xref: /freebsd/sys/cam/cam_xpt.c (revision 20a4ce8bf215487ce53d30ccae3bb6c86babb5a2)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bio.h>
35 #include <sys/bus.h>
36 #include <sys/systm.h>
37 #include <sys/types.h>
38 #include <sys/malloc.h>
39 #include <sys/kernel.h>
40 #include <sys/time.h>
41 #include <sys/conf.h>
42 #include <sys/fcntl.h>
43 #include <sys/interrupt.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/taskqueue.h>
48 
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/sysctl.h>
52 #include <sys/kthread.h>
53 
54 #include <cam/cam.h>
55 #include <cam/cam_ccb.h>
56 #include <cam/cam_periph.h>
57 #include <cam/cam_queue.h>
58 #include <cam/cam_sim.h>
59 #include <cam/cam_xpt.h>
60 #include <cam/cam_xpt_sim.h>
61 #include <cam/cam_xpt_periph.h>
62 #include <cam/cam_xpt_internal.h>
63 #include <cam/cam_debug.h>
64 #include <cam/cam_compat.h>
65 
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_message.h>
68 #include <cam/scsi/scsi_pass.h>
69 
70 #include <machine/md_var.h>	/* geometry translation */
71 #include <machine/stdarg.h>	/* for xpt_print below */
72 
73 #include "opt_cam.h"
74 
75 /*
76  * This is the maximum number of high powered commands (e.g. start unit)
77  * that can be outstanding at a particular time.
78  */
79 #ifndef CAM_MAX_HIGHPOWER
80 #define CAM_MAX_HIGHPOWER  4
81 #endif
82 
83 /* Datastructures internal to the xpt layer */
84 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
85 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
86 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
87 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
88 
89 /* Object for defering XPT actions to a taskqueue */
90 struct xpt_task {
91 	struct task	task;
92 	void		*data1;
93 	uintptr_t	data2;
94 };
95 
96 struct xpt_softc {
97 	uint32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	struct mtx		xpt_highpower_lock;
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/* Registered busses */
110 	TAILQ_HEAD(,cam_eb)	xpt_busses;
111 	u_int			bus_generation;
112 
113 	struct intr_config_hook	*xpt_config_hook;
114 
115 	int			boot_delay;
116 	struct callout 		boot_callout;
117 
118 	struct mtx		xpt_topo_lock;
119 	struct mtx		xpt_lock;
120 	struct taskqueue	*xpt_taskq;
121 };
122 
123 typedef enum {
124 	DM_RET_COPY		= 0x01,
125 	DM_RET_FLAG_MASK	= 0x0f,
126 	DM_RET_NONE		= 0x00,
127 	DM_RET_STOP		= 0x10,
128 	DM_RET_DESCEND		= 0x20,
129 	DM_RET_ERROR		= 0x30,
130 	DM_RET_ACTION_MASK	= 0xf0
131 } dev_match_ret;
132 
133 typedef enum {
134 	XPT_DEPTH_BUS,
135 	XPT_DEPTH_TARGET,
136 	XPT_DEPTH_DEVICE,
137 	XPT_DEPTH_PERIPH
138 } xpt_traverse_depth;
139 
140 struct xpt_traverse_config {
141 	xpt_traverse_depth	depth;
142 	void			*tr_func;
143 	void			*tr_arg;
144 };
145 
146 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
147 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
148 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
149 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
150 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
151 
152 /* Transport layer configuration information */
153 static struct xpt_softc xsoftc;
154 
155 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
156 
157 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
158            &xsoftc.boot_delay, 0, "Bus registration wait time");
159 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
160 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
161 
162 struct cam_doneq {
163 	struct mtx_padalign	cam_doneq_mtx;
164 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
165 	int			cam_doneq_sleep;
166 };
167 
168 static struct cam_doneq cam_doneqs[MAXCPU];
169 static int cam_num_doneqs;
170 static struct proc *cam_proc;
171 
172 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
173            &cam_num_doneqs, 0, "Number of completion queues/threads");
174 
175 struct cam_periph *xpt_periph;
176 
177 static periph_init_t xpt_periph_init;
178 
179 static struct periph_driver xpt_driver =
180 {
181 	xpt_periph_init, "xpt",
182 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
183 	CAM_PERIPH_DRV_EARLY
184 };
185 
186 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
187 
188 static d_open_t xptopen;
189 static d_close_t xptclose;
190 static d_ioctl_t xptioctl;
191 static d_ioctl_t xptdoioctl;
192 
193 static struct cdevsw xpt_cdevsw = {
194 	.d_version =	D_VERSION,
195 	.d_flags =	0,
196 	.d_open =	xptopen,
197 	.d_close =	xptclose,
198 	.d_ioctl =	xptioctl,
199 	.d_name =	"xpt",
200 };
201 
202 /* Storage for debugging datastructures */
203 struct cam_path *cam_dpath;
204 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
205 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
206 	&cam_dflags, 0, "Enabled debug flags");
207 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
208 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
209 	&cam_debug_delay, 0, "Delay in us after each debug message");
210 
211 /* Our boot-time initialization hook */
212 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
213 
214 static moduledata_t cam_moduledata = {
215 	"cam",
216 	cam_module_event_handler,
217 	NULL
218 };
219 
220 static int	xpt_init(void *);
221 
222 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
223 MODULE_VERSION(cam, 1);
224 
225 
226 static void		xpt_async_bcast(struct async_list *async_head,
227 					u_int32_t async_code,
228 					struct cam_path *path,
229 					void *async_arg);
230 static path_id_t xptnextfreepathid(void);
231 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
232 static union ccb *xpt_get_ccb(struct cam_periph *periph);
233 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
234 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
235 static void	 xpt_run_allocq_task(void *context, int pending);
236 static void	 xpt_run_devq(struct cam_devq *devq);
237 static timeout_t xpt_release_devq_timeout;
238 static void	 xpt_release_simq_timeout(void *arg) __unused;
239 static void	 xpt_acquire_bus(struct cam_eb *bus);
240 static void	 xpt_release_bus(struct cam_eb *bus);
241 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
242 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
243 		    int run_queue);
244 static struct cam_et*
245 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
246 static void	 xpt_acquire_target(struct cam_et *target);
247 static void	 xpt_release_target(struct cam_et *target);
248 static struct cam_eb*
249 		 xpt_find_bus(path_id_t path_id);
250 static struct cam_et*
251 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
252 static struct cam_ed*
253 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
254 static void	 xpt_config(void *arg);
255 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
256 				 u_int32_t new_priority);
257 static xpt_devicefunc_t xptpassannouncefunc;
258 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
259 static void	 xptpoll(struct cam_sim *sim);
260 static void	 camisr_runqueue(void);
261 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
262 static void	 xpt_done_td(void *);
263 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
264 				    u_int num_patterns, struct cam_eb *bus);
265 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
266 				       u_int num_patterns,
267 				       struct cam_ed *device);
268 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
269 				       u_int num_patterns,
270 				       struct cam_periph *periph);
271 static xpt_busfunc_t	xptedtbusfunc;
272 static xpt_targetfunc_t	xptedttargetfunc;
273 static xpt_devicefunc_t	xptedtdevicefunc;
274 static xpt_periphfunc_t	xptedtperiphfunc;
275 static xpt_pdrvfunc_t	xptplistpdrvfunc;
276 static xpt_periphfunc_t	xptplistperiphfunc;
277 static int		xptedtmatch(struct ccb_dev_match *cdm);
278 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
279 static int		xptbustraverse(struct cam_eb *start_bus,
280 				       xpt_busfunc_t *tr_func, void *arg);
281 static int		xpttargettraverse(struct cam_eb *bus,
282 					  struct cam_et *start_target,
283 					  xpt_targetfunc_t *tr_func, void *arg);
284 static int		xptdevicetraverse(struct cam_et *target,
285 					  struct cam_ed *start_device,
286 					  xpt_devicefunc_t *tr_func, void *arg);
287 static int		xptperiphtraverse(struct cam_ed *device,
288 					  struct cam_periph *start_periph,
289 					  xpt_periphfunc_t *tr_func, void *arg);
290 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
291 					xpt_pdrvfunc_t *tr_func, void *arg);
292 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
293 					    struct cam_periph *start_periph,
294 					    xpt_periphfunc_t *tr_func,
295 					    void *arg);
296 static xpt_busfunc_t	xptdefbusfunc;
297 static xpt_targetfunc_t	xptdeftargetfunc;
298 static xpt_devicefunc_t	xptdefdevicefunc;
299 static xpt_periphfunc_t	xptdefperiphfunc;
300 static void		xpt_finishconfig_task(void *context, int pending);
301 static void		xpt_dev_async_default(u_int32_t async_code,
302 					      struct cam_eb *bus,
303 					      struct cam_et *target,
304 					      struct cam_ed *device,
305 					      void *async_arg);
306 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
307 						 struct cam_et *target,
308 						 lun_id_t lun_id);
309 static xpt_devicefunc_t	xptsetasyncfunc;
310 static xpt_busfunc_t	xptsetasyncbusfunc;
311 static cam_status	xptregister(struct cam_periph *periph,
312 				    void *arg);
313 static const char *	xpt_action_name(uint32_t action);
314 static __inline int device_is_queued(struct cam_ed *device);
315 
316 static __inline int
317 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
318 {
319 	int	retval;
320 
321 	mtx_assert(&devq->send_mtx, MA_OWNED);
322 	if ((dev->ccbq.queue.entries > 0) &&
323 	    (dev->ccbq.dev_openings > 0) &&
324 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
325 		/*
326 		 * The priority of a device waiting for controller
327 		 * resources is that of the highest priority CCB
328 		 * enqueued.
329 		 */
330 		retval =
331 		    xpt_schedule_dev(&devq->send_queue,
332 				     &dev->devq_entry,
333 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
334 	} else {
335 		retval = 0;
336 	}
337 	return (retval);
338 }
339 
340 static __inline int
341 device_is_queued(struct cam_ed *device)
342 {
343 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
344 }
345 
346 static void
347 xpt_periph_init()
348 {
349 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
350 }
351 
352 static int
353 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
354 {
355 
356 	/*
357 	 * Only allow read-write access.
358 	 */
359 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
360 		return(EPERM);
361 
362 	/*
363 	 * We don't allow nonblocking access.
364 	 */
365 	if ((flags & O_NONBLOCK) != 0) {
366 		printf("%s: can't do nonblocking access\n", devtoname(dev));
367 		return(ENODEV);
368 	}
369 
370 	return(0);
371 }
372 
373 static int
374 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
375 {
376 
377 	return(0);
378 }
379 
380 /*
381  * Don't automatically grab the xpt softc lock here even though this is going
382  * through the xpt device.  The xpt device is really just a back door for
383  * accessing other devices and SIMs, so the right thing to do is to grab
384  * the appropriate SIM lock once the bus/SIM is located.
385  */
386 static int
387 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
388 {
389 	int error;
390 
391 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
392 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
393 	}
394 	return (error);
395 }
396 
397 static int
398 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
399 {
400 	int error;
401 
402 	error = 0;
403 
404 	switch(cmd) {
405 	/*
406 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
407 	 * to accept CCB types that don't quite make sense to send through a
408 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
409 	 * in the CAM spec.
410 	 */
411 	case CAMIOCOMMAND: {
412 		union ccb *ccb;
413 		union ccb *inccb;
414 		struct cam_eb *bus;
415 
416 		inccb = (union ccb *)addr;
417 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
418 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
419 			inccb->csio.bio = NULL;
420 #endif
421 
422 		bus = xpt_find_bus(inccb->ccb_h.path_id);
423 		if (bus == NULL)
424 			return (EINVAL);
425 
426 		switch (inccb->ccb_h.func_code) {
427 		case XPT_SCAN_BUS:
428 		case XPT_RESET_BUS:
429 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
430 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
431 				xpt_release_bus(bus);
432 				return (EINVAL);
433 			}
434 			break;
435 		case XPT_SCAN_TGT:
436 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
437 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
438 				xpt_release_bus(bus);
439 				return (EINVAL);
440 			}
441 			break;
442 		default:
443 			break;
444 		}
445 
446 		switch(inccb->ccb_h.func_code) {
447 		case XPT_SCAN_BUS:
448 		case XPT_RESET_BUS:
449 		case XPT_PATH_INQ:
450 		case XPT_ENG_INQ:
451 		case XPT_SCAN_LUN:
452 		case XPT_SCAN_TGT:
453 
454 			ccb = xpt_alloc_ccb();
455 
456 			/*
457 			 * Create a path using the bus, target, and lun the
458 			 * user passed in.
459 			 */
460 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
461 					    inccb->ccb_h.path_id,
462 					    inccb->ccb_h.target_id,
463 					    inccb->ccb_h.target_lun) !=
464 					    CAM_REQ_CMP){
465 				error = EINVAL;
466 				xpt_free_ccb(ccb);
467 				break;
468 			}
469 			/* Ensure all of our fields are correct */
470 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
471 				      inccb->ccb_h.pinfo.priority);
472 			xpt_merge_ccb(ccb, inccb);
473 			xpt_path_lock(ccb->ccb_h.path);
474 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
475 			xpt_path_unlock(ccb->ccb_h.path);
476 			bcopy(ccb, inccb, sizeof(union ccb));
477 			xpt_free_path(ccb->ccb_h.path);
478 			xpt_free_ccb(ccb);
479 			break;
480 
481 		case XPT_DEBUG: {
482 			union ccb ccb;
483 
484 			/*
485 			 * This is an immediate CCB, so it's okay to
486 			 * allocate it on the stack.
487 			 */
488 
489 			/*
490 			 * Create a path using the bus, target, and lun the
491 			 * user passed in.
492 			 */
493 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
494 					    inccb->ccb_h.path_id,
495 					    inccb->ccb_h.target_id,
496 					    inccb->ccb_h.target_lun) !=
497 					    CAM_REQ_CMP){
498 				error = EINVAL;
499 				break;
500 			}
501 			/* Ensure all of our fields are correct */
502 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
503 				      inccb->ccb_h.pinfo.priority);
504 			xpt_merge_ccb(&ccb, inccb);
505 			xpt_action(&ccb);
506 			bcopy(&ccb, inccb, sizeof(union ccb));
507 			xpt_free_path(ccb.ccb_h.path);
508 			break;
509 
510 		}
511 		case XPT_DEV_MATCH: {
512 			struct cam_periph_map_info mapinfo;
513 			struct cam_path *old_path;
514 
515 			/*
516 			 * We can't deal with physical addresses for this
517 			 * type of transaction.
518 			 */
519 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
520 			    CAM_DATA_VADDR) {
521 				error = EINVAL;
522 				break;
523 			}
524 
525 			/*
526 			 * Save this in case the caller had it set to
527 			 * something in particular.
528 			 */
529 			old_path = inccb->ccb_h.path;
530 
531 			/*
532 			 * We really don't need a path for the matching
533 			 * code.  The path is needed because of the
534 			 * debugging statements in xpt_action().  They
535 			 * assume that the CCB has a valid path.
536 			 */
537 			inccb->ccb_h.path = xpt_periph->path;
538 
539 			bzero(&mapinfo, sizeof(mapinfo));
540 
541 			/*
542 			 * Map the pattern and match buffers into kernel
543 			 * virtual address space.
544 			 */
545 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
546 
547 			if (error) {
548 				inccb->ccb_h.path = old_path;
549 				break;
550 			}
551 
552 			/*
553 			 * This is an immediate CCB, we can send it on directly.
554 			 */
555 			xpt_action(inccb);
556 
557 			/*
558 			 * Map the buffers back into user space.
559 			 */
560 			cam_periph_unmapmem(inccb, &mapinfo);
561 
562 			inccb->ccb_h.path = old_path;
563 
564 			error = 0;
565 			break;
566 		}
567 		default:
568 			error = ENOTSUP;
569 			break;
570 		}
571 		xpt_release_bus(bus);
572 		break;
573 	}
574 	/*
575 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
576 	 * with the periphal driver name and unit name filled in.  The other
577 	 * fields don't really matter as input.  The passthrough driver name
578 	 * ("pass"), and unit number are passed back in the ccb.  The current
579 	 * device generation number, and the index into the device peripheral
580 	 * driver list, and the status are also passed back.  Note that
581 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
582 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
583 	 * (or rather should be) impossible for the device peripheral driver
584 	 * list to change since we look at the whole thing in one pass, and
585 	 * we do it with lock protection.
586 	 *
587 	 */
588 	case CAMGETPASSTHRU: {
589 		union ccb *ccb;
590 		struct cam_periph *periph;
591 		struct periph_driver **p_drv;
592 		char   *name;
593 		u_int unit;
594 		int base_periph_found;
595 
596 		ccb = (union ccb *)addr;
597 		unit = ccb->cgdl.unit_number;
598 		name = ccb->cgdl.periph_name;
599 		base_periph_found = 0;
600 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
601 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
602 			ccb->csio.bio = NULL;
603 #endif
604 
605 		/*
606 		 * Sanity check -- make sure we don't get a null peripheral
607 		 * driver name.
608 		 */
609 		if (*ccb->cgdl.periph_name == '\0') {
610 			error = EINVAL;
611 			break;
612 		}
613 
614 		/* Keep the list from changing while we traverse it */
615 		xpt_lock_buses();
616 
617 		/* first find our driver in the list of drivers */
618 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
619 			if (strcmp((*p_drv)->driver_name, name) == 0)
620 				break;
621 
622 		if (*p_drv == NULL) {
623 			xpt_unlock_buses();
624 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
625 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
626 			*ccb->cgdl.periph_name = '\0';
627 			ccb->cgdl.unit_number = 0;
628 			error = ENOENT;
629 			break;
630 		}
631 
632 		/*
633 		 * Run through every peripheral instance of this driver
634 		 * and check to see whether it matches the unit passed
635 		 * in by the user.  If it does, get out of the loops and
636 		 * find the passthrough driver associated with that
637 		 * peripheral driver.
638 		 */
639 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
640 		     periph = TAILQ_NEXT(periph, unit_links)) {
641 
642 			if (periph->unit_number == unit)
643 				break;
644 		}
645 		/*
646 		 * If we found the peripheral driver that the user passed
647 		 * in, go through all of the peripheral drivers for that
648 		 * particular device and look for a passthrough driver.
649 		 */
650 		if (periph != NULL) {
651 			struct cam_ed *device;
652 			int i;
653 
654 			base_periph_found = 1;
655 			device = periph->path->device;
656 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
657 			     periph != NULL;
658 			     periph = SLIST_NEXT(periph, periph_links), i++) {
659 				/*
660 				 * Check to see whether we have a
661 				 * passthrough device or not.
662 				 */
663 				if (strcmp(periph->periph_name, "pass") == 0) {
664 					/*
665 					 * Fill in the getdevlist fields.
666 					 */
667 					strcpy(ccb->cgdl.periph_name,
668 					       periph->periph_name);
669 					ccb->cgdl.unit_number =
670 						periph->unit_number;
671 					if (SLIST_NEXT(periph, periph_links))
672 						ccb->cgdl.status =
673 							CAM_GDEVLIST_MORE_DEVS;
674 					else
675 						ccb->cgdl.status =
676 						       CAM_GDEVLIST_LAST_DEVICE;
677 					ccb->cgdl.generation =
678 						device->generation;
679 					ccb->cgdl.index = i;
680 					/*
681 					 * Fill in some CCB header fields
682 					 * that the user may want.
683 					 */
684 					ccb->ccb_h.path_id =
685 						periph->path->bus->path_id;
686 					ccb->ccb_h.target_id =
687 						periph->path->target->target_id;
688 					ccb->ccb_h.target_lun =
689 						periph->path->device->lun_id;
690 					ccb->ccb_h.status = CAM_REQ_CMP;
691 					break;
692 				}
693 			}
694 		}
695 
696 		/*
697 		 * If the periph is null here, one of two things has
698 		 * happened.  The first possibility is that we couldn't
699 		 * find the unit number of the particular peripheral driver
700 		 * that the user is asking about.  e.g. the user asks for
701 		 * the passthrough driver for "da11".  We find the list of
702 		 * "da" peripherals all right, but there is no unit 11.
703 		 * The other possibility is that we went through the list
704 		 * of peripheral drivers attached to the device structure,
705 		 * but didn't find one with the name "pass".  Either way,
706 		 * we return ENOENT, since we couldn't find something.
707 		 */
708 		if (periph == NULL) {
709 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
710 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
711 			*ccb->cgdl.periph_name = '\0';
712 			ccb->cgdl.unit_number = 0;
713 			error = ENOENT;
714 			/*
715 			 * It is unfortunate that this is even necessary,
716 			 * but there are many, many clueless users out there.
