xref: /freebsd/sys/cam/cam_xpt.c (revision 1f4bcc459a76b7aa664f3fd557684cd0ba6da352)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/proc.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/taskqueue.h>
47 
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_sim.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/cam_xpt_sim.h>
60 #include <cam/cam_xpt_periph.h>
61 #include <cam/cam_xpt_internal.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 
69 #include <machine/md_var.h>	/* geometry translation */
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 
72 #include "opt_cam.h"
73 
74 /*
75  * This is the maximum number of high powered commands (e.g. start unit)
76  * that can be outstanding at a particular time.
77  */
78 #ifndef CAM_MAX_HIGHPOWER
79 #define CAM_MAX_HIGHPOWER  4
80 #endif
81 
82 /* Datastructures internal to the xpt layer */
83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
87 
88 /* Object for defering XPT actions to a taskqueue */
89 struct xpt_task {
90 	struct task	task;
91 	void		*data1;
92 	uintptr_t	data2;
93 };
94 
95 struct xpt_softc {
96 	uint32_t		xpt_generation;
97 
98 	/* number of high powered commands that can go through right now */
99 	struct mtx		xpt_highpower_lock;
100 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
101 	int			num_highpower;
102 
103 	/* queue for handling async rescan requests. */
104 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 	int buses_to_config;
106 	int buses_config_done;
107 
108 	/* Registered busses */
109 	TAILQ_HEAD(,cam_eb)	xpt_busses;
110 	u_int			bus_generation;
111 
112 	struct intr_config_hook	*xpt_config_hook;
113 
114 	int			boot_delay;
115 	struct callout 		boot_callout;
116 
117 	struct mtx		xpt_topo_lock;
118 	struct mtx		xpt_lock;
119 	struct taskqueue	*xpt_taskq;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
155 
156 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
157            &xsoftc.boot_delay, 0, "Bus registration wait time");
158 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
159 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
160 
161 struct cam_doneq {
162 	struct mtx_padalign	cam_doneq_mtx;
163 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
164 	int			cam_doneq_sleep;
165 };
166 
167 static struct cam_doneq cam_doneqs[MAXCPU];
168 static int cam_num_doneqs;
169 static struct proc *cam_proc;
170 
171 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
172            &cam_num_doneqs, 0, "Number of completion queues/threads");
173 
174 struct cam_periph *xpt_periph;
175 
176 static periph_init_t xpt_periph_init;
177 
178 static struct periph_driver xpt_driver =
179 {
180 	xpt_periph_init, "xpt",
181 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
182 	CAM_PERIPH_DRV_EARLY
183 };
184 
185 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
186 
187 static d_open_t xptopen;
188 static d_close_t xptclose;
189 static d_ioctl_t xptioctl;
190 static d_ioctl_t xptdoioctl;
191 
192 static struct cdevsw xpt_cdevsw = {
193 	.d_version =	D_VERSION,
194 	.d_flags =	0,
195 	.d_open =	xptopen,
196 	.d_close =	xptclose,
197 	.d_ioctl =	xptioctl,
198 	.d_name =	"xpt",
199 };
200 
201 /* Storage for debugging datastructures */
202 struct cam_path *cam_dpath;
203 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
204 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
205 	&cam_dflags, 0, "Enabled debug flags");
206 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
207 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
208 	&cam_debug_delay, 0, "Delay in us after each debug message");
209 
210 /* Our boot-time initialization hook */
211 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
212 
213 static moduledata_t cam_moduledata = {
214 	"cam",
215 	cam_module_event_handler,
216 	NULL
217 };
218 
219 static int	xpt_init(void *);
220 
221 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
222 MODULE_VERSION(cam, 1);
223 
224 
225 static void		xpt_async_bcast(struct async_list *async_head,
226 					u_int32_t async_code,
227 					struct cam_path *path,
228 					void *async_arg);
229 static path_id_t xptnextfreepathid(void);
230 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
231 static union ccb *xpt_get_ccb(struct cam_periph *periph);
232 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
233 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
234 static void	 xpt_run_allocq_task(void *context, int pending);
235 static void	 xpt_run_devq(struct cam_devq *devq);
236 static timeout_t xpt_release_devq_timeout;
237 static void	 xpt_release_simq_timeout(void *arg) __unused;
238 static void	 xpt_acquire_bus(struct cam_eb *bus);
239 static void	 xpt_release_bus(struct cam_eb *bus);
240 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
241 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
242 		    int run_queue);
243 static struct cam_et*
244 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
245 static void	 xpt_acquire_target(struct cam_et *target);
246 static void	 xpt_release_target(struct cam_et *target);
247 static struct cam_eb*
248 		 xpt_find_bus(path_id_t path_id);
249 static struct cam_et*
250 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
251 static struct cam_ed*
252 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
253 static void	 xpt_config(void *arg);
254 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
255 				 u_int32_t new_priority);
256 static xpt_devicefunc_t xptpassannouncefunc;
257 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
258 static void	 xptpoll(struct cam_sim *sim);
259 static void	 camisr_runqueue(void);
260 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
261 static void	 xpt_done_td(void *);
262 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
263 				    u_int num_patterns, struct cam_eb *bus);
264 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
265 				       u_int num_patterns,
266 				       struct cam_ed *device);
267 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
268 				       u_int num_patterns,
269 				       struct cam_periph *periph);
270 static xpt_busfunc_t	xptedtbusfunc;
271 static xpt_targetfunc_t	xptedttargetfunc;
272 static xpt_devicefunc_t	xptedtdevicefunc;
273 static xpt_periphfunc_t	xptedtperiphfunc;
274 static xpt_pdrvfunc_t	xptplistpdrvfunc;
275 static xpt_periphfunc_t	xptplistperiphfunc;
276 static int		xptedtmatch(struct ccb_dev_match *cdm);
277 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
278 static int		xptbustraverse(struct cam_eb *start_bus,
279 				       xpt_busfunc_t *tr_func, void *arg);
280 static int		xpttargettraverse(struct cam_eb *bus,
281 					  struct cam_et *start_target,
282 					  xpt_targetfunc_t *tr_func, void *arg);
283 static int		xptdevicetraverse(struct cam_et *target,
284 					  struct cam_ed *start_device,
285 					  xpt_devicefunc_t *tr_func, void *arg);
286 static int		xptperiphtraverse(struct cam_ed *device,
287 					  struct cam_periph *start_periph,
288 					  xpt_periphfunc_t *tr_func, void *arg);
289 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
290 					xpt_pdrvfunc_t *tr_func, void *arg);
291 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
292 					    struct cam_periph *start_periph,
293 					    xpt_periphfunc_t *tr_func,
294 					    void *arg);
295 static xpt_busfunc_t	xptdefbusfunc;
296 static xpt_targetfunc_t	xptdeftargetfunc;
297 static xpt_devicefunc_t	xptdefdevicefunc;
298 static xpt_periphfunc_t	xptdefperiphfunc;
299 static void		xpt_finishconfig_task(void *context, int pending);
300 static void		xpt_dev_async_default(u_int32_t async_code,
301 					      struct cam_eb *bus,
302 					      struct cam_et *target,
303 					      struct cam_ed *device,
304 					      void *async_arg);
305 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
306 						 struct cam_et *target,
307 						 lun_id_t lun_id);
308 static xpt_devicefunc_t	xptsetasyncfunc;
309 static xpt_busfunc_t	xptsetasyncbusfunc;
310 static cam_status	xptregister(struct cam_periph *periph,
311 				    void *arg);
312 static __inline int device_is_queued(struct cam_ed *device);
313 
314 static __inline int
315 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
316 {
317 	int	retval;
318 
319 	mtx_assert(&devq->send_mtx, MA_OWNED);
320 	if ((dev->ccbq.queue.entries > 0) &&
321 	    (dev->ccbq.dev_openings > 0) &&
322 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
323 		/*
324 		 * The priority of a device waiting for controller
325 		 * resources is that of the highest priority CCB
326 		 * enqueued.
327 		 */
328 		retval =
329 		    xpt_schedule_dev(&devq->send_queue,
330 				     &dev->devq_entry,
331 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
332 	} else {
333 		retval = 0;
334 	}
335 	return (retval);
336 }
337 
338 static __inline int
339 device_is_queued(struct cam_ed *device)
340 {
341 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
342 }
343 
344 static void
345 xpt_periph_init()
346 {
347 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
348 }
349 
350 static int
351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
352 {
353 
354 	/*
355 	 * Only allow read-write access.
356 	 */
357 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
358 		return(EPERM);
359 
360 	/*
361 	 * We don't allow nonblocking access.
362 	 */
363 	if ((flags & O_NONBLOCK) != 0) {
364 		printf("%s: can't do nonblocking access\n", devtoname(dev));
365 		return(ENODEV);
366 	}
367 
368 	return(0);
369 }
370 
371 static int
372 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
373 {
374 
375 	return(0);
376 }
377 
378 /*
379  * Don't automatically grab the xpt softc lock here even though this is going
380  * through the xpt device.  The xpt device is really just a back door for
381  * accessing other devices and SIMs, so the right thing to do is to grab
382  * the appropriate SIM lock once the bus/SIM is located.
383  */
384 static int
385 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
386 {
387 	int error;
388 
389 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
390 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
391 	}
392 	return (error);
393 }
394 
395 static int
396 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
397 {
398 	int error;
399 
400 	error = 0;
401 
402 	switch(cmd) {
403 	/*
404 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
405 	 * to accept CCB types that don't quite make sense to send through a
406 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
407 	 * in the CAM spec.
408 	 */
409 	case CAMIOCOMMAND: {
410 		union ccb *ccb;
411 		union ccb *inccb;
412 		struct cam_eb *bus;
413 
414 		inccb = (union ccb *)addr;
415 
416 		bus = xpt_find_bus(inccb->ccb_h.path_id);
417 		if (bus == NULL)
418 			return (EINVAL);
419 
420 		switch (inccb->ccb_h.func_code) {
421 		case XPT_SCAN_BUS:
422 		case XPT_RESET_BUS:
423 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
424 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
425 				xpt_release_bus(bus);
426 				return (EINVAL);
427 			}
428 			break;
429 		case XPT_SCAN_TGT:
430 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
431 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
432 				xpt_release_bus(bus);
433 				return (EINVAL);
434 			}
435 			break;
436 		default:
437 			break;
438 		}
439 
440 		switch(inccb->ccb_h.func_code) {
441 		case XPT_SCAN_BUS:
442 		case XPT_RESET_BUS:
443 		case XPT_PATH_INQ:
444 		case XPT_ENG_INQ:
445 		case XPT_SCAN_LUN:
446 		case XPT_SCAN_TGT:
447 
448 			ccb = xpt_alloc_ccb();
449 
450 			/*
451 			 * Create a path using the bus, target, and lun the
452 			 * user passed in.
453 			 */
454 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
455 					    inccb->ccb_h.path_id,
456 					    inccb->ccb_h.target_id,
457 					    inccb->ccb_h.target_lun) !=
458 					    CAM_REQ_CMP){
459 				error = EINVAL;
460 				xpt_free_ccb(ccb);
461 				break;
462 			}
463 			/* Ensure all of our fields are correct */
464 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
465 				      inccb->ccb_h.pinfo.priority);
466 			xpt_merge_ccb(ccb, inccb);
467 			xpt_path_lock(ccb->ccb_h.path);
468 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
469 			xpt_path_unlock(ccb->ccb_h.path);
470 			bcopy(ccb, inccb, sizeof(union ccb));
471 			xpt_free_path(ccb->ccb_h.path);
472 			xpt_free_ccb(ccb);
473 			break;
474 
475 		case XPT_DEBUG: {
476 			union ccb ccb;
477 
478 			/*
479 			 * This is an immediate CCB, so it's okay to
480 			 * allocate it on the stack.
481 			 */
482 
483 			/*
484 			 * Create a path using the bus, target, and lun the
485 			 * user passed in.
486 			 */
487 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
488 					    inccb->ccb_h.path_id,
489 					    inccb->ccb_h.target_id,
490 					    inccb->ccb_h.target_lun) !=
491 					    CAM_REQ_CMP){
492 				error = EINVAL;
493 				break;
494 			}
495 			/* Ensure all of our fields are correct */
496 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
497 				      inccb->ccb_h.pinfo.priority);
498 			xpt_merge_ccb(&ccb, inccb);
499 			xpt_action(&ccb);
500 			bcopy(&ccb, inccb, sizeof(union ccb));
501 			xpt_free_path(ccb.ccb_h.path);
502 			break;
503 
504 		}
505 		case XPT_DEV_MATCH: {
506 			struct cam_periph_map_info mapinfo;
507 			struct cam_path *old_path;
508 
509 			/*
510 			 * We can't deal with physical addresses for this
511 			 * type of transaction.
512 			 */
513 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
514 			    CAM_DATA_VADDR) {
515 				error = EINVAL;
516 				break;
517 			}
518 
519 			/*
520 			 * Save this in case the caller had it set to
521 			 * something in particular.
522 			 */
523 			old_path = inccb->ccb_h.path;
524 
525 			/*
526 			 * We really don't need a path for the matching
527 			 * code.  The path is needed because of the
528 			 * debugging statements in xpt_action().  They
529 			 * assume that the CCB has a valid path.
530 			 */
531 			inccb->ccb_h.path = xpt_periph->path;
532 
533 			bzero(&mapinfo, sizeof(mapinfo));
534 
535 			/*
536 			 * Map the pattern and match buffers into kernel
537 			 * virtual address space.
538 			 */
539 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
540 
541 			if (error) {
542 				inccb->ccb_h.path = old_path;
543 				break;
544 			}
545 
546 			/*
547 			 * This is an immediate CCB, we can send it on directly.
