1834 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1835 {
1836 	struct ccb_dev_match *cdm;
1837 	dev_match_ret retval;
1838 
1839 	cdm = (struct ccb_dev_match *)arg;
1840 
1841 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1842 
1843 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1844 		cdm->status = CAM_DEV_MATCH_ERROR;
1845 		return(0);
1846 	}
1847 
1848 	/*
1849 	 * If the copy flag is set, copy this peripheral out.
1850 	 */
1851 	if (retval & DM_RET_COPY) {
1852 		int spaceleft, j;
1853 
1854 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1855 			sizeof(struct dev_match_result));
1856 
1857 		/*
1858 		 * If we don't have enough space to put in another
1859 		 * match result, save our position and tell the
1860 		 * user there are more devices to check.
1861 		 */
1862 		if (spaceleft < sizeof(struct dev_match_result)) {
1863 			struct periph_driver **pdrv;
1864 
1865 			pdrv = NULL;
1866 			bzero(&cdm->pos, sizeof(cdm->pos));
1867 			cdm->pos.position_type =
1868 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1869 				CAM_DEV_POS_PERIPH;
1870 
1871 			/*
1872 			 * This may look a bit non-sensical, but it is
1873 			 * actually quite logical.  There are very few
1874 			 * peripheral drivers, and bloating every peripheral
1875 			 * structure with a pointer back to its parent
1876 			 * peripheral driver linker set entry would cost
1877 			 * more in the long run than doing this quick lookup.
1878 			 */
1879 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1880 				if (strcmp((*pdrv)->driver_name,
1881 				    periph->periph_name) == 0)
1882 					break;
1883 			}
1884 
1885 			if (*pdrv == NULL) {
1886 				cdm->status = CAM_DEV_MATCH_ERROR;
1887 				return(0);
1888 			}
1889 
1890 			cdm->pos.cookie.pdrv = pdrv;
1891 			/*
1892 			 * The periph generation slot does double duty, as
1893 			 * does the periph pointer slot.  They are used for
1894 			 * both edt and pdrv lookups and positioning.
1895 			 */
1896 			cdm->pos.cookie.periph = periph;
1897 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1898 				(*pdrv)->generation;
1899 			cdm->status = CAM_DEV_MATCH_MORE;
1900 			return(0);
1901 		}
1902 
1903 		j = cdm->num_matches;
1904 		cdm->num_matches++;
1905 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1906 		cdm->matches[j].result.periph_result.path_id =
1907 			periph->path->bus->path_id;
1908 
1909 		/*
1910 		 * The transport layer peripheral doesn't have a target or
1911 		 * lun.
1912 		 */
1913 		if (periph->path->target)
1914 			cdm->matches[j].result.periph_result.target_id =
1915 				periph->path->target->target_id;
1916 		else
1917 			cdm->matches[j].result.periph_result.target_id = -1;
1918 
1919 		if (periph->path->device)
1920 			cdm->matches[j].result.periph_result.target_lun =
1921 				periph->path->device->lun_id;
1922 		else
1923 			cdm->matches[j].result.periph_result.target_lun = -1;
1924 
1925 		cdm->matches[j].result.periph_result.unit_number =
1926 			periph->unit_number;
1927 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1928 			periph->periph_name, DEV_IDLEN);
1929 	}
1930 
1931 	return(1);
1932 }
1933 
1934 static int
1935 xptperiphlistmatch(struct ccb_dev_match *cdm)
1936 {
1937 	int ret;
1938 
1939 	cdm->num_matches = 0;
1940 
1941 	/*
1942 	 * At this point in the edt traversal function, we check the bus
1943 	 * list generation to make sure that no busses have been added or
1944 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1945 	 * For the peripheral driver list traversal function, however, we
1946 	 * don't have to worry about new peripheral driver types coming or
1947 	 * going; they're in a linker set, and therefore can't change
1948 	 * without a recompile.
1949 	 */
1950 
1951 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1952 	 && (cdm->pos.cookie.pdrv != NULL))
1953 		ret = xptpdrvtraverse(
1954 				(struct periph_driver **)cdm->pos.cookie.pdrv,
1955 				xptplistpdrvfunc, cdm);
1956 	else
1957 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1958 
1959 	/*
1960 	 * If we get back 0, that means that we had to stop before fully
1961 	 * traversing the peripheral driver tree.  It also means that one of
1962 	 * the subroutines has set the status field to the proper value.  If
1963 	 * we get back 1, we've fully traversed the EDT and copied out any
1964 	 * matching entries.
1965 	 */
1966 	if (ret == 1)
1967 		cdm->status = CAM_DEV_MATCH_LAST;
1968 
1969 	return(ret);
1970 }
1971 
1972 static int
1973 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1974 {
1975 	struct cam_eb *bus, *next_bus;
1976 	int retval;
1977 
1978 	retval = 1;
1979 
1980 	mtx_lock(&xsoftc.xpt_topo_lock);
1981 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
1982 	     bus != NULL;
1983 	     bus = next_bus) {
1984 		next_bus = TAILQ_NEXT(bus, links);
1985 
1986 		mtx_unlock(&xsoftc.xpt_topo_lock);
1987 		CAM_SIM_LOCK(bus->sim);
1988 		retval = tr_func(bus, arg);
1989 		CAM_SIM_UNLOCK(bus->sim);
1990 		if (retval == 0)
1991 			return(retval);
1992 		mtx_lock(&xsoftc.xpt_topo_lock);
1993 	}
1994 	mtx_unlock(&xsoftc.xpt_topo_lock);
1995 
1996 	return(retval);
1997 }
1998 
1999 int
2000 xpt_sim_opened(struct cam_sim *sim)
2001 {
2002 	struct cam_eb *bus;
2003 	struct cam_et *target;
2004 	struct cam_ed *device;
2005 	struct cam_periph *periph;
2006 
2007 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2008 	mtx_assert(sim->mtx, MA_OWNED);
2009 
2010 	mtx_lock(&xsoftc.xpt_topo_lock);
2011 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2012 		if (bus->sim != sim)
2013 			continue;
2014 
2015 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2016 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2017 				SLIST_FOREACH(periph, &device->periphs,
2018 				    periph_links) {
2019 					if (periph->refcount > 0) {
2020 						mtx_unlock(&xsoftc.xpt_topo_lock);
2021 						return (1);
2022 					}
2023 				}
2024 			}
2025 		}
2026 	}
2027 
2028 	mtx_unlock(&xsoftc.xpt_topo_lock);
2029 	return (0);
2030 }
2031 
2032 static int
2033 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2034 		  xpt_targetfunc_t *tr_func, void *arg)
2035 {
2036 	struct cam_et *target, *next_target;
2037 	int retval;
2038 
2039 	retval = 1;
2040 	for (target = (start_target ? start_target :
2041 		       TAILQ_FIRST(&bus->et_entries));
2042 	     target != NULL; target = next_target) {
2043 
2044 		next_target = TAILQ_NEXT(target, links);
2045 
2046 		retval = tr_func(target, arg);
2047 
2048 		if (retval == 0)
2049 			return(retval);
2050 	}
2051 
2052 	return(retval);
2053 }
2054 
2055 static int
2056 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2057 		  xpt_devicefunc_t *tr_func, void *arg)
2058 {
2059 	struct cam_ed *device, *next_device;
2060 	int retval;
2061 
2062 	retval = 1;
2063 	for (device = (start_device ? start_device :
2064 		       TAILQ_FIRST(&target->ed_entries));
2065 	     device != NULL;
2066 	     device = next_device) {
2067 
2068 		next_device = TAILQ_NEXT(device, links);
2069 
2070 		retval = tr_func(device, arg);
2071 
2072 		if (retval == 0)
2073 			return(retval);
2074 	}
2075 
2076 	return(retval);
2077 }
2078 
2079 static int
2080 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2081 		  xpt_periphfunc_t *tr_func, void *arg)
2082 {
2083 	struct cam_periph *periph, *next_periph;
2084 	int retval;
2085 
2086 	retval = 1;
2087 
2088 	for (periph = (start_periph ? start_periph :
2089 		       SLIST_FIRST(&device->periphs));
2090 	     periph != NULL;
2091 	     periph = next_periph) {
2092 
2093 		next_periph = SLIST_NEXT(periph, periph_links);
2094 
2095 		retval = tr_func(periph, arg);
2096 		if (retval == 0)
2097 			return(retval);
2098 	}
2099 
2100 	return(retval);
2101 }
2102 
2103 static int
2104 xptpdrvtraverse(struct periph_driver **start_pdrv,
2105 		xpt_pdrvfunc_t *tr_func, void *arg)
2106 {
2107 	struct periph_driver **pdrv;
2108 	int retval;
2109 
2110 	retval = 1;
2111 
2112 	/*
2113 	 * We don't traverse the peripheral driver list like we do the
2114 	 * other lists, because it is a linker set, and therefore cannot be
2115 	 * changed during runtime.  If the peripheral driver list is ever
2116 	 * re-done to be something other than a linker set (i.e. it can
2117 	 * change while the system is running), the list traversal should
2118 	 * be modified to work like the other traversal functions.
2119 	 */
2120 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2121 	     *pdrv != NULL; pdrv++) {
2122 		retval = tr_func(pdrv, arg);
2123 
2124 		if (retval == 0)
2125 			return(retval);
2126 	}
2127 
2128 	return(retval);
2129 }
2130 
2131 static int
2132 xptpdperiphtraverse(struct periph_driver **pdrv,
2133 		    struct cam_periph *start_periph,
2134 		    xpt_periphfunc_t *tr_func, void *arg)
2135 {
2136 	struct cam_periph *periph, *next_periph;
2137 	int retval;
2138 
2139 	retval = 1;
2140 
2141 	for (periph = (start_periph ? start_periph :
2142 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2143 	     periph = next_periph) {
2144 
2145 		next_periph = TAILQ_NEXT(periph, unit_links);
2146 
2147 		retval = tr_func(periph, arg);
2148 		if (retval == 0)
2149 			return(retval);
2150 	}
2151 	return(retval);
2152 }
2153 
2154 static int
2155 xptdefbusfunc(struct cam_eb *bus, void *arg)
2156 {
2157 	struct xpt_traverse_config *tr_config;
2158 
2159 	tr_config = (struct xpt_traverse_config *)arg;
2160 
2161 	if (tr_config->depth == XPT_DEPTH_BUS) {
2162 		xpt_busfunc_t *tr_func;
2163 
2164 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2165 
2166 		return(tr_func(bus, tr_config->tr_arg));
2167 	} else
2168 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2169 }
2170 
2171 static int
2172 xptdeftargetfunc(struct cam_et *target, void *arg)
2173 {
2174 	struct xpt_traverse_config *tr_config;
2175 
2176 	tr_config = (struct xpt_traverse_config *)arg;
2177 
2178 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2179 		xpt_targetfunc_t *tr_func;
2180 
2181 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2182 
2183 		return(tr_func(target, tr_config->tr_arg));
2184 	} else
2185 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2186 }
2187 
2188 static int
2189 xptdefdevicefunc(struct cam_ed *device, void *arg)
2190 {
2191 	struct xpt_traverse_config *tr_config;
2192 
2193 	tr_config = (struct xpt_traverse_config *)arg;
2194 
2195 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2196 		xpt_devicefunc_t *tr_func;
2197 
2198 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2199 
2200 		return(tr_func(device, tr_config->tr_arg));
2201 	} else
2202 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2203 }
2204 
2205 static int
2206 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2207 {
2208 	struct xpt_traverse_config *tr_config;
2209 	xpt_periphfunc_t *tr_func;
2210 
2211 	tr_config = (struct xpt_traverse_config *)arg;
2212 
2213 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2214 
2215 	/*
2216 	 * Unlike the other default functions, we don't check for depth
2217 	 * here.  The peripheral driver level is the last level in the EDT,
2218 	 * so if we're here, we should execute the function in question.