717 			 * If this is true, the user is looking for the
718 			 * passthrough driver, but doesn't have one in his
719 			 * kernel.
720 			 */
721 			if (base_periph_found == 1) {
722 				printf("xptioctl: pass driver is not in the "
723 				       "kernel\n");
724 				printf("xptioctl: put \"device pass\" in "
725 				       "your kernel config file\n");
726 			}
727 		}
728 		xpt_unlock_buses();
729 		break;
730 		}
731 	default:
732 		error = ENOTTY;
733 		break;
734 	}
735 
736 	return(error);
737 }
738 
739 static int
740 cam_module_event_handler(module_t mod, int what, void *arg)
741 {
742 	int error;
743 
744 	switch (what) {
745 	case MOD_LOAD:
746 		if ((error = xpt_init(NULL)) != 0)
747 			return (error);
748 		break;
749 	case MOD_UNLOAD:
750 		return EBUSY;
751 	default:
752 		return EOPNOTSUPP;
753 	}
754 
755 	return 0;
756 }
757 
758 static struct xpt_proto *
759 xpt_proto_find(cam_proto proto)
760 {
761 	struct xpt_proto **pp;
762 
763 	SET_FOREACH(pp, cam_xpt_proto_set) {
764 		if ((*pp)->proto == proto)
765 			return *pp;
766 	}
767 
768 	return NULL;
769 }
770 
771 static void
772 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
773 {
774 
775 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
776 		xpt_free_path(done_ccb->ccb_h.path);
777 		xpt_free_ccb(done_ccb);
778 	} else {
779 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
780 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
781 	}
782 	xpt_release_boot();
783 }
784 
785 /* thread to handle bus rescans */
786 static void
787 xpt_scanner_thread(void *dummy)
788 {
789 	union ccb	*ccb;
790 	struct cam_path	 path;
791 
792 	xpt_lock_buses();
793 	for (;;) {
794 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
795 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
796 			       "-", 0);
797 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
798 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
799 			xpt_unlock_buses();
800 
801 			/*
802 			 * Since lock can be dropped inside and path freed
803 			 * by completion callback even before return here,
804 			 * take our own path copy for reference.
805 			 */
806 			xpt_copy_path(&path, ccb->ccb_h.path);
807 			xpt_path_lock(&path);
808 			xpt_action(ccb);
809 			xpt_path_unlock(&path);
810 			xpt_release_path(&path);
811 
812 			xpt_lock_buses();
813 		}
814 	}
815 }
816 
817 void
818 xpt_rescan(union ccb *ccb)
819 {
820 	struct ccb_hdr *hdr;
821 
822 	/* Prepare request */
823 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
824 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
825 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
826 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
827 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
828 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
829 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
830 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
831 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
832 	else {
833 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
834 		xpt_free_path(ccb->ccb_h.path);
835 		xpt_free_ccb(ccb);
836 		return;
837 	}
838 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
839 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
840  		xpt_action_name(ccb->ccb_h.func_code)));
841 
842 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
843 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
844 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
845 	/* Don't make duplicate entries for the same paths. */
846 	xpt_lock_buses();
847 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
848 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
849 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
850 				wakeup(&xsoftc.ccb_scanq);
851 				xpt_unlock_buses();
852 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
853 				xpt_free_path(ccb->ccb_h.path);
854 				xpt_free_ccb(ccb);
855 				return;
856 			}
857 		}
858 	}
859 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
860 	xsoftc.buses_to_config++;
861 	wakeup(&xsoftc.ccb_scanq);
862 	xpt_unlock_buses();
863 }
864 
865 /* Functions accessed by the peripheral drivers */
866 static int
867 xpt_init(void *dummy)
868 {
869 	struct cam_sim *xpt_sim;
870 	struct cam_path *path;
871 	struct cam_devq *devq;
872 	cam_status status;
873 	int error, i;
874 
875 	TAILQ_INIT(&xsoftc.xpt_busses);
876 	TAILQ_INIT(&xsoftc.ccb_scanq);
877 	STAILQ_INIT(&xsoftc.highpowerq);
878 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
879 
880 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
881 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
882 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
883 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
884 
885 #ifdef CAM_BOOT_DELAY
886 	/*
887 	 * Override this value at compile time to assist our users
888 	 * who don't use loader to boot a kernel.
889 	 */
890 	xsoftc.boot_delay = CAM_BOOT_DELAY;
891 #endif
892 	/*
893 	 * The xpt layer is, itself, the equivalent of a SIM.
894 	 * Allow 16 ccbs in the ccb pool for it.  This should
895 	 * give decent parallelism when we probe busses and
896 	 * perform other XPT functions.
897 	 */
898 	devq = cam_simq_alloc(16);
899 	xpt_sim = cam_sim_alloc(xptaction,
900 				xptpoll,
901 				"xpt",
902 				/*softc*/NULL,
903 				/*unit*/0,
904 				/*mtx*/&xsoftc.xpt_lock,
905 				/*max_dev_transactions*/0,
906 				/*max_tagged_dev_transactions*/0,
907 				devq);
908 	if (xpt_sim == NULL)
909 		return (ENOMEM);
910 
911 	mtx_lock(&xsoftc.xpt_lock);
912 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
913 		mtx_unlock(&xsoftc.xpt_lock);
914 		printf("xpt_init: xpt_bus_register failed with status %#x,"
915 		       " failing attach\n", status);
916 		return (EINVAL);
917 	}
918 	mtx_unlock(&xsoftc.xpt_lock);
919 
920 	/*
921 	 * Looking at the XPT from the SIM layer, the XPT is
922 	 * the equivalent of a peripheral driver.  Allocate
923 	 * a peripheral driver entry for us.
924 	 */
925 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
926 				      CAM_TARGET_WILDCARD,
927 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
928 		printf("xpt_init: xpt_create_path failed with status %#x,"
929 		       " failing attach\n", status);
930 		return (EINVAL);
931 	}
932 	xpt_path_lock(path);
933 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
934 			 path, NULL, 0, xpt_sim);
935 	xpt_path_unlock(path);
936 	xpt_free_path(path);
937 
938 	if (cam_num_doneqs < 1)
939 		cam_num_doneqs = 1 + mp_ncpus / 6;
940 	else if (cam_num_doneqs > MAXCPU)
941 		cam_num_doneqs = MAXCPU;
942 	for (i = 0; i < cam_num_doneqs; i++) {
943 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
944 		    MTX_DEF);
945 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
946 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
947 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
948 		if (error != 0) {
949 			cam_num_doneqs = i;
950 			break;
951 		}
952 	}
953 	if (cam_num_doneqs < 1) {
954 		printf("xpt_init: Cannot init completion queues "
955 		       "- failing attach\n");
956 		return (ENOMEM);
957 	}
958 	/*
959 	 * Register a callback for when interrupts are enabled.
960 	 */
961 	xsoftc.xpt_config_hook =
962 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
963 					      M_CAMXPT, M_NOWAIT | M_ZERO);
964 	if (xsoftc.xpt_config_hook == NULL) {
965 		printf("xpt_init: Cannot malloc config hook "
966 		       "- failing attach\n");
967 		return (ENOMEM);
968 	}
969 	xsoftc.xpt_config_hook->ich_func = xpt_config;
970 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
971 		free (xsoftc.xpt_config_hook, M_CAMXPT);
972 		printf("xpt_init: config_intrhook_establish failed "
973 		       "- failing attach\n");
974 	}
975 
976 	return (0);
977 }
978 
979 static cam_status
980 xptregister(struct cam_periph *periph, void *arg)
981 {
982 	struct cam_sim *xpt_sim;
983 
984 	if (periph == NULL) {
985 		printf("xptregister: periph was NULL!!\n");
986 		return(CAM_REQ_CMP_ERR);
987 	}
988 
989 	xpt_sim = (struct cam_sim *)arg;
990 	xpt_sim->softc = periph;
991 	xpt_periph = periph;
992 	periph->softc = NULL;
993 
994 	return(CAM_REQ_CMP);
995 }
996 
997 int32_t
998 xpt_add_periph(struct cam_periph *periph)
999 {
1000 	struct cam_ed *device;
1001 	int32_t	 status;
1002 
1003 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1004 	device = periph->path->device;
1005 	status = CAM_REQ_CMP;
1006 	if (device != NULL) {
1007 		mtx_lock(&device->target->bus->eb_mtx);
1008 		device->generation++;
1009 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1010 		mtx_unlock(&device->target->bus->eb_mtx);
1011 		atomic_add_32(&xsoftc.xpt_generation, 1);
1012 	}
1013 
1014 	return (status);
1015 }
1016 
1017 void
1018 xpt_remove_periph(struct cam_periph *periph)
1019 {
1020 	struct cam_ed *device;
1021 
1022 	device = periph->path->device;
1023 	if (device != NULL) {
1024 		mtx_lock(&device->target->bus->eb_mtx);
1025 		device->generation++;
1026 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1027 		mtx_unlock(&device->target->bus->eb_mtx);
1028 		atomic_add_32(&xsoftc.xpt_generation, 1);
1029 	}
1030 }
1031 
1032 
1033 void
1034 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1035 {
1036 	struct	cam_path *path = periph->path;
1037 	struct  xpt_proto *proto;
1038 
1039 	cam_periph_assert(periph, MA_OWNED);
1040 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1041 
1042 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1043 	       periph->periph_name, periph->unit_number,
1044 	       path->bus->sim->sim_name,
1045 	       path->bus->sim->unit_number,
1046 	       path->bus->sim->bus_id,
1047 	       path->bus->path_id,
1048 	       path->target->target_id,
1049 	       (uintmax_t)path->device->lun_id);
1050 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1051 	proto = xpt_proto_find(path->device->protocol);
1052 	if (proto)
1053 		proto->ops->announce(path->device);
1054 	else
1055 		printf("%s%d: Unknown protocol device %d\n",
1056 		    periph->periph_name, periph->unit_number,
1057 		    path->device->protocol);
1058 	if (path->device->serial_num_len > 0) {
1059 		/* Don't wrap the screen  - print only the first 60 chars */
1060 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1061 		       periph->unit_number, path->device->serial_num);
1062 	}
1063 	/* Announce transport details. */
1064 	path->bus->xport->ops->announce(periph);
1065 	/* Announce command queueing. */
1066 	if (path->device->inq_flags & SID_CmdQue
1067 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1068 		printf("%s%d: Command Queueing enabled\n",
1069 		       periph->periph_name, periph->unit_number);
1070 	}
1071 	/* Announce caller's details if they've passed in. */
1072 	if (announce_string != NULL)
1073 		printf("%s%d: %s\n", periph->periph_name,
1074 		       periph->unit_number, announce_string);
1075 }
1076 
1077 void
1078 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1079 {
1080 	if (quirks != 0) {
1081 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1082 		    periph->unit_number, quirks, bit_string);
1083 	}
1084 }
1085 
1086 void
1087 xpt_denounce_periph(struct cam_periph *periph)
1088 {
1089 	struct	cam_path *path = periph->path;
1090 	struct  xpt_proto *proto;
1091 
1092 	cam_periph_assert(periph, MA_OWNED);
1093 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1094 	       periph->periph_name, periph->unit_number,
1095 	       path->bus->sim->sim_name,
1096 	       path->bus->sim->unit_number,
1097 	       path->bus->sim->bus_id,
1098 	       path->bus->path_id,
1099 	       path->target->target_id,
1100 	       (uintmax_t)path->device->lun_id);
1101 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1102 	proto = xpt_proto_find(path->device->protocol);
1103 	if (proto)
1104 		proto->ops->denounce(path->device);
1105 	else
1106 		printf("%s%d: Unknown protocol device %d\n",
1107 		    periph->periph_name, periph->unit_number,
1108 		    path->device->protocol);
1109 	if (path->device->serial_num_len > 0)
1110 		printf(" s/n %.60s", path->device->serial_num);
1111 	printf(" detached\n");
1112 }
1113 
1114 
1115 int
1116 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1117 {
1118 	int ret = -1, l, o;
1119 	struct ccb_dev_advinfo cdai;
1120 	struct scsi_vpd_id_descriptor *idd;
1121 
1122 	xpt_path_assert(path, MA_OWNED);
1123 
1124 	memset(&cdai, 0, sizeof(cdai));
1125 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1126 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1127 	cdai.flags = CDAI_FLAG_NONE;
1128 	cdai.bufsiz = len;
1129 
1130 	if (!strcmp(attr, "GEOM::ident"))
1131 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1132 	else if (!strcmp(attr, "GEOM::physpath"))
1133 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1134 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1135 		 strcmp(attr, "GEOM::lunname") == 0) {
1136 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1137 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1138 	} else
1139 		goto out;
1140 
1141 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1142 	if (cdai.buf == NULL) {
1143 		ret = ENOMEM;
1144 		goto out;
1145 	}
1146 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1147 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1148 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1149 	if (cdai.provsiz == 0)
1150 		goto out;
1151 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1152 		if (strcmp(attr, "GEOM::lunid") == 0) {
1153 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1154 			    cdai.provsiz, scsi_devid_is_lun_naa);
1155 			if (idd == NULL)
1156 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1157 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1158 			if (idd == NULL)
1159 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1160 				    cdai.provsiz, scsi_devid_is_lun_uuid);
1161 			if (idd == NULL)
1162 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1163 				    cdai.provsiz, scsi_devid_is_lun_md5);
1164 		} else
1165 			idd = NULL;
1166 		if (idd == NULL)
1167 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1168 			    cdai.provsiz, scsi_devid_is_lun_t10);
1169 		if (idd == NULL)
1170 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1171 			    cdai.provsiz, scsi_devid_is_lun_name);
1172 		if (idd == NULL)
1173 			goto out;
1174 		ret = 0;
1175 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1176 			if (idd->length < len) {
1177 				for (l = 0; l < idd->length; l++)
1178 					buf[l] = idd->identifier[l] ?
1179 					    idd->identifier[l] : ' ';
1180 				buf[l] = 0;
1181 			} else
1182 				ret = EFAULT;
1183 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1184 			l = strnlen(idd->identifier, idd->length);
1185 			if (l < len) {
1186 				bcopy(idd->identifier, buf, l);
1187 				buf[l] = 0;
1188 			} else
1189 				ret = EFAULT;
1190 		} else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
1191 		    && idd->identifier[0] == 0x10) {
1192 			if ((idd->length - 2) * 2 + 4 < len) {
1193 				for (l = 2, o = 0; l < idd->length; l++) {
1194 					if (l == 6 || l == 8 || l == 10 || l == 12)
1195 					    o += sprintf(buf + o, "-");
1196 					o += sprintf(buf + o, "%02x",
1197 					    idd->identifier[l]);
1198 				}
1199 			} else
1200 				ret = EFAULT;
1201 		} else {
1202 			if (idd->length * 2 < len) {
1203 				for (l = 0; l < idd->length; l++)
1204 					sprintf(buf + l * 2, "%02x",
1205 					    idd->identifier[l]);
1206 			} else
1207 				ret = EFAULT;
1208 		}
1209 	} else {
1210 		ret = 0;
1211 		if (strlcpy(buf, cdai.buf, len) >= len)
1212 			ret = EFAULT;
1213 	}
1214 
1215 out:
1216 	if (cdai.buf != NULL)
1217 		free(cdai.buf, M_CAMXPT);
1218 	return ret;
1219 }
1220 
1221 static dev_match_ret
1222 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1223 	    struct cam_eb *bus)
1224 {
1225 	dev_match_ret retval;
1226 	u_int i;
1227 
1228 	retval = DM_RET_NONE;
1229 
1230 	/*
1231 	 * If we aren't given something to match against, that's an error.
1232 	 */
1233 	if (bus == NULL)
1234 		return(DM_RET_ERROR);
1235 
1236 	/*
1237 	 * If there are no match entries, then this bus matches no
1238 	 * matter what.
1239 	 */
1240 	if ((patterns == NULL) || (num_patterns == 0))
1241 		return(DM_RET_DESCEND | DM_RET_COPY);
1242 
1243 	for (i = 0; i < num_patterns; i++) {
1244 		struct bus_match_pattern *cur_pattern;
1245 
1246 		/*
1247 		 * If the pattern in question isn't for a bus node, we
1248 		 * aren't interested.  However, we do indicate to the
1249 		 * calling routine that we should continue descending the
1250 		 * tree, since the user wants to match against lower-level
1251 		 * EDT elements.
1252 		 */
1253 		if (patterns[i].type != DEV_MATCH_BUS) {
1254 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1255 				retval |= DM_RET_DESCEND;
1256 			continue;
1257 		}
1258 
1259 		cur_pattern = &patterns[i].pattern.bus_pattern;
1260 
1261 		/*
1262 		 * If they want to match any bus node, we give them any
1263 		 * device node.
1264 		 */
1265 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1266 			/* set the copy flag */
1267 			retval |= DM_RET_COPY;
1268 
1269 			/*
1270 			 * If we've already decided on an action, go ahead
1271 			 * and return.
1272 			 */
1273 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1274 				return(retval);
1275 		}
1276 
1277 		/*
1278 		 * Not sure why someone would do this...
1279 		 */
1280 		if (cur_pattern->flags == BUS_MATCH_NONE)
1281 			continue;
1282 
1283 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1284 		 && (cur_pattern->path_id != bus->path_id))
1285 			continue;
1286 
1287 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1288 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1289 			continue;
1290 
1291 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1292 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1293 			continue;
1294 
1295 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1296 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1297 			     DEV_IDLEN) != 0))
1298 			continue;
1299 
1300 		/*
1301 		 * If we get to this point, the user definitely wants
1302 		 * information on this bus.  So tell the caller to copy the
1303 		 * data out.
1304 		 */
1305 		retval |= DM_RET_COPY;
1306 
1307 		/*
1308 		 * If the return action has been set to descend, then we
1309 		 * know that we've already seen a non-bus matching
1310 		 * expression, therefore we need to further descend the tree.
1311 		 * This won't change by continuing around the loop, so we
1312 		 * go ahead and return.  If we haven't seen a non-bus
1313 		 * matching expression, we keep going around the loop until
1314 		 * we exhaust the matching expressions.  We'll set the stop
1315 		 * flag once we fall out of the loop.
1316 		 */
1317 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1318 			return(retval);
1319 	}
1320 
1321 	/*
1322 	 * If the return action hasn't been set to descend yet, that means
1323 	 * we haven't seen anything other than bus matching patterns.  So
1324 	 * tell the caller to stop descending the tree -- the user doesn't
1325 	 * want to match against lower level tree elements.
1326 	 */
1327 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1328 		retval |= DM_RET_STOP;
1329 
1330 	return(retval);
1331 }
1332 
1333 static dev_match_ret
1334 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1335 	       struct cam_ed *device)
1336 {
1337 	dev_match_ret retval;
1338 	u_int i;
1339 
1340 	retval = DM_RET_NONE;
1341 
1342 	/*
1343 	 * If we aren't given something to match against, that's an error.
1344 	 */
1345 	if (device == NULL)
1346 		return(DM_RET_ERROR);
1347 
1348 	/*
1349 	 * If there are no match entries, then this device matches no
1350 	 * matter what.
1351 	 */
1352 	if ((patterns == NULL) || (num_patterns == 0))
1353 		return(DM_RET_DESCEND | DM_RET_COPY);
1354 
1355 	for (i = 0; i < num_patterns; i++) {
1356 		struct device_match_pattern *cur_pattern;
1357 		struct scsi_vpd_device_id *device_id_page;
1358 
1359 		/*
1360 		 * If the pattern in question isn't for a device node, we
1361 		 * aren't interested.
1362 		 */
1363 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1364 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1365 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1366 				retval |= DM_RET_DESCEND;
1367 			continue;
1368 		}
1369 
1370 		cur_pattern = &patterns[i].pattern.device_pattern;
1371 
1372 		/* Error out if mutually exclusive options are specified. */
1373 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1374 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1375 			return(DM_RET_ERROR);
1376 
1377 		/*
1378 		 * If they want to match any device node, we give them any
1379 		 * device node.
1380 		 */
1381 		if (cur_pattern->flags == DEV_MATCH_ANY)
1382 			goto copy_dev_node;
1383 
1384 		/*
1385 		 * Not sure why someone would do this...