548 			 */
549 			xpt_action(inccb);
550 
551 			/*
552 			 * Map the buffers back into user space.
553 			 */
554 			cam_periph_unmapmem(inccb, &mapinfo);
555 
556 			inccb->ccb_h.path = old_path;
557 
558 			error = 0;
559 			break;
560 		}
561 		default:
562 			error = ENOTSUP;
563 			break;
564 		}
565 		xpt_release_bus(bus);
566 		break;
567 	}
568 	/*
569 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
570 	 * with the periphal driver name and unit name filled in.  The other
571 	 * fields don't really matter as input.  The passthrough driver name
572 	 * ("pass"), and unit number are passed back in the ccb.  The current
573 	 * device generation number, and the index into the device peripheral
574 	 * driver list, and the status are also passed back.  Note that
575 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
576 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
577 	 * (or rather should be) impossible for the device peripheral driver
578 	 * list to change since we look at the whole thing in one pass, and
579 	 * we do it with lock protection.
580 	 *
581 	 */
582 	case CAMGETPASSTHRU: {
583 		union ccb *ccb;
584 		struct cam_periph *periph;
585 		struct periph_driver **p_drv;
586 		char   *name;
587 		u_int unit;
588 		int base_periph_found;
589 
590 		ccb = (union ccb *)addr;
591 		unit = ccb->cgdl.unit_number;
592 		name = ccb->cgdl.periph_name;
593 		base_periph_found = 0;
594 
595 		/*
596 		 * Sanity check -- make sure we don't get a null peripheral
597 		 * driver name.
598 		 */
599 		if (*ccb->cgdl.periph_name == '\0') {
600 			error = EINVAL;
601 			break;
602 		}
603 
604 		/* Keep the list from changing while we traverse it */
605 		xpt_lock_buses();
606 
607 		/* first find our driver in the list of drivers */
608 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
609 			if (strcmp((*p_drv)->driver_name, name) == 0)
610 				break;
611 
612 		if (*p_drv == NULL) {
613 			xpt_unlock_buses();
614 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
615 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
616 			*ccb->cgdl.periph_name = '\0';
617 			ccb->cgdl.unit_number = 0;
618 			error = ENOENT;
619 			break;
620 		}
621 
622 		/*
623 		 * Run through every peripheral instance of this driver
624 		 * and check to see whether it matches the unit passed
625 		 * in by the user.  If it does, get out of the loops and
626 		 * find the passthrough driver associated with that
627 		 * peripheral driver.
628 		 */
629 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
630 		     periph = TAILQ_NEXT(periph, unit_links)) {
631 
632 			if (periph->unit_number == unit)
633 				break;
634 		}
635 		/*
636 		 * If we found the peripheral driver that the user passed
637 		 * in, go through all of the peripheral drivers for that
638 		 * particular device and look for a passthrough driver.
639 		 */
640 		if (periph != NULL) {
641 			struct cam_ed *device;
642 			int i;
643 
644 			base_periph_found = 1;
645 			device = periph->path->device;
646 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
647 			     periph != NULL;
648 			     periph = SLIST_NEXT(periph, periph_links), i++) {
649 				/*
650 				 * Check to see whether we have a
651 				 * passthrough device or not.
652 				 */
653 				if (strcmp(periph->periph_name, "pass") == 0) {
654 					/*
655 					 * Fill in the getdevlist fields.
656 					 */
657 					strcpy(ccb->cgdl.periph_name,
658 					       periph->periph_name);
659 					ccb->cgdl.unit_number =
660 						periph->unit_number;
661 					if (SLIST_NEXT(periph, periph_links))
662 						ccb->cgdl.status =
663 							CAM_GDEVLIST_MORE_DEVS;
664 					else
665 						ccb->cgdl.status =
666 						       CAM_GDEVLIST_LAST_DEVICE;
667 					ccb->cgdl.generation =
668 						device->generation;
669 					ccb->cgdl.index = i;
670 					/*
671 					 * Fill in some CCB header fields
672 					 * that the user may want.
673 					 */
674 					ccb->ccb_h.path_id =
675 						periph->path->bus->path_id;
676 					ccb->ccb_h.target_id =
677 						periph->path->target->target_id;
678 					ccb->ccb_h.target_lun =
679 						periph->path->device->lun_id;
680 					ccb->ccb_h.status = CAM_REQ_CMP;
681 					break;
682 				}
683 			}
684 		}
685 
686 		/*
687 		 * If the periph is null here, one of two things has
688 		 * happened.  The first possibility is that we couldn't
689 		 * find the unit number of the particular peripheral driver
690 		 * that the user is asking about.  e.g. the user asks for
691 		 * the passthrough driver for "da11".  We find the list of
692 		 * "da" peripherals all right, but there is no unit 11.
693 		 * The other possibility is that we went through the list
694 		 * of peripheral drivers attached to the device structure,
695 		 * but didn't find one with the name "pass".  Either way,
696 		 * we return ENOENT, since we couldn't find something.
697 		 */
698 		if (periph == NULL) {
699 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
700 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
701 			*ccb->cgdl.periph_name = '\0';
702 			ccb->cgdl.unit_number = 0;
703 			error = ENOENT;
704 			/*
705 			 * It is unfortunate that this is even necessary,
706 			 * but there are many, many clueless users out there.
707 			 * If this is true, the user is looking for the
708 			 * passthrough driver, but doesn't have one in his
709 			 * kernel.
710 			 */
711 			if (base_periph_found == 1) {
712 				printf("xptioctl: pass driver is not in the "
713 				       "kernel\n");
714 				printf("xptioctl: put \"device pass\" in "
715 				       "your kernel config file\n");
716 			}
717 		}
718 		xpt_unlock_buses();
719 		break;
720 		}
721 	default:
722 		error = ENOTTY;
723 		break;
724 	}
725 
726 	return(error);
727 }
728 
729 static int
730 cam_module_event_handler(module_t mod, int what, void *arg)
731 {
732 	int error;
733 
734 	switch (what) {
735 	case MOD_LOAD:
736 		if ((error = xpt_init(NULL)) != 0)
737 			return (error);
738 		break;
739 	case MOD_UNLOAD:
740 		return EBUSY;
741 	default:
742 		return EOPNOTSUPP;
743 	}
744 
745 	return 0;
746 }
747 
748 static void
749 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
750 {
751 
752 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
753 		xpt_free_path(done_ccb->ccb_h.path);
754 		xpt_free_ccb(done_ccb);
755 	} else {
756 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
757 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
758 	}
759 	xpt_release_boot();
760 }
761 
762 /* thread to handle bus rescans */
763 static void
764 xpt_scanner_thread(void *dummy)
765 {
766 	union ccb	*ccb;
767 	struct cam_path	 path;
768 
769 	xpt_lock_buses();
770 	for (;;) {
771 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
772 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
773 			       "-", 0);
774 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
775 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
776 			xpt_unlock_buses();
777 
778 			/*
779 			 * Since lock can be dropped inside and path freed
780 			 * by completion callback even before return here,
781 			 * take our own path copy for reference.
782 			 */
783 			xpt_copy_path(&path, ccb->ccb_h.path);
784 			xpt_path_lock(&path);
785 			xpt_action(ccb);
786 			xpt_path_unlock(&path);
787 			xpt_release_path(&path);
788 
789 			xpt_lock_buses();
790 		}
791 	}
792 }
793 
794 void
795 xpt_rescan(union ccb *ccb)
796 {
797 	struct ccb_hdr *hdr;
798 
799 	/* Prepare request */
800 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
801 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
802 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
803 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
804 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
805 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
806 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
807 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
808 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
809 	else {
810 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
811 		xpt_free_path(ccb->ccb_h.path);
812 		xpt_free_ccb(ccb);
813 		return;
814 	}
815 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
816 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
817 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
818 	/* Don't make duplicate entries for the same paths. */
819 	xpt_lock_buses();
820 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
821 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
822 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
823 				wakeup(&xsoftc.ccb_scanq);
824 				xpt_unlock_buses();
825 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
826 				xpt_free_path(ccb->ccb_h.path);
827 				xpt_free_ccb(ccb);
828 				return;
829 			}
830 		}
831 	}
832 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
833 	xsoftc.buses_to_config++;
834 	wakeup(&xsoftc.ccb_scanq);
835 	xpt_unlock_buses();
836 }
837 
838 /* Functions accessed by the peripheral drivers */
839 static int
840 xpt_init(void *dummy)
841 {
842 	struct cam_sim *xpt_sim;
843 	struct cam_path *path;
844 	struct cam_devq *devq;
845 	cam_status status;
846 	int error, i;
847 
848 	TAILQ_INIT(&xsoftc.xpt_busses);
849 	TAILQ_INIT(&xsoftc.ccb_scanq);
850 	STAILQ_INIT(&xsoftc.highpowerq);
851 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
852 
853 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
854 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
855 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
856 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
857 
858 #ifdef CAM_BOOT_DELAY
859 	/*
860 	 * Override this value at compile time to assist our users
861 	 * who don't use loader to boot a kernel.
862 	 */
863 	xsoftc.boot_delay = CAM_BOOT_DELAY;
864 #endif
865 	/*
866 	 * The xpt layer is, itself, the equivelent of a SIM.
867 	 * Allow 16 ccbs in the ccb pool for it.  This should
868 	 * give decent parallelism when we probe busses and
869 	 * perform other XPT functions.
870 	 */
871 	devq = cam_simq_alloc(16);
872 	xpt_sim = cam_sim_alloc(xptaction,
873 				xptpoll,
874 				"xpt",
875 				/*softc*/NULL,
876 				/*unit*/0,
877 				/*mtx*/&xsoftc.xpt_lock,
878 				/*max_dev_transactions*/0,
879 				/*max_tagged_dev_transactions*/0,
880 				devq);
881 	if (xpt_sim == NULL)
882 		return (ENOMEM);
883 
884 	mtx_lock(&xsoftc.xpt_lock);
885 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
886 		mtx_unlock(&xsoftc.xpt_lock);
887 		printf("xpt_init: xpt_bus_register failed with status %#x,"
888 		       " failing attach\n", status);
889 		return (EINVAL);
890 	}
891 	mtx_unlock(&xsoftc.xpt_lock);
892 
893 	/*
894 	 * Looking at the XPT from the SIM layer, the XPT is
895 	 * the equivelent of a peripheral driver.  Allocate
896 	 * a peripheral driver entry for us.
897 	 */
898 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
899 				      CAM_TARGET_WILDCARD,
900 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
901 		printf("xpt_init: xpt_create_path failed with status %#x,"
902 		       " failing attach\n", status);
903 		return (EINVAL);
904 	}
905 	xpt_path_lock(path);
906 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
907 			 path, NULL, 0, xpt_sim);
908 	xpt_path_unlock(path);
909 	xpt_free_path(path);
910 
911 	if (cam_num_doneqs < 1)
912 		cam_num_doneqs = 1 + mp_ncpus / 6;
913 	else if (cam_num_doneqs > MAXCPU)
914 		cam_num_doneqs = MAXCPU;
915 	for (i = 0; i < cam_num_doneqs; i++) {
916 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
917 		    MTX_DEF);
918 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
919 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
920 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
921 		if (error != 0) {
922 			cam_num_doneqs = i;
923 			break;
924 		}
925 	}
926 	if (cam_num_doneqs < 1) {
927 		printf("xpt_init: Cannot init completion queues "
928 		       "- failing attach\n");
929 		return (ENOMEM);
930 	}
931 	/*
932 	 * Register a callback for when interrupts are enabled.