2219 	 */
2220 	return(tr_func(periph, tr_config->tr_arg));
2221 }
2222 
2223 /*
2224  * Execute the given function for every bus in the EDT.
2225  */
2226 static int
2227 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2228 {
2229 	struct xpt_traverse_config tr_config;
2230 
2231 	tr_config.depth = XPT_DEPTH_BUS;
2232 	tr_config.tr_func = tr_func;
2233 	tr_config.tr_arg = arg;
2234 
2235 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2236 }
2237 
2238 /*
2239  * Execute the given function for every device in the EDT.
2240  */
2241 static int
2242 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2243 {
2244 	struct xpt_traverse_config tr_config;
2245 
2246 	tr_config.depth = XPT_DEPTH_DEVICE;
2247 	tr_config.tr_func = tr_func;
2248 	tr_config.tr_arg = arg;
2249 
2250 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2251 }
2252 
2253 static int
2254 xptsetasyncfunc(struct cam_ed *device, void *arg)
2255 {
2256 	struct cam_path path;
2257 	struct ccb_getdev cgd;
2258 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2259 
2260 	/*
2261 	 * Don't report unconfigured devices (Wildcard devs,
2262 	 * devices only for target mode, device instances
2263 	 * that have been invalidated but are waiting for
2264 	 * their last reference count to be released).
2265 	 */
2266 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2267 		return (1);
2268 
2269 	xpt_compile_path(&path,
2270 			 NULL,
2271 			 device->target->bus->path_id,
2272 			 device->target->target_id,
2273 			 device->lun_id);
2274 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2275 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2276 	xpt_action((union ccb *)&cgd);
2277 	csa->callback(csa->callback_arg,
2278 			    AC_FOUND_DEVICE,
2279 			    &path, &cgd);
2280 	xpt_release_path(&path);
2281 
2282 	return(1);
2283 }
2284 
2285 static int
2286 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2287 {
2288 	struct cam_path path;
2289 	struct ccb_pathinq cpi;
2290 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2291 
2292 	xpt_compile_path(&path, /*periph*/NULL,
2293 			 bus->sim->path_id,
2294 			 CAM_TARGET_WILDCARD,
2295 			 CAM_LUN_WILDCARD);
2296 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2297 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2298 	xpt_action((union ccb *)&cpi);
2299 	csa->callback(csa->callback_arg,
2300 			    AC_PATH_REGISTERED,
2301 			    &path, &cpi);
2302 	xpt_release_path(&path);
2303 
2304 	return(1);
2305 }
2306 
2307 void
2308 xpt_action(union ccb *start_ccb)
2309 {
2310 
2311 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2312 
2313 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2314 	/* Compatibility for RL-unaware code. */
2315 	if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2316 	    start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2317 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2318 }
2319 
2320 void
2321 xpt_action_default(union ccb *start_ccb)
2322 {
2323 
2324 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2325 
2326 
2327 	switch (start_ccb->ccb_h.func_code) {
2328 	case XPT_SCSI_IO:
2329 	{
2330 		struct cam_ed *device;
2331 #ifdef CAMDEBUG
2332 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2333 		struct cam_path *path;
2334 
2335 		path = start_ccb->ccb_h.path;
2336 #endif
2337 
2338 		/*
2339 		 * For the sake of compatibility with SCSI-1
2340 		 * devices that may not understand the identify
2341 		 * message, we include lun information in the
2342 		 * second byte of all commands.  SCSI-1 specifies
2343 		 * that luns are a 3 bit value and reserves only 3
2344 		 * bits for lun information in the CDB.  Later
2345 		 * revisions of the SCSI spec allow for more than 8
2346 		 * luns, but have deprecated lun information in the
2347 		 * CDB.  So, if the lun won't fit, we must omit.
2348 		 *
2349 		 * Also be aware that during initial probing for devices,
2350 		 * the inquiry information is unknown but initialized to 0.
2351 		 * This means that this code will be exercised while probing
2352 		 * devices with an ANSI revision greater than 2.
2353 		 */
2354 		device = start_ccb->ccb_h.path->device;
2355 		if (device->protocol_version <= SCSI_REV_2
2356 		 && start_ccb->ccb_h.target_lun < 8
2357 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2358 
2359 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2360 			    start_ccb->ccb_h.target_lun << 5;
2361 		}
2362 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2363 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2364 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2365 			  	       &path->device->inq_data),
2366 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2367 					  cdb_str, sizeof(cdb_str))));
2368 	}
2369 	/* FALLTHROUGH */
2370 	case XPT_TARGET_IO:
2371 	case XPT_CONT_TARGET_IO:
2372 		start_ccb->csio.sense_resid = 0;
2373 		start_ccb->csio.resid = 0;
2374 		/* FALLTHROUGH */
2375 	case XPT_ATA_IO:
2376 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2377 			start_ccb->ataio.resid = 0;
2378 		}
2379 		/* FALLTHROUGH */
2380 	case XPT_RESET_DEV:
2381 	case XPT_ENG_EXEC:
2382 	{
2383 		struct cam_path *path = start_ccb->ccb_h.path;
2384 		int frozen;
2385 
2386 		frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2387 		path->device->sim->devq->alloc_openings += frozen;
2388 		if (frozen > 0)
2389 			xpt_run_dev_allocq(path->bus);
2390 		if (xpt_schedule_dev_sendq(path->bus, path->device))
2391 			xpt_run_dev_sendq(path->bus);
2392 		break;
2393 	}
2394 	case XPT_CALC_GEOMETRY:
2395 	{
2396 		struct cam_sim *sim;
2397 
2398 		/* Filter out garbage */
2399 		if (start_ccb->ccg.block_size == 0
2400 		 || start_ccb->ccg.volume_size == 0) {
2401 			start_ccb->ccg.cylinders = 0;
2402 			start_ccb->ccg.heads = 0;
2403 			start_ccb->ccg.secs_per_track = 0;
2404 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2405 			break;
2406 		}
2407 #ifdef PC98
2408 		/*
2409 		 * In a PC-98 system, geometry translation depens on
2410 		 * the "real" device geometry obtained from mode page 4.
2411 		 * SCSI geometry translation is performed in the
2412 		 * initialization routine of the SCSI BIOS and the result
2413 		 * stored in host memory.  If the translation is available
2414 		 * in host memory, use it.  If not, rely on the default
2415 		 * translation the device driver performs.
2416 		 */
2417 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2418 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2419 			break;
2420 		}
2421 #endif
2422 		sim = start_ccb->ccb_h.path->bus->sim;
2423 		(*(sim->sim_action))(sim, start_ccb);
2424 		break;
2425 	}
2426 	case XPT_ABORT:
2427 	{
2428 		union ccb* abort_ccb;
2429 
2430 		abort_ccb = start_ccb->cab.abort_ccb;
2431 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2432 
2433 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2434 				struct cam_ccbq *ccbq;
2435 				struct cam_ed *device;
2436 
2437 				device = abort_ccb->ccb_h.path->device;
2438 				ccbq = &device->ccbq;
2439 				device->sim->devq->alloc_openings -=
2440 				    cam_ccbq_remove_ccb(ccbq, abort_ccb);
2441 				abort_ccb->ccb_h.status =
2442 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2443 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2444 				xpt_done(abort_ccb);
2445 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2446 				break;
2447 			}
2448 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2449 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2450 				/*
2451 				 * We've caught this ccb en route to
2452 				 * the SIM.  Flag it for abort and the
2453 				 * SIM will do so just before starting
2454 				 * real work on the CCB.
2455 				 */
2456 				abort_ccb->ccb_h.status =
2457 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2458 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2459 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2460 				break;
2461 			}
2462 		}
2463 		if (XPT_FC_IS_QUEUED(abort_ccb)
2464 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2465 			/*
2466 			 * It's already completed but waiting
2467 			 * for our SWI to get to it.
2468 			 */
2469 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2470 			break;
2471 		}
2472 		/*
2473 		 * If we weren't able to take care of the abort request
2474 		 * in the XPT, pass the request down to the SIM for processing.
2475 		 */
2476 	}
2477 	/* FALLTHROUGH */
2478 	case XPT_ACCEPT_TARGET_IO:
2479 	case XPT_EN_LUN:
2480 	case XPT_IMMED_NOTIFY:
2481 	case XPT_NOTIFY_ACK:
2482 	case XPT_RESET_BUS:
2483 	case XPT_IMMEDIATE_NOTIFY:
2484 	case XPT_NOTIFY_ACKNOWLEDGE:
2485 	case XPT_GET_SIM_KNOB:
2486 	case XPT_SET_SIM_KNOB:
2487 	{
2488 		struct cam_sim *sim;
2489 
2490 		sim = start_ccb->ccb_h.path->bus->sim;
2491 		(*(sim->sim_action))(sim, start_ccb);
2492 		break;
2493 	}
2494 	case XPT_PATH_INQ:
2495 	{
2496 		struct cam_sim *sim;
2497 
2498 		sim = start_ccb->ccb_h.path->bus->sim;
2499 		(*(sim->sim_action))(sim, start_ccb);
2500 		break;
2501 	}
2502 	case XPT_PATH_STATS:
2503 		start_ccb->cpis.last_reset =
2504 			start_ccb->ccb_h.path->bus->last_reset;
2505 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2506 		break;
2507 	case XPT_GDEV_TYPE:
2508 	{
2509 		struct cam_ed *dev;
2510 
2511 		dev = start_ccb->ccb_h.path->device;
2512 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2513 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2514 		} else {
2515 			struct ccb_getdev *cgd;
2516 			struct cam_eb *bus;
2517 			struct cam_et *tar;
2518 
2519 			cgd = &start_ccb->cgd;
2520 			bus = cgd->ccb_h.path->bus;
2521 			tar = cgd->ccb_h.path->target;
2522 			cgd->protocol = dev->protocol;
2523 			cgd->inq_data = dev->inq_data;
2524 			cgd->ident_data = dev->ident_data;
2525 			cgd->inq_flags = dev->inq_flags;
2526 			cgd->ccb_h.status = CAM_REQ_CMP;
2527 			cgd->serial_num_len = dev->serial_num_len;
2528 			if ((dev->serial_num_len > 0)
2529 			 && (dev->serial_num != NULL))
2530 				bcopy(dev->serial_num, cgd->serial_num,
2531 				      dev->serial_num_len);
2532 		}
2533 		break;
2534 	}
2535 	case XPT_GDEV_STATS:
2536 	{
2537 		struct cam_ed *dev;
2538 
2539 		dev = start_ccb->ccb_h.path->device;
2540 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2541 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2542 		} else {
2543 			struct ccb_getdevstats *cgds;
2544 			struct cam_eb *bus;
2545 			struct cam_et *tar;
2546 
2547 			cgds = &start_ccb->cgds;
2548 			bus = cgds->ccb_h.path->bus;
2549 			tar = cgds->ccb_h.path->target;
2550 			cgds->dev_openings = dev->ccbq.dev_openings;
2551 			cgds->dev_active = dev->ccbq.dev_active;
2552 			cgds->devq_openings = dev->ccbq.devq_openings;
2553 			cgds->devq_queued = dev->ccbq.queue.entries;
2554 			cgds->held = dev->ccbq.held;
2555 			cgds->last_reset = tar->last_reset;
2556 			cgds->maxtags = dev->maxtags;
2557 			cgds->mintags = dev->mintags;
2558 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2559 				cgds->last_reset = bus->last_reset;
2560 			cgds->ccb_h.status = CAM_REQ_CMP;
2561 		}
2562 		break;
2563 	}
2564 	case XPT_GDEVLIST:
2565 	{
2566 		struct cam_periph	*nperiph;
2567 		struct periph_list	*periph_head;
2568 		struct ccb_getdevlist	*cgdl;
2569 		u_int			i;
2570 		struct cam_ed		*device;
2571 		int			found;
2572 
2573 
2574 		found = 0;
2575 
2576 		/*
2577 		 * Don't want anyone mucking with our data.