1386 		 */
1387 		if (cur_pattern->flags == DEV_MATCH_NONE)
1388 			continue;
1389 
1390 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1391 		 && (cur_pattern->path_id != device->target->bus->path_id))
1392 			continue;
1393 
1394 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1395 		 && (cur_pattern->target_id != device->target->target_id))
1396 			continue;
1397 
1398 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1399 		 && (cur_pattern->target_lun != device->lun_id))
1400 			continue;
1401 
1402 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1403 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1404 				    (caddr_t)&cur_pattern->data.inq_pat,
1405 				    1, sizeof(cur_pattern->data.inq_pat),
1406 				    scsi_static_inquiry_match) == NULL))
1407 			continue;
1408 
1409 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1410 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1411 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1412 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1413 				      device->device_id_len
1414 				    - SVPD_DEVICE_ID_HDR_LEN,
1415 				      cur_pattern->data.devid_pat.id,
1416 				      cur_pattern->data.devid_pat.id_len) != 0))
1417 			continue;
1418 
1419 copy_dev_node:
1420 		/*
1421 		 * If we get to this point, the user definitely wants
1422 		 * information on this device.  So tell the caller to copy
1423 		 * the data out.
1424 		 */
1425 		retval |= DM_RET_COPY;
1426 
1427 		/*
1428 		 * If the return action has been set to descend, then we
1429 		 * know that we've already seen a peripheral matching
1430 		 * expression, therefore we need to further descend the tree.
1431 		 * This won't change by continuing around the loop, so we
1432 		 * go ahead and return.  If we haven't seen a peripheral
1433 		 * matching expression, we keep going around the loop until
1434 		 * we exhaust the matching expressions.  We'll set the stop
1435 		 * flag once we fall out of the loop.
1436 		 */
1437 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1438 			return(retval);
1439 	}
1440 
1441 	/*
1442 	 * If the return action hasn't been set to descend yet, that means
1443 	 * we haven't seen any peripheral matching patterns.  So tell the
1444 	 * caller to stop descending the tree -- the user doesn't want to
1445 	 * match against lower level tree elements.
1446 	 */
1447 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1448 		retval |= DM_RET_STOP;
1449 
1450 	return(retval);
1451 }
1452 
1453 /*
1454  * Match a single peripheral against any number of match patterns.
1455  */
1456 static dev_match_ret
1457 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1458 	       struct cam_periph *periph)
1459 {
1460 	dev_match_ret retval;
1461 	u_int i;
1462 
1463 	/*
1464 	 * If we aren't given something to match against, that's an error.
1465 	 */
1466 	if (periph == NULL)
1467 		return(DM_RET_ERROR);
1468 
1469 	/*
1470 	 * If there are no match entries, then this peripheral matches no
1471 	 * matter what.
1472 	 */
1473 	if ((patterns == NULL) || (num_patterns == 0))
1474 		return(DM_RET_STOP | DM_RET_COPY);
1475 
1476 	/*
1477 	 * There aren't any nodes below a peripheral node, so there's no
1478 	 * reason to descend the tree any further.
1479 	 */
1480 	retval = DM_RET_STOP;
1481 
1482 	for (i = 0; i < num_patterns; i++) {
1483 		struct periph_match_pattern *cur_pattern;
1484 
1485 		/*
1486 		 * If the pattern in question isn't for a peripheral, we
1487 		 * aren't interested.
1488 		 */
1489 		if (patterns[i].type != DEV_MATCH_PERIPH)
1490 			continue;
1491 
1492 		cur_pattern = &patterns[i].pattern.periph_pattern;
1493 
1494 		/*
1495 		 * If they want to match on anything, then we will do so.
1496 		 */
1497 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1498 			/* set the copy flag */
1499 			retval |= DM_RET_COPY;
1500 
1501 			/*
1502 			 * We've already set the return action to stop,
1503 			 * since there are no nodes below peripherals in
1504 			 * the tree.
1505 			 */
1506 			return(retval);
1507 		}
1508 
1509 		/*
1510 		 * Not sure why someone would do this...
1511 		 */
1512 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1513 			continue;
1514 
1515 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1516 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1517 			continue;
1518 
1519 		/*
1520 		 * For the target and lun id's, we have to make sure the
1521 		 * target and lun pointers aren't NULL.  The xpt peripheral
1522 		 * has a wildcard target and device.
1523 		 */
1524 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1525 		 && ((periph->path->target == NULL)
1526 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1527 			continue;
1528 
1529 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1530 		 && ((periph->path->device == NULL)
1531 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1532 			continue;
1533 
1534 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1535 		 && (cur_pattern->unit_number != periph->unit_number))
1536 			continue;
1537 
1538 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1539 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1540 			     DEV_IDLEN) != 0))
1541 			continue;
1542 
1543 		/*
1544 		 * If we get to this point, the user definitely wants
1545 		 * information on this peripheral.  So tell the caller to
1546 		 * copy the data out.
1547 		 */
1548 		retval |= DM_RET_COPY;
1549 
1550 		/*
1551 		 * The return action has already been set to stop, since
1552 		 * peripherals don't have any nodes below them in the EDT.
1553 		 */
1554 		return(retval);
1555 	}
1556 
1557 	/*
1558 	 * If we get to this point, the peripheral that was passed in
1559 	 * doesn't match any of the patterns.
1560 	 */
1561 	return(retval);
1562 }
1563 
1564 static int
1565 xptedtbusfunc(struct cam_eb *bus, void *arg)
1566 {
1567 	struct ccb_dev_match *cdm;
1568 	struct cam_et *target;
1569 	dev_match_ret retval;
1570 
1571 	cdm = (struct ccb_dev_match *)arg;
1572 
1573 	/*
1574 	 * If our position is for something deeper in the tree, that means
1575 	 * that we've already seen this node.  So, we keep going down.
1576 	 */
1577 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1578 	 && (cdm->pos.cookie.bus == bus)
1579 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1580 	 && (cdm->pos.cookie.target != NULL))
1581 		retval = DM_RET_DESCEND;
1582 	else
1583 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1584 
1585 	/*
1586 	 * If we got an error, bail out of the search.
1587 	 */
1588 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1589 		cdm->status = CAM_DEV_MATCH_ERROR;
1590 		return(0);
1591 	}
1592 
1593 	/*
1594 	 * If the copy flag is set, copy this bus out.
1595 	 */
1596 	if (retval & DM_RET_COPY) {
1597 		int spaceleft, j;
1598 
1599 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1600 			sizeof(struct dev_match_result));
1601 
1602 		/*
1603 		 * If we don't have enough space to put in another
1604 		 * match result, save our position and tell the
1605 		 * user there are more devices to check.
1606 		 */
1607 		if (spaceleft < sizeof(struct dev_match_result)) {
1608 			bzero(&cdm->pos, sizeof(cdm->pos));
1609 			cdm->pos.position_type =
1610 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1611 
1612 			cdm->pos.cookie.bus = bus;
1613 			cdm->pos.generations[CAM_BUS_GENERATION]=
1614 				xsoftc.bus_generation;
1615 			cdm->status = CAM_DEV_MATCH_MORE;
1616 			return(0);
1617 		}
1618 		j = cdm->num_matches;
1619 		cdm->num_matches++;
1620 		cdm->matches[j].type = DEV_MATCH_BUS;
1621 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1622 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1623 		cdm->matches[j].result.bus_result.unit_number =
1624 			bus->sim->unit_number;
1625 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1626 			bus->sim->sim_name, DEV_IDLEN);
1627 	}
1628 
1629 	/*
1630 	 * If the user is only interested in busses, there's no
1631 	 * reason to descend to the next level in the tree.
1632 	 */
1633 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1634 		return(1);
1635 
1636 	/*
1637 	 * If there is a target generation recorded, check it to
1638 	 * make sure the target list hasn't changed.
1639 	 */
1640 	mtx_lock(&bus->eb_mtx);
1641 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1642 	 && (cdm->pos.cookie.bus == bus)
1643 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1644 	 && (cdm->pos.cookie.target != NULL)) {
1645 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1646 		    bus->generation)) {
1647 			mtx_unlock(&bus->eb_mtx);
1648 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1649 			return (0);
1650 		}
1651 		target = (struct cam_et *)cdm->pos.cookie.target;
1652 		target->refcount++;
1653 	} else
1654 		target = NULL;
1655 	mtx_unlock(&bus->eb_mtx);
1656 
1657 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1658 }
1659 
1660 static int
1661 xptedttargetfunc(struct cam_et *target, void *arg)
1662 {
1663 	struct ccb_dev_match *cdm;
1664 	struct cam_eb *bus;
1665 	struct cam_ed *device;
1666 
1667 	cdm = (struct ccb_dev_match *)arg;
1668 	bus = target->bus;
1669 
1670 	/*
1671 	 * If there is a device list generation recorded, check it to
1672 	 * make sure the device list hasn't changed.
1673 	 */
1674 	mtx_lock(&bus->eb_mtx);
1675 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1676 	 && (cdm->pos.cookie.bus == bus)
1677 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1678 	 && (cdm->pos.cookie.target == target)
1679 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1680 	 && (cdm->pos.cookie.device != NULL)) {
1681 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1682 		    target->generation) {
1683 			mtx_unlock(&bus->eb_mtx);
1684 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1685 			return(0);
1686 		}
1687 		device = (struct cam_ed *)cdm->pos.cookie.device;
1688 		device->refcount++;
1689 	} else
1690 		device = NULL;
1691 	mtx_unlock(&bus->eb_mtx);
1692 
1693 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1694 }
1695 
1696 static int
1697 xptedtdevicefunc(struct cam_ed *device, void *arg)
1698 {
1699 	struct cam_eb *bus;
1700 	struct cam_periph *periph;
1701 	struct ccb_dev_match *cdm;
1702 	dev_match_ret retval;
1703 
1704 	cdm = (struct ccb_dev_match *)arg;
1705 	bus = device->target->bus;
1706 
1707 	/*
1708 	 * If our position is for something deeper in the tree, that means
1709 	 * that we've already seen this node.  So, we keep going down.
1710 	 */
1711 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1712 	 && (cdm->pos.cookie.device == device)
1713 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1714 	 && (cdm->pos.cookie.periph != NULL))
1715 		retval = DM_RET_DESCEND;
1716 	else
1717 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1718 					device);
1719 
1720 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1721 		cdm->status = CAM_DEV_MATCH_ERROR;
1722 		return(0);
1723 	}
1724 
1725 	/*
1726 	 * If the copy flag is set, copy this device out.
1727 	 */
1728 	if (retval & DM_RET_COPY) {
1729 		int spaceleft, j;
1730 
1731 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1732 			sizeof(struct dev_match_result));
1733 
1734 		/*
1735 		 * If we don't have enough space to put in another
1736 		 * match result, save our position and tell the
1737 		 * user there are more devices to check.
1738 		 */
1739 		if (spaceleft < sizeof(struct dev_match_result)) {
1740 			bzero(&cdm->pos, sizeof(cdm->pos));
1741 			cdm->pos.position_type =
1742 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1743 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1744 
1745 			cdm->pos.cookie.bus = device->target->bus;
1746 			cdm->pos.generations[CAM_BUS_GENERATION]=
1747 				xsoftc.bus_generation;
1748 			cdm->pos.cookie.target = device->target;
1749 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1750 				device->target->bus->generation;
1751 			cdm->pos.cookie.device = device;
1752 			cdm->pos.generations[CAM_DEV_GENERATION] =
1753 				device->target->generation;
1754 			cdm->status = CAM_DEV_MATCH_MORE;
1755 			return(0);
1756 		}
1757 		j = cdm->num_matches;
1758 		cdm->num_matches++;
1759 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1760 		cdm->matches[j].result.device_result.path_id =
1761 			device->target->bus->path_id;
1762 		cdm->matches[j].result.device_result.target_id =
1763 			device->target->target_id;
1764 		cdm->matches[j].result.device_result.target_lun =
1765 			device->lun_id;
1766 		cdm->matches[j].result.device_result.protocol =
1767 			device->protocol;
1768 		bcopy(&device->inq_data,
1769 		      &cdm->matches[j].result.device_result.inq_data,
1770 		      sizeof(struct scsi_inquiry_data));
1771 		bcopy(&device->ident_data,
1772 		      &cdm->matches[j].result.device_result.ident_data,
1773 		      sizeof(struct ata_params));
1774 
1775 		/* Let the user know whether this device is unconfigured */
1776 		if (device->flags & CAM_DEV_UNCONFIGURED)
1777 			cdm->matches[j].result.device_result.flags =
1778 				DEV_RESULT_UNCONFIGURED;
1779 		else
1780 			cdm->matches[j].result.device_result.flags =
1781 				DEV_RESULT_NOFLAG;
1782 	}
1783 
1784 	/*
1785 	 * If the user isn't interested in peripherals, don't descend
1786 	 * the tree any further.
1787 	 */
1788 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1789 		return(1);
1790 
1791 	/*
1792 	 * If there is a peripheral list generation recorded, make sure
1793 	 * it hasn't changed.
1794 	 */
1795 	xpt_lock_buses();
1796 	mtx_lock(&bus->eb_mtx);
1797 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1798 	 && (cdm->pos.cookie.bus == bus)
1799 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1800 	 && (cdm->pos.cookie.target == device->target)
1801 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1802 	 && (cdm->pos.cookie.device == device)
1803 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1804 	 && (cdm->pos.cookie.periph != NULL)) {
1805 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1806 		    device->generation) {
1807 			mtx_unlock(&bus->eb_mtx);
1808 			xpt_unlock_buses();
1809 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1810 			return(0);
1811 		}
1812 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1813 		periph->refcount++;
1814 	} else
1815 		periph = NULL;
1816 	mtx_unlock(&bus->eb_mtx);
1817 	xpt_unlock_buses();
1818 
1819 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1820 }
1821 
1822 static int
1823 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1824 {
1825 	struct ccb_dev_match *cdm;
1826 	dev_match_ret retval;
1827 
1828 	cdm = (struct ccb_dev_match *)arg;
1829 
1830 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1831 
1832 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1833 		cdm->status = CAM_DEV_MATCH_ERROR;
1834 		return(0);
1835 	}
1836 
1837 	/*
1838 	 * If the copy flag is set, copy this peripheral out.
1839 	 */
1840 	if (retval & DM_RET_COPY) {
1841 		int spaceleft, j;
1842 
1843 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1844 			sizeof(struct dev_match_result));
1845 
1846 		/*
1847 		 * If we don't have enough space to put in another
1848 		 * match result, save our position and tell the
1849 		 * user there are more devices to check.
1850 		 */
1851 		if (spaceleft < sizeof(struct dev_match_result)) {
1852 			bzero(&cdm->pos, sizeof(cdm->pos));
1853 			cdm->pos.position_type =
1854 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1855 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1856 				CAM_DEV_POS_PERIPH;
1857 
1858 			cdm->pos.cookie.bus = periph->path->bus;
1859 			cdm->pos.generations[CAM_BUS_GENERATION]=
1860 				xsoftc.bus_generation;
1861 			cdm->pos.cookie.target = periph->path->target;
1862 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1863 				periph->path->bus->generation;
1864 			cdm->pos.cookie.device = periph->path->device;
1865 			cdm->pos.generations[CAM_DEV_GENERATION] =
1866 				periph->path->target->generation;
1867 			cdm->pos.cookie.periph = periph;
1868 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1869 				periph->path->device->generation;
1870 			cdm->status = CAM_DEV_MATCH_MORE;
1871 			return(0);
1872 		}
1873 
1874 		j = cdm->num_matches;
1875 		cdm->num_matches++;
1876 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1877 		cdm->matches[j].result.periph_result.path_id =
1878 			periph->path->bus->path_id;
1879 		cdm->matches[j].result.periph_result.target_id =
1880 			periph->path->target->target_id;
1881 		cdm->matches[j].result.periph_result.target_lun =
1882 			periph->path->device->lun_id;
1883 		cdm->matches[j].result.periph_result.unit_number =
1884 			periph->unit_number;
1885 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1886 			periph->periph_name, DEV_IDLEN);
1887 	}
1888 
1889 	return(1);
1890 }
1891 
1892 static int
1893 xptedtmatch(struct ccb_dev_match *cdm)
1894 {
1895 	struct cam_eb *bus;
1896 	int ret;
1897 
1898 	cdm->num_matches = 0;
1899 
1900 	/*
1901 	 * Check the bus list generation.  If it has changed, the user
1902 	 * needs to reset everything and start over.
1903 	 */
1904 	xpt_lock_buses();
1905 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1906 	 && (cdm->pos.cookie.bus != NULL)) {
1907 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1908 		    xsoftc.bus_generation) {
1909 			xpt_unlock_buses();
1910 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1911 			return(0);
1912 		}
1913 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1914 		bus->refcount++;
1915 	} else
1916 		bus = NULL;
1917 	xpt_unlock_buses();
1918 
1919 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1920 
1921 	/*
1922 	 * If we get back 0, that means that we had to stop before fully
1923 	 * traversing the EDT.  It also means that one of the subroutines
1924 	 * has set the status field to the proper value.  If we get back 1,
1925 	 * we've fully traversed the EDT and copied out any matching entries.
1926 	 */
1927 	if (ret == 1)
1928 		cdm->status = CAM_DEV_MATCH_LAST;
1929 
1930 	return(ret);
1931 }
1932 
1933 static int
1934 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1935 {
1936 	struct cam_periph *periph;
1937 	struct ccb_dev_match *cdm;
1938 
1939 	cdm = (struct ccb_dev_match *)arg;
1940 
1941 	xpt_lock_buses();
1942 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1943 	 && (cdm->pos.cookie.pdrv == pdrv)
1944 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1945 	 && (cdm->pos.cookie.periph != NULL)) {
1946 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1947 		    (*pdrv)->generation) {
1948 			xpt_unlock_buses();
1949 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1950 			return(0);
1951 		}
1952 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1953 		periph->refcount++;
1954 	} else
1955 		periph = NULL;
1956 	xpt_unlock_buses();
1957 
1958 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1959 }
1960 
1961 static int
1962 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1963 {
1964 	struct ccb_dev_match *cdm;
1965 	dev_match_ret retval;
1966 
1967 	cdm = (struct ccb_dev_match *)arg;
1968 
1969 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1970 
1971 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1972 		cdm->status = CAM_DEV_MATCH_ERROR;
1973 		return(0);
1974 	}
1975 
1976 	/*
1977 	 * If the copy flag is set, copy this peripheral out.
1978 	 */
1979 	if (retval & DM_RET_COPY) {
1980 		int spaceleft, j;
1981 
1982 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1983 			sizeof(struct dev_match_result));
1984 
1985 		/*
1986 		 * If we don't have enough space to put in another
1987 		 * match result, save our position and tell the
1988 		 * user there are more devices to check.
1989 		 */
1990 		if (spaceleft < sizeof(struct dev_match_result)) {
1991 			struct periph_driver **pdrv;
1992 
1993 			pdrv = NULL;
1994 			bzero(&cdm->pos, sizeof(cdm->pos));
1995 			cdm->pos.position_type =
1996 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1997 				CAM_DEV_POS_PERIPH;
1998 
1999 			/*
2000 			 * This may look a bit non-sensical, but it is
2001 			 * actually quite logical.  There are very few
2002 			 * peripheral drivers, and bloating every peripheral
2003 			 * structure with a pointer back to its parent
2004 			 * peripheral driver linker set entry would cost
2005 			 * more in the long run than doing this quick lookup.
2006 			 */
2007 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2008 				if (strcmp((*pdrv)->driver_name,
2009 				    periph->periph_name) == 0)
2010 					break;
2011 			}
2012 
2013 			if (*pdrv == NULL) {
2014 				cdm->status = CAM_DEV_MATCH_ERROR;
2015 				return(0);
2016 			}
2017 
2018 			cdm->pos.cookie.pdrv = pdrv;
2019 			/*
2020 			 * The periph generation slot does double duty, as
2021 			 * does the periph pointer slot.  They are used for
2022 			 * both edt and pdrv lookups and positioning.
2023 			 */
2024 			cdm->pos.cookie.periph = periph;
2025 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2026 				(*pdrv)->generation;
2027 			cdm->status = CAM_DEV_MATCH_MORE;
2028 			return(0);
2029 		}
2030 
2031 		j = cdm->num_matches;
2032 		cdm->num_matches++;
2033 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2034 		cdm->matches[j].result.periph_result.path_id =
2035 			periph->path->bus->path_id;
2036 
2037 		/*
2038 		 * The transport layer peripheral doesn't have a target or
2039 		 * lun.