933 	 */
934 	xsoftc.xpt_config_hook =
935 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
936 					      M_CAMXPT, M_NOWAIT | M_ZERO);
937 	if (xsoftc.xpt_config_hook == NULL) {
938 		printf("xpt_init: Cannot malloc config hook "
939 		       "- failing attach\n");
940 		return (ENOMEM);
941 	}
942 	xsoftc.xpt_config_hook->ich_func = xpt_config;
943 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
944 		free (xsoftc.xpt_config_hook, M_CAMXPT);
945 		printf("xpt_init: config_intrhook_establish failed "
946 		       "- failing attach\n");
947 	}
948 
949 	return (0);
950 }
951 
952 static cam_status
953 xptregister(struct cam_periph *periph, void *arg)
954 {
955 	struct cam_sim *xpt_sim;
956 
957 	if (periph == NULL) {
958 		printf("xptregister: periph was NULL!!\n");
959 		return(CAM_REQ_CMP_ERR);
960 	}
961 
962 	xpt_sim = (struct cam_sim *)arg;
963 	xpt_sim->softc = periph;
964 	xpt_periph = periph;
965 	periph->softc = NULL;
966 
967 	return(CAM_REQ_CMP);
968 }
969 
970 int32_t
971 xpt_add_periph(struct cam_periph *periph)
972 {
973 	struct cam_ed *device;
974 	int32_t	 status;
975 
976 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
977 	device = periph->path->device;
978 	status = CAM_REQ_CMP;
979 	if (device != NULL) {
980 		mtx_lock(&device->target->bus->eb_mtx);
981 		device->generation++;
982 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
983 		mtx_unlock(&device->target->bus->eb_mtx);
984 		atomic_add_32(&xsoftc.xpt_generation, 1);
985 	}
986 
987 	return (status);
988 }
989 
990 void
991 xpt_remove_periph(struct cam_periph *periph)
992 {
993 	struct cam_ed *device;
994 
995 	device = periph->path->device;
996 	if (device != NULL) {
997 		mtx_lock(&device->target->bus->eb_mtx);
998 		device->generation++;
999 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1000 		mtx_unlock(&device->target->bus->eb_mtx);
1001 		atomic_add_32(&xsoftc.xpt_generation, 1);
1002 	}
1003 }
1004 
1005 
1006 void
1007 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1008 {
1009 	struct	cam_path *path = periph->path;
1010 
1011 	cam_periph_assert(periph, MA_OWNED);
1012 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1013 
1014 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1015 	       periph->periph_name, periph->unit_number,
1016 	       path->bus->sim->sim_name,
1017 	       path->bus->sim->unit_number,
1018 	       path->bus->sim->bus_id,
1019 	       path->bus->path_id,
1020 	       path->target->target_id,
1021 	       (uintmax_t)path->device->lun_id);
1022 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1023 	if (path->device->protocol == PROTO_SCSI)
1024 		scsi_print_inquiry(&path->device->inq_data);
1025 	else if (path->device->protocol == PROTO_ATA ||
1026 	    path->device->protocol == PROTO_SATAPM)
1027 		ata_print_ident(&path->device->ident_data);
1028 	else if (path->device->protocol == PROTO_SEMB)
1029 		semb_print_ident(
1030 		    (struct sep_identify_data *)&path->device->ident_data);
1031 	else
1032 		printf("Unknown protocol device\n");
1033 	if (path->device->serial_num_len > 0) {
1034 		/* Don't wrap the screen  - print only the first 60 chars */
1035 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1036 		       periph->unit_number, path->device->serial_num);
1037 	}
1038 	/* Announce transport details. */
1039 	(*(path->bus->xport->announce))(periph);
1040 	/* Announce command queueing. */
1041 	if (path->device->inq_flags & SID_CmdQue
1042 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1043 		printf("%s%d: Command Queueing enabled\n",
1044 		       periph->periph_name, periph->unit_number);
1045 	}
1046 	/* Announce caller's details if they've passed in. */
1047 	if (announce_string != NULL)
1048 		printf("%s%d: %s\n", periph->periph_name,
1049 		       periph->unit_number, announce_string);
1050 }
1051 
1052 void
1053 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1054 {
1055 	if (quirks != 0) {
1056 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1057 		    periph->unit_number, quirks, bit_string);
1058 	}
1059 }
1060 
1061 void
1062 xpt_denounce_periph(struct cam_periph *periph)
1063 {
1064 	struct	cam_path *path = periph->path;
1065 
1066 	cam_periph_assert(periph, MA_OWNED);
1067 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1068 	       periph->periph_name, periph->unit_number,
1069 	       path->bus->sim->sim_name,
1070 	       path->bus->sim->unit_number,
1071 	       path->bus->sim->bus_id,
1072 	       path->bus->path_id,
1073 	       path->target->target_id,
1074 	       (uintmax_t)path->device->lun_id);
1075 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1076 	if (path->device->protocol == PROTO_SCSI)
1077 		scsi_print_inquiry_short(&path->device->inq_data);
1078 	else if (path->device->protocol == PROTO_ATA ||
1079 	    path->device->protocol == PROTO_SATAPM)
1080 		ata_print_ident_short(&path->device->ident_data);
1081 	else if (path->device->protocol == PROTO_SEMB)
1082 		semb_print_ident_short(
1083 		    (struct sep_identify_data *)&path->device->ident_data);
1084 	else
1085 		printf("Unknown protocol device");
1086 	if (path->device->serial_num_len > 0)
1087 		printf(" s/n %.60s", path->device->serial_num);
1088 	printf(" detached\n");
1089 }
1090 
1091 
1092 int
1093 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1094 {
1095 	int ret = -1, l;
1096 	struct ccb_dev_advinfo cdai;
1097 	struct scsi_vpd_id_descriptor *idd;
1098 
1099 	xpt_path_assert(path, MA_OWNED);
1100 
1101 	memset(&cdai, 0, sizeof(cdai));
1102 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1103 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1104 	cdai.bufsiz = len;
1105 
1106 	if (!strcmp(attr, "GEOM::ident"))
1107 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1108 	else if (!strcmp(attr, "GEOM::physpath"))
1109 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1110 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1111 		 strcmp(attr, "GEOM::lunname") == 0) {
1112 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1113 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1114 	} else
1115 		goto out;
1116 
1117 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1118 	if (cdai.buf == NULL) {
1119 		ret = ENOMEM;
1120 		goto out;
1121 	}
1122 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1123 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1124 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1125 	if (cdai.provsiz == 0)
1126 		goto out;
1127 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1128 		if (strcmp(attr, "GEOM::lunid") == 0) {
1129 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1130 			    cdai.provsiz, scsi_devid_is_lun_naa);
1131 			if (idd == NULL)
1132 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1133 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1134 		} else
1135 			idd = NULL;
1136 		if (idd == NULL)
1137 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1138 			    cdai.provsiz, scsi_devid_is_lun_t10);
1139 		if (idd == NULL)
1140 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1141 			    cdai.provsiz, scsi_devid_is_lun_name);
1142 		if (idd == NULL)
1143 			goto out;
1144 		ret = 0;
1145 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1146 			if (idd->length < len) {
1147 				for (l = 0; l < idd->length; l++)
1148 					buf[l] = idd->identifier[l] ?
1149 					    idd->identifier[l] : ' ';
1150 				buf[l] = 0;
1151 			} else
1152 				ret = EFAULT;
1153 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1154 			l = strnlen(idd->identifier, idd->length);
1155 			if (l < len) {
1156 				bcopy(idd->identifier, buf, l);
1157 				buf[l] = 0;
1158 			} else
1159 				ret = EFAULT;
1160 		} else {
1161 			if (idd->length * 2 < len) {
1162 				for (l = 0; l < idd->length; l++)
1163 					sprintf(buf + l * 2, "%02x",
1164 					    idd->identifier[l]);
1165 			} else
1166 				ret = EFAULT;
1167 		}
1168 	} else {
1169 		ret = 0;
1170 		if (strlcpy(buf, cdai.buf, len) >= len)
1171 			ret = EFAULT;
1172 	}
1173 
1174 out:
1175 	if (cdai.buf != NULL)
1176 		free(cdai.buf, M_CAMXPT);
1177 	return ret;
1178 }
1179 
1180 static dev_match_ret
1181 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1182 	    struct cam_eb *bus)
1183 {
1184 	dev_match_ret retval;
1185 	int i;
1186 
1187 	retval = DM_RET_NONE;
1188 
1189 	/*
1190 	 * If we aren't given something to match against, that's an error.
1191 	 */
1192 	if (bus == NULL)
1193 		return(DM_RET_ERROR);
1194 
1195 	/*
1196 	 * If there are no match entries, then this bus matches no
1197 	 * matter what.
1198 	 */
1199 	if ((patterns == NULL) || (num_patterns == 0))
1200 		return(DM_RET_DESCEND | DM_RET_COPY);
1201 
1202 	for (i = 0; i < num_patterns; i++) {
1203 		struct bus_match_pattern *cur_pattern;
1204 
1205 		/*
1206 		 * If the pattern in question isn't for a bus node, we
1207 		 * aren't interested.  However, we do indicate to the
1208 		 * calling routine that we should continue descending the
1209 		 * tree, since the user wants to match against lower-level
1210 		 * EDT elements.
1211 		 */
1212 		if (patterns[i].type != DEV_MATCH_BUS) {
1213 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1214 				retval |= DM_RET_DESCEND;
1215 			continue;
1216 		}
1217 
1218 		cur_pattern = &patterns[i].pattern.bus_pattern;
1219 
1220 		/*
1221 		 * If they want to match any bus node, we give them any
1222 		 * device node.
1223 		 */
1224 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1225 			/* set the copy flag */
1226 			retval |= DM_RET_COPY;
1227 
1228 			/*
1229 			 * If we've already decided on an action, go ahead
1230 			 * and return.
1231 			 */
1232 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1233 				return(retval);
1234 		}
1235 
1236 		/*
1237 		 * Not sure why someone would do this...
1238 		 */
1239 		if (cur_pattern->flags == BUS_MATCH_NONE)
1240 			continue;
1241 
1242 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1243 		 && (cur_pattern->path_id != bus->path_id))
1244 			continue;
1245 
1246 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1247 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1248 			continue;
1249 
1250 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1251 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1252 			continue;
1253 
1254 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1255 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1256 			     DEV_IDLEN) != 0))
1257 			continue;
1258 
1259 		/*
1260 		 * If we get to this point, the user definitely wants
1261 		 * information on this bus.  So tell the caller to copy the
1262 		 * data out.
1263 		 */
1264 		retval |= DM_RET_COPY;
1265 
1266 		/*
1267 		 * If the return action has been set to descend, then we
1268 		 * know that we've already seen a non-bus matching
1269 		 * expression, therefore we need to further descend the tree.
1270 		 * This won't change by continuing around the loop, so we
1271 		 * go ahead and return.  If we haven't seen a non-bus
1272 		 * matching expression, we keep going around the loop until
1273 		 * we exhaust the matching expressions.  We'll set the stop
1274 		 * flag once we fall out of the loop.
1275 		 */
1276 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1277 			return(retval);
1278 	}
1279 
1280 	/*
1281 	 * If the return action hasn't been set to descend yet, that means
1282 	 * we haven't seen anything other than bus matching patterns.  So
1283 	 * tell the caller to stop descending the tree -- the user doesn't
1284 	 * want to match against lower level tree elements.
1285 	 */
1286 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1287 		retval |= DM_RET_STOP;
1288 
1289 	return(retval);
1290 }
1291 
1292 static dev_match_ret
1293 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1294 	       struct cam_ed *device)
1295 {
1296 	dev_match_ret retval;
1297 	int i;
1298 
1299 	retval = DM_RET_NONE;
1300 
1301 	/*
1302 	 * If we aren't given something to match against, that's an error.
1303 	 */
1304 	if (device == NULL)
1305 		return(DM_RET_ERROR);
1306 
1307 	/*
1308 	 * If there are no match entries, then this device matches no
1309 	 * matter what.
1310 	 */
1311 	if ((patterns == NULL) || (num_patterns == 0))
1312 		return(DM_RET_DESCEND | DM_RET_COPY);
1313 
1314 	for (i = 0; i < num_patterns; i++) {
1315 		struct device_match_pattern *cur_pattern;
1316 		struct scsi_vpd_device_id *device_id_page;
1317 
1318 		/*
1319 		 * If the pattern in question isn't for a device node, we
1320 		 * aren't interested.
1321 		 */
1322 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1323 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1324 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1325 				retval |= DM_RET_DESCEND;
1326 			continue;
1327 		}
1328 
1329 		cur_pattern = &patterns[i].pattern.device_pattern;
1330 
1331 		/* Error out if mutually exclusive options are specified. */
1332 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1333 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1334 			return(DM_RET_ERROR);
1335 
1336 		/*
1337 		 * If they want to match any device node, we give them any
1338 		 * device node.
1339 		 */
1340 		if (cur_pattern->flags == DEV_MATCH_ANY)
1341 			goto copy_dev_node;
1342 
1343 		/*
1344 		 * Not sure why someone would do this...
1345 		 */
1346 		if (cur_pattern->flags == DEV_MATCH_NONE)
1347 			continue;
1348 
1349 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1350 		 && (cur_pattern->path_id != device->target->bus->path_id))
1351 			continue;
1352 
1353 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1354 		 && (cur_pattern->target_id != device->target->target_id))
1355 			continue;
1356 
1357 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1358 		 && (cur_pattern->target_lun != device->lun_id))
1359 			continue;
1360 
1361 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1362 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1363 				    (caddr_t)&cur_pattern->data.inq_pat,
1364 				    1, sizeof(cur_pattern->data.inq_pat),
1365 				    scsi_static_inquiry_match) == NULL))
1366 			continue;
1367 
1368 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1369 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1370 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1371 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1372 				      device->device_id_len
1373 				    - SVPD_DEVICE_ID_HDR_LEN,
1374 				      cur_pattern->data.devid_pat.id,
1375 				      cur_pattern->data.devid_pat.id_len) != 0))
1376 			continue;
1377 
1378 copy_dev_node:
1379 		/*
1380 		 * If we get to this point, the user definitely wants
1381 		 * information on this device.  So tell the caller to copy
1382 		 * the data out.
1383 		 */
1384 		retval |= DM_RET_COPY;
1385 
1386 		/*
1387 		 * If the return action has been set to descend, then we
1388 		 * know that we've already seen a peripheral matching
1389 		 * expression, therefore we need to further descend the tree.
1390 		 * This won't change by continuing around the loop, so we
1391 		 * go ahead and return.  If we haven't seen a peripheral
1392 		 * matching expression, we keep going around the loop until
1393 		 * we exhaust the matching expressions.  We'll set the stop
1394 		 * flag once we fall out of the loop.
1395 		 */
1396 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1397 			return(retval);
1398 	}
1399 
1400 	/*
1401 	 * If the return action hasn't been set to descend yet, that means
1402 	 * we haven't seen any peripheral matching patterns.  So tell the
1403 	 * caller to stop descending the tree -- the user doesn't want to
1404 	 * match against lower level tree elements.
1405 	 */
1406 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1407 		retval |= DM_RET_STOP;
1408 
1409 	return(retval);
1410 }
1411 
1412 /*
1413  * Match a single peripheral against any number of match patterns.
1414  */
1415 static dev_match_ret
1416 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1417 	       struct cam_periph *periph)
1418 {
1419 	dev_match_ret retval;
1420 	int i;
1421 
1422 	/*
1423 	 * If we aren't given something to match against, that's an error.
1424 	 */
1425 	if (periph == NULL)
1426 		return(DM_RET_ERROR);
1427 
1428 	/*
1429 	 * If there are no match entries, then this peripheral matches no
1430 	 * matter what.