2578 		 */
2579 		device = start_ccb->ccb_h.path->device;
2580 		periph_head = &device->periphs;
2581 		cgdl = &start_ccb->cgdl;
2582 
2583 		/*
2584 		 * Check and see if the list has changed since the user
2585 		 * last requested a list member.  If so, tell them that the
2586 		 * list has changed, and therefore they need to start over
2587 		 * from the beginning.
2588 		 */
2589 		if ((cgdl->index != 0) &&
2590 		    (cgdl->generation != device->generation)) {
2591 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2592 			break;
2593 		}
2594 
2595 		/*
2596 		 * Traverse the list of peripherals and attempt to find
2597 		 * the requested peripheral.
2598 		 */
2599 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2600 		     (nperiph != NULL) && (i <= cgdl->index);
2601 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2602 			if (i == cgdl->index) {
2603 				strncpy(cgdl->periph_name,
2604 					nperiph->periph_name,
2605 					DEV_IDLEN);
2606 				cgdl->unit_number = nperiph->unit_number;
2607 				found = 1;
2608 			}
2609 		}
2610 		if (found == 0) {
2611 			cgdl->status = CAM_GDEVLIST_ERROR;
2612 			break;
2613 		}
2614 
2615 		if (nperiph == NULL)
2616 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2617 		else
2618 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2619 
2620 		cgdl->index++;
2621 		cgdl->generation = device->generation;
2622 
2623 		cgdl->ccb_h.status = CAM_REQ_CMP;
2624 		break;
2625 	}
2626 	case XPT_DEV_MATCH:
2627 	{
2628 		dev_pos_type position_type;
2629 		struct ccb_dev_match *cdm;
2630 
2631 		cdm = &start_ccb->cdm;
2632 
2633 		/*
2634 		 * There are two ways of getting at information in the EDT.
2635 		 * The first way is via the primary EDT tree.  It starts
2636 		 * with a list of busses, then a list of targets on a bus,
2637 		 * then devices/luns on a target, and then peripherals on a
2638 		 * device/lun.  The "other" way is by the peripheral driver
2639 		 * lists.  The peripheral driver lists are organized by
2640 		 * peripheral driver.  (obviously)  So it makes sense to
2641 		 * use the peripheral driver list if the user is looking
2642 		 * for something like "da1", or all "da" devices.  If the
2643 		 * user is looking for something on a particular bus/target
2644 		 * or lun, it's generally better to go through the EDT tree.
2645 		 */
2646 
2647 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2648 			position_type = cdm->pos.position_type;
2649 		else {
2650 			u_int i;
2651 
2652 			position_type = CAM_DEV_POS_NONE;
2653 
2654 			for (i = 0; i < cdm->num_patterns; i++) {
2655 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2656 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2657 					position_type = CAM_DEV_POS_EDT;
2658 					break;
2659 				}
2660 			}
2661 
2662 			if (cdm->num_patterns == 0)
2663 				position_type = CAM_DEV_POS_EDT;
2664 			else if (position_type == CAM_DEV_POS_NONE)
2665 				position_type = CAM_DEV_POS_PDRV;
2666 		}
2667 
2668 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2669 		case CAM_DEV_POS_EDT:
2670 			xptedtmatch(cdm);
2671 			break;
2672 		case CAM_DEV_POS_PDRV:
2673 			xptperiphlistmatch(cdm);
2674 			break;
2675 		default:
2676 			cdm->status = CAM_DEV_MATCH_ERROR;
2677 			break;
2678 		}
2679 
2680 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2681 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2682 		else
2683 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2684 
2685 		break;
2686 	}
2687 	case XPT_SASYNC_CB:
2688 	{
2689 		struct ccb_setasync *csa;
2690 		struct async_node *cur_entry;
2691 		struct async_list *async_head;
2692 		u_int32_t added;
2693 
2694 		csa = &start_ccb->csa;
2695 		added = csa->event_enable;
2696 		async_head = &csa->ccb_h.path->device->asyncs;
2697 
2698 		/*
2699 		 * If there is already an entry for us, simply
2700 		 * update it.
2701 		 */
2702 		cur_entry = SLIST_FIRST(async_head);
2703 		while (cur_entry != NULL) {
2704 			if ((cur_entry->callback_arg == csa->callback_arg)
2705 			 && (cur_entry->callback == csa->callback))
2706 				break;
2707 			cur_entry = SLIST_NEXT(cur_entry, links);
2708 		}
2709 
2710 		if (cur_entry != NULL) {
2711 		 	/*
2712 			 * If the request has no flags set,
2713 			 * remove the entry.
2714 			 */
2715 			added &= ~cur_entry->event_enable;
2716 			if (csa->event_enable == 0) {
2717 				SLIST_REMOVE(async_head, cur_entry,
2718 					     async_node, links);
2719 				xpt_release_device(csa->ccb_h.path->device);
2720 				free(cur_entry, M_CAMXPT);
2721 			} else {
2722 				cur_entry->event_enable = csa->event_enable;
2723 			}
2724 			csa->event_enable = added;
2725 		} else {
2726 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2727 					   M_NOWAIT);
2728 			if (cur_entry == NULL) {
2729 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2730 				break;
2731 			}
2732 			cur_entry->event_enable = csa->event_enable;
2733 			cur_entry->callback_arg = csa->callback_arg;
2734 			cur_entry->callback = csa->callback;
2735 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2736 			xpt_acquire_device(csa->ccb_h.path->device);
2737 		}
2738 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2739 		break;
2740 	}
2741 	case XPT_REL_SIMQ:
2742 	{
2743 		struct ccb_relsim *crs;
2744 		struct cam_ed *dev;
2745 
2746 		crs = &start_ccb->crs;
2747 		dev = crs->ccb_h.path->device;
2748 		if (dev == NULL) {
2749 
2750 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2751 			break;
2752 		}
2753 
2754 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2755 
2756  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2757 				/* Don't ever go below one opening */
2758 				if (crs->openings > 0) {
2759 					xpt_dev_ccbq_resize(crs->ccb_h.path,
2760 							    crs->openings);
2761 
2762 					if (bootverbose) {
2763 						xpt_print(crs->ccb_h.path,
2764 						    "tagged openings now %d\n",
2765 						    crs->openings);
2766 					}
2767 				}
2768 			}
2769 		}
2770 
2771 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2772 
2773 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2774 
2775 				/*
2776 				 * Just extend the old timeout and decrement
2777 				 * the freeze count so that a single timeout
2778 				 * is sufficient for releasing the queue.
2779 				 */
2780 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2781 				callout_stop(&dev->callout);
2782 			} else {
2783 
2784 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2785 			}
2786 
2787 			callout_reset(&dev->callout,
2788 			    (crs->release_timeout * hz) / 1000,
2789 			    xpt_release_devq_timeout, dev);
2790 
2791 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2792 
2793 		}
2794 
2795 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2796 
2797 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2798 				/*
2799 				 * Decrement the freeze count so that a single
2800 				 * completion is still sufficient to unfreeze
2801 				 * the queue.
2802 				 */
2803 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2804 			} else {
2805 
2806 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2807 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2808 			}
2809 		}
2810 
2811 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2812 
2813 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2814 			 || (dev->ccbq.dev_active == 0)) {
2815 
2816 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2817 			} else {
2818 
2819 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2820 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2821 			}
2822 		}
2823 
2824 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2825 			xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/
2826 			    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2827 				crs->release_timeout : 0,
2828 			    /*count*/1, /*run_queue*/TRUE);
2829 		}
2830 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2831 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2832 		break;
2833 	}
2834 	case XPT_DEBUG: {
2835 #ifdef CAMDEBUG
2836 #ifdef CAM_DEBUG_DELAY
2837 		cam_debug_delay = CAM_DEBUG_DELAY;
2838 #endif
2839 		cam_dflags = start_ccb->cdbg.flags;
2840 		if (cam_dpath != NULL) {
2841 			xpt_free_path(cam_dpath);
2842 			cam_dpath = NULL;
2843 		}
2844 
2845 		if (cam_dflags != CAM_DEBUG_NONE) {
2846 			if (xpt_create_path(&cam_dpath, xpt_periph,
2847 					    start_ccb->ccb_h.path_id,
2848 					    start_ccb->ccb_h.target_id,
2849 					    start_ccb->ccb_h.target_lun) !=
2850 					    CAM_REQ_CMP) {
2851 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2852 				cam_dflags = CAM_DEBUG_NONE;
2853 			} else {
2854 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2855 				xpt_print(cam_dpath, "debugging flags now %x\n",
2856 				    cam_dflags);
2857 			}
2858 		} else {
2859 			cam_dpath = NULL;
2860 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2861 		}
2862 #else /* !CAMDEBUG */
2863 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2864 #endif /* CAMDEBUG */
2865 		break;
2866 	}
2867 	case XPT_FREEZE_QUEUE:
2868 	{
2869 		struct ccb_relsim *crs = &start_ccb->crs;
2870 
2871 		xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/
2872 		    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2873 		    crs->release_timeout : 0, /*count*/1);
2874 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2875 		break;
2876 	}
2877 	case XPT_NOOP:
2878 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2879 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
2880 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2881 		break;
2882 	default:
2883 	case XPT_SDEV_TYPE:
2884 	case XPT_TERM_IO:
2885 	case XPT_ENG_INQ:
2886 		/* XXX Implement */
2887 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2888 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2889 			xpt_done(start_ccb);
2890 		}
2891 		break;
2892 	}
2893 }
2894 
2895 void
2896 xpt_polled_action(union ccb *start_ccb)
2897 {
2898 	u_int32_t timeout;
2899 	struct	  cam_sim *sim;
2900 	struct	  cam_devq *devq;
2901 	struct	  cam_ed *dev;
2902 
2903 
2904 	timeout = start_ccb->ccb_h.timeout;
2905 	sim = start_ccb->ccb_h.path->bus->sim;
2906 	devq = sim->devq;
2907 	dev = start_ccb->ccb_h.path->device;
2908 
2909 	mtx_assert(sim->mtx, MA_OWNED);
2910 
2911 	/*
2912 	 * Steal an opening so that no other queued requests
2913 	 * can get it before us while we simulate interrupts.
2914 	 */
2915 	dev->ccbq.devq_openings--;
2916 	dev->ccbq.dev_openings--;
2917 
2918 	while(((devq != NULL && devq->send_openings <= 0) ||
2919 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2920 		DELAY(1000);
2921 		(*(sim->sim_poll))(sim);
2922 		camisr_runqueue(&sim->sim_doneq);
2923 	}
2924 
2925 	dev->ccbq.devq_openings++;
2926 	dev->ccbq.dev_openings++;
2927 
2928 	if (timeout != 0) {
2929 		xpt_action(start_ccb);
2930 		while(--timeout > 0) {
2931 			(*(sim->sim_poll))(sim);
2932 			camisr_runqueue(&sim->sim_doneq);
2933 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
2934 			    != CAM_REQ_INPROG)
2935 				break;
2936 			DELAY(1000);
2937 		}
2938 		if (timeout == 0) {
2939 			/*
2940 			 * XXX Is it worth adding a sim_timeout entry
2941 			 * point so we can attempt recovery?  If
2942 			 * this is only used for dumps, I don't think
2943 			 * it is.
2944 			 */
2945 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2946 		}
2947 	} else {
2948 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2949 	}
2950 }
2951 
2952 /*
2953  * Schedule a peripheral driver to receive a ccb when it's
2954  * target device has space for more transactions.