2040 		 */
2041 		if (periph->path->target)
2042 			cdm->matches[j].result.periph_result.target_id =
2043 				periph->path->target->target_id;
2044 		else
2045 			cdm->matches[j].result.periph_result.target_id =
2046 				CAM_TARGET_WILDCARD;
2047 
2048 		if (periph->path->device)
2049 			cdm->matches[j].result.periph_result.target_lun =
2050 				periph->path->device->lun_id;
2051 		else
2052 			cdm->matches[j].result.periph_result.target_lun =
2053 				CAM_LUN_WILDCARD;
2054 
2055 		cdm->matches[j].result.periph_result.unit_number =
2056 			periph->unit_number;
2057 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2058 			periph->periph_name, DEV_IDLEN);
2059 	}
2060 
2061 	return(1);
2062 }
2063 
2064 static int
2065 xptperiphlistmatch(struct ccb_dev_match *cdm)
2066 {
2067 	int ret;
2068 
2069 	cdm->num_matches = 0;
2070 
2071 	/*
2072 	 * At this point in the edt traversal function, we check the bus
2073 	 * list generation to make sure that no busses have been added or
2074 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2075 	 * For the peripheral driver list traversal function, however, we
2076 	 * don't have to worry about new peripheral driver types coming or
2077 	 * going; they're in a linker set, and therefore can't change
2078 	 * without a recompile.
2079 	 */
2080 
2081 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2082 	 && (cdm->pos.cookie.pdrv != NULL))
2083 		ret = xptpdrvtraverse(
2084 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2085 				xptplistpdrvfunc, cdm);
2086 	else
2087 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2088 
2089 	/*
2090 	 * If we get back 0, that means that we had to stop before fully
2091 	 * traversing the peripheral driver tree.  It also means that one of
2092 	 * the subroutines has set the status field to the proper value.  If
2093 	 * we get back 1, we've fully traversed the EDT and copied out any
2094 	 * matching entries.
2095 	 */
2096 	if (ret == 1)
2097 		cdm->status = CAM_DEV_MATCH_LAST;
2098 
2099 	return(ret);
2100 }
2101 
2102 static int
2103 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2104 {
2105 	struct cam_eb *bus, *next_bus;
2106 	int retval;
2107 
2108 	retval = 1;
2109 	if (start_bus)
2110 		bus = start_bus;
2111 	else {
2112 		xpt_lock_buses();
2113 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2114 		if (bus == NULL) {
2115 			xpt_unlock_buses();
2116 			return (retval);
2117 		}
2118 		bus->refcount++;
2119 		xpt_unlock_buses();
2120 	}
2121 	for (; bus != NULL; bus = next_bus) {
2122 		retval = tr_func(bus, arg);
2123 		if (retval == 0) {
2124 			xpt_release_bus(bus);
2125 			break;
2126 		}
2127 		xpt_lock_buses();
2128 		next_bus = TAILQ_NEXT(bus, links);
2129 		if (next_bus)
2130 			next_bus->refcount++;
2131 		xpt_unlock_buses();
2132 		xpt_release_bus(bus);
2133 	}
2134 	return(retval);
2135 }
2136 
2137 static int
2138 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2139 		  xpt_targetfunc_t *tr_func, void *arg)
2140 {
2141 	struct cam_et *target, *next_target;
2142 	int retval;
2143 
2144 	retval = 1;
2145 	if (start_target)
2146 		target = start_target;
2147 	else {
2148 		mtx_lock(&bus->eb_mtx);
2149 		target = TAILQ_FIRST(&bus->et_entries);
2150 		if (target == NULL) {
2151 			mtx_unlock(&bus->eb_mtx);
2152 			return (retval);
2153 		}
2154 		target->refcount++;
2155 		mtx_unlock(&bus->eb_mtx);
2156 	}
2157 	for (; target != NULL; target = next_target) {
2158 		retval = tr_func(target, arg);
2159 		if (retval == 0) {
2160 			xpt_release_target(target);
2161 			break;
2162 		}
2163 		mtx_lock(&bus->eb_mtx);
2164 		next_target = TAILQ_NEXT(target, links);
2165 		if (next_target)
2166 			next_target->refcount++;
2167 		mtx_unlock(&bus->eb_mtx);
2168 		xpt_release_target(target);
2169 	}
2170 	return(retval);
2171 }
2172 
2173 static int
2174 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2175 		  xpt_devicefunc_t *tr_func, void *arg)
2176 {
2177 	struct cam_eb *bus;
2178 	struct cam_ed *device, *next_device;
2179 	int retval;
2180 
2181 	retval = 1;
2182 	bus = target->bus;
2183 	if (start_device)
2184 		device = start_device;
2185 	else {
2186 		mtx_lock(&bus->eb_mtx);
2187 		device = TAILQ_FIRST(&target->ed_entries);
2188 		if (device == NULL) {
2189 			mtx_unlock(&bus->eb_mtx);
2190 			return (retval);
2191 		}
2192 		device->refcount++;
2193 		mtx_unlock(&bus->eb_mtx);
2194 	}
2195 	for (; device != NULL; device = next_device) {
2196 		mtx_lock(&device->device_mtx);
2197 		retval = tr_func(device, arg);
2198 		mtx_unlock(&device->device_mtx);
2199 		if (retval == 0) {
2200 			xpt_release_device(device);
2201 			break;
2202 		}
2203 		mtx_lock(&bus->eb_mtx);
2204 		next_device = TAILQ_NEXT(device, links);
2205 		if (next_device)
2206 			next_device->refcount++;
2207 		mtx_unlock(&bus->eb_mtx);
2208 		xpt_release_device(device);
2209 	}
2210 	return(retval);
2211 }
2212 
2213 static int
2214 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2215 		  xpt_periphfunc_t *tr_func, void *arg)
2216 {
2217 	struct cam_eb *bus;
2218 	struct cam_periph *periph, *next_periph;
2219 	int retval;
2220 
2221 	retval = 1;
2222 
2223 	bus = device->target->bus;
2224 	if (start_periph)
2225 		periph = start_periph;
2226 	else {
2227 		xpt_lock_buses();
2228 		mtx_lock(&bus->eb_mtx);
2229 		periph = SLIST_FIRST(&device->periphs);
2230 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2231 			periph = SLIST_NEXT(periph, periph_links);
2232 		if (periph == NULL) {
2233 			mtx_unlock(&bus->eb_mtx);
2234 			xpt_unlock_buses();
2235 			return (retval);
2236 		}
2237 		periph->refcount++;
2238 		mtx_unlock(&bus->eb_mtx);
2239 		xpt_unlock_buses();
2240 	}
2241 	for (; periph != NULL; periph = next_periph) {
2242 		retval = tr_func(periph, arg);
2243 		if (retval == 0) {
2244 			cam_periph_release_locked(periph);
2245 			break;
2246 		}
2247 		xpt_lock_buses();
2248 		mtx_lock(&bus->eb_mtx);
2249 		next_periph = SLIST_NEXT(periph, periph_links);
2250 		while (next_periph != NULL &&
2251 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2252 			next_periph = SLIST_NEXT(next_periph, periph_links);
2253 		if (next_periph)
2254 			next_periph->refcount++;
2255 		mtx_unlock(&bus->eb_mtx);
2256 		xpt_unlock_buses();
2257 		cam_periph_release_locked(periph);
2258 	}
2259 	return(retval);
2260 }
2261 
2262 static int
2263 xptpdrvtraverse(struct periph_driver **start_pdrv,
2264 		xpt_pdrvfunc_t *tr_func, void *arg)
2265 {
2266 	struct periph_driver **pdrv;
2267 	int retval;
2268 
2269 	retval = 1;
2270 
2271 	/*
2272 	 * We don't traverse the peripheral driver list like we do the
2273 	 * other lists, because it is a linker set, and therefore cannot be
2274 	 * changed during runtime.  If the peripheral driver list is ever
2275 	 * re-done to be something other than a linker set (i.e. it can
2276 	 * change while the system is running), the list traversal should
2277 	 * be modified to work like the other traversal functions.
2278 	 */
2279 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2280 	     *pdrv != NULL; pdrv++) {
2281 		retval = tr_func(pdrv, arg);
2282 
2283 		if (retval == 0)
2284 			return(retval);
2285 	}
2286 
2287 	return(retval);
2288 }
2289 
2290 static int
2291 xptpdperiphtraverse(struct periph_driver **pdrv,
2292 		    struct cam_periph *start_periph,
2293 		    xpt_periphfunc_t *tr_func, void *arg)
2294 {
2295 	struct cam_periph *periph, *next_periph;
2296 	int retval;
2297 
2298 	retval = 1;
2299 
2300 	if (start_periph)
2301 		periph = start_periph;
2302 	else {
2303 		xpt_lock_buses();
2304 		periph = TAILQ_FIRST(&(*pdrv)->units);
2305 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2306 			periph = TAILQ_NEXT(periph, unit_links);
2307 		if (periph == NULL) {
2308 			xpt_unlock_buses();
2309 			return (retval);
2310 		}
2311 		periph->refcount++;
2312 		xpt_unlock_buses();
2313 	}
2314 	for (; periph != NULL; periph = next_periph) {
2315 		cam_periph_lock(periph);
2316 		retval = tr_func(periph, arg);
2317 		cam_periph_unlock(periph);
2318 		if (retval == 0) {
2319 			cam_periph_release(periph);
2320 			break;
2321 		}
2322 		xpt_lock_buses();
2323 		next_periph = TAILQ_NEXT(periph, unit_links);
2324 		while (next_periph != NULL &&
2325 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2326 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2327 		if (next_periph)
2328 			next_periph->refcount++;
2329 		xpt_unlock_buses();
2330 		cam_periph_release(periph);
2331 	}
2332 	return(retval);
2333 }
2334 
2335 static int
2336 xptdefbusfunc(struct cam_eb *bus, void *arg)
2337 {
2338 	struct xpt_traverse_config *tr_config;
2339 
2340 	tr_config = (struct xpt_traverse_config *)arg;
2341 
2342 	if (tr_config->depth == XPT_DEPTH_BUS) {
2343 		xpt_busfunc_t *tr_func;
2344 
2345 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2346 
2347 		return(tr_func(bus, tr_config->tr_arg));
2348 	} else
2349 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2350 }
2351 
2352 static int
2353 xptdeftargetfunc(struct cam_et *target, void *arg)
2354 {
2355 	struct xpt_traverse_config *tr_config;
2356 
2357 	tr_config = (struct xpt_traverse_config *)arg;
2358 
2359 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2360 		xpt_targetfunc_t *tr_func;
2361 
2362 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2363 
2364 		return(tr_func(target, tr_config->tr_arg));
2365 	} else
2366 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2367 }
2368 
2369 static int
2370 xptdefdevicefunc(struct cam_ed *device, void *arg)
2371 {
2372 	struct xpt_traverse_config *tr_config;
2373 
2374 	tr_config = (struct xpt_traverse_config *)arg;
2375 
2376 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2377 		xpt_devicefunc_t *tr_func;
2378 
2379 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2380 
2381 		return(tr_func(device, tr_config->tr_arg));
2382 	} else
2383 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2384 }
2385 
2386 static int
2387 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2388 {
2389 	struct xpt_traverse_config *tr_config;
2390 	xpt_periphfunc_t *tr_func;
2391 
2392 	tr_config = (struct xpt_traverse_config *)arg;
2393 
2394 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2395 
2396 	/*
2397 	 * Unlike the other default functions, we don't check for depth
2398 	 * here.  The peripheral driver level is the last level in the EDT,
2399 	 * so if we're here, we should execute the function in question.
2400 	 */
2401 	return(tr_func(periph, tr_config->tr_arg));
2402 }
2403 
2404 /*
2405  * Execute the given function for every bus in the EDT.
2406  */
2407 static int
2408 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2409 {
2410 	struct xpt_traverse_config tr_config;
2411 
2412 	tr_config.depth = XPT_DEPTH_BUS;
2413 	tr_config.tr_func = tr_func;
2414 	tr_config.tr_arg = arg;
2415 
2416 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2417 }
2418 
2419 /*
2420  * Execute the given function for every device in the EDT.
2421  */
2422 static int
2423 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2424 {
2425 	struct xpt_traverse_config tr_config;
2426 
2427 	tr_config.depth = XPT_DEPTH_DEVICE;
2428 	tr_config.tr_func = tr_func;
2429 	tr_config.tr_arg = arg;
2430 
2431 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2432 }
2433 
2434 static int
2435 xptsetasyncfunc(struct cam_ed *device, void *arg)
2436 {
2437 	struct cam_path path;
2438 	struct ccb_getdev cgd;
2439 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2440 
2441 	/*
2442 	 * Don't report unconfigured devices (Wildcard devs,
2443 	 * devices only for target mode, device instances
2444 	 * that have been invalidated but are waiting for
2445 	 * their last reference count to be released).
2446 	 */
2447 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2448 		return (1);
2449 
2450 	xpt_compile_path(&path,
2451 			 NULL,
2452 			 device->target->bus->path_id,
2453 			 device->target->target_id,
2454 			 device->lun_id);
2455 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2456 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2457 	xpt_action((union ccb *)&cgd);
2458 	csa->callback(csa->callback_arg,
2459 			    AC_FOUND_DEVICE,
2460 			    &path, &cgd);
2461 	xpt_release_path(&path);
2462 
2463 	return(1);
2464 }
2465 
2466 static int
2467 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2468 {
2469 	struct cam_path path;
2470 	struct ccb_pathinq cpi;
2471 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2472 
2473 	xpt_compile_path(&path, /*periph*/NULL,
2474 			 bus->path_id,
2475 			 CAM_TARGET_WILDCARD,
2476 			 CAM_LUN_WILDCARD);
2477 	xpt_path_lock(&path);
2478 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2479 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2480 	xpt_action((union ccb *)&cpi);
2481 	csa->callback(csa->callback_arg,
2482 			    AC_PATH_REGISTERED,
2483 			    &path, &cpi);
2484 	xpt_path_unlock(&path);
2485 	xpt_release_path(&path);
2486 
2487 	return(1);
2488 }
2489 
2490 void
2491 xpt_action(union ccb *start_ccb)
2492 {
2493 
2494 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2495 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2496 		xpt_action_name(start_ccb->ccb_h.func_code)));
2497 
2498 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2499 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2500 }
2501 
2502 void
2503 xpt_action_default(union ccb *start_ccb)
2504 {
2505 	struct cam_path *path;
2506 	struct cam_sim *sim;
2507 	int lock;
2508 
2509 	path = start_ccb->ccb_h.path;
2510 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2511 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2512 		xpt_action_name(start_ccb->ccb_h.func_code)));
2513 
2514 	switch (start_ccb->ccb_h.func_code) {
2515 	case XPT_SCSI_IO:
2516 	{
2517 		struct cam_ed *device;
2518 
2519 		/*
2520 		 * For the sake of compatibility with SCSI-1
2521 		 * devices that may not understand the identify
2522 		 * message, we include lun information in the
2523 		 * second byte of all commands.  SCSI-1 specifies
2524 		 * that luns are a 3 bit value and reserves only 3
2525 		 * bits for lun information in the CDB.  Later
2526 		 * revisions of the SCSI spec allow for more than 8
2527 		 * luns, but have deprecated lun information in the
2528 		 * CDB.  So, if the lun won't fit, we must omit.
2529 		 *
2530 		 * Also be aware that during initial probing for devices,
2531 		 * the inquiry information is unknown but initialized to 0.
2532 		 * This means that this code will be exercised while probing
2533 		 * devices with an ANSI revision greater than 2.
2534 		 */
2535 		device = path->device;
2536 		if (device->protocol_version <= SCSI_REV_2
2537 		 && start_ccb->ccb_h.target_lun < 8
2538 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2539 
2540 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2541 			    start_ccb->ccb_h.target_lun << 5;
2542 		}
2543 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2544 	}
2545 	/* FALLTHROUGH */
2546 	case XPT_TARGET_IO:
2547 	case XPT_CONT_TARGET_IO:
2548 		start_ccb->csio.sense_resid = 0;
2549 		start_ccb->csio.resid = 0;
2550 		/* FALLTHROUGH */
2551 	case XPT_ATA_IO:
2552 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2553 			start_ccb->ataio.resid = 0;
2554 		/* FALLTHROUGH */
2555 	case XPT_NVME_IO:
2556 		if (start_ccb->ccb_h.func_code == XPT_NVME_IO)
2557 			start_ccb->nvmeio.resid = 0;
2558 		/* FALLTHROUGH */
2559 	case XPT_RESET_DEV:
2560 	case XPT_ENG_EXEC:
2561 	case XPT_SMP_IO:
2562 	{
2563 		struct cam_devq *devq;
2564 
2565 		devq = path->bus->sim->devq;
2566 		mtx_lock(&devq->send_mtx);
2567 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2568 		if (xpt_schedule_devq(devq, path->device) != 0)
2569 			xpt_run_devq(devq);
2570 		mtx_unlock(&devq->send_mtx);
2571 		break;
2572 	}
2573 	case XPT_CALC_GEOMETRY:
2574 		/* Filter out garbage */
2575 		if (start_ccb->ccg.block_size == 0
2576 		 || start_ccb->ccg.volume_size == 0) {
2577 			start_ccb->ccg.cylinders = 0;
2578 			start_ccb->ccg.heads = 0;
2579 			start_ccb->ccg.secs_per_track = 0;
2580 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2581 			break;
2582 		}
2583 #if defined(PC98) || defined(__sparc64__)
2584 		/*
2585 		 * In a PC-98 system, geometry translation depens on
2586 		 * the "real" device geometry obtained from mode page 4.
2587 		 * SCSI geometry translation is performed in the
2588 		 * initialization routine of the SCSI BIOS and the result
2589 		 * stored in host memory.  If the translation is available
2590 		 * in host memory, use it.  If not, rely on the default
2591 		 * translation the device driver performs.
2592 		 * For sparc64, we may need adjust the geometry of large
2593 		 * disks in order to fit the limitations of the 16-bit
2594 		 * fields of the VTOC8 disk label.
2595 		 */
2596 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2597 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2598 			break;
2599 		}
2600 #endif
2601 		goto call_sim;
2602 	case XPT_ABORT:
2603 	{
2604 		union ccb* abort_ccb;
2605 
2606 		abort_ccb = start_ccb->cab.abort_ccb;
2607 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2608 			struct cam_ed *device;
2609 			struct cam_devq *devq;
2610 
2611 			device = abort_ccb->ccb_h.path->device;
2612 			devq = device->sim->devq;
2613 
2614 			mtx_lock(&devq->send_mtx);
2615 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2616 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2617 				abort_ccb->ccb_h.status =
2618 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2619 				xpt_freeze_devq_device(device, 1);
2620 				mtx_unlock(&devq->send_mtx);
2621 				xpt_done(abort_ccb);
2622 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2623 				break;
2624 			}
2625 			mtx_unlock(&devq->send_mtx);
2626 
2627 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2628 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2629 				/*
2630 				 * We've caught this ccb en route to
2631 				 * the SIM.  Flag it for abort and the
2632 				 * SIM will do so just before starting
2633 				 * real work on the CCB.
2634 				 */
2635 				abort_ccb->ccb_h.status =
2636 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2637 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2638 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2639 				break;
2640 			}
2641 		}
2642 		if (XPT_FC_IS_QUEUED(abort_ccb)
2643 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2644 			/*
2645 			 * It's already completed but waiting
2646 			 * for our SWI to get to it.
2647 			 */
2648 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2649 			break;
2650 		}
2651 		/*
2652 		 * If we weren't able to take care of the abort request
2653 		 * in the XPT, pass the request down to the SIM for processing.