1431 	 */
1432 	if ((patterns == NULL) || (num_patterns == 0))
1433 		return(DM_RET_STOP | DM_RET_COPY);
1434 
1435 	/*
1436 	 * There aren't any nodes below a peripheral node, so there's no
1437 	 * reason to descend the tree any further.
1438 	 */
1439 	retval = DM_RET_STOP;
1440 
1441 	for (i = 0; i < num_patterns; i++) {
1442 		struct periph_match_pattern *cur_pattern;
1443 
1444 		/*
1445 		 * If the pattern in question isn't for a peripheral, we
1446 		 * aren't interested.
1447 		 */
1448 		if (patterns[i].type != DEV_MATCH_PERIPH)
1449 			continue;
1450 
1451 		cur_pattern = &patterns[i].pattern.periph_pattern;
1452 
1453 		/*
1454 		 * If they want to match on anything, then we will do so.
1455 		 */
1456 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1457 			/* set the copy flag */
1458 			retval |= DM_RET_COPY;
1459 
1460 			/*
1461 			 * We've already set the return action to stop,
1462 			 * since there are no nodes below peripherals in
1463 			 * the tree.
1464 			 */
1465 			return(retval);
1466 		}
1467 
1468 		/*
1469 		 * Not sure why someone would do this...
1470 		 */
1471 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1472 			continue;
1473 
1474 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1475 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1476 			continue;
1477 
1478 		/*
1479 		 * For the target and lun id's, we have to make sure the
1480 		 * target and lun pointers aren't NULL.  The xpt peripheral
1481 		 * has a wildcard target and device.
1482 		 */
1483 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1484 		 && ((periph->path->target == NULL)
1485 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1486 			continue;
1487 
1488 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1489 		 && ((periph->path->device == NULL)
1490 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1491 			continue;
1492 
1493 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1494 		 && (cur_pattern->unit_number != periph->unit_number))
1495 			continue;
1496 
1497 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1498 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1499 			     DEV_IDLEN) != 0))
1500 			continue;
1501 
1502 		/*
1503 		 * If we get to this point, the user definitely wants
1504 		 * information on this peripheral.  So tell the caller to
1505 		 * copy the data out.
1506 		 */
1507 		retval |= DM_RET_COPY;
1508 
1509 		/*
1510 		 * The return action has already been set to stop, since
1511 		 * peripherals don't have any nodes below them in the EDT.
1512 		 */
1513 		return(retval);
1514 	}
1515 
1516 	/*
1517 	 * If we get to this point, the peripheral that was passed in
1518 	 * doesn't match any of the patterns.
1519 	 */
1520 	return(retval);
1521 }
1522 
1523 static int
1524 xptedtbusfunc(struct cam_eb *bus, void *arg)
1525 {
1526 	struct ccb_dev_match *cdm;
1527 	struct cam_et *target;
1528 	dev_match_ret retval;
1529 
1530 	cdm = (struct ccb_dev_match *)arg;
1531 
1532 	/*
1533 	 * If our position is for something deeper in the tree, that means
1534 	 * that we've already seen this node.  So, we keep going down.
1535 	 */
1536 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1537 	 && (cdm->pos.cookie.bus == bus)
1538 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1539 	 && (cdm->pos.cookie.target != NULL))
1540 		retval = DM_RET_DESCEND;
1541 	else
1542 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1543 
1544 	/*
1545 	 * If we got an error, bail out of the search.
1546 	 */
1547 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1548 		cdm->status = CAM_DEV_MATCH_ERROR;
1549 		return(0);
1550 	}
1551 
1552 	/*
1553 	 * If the copy flag is set, copy this bus out.
1554 	 */
1555 	if (retval & DM_RET_COPY) {
1556 		int spaceleft, j;
1557 
1558 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1559 			sizeof(struct dev_match_result));
1560 
1561 		/*
1562 		 * If we don't have enough space to put in another
1563 		 * match result, save our position and tell the
1564 		 * user there are more devices to check.
1565 		 */
1566 		if (spaceleft < sizeof(struct dev_match_result)) {
1567 			bzero(&cdm->pos, sizeof(cdm->pos));
1568 			cdm->pos.position_type =
1569 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1570 
1571 			cdm->pos.cookie.bus = bus;
1572 			cdm->pos.generations[CAM_BUS_GENERATION]=
1573 				xsoftc.bus_generation;
1574 			cdm->status = CAM_DEV_MATCH_MORE;
1575 			return(0);
1576 		}
1577 		j = cdm->num_matches;
1578 		cdm->num_matches++;
1579 		cdm->matches[j].type = DEV_MATCH_BUS;
1580 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1581 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1582 		cdm->matches[j].result.bus_result.unit_number =
1583 			bus->sim->unit_number;
1584 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1585 			bus->sim->sim_name, DEV_IDLEN);
1586 	}
1587 
1588 	/*
1589 	 * If the user is only interested in busses, there's no
1590 	 * reason to descend to the next level in the tree.
1591 	 */
1592 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1593 		return(1);
1594 
1595 	/*
1596 	 * If there is a target generation recorded, check it to
1597 	 * make sure the target list hasn't changed.
1598 	 */
1599 	mtx_lock(&bus->eb_mtx);
1600 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1601 	 && (cdm->pos.cookie.bus == bus)
1602 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1603 	 && (cdm->pos.cookie.target != NULL)) {
1604 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1605 		    bus->generation)) {
1606 			mtx_unlock(&bus->eb_mtx);
1607 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1608 			return (0);
1609 		}
1610 		target = (struct cam_et *)cdm->pos.cookie.target;
1611 		target->refcount++;
1612 	} else
1613 		target = NULL;
1614 	mtx_unlock(&bus->eb_mtx);
1615 
1616 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1617 }
1618 
1619 static int
1620 xptedttargetfunc(struct cam_et *target, void *arg)
1621 {
1622 	struct ccb_dev_match *cdm;
1623 	struct cam_eb *bus;
1624 	struct cam_ed *device;
1625 
1626 	cdm = (struct ccb_dev_match *)arg;
1627 	bus = target->bus;
1628 
1629 	/*
1630 	 * If there is a device list generation recorded, check it to
1631 	 * make sure the device list hasn't changed.
1632 	 */
1633 	mtx_lock(&bus->eb_mtx);
1634 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1635 	 && (cdm->pos.cookie.bus == bus)
1636 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1637 	 && (cdm->pos.cookie.target == target)
1638 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1639 	 && (cdm->pos.cookie.device != NULL)) {
1640 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1641 		    target->generation) {
1642 			mtx_unlock(&bus->eb_mtx);
1643 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1644 			return(0);
1645 		}
1646 		device = (struct cam_ed *)cdm->pos.cookie.device;
1647 		device->refcount++;
1648 	} else
1649 		device = NULL;
1650 	mtx_unlock(&bus->eb_mtx);
1651 
1652 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1653 }
1654 
1655 static int
1656 xptedtdevicefunc(struct cam_ed *device, void *arg)
1657 {
1658 	struct cam_eb *bus;
1659 	struct cam_periph *periph;
1660 	struct ccb_dev_match *cdm;
1661 	dev_match_ret retval;
1662 
1663 	cdm = (struct ccb_dev_match *)arg;
1664 	bus = device->target->bus;
1665 
1666 	/*
1667 	 * If our position is for something deeper in the tree, that means
1668 	 * that we've already seen this node.  So, we keep going down.
1669 	 */
1670 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1671 	 && (cdm->pos.cookie.device == device)
1672 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1673 	 && (cdm->pos.cookie.periph != NULL))
1674 		retval = DM_RET_DESCEND;
1675 	else
1676 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1677 					device);
1678 
1679 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1680 		cdm->status = CAM_DEV_MATCH_ERROR;
1681 		return(0);
1682 	}
1683 
1684 	/*
1685 	 * If the copy flag is set, copy this device out.
1686 	 */
1687 	if (retval & DM_RET_COPY) {
1688 		int spaceleft, j;
1689 
1690 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1691 			sizeof(struct dev_match_result));
1692 
1693 		/*
1694 		 * If we don't have enough space to put in another
1695 		 * match result, save our position and tell the
1696 		 * user there are more devices to check.
1697 		 */
1698 		if (spaceleft < sizeof(struct dev_match_result)) {
1699 			bzero(&cdm->pos, sizeof(cdm->pos));
1700 			cdm->pos.position_type =
1701 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1702 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1703 
1704 			cdm->pos.cookie.bus = device->target->bus;
1705 			cdm->pos.generations[CAM_BUS_GENERATION]=
1706 				xsoftc.bus_generation;
1707 			cdm->pos.cookie.target = device->target;
1708 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1709 				device->target->bus->generation;
1710 			cdm->pos.cookie.device = device;
1711 			cdm->pos.generations[CAM_DEV_GENERATION] =
1712 				device->target->generation;
1713 			cdm->status = CAM_DEV_MATCH_MORE;
1714 			return(0);
1715 		}
1716 		j = cdm->num_matches;
1717 		cdm->num_matches++;
1718 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1719 		cdm->matches[j].result.device_result.path_id =
1720 			device->target->bus->path_id;
1721 		cdm->matches[j].result.device_result.target_id =
1722 			device->target->target_id;
1723 		cdm->matches[j].result.device_result.target_lun =
1724 			device->lun_id;
1725 		cdm->matches[j].result.device_result.protocol =
1726 			device->protocol;
1727 		bcopy(&device->inq_data,
1728 		      &cdm->matches[j].result.device_result.inq_data,
1729 		      sizeof(struct scsi_inquiry_data));
1730 		bcopy(&device->ident_data,
1731 		      &cdm->matches[j].result.device_result.ident_data,
1732 		      sizeof(struct ata_params));
1733 
1734 		/* Let the user know whether this device is unconfigured */
1735 		if (device->flags & CAM_DEV_UNCONFIGURED)
1736 			cdm->matches[j].result.device_result.flags =
1737 				DEV_RESULT_UNCONFIGURED;
1738 		else
1739 			cdm->matches[j].result.device_result.flags =
1740 				DEV_RESULT_NOFLAG;
1741 	}
1742 
1743 	/*
1744 	 * If the user isn't interested in peripherals, don't descend
1745 	 * the tree any further.
1746 	 */
1747 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1748 		return(1);
1749 
1750 	/*
1751 	 * If there is a peripheral list generation recorded, make sure
1752 	 * it hasn't changed.
1753 	 */
1754 	xpt_lock_buses();
1755 	mtx_lock(&bus->eb_mtx);
1756 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1757 	 && (cdm->pos.cookie.bus == bus)
1758 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1759 	 && (cdm->pos.cookie.target == device->target)
1760 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1761 	 && (cdm->pos.cookie.device == device)
1762 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1763 	 && (cdm->pos.cookie.periph != NULL)) {
1764 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1765 		    device->generation) {
1766 			mtx_unlock(&bus->eb_mtx);
1767 			xpt_unlock_buses();
1768 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1769 			return(0);
1770 		}
1771 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1772 		periph->refcount++;
1773 	} else
1774 		periph = NULL;
1775 	mtx_unlock(&bus->eb_mtx);
1776 	xpt_unlock_buses();
1777 
1778 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1779 }
1780 
1781 static int
1782 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1783 {
1784 	struct ccb_dev_match *cdm;
1785 	dev_match_ret retval;
1786 
1787 	cdm = (struct ccb_dev_match *)arg;
1788 
1789 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1790 
1791 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1792 		cdm->status = CAM_DEV_MATCH_ERROR;
1793 		return(0);
1794 	}
1795 
1796 	/*
1797 	 * If the copy flag is set, copy this peripheral out.
1798 	 */
1799 	if (retval & DM_RET_COPY) {
1800 		int spaceleft, j;
1801 
1802 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1803 			sizeof(struct dev_match_result));
1804 
1805 		/*
1806 		 * If we don't have enough space to put in another
1807 		 * match result, save our position and tell the
1808 		 * user there are more devices to check.
1809 		 */
1810 		if (spaceleft < sizeof(struct dev_match_result)) {
1811 			bzero(&cdm->pos, sizeof(cdm->pos));
1812 			cdm->pos.position_type =
1813 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1814 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1815 				CAM_DEV_POS_PERIPH;
1816 
1817 			cdm->pos.cookie.bus = periph->path->bus;
1818 			cdm->pos.generations[CAM_BUS_GENERATION]=
1819 				xsoftc.bus_generation;
1820 			cdm->pos.cookie.target = periph->path->target;
1821 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1822 				periph->path->bus->generation;
1823 			cdm->pos.cookie.device = periph->path->device;
1824 			cdm->pos.generations[CAM_DEV_GENERATION] =
1825 				periph->path->target->generation;
1826 			cdm->pos.cookie.periph = periph;
1827 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1828 				periph->path->device->generation;
1829 			cdm->status = CAM_DEV_MATCH_MORE;
1830 			return(0);
1831 		}
1832 
1833 		j = cdm->num_matches;
1834 		cdm->num_matches++;
1835 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1836 		cdm->matches[j].result.periph_result.path_id =
1837 			periph->path->bus->path_id;
1838 		cdm->matches[j].result.periph_result.target_id =
1839 			periph->path->target->target_id;
1840 		cdm->matches[j].result.periph_result.target_lun =
1841 			periph->path->device->lun_id;
1842 		cdm->matches[j].result.periph_result.unit_number =
1843 			periph->unit_number;
1844 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1845 			periph->periph_name, DEV_IDLEN);
1846 	}
1847 
1848 	return(1);
1849 }
1850 
1851 static int
1852 xptedtmatch(struct ccb_dev_match *cdm)
1853 {
1854 	struct cam_eb *bus;
1855 	int ret;
1856 
1857 	cdm->num_matches = 0;
1858 
1859 	/*
1860 	 * Check the bus list generation.  If it has changed, the user
1861 	 * needs to reset everything and start over.