2955  */
2956 void
2957 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
2958 {
2959 	struct cam_ed *device;
2960 	int runq = 0;
2961 
2962 	mtx_assert(perph->sim->mtx, MA_OWNED);
2963 
2964 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
2965 	device = perph->path->device;
2966 	if (periph_is_queued(perph)) {
2967 		/* Simply reorder based on new priority */
2968 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2969 			  ("   change priority to %d\n", new_priority));
2970 		if (new_priority < perph->pinfo.priority) {
2971 			camq_change_priority(&device->drvq,
2972 					     perph->pinfo.index,
2973 					     new_priority);
2974 			runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2975 		}
2976 	} else {
2977 		/* New entry on the queue */
2978 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2979 			  ("   added periph to queue\n"));
2980 		perph->pinfo.priority = new_priority;
2981 		perph->pinfo.generation = ++device->drvq.generation;
2982 		camq_insert(&device->drvq, &perph->pinfo);
2983 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2984 	}
2985 	if (runq != 0) {
2986 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2987 			  ("   calling xpt_run_devq\n"));
2988 		xpt_run_dev_allocq(perph->path->bus);
2989 	}
2990 }
2991 
2992 
2993 /*
2994  * Schedule a device to run on a given queue.
2995  * If the device was inserted as a new entry on the queue,
2996  * return 1 meaning the device queue should be run. If we
2997  * were already queued, implying someone else has already
2998  * started the queue, return 0 so the caller doesn't attempt
2999  * to run the queue.
3000  */
3001 int
3002 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3003 		 u_int32_t new_priority)
3004 {
3005 	int retval;
3006 	u_int32_t old_priority;
3007 
3008 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3009 
3010 	old_priority = pinfo->priority;
3011 
3012 	/*
3013 	 * Are we already queued?
3014 	 */
3015 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3016 		/* Simply reorder based on new priority */
3017 		if (new_priority < old_priority) {
3018 			camq_change_priority(queue, pinfo->index,
3019 					     new_priority);
3020 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3021 					("changed priority to %d\n",
3022 					 new_priority));
3023 			retval = 1;
3024 		} else
3025 			retval = 0;
3026 	} else {
3027 		/* New entry on the queue */
3028 		if (new_priority < old_priority)
3029 			pinfo->priority = new_priority;
3030 
3031 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3032 				("Inserting onto queue\n"));
3033 		pinfo->generation = ++queue->generation;
3034 		camq_insert(queue, pinfo);
3035 		retval = 1;
3036 	}
3037 	return (retval);
3038 }
3039 
3040 static void
3041 xpt_run_dev_allocq(struct cam_eb *bus)
3042 {
3043 	struct	cam_devq *devq;
3044 
3045 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3046 	devq = bus->sim->devq;
3047 
3048 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3049 			("   qfrozen_cnt == 0x%x, entries == %d, "
3050 			 "openings == %d, active == %d\n",
3051 			 devq->alloc_queue.qfrozen_cnt[0],
3052 			 devq->alloc_queue.entries,
3053 			 devq->alloc_openings,
3054 			 devq->alloc_active));
3055 
3056 	devq->alloc_queue.qfrozen_cnt[0]++;
3057 	while ((devq->alloc_queue.entries > 0)
3058 	    && (devq->alloc_openings > 0)
3059 	    && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3060 		struct	cam_ed_qinfo *qinfo;
3061 		struct	cam_ed *device;
3062 		union	ccb *work_ccb;
3063 		struct	cam_periph *drv;
3064 		struct	camq *drvq;
3065 
3066 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3067 							   CAMQ_HEAD);
3068 		device = qinfo->device;
3069 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3070 				("running device %p\n", device));
3071 
3072 		drvq = &device->drvq;
3073 
3074 #ifdef CAMDEBUG
3075 		if (drvq->entries <= 0) {
3076 			panic("xpt_run_dev_allocq: "
3077 			      "Device on queue without any work to do");
3078 		}
3079 #endif
3080 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3081 			devq->alloc_openings--;
3082 			devq->alloc_active++;
3083 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3084 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3085 				      drv->pinfo.priority);
3086 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3087 					("calling periph start\n"));
3088 			drv->periph_start(drv, work_ccb);
3089 		} else {
3090 			/*
3091 			 * Malloc failure in alloc_ccb
3092 			 */
3093 			/*
3094 			 * XXX add us to a list to be run from free_ccb
3095 			 * if we don't have any ccbs active on this
3096 			 * device queue otherwise we may never get run
3097 			 * again.
3098 			 */
3099 			break;
3100 		}
3101 
3102 		/* We may have more work. Attempt to reschedule. */
3103 		xpt_schedule_dev_allocq(bus, device);
3104 	}
3105 	devq->alloc_queue.qfrozen_cnt[0]--;
3106 }
3107 
3108 static void
3109 xpt_run_dev_sendq(struct cam_eb *bus)
3110 {
3111 	struct	cam_devq *devq;
3112 
3113 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3114 
3115 	devq = bus->sim->devq;
3116 
3117 	devq->send_queue.qfrozen_cnt[0]++;
3118 	while ((devq->send_queue.entries > 0)
3119 	    && (devq->send_openings > 0)
3120 	    && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3121 		struct	cam_ed_qinfo *qinfo;
3122 		struct	cam_ed *device;
3123 		union ccb *work_ccb;
3124 		struct	cam_sim *sim;
3125 
3126 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3127 							   CAMQ_HEAD);
3128 		device = qinfo->device;
3129 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3130 				("running device %p\n", device));
3131 
3132 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3133 		if (work_ccb == NULL) {
3134 			printf("device on run queue with no ccbs???\n");
3135 			continue;
3136 		}
3137 
3138 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3139 
3140 			mtx_lock(&xsoftc.xpt_lock);
3141 		 	if (xsoftc.num_highpower <= 0) {
3142 				/*
3143 				 * We got a high power command, but we
3144 				 * don't have any available slots.  Freeze
3145 				 * the device queue until we have a slot
3146 				 * available.
3147 				 */
3148 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3149 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3150 						   &work_ccb->ccb_h,
3151 						   xpt_links.stqe);
3152 
3153 				mtx_unlock(&xsoftc.xpt_lock);
3154 				continue;
3155 			} else {
3156 				/*
3157 				 * Consume a high power slot while
3158 				 * this ccb runs.
3159 				 */
3160 				xsoftc.num_highpower--;
3161 			}
3162 			mtx_unlock(&xsoftc.xpt_lock);
3163 		}
3164 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3165 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3166 
3167 		devq->send_openings--;
3168 		devq->send_active++;
3169 
3170 		xpt_schedule_dev_sendq(bus, device);
3171 
3172 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3173 			/*
3174 			 * The client wants to freeze the queue
3175 			 * after this CCB is sent.
3176 			 */
3177 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3178 		}
3179 
3180 		/* In Target mode, the peripheral driver knows best... */
3181 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3182 			if ((device->inq_flags & SID_CmdQue) != 0
3183 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3184 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3185 			else
3186 				/*
3187 				 * Clear this in case of a retried CCB that
3188 				 * failed due to a rejected tag.
3189 				 */
3190 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3191 		}
3192 
3193 		/*
3194 		 * Device queues can be shared among multiple sim instances
3195 		 * that reside on different busses.  Use the SIM in the queue
3196 		 * CCB's path, rather than the one in the bus that was passed
3197 		 * into this function.
3198 		 */
3199 		sim = work_ccb->ccb_h.path->bus->sim;
3200 		(*(sim->sim_action))(sim, work_ccb);
3201 	}
3202 	devq->send_queue.qfrozen_cnt[0]--;
3203 }
3204 
3205 /*
3206  * This function merges stuff from the slave ccb into the master ccb, while
3207  * keeping important fields in the master ccb constant.
3208  */
3209 void
3210 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3211 {
3212 
3213 	/*
3214 	 * Pull fields that are valid for peripheral drivers to set
3215 	 * into the master CCB along with the CCB "payload".
3216 	 */
3217 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3218 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3219 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3220 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3221 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3222 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3223 }
3224 
3225 void
3226 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3227 {
3228 
3229 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3230 	ccb_h->pinfo.priority = priority;
3231 	ccb_h->path = path;
3232 	ccb_h->path_id = path->bus->path_id;
3233 	if (path->target)
3234 		ccb_h->target_id = path->target->target_id;
3235 	else
3236 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3237 	if (path->device) {
3238 		ccb_h->target_lun = path->device->lun_id;
3239 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3240 	} else {
3241 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3242 	}
3243 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3244 	ccb_h->flags = 0;
3245 }
3246 
3247 /* Path manipulation functions */
3248 cam_status
3249 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3250 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3251 {
3252 	struct	   cam_path *path;
3253 	cam_status status;
3254 
3255 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3256 
3257 	if (path == NULL) {
3258 		status = CAM_RESRC_UNAVAIL;
3259 		return(status);
3260 	}
3261 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3262 	if (status != CAM_REQ_CMP) {
3263 		free(path, M_CAMXPT);
3264 		path = NULL;
3265 	}
3266 	*new_path_ptr = path;
3267 	return (status);
3268 }
3269 
3270 cam_status
3271 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3272 			 struct cam_periph *periph, path_id_t path_id,
3273 			 target_id_t target_id, lun_id_t lun_id)
3274 {
3275 	struct	   cam_path *path;
3276 	struct	   cam_eb *bus = NULL;
3277 	cam_status status;
3278 	int	   need_unlock = 0;
3279 
3280 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3281 
3282 	if (path_id != CAM_BUS_WILDCARD) {
3283 		bus = xpt_find_bus(path_id);
3284 		if (bus != NULL) {
3285 			need_unlock = 1;
3286 			CAM_SIM_LOCK(bus->sim);
3287 		}
3288 	}
3289 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3290 	if (need_unlock)
3291 		CAM_SIM_UNLOCK(bus->sim);
3292 	if (status != CAM_REQ_CMP) {
3293 		free(path, M_CAMXPT);
3294 		path = NULL;
3295 	}
3296 	*new_path_ptr = path;
3297 	return (status);
3298 }
3299 
3300 cam_status
3301 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3302 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3303 {
3304 	struct	     cam_eb *bus;
3305 	struct	     cam_et *target;
3306 	struct	     cam_ed *device;
3307 	cam_status   status;
3308 
3309 	status = CAM_REQ_CMP;	/* Completed without error */
3310 	target = NULL;		/* Wildcarded */
3311 	device = NULL;		/* Wildcarded */
3312 
3313 	/*
3314 	 * We will potentially modify the EDT, so block interrupts
3315 	 * that may attempt to create cam paths.
3316 	 */
3317 	bus = xpt_find_bus(path_id);
3318 	if (bus == NULL) {
3319 		status = CAM_PATH_INVALID;
3320 	} else {
3321 		target = xpt_find_target(bus, target_id);
3322 		if (target == NULL) {
3323 			/* Create one */
3324 			struct cam_et *new_target;
3325 
3326 			new_target = xpt_alloc_target(bus, target_id);
3327 			if (new_target == NULL) {
3328 				status = CAM_RESRC_UNAVAIL;
3329 			} else {
3330 				target = new_target;
3331 			}
3332 		}
3333 		if (target != NULL) {
3334 			device = xpt_find_device(target, lun_id);
3335 			if (device == NULL) {
3336 				/* Create one */
3337 				struct cam_ed *new_device;
3338 
3339 				new_device =
3340 				    (*(bus->xport->alloc_device))(bus,
3341 								      target,
3342 								      lun_id);
3343 				if (new_device == NULL) {
3344 					status = CAM_RESRC_UNAVAIL;
3345 				} else {
3346 					device = new_device;
3347 				}
3348 			}
3349 		}
3350 	}
3351 
3352 	/*
3353 	 * Only touch the user's data if we are successful.
3354 	 */
3355 	if (status == CAM_REQ_CMP) {
3356 		new_path->periph = perph;
3357 		new_path->bus = bus;
3358 		new_path->target = target;
3359 		new_path->device = device;
3360 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3361 	} else {
3362 		if (device != NULL)
3363 			xpt_release_device(device);
3364 		if (target != NULL)
3365 			xpt_release_target(target);
3366 		if (bus != NULL)
3367 			xpt_release_bus(bus);
3368 	}
3369 	return (status);
3370 }
3371 
3372 void
3373 xpt_release_path(struct cam_path *path)
3374 {
3375 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3376 	if (path->device != NULL) {
3377 		xpt_release_device(path->device);
3378 		path->device = NULL;
3379 	}
3380 	if (path->target != NULL) {
3381 		xpt_release_target(path->target);
3382 		path->target = NULL;
3383 	}
3384 	if (path->bus != NULL) {
3385 		xpt_release_bus(path->bus);
3386 		path->bus = NULL;
3387 	}
3388 }
3389 
3390 void
3391 xpt_free_path(struct cam_path *path)
3392 {
3393 
3394 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3395 	xpt_release_path(path);
3396 	free(path, M_CAMXPT);
3397 }
3398 
3399 
3400 /*
3401  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3402  * in path1, 2 for match with wildcards in path2.