2654 		 */
2655 	}
2656 	/* FALLTHROUGH */
2657 	case XPT_ACCEPT_TARGET_IO:
2658 	case XPT_EN_LUN:
2659 	case XPT_IMMED_NOTIFY:
2660 	case XPT_NOTIFY_ACK:
2661 	case XPT_RESET_BUS:
2662 	case XPT_IMMEDIATE_NOTIFY:
2663 	case XPT_NOTIFY_ACKNOWLEDGE:
2664 	case XPT_GET_SIM_KNOB_OLD:
2665 	case XPT_GET_SIM_KNOB:
2666 	case XPT_SET_SIM_KNOB:
2667 	case XPT_GET_TRAN_SETTINGS:
2668 	case XPT_SET_TRAN_SETTINGS:
2669 	case XPT_PATH_INQ:
2670 call_sim:
2671 		sim = path->bus->sim;
2672 		lock = (mtx_owned(sim->mtx) == 0);
2673 		if (lock)
2674 			CAM_SIM_LOCK(sim);
2675 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2676 		    ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code));
2677 		(*(sim->sim_action))(sim, start_ccb);
2678 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2679 		    ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status));
2680 		if (lock)
2681 			CAM_SIM_UNLOCK(sim);
2682 		break;
2683 	case XPT_PATH_STATS:
2684 		start_ccb->cpis.last_reset = path->bus->last_reset;
2685 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2686 		break;
2687 	case XPT_GDEV_TYPE:
2688 	{
2689 		struct cam_ed *dev;
2690 
2691 		dev = path->device;
2692 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2693 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2694 		} else {
2695 			struct ccb_getdev *cgd;
2696 
2697 			cgd = &start_ccb->cgd;
2698 			cgd->protocol = dev->protocol;
2699 			cgd->inq_data = dev->inq_data;
2700 			cgd->ident_data = dev->ident_data;
2701 			cgd->inq_flags = dev->inq_flags;
2702 			cgd->nvme_data = dev->nvme_data;
2703 			cgd->nvme_cdata = dev->nvme_cdata;
2704 			cgd->ccb_h.status = CAM_REQ_CMP;
2705 			cgd->serial_num_len = dev->serial_num_len;
2706 			if ((dev->serial_num_len > 0)
2707 			 && (dev->serial_num != NULL))
2708 				bcopy(dev->serial_num, cgd->serial_num,
2709 				      dev->serial_num_len);
2710 		}
2711 		break;
2712 	}
2713 	case XPT_GDEV_STATS:
2714 	{
2715 		struct cam_ed *dev;
2716 
2717 		dev = path->device;
2718 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2719 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2720 		} else {
2721 			struct ccb_getdevstats *cgds;
2722 			struct cam_eb *bus;
2723 			struct cam_et *tar;
2724 			struct cam_devq *devq;
2725 
2726 			cgds = &start_ccb->cgds;
2727 			bus = path->bus;
2728 			tar = path->target;
2729 			devq = bus->sim->devq;
2730 			mtx_lock(&devq->send_mtx);
2731 			cgds->dev_openings = dev->ccbq.dev_openings;
2732 			cgds->dev_active = dev->ccbq.dev_active;
2733 			cgds->allocated = dev->ccbq.allocated;
2734 			cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2735 			cgds->held = cgds->allocated - cgds->dev_active -
2736 			    cgds->queued;
2737 			cgds->last_reset = tar->last_reset;
2738 			cgds->maxtags = dev->maxtags;
2739 			cgds->mintags = dev->mintags;
2740 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2741 				cgds->last_reset = bus->last_reset;
2742 			mtx_unlock(&devq->send_mtx);
2743 			cgds->ccb_h.status = CAM_REQ_CMP;
2744 		}
2745 		break;
2746 	}
2747 	case XPT_GDEVLIST:
2748 	{
2749 		struct cam_periph	*nperiph;
2750 		struct periph_list	*periph_head;
2751 		struct ccb_getdevlist	*cgdl;
2752 		u_int			i;
2753 		struct cam_ed		*device;
2754 		int			found;
2755 
2756 
2757 		found = 0;
2758 
2759 		/*
2760 		 * Don't want anyone mucking with our data.
2761 		 */
2762 		device = path->device;
2763 		periph_head = &device->periphs;
2764 		cgdl = &start_ccb->cgdl;
2765 
2766 		/*
2767 		 * Check and see if the list has changed since the user
2768 		 * last requested a list member.  If so, tell them that the
2769 		 * list has changed, and therefore they need to start over
2770 		 * from the beginning.
2771 		 */
2772 		if ((cgdl->index != 0) &&
2773 		    (cgdl->generation != device->generation)) {
2774 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2775 			break;
2776 		}
2777 
2778 		/*
2779 		 * Traverse the list of peripherals and attempt to find
2780 		 * the requested peripheral.
2781 		 */
2782 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2783 		     (nperiph != NULL) && (i <= cgdl->index);
2784 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2785 			if (i == cgdl->index) {
2786 				strncpy(cgdl->periph_name,
2787 					nperiph->periph_name,
2788 					DEV_IDLEN);
2789 				cgdl->unit_number = nperiph->unit_number;
2790 				found = 1;
2791 			}
2792 		}
2793 		if (found == 0) {
2794 			cgdl->status = CAM_GDEVLIST_ERROR;
2795 			break;
2796 		}
2797 
2798 		if (nperiph == NULL)
2799 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2800 		else
2801 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2802 
2803 		cgdl->index++;
2804 		cgdl->generation = device->generation;
2805 
2806 		cgdl->ccb_h.status = CAM_REQ_CMP;
2807 		break;
2808 	}
2809 	case XPT_DEV_MATCH:
2810 	{
2811 		dev_pos_type position_type;
2812 		struct ccb_dev_match *cdm;
2813 
2814 		cdm = &start_ccb->cdm;
2815 
2816 		/*
2817 		 * There are two ways of getting at information in the EDT.
2818 		 * The first way is via the primary EDT tree.  It starts
2819 		 * with a list of busses, then a list of targets on a bus,
2820 		 * then devices/luns on a target, and then peripherals on a
2821 		 * device/lun.  The "other" way is by the peripheral driver
2822 		 * lists.  The peripheral driver lists are organized by
2823 		 * peripheral driver.  (obviously)  So it makes sense to
2824 		 * use the peripheral driver list if the user is looking
2825 		 * for something like "da1", or all "da" devices.  If the
2826 		 * user is looking for something on a particular bus/target
2827 		 * or lun, it's generally better to go through the EDT tree.
2828 		 */
2829 
2830 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2831 			position_type = cdm->pos.position_type;
2832 		else {
2833 			u_int i;
2834 
2835 			position_type = CAM_DEV_POS_NONE;
2836 
2837 			for (i = 0; i < cdm->num_patterns; i++) {
2838 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2839 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2840 					position_type = CAM_DEV_POS_EDT;
2841 					break;
2842 				}
2843 			}
2844 
2845 			if (cdm->num_patterns == 0)
2846 				position_type = CAM_DEV_POS_EDT;
2847 			else if (position_type == CAM_DEV_POS_NONE)
2848 				position_type = CAM_DEV_POS_PDRV;
2849 		}
2850 
2851 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2852 		case CAM_DEV_POS_EDT:
2853 			xptedtmatch(cdm);
2854 			break;
2855 		case CAM_DEV_POS_PDRV:
2856 			xptperiphlistmatch(cdm);
2857 			break;
2858 		default:
2859 			cdm->status = CAM_DEV_MATCH_ERROR;
2860 			break;
2861 		}
2862 
2863 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2864 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2865 		else
2866 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2867 
2868 		break;
2869 	}
2870 	case XPT_SASYNC_CB:
2871 	{
2872 		struct ccb_setasync *csa;
2873 		struct async_node *cur_entry;
2874 		struct async_list *async_head;
2875 		u_int32_t added;
2876 
2877 		csa = &start_ccb->csa;
2878 		added = csa->event_enable;
2879 		async_head = &path->device->asyncs;
2880 
2881 		/*
2882 		 * If there is already an entry for us, simply
2883 		 * update it.
2884 		 */
2885 		cur_entry = SLIST_FIRST(async_head);
2886 		while (cur_entry != NULL) {
2887 			if ((cur_entry->callback_arg == csa->callback_arg)
2888 			 && (cur_entry->callback == csa->callback))
2889 				break;
2890 			cur_entry = SLIST_NEXT(cur_entry, links);
2891 		}
2892 
2893 		if (cur_entry != NULL) {
2894 		 	/*
2895 			 * If the request has no flags set,
2896 			 * remove the entry.
2897 			 */
2898 			added &= ~cur_entry->event_enable;
2899 			if (csa->event_enable == 0) {
2900 				SLIST_REMOVE(async_head, cur_entry,
2901 					     async_node, links);
2902 				xpt_release_device(path->device);
2903 				free(cur_entry, M_CAMXPT);
2904 			} else {
2905 				cur_entry->event_enable = csa->event_enable;
2906 			}
2907 			csa->event_enable = added;
2908 		} else {
2909 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2910 					   M_NOWAIT);
2911 			if (cur_entry == NULL) {
2912 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2913 				break;
2914 			}
2915 			cur_entry->event_enable = csa->event_enable;
2916 			cur_entry->event_lock =
2917 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2918 			cur_entry->callback_arg = csa->callback_arg;
2919 			cur_entry->callback = csa->callback;
2920 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2921 			xpt_acquire_device(path->device);
2922 		}
2923 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2924 		break;
2925 	}
2926 	case XPT_REL_SIMQ:
2927 	{
2928 		struct ccb_relsim *crs;
2929 		struct cam_ed *dev;
2930 
2931 		crs = &start_ccb->crs;
2932 		dev = path->device;
2933 		if (dev == NULL) {
2934 
2935 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2936 			break;
2937 		}
2938 
2939 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2940 
2941 			/* Don't ever go below one opening */
2942 			if (crs->openings > 0) {
2943 				xpt_dev_ccbq_resize(path, crs->openings);
2944 				if (bootverbose) {
2945 					xpt_print(path,
2946 					    "number of openings is now %d\n",
2947 					    crs->openings);
2948 				}
2949 			}
2950 		}
2951 
2952 		mtx_lock(&dev->sim->devq->send_mtx);
2953 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2954 
2955 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2956 
2957 				/*
2958 				 * Just extend the old timeout and decrement
2959 				 * the freeze count so that a single timeout
2960 				 * is sufficient for releasing the queue.
2961 				 */
2962 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2963 				callout_stop(&dev->callout);
2964 			} else {
2965 
2966 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2967 			}
2968 
2969 			callout_reset_sbt(&dev->callout,
2970 			    SBT_1MS * crs->release_timeout, 0,
2971 			    xpt_release_devq_timeout, dev, 0);
2972 
2973 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2974 
2975 		}
2976 
2977 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2978 
2979 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2980 				/*
2981 				 * Decrement the freeze count so that a single
2982 				 * completion is still sufficient to unfreeze
2983 				 * the queue.
2984 				 */
2985 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2986 			} else {
2987 
2988 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2989 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2990 			}
2991 		}
2992 
2993 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2994 
2995 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2996 			 || (dev->ccbq.dev_active == 0)) {
2997 
2998 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2999 			} else {
3000 
3001 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3002 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3003 			}
3004 		}
3005 		mtx_unlock(&dev->sim->devq->send_mtx);
3006 
3007 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3008 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3009 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3010 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3011 		break;
3012 	}
3013 	case XPT_DEBUG: {
3014 		struct cam_path *oldpath;
3015 
3016 		/* Check that all request bits are supported. */
3017 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3018 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3019 			break;
3020 		}
3021 
3022 		cam_dflags = CAM_DEBUG_NONE;
3023 		if (cam_dpath != NULL) {
3024 			oldpath = cam_dpath;
3025 			cam_dpath = NULL;
3026 			xpt_free_path(oldpath);
3027 		}
3028 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3029 			if (xpt_create_path(&cam_dpath, NULL,
3030 					    start_ccb->ccb_h.path_id,
3031 					    start_ccb->ccb_h.target_id,
3032 					    start_ccb->ccb_h.target_lun) !=
3033 					    CAM_REQ_CMP) {
3034 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3035 			} else {
3036 				cam_dflags = start_ccb->cdbg.flags;
3037 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3038 				xpt_print(cam_dpath, "debugging flags now %x\n",
3039 				    cam_dflags);
3040 			}
3041 		} else
3042 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3043 		break;
3044 	}
3045 	case XPT_NOOP:
3046 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3047 			xpt_freeze_devq(path, 1);
3048 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3049 		break;
3050 	case XPT_REPROBE_LUN:
3051 		xpt_async(AC_INQ_CHANGED, path, NULL);
3052 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3053 		xpt_done(start_ccb);
3054 		break;
3055 	default:
3056 	case XPT_SDEV_TYPE:
3057 	case XPT_TERM_IO:
3058 	case XPT_ENG_INQ:
3059 		/* XXX Implement */
3060 		xpt_print_path(start_ccb->ccb_h.path);
3061 		printf("%s: CCB type %#x %s not supported\n", __func__,
3062 		    start_ccb->ccb_h.func_code,
3063 		    xpt_action_name(start_ccb->ccb_h.func_code));
3064 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3065 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3066 			xpt_done(start_ccb);
3067 		}
3068 		break;
3069 	}
3070 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3071 	    ("xpt_action_default: func= %#x %s status %#x\n",
3072 		start_ccb->ccb_h.func_code,
3073  		xpt_action_name(start_ccb->ccb_h.func_code),
3074 		start_ccb->ccb_h.status));
3075 }
3076 
3077 void
3078 xpt_polled_action(union ccb *start_ccb)
3079 {
3080 	u_int32_t timeout;
3081 	struct	  cam_sim *sim;
3082 	struct	  cam_devq *devq;
3083 	struct	  cam_ed *dev;
3084 
3085 	timeout = start_ccb->ccb_h.timeout * 10;
3086 	sim = start_ccb->ccb_h.path->bus->sim;
3087 	devq = sim->devq;
3088 	dev = start_ccb->ccb_h.path->device;
3089 
3090 	mtx_unlock(&dev->device_mtx);
3091 
3092 	/*
3093 	 * Steal an opening so that no other queued requests
3094 	 * can get it before us while we simulate interrupts.
3095 	 */
3096 	mtx_lock(&devq->send_mtx);
3097 	dev->ccbq.dev_openings--;
3098 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3099 	    (--timeout > 0)) {
3100 		mtx_unlock(&devq->send_mtx);
3101 		DELAY(100);
3102 		CAM_SIM_LOCK(sim);
3103 		(*(sim->sim_poll))(sim);
3104 		CAM_SIM_UNLOCK(sim);
3105 		camisr_runqueue();
3106 		mtx_lock(&devq->send_mtx);
3107 	}
3108 	dev->ccbq.dev_openings++;
3109 	mtx_unlock(&devq->send_mtx);
3110 
3111 	if (timeout != 0) {
3112 		xpt_action(start_ccb);
3113 		while(--timeout > 0) {
3114 			CAM_SIM_LOCK(sim);
3115 			(*(sim->sim_poll))(sim);
3116 			CAM_SIM_UNLOCK(sim);
3117 			camisr_runqueue();
3118 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3119 			    != CAM_REQ_INPROG)
3120 				break;
3121 			DELAY(100);
3122 		}
3123 		if (timeout == 0) {
3124 			/*
3125 			 * XXX Is it worth adding a sim_timeout entry
3126 			 * point so we can attempt recovery?  If
3127 			 * this is only used for dumps, I don't think
3128 			 * it is.
3129 			 */
3130 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3131 		}
3132 	} else {
3133 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3134 	}
3135 
3136 	mtx_lock(&dev->device_mtx);
3137 }
3138 
3139 /*
3140  * Schedule a peripheral driver to receive a ccb when its
3141  * target device has space for more transactions.
3142  */
3143 void
3144 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3145 {
3146 
3147 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3148 	cam_periph_assert(periph, MA_OWNED);
3149 	if (new_priority < periph->scheduled_priority) {
3150 		periph->scheduled_priority = new_priority;
3151 		xpt_run_allocq(periph, 0);
3152 	}
3153 }
3154 
3155 
3156 /*
3157  * Schedule a device to run on a given queue.
3158  * If the device was inserted as a new entry on the queue,
3159  * return 1 meaning the device queue should be run. If we
3160  * were already queued, implying someone else has already
3161  * started the queue, return 0 so the caller doesn't attempt
3162  * to run the queue.
3163  */
3164 static int
3165 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3166 		 u_int32_t new_priority)
3167 {
3168 	int retval;
3169 	u_int32_t old_priority;
3170 
3171 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3172 
3173 	old_priority = pinfo->priority;
3174 
3175 	/*
3176 	 * Are we already queued?
3177 	 */
3178 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3179 		/* Simply reorder based on new priority */
3180 		if (new_priority < old_priority) {
3181 			camq_change_priority(queue, pinfo->index,
3182 					     new_priority);
3183 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3184 					("changed priority to %d\n",
3185 					 new_priority));
3186 			retval = 1;
3187 		} else
3188 			retval = 0;
3189 	} else {
3190 		/* New entry on the queue */
3191 		if (new_priority < old_priority)
3192 			pinfo->priority = new_priority;
3193 
3194 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3195 				("Inserting onto queue\n"));
3196 		pinfo->generation = ++queue->generation;
3197 		camq_insert(queue, pinfo);
3198 		retval = 1;
3199 	}
3200 	return (retval);
3201 }
3202 
3203 static void
3204 xpt_run_allocq_task(void *context, int pending)
3205 {
3206 	struct cam_periph *periph = context;
3207 
3208 	cam_periph_lock(periph);
3209 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3210 	xpt_run_allocq(periph, 1);
3211 	cam_periph_unlock(periph);
3212 	cam_periph_release(periph);
3213 }
3214 
3215 static void
3216 xpt_run_allocq(struct cam_periph *periph, int sleep)
3217 {
3218 	struct cam_ed	*device;
3219 	union ccb	*ccb;
3220 	uint32_t	 prio;
3221 
3222 	cam_periph_assert(periph, MA_OWNED);
3223 	if (periph->periph_allocating)
3224 		return;
3225 	periph->periph_allocating = 1;
3226 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3227 	device = periph->path->device;
3228 	ccb = NULL;
3229 restart:
3230 	while ((prio = min(periph->scheduled_priority,
3231 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3232 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3233 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3234 
3235 		if (ccb == NULL &&
3236 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3237 			if (sleep) {
3238 				ccb = xpt_get_ccb(periph);
3239 				goto restart;
3240 			}
3241 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3242 				break;
3243 			cam_periph_doacquire(periph);
3244 			periph->flags |= CAM_PERIPH_RUN_TASK;
3245 			taskqueue_enqueue(xsoftc.xpt_taskq,
3246 			    &periph->periph_run_task);
3247 			break;
3248 		}
3249 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3250 		if (prio == periph->immediate_priority) {
3251 			periph->immediate_priority = CAM_PRIORITY_NONE;
3252 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3253 					("waking cam_periph_getccb()\n"));
3254 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3255 					  periph_links.sle);
3256 			wakeup(&periph->ccb_list);
3257 		} else {
3258 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3259 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3260 					("calling periph_start()\n"));
3261 			periph->periph_start(periph, ccb);
3262 		}
3263 		ccb = NULL;
3264 	}
3265 	if (ccb != NULL)
3266 		xpt_release_ccb(ccb);
3267 	periph->periph_allocating = 0;
3268 }
3269 
3270 static void
3271 xpt_run_devq(struct cam_devq *devq)
3272 {
3273 	int lock;
3274 
3275 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3276 
3277 	devq->send_queue.qfrozen_cnt++;
3278 	while ((devq->send_queue.entries > 0)
3279 	    && (devq->send_openings > 0)
3280 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3281 		struct	cam_ed *device;
3282 		union ccb *work_ccb;
3283 		struct	cam_sim *sim;
3284 		struct xpt_proto *proto;
3285 
3286 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3287 							   CAMQ_HEAD);
3288 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3289 				("running device %p\n", device));
3290 
3291 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3292 		if (work_ccb == NULL) {
3293 			printf("device on run queue with no ccbs???\n");
3294 			continue;
3295 		}
3296 
3297 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3298 
3299 			mtx_lock(&xsoftc.xpt_highpower_lock);
3300 		 	if (xsoftc.num_highpower <= 0) {
3301 				/*
3302 				 * We got a high power command, but we
3303 				 * don't have any available slots.  Freeze
3304 				 * the device queue until we have a slot
3305 				 * available.
3306 				 */
3307 				xpt_freeze_devq_device(device, 1);
3308 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3309 						   highpowerq_entry);
3310 
3311 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3312 				continue;
3313 			} else {
3314 				/*
3315 				 * Consume a high power slot while
3316 				 * this ccb runs.
3317 				 */
3318 				xsoftc.num_highpower--;
3319 			}
3320 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3321 		}
3322 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3323 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3324 		devq->send_openings--;
3325 		devq->send_active++;
3326 		xpt_schedule_devq(devq, device);
3327 		mtx_unlock(&devq->send_mtx);
3328 
3329 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3330 			/*
3331 			 * The client wants to freeze the queue
3332 			 * after this CCB is sent.
3333 			 */
3334 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3335 		}
3336 
3337 		/* In Target mode, the peripheral driver knows best... */
3338 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3339 			if ((device->inq_flags & SID_CmdQue) != 0
3340 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3341 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3342 			else
3343 				/*
3344 				 * Clear this in case of a retried CCB that
3345 				 * failed due to a rejected tag.