1862 	 */
1863 	xpt_lock_buses();
1864 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1865 	 && (cdm->pos.cookie.bus != NULL)) {
1866 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1867 		    xsoftc.bus_generation) {
1868 			xpt_unlock_buses();
1869 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1870 			return(0);
1871 		}
1872 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1873 		bus->refcount++;
1874 	} else
1875 		bus = NULL;
1876 	xpt_unlock_buses();
1877 
1878 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1879 
1880 	/*
1881 	 * If we get back 0, that means that we had to stop before fully
1882 	 * traversing the EDT.  It also means that one of the subroutines
1883 	 * has set the status field to the proper value.  If we get back 1,
1884 	 * we've fully traversed the EDT and copied out any matching entries.
1885 	 */
1886 	if (ret == 1)
1887 		cdm->status = CAM_DEV_MATCH_LAST;
1888 
1889 	return(ret);
1890 }
1891 
1892 static int
1893 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1894 {
1895 	struct cam_periph *periph;
1896 	struct ccb_dev_match *cdm;
1897 
1898 	cdm = (struct ccb_dev_match *)arg;
1899 
1900 	xpt_lock_buses();
1901 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1902 	 && (cdm->pos.cookie.pdrv == pdrv)
1903 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1904 	 && (cdm->pos.cookie.periph != NULL)) {
1905 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1906 		    (*pdrv)->generation) {
1907 			xpt_unlock_buses();
1908 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1909 			return(0);
1910 		}
1911 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1912 		periph->refcount++;
1913 	} else
1914 		periph = NULL;
1915 	xpt_unlock_buses();
1916 
1917 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1918 }
1919 
1920 static int
1921 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1922 {
1923 	struct ccb_dev_match *cdm;
1924 	dev_match_ret retval;
1925 
1926 	cdm = (struct ccb_dev_match *)arg;
1927 
1928 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1929 
1930 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1931 		cdm->status = CAM_DEV_MATCH_ERROR;
1932 		return(0);
1933 	}
1934 
1935 	/*
1936 	 * If the copy flag is set, copy this peripheral out.
1937 	 */
1938 	if (retval & DM_RET_COPY) {
1939 		int spaceleft, j;
1940 
1941 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1942 			sizeof(struct dev_match_result));
1943 
1944 		/*
1945 		 * If we don't have enough space to put in another
1946 		 * match result, save our position and tell the
1947 		 * user there are more devices to check.
1948 		 */
1949 		if (spaceleft < sizeof(struct dev_match_result)) {
1950 			struct periph_driver **pdrv;
1951 
1952 			pdrv = NULL;
1953 			bzero(&cdm->pos, sizeof(cdm->pos));
1954 			cdm->pos.position_type =
1955 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1956 				CAM_DEV_POS_PERIPH;
1957 
1958 			/*
1959 			 * This may look a bit non-sensical, but it is
1960 			 * actually quite logical.  There are very few
1961 			 * peripheral drivers, and bloating every peripheral
1962 			 * structure with a pointer back to its parent
1963 			 * peripheral driver linker set entry would cost
1964 			 * more in the long run than doing this quick lookup.
1965 			 */
1966 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1967 				if (strcmp((*pdrv)->driver_name,
1968 				    periph->periph_name) == 0)
1969 					break;
1970 			}
1971 
1972 			if (*pdrv == NULL) {
1973 				cdm->status = CAM_DEV_MATCH_ERROR;
1974 				return(0);
1975 			}
1976 
1977 			cdm->pos.cookie.pdrv = pdrv;
1978 			/*
1979 			 * The periph generation slot does double duty, as
1980 			 * does the periph pointer slot.  They are used for
1981 			 * both edt and pdrv lookups and positioning.
1982 			 */
1983 			cdm->pos.cookie.periph = periph;
1984 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1985 				(*pdrv)->generation;
1986 			cdm->status = CAM_DEV_MATCH_MORE;
1987 			return(0);
1988 		}
1989 
1990 		j = cdm->num_matches;
1991 		cdm->num_matches++;
1992 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1993 		cdm->matches[j].result.periph_result.path_id =
1994 			periph->path->bus->path_id;
1995 
1996 		/*
1997 		 * The transport layer peripheral doesn't have a target or
1998 		 * lun.
1999 		 */
2000 		if (periph->path->target)
2001 			cdm->matches[j].result.periph_result.target_id =
2002 				periph->path->target->target_id;
2003 		else
2004 			cdm->matches[j].result.periph_result.target_id =
2005 				CAM_TARGET_WILDCARD;
2006 
2007 		if (periph->path->device)
2008 			cdm->matches[j].result.periph_result.target_lun =
2009 				periph->path->device->lun_id;
2010 		else
2011 			cdm->matches[j].result.periph_result.target_lun =
2012 				CAM_LUN_WILDCARD;
2013 
2014 		cdm->matches[j].result.periph_result.unit_number =
2015 			periph->unit_number;
2016 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2017 			periph->periph_name, DEV_IDLEN);
2018 	}
2019 
2020 	return(1);
2021 }
2022 
2023 static int
2024 xptperiphlistmatch(struct ccb_dev_match *cdm)
2025 {
2026 	int ret;
2027 
2028 	cdm->num_matches = 0;
2029 
2030 	/*
2031 	 * At this point in the edt traversal function, we check the bus
2032 	 * list generation to make sure that no busses have been added or
2033 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2034 	 * For the peripheral driver list traversal function, however, we
2035 	 * don't have to worry about new peripheral driver types coming or
2036 	 * going; they're in a linker set, and therefore can't change
2037 	 * without a recompile.
2038 	 */
2039 
2040 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2041 	 && (cdm->pos.cookie.pdrv != NULL))
2042 		ret = xptpdrvtraverse(
2043 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2044 				xptplistpdrvfunc, cdm);
2045 	else
2046 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2047 
2048 	/*
2049 	 * If we get back 0, that means that we had to stop before fully
2050 	 * traversing the peripheral driver tree.  It also means that one of
2051 	 * the subroutines has set the status field to the proper value.  If
2052 	 * we get back 1, we've fully traversed the EDT and copied out any
2053 	 * matching entries.
2054 	 */
2055 	if (ret == 1)
2056 		cdm->status = CAM_DEV_MATCH_LAST;
2057 
2058 	return(ret);
2059 }
2060 
2061 static int
2062 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2063 {
2064 	struct cam_eb *bus, *next_bus;
2065 	int retval;
2066 
2067 	retval = 1;
2068 	if (start_bus)
2069 		bus = start_bus;
2070 	else {
2071 		xpt_lock_buses();
2072 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2073 		if (bus == NULL) {
2074 			xpt_unlock_buses();
2075 			return (retval);
2076 		}
2077 		bus->refcount++;
2078 		xpt_unlock_buses();
2079 	}
2080 	for (; bus != NULL; bus = next_bus) {
2081 		retval = tr_func(bus, arg);
2082 		if (retval == 0) {
2083 			xpt_release_bus(bus);
2084 			break;
2085 		}
2086 		xpt_lock_buses();
2087 		next_bus = TAILQ_NEXT(bus, links);
2088 		if (next_bus)
2089 			next_bus->refcount++;
2090 		xpt_unlock_buses();
2091 		xpt_release_bus(bus);
2092 	}
2093 	return(retval);
2094 }
2095 
2096 static int
2097 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2098 		  xpt_targetfunc_t *tr_func, void *arg)
2099 {
2100 	struct cam_et *target, *next_target;
2101 	int retval;
2102 
2103 	retval = 1;
2104 	if (start_target)
2105 		target = start_target;
2106 	else {
2107 		mtx_lock(&bus->eb_mtx);
2108 		target = TAILQ_FIRST(&bus->et_entries);
2109 		if (target == NULL) {
2110 			mtx_unlock(&bus->eb_mtx);
2111 			return (retval);
2112 		}
2113 		target->refcount++;
2114 		mtx_unlock(&bus->eb_mtx);
2115 	}
2116 	for (; target != NULL; target = next_target) {
2117 		retval = tr_func(target, arg);
2118 		if (retval == 0) {
2119 			xpt_release_target(target);
2120 			break;
2121 		}
2122 		mtx_lock(&bus->eb_mtx);
2123 		next_target = TAILQ_NEXT(target, links);
2124 		if (next_target)
2125 			next_target->refcount++;
2126 		mtx_unlock(&bus->eb_mtx);
2127 		xpt_release_target(target);
2128 	}
2129 	return(retval);
2130 }
2131 
2132 static int
2133 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2134 		  xpt_devicefunc_t *tr_func, void *arg)
2135 {
2136 	struct cam_eb *bus;
2137 	struct cam_ed *device, *next_device;
2138 	int retval;
2139 
2140 	retval = 1;
2141 	bus = target->bus;
2142 	if (start_device)
2143 		device = start_device;
2144 	else {
2145 		mtx_lock(&bus->eb_mtx);
2146 		device = TAILQ_FIRST(&target->ed_entries);
2147 		if (device == NULL) {
2148 			mtx_unlock(&bus->eb_mtx);
2149 			return (retval);
2150 		}
2151 		device->refcount++;
2152 		mtx_unlock(&bus->eb_mtx);
2153 	}
2154 	for (; device != NULL; device = next_device) {
2155 		mtx_lock(&device->device_mtx);
2156 		retval = tr_func(device, arg);
2157 		mtx_unlock(&device->device_mtx);
2158 		if (retval == 0) {
2159 			xpt_release_device(device);
2160 			break;
2161 		}
2162 		mtx_lock(&bus->eb_mtx);
2163 		next_device = TAILQ_NEXT(device, links);
2164 		if (next_device)
2165 			next_device->refcount++;
2166 		mtx_unlock(&bus->eb_mtx);
2167 		xpt_release_device(device);
2168 	}
2169 	return(retval);
2170 }
2171 
2172 static int
2173 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2174 		  xpt_periphfunc_t *tr_func, void *arg)
2175 {
2176 	struct cam_eb *bus;
2177 	struct cam_periph *periph, *next_periph;
2178 	int retval;
2179 
2180 	retval = 1;
2181 
2182 	bus = device->target->bus;
2183 	if (start_periph)
2184 		periph = start_periph;
2185 	else {
2186 		xpt_lock_buses();
2187 		mtx_lock(&bus->eb_mtx);
2188 		periph = SLIST_FIRST(&device->periphs);
2189 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2190 			periph = SLIST_NEXT(periph, periph_links);
2191 		if (periph == NULL) {
2192 			mtx_unlock(&bus->eb_mtx);
2193 			xpt_unlock_buses();
2194 			return (retval);
2195 		}
2196 		periph->refcount++;
2197 		mtx_unlock(&bus->eb_mtx);
2198 		xpt_unlock_buses();
2199 	}
2200 	for (; periph != NULL; periph = next_periph) {
2201 		retval = tr_func(periph, arg);
2202 		if (retval == 0) {
2203 			cam_periph_release_locked(periph);
2204 			break;
2205 		}
2206 		xpt_lock_buses();
2207 		mtx_lock(&bus->eb_mtx);
2208 		next_periph = SLIST_NEXT(periph, periph_links);
2209 		while (next_periph != NULL &&
2210 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2211 			next_periph = SLIST_NEXT(next_periph, periph_links);
2212 		if (next_periph)
2213 			next_periph->refcount++;
2214 		mtx_unlock(&bus->eb_mtx);
2215 		xpt_unlock_buses();
2216 		cam_periph_release_locked(periph);
2217 	}
2218 	return(retval);
2219 }
2220 
2221 static int
2222 xptpdrvtraverse(struct periph_driver **start_pdrv,
2223 		xpt_pdrvfunc_t *tr_func, void *arg)
2224 {
2225 	struct periph_driver **pdrv;
2226 	int retval;
2227 
2228 	retval = 1;
2229 
2230 	/*
2231 	 * We don't traverse the peripheral driver list like we do the
2232 	 * other lists, because it is a linker set, and therefore cannot be
2233 	 * changed during runtime.  If the peripheral driver list is ever
2234 	 * re-done to be something other than a linker set (i.e. it can
2235 	 * change while the system is running), the list traversal should
2236 	 * be modified to work like the other traversal functions.