3403  */
3404 int
3405 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3406 {
3407 	int retval = 0;
3408 
3409 	if (path1->bus != path2->bus) {
3410 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3411 			retval = 1;
3412 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3413 			retval = 2;
3414 		else
3415 			return (-1);
3416 	}
3417 	if (path1->target != path2->target) {
3418 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3419 			if (retval == 0)
3420 				retval = 1;
3421 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3422 			retval = 2;
3423 		else
3424 			return (-1);
3425 	}
3426 	if (path1->device != path2->device) {
3427 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3428 			if (retval == 0)
3429 				retval = 1;
3430 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3431 			retval = 2;
3432 		else
3433 			return (-1);
3434 	}
3435 	return (retval);
3436 }
3437 
3438 void
3439 xpt_print_path(struct cam_path *path)
3440 {
3441 
3442 	if (path == NULL)
3443 		printf("(nopath): ");
3444 	else {
3445 		if (path->periph != NULL)
3446 			printf("(%s%d:", path->periph->periph_name,
3447 			       path->periph->unit_number);
3448 		else
3449 			printf("(noperiph:");
3450 
3451 		if (path->bus != NULL)
3452 			printf("%s%d:%d:", path->bus->sim->sim_name,
3453 			       path->bus->sim->unit_number,
3454 			       path->bus->sim->bus_id);
3455 		else
3456 			printf("nobus:");
3457 
3458 		if (path->target != NULL)
3459 			printf("%d:", path->target->target_id);
3460 		else
3461 			printf("X:");
3462 
3463 		if (path->device != NULL)
3464 			printf("%d): ", path->device->lun_id);
3465 		else
3466 			printf("X): ");
3467 	}
3468 }
3469 
3470 void
3471 xpt_print(struct cam_path *path, const char *fmt, ...)
3472 {
3473 	va_list ap;
3474 	xpt_print_path(path);
3475 	va_start(ap, fmt);
3476 	vprintf(fmt, ap);
3477 	va_end(ap);
3478 }
3479 
3480 int
3481 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3482 {
3483 	struct sbuf sb;
3484 
3485 #ifdef INVARIANTS
3486 	if (path != NULL && path->bus != NULL)
3487 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3488 #endif
3489 
3490 	sbuf_new(&sb, str, str_len, 0);
3491 
3492 	if (path == NULL)
3493 		sbuf_printf(&sb, "(nopath): ");
3494 	else {
3495 		if (path->periph != NULL)
3496 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3497 				    path->periph->unit_number);
3498 		else
3499 			sbuf_printf(&sb, "(noperiph:");
3500 
3501 		if (path->bus != NULL)
3502 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3503 				    path->bus->sim->unit_number,
3504 				    path->bus->sim->bus_id);
3505 		else
3506 			sbuf_printf(&sb, "nobus:");
3507 
3508 		if (path->target != NULL)
3509 			sbuf_printf(&sb, "%d:", path->target->target_id);
3510 		else
3511 			sbuf_printf(&sb, "X:");
3512 
3513 		if (path->device != NULL)
3514 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3515 		else
3516 			sbuf_printf(&sb, "X): ");
3517 	}
3518 	sbuf_finish(&sb);
3519 
3520 	return(sbuf_len(&sb));
3521 }
3522 
3523 path_id_t
3524 xpt_path_path_id(struct cam_path *path)
3525 {
3526 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3527 
3528 	return(path->bus->path_id);
3529 }
3530 
3531 target_id_t
3532 xpt_path_target_id(struct cam_path *path)
3533 {
3534 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3535 
3536 	if (path->target != NULL)
3537 		return (path->target->target_id);
3538 	else
3539 		return (CAM_TARGET_WILDCARD);
3540 }
3541 
3542 lun_id_t
3543 xpt_path_lun_id(struct cam_path *path)
3544 {
3545 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3546 
3547 	if (path->device != NULL)
3548 		return (path->device->lun_id);
3549 	else
3550 		return (CAM_LUN_WILDCARD);
3551 }
3552 
3553 struct cam_sim *
3554 xpt_path_sim(struct cam_path *path)
3555 {
3556 
3557 	return (path->bus->sim);
3558 }
3559 
3560 struct cam_periph*
3561 xpt_path_periph(struct cam_path *path)
3562 {
3563 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3564 
3565 	return (path->periph);
3566 }
3567 
3568 /*
3569  * Release a CAM control block for the caller.  Remit the cost of the structure
3570  * to the device referenced by the path.  If the this device had no 'credits'
3571  * and peripheral drivers have registered async callbacks for this notification
3572  * call them now.
3573  */
3574 void
3575 xpt_release_ccb(union ccb *free_ccb)
3576 {
3577 	struct	 cam_path *path;
3578 	struct	 cam_ed *device;
3579 	struct	 cam_eb *bus;
3580 	struct   cam_sim *sim;
3581 
3582 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3583 	path = free_ccb->ccb_h.path;
3584 	device = path->device;
3585 	bus = path->bus;
3586 	sim = bus->sim;
3587 
3588 	mtx_assert(sim->mtx, MA_OWNED);
3589 
3590 	cam_ccbq_release_opening(&device->ccbq);
3591 	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3592 		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3593 		cam_ccbq_resize(&device->ccbq,
3594 		    device->ccbq.dev_openings + device->ccbq.dev_active);
3595 	}
3596 	if (sim->ccb_count > sim->max_ccbs) {
3597 		xpt_free_ccb(free_ccb);
3598 		sim->ccb_count--;
3599 	} else {
3600 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3601 		    xpt_links.sle);
3602 	}
3603 	if (sim->devq == NULL) {
3604 		return;
3605 	}
3606 	sim->devq->alloc_openings++;
3607 	sim->devq->alloc_active--;
3608 	if (device_is_alloc_queued(device) == 0)
3609 		xpt_schedule_dev_allocq(bus, device);
3610 	xpt_run_dev_allocq(bus);
3611 }
3612 
3613 /* Functions accessed by SIM drivers */
3614 
3615 static struct xpt_xport xport_default = {
3616 	.alloc_device = xpt_alloc_device_default,
3617 	.action = xpt_action_default,
3618 	.async = xpt_dev_async_default,
3619 };
3620 
3621 /*
3622  * A sim structure, listing the SIM entry points and instance
3623  * identification info is passed to xpt_bus_register to hook the SIM
3624  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3625  * for this new bus and places it in the array of busses and assigns
3626  * it a path_id.  The path_id may be influenced by "hard wiring"
3627  * information specified by the user.  Once interrupt services are
3628  * available, the bus will be probed.
3629  */
3630 int32_t
3631 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3632 {
3633 	struct cam_eb *new_bus;
3634 	struct cam_eb *old_bus;
3635 	struct ccb_pathinq cpi;
3636 	struct cam_path *path;
3637 	cam_status status;
3638 
3639 	mtx_assert(sim->mtx, MA_OWNED);
3640 
3641 	sim->bus_id = bus;
3642 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3643 					  M_CAMXPT, M_NOWAIT);
3644 	if (new_bus == NULL) {
3645 		/* Couldn't satisfy request */
3646 		return (CAM_RESRC_UNAVAIL);
3647 	}
3648 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3649 	if (path == NULL) {
3650 		free(new_bus, M_CAMXPT);
3651 		return (CAM_RESRC_UNAVAIL);
3652 	}
3653 
3654 	if (strcmp(sim->sim_name, "xpt") != 0) {
3655 		sim->path_id =
3656 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3657 	}
3658 
3659 	TAILQ_INIT(&new_bus->et_entries);
3660 	new_bus->path_id = sim->path_id;
3661 	cam_sim_hold(sim);
3662 	new_bus->sim = sim;
3663 	timevalclear(&new_bus->last_reset);
3664 	new_bus->flags = 0;
3665 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3666 	new_bus->generation = 0;
3667 
3668 	mtx_lock(&xsoftc.xpt_topo_lock);
3669 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3670 	while (old_bus != NULL
3671 	    && old_bus->path_id < new_bus->path_id)
3672 		old_bus = TAILQ_NEXT(old_bus, links);
3673 	if (old_bus != NULL)
3674 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3675 	else
3676 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3677 	xsoftc.bus_generation++;
3678 	mtx_unlock(&xsoftc.xpt_topo_lock);
3679 
3680 	/*
3681 	 * Set a default transport so that a PATH_INQ can be issued to
3682 	 * the SIM.  This will then allow for probing and attaching of
3683 	 * a more appropriate transport.
3684 	 */
3685 	new_bus->xport = &xport_default;
3686 
3687 	status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3688 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3689 	if (status != CAM_REQ_CMP)
3690 		printf("xpt_compile_path returned %d\n", status);
3691 
3692 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3693 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3694 	xpt_action((union ccb *)&cpi);
3695 
3696 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3697 		switch (cpi.transport) {
3698 		case XPORT_SPI:
3699 		case XPORT_SAS:
3700 		case XPORT_FC:
3701 		case XPORT_USB:
3702 		case XPORT_ISCSI:
3703 		case XPORT_PPB:
3704 			new_bus->xport = scsi_get_xport();
3705 			break;
3706 		case XPORT_ATA:
3707 		case XPORT_SATA:
3708 			new_bus->xport = ata_get_xport();
3709 			break;
3710 		default:
3711 			new_bus->xport = &xport_default;
3712 			break;
3713 		}
3714 	}
3715 
3716 	/* Notify interested parties */
3717 	if (sim->path_id != CAM_XPT_PATH_ID) {
3718 		union	ccb *scan_ccb;
3719 
3720 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3721 		/* Initiate bus rescan. */
3722 		scan_ccb = xpt_alloc_ccb_nowait();
3723 		scan_ccb->ccb_h.path = path;
3724 		scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3725 		scan_ccb->crcn.flags = 0;
3726 		xpt_rescan(scan_ccb);
3727 	} else
3728 		xpt_free_path(path);
3729 	return (CAM_SUCCESS);
3730 }
3731 
3732 int32_t
3733 xpt_bus_deregister(path_id_t pathid)
3734 {
3735 	struct cam_path bus_path;
3736 	cam_status status;
3737 
3738 	status = xpt_compile_path(&bus_path, NULL, pathid,
3739 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3740 	if (status != CAM_REQ_CMP)
3741 		return (status);
3742 
3743 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3744 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3745 
3746 	/* Release the reference count held while registered. */
3747 	xpt_release_bus(bus_path.bus);
3748 	xpt_release_path(&bus_path);
3749 
3750 	return (CAM_REQ_CMP);
3751 }
3752 
3753 static path_id_t
3754 xptnextfreepathid(void)
3755 {
3756 	struct cam_eb *bus;
3757 	path_id_t pathid;
3758 	const char *strval;
3759 
3760 	pathid = 0;
3761 	mtx_lock(&xsoftc.xpt_topo_lock);
3762 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3763 retry:
3764 	/* Find an unoccupied pathid */
3765 	while (bus != NULL && bus->path_id <= pathid) {
3766 		if (bus->path_id == pathid)
3767 			pathid++;
3768 		bus = TAILQ_NEXT(bus, links);
3769 	}
3770 	mtx_unlock(&xsoftc.xpt_topo_lock);
3771 
3772 	/*
3773 	 * Ensure that this pathid is not reserved for
3774 	 * a bus that may be registered in the future.