3346 				 */
3347 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3348 		}
3349 
3350 		KASSERT(device == work_ccb->ccb_h.path->device,
3351 		    ("device (%p) / path->device (%p) mismatch",
3352 			device, work_ccb->ccb_h.path->device));
3353 		proto = xpt_proto_find(device->protocol);
3354 		if (proto && proto->ops->debug_out)
3355 			proto->ops->debug_out(work_ccb);
3356 
3357 		/*
3358 		 * Device queues can be shared among multiple SIM instances
3359 		 * that reside on different busses.  Use the SIM from the
3360 		 * queued device, rather than the one from the calling bus.
3361 		 */
3362 		sim = device->sim;
3363 		lock = (mtx_owned(sim->mtx) == 0);
3364 		if (lock)
3365 			CAM_SIM_LOCK(sim);
3366 		work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
3367 		(*(sim->sim_action))(sim, work_ccb);
3368 		if (lock)
3369 			CAM_SIM_UNLOCK(sim);
3370 		mtx_lock(&devq->send_mtx);
3371 	}
3372 	devq->send_queue.qfrozen_cnt--;
3373 }
3374 
3375 /*
3376  * This function merges stuff from the slave ccb into the master ccb, while
3377  * keeping important fields in the master ccb constant.
3378  */
3379 void
3380 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3381 {
3382 
3383 	/*
3384 	 * Pull fields that are valid for peripheral drivers to set
3385 	 * into the master CCB along with the CCB "payload".
3386 	 */
3387 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3388 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3389 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3390 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3391 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3392 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3393 }
3394 
3395 void
3396 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3397 		    u_int32_t priority, u_int32_t flags)
3398 {
3399 
3400 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3401 	ccb_h->pinfo.priority = priority;
3402 	ccb_h->path = path;
3403 	ccb_h->path_id = path->bus->path_id;
3404 	if (path->target)
3405 		ccb_h->target_id = path->target->target_id;
3406 	else
3407 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3408 	if (path->device) {
3409 		ccb_h->target_lun = path->device->lun_id;
3410 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3411 	} else {
3412 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3413 	}
3414 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3415 	ccb_h->flags = flags;
3416 	ccb_h->xflags = 0;
3417 }
3418 
3419 void
3420 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3421 {
3422 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3423 }
3424 
3425 /* Path manipulation functions */
3426 cam_status
3427 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3428 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3429 {
3430 	struct	   cam_path *path;
3431 	cam_status status;
3432 
3433 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3434 
3435 	if (path == NULL) {
3436 		status = CAM_RESRC_UNAVAIL;
3437 		return(status);
3438 	}
3439 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3440 	if (status != CAM_REQ_CMP) {
3441 		free(path, M_CAMPATH);
3442 		path = NULL;
3443 	}
3444 	*new_path_ptr = path;
3445 	return (status);
3446 }
3447 
3448 cam_status
3449 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3450 			 struct cam_periph *periph, path_id_t path_id,
3451 			 target_id_t target_id, lun_id_t lun_id)
3452 {
3453 
3454 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3455 	    lun_id));
3456 }
3457 
3458 cam_status
3459 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3460 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3461 {
3462 	struct	     cam_eb *bus;
3463 	struct	     cam_et *target;
3464 	struct	     cam_ed *device;
3465 	cam_status   status;
3466 
3467 	status = CAM_REQ_CMP;	/* Completed without error */
3468 	target = NULL;		/* Wildcarded */
3469 	device = NULL;		/* Wildcarded */
3470 
3471 	/*
3472 	 * We will potentially modify the EDT, so block interrupts
3473 	 * that may attempt to create cam paths.
3474 	 */
3475 	bus = xpt_find_bus(path_id);
3476 	if (bus == NULL) {
3477 		status = CAM_PATH_INVALID;
3478 	} else {
3479 		xpt_lock_buses();
3480 		mtx_lock(&bus->eb_mtx);
3481 		target = xpt_find_target(bus, target_id);
3482 		if (target == NULL) {
3483 			/* Create one */
3484 			struct cam_et *new_target;
3485 
3486 			new_target = xpt_alloc_target(bus, target_id);
3487 			if (new_target == NULL) {
3488 				status = CAM_RESRC_UNAVAIL;
3489 			} else {
3490 				target = new_target;
3491 			}
3492 		}
3493 		xpt_unlock_buses();
3494 		if (target != NULL) {
3495 			device = xpt_find_device(target, lun_id);
3496 			if (device == NULL) {
3497 				/* Create one */
3498 				struct cam_ed *new_device;
3499 
3500 				new_device =
3501 				    (*(bus->xport->ops->alloc_device))(bus,
3502 								       target,
3503 								       lun_id);
3504 				if (new_device == NULL) {
3505 					status = CAM_RESRC_UNAVAIL;
3506 				} else {
3507 					device = new_device;
3508 				}
3509 			}
3510 		}
3511 		mtx_unlock(&bus->eb_mtx);
3512 	}
3513 
3514 	/*
3515 	 * Only touch the user's data if we are successful.
3516 	 */
3517 	if (status == CAM_REQ_CMP) {
3518 		new_path->periph = perph;
3519 		new_path->bus = bus;
3520 		new_path->target = target;
3521 		new_path->device = device;
3522 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3523 	} else {
3524 		if (device != NULL)
3525 			xpt_release_device(device);
3526 		if (target != NULL)
3527 			xpt_release_target(target);
3528 		if (bus != NULL)
3529 			xpt_release_bus(bus);
3530 	}
3531 	return (status);
3532 }
3533 
3534 cam_status
3535 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3536 {
3537 	struct	   cam_path *new_path;
3538 
3539 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3540 	if (new_path == NULL)
3541 		return(CAM_RESRC_UNAVAIL);
3542 	xpt_copy_path(new_path, path);
3543 	*new_path_ptr = new_path;
3544 	return (CAM_REQ_CMP);
3545 }
3546 
3547 void
3548 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3549 {
3550 
3551 	*new_path = *path;
3552 	if (path->bus != NULL)
3553 		xpt_acquire_bus(path->bus);
3554 	if (path->target != NULL)
3555 		xpt_acquire_target(path->target);
3556 	if (path->device != NULL)
3557 		xpt_acquire_device(path->device);
3558 }
3559 
3560 void
3561 xpt_release_path(struct cam_path *path)
3562 {
3563 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3564 	if (path->device != NULL) {
3565 		xpt_release_device(path->device);
3566 		path->device = NULL;
3567 	}
3568 	if (path->target != NULL) {
3569 		xpt_release_target(path->target);
3570 		path->target = NULL;
3571 	}
3572 	if (path->bus != NULL) {
3573 		xpt_release_bus(path->bus);
3574 		path->bus = NULL;
3575 	}
3576 }
3577 
3578 void
3579 xpt_free_path(struct cam_path *path)
3580 {
3581 
3582 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3583 	xpt_release_path(path);
3584 	free(path, M_CAMPATH);
3585 }
3586 
3587 void
3588 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3589     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3590 {
3591 
3592 	xpt_lock_buses();
3593 	if (bus_ref) {
3594 		if (path->bus)
3595 			*bus_ref = path->bus->refcount;
3596 		else
3597 			*bus_ref = 0;
3598 	}
3599 	if (periph_ref) {
3600 		if (path->periph)
3601 			*periph_ref = path->periph->refcount;
3602 		else
3603 			*periph_ref = 0;
3604 	}
3605 	xpt_unlock_buses();
3606 	if (target_ref) {
3607 		if (path->target)
3608 			*target_ref = path->target->refcount;
3609 		else
3610 			*target_ref = 0;
3611 	}
3612 	if (device_ref) {
3613 		if (path->device)
3614 			*device_ref = path->device->refcount;
3615 		else
3616 			*device_ref = 0;
3617 	}
3618 }
3619 
3620 /*
3621  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3622  * in path1, 2 for match with wildcards in path2.
3623  */
3624 int
3625 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3626 {
3627 	int retval = 0;
3628 
3629 	if (path1->bus != path2->bus) {
3630 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3631 			retval = 1;
3632 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3633 			retval = 2;
3634 		else
3635 			return (-1);
3636 	}
3637 	if (path1->target != path2->target) {
3638 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3639 			if (retval == 0)
3640 				retval = 1;
3641 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3642 			retval = 2;
3643 		else
3644 			return (-1);
3645 	}
3646 	if (path1->device != path2->device) {
3647 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3648 			if (retval == 0)
3649 				retval = 1;
3650 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3651 			retval = 2;
3652 		else
3653 			return (-1);
3654 	}
3655 	return (retval);
3656 }
3657 
3658 int
3659 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3660 {
3661 	int retval = 0;
3662 
3663 	if (path->bus != dev->target->bus) {
3664 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3665 			retval = 1;
3666 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3667 			retval = 2;
3668 		else
3669 			return (-1);
3670 	}
3671 	if (path->target != dev->target) {
3672 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3673 			if (retval == 0)
3674 				retval = 1;
3675 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3676 			retval = 2;
3677 		else
3678 			return (-1);
3679 	}
3680 	if (path->device != dev) {
3681 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3682 			if (retval == 0)
3683 				retval = 1;
3684 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3685 			retval = 2;
3686 		else
3687 			return (-1);
3688 	}
3689 	return (retval);
3690 }
3691 
3692 void
3693 xpt_print_path(struct cam_path *path)
3694 {
3695 
3696 	if (path == NULL)
3697 		printf("(nopath): ");
3698 	else {
3699 		if (path->periph != NULL)
3700 			printf("(%s%d:", path->periph->periph_name,
3701 			       path->periph->unit_number);
3702 		else
3703 			printf("(noperiph:");
3704 
3705 		if (path->bus != NULL)
3706 			printf("%s%d:%d:", path->bus->sim->sim_name,
3707 			       path->bus->sim->unit_number,
3708 			       path->bus->sim->bus_id);
3709 		else
3710 			printf("nobus:");
3711 
3712 		if (path->target != NULL)
3713 			printf("%d:", path->target->target_id);
3714 		else
3715 			printf("X:");
3716 
3717 		if (path->device != NULL)
3718 			printf("%jx): ", (uintmax_t)path->device->lun_id);
3719 		else
3720 			printf("X): ");
3721 	}
3722 }
3723 
3724 void
3725 xpt_print_device(struct cam_ed *device)
3726 {
3727 
3728 	if (device == NULL)
3729 		printf("(nopath): ");
3730 	else {
3731 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3732 		       device->sim->unit_number,
3733 		       device->sim->bus_id,
3734 		       device->target->target_id,
3735 		       (uintmax_t)device->lun_id);
3736 	}
3737 }
3738 
3739 void
3740 xpt_print(struct cam_path *path, const char *fmt, ...)
3741 {
3742 	va_list ap;
3743 	xpt_print_path(path);
3744 	va_start(ap, fmt);
3745 	vprintf(fmt, ap);
3746 	va_end(ap);
3747 }
3748 
3749 int
3750 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3751 {
3752 	struct sbuf sb;
3753 
3754 	sbuf_new(&sb, str, str_len, 0);
3755 
3756 	if (path == NULL)
3757 		sbuf_printf(&sb, "(nopath): ");
3758 	else {
3759 		if (path->periph != NULL)
3760 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3761 				    path->periph->unit_number);
3762 		else
3763 			sbuf_printf(&sb, "(noperiph:");
3764 
3765 		if (path->bus != NULL)
3766 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3767 				    path->bus->sim->unit_number,
3768 				    path->bus->sim->bus_id);
3769 		else
3770 			sbuf_printf(&sb, "nobus:");
3771 
3772 		if (path->target != NULL)
3773 			sbuf_printf(&sb, "%d:", path->target->target_id);
3774 		else
3775 			sbuf_printf(&sb, "X:");
3776 
3777 		if (path->device != NULL)
3778 			sbuf_printf(&sb, "%jx): ",
3779 			    (uintmax_t)path->device->lun_id);
3780 		else
3781 			sbuf_printf(&sb, "X): ");
3782 	}
3783 	sbuf_finish(&sb);
3784 
3785 	return(sbuf_len(&sb));
3786 }
3787 
3788 path_id_t
3789 xpt_path_path_id(struct cam_path *path)
3790 {
3791 	return(path->bus->path_id);
3792 }
3793 
3794 target_id_t
3795 xpt_path_target_id(struct cam_path *path)
3796 {
3797 	if (path->target != NULL)
3798 		return (path->target->target_id);
3799 	else
3800 		return (CAM_TARGET_WILDCARD);
3801 }
3802 
3803 lun_id_t
3804 xpt_path_lun_id(struct cam_path *path)
3805 {
3806 	if (path->device != NULL)
3807 		return (path->device->lun_id);
3808 	else
3809 		return (CAM_LUN_WILDCARD);
3810 }
3811 
3812 struct cam_sim *
3813 xpt_path_sim(struct cam_path *path)
3814 {
3815 
3816 	return (path->bus->sim);
3817 }
3818 
3819 struct cam_periph*
3820 xpt_path_periph(struct cam_path *path)
3821 {
3822 
3823 	return (path->periph);
3824 }
3825 
3826 /*
3827  * Release a CAM control block for the caller.  Remit the cost of the structure
3828  * to the device referenced by the path.  If the this device had no 'credits'
3829  * and peripheral drivers have registered async callbacks for this notification
3830  * call them now.
3831  */
3832 void
3833 xpt_release_ccb(union ccb *free_ccb)
3834 {
3835 	struct	 cam_ed *device;
3836 	struct	 cam_periph *periph;
3837 
3838 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3839 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3840 	device = free_ccb->ccb_h.path->device;
3841 	periph = free_ccb->ccb_h.path->periph;
3842 
3843 	xpt_free_ccb(free_ccb);
3844 	periph->periph_allocated--;
3845 	cam_ccbq_release_opening(&device->ccbq);
3846 	xpt_run_allocq(periph, 0);
3847 }
3848 
3849 /* Functions accessed by SIM drivers */
3850 
3851 static struct xpt_xport_ops xport_default_ops = {
3852 	.alloc_device = xpt_alloc_device_default,
3853 	.action = xpt_action_default,
3854 	.async = xpt_dev_async_default,
3855 };
3856 static struct xpt_xport xport_default = {
3857 	.xport = XPORT_UNKNOWN,
3858 	.name = "unknown",
3859 	.ops = &xport_default_ops,
3860 };
3861 
3862 CAM_XPT_XPORT(xport_default);
3863 
3864 /*
3865  * A sim structure, listing the SIM entry points and instance
3866  * identification info is passed to xpt_bus_register to hook the SIM
3867  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3868  * for this new bus and places it in the array of busses and assigns
3869  * it a path_id.  The path_id may be influenced by "hard wiring"
3870  * information specified by the user.  Once interrupt services are
3871  * available, the bus will be probed.
3872  */
3873 int32_t
3874 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3875 {
3876 	struct cam_eb *new_bus;
3877 	struct cam_eb *old_bus;
3878 	struct ccb_pathinq cpi;
3879 	struct cam_path *path;
3880 	cam_status status;
3881 
3882 	mtx_assert(sim->mtx, MA_OWNED);
3883 
3884 	sim->bus_id = bus;
3885 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3886 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3887 	if (new_bus == NULL) {
3888 		/* Couldn't satisfy request */
3889 		return (CAM_RESRC_UNAVAIL);
3890 	}
3891 
3892 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3893 	TAILQ_INIT(&new_bus->et_entries);
3894 	cam_sim_hold(sim);
3895 	new_bus->sim = sim;
3896 	timevalclear(&new_bus->last_reset);
3897 	new_bus->flags = 0;
3898 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3899 	new_bus->generation = 0;
3900 
3901 	xpt_lock_buses();
3902 	sim->path_id = new_bus->path_id =
3903 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3904 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3905 	while (old_bus != NULL
3906 	    && old_bus->path_id < new_bus->path_id)
3907 		old_bus = TAILQ_NEXT(old_bus, links);
3908 	if (old_bus != NULL)
3909 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3910 	else
3911 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3912 	xsoftc.bus_generation++;
3913 	xpt_unlock_buses();
3914 
3915 	/*
3916 	 * Set a default transport so that a PATH_INQ can be issued to
3917 	 * the SIM.  This will then allow for probing and attaching of
3918 	 * a more appropriate transport.
3919 	 */
3920 	new_bus->xport = &xport_default;
3921 
3922 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3923 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3924 	if (status != CAM_REQ_CMP) {
3925 		xpt_release_bus(new_bus);
3926 		free(path, M_CAMXPT);
3927 		return (CAM_RESRC_UNAVAIL);
3928 	}
3929 
3930 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3931 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3932 	xpt_action((union ccb *)&cpi);
3933 
3934 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3935 		struct xpt_xport **xpt;
3936 
3937 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3938 			if ((*xpt)->xport == cpi.transport) {
3939 				new_bus->xport = *xpt;
3940 				break;
3941 			}
3942 		}
3943 		if (new_bus->xport == NULL) {
3944 			xpt_print_path(path);
3945 			printf("No transport found for %d\n", cpi.transport);
3946 			xpt_release_bus(new_bus);
3947 			free(path, M_CAMXPT);
3948 			return (CAM_RESRC_UNAVAIL);
3949 		}
3950 	}
3951 
3952 	/* Notify interested parties */
3953 	if (sim->path_id != CAM_XPT_PATH_ID) {
3954 
3955 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3956 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3957 			union	ccb *scan_ccb;
3958 
3959 			/* Initiate bus rescan. */
3960 			scan_ccb = xpt_alloc_ccb_nowait();
3961 			if (scan_ccb != NULL) {
3962 				scan_ccb->ccb_h.path = path;
3963 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3964 				scan_ccb->crcn.flags = 0;
3965 				xpt_rescan(scan_ccb);
3966 			} else {
3967 				xpt_print(path,
3968 					  "Can't allocate CCB to scan bus\n");
3969 				xpt_free_path(path);
3970 			}
3971 		} else
3972 			xpt_free_path(path);
3973 	} else
3974 		xpt_free_path(path);
3975 	return (CAM_SUCCESS);
3976 }
3977 
3978 int32_t
3979 xpt_bus_deregister(path_id_t pathid)
3980 {
3981 	struct cam_path bus_path;
3982 	cam_status status;
3983 
3984 	status = xpt_compile_path(&bus_path, NULL, pathid,
3985 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3986 	if (status != CAM_REQ_CMP)
3987 		return (status);
3988 
3989 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3990 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3991 
3992 	/* Release the reference count held while registered. */
3993 	xpt_release_bus(bus_path.bus);
3994 	xpt_release_path(&bus_path);
3995 
3996 	return (CAM_REQ_CMP);
3997 }
3998 
3999 static path_id_t
4000 xptnextfreepathid(void)
4001 {
4002 	struct cam_eb *bus;
4003 	path_id_t pathid;
4004 	const char *strval;
4005 
4006 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4007 	pathid = 0;
4008 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4009 retry:
4010 	/* Find an unoccupied pathid */
4011 	while (bus != NULL && bus->path_id <= pathid) {
4012 		if (bus->path_id == pathid)
4013 			pathid++;
4014 		bus = TAILQ_NEXT(bus, links);
4015 	}
4016 
4017 	/*
4018 	 * Ensure that this pathid is not reserved for
4019 	 * a bus that may be registered in the future.