2237 	 */
2238 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2239 	     *pdrv != NULL; pdrv++) {
2240 		retval = tr_func(pdrv, arg);
2241 
2242 		if (retval == 0)
2243 			return(retval);
2244 	}
2245 
2246 	return(retval);
2247 }
2248 
2249 static int
2250 xptpdperiphtraverse(struct periph_driver **pdrv,
2251 		    struct cam_periph *start_periph,
2252 		    xpt_periphfunc_t *tr_func, void *arg)
2253 {
2254 	struct cam_periph *periph, *next_periph;
2255 	int retval;
2256 
2257 	retval = 1;
2258 
2259 	if (start_periph)
2260 		periph = start_periph;
2261 	else {
2262 		xpt_lock_buses();
2263 		periph = TAILQ_FIRST(&(*pdrv)->units);
2264 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2265 			periph = TAILQ_NEXT(periph, unit_links);
2266 		if (periph == NULL) {
2267 			xpt_unlock_buses();
2268 			return (retval);
2269 		}
2270 		periph->refcount++;
2271 		xpt_unlock_buses();
2272 	}
2273 	for (; periph != NULL; periph = next_periph) {
2274 		cam_periph_lock(periph);
2275 		retval = tr_func(periph, arg);
2276 		cam_periph_unlock(periph);
2277 		if (retval == 0) {
2278 			cam_periph_release(periph);
2279 			break;
2280 		}
2281 		xpt_lock_buses();
2282 		next_periph = TAILQ_NEXT(periph, unit_links);
2283 		while (next_periph != NULL &&
2284 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2285 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2286 		if (next_periph)
2287 			next_periph->refcount++;
2288 		xpt_unlock_buses();
2289 		cam_periph_release(periph);
2290 	}
2291 	return(retval);
2292 }
2293 
2294 static int
2295 xptdefbusfunc(struct cam_eb *bus, void *arg)
2296 {
2297 	struct xpt_traverse_config *tr_config;
2298 
2299 	tr_config = (struct xpt_traverse_config *)arg;
2300 
2301 	if (tr_config->depth == XPT_DEPTH_BUS) {
2302 		xpt_busfunc_t *tr_func;
2303 
2304 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2305 
2306 		return(tr_func(bus, tr_config->tr_arg));
2307 	} else
2308 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2309 }
2310 
2311 static int
2312 xptdeftargetfunc(struct cam_et *target, void *arg)
2313 {
2314 	struct xpt_traverse_config *tr_config;
2315 
2316 	tr_config = (struct xpt_traverse_config *)arg;
2317 
2318 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2319 		xpt_targetfunc_t *tr_func;
2320 
2321 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2322 
2323 		return(tr_func(target, tr_config->tr_arg));
2324 	} else
2325 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2326 }
2327 
2328 static int
2329 xptdefdevicefunc(struct cam_ed *device, void *arg)
2330 {
2331 	struct xpt_traverse_config *tr_config;
2332 
2333 	tr_config = (struct xpt_traverse_config *)arg;
2334 
2335 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2336 		xpt_devicefunc_t *tr_func;
2337 
2338 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2339 
2340 		return(tr_func(device, tr_config->tr_arg));
2341 	} else
2342 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2343 }
2344 
2345 static int
2346 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2347 {
2348 	struct xpt_traverse_config *tr_config;
2349 	xpt_periphfunc_t *tr_func;
2350 
2351 	tr_config = (struct xpt_traverse_config *)arg;
2352 
2353 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2354 
2355 	/*
2356 	 * Unlike the other default functions, we don't check for depth
2357 	 * here.  The peripheral driver level is the last level in the EDT,
2358 	 * so if we're here, we should execute the function in question.
2359 	 */
2360 	return(tr_func(periph, tr_config->tr_arg));
2361 }
2362 
2363 /*
2364  * Execute the given function for every bus in the EDT.
2365  */
2366 static int
2367 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2368 {
2369 	struct xpt_traverse_config tr_config;
2370 
2371 	tr_config.depth = XPT_DEPTH_BUS;
2372 	tr_config.tr_func = tr_func;
2373 	tr_config.tr_arg = arg;
2374 
2375 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2376 }
2377 
2378 /*
2379  * Execute the given function for every device in the EDT.
2380  */
2381 static int
2382 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2383 {
2384 	struct xpt_traverse_config tr_config;
2385 
2386 	tr_config.depth = XPT_DEPTH_DEVICE;
2387 	tr_config.tr_func = tr_func;
2388 	tr_config.tr_arg = arg;
2389 
2390 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2391 }
2392 
2393 static int
2394 xptsetasyncfunc(struct cam_ed *device, void *arg)
2395 {
2396 	struct cam_path path;
2397 	struct ccb_getdev cgd;
2398 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2399 
2400 	/*
2401 	 * Don't report unconfigured devices (Wildcard devs,
2402 	 * devices only for target mode, device instances
2403 	 * that have been invalidated but are waiting for
2404 	 * their last reference count to be released).
2405 	 */
2406 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2407 		return (1);
2408 
2409 	xpt_compile_path(&path,
2410 			 NULL,
2411 			 device->target->bus->path_id,
2412 			 device->target->target_id,
2413 			 device->lun_id);
2414 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2415 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2416 	xpt_action((union ccb *)&cgd);
2417 	csa->callback(csa->callback_arg,
2418 			    AC_FOUND_DEVICE,
2419 			    &path, &cgd);
2420 	xpt_release_path(&path);
2421 
2422 	return(1);
2423 }
2424 
2425 static int
2426 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2427 {
2428 	struct cam_path path;
2429 	struct ccb_pathinq cpi;
2430 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2431 
2432 	xpt_compile_path(&path, /*periph*/NULL,
2433 			 bus->path_id,
2434 			 CAM_TARGET_WILDCARD,
2435 			 CAM_LUN_WILDCARD);
2436 	xpt_path_lock(&path);
2437 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2438 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2439 	xpt_action((union ccb *)&cpi);
2440 	csa->callback(csa->callback_arg,
2441 			    AC_PATH_REGISTERED,
2442 			    &path, &cpi);
2443 	xpt_path_unlock(&path);
2444 	xpt_release_path(&path);
2445 
2446 	return(1);
2447 }
2448 
2449 void
2450 xpt_action(union ccb *start_ccb)
2451 {
2452 
2453 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2454 	    ("xpt_action: func=%#x\n", start_ccb->ccb_h.func_code));
2455 
2456 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2457 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2458 }
2459 
2460 void
2461 xpt_action_default(union ccb *start_ccb)
2462 {
2463 	struct cam_path *path;
2464 	struct cam_sim *sim;
2465 	int lock;
2466 
2467 	path = start_ccb->ccb_h.path;
2468 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2469 	    ("xpt_action_default: func=%#x\n", start_ccb->ccb_h.func_code));
2470 
2471 	switch (start_ccb->ccb_h.func_code) {
2472 	case XPT_SCSI_IO:
2473 	{
2474 		struct cam_ed *device;
2475 
2476 		/*
2477 		 * For the sake of compatibility with SCSI-1
2478 		 * devices that may not understand the identify
2479 		 * message, we include lun information in the
2480 		 * second byte of all commands.  SCSI-1 specifies
2481 		 * that luns are a 3 bit value and reserves only 3
2482 		 * bits for lun information in the CDB.  Later
2483 		 * revisions of the SCSI spec allow for more than 8
2484 		 * luns, but have deprecated lun information in the
2485 		 * CDB.  So, if the lun won't fit, we must omit.
2486 		 *
2487 		 * Also be aware that during initial probing for devices,
2488 		 * the inquiry information is unknown but initialized to 0.
2489 		 * This means that this code will be exercised while probing
2490 		 * devices with an ANSI revision greater than 2.
2491 		 */
2492 		device = path->device;
2493 		if (device->protocol_version <= SCSI_REV_2
2494 		 && start_ccb->ccb_h.target_lun < 8
2495 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2496 
2497 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2498 			    start_ccb->ccb_h.target_lun << 5;
2499 		}
2500 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2501 	}
2502 	/* FALLTHROUGH */
2503 	case XPT_TARGET_IO:
2504 	case XPT_CONT_TARGET_IO:
2505 		start_ccb->csio.sense_resid = 0;
2506 		start_ccb->csio.resid = 0;
2507 		/* FALLTHROUGH */
2508 	case XPT_ATA_IO:
2509 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2510 			start_ccb->ataio.resid = 0;
2511 		/* FALLTHROUGH */
2512 	case XPT_RESET_DEV:
2513 	case XPT_ENG_EXEC:
2514 	case XPT_SMP_IO:
2515 	{
2516 		struct cam_devq *devq;
2517 
2518 		devq = path->bus->sim->devq;
2519 		mtx_lock(&devq->send_mtx);
2520 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2521 		if (xpt_schedule_devq(devq, path->device) != 0)
2522 			xpt_run_devq(devq);
2523 		mtx_unlock(&devq->send_mtx);
2524 		break;
2525 	}
2526 	case XPT_CALC_GEOMETRY:
2527 		/* Filter out garbage */
2528 		if (start_ccb->ccg.block_size == 0
2529 		 || start_ccb->ccg.volume_size == 0) {
2530 			start_ccb->ccg.cylinders = 0;
2531 			start_ccb->ccg.heads = 0;
2532 			start_ccb->ccg.secs_per_track = 0;
2533 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2534 			break;
2535 		}
2536 #if defined(PC98) || defined(__sparc64__)
2537 		/*
2538 		 * In a PC-98 system, geometry translation depens on
2539 		 * the "real" device geometry obtained from mode page 4.
2540 		 * SCSI geometry translation is performed in the
2541 		 * initialization routine of the SCSI BIOS and the result
2542 		 * stored in host memory.  If the translation is available
2543 		 * in host memory, use it.  If not, rely on the default
2544 		 * translation the device driver performs.
2545 		 * For sparc64, we may need adjust the geometry of large
2546 		 * disks in order to fit the limitations of the 16-bit
2547 		 * fields of the VTOC8 disk label.
2548 		 */
2549 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2550 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2551 			break;
2552 		}
2553 #endif
2554 		goto call_sim;
2555 	case XPT_ABORT:
2556 	{
2557 		union ccb* abort_ccb;
2558 
2559 		abort_ccb = start_ccb->cab.abort_ccb;
2560 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2561 
2562 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2563 				struct cam_ccbq *ccbq;
2564 				struct cam_ed *device;
2565 
2566 				device = abort_ccb->ccb_h.path->device;
2567 				ccbq = &device->ccbq;
2568 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2569 				abort_ccb->ccb_h.status =
2570 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2571 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2572 				xpt_done(abort_ccb);
2573 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2574 				break;
2575 			}
2576 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2577 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2578 				/*
2579 				 * We've caught this ccb en route to
2580 				 * the SIM.  Flag it for abort and the
2581 				 * SIM will do so just before starting
2582 				 * real work on the CCB.
2583 				 */
2584 				abort_ccb->ccb_h.status =
2585 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2586 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2587 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2588 				break;
2589 			}
2590 		}
2591 		if (XPT_FC_IS_QUEUED(abort_ccb)
2592 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2593 			/*
2594 			 * It's already completed but waiting
2595 			 * for our SWI to get to it.
2596 			 */
2597 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2598 			break;
2599 		}
2600 		/*
2601 		 * If we weren't able to take care of the abort request
2602 		 * in the XPT, pass the request down to the SIM for processing.
2603 		 */
2604 	}
2605 	/* FALLTHROUGH */
2606 	case XPT_ACCEPT_TARGET_IO:
2607 	case XPT_EN_LUN:
2608 	case XPT_IMMED_NOTIFY:
2609 	case XPT_NOTIFY_ACK:
2610 	case XPT_RESET_BUS:
2611 	case XPT_IMMEDIATE_NOTIFY:
2612 	case XPT_NOTIFY_ACKNOWLEDGE:
2613 	case XPT_GET_SIM_KNOB:
2614 	case XPT_SET_SIM_KNOB:
2615 	case XPT_GET_TRAN_SETTINGS:
2616 	case XPT_SET_TRAN_SETTINGS:
2617 	case XPT_PATH_INQ:
2618 call_sim:
2619 		sim = path->bus->sim;
2620 		lock = (mtx_owned(sim->mtx) == 0);
2621 		if (lock)
2622 			CAM_SIM_LOCK(sim);
2623 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2624 		    ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code));
2625 		(*(sim->sim_action))(sim, start_ccb);
2626 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2627 		    ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status));
2628 		if (lock)
2629 			CAM_SIM_UNLOCK(sim);
2630 		break;
2631 	case XPT_PATH_STATS:
2632 		start_ccb->cpis.last_reset = path->bus->last_reset;
2633 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2634 		break;
2635 	case XPT_GDEV_TYPE:
2636 	{
2637 		struct cam_ed *dev;
2638 
2639 		dev = path->device;
2640 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2641 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2642 		} else {
2643 			struct ccb_getdev *cgd;
2644 
2645 			cgd = &start_ccb->cgd;
2646 			cgd->protocol = dev->protocol;
2647 			cgd->inq_data = dev->inq_data;
2648 			cgd->ident_data = dev->ident_data;
2649 			cgd->inq_flags = dev->inq_flags;
2650 			cgd->ccb_h.status = CAM_REQ_CMP;
2651 			cgd->serial_num_len = dev->serial_num_len;
2652 			if ((dev->serial_num_len > 0)
2653 			 && (dev->serial_num != NULL))
2654 				bcopy(dev->serial_num, cgd->serial_num,
2655 				      dev->serial_num_len);
2656 		}
2657 		break;
2658 	}
2659 	case XPT_GDEV_STATS:
2660 	{
2661 		struct cam_ed *dev;
2662 
2663 		dev = path->device;
2664 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2665 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2666 		} else {
2667 			struct ccb_getdevstats *cgds;
2668 			struct cam_eb *bus;
2669 			struct cam_et *tar;
2670 			struct cam_devq *devq;
2671 
2672 			cgds = &start_ccb->cgds;
2673 			bus = path->bus;
2674 			tar = path->target;
2675 			devq = bus->sim->devq;
2676 			mtx_lock(&devq->send_mtx);
2677 			cgds->dev_openings = dev->ccbq.dev_openings;
2678 			cgds->dev_active = dev->ccbq.dev_active;
2679 			cgds->allocated = dev->ccbq.allocated;
2680 			cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2681 			cgds->held = cgds->allocated - cgds->dev_active -
2682 			    cgds->queued;
2683 			cgds->last_reset = tar->last_reset;
2684 			cgds->maxtags = dev->maxtags;
2685 			cgds->mintags = dev->mintags;
2686 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2687 				cgds->last_reset = bus->last_reset;
2688 			mtx_unlock(&devq->send_mtx);
2689 			cgds->ccb_h.status = CAM_REQ_CMP;
2690 		}
2691 		break;
2692 	}
2693 	case XPT_GDEVLIST:
2694 	{
2695 		struct cam_periph	*nperiph;
2696 		struct periph_list	*periph_head;
2697 		struct ccb_getdevlist	*cgdl;
2698 		u_int			i;
2699 		struct cam_ed		*device;
2700 		int			found;
2701 
2702 
2703 		found = 0;
2704 
2705 		/*
2706 		 * Don't want anyone mucking with our data.