3775 	 */
3776 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3777 		++pathid;
3778 		/* Start the search over */
3779 		mtx_lock(&xsoftc.xpt_topo_lock);
3780 		goto retry;
3781 	}
3782 	return (pathid);
3783 }
3784 
3785 static path_id_t
3786 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3787 {
3788 	path_id_t pathid;
3789 	int i, dunit, val;
3790 	char buf[32];
3791 	const char *dname;
3792 
3793 	pathid = CAM_XPT_PATH_ID;
3794 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3795 	i = 0;
3796 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3797 		if (strcmp(dname, "scbus")) {
3798 			/* Avoid a bit of foot shooting. */
3799 			continue;
3800 		}
3801 		if (dunit < 0)		/* unwired?! */
3802 			continue;
3803 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3804 			if (sim_bus == val) {
3805 				pathid = dunit;
3806 				break;
3807 			}
3808 		} else if (sim_bus == 0) {
3809 			/* Unspecified matches bus 0 */
3810 			pathid = dunit;
3811 			break;
3812 		} else {
3813 			printf("Ambiguous scbus configuration for %s%d "
3814 			       "bus %d, cannot wire down.  The kernel "
3815 			       "config entry for scbus%d should "
3816 			       "specify a controller bus.\n"
3817 			       "Scbus will be assigned dynamically.\n",
3818 			       sim_name, sim_unit, sim_bus, dunit);
3819 			break;
3820 		}
3821 	}
3822 
3823 	if (pathid == CAM_XPT_PATH_ID)
3824 		pathid = xptnextfreepathid();
3825 	return (pathid);
3826 }
3827 
3828 void
3829 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3830 {
3831 	struct cam_eb *bus;
3832 	struct cam_et *target, *next_target;
3833 	struct cam_ed *device, *next_device;
3834 
3835 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3836 
3837 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3838 
3839 	/*
3840 	 * Most async events come from a CAM interrupt context.  In
3841 	 * a few cases, the error recovery code at the peripheral layer,
3842 	 * which may run from our SWI or a process context, may signal
3843 	 * deferred events with a call to xpt_async.
3844 	 */
3845 
3846 	bus = path->bus;
3847 
3848 	if (async_code == AC_BUS_RESET) {
3849 		/* Update our notion of when the last reset occurred */
3850 		microtime(&bus->last_reset);
3851 	}
3852 
3853 	for (target = TAILQ_FIRST(&bus->et_entries);
3854 	     target != NULL;
3855 	     target = next_target) {
3856 
3857 		next_target = TAILQ_NEXT(target, links);
3858 
3859 		if (path->target != target
3860 		 && path->target->target_id != CAM_TARGET_WILDCARD
3861 		 && target->target_id != CAM_TARGET_WILDCARD)
3862 			continue;
3863 
3864 		if (async_code == AC_SENT_BDR) {
3865 			/* Update our notion of when the last reset occurred */
3866 			microtime(&path->target->last_reset);
3867 		}
3868 
3869 		for (device = TAILQ_FIRST(&target->ed_entries);
3870 		     device != NULL;
3871 		     device = next_device) {
3872 
3873 			next_device = TAILQ_NEXT(device, links);
3874 
3875 			if (path->device != device
3876 			 && path->device->lun_id != CAM_LUN_WILDCARD
3877 			 && device->lun_id != CAM_LUN_WILDCARD)
3878 				continue;
3879 			/*
3880 			 * The async callback could free the device.
3881 			 * If it is a broadcast async, it doesn't hold
3882 			 * device reference, so take our own reference.
3883 			 */
3884 			xpt_acquire_device(device);
3885 			(*(bus->xport->async))(async_code, bus,
3886 					       target, device,
3887 					       async_arg);
3888 
3889 			xpt_async_bcast(&device->asyncs, async_code,
3890 					path, async_arg);
3891 			xpt_release_device(device);
3892 		}
3893 	}
3894 
3895 	/*
3896 	 * If this wasn't a fully wildcarded async, tell all
3897 	 * clients that want all async events.
3898 	 */
3899 	if (bus != xpt_periph->path->bus)
3900 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
3901 				path, async_arg);
3902 }
3903 
3904 static void
3905 xpt_async_bcast(struct async_list *async_head,
3906 		u_int32_t async_code,
3907 		struct cam_path *path, void *async_arg)
3908 {
3909 	struct async_node *cur_entry;
3910 
3911 	cur_entry = SLIST_FIRST(async_head);
3912 	while (cur_entry != NULL) {
3913 		struct async_node *next_entry;
3914 		/*
3915 		 * Grab the next list entry before we call the current
3916 		 * entry's callback.  This is because the callback function
3917 		 * can delete its async callback entry.
3918 		 */
3919 		next_entry = SLIST_NEXT(cur_entry, links);
3920 		if ((cur_entry->event_enable & async_code) != 0)
3921 			cur_entry->callback(cur_entry->callback_arg,
3922 					    async_code, path,
3923 					    async_arg);
3924 		cur_entry = next_entry;
3925 	}
3926 }
3927 
3928 static void
3929 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
3930 		      struct cam_et *target, struct cam_ed *device,
3931 		      void *async_arg)
3932 {
3933 	printf("%s called\n", __func__);
3934 }
3935 
3936 u_int32_t
3937 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
3938 {
3939 	struct cam_ed *dev = path->device;
3940 
3941 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3942 	dev->sim->devq->alloc_openings +=
3943 	    cam_ccbq_freeze(&dev->ccbq, rl, count);
3944 	/* Remove frozen device from allocq. */
3945 	if (device_is_alloc_queued(dev) &&
3946 	    cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
3947 	     CAMQ_GET_PRIO(&dev->drvq)))) {
3948 		camq_remove(&dev->sim->devq->alloc_queue,
3949 		    dev->alloc_ccb_entry.pinfo.index);
3950 	}
3951 	/* Remove frozen device from sendq. */
3952 	if (device_is_send_queued(dev) &&
3953 	    cam_ccbq_frozen_top(&dev->ccbq)) {
3954 		camq_remove(&dev->sim->devq->send_queue,
3955 		    dev->send_ccb_entry.pinfo.index);
3956 	}
3957 	return (dev->ccbq.queue.qfrozen_cnt[rl]);
3958 }
3959 
3960 u_int32_t
3961 xpt_freeze_devq(struct cam_path *path, u_int count)
3962 {
3963 
3964 	return (xpt_freeze_devq_rl(path, 0, count));
3965 }
3966 
3967 u_int32_t
3968 xpt_freeze_simq(struct cam_sim *sim, u_int count)
3969 {
3970 
3971 	mtx_assert(sim->mtx, MA_OWNED);
3972 	sim->devq->send_queue.qfrozen_cnt[0] += count;
3973 	return (sim->devq->send_queue.qfrozen_cnt[0]);
3974 }
3975 
3976 static void
3977 xpt_release_devq_timeout(void *arg)
3978 {
3979 	struct cam_ed *device;
3980 
3981 	device = (struct cam_ed *)arg;
3982 
3983 	xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
3984 }
3985 
3986 void
3987 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
3988 {
3989 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3990 
3991 	xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
3992 }
3993 
3994 void
3995 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
3996 {
3997 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3998 
3999 	xpt_release_devq_device(path->device, rl, count, run_queue);
4000 }
4001 
4002 static void
4003 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4004 {
4005 
4006 	if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4007 #ifdef INVARIANTS
4008 		printf("xpt_release_devq(%d): requested %u > present %u\n",
4009 		    rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4010 #endif
4011 		count = dev->ccbq.queue.qfrozen_cnt[rl];
4012 	}
4013 	dev->sim->devq->alloc_openings -=
4014 	    cam_ccbq_release(&dev->ccbq, rl, count);
4015 	if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4016 	    CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4017 		if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4018 			xpt_run_dev_allocq(dev->target->bus);
4019 	}
4020 	if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4021 		/*
4022 		 * No longer need to wait for a successful
4023 		 * command completion.
4024 		 */
4025 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4026 		/*
4027 		 * Remove any timeouts that might be scheduled
4028 		 * to release this queue.
4029 		 */
4030 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4031 			callout_stop(&dev->callout);
4032 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4033 		}
4034 		if (run_queue == 0)
4035 			return;
4036 		/*
4037 		 * Now that we are unfrozen schedule the
4038 		 * device so any pending transactions are
4039 		 * run.
4040 		 */
4041 		if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4042 			xpt_run_dev_sendq(dev->target->bus);
4043 	}
4044 }
4045 
4046 void
4047 xpt_release_simq(struct cam_sim *sim, int run_queue)
4048 {
4049 	struct	camq *sendq;
4050 
4051 	mtx_assert(sim->mtx, MA_OWNED);
4052 	sendq = &(sim->devq->send_queue);
4053 	if (sendq->qfrozen_cnt[0] <= 0) {
4054 #ifdef INVARIANTS
4055 		printf("xpt_release_simq: requested 1 > present %u\n",
4056 		    sendq->qfrozen_cnt[0]);
4057 #endif
4058 	} else
4059 		sendq->qfrozen_cnt[0]--;
4060 	if (sendq->qfrozen_cnt[0] == 0) {
4061 		/*
4062 		 * If there is a timeout scheduled to release this
4063 		 * sim queue, remove it.  The queue frozen count is
4064 		 * already at 0.
4065 		 */
4066 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4067 			callout_stop(&sim->callout);
4068 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4069 		}
4070 		if (run_queue) {
4071 			struct cam_eb *bus;
4072 
4073 			/*
4074 			 * Now that we are unfrozen run the send queue.
4075 			 */
4076 			bus = xpt_find_bus(sim->path_id);
4077 			xpt_run_dev_sendq(bus);
4078 			xpt_release_bus(bus);
4079 		}
4080 	}
4081 }
4082 
4083 /*
4084  * XXX Appears to be unused.
4085  */
4086 static void
4087 xpt_release_simq_timeout(void *arg)
4088 {
4089 	struct cam_sim *sim;
4090 
4091 	sim = (struct cam_sim *)arg;
4092 	xpt_release_simq(sim, /* run_queue */ TRUE);
4093 }
4094 
4095 void
4096 xpt_done(union ccb *done_ccb)
4097 {
4098 	struct cam_sim *sim;
4099 	int	first;
4100 
4101 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4102 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4103 		/*
4104 		 * Queue up the request for handling by our SWI handler
4105 		 * any of the "non-immediate" type of ccbs.
4106 		 */
4107 		sim = done_ccb->ccb_h.path->bus->sim;
4108 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4109 		    sim_links.tqe);
4110 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4111 		if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4112 			mtx_lock(&cam_simq_lock);
4113 			first = TAILQ_EMPTY(&cam_simq);
4114 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4115 			mtx_unlock(&cam_simq_lock);
4116 			sim->flags |= CAM_SIM_ON_DONEQ;
4117 			if (first)
4118 				swi_sched(cambio_ih, 0);
4119 		}
4120 	}
4121 }
4122 
4123 union ccb *
4124 xpt_alloc_ccb()
4125 {
4126 	union ccb *new_ccb;
4127 
4128 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4129 	return (new_ccb);
4130 }
4131 
4132 union ccb *
4133 xpt_alloc_ccb_nowait()
4134 {
4135 	union ccb *new_ccb;
4136 
4137 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4138 	return (new_ccb);
4139 }
4140 
4141 void
4142 xpt_free_ccb(union ccb *free_ccb)
4143 {
4144 	free(free_ccb, M_CAMXPT);
4145 }
4146 
4147 
4148 
4149 /* Private XPT functions */
4150 
4151 /*
4152  * Get a CAM control block for the caller. Charge the structure to the device
4153  * referenced by the path.  If the this device has no 'credits' then the
4154  * device already has the maximum number of outstanding operations under way
4155  * and we return NULL. If we don't have sufficient resources to allocate more
4156  * ccbs, we also return NULL.