4020 	 */
4021 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4022 		++pathid;
4023 		/* Start the search over */
4024 		goto retry;
4025 	}
4026 	return (pathid);
4027 }
4028 
4029 static path_id_t
4030 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4031 {
4032 	path_id_t pathid;
4033 	int i, dunit, val;
4034 	char buf[32];
4035 	const char *dname;
4036 
4037 	pathid = CAM_XPT_PATH_ID;
4038 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4039 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4040 		return (pathid);
4041 	i = 0;
4042 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4043 		if (strcmp(dname, "scbus")) {
4044 			/* Avoid a bit of foot shooting. */
4045 			continue;
4046 		}
4047 		if (dunit < 0)		/* unwired?! */
4048 			continue;
4049 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4050 			if (sim_bus == val) {
4051 				pathid = dunit;
4052 				break;
4053 			}
4054 		} else if (sim_bus == 0) {
4055 			/* Unspecified matches bus 0 */
4056 			pathid = dunit;
4057 			break;
4058 		} else {
4059 			printf("Ambiguous scbus configuration for %s%d "
4060 			       "bus %d, cannot wire down.  The kernel "
4061 			       "config entry for scbus%d should "
4062 			       "specify a controller bus.\n"
4063 			       "Scbus will be assigned dynamically.\n",
4064 			       sim_name, sim_unit, sim_bus, dunit);
4065 			break;
4066 		}
4067 	}
4068 
4069 	if (pathid == CAM_XPT_PATH_ID)
4070 		pathid = xptnextfreepathid();
4071 	return (pathid);
4072 }
4073 
4074 static const char *
4075 xpt_async_string(u_int32_t async_code)
4076 {
4077 
4078 	switch (async_code) {
4079 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4080 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4081 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4082 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4083 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4084 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4085 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4086 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4087 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4088 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4089 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4090 	case AC_CONTRACT: return ("AC_CONTRACT");
4091 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4092 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4093 	}
4094 	return ("AC_UNKNOWN");
4095 }
4096 
4097 static int
4098 xpt_async_size(u_int32_t async_code)
4099 {
4100 
4101 	switch (async_code) {
4102 	case AC_BUS_RESET: return (0);
4103 	case AC_UNSOL_RESEL: return (0);
4104 	case AC_SCSI_AEN: return (0);
4105 	case AC_SENT_BDR: return (0);
4106 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4107 	case AC_PATH_DEREGISTERED: return (0);
4108 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4109 	case AC_LOST_DEVICE: return (0);
4110 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4111 	case AC_INQ_CHANGED: return (0);
4112 	case AC_GETDEV_CHANGED: return (0);
4113 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4114 	case AC_ADVINFO_CHANGED: return (-1);
4115 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4116 	}
4117 	return (0);
4118 }
4119 
4120 static int
4121 xpt_async_process_dev(struct cam_ed *device, void *arg)
4122 {
4123 	union ccb *ccb = arg;
4124 	struct cam_path *path = ccb->ccb_h.path;
4125 	void *async_arg = ccb->casync.async_arg_ptr;
4126 	u_int32_t async_code = ccb->casync.async_code;
4127 	int relock;
4128 
4129 	if (path->device != device
4130 	 && path->device->lun_id != CAM_LUN_WILDCARD
4131 	 && device->lun_id != CAM_LUN_WILDCARD)
4132 		return (1);
4133 
4134 	/*
4135 	 * The async callback could free the device.
4136 	 * If it is a broadcast async, it doesn't hold
4137 	 * device reference, so take our own reference.
4138 	 */
4139 	xpt_acquire_device(device);
4140 
4141 	/*
4142 	 * If async for specific device is to be delivered to
4143 	 * the wildcard client, take the specific device lock.
4144 	 * XXX: We may need a way for client to specify it.
4145 	 */
4146 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4147 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4148 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4149 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4150 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4151 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4152 		mtx_unlock(&device->device_mtx);
4153 		xpt_path_lock(path);
4154 		relock = 1;
4155 	} else
4156 		relock = 0;
4157 
4158 	(*(device->target->bus->xport->ops->async))(async_code,
4159 	    device->target->bus, device->target, device, async_arg);
4160 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4161 
4162 	if (relock) {
4163 		xpt_path_unlock(path);
4164 		mtx_lock(&device->device_mtx);
4165 	}
4166 	xpt_release_device(device);
4167 	return (1);
4168 }
4169 
4170 static int
4171 xpt_async_process_tgt(struct cam_et *target, void *arg)
4172 {
4173 	union ccb *ccb = arg;
4174 	struct cam_path *path = ccb->ccb_h.path;
4175 
4176 	if (path->target != target
4177 	 && path->target->target_id != CAM_TARGET_WILDCARD
4178 	 && target->target_id != CAM_TARGET_WILDCARD)
4179 		return (1);
4180 
4181 	if (ccb->casync.async_code == AC_SENT_BDR) {
4182 		/* Update our notion of when the last reset occurred */
4183 		microtime(&target->last_reset);
4184 	}
4185 
4186 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4187 }
4188 
4189 static void
4190 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4191 {
4192 	struct cam_eb *bus;
4193 	struct cam_path *path;
4194 	void *async_arg;
4195 	u_int32_t async_code;
4196 
4197 	path = ccb->ccb_h.path;
4198 	async_code = ccb->casync.async_code;
4199 	async_arg = ccb->casync.async_arg_ptr;
4200 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4201 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4202 	bus = path->bus;
4203 
4204 	if (async_code == AC_BUS_RESET) {
4205 		/* Update our notion of when the last reset occurred */
4206 		microtime(&bus->last_reset);
4207 	}
4208 
4209 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4210 
4211 	/*
4212 	 * If this wasn't a fully wildcarded async, tell all
4213 	 * clients that want all async events.
4214 	 */
4215 	if (bus != xpt_periph->path->bus) {
4216 		xpt_path_lock(xpt_periph->path);
4217 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4218 		xpt_path_unlock(xpt_periph->path);
4219 	}
4220 
4221 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4222 		xpt_release_devq(path, 1, TRUE);
4223 	else
4224 		xpt_release_simq(path->bus->sim, TRUE);
4225 	if (ccb->casync.async_arg_size > 0)
4226 		free(async_arg, M_CAMXPT);
4227 	xpt_free_path(path);
4228 	xpt_free_ccb(ccb);
4229 }
4230 
4231 static void
4232 xpt_async_bcast(struct async_list *async_head,
4233 		u_int32_t async_code,
4234 		struct cam_path *path, void *async_arg)
4235 {
4236 	struct async_node *cur_entry;
4237 	int lock;
4238 
4239 	cur_entry = SLIST_FIRST(async_head);
4240 	while (cur_entry != NULL) {
4241 		struct async_node *next_entry;
4242 		/*
4243 		 * Grab the next list entry before we call the current
4244 		 * entry's callback.  This is because the callback function
4245 		 * can delete its async callback entry.
4246 		 */
4247 		next_entry = SLIST_NEXT(cur_entry, links);
4248 		if ((cur_entry->event_enable & async_code) != 0) {
4249 			lock = cur_entry->event_lock;
4250 			if (lock)
4251 				CAM_SIM_LOCK(path->device->sim);
4252 			cur_entry->callback(cur_entry->callback_arg,
4253 					    async_code, path,
4254 					    async_arg);
4255 			if (lock)
4256 				CAM_SIM_UNLOCK(path->device->sim);
4257 		}
4258 		cur_entry = next_entry;
4259 	}
4260 }
4261 
4262 void
4263 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4264 {
4265 	union ccb *ccb;
4266 	int size;
4267 
4268 	ccb = xpt_alloc_ccb_nowait();
4269 	if (ccb == NULL) {
4270 		xpt_print(path, "Can't allocate CCB to send %s\n",
4271 		    xpt_async_string(async_code));
4272 		return;
4273 	}
4274 
4275 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4276 		xpt_print(path, "Can't allocate path to send %s\n",
4277 		    xpt_async_string(async_code));
4278 		xpt_free_ccb(ccb);
4279 		return;
4280 	}
4281 	ccb->ccb_h.path->periph = NULL;
4282 	ccb->ccb_h.func_code = XPT_ASYNC;
4283 	ccb->ccb_h.cbfcnp = xpt_async_process;
4284 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4285 	ccb->casync.async_code = async_code;
4286 	ccb->casync.async_arg_size = 0;
4287 	size = xpt_async_size(async_code);
4288 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4289 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4290 		ccb->ccb_h.func_code,
4291 		xpt_action_name(ccb->ccb_h.func_code),
4292 		async_code,
4293 		xpt_async_string(async_code)));
4294 	if (size > 0 && async_arg != NULL) {
4295 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4296 		if (ccb->casync.async_arg_ptr == NULL) {
4297 			xpt_print(path, "Can't allocate argument to send %s\n",
4298 			    xpt_async_string(async_code));
4299 			xpt_free_path(ccb->ccb_h.path);
4300 			xpt_free_ccb(ccb);
4301 			return;
4302 		}
4303 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4304 		ccb->casync.async_arg_size = size;
4305 	} else if (size < 0) {
4306 		ccb->casync.async_arg_ptr = async_arg;
4307 		ccb->casync.async_arg_size = size;
4308 	}
4309 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4310 		xpt_freeze_devq(path, 1);
4311 	else
4312 		xpt_freeze_simq(path->bus->sim, 1);
4313 	xpt_done(ccb);
4314 }
4315 
4316 static void
4317 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4318 		      struct cam_et *target, struct cam_ed *device,
4319 		      void *async_arg)
4320 {
4321 
4322 	/*
4323 	 * We only need to handle events for real devices.
4324 	 */
4325 	if (target->target_id == CAM_TARGET_WILDCARD
4326 	 || device->lun_id == CAM_LUN_WILDCARD)
4327 		return;
4328 
4329 	printf("%s called\n", __func__);
4330 }
4331 
4332 static uint32_t
4333 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4334 {
4335 	struct cam_devq	*devq;
4336 	uint32_t freeze;
4337 
4338 	devq = dev->sim->devq;
4339 	mtx_assert(&devq->send_mtx, MA_OWNED);
4340 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4341 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4342 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4343 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4344 	/* Remove frozen device from sendq. */
4345 	if (device_is_queued(dev))
4346 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4347 	return (freeze);
4348 }
4349 
4350 u_int32_t
4351 xpt_freeze_devq(struct cam_path *path, u_int count)
4352 {
4353 	struct cam_ed	*dev = path->device;
4354 	struct cam_devq	*devq;
4355 	uint32_t	 freeze;
4356 
4357 	devq = dev->sim->devq;
4358 	mtx_lock(&devq->send_mtx);
4359 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4360 	freeze = xpt_freeze_devq_device(dev, count);
4361 	mtx_unlock(&devq->send_mtx);
4362 	return (freeze);
4363 }
4364 
4365 u_int32_t
4366 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4367 {
4368 	struct cam_devq	*devq;
4369 	uint32_t	 freeze;
4370 
4371 	devq = sim->devq;
4372 	mtx_lock(&devq->send_mtx);
4373 	freeze = (devq->send_queue.qfrozen_cnt += count);
4374 	mtx_unlock(&devq->send_mtx);
4375 	return (freeze);
4376 }
4377 
4378 static void
4379 xpt_release_devq_timeout(void *arg)
4380 {
4381 	struct cam_ed *dev;
4382 	struct cam_devq *devq;
4383 
4384 	dev = (struct cam_ed *)arg;
4385 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4386 	devq = dev->sim->devq;
4387 	mtx_assert(&devq->send_mtx, MA_OWNED);
4388 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4389 		xpt_run_devq(devq);
4390 }
4391 
4392 void
4393 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4394 {
4395 	struct cam_ed *dev;
4396 	struct cam_devq *devq;
4397 
4398 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4399 	    count, run_queue));
4400 	dev = path->device;
4401 	devq = dev->sim->devq;
4402 	mtx_lock(&devq->send_mtx);
4403 	if (xpt_release_devq_device(dev, count, run_queue))
4404 		xpt_run_devq(dev->sim->devq);
4405 	mtx_unlock(&devq->send_mtx);
4406 }
4407 
4408 static int
4409 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4410 {
4411 
4412 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4413 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4414 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4415 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4416 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4417 #ifdef INVARIANTS
4418 		printf("xpt_release_devq(): requested %u > present %u\n",
4419 		    count, dev->ccbq.queue.qfrozen_cnt);
4420 #endif
4421 		count = dev->ccbq.queue.qfrozen_cnt;
4422 	}
4423 	dev->ccbq.queue.qfrozen_cnt -= count;
4424 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4425 		/*
4426 		 * No longer need to wait for a successful
4427 		 * command completion.
4428 		 */
4429 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4430 		/*
4431 		 * Remove any timeouts that might be scheduled
4432 		 * to release this queue.
4433 		 */
4434 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4435 			callout_stop(&dev->callout);
4436 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4437 		}
4438 		/*
4439 		 * Now that we are unfrozen schedule the
4440 		 * device so any pending transactions are
4441 		 * run.
4442 		 */
4443 		xpt_schedule_devq(dev->sim->devq, dev);
4444 	} else
4445 		run_queue = 0;
4446 	return (run_queue);
4447 }
4448 
4449 void
4450 xpt_release_simq(struct cam_sim *sim, int run_queue)
4451 {
4452 	struct cam_devq	*devq;
4453 
4454 	devq = sim->devq;
4455 	mtx_lock(&devq->send_mtx);
4456 	if (devq->send_queue.qfrozen_cnt <= 0) {
4457 #ifdef INVARIANTS
4458 		printf("xpt_release_simq: requested 1 > present %u\n",
4459 		    devq->send_queue.qfrozen_cnt);
4460 #endif
4461 	} else
4462 		devq->send_queue.qfrozen_cnt--;
4463 	if (devq->send_queue.qfrozen_cnt == 0) {
4464 		/*
4465 		 * If there is a timeout scheduled to release this
4466 		 * sim queue, remove it.  The queue frozen count is
4467 		 * already at 0.
4468 		 */
4469 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4470 			callout_stop(&sim->callout);
4471 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4472 		}
4473 		if (run_queue) {
4474 			/*
4475 			 * Now that we are unfrozen run the send queue.
4476 			 */
4477 			xpt_run_devq(sim->devq);
4478 		}
4479 	}
4480 	mtx_unlock(&devq->send_mtx);
4481 }
4482 
4483 /*
4484  * XXX Appears to be unused.
4485  */
4486 static void
4487 xpt_release_simq_timeout(void *arg)
4488 {
4489 	struct cam_sim *sim;
4490 
4491 	sim = (struct cam_sim *)arg;
4492 	xpt_release_simq(sim, /* run_queue */ TRUE);
4493 }
4494 
4495 void
4496 xpt_done(union ccb *done_ccb)
4497 {
4498 	struct cam_doneq *queue;
4499 	int	run, hash;
4500 
4501 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4502 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4503 	    done_ccb->csio.bio != NULL)
4504 		biotrack(done_ccb->csio.bio, __func__);
4505 #endif
4506 
4507 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4508 	    ("xpt_done: func= %#x %s status %#x\n",
4509 		done_ccb->ccb_h.func_code,
4510 		xpt_action_name(done_ccb->ccb_h.func_code),
4511 		done_ccb->ccb_h.status));
4512 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4513 		return;
4514 
4515 	/* Store the time the ccb was in the sim */
4516 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4517 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4518 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4519 	queue = &cam_doneqs[hash];
4520 	mtx_lock(&queue->cam_doneq_mtx);
4521 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4522 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4523 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4524 	mtx_unlock(&queue->cam_doneq_mtx);
4525 	if (run)
4526 		wakeup(&queue->cam_doneq);
4527 }
4528 
4529 void
4530 xpt_done_direct(union ccb *done_ccb)
4531 {
4532 
4533 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4534 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4535 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4536 		return;
4537 
4538 	/* Store the time the ccb was in the sim */
4539 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4540 	xpt_done_process(&done_ccb->ccb_h);
4541 }
4542 
4543 union ccb *
4544 xpt_alloc_ccb()
4545 {
4546 	union ccb *new_ccb;
4547 
4548 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4549 	return (new_ccb);
4550 }
4551 
4552 union ccb *
4553 xpt_alloc_ccb_nowait()
4554 {
4555 	union ccb *new_ccb;
4556 
4557 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4558 	return (new_ccb);
4559 }
4560 
4561 void
4562 xpt_free_ccb(union ccb *free_ccb)
4563 {
4564 	free(free_ccb, M_CAMCCB);
4565 }
4566 
4567 
4568 
4569 /* Private XPT functions */
4570 
4571 /*
4572  * Get a CAM control block for the caller. Charge the structure to the device
4573  * referenced by the path.  If we don't have sufficient resources to allocate
4574  * more ccbs, we return NULL.
4575  */
4576 static union ccb *
4577 xpt_get_ccb_nowait(struct cam_periph *periph)
4578 {
4579 	union ccb *new_ccb;
4580 
4581 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4582 	if (new_ccb == NULL)
4583 		return (NULL);
4584 	periph->periph_allocated++;
4585 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4586 	return (new_ccb);
4587 }
4588 
4589 static union ccb *
4590 xpt_get_ccb(struct cam_periph *periph)
4591 {
4592 	union ccb *new_ccb;
4593 
4594 	cam_periph_unlock(periph);
4595 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4596 	cam_periph_lock(periph);
4597 	periph->periph_allocated++;
4598 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4599 	return (new_ccb);
4600 }
4601 
4602 union ccb *
4603 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4604 {
4605 	struct ccb_hdr *ccb_h;
4606 
4607 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4608 	cam_periph_assert(periph, MA_OWNED);
4609 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4610 	    ccb_h->pinfo.priority != priority) {
4611 		if (priority < periph->immediate_priority) {
4612 			periph->immediate_priority = priority;
4613 			xpt_run_allocq(periph, 0);
4614 		} else
4615 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4616 			    "cgticb", 0);
4617 	}
4618 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4619 	return ((union ccb *)ccb_h);
4620 }
4621 
4622 static void
4623 xpt_acquire_bus(struct cam_eb *bus)
4624 {
4625 
4626 	xpt_lock_buses();
4627 	bus->refcount++;
4628 	xpt_unlock_buses();
4629 }
4630 
4631 static void
4632 xpt_release_bus(struct cam_eb *bus)
4633 {
4634 
4635 	xpt_lock_buses();
4636 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4637 	if (--bus->refcount > 0) {
4638 		xpt_unlock_buses();
4639 		return;
4640 	}
4641 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4642 	xsoftc.bus_generation++;
4643 	xpt_unlock_buses();
4644 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4645 	    ("destroying bus, but target list is not empty"));
4646 	cam_sim_release(bus->sim);
4647 	mtx_destroy(&bus->eb_mtx);
4648 	free(bus, M_CAMXPT);
4649 }
4650 
4651 static struct cam_et *
4652 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4653 {
4654 	struct cam_et *cur_target, *target;
4655 
4656 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4657 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4658 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4659 					 M_NOWAIT|M_ZERO);
4660 	if (target == NULL)
4661 		return (NULL);
4662 
4663 	TAILQ_INIT(&target->ed_entries);
4664 	target->bus = bus;
4665 	target->target_id = target_id;
4666 	target->refcount = 1;
4667 	target->generation = 0;
4668 	target->luns = NULL;
4669 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4670 	timevalclear(&target->last_reset);
4671 	/*
4672 	 * Hold a reference to our parent bus so it
4673 	 * will not go away before we do.
4674 	 */
4675 	bus->refcount++;
4676 
4677 	/* Insertion sort into our bus's target list */
4678 	cur_target = TAILQ_FIRST(&bus->et_entries);
4679 	while (cur_target != NULL && cur_target->target_id < target_id)
4680 		cur_target = TAILQ_NEXT(cur_target, links);
4681 	if (cur_target != NULL) {
4682 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4683 	} else {
4684 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4685 	}
4686 	bus->generation++;
4687 	return (target);
4688 }
4689 
4690 static void
4691 xpt_acquire_target(struct cam_et *target)
4692 {
4693 	struct cam_eb *bus = target->bus;
4694 
4695 	mtx_lock(&bus->eb_mtx);
4696 	target->refcount++;
4697 	mtx_unlock(&bus->eb_mtx);
4698 }
4699 
4700 static void
4701 xpt_release_target(struct cam_et *target)
4702 {
4703 	struct cam_eb *bus = target->bus;
4704 
4705 	mtx_lock(&bus->eb_mtx);
4706 	if (--target->refcount > 0) {
4707 		mtx_unlock(&bus->eb_mtx);
4708 		return;
4709 	}
4710 	TAILQ_REMOVE(&bus->et_entries, target, links);
4711 	bus->generation++;
4712 	mtx_unlock(&bus->eb_mtx);
4713 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4714 	    ("destroying target, but device list is not empty"));
4715 	xpt_release_bus(bus);
4716 	mtx_destroy(&target->luns_mtx);
4717 	if (target->luns)
4718 		free(target->luns, M_CAMXPT);
4719 	free(target, M_CAMXPT);
4720 }
4721 
4722 static struct cam_ed *
4723 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4724 			 lun_id_t lun_id)
4725 {
4726 	struct cam_ed *device;
4727 
4728 	device = xpt_alloc_device(bus, target, lun_id);
4729 	if (device == NULL)
4730 		return (NULL);
4731 
4732 	device->mintags = 1;
4733 	device->maxtags = 1;
4734 	return (device);
4735 }
4736 
4737 static void
4738 xpt_destroy_device(void *context, int pending)
4739 {
4740 	struct cam_ed	*device = context;
4741 
4742 	mtx_lock(&device->device_mtx);
4743 	mtx_destroy(&device->device_mtx);
4744 	free(device, M_CAMDEV);
4745 }
4746 
4747 struct cam_ed *
4748 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4749 {
4750 	struct cam_ed	*cur_device, *device;
4751 	struct cam_devq	*devq;
4752 	cam_status status;
4753 
4754 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4755 	/* Make space for us in the device queue on our bus */
4756 	devq = bus->sim->devq;
4757 	mtx_lock(&devq->send_mtx);
4758 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4759 	mtx_unlock(&devq->send_mtx);
4760 	if (status != CAM_REQ_CMP)
4761 		return (NULL);
4762 
4763 	device = (struct cam_ed *)malloc(sizeof(*device),
4764 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4765 	if (device == NULL)
4766 		return (NULL);
4767 
4768 	cam_init_pinfo(&device->devq_entry);
4769 	device->target = target;
4770 	device->lun_id = lun_id;
4771 	device->sim = bus->sim;
4772 	if (cam_ccbq_init(&device->ccbq,
4773 			  bus->sim->max_dev_openings) != 0) {
4774 		free(device, M_CAMDEV);
4775 		return (NULL);
4776 	}
4777 	SLIST_INIT(&device->asyncs);
4778 	SLIST_INIT(&device->periphs);
4779 	device->generation = 0;
4780 	device->flags = CAM_DEV_UNCONFIGURED;
4781 	device->tag_delay_count = 0;
4782 	device->tag_saved_openings = 0;
4783 	device->refcount = 1;
4784 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4785 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4786 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4787 	/*
4788 	 * Hold a reference to our parent bus so it
4789 	 * will not go away before we do.