2707 		 */
2708 		device = path->device;
2709 		periph_head = &device->periphs;
2710 		cgdl = &start_ccb->cgdl;
2711 
2712 		/*
2713 		 * Check and see if the list has changed since the user
2714 		 * last requested a list member.  If so, tell them that the
2715 		 * list has changed, and therefore they need to start over
2716 		 * from the beginning.
2717 		 */
2718 		if ((cgdl->index != 0) &&
2719 		    (cgdl->generation != device->generation)) {
2720 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2721 			break;
2722 		}
2723 
2724 		/*
2725 		 * Traverse the list of peripherals and attempt to find
2726 		 * the requested peripheral.
2727 		 */
2728 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2729 		     (nperiph != NULL) && (i <= cgdl->index);
2730 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2731 			if (i == cgdl->index) {
2732 				strncpy(cgdl->periph_name,
2733 					nperiph->periph_name,
2734 					DEV_IDLEN);
2735 				cgdl->unit_number = nperiph->unit_number;
2736 				found = 1;
2737 			}
2738 		}
2739 		if (found == 0) {
2740 			cgdl->status = CAM_GDEVLIST_ERROR;
2741 			break;
2742 		}
2743 
2744 		if (nperiph == NULL)
2745 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2746 		else
2747 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2748 
2749 		cgdl->index++;
2750 		cgdl->generation = device->generation;
2751 
2752 		cgdl->ccb_h.status = CAM_REQ_CMP;
2753 		break;
2754 	}
2755 	case XPT_DEV_MATCH:
2756 	{
2757 		dev_pos_type position_type;
2758 		struct ccb_dev_match *cdm;
2759 
2760 		cdm = &start_ccb->cdm;
2761 
2762 		/*
2763 		 * There are two ways of getting at information in the EDT.
2764 		 * The first way is via the primary EDT tree.  It starts
2765 		 * with a list of busses, then a list of targets on a bus,
2766 		 * then devices/luns on a target, and then peripherals on a
2767 		 * device/lun.  The "other" way is by the peripheral driver
2768 		 * lists.  The peripheral driver lists are organized by
2769 		 * peripheral driver.  (obviously)  So it makes sense to
2770 		 * use the peripheral driver list if the user is looking
2771 		 * for something like "da1", or all "da" devices.  If the
2772 		 * user is looking for something on a particular bus/target
2773 		 * or lun, it's generally better to go through the EDT tree.
2774 		 */
2775 
2776 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2777 			position_type = cdm->pos.position_type;
2778 		else {
2779 			u_int i;
2780 
2781 			position_type = CAM_DEV_POS_NONE;
2782 
2783 			for (i = 0; i < cdm->num_patterns; i++) {
2784 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2785 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2786 					position_type = CAM_DEV_POS_EDT;
2787 					break;
2788 				}
2789 			}
2790 
2791 			if (cdm->num_patterns == 0)
2792 				position_type = CAM_DEV_POS_EDT;
2793 			else if (position_type == CAM_DEV_POS_NONE)
2794 				position_type = CAM_DEV_POS_PDRV;
2795 		}
2796 
2797 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2798 		case CAM_DEV_POS_EDT:
2799 			xptedtmatch(cdm);
2800 			break;
2801 		case CAM_DEV_POS_PDRV:
2802 			xptperiphlistmatch(cdm);
2803 			break;
2804 		default:
2805 			cdm->status = CAM_DEV_MATCH_ERROR;
2806 			break;
2807 		}
2808 
2809 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2810 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2811 		else
2812 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2813 
2814 		break;
2815 	}
2816 	case XPT_SASYNC_CB:
2817 	{
2818 		struct ccb_setasync *csa;
2819 		struct async_node *cur_entry;
2820 		struct async_list *async_head;
2821 		u_int32_t added;
2822 
2823 		csa = &start_ccb->csa;
2824 		added = csa->event_enable;
2825 		async_head = &path->device->asyncs;
2826 
2827 		/*
2828 		 * If there is already an entry for us, simply
2829 		 * update it.
2830 		 */
2831 		cur_entry = SLIST_FIRST(async_head);
2832 		while (cur_entry != NULL) {
2833 			if ((cur_entry->callback_arg == csa->callback_arg)
2834 			 && (cur_entry->callback == csa->callback))
2835 				break;
2836 			cur_entry = SLIST_NEXT(cur_entry, links);
2837 		}
2838 
2839 		if (cur_entry != NULL) {
2840 		 	/*
2841 			 * If the request has no flags set,
2842 			 * remove the entry.
2843 			 */
2844 			added &= ~cur_entry->event_enable;
2845 			if (csa->event_enable == 0) {
2846 				SLIST_REMOVE(async_head, cur_entry,
2847 					     async_node, links);
2848 				xpt_release_device(path->device);
2849 				free(cur_entry, M_CAMXPT);
2850 			} else {
2851 				cur_entry->event_enable = csa->event_enable;
2852 			}
2853 			csa->event_enable = added;
2854 		} else {
2855 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2856 					   M_NOWAIT);
2857 			if (cur_entry == NULL) {
2858 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2859 				break;
2860 			}
2861 			cur_entry->event_enable = csa->event_enable;
2862 			cur_entry->event_lock =
2863 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2864 			cur_entry->callback_arg = csa->callback_arg;
2865 			cur_entry->callback = csa->callback;
2866 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2867 			xpt_acquire_device(path->device);
2868 		}
2869 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2870 		break;
2871 	}
2872 	case XPT_REL_SIMQ:
2873 	{
2874 		struct ccb_relsim *crs;
2875 		struct cam_ed *dev;
2876 
2877 		crs = &start_ccb->crs;
2878 		dev = path->device;
2879 		if (dev == NULL) {
2880 
2881 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2882 			break;
2883 		}
2884 
2885 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2886 
2887 			/* Don't ever go below one opening */
2888 			if (crs->openings > 0) {
2889 				xpt_dev_ccbq_resize(path, crs->openings);
2890 				if (bootverbose) {
2891 					xpt_print(path,
2892 					    "number of openings is now %d\n",
2893 					    crs->openings);
2894 				}
2895 			}
2896 		}
2897 
2898 		mtx_lock(&dev->sim->devq->send_mtx);
2899 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2900 
2901 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2902 
2903 				/*
2904 				 * Just extend the old timeout and decrement
2905 				 * the freeze count so that a single timeout
2906 				 * is sufficient for releasing the queue.
2907 				 */
2908 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2909 				callout_stop(&dev->callout);
2910 			} else {
2911 
2912 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2913 			}
2914 
2915 			callout_reset_sbt(&dev->callout,
2916 			    SBT_1MS * crs->release_timeout, 0,
2917 			    xpt_release_devq_timeout, dev, 0);
2918 
2919 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2920 
2921 		}
2922 
2923 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2924 
2925 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2926 				/*
2927 				 * Decrement the freeze count so that a single
2928 				 * completion is still sufficient to unfreeze
2929 				 * the queue.
2930 				 */
2931 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2932 			} else {
2933 
2934 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2935 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2936 			}
2937 		}
2938 
2939 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2940 
2941 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2942 			 || (dev->ccbq.dev_active == 0)) {
2943 
2944 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2945 			} else {
2946 
2947 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2948 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2949 			}
2950 		}
2951 		mtx_unlock(&dev->sim->devq->send_mtx);
2952 
2953 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2954 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2955 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2956 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2957 		break;
2958 	}
2959 	case XPT_DEBUG: {
2960 		struct cam_path *oldpath;
2961 
2962 		/* Check that all request bits are supported. */
2963 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2964 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2965 			break;
2966 		}
2967 
2968 		cam_dflags = CAM_DEBUG_NONE;
2969 		if (cam_dpath != NULL) {
2970 			oldpath = cam_dpath;
2971 			cam_dpath = NULL;
2972 			xpt_free_path(oldpath);
2973 		}
2974 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2975 			if (xpt_create_path(&cam_dpath, NULL,
2976 					    start_ccb->ccb_h.path_id,
2977 					    start_ccb->ccb_h.target_id,
2978 					    start_ccb->ccb_h.target_lun) !=
2979 					    CAM_REQ_CMP) {
2980 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2981 			} else {
2982 				cam_dflags = start_ccb->cdbg.flags;
2983 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2984 				xpt_print(cam_dpath, "debugging flags now %x\n",
2985 				    cam_dflags);
2986 			}
2987 		} else
2988 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2989 		break;
2990 	}
2991 	case XPT_NOOP:
2992 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2993 			xpt_freeze_devq(path, 1);
2994 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2995 		break;
2996 	default:
2997 	case XPT_SDEV_TYPE:
2998 	case XPT_TERM_IO:
2999 	case XPT_ENG_INQ:
3000 		/* XXX Implement */
3001 		printf("%s: CCB type %#x not supported\n", __func__,
3002 		       start_ccb->ccb_h.func_code);
3003 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3004 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3005 			xpt_done(start_ccb);
3006 		}
3007 		break;
3008 	}
3009 }
3010 
3011 void
3012 xpt_polled_action(union ccb *start_ccb)
3013 {
3014 	u_int32_t timeout;
3015 	struct	  cam_sim *sim;
3016 	struct	  cam_devq *devq;
3017 	struct	  cam_ed *dev;
3018 
3019 	timeout = start_ccb->ccb_h.timeout * 10;
3020 	sim = start_ccb->ccb_h.path->bus->sim;
3021 	devq = sim->devq;
3022 	dev = start_ccb->ccb_h.path->device;
3023 
3024 	mtx_unlock(&dev->device_mtx);
3025 
3026 	/*
3027 	 * Steal an opening so that no other queued requests
3028 	 * can get it before us while we simulate interrupts.
3029 	 */
3030 	mtx_lock(&devq->send_mtx);
3031 	dev->ccbq.dev_openings--;
3032 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3033 	    (--timeout > 0)) {
3034 		mtx_unlock(&devq->send_mtx);
3035 		DELAY(100);
3036 		CAM_SIM_LOCK(sim);
3037 		(*(sim->sim_poll))(sim);
3038 		CAM_SIM_UNLOCK(sim);
3039 		camisr_runqueue();
3040 		mtx_lock(&devq->send_mtx);
3041 	}
3042 	dev->ccbq.dev_openings++;
3043 	mtx_unlock(&devq->send_mtx);
3044 
3045 	if (timeout != 0) {
3046 		xpt_action(start_ccb);
3047 		while(--timeout > 0) {
3048 			CAM_SIM_LOCK(sim);
3049 			(*(sim->sim_poll))(sim);
3050 			CAM_SIM_UNLOCK(sim);
3051 			camisr_runqueue();
3052 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3053 			    != CAM_REQ_INPROG)
3054 				break;
3055 			DELAY(100);
3056 		}
3057 		if (timeout == 0) {
3058 			/*
3059 			 * XXX Is it worth adding a sim_timeout entry
3060 			 * point so we can attempt recovery?  If
3061 			 * this is only used for dumps, I don't think
3062 			 * it is.
3063 			 */
3064 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3065 		}
3066 	} else {
3067 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3068 	}
3069 
3070 	mtx_lock(&dev->device_mtx);
3071 }
3072 
3073 /*
3074  * Schedule a peripheral driver to receive a ccb when its
3075  * target device has space for more transactions.
3076  */
3077 void
3078 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3079 {
3080 
3081 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3082 	cam_periph_assert(periph, MA_OWNED);
3083 	if (new_priority < periph->scheduled_priority) {
3084 		periph->scheduled_priority = new_priority;
3085 		xpt_run_allocq(periph, 0);
3086 	}
3087 }
3088 
3089 
3090 /*
3091  * Schedule a device to run on a given queue.
3092  * If the device was inserted as a new entry on the queue,
3093  * return 1 meaning the device queue should be run. If we
3094  * were already queued, implying someone else has already
3095  * started the queue, return 0 so the caller doesn't attempt
3096  * to run the queue.
3097  */
3098 static int
3099 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3100 		 u_int32_t new_priority)
3101 {
3102 	int retval;
3103 	u_int32_t old_priority;
3104 
3105 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3106 
3107 	old_priority = pinfo->priority;
3108 
3109 	/*
3110 	 * Are we already queued?