4157  */
4158 static union ccb *
4159 xpt_get_ccb(struct cam_ed *device)
4160 {
4161 	union ccb *new_ccb;
4162 	struct cam_sim *sim;
4163 
4164 	sim = device->sim;
4165 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4166 		new_ccb = xpt_alloc_ccb_nowait();
4167                 if (new_ccb == NULL) {
4168 			return (NULL);
4169 		}
4170 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4171 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4172 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4173 				  xpt_links.sle);
4174 		sim->ccb_count++;
4175 	}
4176 	cam_ccbq_take_opening(&device->ccbq);
4177 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4178 	return (new_ccb);
4179 }
4180 
4181 static void
4182 xpt_release_bus(struct cam_eb *bus)
4183 {
4184 
4185 	if ((--bus->refcount == 0)
4186 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4187 		mtx_lock(&xsoftc.xpt_topo_lock);
4188 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4189 		xsoftc.bus_generation++;
4190 		mtx_unlock(&xsoftc.xpt_topo_lock);
4191 		cam_sim_release(bus->sim);
4192 		free(bus, M_CAMXPT);
4193 	}
4194 }
4195 
4196 static struct cam_et *
4197 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4198 {
4199 	struct cam_et *target;
4200 
4201 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4202 	if (target != NULL) {
4203 		struct cam_et *cur_target;
4204 
4205 		TAILQ_INIT(&target->ed_entries);
4206 		target->bus = bus;
4207 		target->target_id = target_id;
4208 		target->refcount = 1;
4209 		target->generation = 0;
4210 		timevalclear(&target->last_reset);
4211 		/*
4212 		 * Hold a reference to our parent bus so it
4213 		 * will not go away before we do.
4214 		 */
4215 		bus->refcount++;
4216 
4217 		/* Insertion sort into our bus's target list */
4218 		cur_target = TAILQ_FIRST(&bus->et_entries);
4219 		while (cur_target != NULL && cur_target->target_id < target_id)
4220 			cur_target = TAILQ_NEXT(cur_target, links);
4221 
4222 		if (cur_target != NULL) {
4223 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4224 		} else {
4225 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4226 		}
4227 		bus->generation++;
4228 	}
4229 	return (target);
4230 }
4231 
4232 static void
4233 xpt_release_target(struct cam_et *target)
4234 {
4235 
4236 	if ((--target->refcount == 0)
4237 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4238 		TAILQ_REMOVE(&target->bus->et_entries, target, links);
4239 		target->bus->generation++;
4240 		xpt_release_bus(target->bus);
4241 		free(target, M_CAMXPT);
4242 	}
4243 }
4244 
4245 static struct cam_ed *
4246 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4247 			 lun_id_t lun_id)
4248 {
4249 	struct cam_ed *device, *cur_device;
4250 
4251 	device = xpt_alloc_device(bus, target, lun_id);
4252 	if (device == NULL)
4253 		return (NULL);
4254 
4255 	device->mintags = 1;
4256 	device->maxtags = 1;
4257 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4258 	cur_device = TAILQ_FIRST(&target->ed_entries);
4259 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4260 		cur_device = TAILQ_NEXT(cur_device, links);
4261 	if (cur_device != NULL) {
4262 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4263 	} else {
4264 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4265 	}
4266 	target->generation++;
4267 
4268 	return (device);
4269 }
4270 
4271 struct cam_ed *
4272 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4273 {
4274 	struct	   cam_ed *device;
4275 	struct	   cam_devq *devq;
4276 	cam_status status;
4277 
4278 	/* Make space for us in the device queue on our bus */
4279 	devq = bus->sim->devq;
4280 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4281 
4282 	if (status != CAM_REQ_CMP) {
4283 		device = NULL;
4284 	} else {
4285 		device = (struct cam_ed *)malloc(sizeof(*device),
4286 						 M_CAMXPT, M_NOWAIT);
4287 	}
4288 
4289 	if (device != NULL) {
4290 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4291 		device->alloc_ccb_entry.device = device;
4292 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4293 		device->send_ccb_entry.device = device;
4294 		device->target = target;
4295 		device->lun_id = lun_id;
4296 		device->sim = bus->sim;
4297 		/* Initialize our queues */
4298 		if (camq_init(&device->drvq, 0) != 0) {
4299 			free(device, M_CAMXPT);
4300 			return (NULL);
4301 		}
4302 		if (cam_ccbq_init(&device->ccbq,
4303 				  bus->sim->max_dev_openings) != 0) {
4304 			camq_fini(&device->drvq);
4305 			free(device, M_CAMXPT);
4306 			return (NULL);
4307 		}
4308 		SLIST_INIT(&device->asyncs);
4309 		SLIST_INIT(&device->periphs);
4310 		device->generation = 0;
4311 		device->owner = NULL;
4312 		device->flags = CAM_DEV_UNCONFIGURED;
4313 		device->tag_delay_count = 0;
4314 		device->tag_saved_openings = 0;
4315 		device->refcount = 1;
4316 		callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4317 
4318 		/*
4319 		 * Hold a reference to our parent target so it
4320 		 * will not go away before we do.
4321 		 */
4322 		target->refcount++;
4323 
4324 	}
4325 	return (device);
4326 }
4327 
4328 void
4329 xpt_acquire_device(struct cam_ed *device)
4330 {
4331 
4332 	device->refcount++;
4333 }
4334 
4335 void
4336 xpt_release_device(struct cam_ed *device)
4337 {
4338 
4339 	if (--device->refcount == 0) {
4340 		struct cam_devq *devq;
4341 
4342 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4343 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4344 			panic("Removing device while still queued for ccbs");
4345 
4346 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4347 				callout_stop(&device->callout);
4348 
4349 		TAILQ_REMOVE(&device->target->ed_entries, device,links);
4350 		device->target->generation++;
4351 		device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4352 		/* Release our slot in the devq */
4353 		devq = device->target->bus->sim->devq;
4354 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4355 		camq_fini(&device->drvq);
4356 		cam_ccbq_fini(&device->ccbq);
4357 		xpt_release_target(device->target);
4358 		free(device, M_CAMXPT);
4359 	}
4360 }
4361 
4362 u_int32_t
4363 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4364 {
4365 	int	diff;
4366 	int	result;
4367 	struct	cam_ed *dev;
4368 
4369 	dev = path->device;
4370 
4371 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4372 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4373 	if (result == CAM_REQ_CMP && (diff < 0)) {
4374 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4375 	}
4376 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4377 	 || (dev->inq_flags & SID_CmdQue) != 0)
4378 		dev->tag_saved_openings = newopenings;
4379 	/* Adjust the global limit */
4380 	dev->sim->max_ccbs += diff;
4381 	return (result);
4382 }
4383 
4384 static struct cam_eb *
4385 xpt_find_bus(path_id_t path_id)
4386 {
4387 	struct cam_eb *bus;
4388 
4389 	mtx_lock(&xsoftc.xpt_topo_lock);
4390 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4391 	     bus != NULL;
4392 	     bus = TAILQ_NEXT(bus, links)) {
4393 		if (bus->path_id == path_id) {
4394 			bus->refcount++;
4395 			break;
4396 		}
4397 	}
4398 	mtx_unlock(&xsoftc.xpt_topo_lock);
4399 	return (bus);
4400 }
4401 
4402 static struct cam_et *
4403 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4404 {
4405 	struct cam_et *target;
4406 
4407 	for (target = TAILQ_FIRST(&bus->et_entries);
4408 	     target != NULL;
4409 	     target = TAILQ_NEXT(target, links)) {
4410 		if (target->target_id == target_id) {
4411 			target->refcount++;
4412 			break;
4413 		}
4414 	}
4415 	return (target);
4416 }
4417 
4418 static struct cam_ed *
4419 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4420 {
4421 	struct cam_ed *device;
4422 
4423 	for (device = TAILQ_FIRST(&target->ed_entries);
4424 	     device != NULL;
4425 	     device = TAILQ_NEXT(device, links)) {
4426 		if (device->lun_id == lun_id) {
4427 			device->refcount++;
4428 			break;
4429 		}
4430 	}
4431 	return (device);
4432 }
4433 
4434 void
4435 xpt_start_tags(struct cam_path *path)
4436 {
4437 	struct ccb_relsim crs;
4438 	struct cam_ed *device;
4439 	struct cam_sim *sim;
4440 	int    newopenings;
4441 
4442 	device = path->device;
4443 	sim = path->bus->sim;
4444 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4445 	xpt_freeze_devq(path, /*count*/1);
4446 	device->inq_flags |= SID_CmdQue;
4447 	if (device->tag_saved_openings != 0)
4448 		newopenings = device->tag_saved_openings;
4449 	else
4450 		newopenings = min(device->maxtags,
4451 				  sim->max_tagged_dev_openings);
4452 	xpt_dev_ccbq_resize(path, newopenings);
4453 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4454 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4455 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4456 	crs.openings
4457 	    = crs.release_timeout
4458 	    = crs.qfrozen_cnt
4459 	    = 0;
4460 	xpt_action((union ccb *)&crs);
4461 }
4462 
4463 void
4464 xpt_stop_tags(struct cam_path *path)
4465 {
4466 	struct ccb_relsim crs;
4467 	struct cam_ed *device;
4468 	struct cam_sim *sim;
4469 
4470 	device = path->device;
4471 	sim = path->bus->sim;
4472 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4473 	device->tag_delay_count = 0;
4474 	xpt_freeze_devq(path, /*count*/1);
4475 	device->inq_flags &= ~SID_CmdQue;
4476 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4477 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4478 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4479 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4480 	crs.openings
4481 	    = crs.release_timeout
4482 	    = crs.qfrozen_cnt
4483 	    = 0;
4484 	xpt_action((union ccb *)&crs);
4485 }
4486 
4487 static void
4488 xpt_boot_delay(void *arg)
4489 {
4490 
4491 	xpt_release_boot();
4492 }
4493 
4494 static void
4495 xpt_config(void *arg)
4496 {
4497 	/*
4498 	 * Now that interrupts are enabled, go find our devices
4499 	 */
4500 
4501 #ifdef CAMDEBUG
4502 	/* Setup debugging flags and path */
4503 #ifdef CAM_DEBUG_FLAGS
4504 	cam_dflags = CAM_DEBUG_FLAGS;
4505 #else /* !CAM_DEBUG_FLAGS */
4506 	cam_dflags = CAM_DEBUG_NONE;
4507 #endif /* CAM_DEBUG_FLAGS */
4508 #ifdef CAM_DEBUG_BUS
4509 	if (cam_dflags != CAM_DEBUG_NONE) {
4510 		/*
4511 		 * Locking is specifically omitted here.  No SIMs have
4512 		 * registered yet, so xpt_create_path will only be searching
4513 		 * empty lists of targets and devices.
4514 		 */
4515 		if (xpt_create_path(&cam_dpath, xpt_periph,
4516 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4517 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4518 			printf("xpt_config: xpt_create_path() failed for debug"
4519 			       " target %d:%d:%d, debugging disabled\n",
4520 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4521 			cam_dflags = CAM_DEBUG_NONE;
4522 		}
4523 	} else
4524 		cam_dpath = NULL;
4525 #else /* !CAM_DEBUG_BUS */
4526 	cam_dpath = NULL;
4527 #endif /* CAM_DEBUG_BUS */
4528 #endif /* CAMDEBUG */
4529 
4530 	/* Register our shutdown event handler */
4531 	if ((EVENTHANDLER_REGISTER(shutdown_final, xpt_shutdown,
4532 				   NULL, SHUTDOWN_PRI_FIRST)) == NULL) {
4533 		printf("xpt_config: failed to register shutdown event.\n");
4534 	}
4535 
4536 	periphdriver_init(1);
4537 	xpt_hold_boot();
4538 	callout_init(&xsoftc.boot_callout, 1);
4539 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4540 	    xpt_boot_delay, NULL);
4541 	/* Fire up rescan thread. */
4542 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4543 		printf("xpt_config: failed to create rescan thread.\n");
4544 	}
4545 }
4546 
4547 void
4548 xpt_hold_boot(void)
4549 {
4550 	xpt_lock_buses();
4551 	xsoftc.buses_to_config++;
4552 	xpt_unlock_buses();
4553 }
4554 
4555 void
4556 xpt_release_boot(void)
4557 {
4558 	xpt_lock_buses();
4559 	xsoftc.buses_to_config--;
4560 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4561 		struct	xpt_task *task;
4562 
4563 		xsoftc.buses_config_done = 1;
4564 		xpt_unlock_buses();
4565 		/* Call manually because we don't have any busses */
4566 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4567 		if (task != NULL) {
4568 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4569 			taskqueue_enqueue(taskqueue_thread, &task->task);
4570 		}
4571 	} else
4572 		xpt_unlock_buses();
4573 }
4574 
4575 /*
4576  * If the given device only has one peripheral attached to it, and if that
4577  * peripheral is the passthrough driver, announce it.  This insures that the
4578  * user sees some sort of announcement for every peripheral in their system.