4790 	 */
4791 	target->refcount++;
4792 
4793 	cur_device = TAILQ_FIRST(&target->ed_entries);
4794 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4795 		cur_device = TAILQ_NEXT(cur_device, links);
4796 	if (cur_device != NULL)
4797 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4798 	else
4799 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4800 	target->generation++;
4801 	return (device);
4802 }
4803 
4804 void
4805 xpt_acquire_device(struct cam_ed *device)
4806 {
4807 	struct cam_eb *bus = device->target->bus;
4808 
4809 	mtx_lock(&bus->eb_mtx);
4810 	device->refcount++;
4811 	mtx_unlock(&bus->eb_mtx);
4812 }
4813 
4814 void
4815 xpt_release_device(struct cam_ed *device)
4816 {
4817 	struct cam_eb *bus = device->target->bus;
4818 	struct cam_devq *devq;
4819 
4820 	mtx_lock(&bus->eb_mtx);
4821 	if (--device->refcount > 0) {
4822 		mtx_unlock(&bus->eb_mtx);
4823 		return;
4824 	}
4825 
4826 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4827 	device->target->generation++;
4828 	mtx_unlock(&bus->eb_mtx);
4829 
4830 	/* Release our slot in the devq */
4831 	devq = bus->sim->devq;
4832 	mtx_lock(&devq->send_mtx);
4833 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4834 	mtx_unlock(&devq->send_mtx);
4835 
4836 	KASSERT(SLIST_EMPTY(&device->periphs),
4837 	    ("destroying device, but periphs list is not empty"));
4838 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4839 	    ("destroying device while still queued for ccbs"));
4840 
4841 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4842 		callout_stop(&device->callout);
4843 
4844 	xpt_release_target(device->target);
4845 
4846 	cam_ccbq_fini(&device->ccbq);
4847 	/*
4848 	 * Free allocated memory.  free(9) does nothing if the
4849 	 * supplied pointer is NULL, so it is safe to call without
4850 	 * checking.
4851 	 */
4852 	free(device->supported_vpds, M_CAMXPT);
4853 	free(device->device_id, M_CAMXPT);
4854 	free(device->ext_inq, M_CAMXPT);
4855 	free(device->physpath, M_CAMXPT);
4856 	free(device->rcap_buf, M_CAMXPT);
4857 	free(device->serial_num, M_CAMXPT);
4858 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4859 }
4860 
4861 u_int32_t
4862 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4863 {
4864 	int	result;
4865 	struct	cam_ed *dev;
4866 
4867 	dev = path->device;
4868 	mtx_lock(&dev->sim->devq->send_mtx);
4869 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4870 	mtx_unlock(&dev->sim->devq->send_mtx);
4871 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4872 	 || (dev->inq_flags & SID_CmdQue) != 0)
4873 		dev->tag_saved_openings = newopenings;
4874 	return (result);
4875 }
4876 
4877 static struct cam_eb *
4878 xpt_find_bus(path_id_t path_id)
4879 {
4880 	struct cam_eb *bus;
4881 
4882 	xpt_lock_buses();
4883 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4884 	     bus != NULL;
4885 	     bus = TAILQ_NEXT(bus, links)) {
4886 		if (bus->path_id == path_id) {
4887 			bus->refcount++;
4888 			break;
4889 		}
4890 	}
4891 	xpt_unlock_buses();
4892 	return (bus);
4893 }
4894 
4895 static struct cam_et *
4896 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4897 {
4898 	struct cam_et *target;
4899 
4900 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4901 	for (target = TAILQ_FIRST(&bus->et_entries);
4902 	     target != NULL;
4903 	     target = TAILQ_NEXT(target, links)) {
4904 		if (target->target_id == target_id) {
4905 			target->refcount++;
4906 			break;
4907 		}
4908 	}
4909 	return (target);
4910 }
4911 
4912 static struct cam_ed *
4913 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4914 {
4915 	struct cam_ed *device;
4916 
4917 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4918 	for (device = TAILQ_FIRST(&target->ed_entries);
4919 	     device != NULL;
4920 	     device = TAILQ_NEXT(device, links)) {
4921 		if (device->lun_id == lun_id) {
4922 			device->refcount++;
4923 			break;
4924 		}
4925 	}
4926 	return (device);
4927 }
4928 
4929 void
4930 xpt_start_tags(struct cam_path *path)
4931 {
4932 	struct ccb_relsim crs;
4933 	struct cam_ed *device;
4934 	struct cam_sim *sim;
4935 	int    newopenings;
4936 
4937 	device = path->device;
4938 	sim = path->bus->sim;
4939 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4940 	xpt_freeze_devq(path, /*count*/1);
4941 	device->inq_flags |= SID_CmdQue;
4942 	if (device->tag_saved_openings != 0)
4943 		newopenings = device->tag_saved_openings;
4944 	else
4945 		newopenings = min(device->maxtags,
4946 				  sim->max_tagged_dev_openings);
4947 	xpt_dev_ccbq_resize(path, newopenings);
4948 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4949 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4950 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4951 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4952 	crs.openings
4953 	    = crs.release_timeout
4954 	    = crs.qfrozen_cnt
4955 	    = 0;
4956 	xpt_action((union ccb *)&crs);
4957 }
4958 
4959 void
4960 xpt_stop_tags(struct cam_path *path)
4961 {
4962 	struct ccb_relsim crs;
4963 	struct cam_ed *device;
4964 	struct cam_sim *sim;
4965 
4966 	device = path->device;
4967 	sim = path->bus->sim;
4968 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4969 	device->tag_delay_count = 0;
4970 	xpt_freeze_devq(path, /*count*/1);
4971 	device->inq_flags &= ~SID_CmdQue;
4972 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4973 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4974 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4975 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4976 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4977 	crs.openings
4978 	    = crs.release_timeout
4979 	    = crs.qfrozen_cnt
4980 	    = 0;
4981 	xpt_action((union ccb *)&crs);
4982 }
4983 
4984 static void
4985 xpt_boot_delay(void *arg)
4986 {
4987 
4988 	xpt_release_boot();
4989 }
4990 
4991 static void
4992 xpt_config(void *arg)
4993 {
4994 	/*
4995 	 * Now that interrupts are enabled, go find our devices
4996 	 */
4997 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4998 		printf("xpt_config: failed to create taskqueue thread.\n");
4999 
5000 	/* Setup debugging path */
5001 	if (cam_dflags != CAM_DEBUG_NONE) {
5002 		if (xpt_create_path(&cam_dpath, NULL,
5003 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5004 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5005 			printf("xpt_config: xpt_create_path() failed for debug"
5006 			       " target %d:%d:%d, debugging disabled\n",
5007 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5008 			cam_dflags = CAM_DEBUG_NONE;
5009 		}
5010 	} else
5011 		cam_dpath = NULL;
5012 
5013 	periphdriver_init(1);
5014 	xpt_hold_boot();
5015 	callout_init(&xsoftc.boot_callout, 1);
5016 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5017 	    xpt_boot_delay, NULL, 0);
5018 	/* Fire up rescan thread. */
5019 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5020 	    "cam", "scanner")) {
5021 		printf("xpt_config: failed to create rescan thread.\n");
5022 	}
5023 }
5024 
5025 void
5026 xpt_hold_boot(void)
5027 {
5028 	xpt_lock_buses();
5029 	xsoftc.buses_to_config++;
5030 	xpt_unlock_buses();
5031 }
5032 
5033 void
5034 xpt_release_boot(void)
5035 {
5036 	xpt_lock_buses();
5037 	xsoftc.buses_to_config--;
5038 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5039 		struct	xpt_task *task;
5040 
5041 		xsoftc.buses_config_done = 1;
5042 		xpt_unlock_buses();
5043 		/* Call manually because we don't have any busses */
5044 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5045 		if (task != NULL) {
5046 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5047 			taskqueue_enqueue(taskqueue_thread, &task->task);
5048 		}
5049 	} else
5050 		xpt_unlock_buses();
5051 }
5052 
5053 /*
5054  * If the given device only has one peripheral attached to it, and if that
5055  * peripheral is the passthrough driver, announce it.  This insures that the
5056  * user sees some sort of announcement for every peripheral in their system.
5057  */
5058 static int
5059 xptpassannouncefunc(struct cam_ed *device, void *arg)
5060 {
5061 	struct cam_periph *periph;
5062 	int i;
5063 
5064 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5065 	     periph = SLIST_NEXT(periph, periph_links), i++);
5066 
5067 	periph = SLIST_FIRST(&device->periphs);
5068 	if ((i == 1)
5069 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5070 		xpt_announce_periph(periph, NULL);
5071 
5072 	return(1);
5073 }
5074 
5075 static void
5076 xpt_finishconfig_task(void *context, int pending)
5077 {
5078 
5079 	periphdriver_init(2);
5080 	/*
5081 	 * Check for devices with no "standard" peripheral driver
5082 	 * attached.  For any devices like that, announce the
5083 	 * passthrough driver so the user will see something.
5084 	 */
5085 	if (!bootverbose)
5086 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5087 
5088 	/* Release our hook so that the boot can continue. */
5089 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5090 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5091 	xsoftc.xpt_config_hook = NULL;
5092 
5093 	free(context, M_CAMXPT);
5094 }
5095 
5096 cam_status
5097 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5098 		   struct cam_path *path)
5099 {
5100 	struct ccb_setasync csa;
5101 	cam_status status;
5102 	int xptpath = 0;
5103 
5104 	if (path == NULL) {
5105 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5106 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5107 		if (status != CAM_REQ_CMP)
5108 			return (status);
5109 		xpt_path_lock(path);
5110 		xptpath = 1;
5111 	}
5112 
5113 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5114 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5115 	csa.event_enable = event;
5116 	csa.callback = cbfunc;
5117 	csa.callback_arg = cbarg;
5118 	xpt_action((union ccb *)&csa);
5119 	status = csa.ccb_h.status;
5120 
5121 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5122 	    ("xpt_register_async: func %p\n", cbfunc));
5123 
5124 	if (xptpath) {
5125 		xpt_path_unlock(path);
5126 		xpt_free_path(path);
5127 	}
5128 
5129 	if ((status == CAM_REQ_CMP) &&
5130 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5131 		/*
5132 		 * Get this peripheral up to date with all
5133 		 * the currently existing devices.
5134 		 */
5135 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5136 	}
5137 	if ((status == CAM_REQ_CMP) &&
5138 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5139 		/*
5140 		 * Get this peripheral up to date with all
5141 		 * the currently existing busses.
5142 		 */
5143 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5144 	}
5145 
5146 	return (status);
5147 }
5148 
5149 static void
5150 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5151 {
5152 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5153 
5154 	switch (work_ccb->ccb_h.func_code) {
5155 	/* Common cases first */
5156 	case XPT_PATH_INQ:		/* Path routing inquiry */
5157 	{
5158 		struct ccb_pathinq *cpi;
5159 
5160 		cpi = &work_ccb->cpi;
5161 		cpi->version_num = 1; /* XXX??? */
5162 		cpi->hba_inquiry = 0;
5163 		cpi->target_sprt = 0;
5164 		cpi->hba_misc = 0;
5165 		cpi->hba_eng_cnt = 0;
5166 		cpi->max_target = 0;
5167 		cpi->max_lun = 0;
5168 		cpi->initiator_id = 0;
5169 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5170 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5171 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5172 		cpi->unit_number = sim->unit_number;
5173 		cpi->bus_id = sim->bus_id;
5174 		cpi->base_transfer_speed = 0;
5175 		cpi->protocol = PROTO_UNSPECIFIED;
5176 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5177 		cpi->transport = XPORT_UNSPECIFIED;
5178 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5179 		cpi->ccb_h.status = CAM_REQ_CMP;
5180 		xpt_done(work_ccb);
5181 		break;
5182 	}
5183 	default:
5184 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5185 		xpt_done(work_ccb);
5186 		break;
5187 	}
5188 }
5189 
5190 /*
5191  * The xpt as a "controller" has no interrupt sources, so polling
5192  * is a no-op.
5193  */
5194 static void
5195 xptpoll(struct cam_sim *sim)
5196 {
5197 }
5198 
5199 void
5200 xpt_lock_buses(void)
5201 {
5202 	mtx_lock(&xsoftc.xpt_topo_lock);
5203 }
5204 
5205 void
5206 xpt_unlock_buses(void)
5207 {
5208 	mtx_unlock(&xsoftc.xpt_topo_lock);
5209 }
5210 
5211 struct mtx *
5212 xpt_path_mtx(struct cam_path *path)
5213 {
5214 
5215 	return (&path->device->device_mtx);
5216 }
5217 
5218 static void
5219 xpt_done_process(struct ccb_hdr *ccb_h)
5220 {
5221 	struct cam_sim *sim;
5222 	struct cam_devq *devq;
5223 	struct mtx *mtx = NULL;
5224 
5225 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5226 	struct ccb_scsiio *csio;
5227 
5228 	if (ccb_h->func_code == XPT_SCSI_IO) {
5229 		csio = &((union ccb *)ccb_h)->csio;
5230 		if (csio->bio != NULL)
5231 			biotrack(csio->bio, __func__);
5232 	}
5233 #endif
5234 
5235 	if (ccb_h->flags & CAM_HIGH_POWER) {
5236 		struct highpowerlist	*hphead;
5237 		struct cam_ed		*device;
5238 
5239 		mtx_lock(&xsoftc.xpt_highpower_lock);
5240 		hphead = &xsoftc.highpowerq;
5241 
5242 		device = STAILQ_FIRST(hphead);
5243 
5244 		/*
5245 		 * Increment the count since this command is done.
5246 		 */
5247 		xsoftc.num_highpower++;
5248 
5249 		/*
5250 		 * Any high powered commands queued up?
5251 		 */
5252 		if (device != NULL) {
5253 
5254 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5255 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5256 
5257 			mtx_lock(&device->sim->devq->send_mtx);
5258 			xpt_release_devq_device(device,
5259 					 /*count*/1, /*runqueue*/TRUE);
5260 			mtx_unlock(&device->sim->devq->send_mtx);
5261 		} else
5262 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5263 	}
5264 
5265 	sim = ccb_h->path->bus->sim;
5266 
5267 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5268 		xpt_release_simq(sim, /*run_queue*/FALSE);
5269 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5270 	}
5271 
5272 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5273 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5274 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5275 		ccb_h->status &= ~CAM_DEV_QFRZN;
5276 	}
5277 
5278 	devq = sim->devq;
5279 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5280 		struct cam_ed *dev = ccb_h->path->device;
5281 
5282 		mtx_lock(&devq->send_mtx);
5283 		devq->send_active--;
5284 		devq->send_openings++;
5285 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5286 
5287 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5288 		  && (dev->ccbq.dev_active == 0))) {
5289 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5290 			xpt_release_devq_device(dev, /*count*/1,
5291 					 /*run_queue*/FALSE);
5292 		}
5293 
5294 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5295 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5296 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5297 			xpt_release_devq_device(dev, /*count*/1,
5298 					 /*run_queue*/FALSE);
5299 		}
5300 
5301 		if (!device_is_queued(dev))
5302 			(void)xpt_schedule_devq(devq, dev);
5303 		xpt_run_devq(devq);
5304 		mtx_unlock(&devq->send_mtx);
5305 
5306 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5307 			mtx = xpt_path_mtx(ccb_h->path);
5308 			mtx_lock(mtx);
5309 
5310 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5311 			 && (--dev->tag_delay_count == 0))
5312 				xpt_start_tags(ccb_h->path);
5313 		}
5314 	}
5315 
5316 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5317 		if (mtx == NULL) {
5318 			mtx = xpt_path_mtx(ccb_h->path);
5319 			mtx_lock(mtx);
5320 		}
5321 	} else {
5322 		if (mtx != NULL) {
5323 			mtx_unlock(mtx);
5324 			mtx = NULL;
5325 		}
5326 	}
5327 
5328 	/* Call the peripheral driver's callback */
5329 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5330 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5331 	if (mtx != NULL)
5332 		mtx_unlock(mtx);
5333 }
5334 
5335 void
5336 xpt_done_td(void *arg)
5337 {
5338 	struct cam_doneq *queue = arg;
5339 	struct ccb_hdr *ccb_h;
5340 	STAILQ_HEAD(, ccb_hdr)	doneq;
5341 
5342 	STAILQ_INIT(&doneq);
5343 	mtx_lock(&queue->cam_doneq_mtx);
5344 	while (1) {
5345 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5346 			queue->cam_doneq_sleep = 1;
5347 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5348 			    PRIBIO, "-", 0);
5349 			queue->cam_doneq_sleep = 0;
5350 		}
5351 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5352 		mtx_unlock(&queue->cam_doneq_mtx);
5353 
5354 		THREAD_NO_SLEEPING();
5355 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5356 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5357 			xpt_done_process(ccb_h);
5358 		}
5359 		THREAD_SLEEPING_OK();
5360 
5361 		mtx_lock(&queue->cam_doneq_mtx);
5362 	}
5363 }
5364 
5365 static void
5366 camisr_runqueue(void)
5367 {
5368 	struct	ccb_hdr *ccb_h;
5369 	struct cam_doneq *queue;
5370 	int i;
5371 
5372 	/* Process global queues. */
5373 	for (i = 0; i < cam_num_doneqs; i++) {
5374 		queue = &cam_doneqs[i];
5375 		mtx_lock(&queue->cam_doneq_mtx);
5376 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5377 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5378 			mtx_unlock(&queue->cam_doneq_mtx);
5379 			xpt_done_process(ccb_h);
5380 			mtx_lock(&queue->cam_doneq_mtx);
5381 		}
5382 		mtx_unlock(&queue->cam_doneq_mtx);
5383 	}
5384 }
5385 
5386 struct kv
5387 {
5388 	uint32_t v;
5389 	const char *name;
5390 };
5391 
5392 static struct kv map[] = {
5393 	{ XPT_NOOP, "XPT_NOOP" },
5394 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5395 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5396 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5397 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5398 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5399 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5400 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5401 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5402 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5403 	{ XPT_DEBUG, "XPT_DEBUG" },
5404 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5405 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5406 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5407 	{ XPT_ASYNC, "XPT_ASYNC" },
5408 	{ XPT_ABORT, "XPT_ABORT" },
5409 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5410 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5411 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5412 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5413 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5414 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5415 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5416 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5417 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5418 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5419 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5420 	{ XPT_MMCSD_IO, "XPT_MMCSD_IO" },
5421 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5422 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5423 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5424 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5425 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5426 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5427 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5428 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5429 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5430 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5431 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5432 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5433 	{ 0, 0 }
5434 };
5435 
5436 static const char *
5437 xpt_action_name(uint32_t action)
5438 {
5439 	static char buffer[32];	/* Only for unknown messages -- racy */
5440 	struct kv *walker = map;
5441 
5442 	while (walker->name != NULL) {
5443 		if (walker->v == action)
5444 			return (walker->name);
5445 		walker++;
5446 	}
5447 
5448 	snprintf(buffer, sizeof(buffer), "%#x", action);
5449 	return (buffer);
5450 }
5451