4579  */
4580 static int
4581 xptpassannouncefunc(struct cam_ed *device, void *arg)
4582 {
4583 	struct cam_periph *periph;
4584 	int i;
4585 
4586 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4587 	     periph = SLIST_NEXT(periph, periph_links), i++);
4588 
4589 	periph = SLIST_FIRST(&device->periphs);
4590 	if ((i == 1)
4591 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4592 		xpt_announce_periph(periph, NULL);
4593 
4594 	return(1);
4595 }
4596 
4597 static void
4598 xpt_finishconfig_task(void *context, int pending)
4599 {
4600 
4601 	periphdriver_init(2);
4602 	/*
4603 	 * Check for devices with no "standard" peripheral driver
4604 	 * attached.  For any devices like that, announce the
4605 	 * passthrough driver so the user will see something.
4606 	 */
4607 	xpt_for_all_devices(xptpassannouncefunc, NULL);
4608 
4609 	/* Release our hook so that the boot can continue. */
4610 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4611 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4612 	xsoftc.xpt_config_hook = NULL;
4613 
4614 	free(context, M_CAMXPT);
4615 }
4616 
4617 /*
4618  * Power down all devices when we are going to power down the system.
4619  */
4620 static void
4621 xpt_shutdown_dev_done(struct cam_periph *periph, union ccb *done_ccb)
4622 {
4623 
4624 	/* No-op. We're polling. */
4625 	return;
4626 }
4627 
4628 static int
4629 xpt_shutdown_dev(struct cam_ed *device, void *arg)
4630 {
4631 	union ccb ccb;
4632 	struct cam_path path;
4633 
4634 	if (device->flags & CAM_DEV_UNCONFIGURED)
4635 		return (1);
4636 
4637 	if (device->protocol == PROTO_ATA) {
4638 		/* Only power down device if it supports power management. */
4639 		if ((device->ident_data.support.command1 &
4640 		    ATA_SUPPORT_POWERMGT) == 0)
4641 			return (1);
4642 	} else if (device->protocol != PROTO_SCSI)
4643 		return (1);
4644 
4645 	xpt_compile_path(&path,
4646 			 NULL,
4647 			 device->target->bus->path_id,
4648 			 device->target->target_id,
4649 			 device->lun_id);
4650 	xpt_setup_ccb(&ccb.ccb_h, &path, CAM_PRIORITY_NORMAL);
4651 	if (device->protocol == PROTO_ATA) {
4652 		cam_fill_ataio(&ccb.ataio,
4653 				    1,
4654 				    xpt_shutdown_dev_done,
4655 				    CAM_DIR_NONE,
4656 				    0,
4657 				    NULL,
4658 				    0,
4659 				    30*1000);
4660 		ata_28bit_cmd(&ccb.ataio, ATA_SLEEP, 0, 0, 0);
4661 	} else {
4662 		scsi_start_stop(&ccb.csio,
4663 				/*retries*/1,
4664 				xpt_shutdown_dev_done,
4665 				MSG_SIMPLE_Q_TAG,
4666 				/*start*/FALSE,
4667 				/*load/eject*/FALSE,
4668 				/*immediate*/TRUE,
4669 				SSD_FULL_SIZE,
4670 				/*timeout*/50*1000);
4671 	}
4672 	xpt_polled_action(&ccb);
4673 
4674 	if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
4675 		xpt_print(&path, "Device power down failed\n");
4676 	if ((ccb.ccb_h.status & CAM_DEV_QFRZN) != 0)
4677 		cam_release_devq(ccb.ccb_h.path,
4678 				 /*relsim_flags*/0,
4679 				 /*reduction*/0,
4680 				 /*timeout*/0,
4681 				 /*getcount_only*/0);
4682 	xpt_release_path(&path);
4683 	return (1);
4684 }
4685 
4686 static void
4687 xpt_shutdown(void * arg, int howto)
4688 {
4689 
4690 	if (!xpt_power_down)
4691 		return;
4692 	if ((howto & RB_POWEROFF) == 0)
4693 		return;
4694 
4695 	xpt_for_all_devices(xpt_shutdown_dev, NULL);
4696 }
4697 
4698 cam_status
4699 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4700 		   struct cam_path *path)
4701 {
4702 	struct ccb_setasync csa;
4703 	cam_status status;
4704 	int xptpath = 0;
4705 
4706 	if (path == NULL) {
4707 		mtx_lock(&xsoftc.xpt_lock);
4708 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4709 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4710 		if (status != CAM_REQ_CMP) {
4711 			mtx_unlock(&xsoftc.xpt_lock);
4712 			return (status);
4713 		}
4714 		xptpath = 1;
4715 	}
4716 
4717 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4718 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4719 	csa.event_enable = event;
4720 	csa.callback = cbfunc;
4721 	csa.callback_arg = cbarg;
4722 	xpt_action((union ccb *)&csa);
4723 	status = csa.ccb_h.status;
4724 	if (xptpath) {
4725 		xpt_free_path(path);
4726 		mtx_unlock(&xsoftc.xpt_lock);
4727 
4728 		if ((status == CAM_REQ_CMP) &&
4729 		    (csa.event_enable & AC_FOUND_DEVICE)) {
4730 			/*
4731 			 * Get this peripheral up to date with all
4732 			 * the currently existing devices.
4733 			 */
4734 			xpt_for_all_devices(xptsetasyncfunc, &csa);
4735 		}
4736 		if ((status == CAM_REQ_CMP) &&
4737 		    (csa.event_enable & AC_PATH_REGISTERED)) {
4738 			/*
4739 			 * Get this peripheral up to date with all
4740 			 * the currently existing busses.
4741 			 */
4742 			xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4743 		}
4744 	}
4745 	return (status);
4746 }
4747 
4748 static void
4749 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4750 {
4751 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4752 
4753 	switch (work_ccb->ccb_h.func_code) {
4754 	/* Common cases first */
4755 	case XPT_PATH_INQ:		/* Path routing inquiry */
4756 	{
4757 		struct ccb_pathinq *cpi;
4758 
4759 		cpi = &work_ccb->cpi;
4760 		cpi->version_num = 1; /* XXX??? */
4761 		cpi->hba_inquiry = 0;
4762 		cpi->target_sprt = 0;
4763 		cpi->hba_misc = 0;
4764 		cpi->hba_eng_cnt = 0;
4765 		cpi->max_target = 0;
4766 		cpi->max_lun = 0;
4767 		cpi->initiator_id = 0;
4768 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4769 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4770 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4771 		cpi->unit_number = sim->unit_number;
4772 		cpi->bus_id = sim->bus_id;
4773 		cpi->base_transfer_speed = 0;
4774 		cpi->protocol = PROTO_UNSPECIFIED;
4775 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4776 		cpi->transport = XPORT_UNSPECIFIED;
4777 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4778 		cpi->ccb_h.status = CAM_REQ_CMP;
4779 		xpt_done(work_ccb);
4780 		break;
4781 	}
4782 	default:
4783 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4784 		xpt_done(work_ccb);
4785 		break;
4786 	}
4787 }
4788 
4789 /*
4790  * The xpt as a "controller" has no interrupt sources, so polling
4791  * is a no-op.
4792  */
4793 static void
4794 xptpoll(struct cam_sim *sim)
4795 {
4796 }
4797 
4798 void
4799 xpt_lock_buses(void)
4800 {
4801 	mtx_lock(&xsoftc.xpt_topo_lock);
4802 }
4803 
4804 void
4805 xpt_unlock_buses(void)
4806 {
4807 	mtx_unlock(&xsoftc.xpt_topo_lock);
4808 }
4809 
4810 static void
4811 camisr(void *dummy)
4812 {
4813 	cam_simq_t queue;
4814 	struct cam_sim *sim;
4815 
4816 	mtx_lock(&cam_simq_lock);
4817 	TAILQ_INIT(&queue);
4818 	while (!TAILQ_EMPTY(&cam_simq)) {
4819 		TAILQ_CONCAT(&queue, &cam_simq, links);
4820 		mtx_unlock(&cam_simq_lock);
4821 
4822 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4823 			TAILQ_REMOVE(&queue, sim, links);
4824 			CAM_SIM_LOCK(sim);
4825 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4826 			camisr_runqueue(&sim->sim_doneq);
4827 			CAM_SIM_UNLOCK(sim);
4828 		}
4829 		mtx_lock(&cam_simq_lock);
4830 	}
4831 	mtx_unlock(&cam_simq_lock);
4832 }
4833 
4834 static void
4835 camisr_runqueue(void *V_queue)
4836 {
4837 	cam_isrq_t *queue = V_queue;
4838 	struct	ccb_hdr *ccb_h;
4839 
4840 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4841 		int	runq;
4842 
4843 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4844 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4845 
4846 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4847 			  ("camisr\n"));
4848 
4849 		runq = FALSE;
4850 
4851 		if (ccb_h->flags & CAM_HIGH_POWER) {
4852 			struct highpowerlist	*hphead;
4853 			union ccb		*send_ccb;
4854 
4855 			mtx_lock(&xsoftc.xpt_lock);
4856 			hphead = &xsoftc.highpowerq;
4857 
4858 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4859 
4860 			/*
4861 			 * Increment the count since this command is done.
4862 			 */
4863 			xsoftc.num_highpower++;
4864 
4865 			/*
4866 			 * Any high powered commands queued up?
4867 			 */
4868 			if (send_ccb != NULL) {
4869 
4870 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4871 				mtx_unlock(&xsoftc.xpt_lock);
4872 
4873 				xpt_release_devq(send_ccb->ccb_h.path,
4874 						 /*count*/1, /*runqueue*/TRUE);
4875 			} else
4876 				mtx_unlock(&xsoftc.xpt_lock);
4877 		}
4878 
4879 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4880 			struct cam_ed *dev;
4881 
4882 			dev = ccb_h->path->device;
4883 
4884 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4885 			ccb_h->path->bus->sim->devq->send_active--;
4886 			ccb_h->path->bus->sim->devq->send_openings++;
4887 			runq = TRUE;
4888 
4889 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4890 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4891 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4892 			  && (dev->ccbq.dev_active == 0))) {
4893 				xpt_release_devq(ccb_h->path, /*count*/1,
4894 						 /*run_queue*/FALSE);
4895 			}
4896 
4897 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4898 			 && (--dev->tag_delay_count == 0))
4899 				xpt_start_tags(ccb_h->path);
4900 			if (!device_is_send_queued(dev))
4901 				xpt_schedule_dev_sendq(ccb_h->path->bus, dev);
4902 		}
4903 
4904 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
4905 			xpt_release_simq(ccb_h->path->bus->sim,
4906 					 /*run_queue*/TRUE);
4907 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
4908 			runq = FALSE;
4909 		}
4910 
4911 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4912 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
4913 			xpt_release_devq(ccb_h->path, /*count*/1,
4914 					 /*run_queue*/TRUE);
4915 			ccb_h->status &= ~CAM_DEV_QFRZN;
4916 		} else if (runq) {
4917 			xpt_run_dev_sendq(ccb_h->path->bus);
4918 		}
4919 
4920 		/* Call the peripheral driver's callback */
4921 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4922 	}
4923 }
4924