3111 	 */
3112 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3113 		/* Simply reorder based on new priority */
3114 		if (new_priority < old_priority) {
3115 			camq_change_priority(queue, pinfo->index,
3116 					     new_priority);
3117 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3118 					("changed priority to %d\n",
3119 					 new_priority));
3120 			retval = 1;
3121 		} else
3122 			retval = 0;
3123 	} else {
3124 		/* New entry on the queue */
3125 		if (new_priority < old_priority)
3126 			pinfo->priority = new_priority;
3127 
3128 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3129 				("Inserting onto queue\n"));
3130 		pinfo->generation = ++queue->generation;
3131 		camq_insert(queue, pinfo);
3132 		retval = 1;
3133 	}
3134 	return (retval);
3135 }
3136 
3137 static void
3138 xpt_run_allocq_task(void *context, int pending)
3139 {
3140 	struct cam_periph *periph = context;
3141 
3142 	cam_periph_lock(periph);
3143 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3144 	xpt_run_allocq(periph, 1);
3145 	cam_periph_unlock(periph);
3146 	cam_periph_release(periph);
3147 }
3148 
3149 static void
3150 xpt_run_allocq(struct cam_periph *periph, int sleep)
3151 {
3152 	struct cam_ed	*device;
3153 	union ccb	*ccb;
3154 	uint32_t	 prio;
3155 
3156 	cam_periph_assert(periph, MA_OWNED);
3157 	if (periph->periph_allocating)
3158 		return;
3159 	periph->periph_allocating = 1;
3160 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3161 	device = periph->path->device;
3162 	ccb = NULL;
3163 restart:
3164 	while ((prio = min(periph->scheduled_priority,
3165 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3166 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3167 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3168 
3169 		if (ccb == NULL &&
3170 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3171 			if (sleep) {
3172 				ccb = xpt_get_ccb(periph);
3173 				goto restart;
3174 			}
3175 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3176 				break;
3177 			cam_periph_doacquire(periph);
3178 			periph->flags |= CAM_PERIPH_RUN_TASK;
3179 			taskqueue_enqueue(xsoftc.xpt_taskq,
3180 			    &periph->periph_run_task);
3181 			break;
3182 		}
3183 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3184 		if (prio == periph->immediate_priority) {
3185 			periph->immediate_priority = CAM_PRIORITY_NONE;
3186 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3187 					("waking cam_periph_getccb()\n"));
3188 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3189 					  periph_links.sle);
3190 			wakeup(&periph->ccb_list);
3191 		} else {
3192 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3193 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3194 					("calling periph_start()\n"));
3195 			periph->periph_start(periph, ccb);
3196 		}
3197 		ccb = NULL;
3198 	}
3199 	if (ccb != NULL)
3200 		xpt_release_ccb(ccb);
3201 	periph->periph_allocating = 0;
3202 }
3203 
3204 static void
3205 xpt_run_devq(struct cam_devq *devq)
3206 {
3207 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3208 	int lock;
3209 
3210 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3211 
3212 	devq->send_queue.qfrozen_cnt++;
3213 	while ((devq->send_queue.entries > 0)
3214 	    && (devq->send_openings > 0)
3215 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3216 		struct	cam_ed *device;
3217 		union ccb *work_ccb;
3218 		struct	cam_sim *sim;
3219 
3220 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3221 							   CAMQ_HEAD);
3222 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3223 				("running device %p\n", device));
3224 
3225 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3226 		if (work_ccb == NULL) {
3227 			printf("device on run queue with no ccbs???\n");
3228 			continue;
3229 		}
3230 
3231 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3232 
3233 			mtx_lock(&xsoftc.xpt_highpower_lock);
3234 		 	if (xsoftc.num_highpower <= 0) {
3235 				/*
3236 				 * We got a high power command, but we
3237 				 * don't have any available slots.  Freeze
3238 				 * the device queue until we have a slot
3239 				 * available.
3240 				 */
3241 				xpt_freeze_devq_device(device, 1);
3242 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3243 						   highpowerq_entry);
3244 
3245 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3246 				continue;
3247 			} else {
3248 				/*
3249 				 * Consume a high power slot while
3250 				 * this ccb runs.
3251 				 */
3252 				xsoftc.num_highpower--;
3253 			}
3254 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3255 		}
3256 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3257 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3258 		devq->send_openings--;
3259 		devq->send_active++;
3260 		xpt_schedule_devq(devq, device);
3261 		mtx_unlock(&devq->send_mtx);
3262 
3263 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3264 			/*
3265 			 * The client wants to freeze the queue
3266 			 * after this CCB is sent.
3267 			 */
3268 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3269 		}
3270 
3271 		/* In Target mode, the peripheral driver knows best... */
3272 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3273 			if ((device->inq_flags & SID_CmdQue) != 0
3274 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3275 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3276 			else
3277 				/*
3278 				 * Clear this in case of a retried CCB that
3279 				 * failed due to a rejected tag.
3280 				 */
3281 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3282 		}
3283 
3284 		switch (work_ccb->ccb_h.func_code) {
3285 		case XPT_SCSI_IO:
3286 			CAM_DEBUG(work_ccb->ccb_h.path,
3287 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3288 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3289 					  &device->inq_data),
3290 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3291 					     cdb_str, sizeof(cdb_str))));
3292 			break;
3293 		case XPT_ATA_IO:
3294 			CAM_DEBUG(work_ccb->ccb_h.path,
3295 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3296 			     ata_op_string(&work_ccb->ataio.cmd),
3297 			     ata_cmd_string(&work_ccb->ataio.cmd,
3298 					    cdb_str, sizeof(cdb_str))));
3299 			break;
3300 		default:
3301 			break;
3302 		}
3303 
3304 		/*
3305 		 * Device queues can be shared among multiple SIM instances
3306 		 * that reside on different busses.  Use the SIM from the
3307 		 * queued device, rather than the one from the calling bus.
3308 		 */
3309 		sim = device->sim;
3310 		lock = (mtx_owned(sim->mtx) == 0);
3311 		if (lock)
3312 			CAM_SIM_LOCK(sim);
3313 		(*(sim->sim_action))(sim, work_ccb);
3314 		if (lock)
3315 			CAM_SIM_UNLOCK(sim);
3316 		mtx_lock(&devq->send_mtx);
3317 	}
3318 	devq->send_queue.qfrozen_cnt--;
3319 }
3320 
3321 /*
3322  * This function merges stuff from the slave ccb into the master ccb, while
3323  * keeping important fields in the master ccb constant.
3324  */
3325 void
3326 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3327 {
3328 
3329 	/*
3330 	 * Pull fields that are valid for peripheral drivers to set
3331 	 * into the master CCB along with the CCB "payload".
3332 	 */
3333 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3334 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3335 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3336 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3337 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3338 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3339 }
3340 
3341 void
3342 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3343 		    u_int32_t priority, u_int32_t flags)
3344 {
3345 
3346 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3347 	ccb_h->pinfo.priority = priority;
3348 	ccb_h->path = path;
3349 	ccb_h->path_id = path->bus->path_id;
3350 	if (path->target)
3351 		ccb_h->target_id = path->target->target_id;
3352 	else
3353 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3354 	if (path->device) {
3355 		ccb_h->target_lun = path->device->lun_id;
3356 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3357 	} else {
3358 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3359 	}
3360 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3361 	ccb_h->flags = flags;
3362 	ccb_h->xflags = 0;
3363 }
3364 
3365 void
3366 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3367 {
3368 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3369 }
3370 
3371 /* Path manipulation functions */
3372 cam_status
3373 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3374 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3375 {
3376 	struct	   cam_path *path;
3377 	cam_status status;
3378 
3379 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3380 
3381 	if (path == NULL) {
3382 		status = CAM_RESRC_UNAVAIL;
3383 		return(status);
3384 	}
3385 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3386 	if (status != CAM_REQ_CMP) {
3387 		free(path, M_CAMPATH);
3388 		path = NULL;
3389 	}
3390 	*new_path_ptr = path;
3391 	return (status);
3392 }
3393 
3394 cam_status
3395 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3396 			 struct cam_periph *periph, path_id_t path_id,
3397 			 target_id_t target_id, lun_id_t lun_id)
3398 {
3399 
3400 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3401 	    lun_id));
3402 }
3403 
3404 cam_status
3405 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3406 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3407 {
3408 	struct	     cam_eb *bus;
3409 	struct	     cam_et *target;
3410 	struct	     cam_ed *device;
3411 	cam_status   status;
3412 
3413 	status = CAM_REQ_CMP;	/* Completed without error */
3414 	target = NULL;		/* Wildcarded */
3415 	device = NULL;		/* Wildcarded */
3416 
3417 	/*
3418 	 * We will potentially modify the EDT, so block interrupts
3419 	 * that may attempt to create cam paths.
3420 	 */
3421 	bus = xpt_find_bus(path_id);
3422 	if (bus == NULL) {
3423 		status = CAM_PATH_INVALID;
3424 	} else {
3425 		xpt_lock_buses();
3426 		mtx_lock(&bus->eb_mtx);
3427 		target = xpt_find_target(bus, target_id);
3428 		if (target == NULL) {
3429 			/* Create one */
3430 			struct cam_et *new_target;
3431 
3432 			new_target = xpt_alloc_target(bus, target_id);
3433 			if (new_target == NULL) {
3434 				status = CAM_RESRC_UNAVAIL;
3435 			} else {
3436 				target = new_target;
3437 			}
3438 		}
3439 		xpt_unlock_buses();
3440 		if (target != NULL) {
3441 			device = xpt_find_device(target, lun_id);
3442 			if (device == NULL) {
3443 				/* Create one */
3444 				struct cam_ed *new_device;
3445 
3446 				new_device =
3447 				    (*(bus->xport->alloc_device))(bus,
3448 								      target,
3449 								      lun_id);
3450 				if (new_device == NULL) {
3451 					status = CAM_RESRC_UNAVAIL;
3452 				} else {
3453 					device = new_device;
3454 				}
3455 			}
3456 		}
3457 		mtx_unlock(&bus->eb_mtx);
3458 	}
3459 
3460 	/*
3461 	 * Only touch the user's data if we are successful.
3462 	 */
3463 	if (status == CAM_REQ_CMP) {
3464 		new_path->periph = perph;
3465 		new_path->bus = bus;
3466 		new_path->target = target;
3467 		new_path->device = device;
3468 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3469 	} else {
3470 		if (device != NULL)
3471 			xpt_release_device(device);
3472 		if (target != NULL)
3473 			xpt_release_target(target);
3474 		if (bus != NULL)
3475 			xpt_release_bus(bus);
3476 	}
3477 	return (status);
3478 }
3479 
3480 cam_status
3481 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3482 {
3483 	struct	   cam_path *new_path;
3484 
3485 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3486 	if (new_path == NULL)
3487 		return(CAM_RESRC_UNAVAIL);
3488 	xpt_copy_path(new_path, path);
3489 	*new_path_ptr = new_path;
3490 	return (CAM_REQ_CMP);
3491 }
3492 
3493 void
3494 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3495 {
3496 
3497 	*new_path = *path;
3498 	if (path->bus != NULL)
3499 		xpt_acquire_bus(path->bus);
3500 	if (path->target != NULL)
3501 		xpt_acquire_target(path->target);
3502 	if (path->device != NULL)
3503 		xpt_acquire_device(path->device);
3504 }
3505 
3506 void
3507 xpt_release_path(struct cam_path *path)
3508 {
3509 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3510 	if (path->device != NULL) {
3511 		xpt_release_device(path->device);
3512 		path->device = NULL;
3513 	}
3514 	if (path->target != NULL) {
3515 		xpt_release_target(path->target);
3516 		path->target = NULL;
3517 	}
3518 	if (path->bus != NULL) {
3519 		xpt_release_bus(path->bus);
3520 		path->bus = NULL;
3521 	}
3522 }
3523 
3524 void
3525 xpt_free_path(struct cam_path *path)
3526 {
3527 
3528 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3529 	xpt_release_path(path);
3530 	free(path, M_CAMPATH);
3531 }
3532 
3533 void
3534 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3535     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3536 {
3537 
3538 	xpt_lock_buses();
3539 	if (bus_ref) {
3540 		if (path->bus)
3541 			*bus_ref = path->bus->refcount;
3542 		else
3543 			*bus_ref = 0;
3544 	}
3545 	if (periph_ref) {
3546 		if (path->periph)
3547 			*periph_ref = path->periph->refcount;
3548 		else
3549 			*periph_ref = 0;
3550 	}
3551 	xpt_unlock_buses();
3552 	if (target_ref) {
3553 		if (path->target)
3554 			*target_ref = path->target->refcount;
3555 		else
3556 			*target_ref = 0;
3557 	}
3558 	if (device_ref) {
3559 		if (path->device)
3560 			*device_ref = path->device->refcount;
3561 		else
3562 			*device_ref = 0;
3563 	}
3564 }
3565 
3566 /*
3567  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3568  * in path1, 2 for match with wildcards in path2.
3569  */
3570 int
3571 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3572 {
3573 	int retval = 0;
3574 
3575 	if (path1->bus != path2->bus) {
3576 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3577 			retval = 1;
3578 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3579 			retval = 2;
3580 		else
3581 			return (-1);
3582 	}
3583 	if (path1->target != path2->target) {
3584 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3585 			if (retval == 0)
3586 				retval = 1;
3587 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3588 			retval = 2;
3589 		else
3590 			return (-1);
3591 	}
3592 	if (path1->device != path2->device) {
3593 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3594 			if (retval == 0)
3595 				retval = 1;
3596 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3597 			retval = 2;
3598 		else
3599 			return (-1);
3600 	}
3601 	return (retval);
3602 }
3603 
3604 int
3605 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3606 {
3607 	int retval = 0;
3608 
3609 	if (path->bus != dev->target->bus) {
3610 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3611 			retval = 1;
3612 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3613 			retval = 2;
3614 		else
3615 			return (-1);
3616 	}
3617 	if (path->target != dev->target) {
3618 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3619 			if (retval == 0)
3620 				retval = 1;
3621 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3622 			retval = 2;
3623 		else
3624 			return (-1);
3625 	}
3626 	if (path->device != dev) {
3627 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3628 			if (retval == 0)
3629 				retval = 1;
3630 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3631 			retval = 2;
3632 		else
3633 			return (-1);
3634 	}
3635 	return (retval);
3636 }
3637 
3638 void
3639 xpt_print_path(struct cam_path *path)
3640 {
3641 
3642 	if (path == NULL)
3643 		printf("(nopath): ");
3644 	else {
3645 		if (path->periph != NULL)
3646 			printf("(%s%d:", path->periph->periph_name,
3647 			       path->periph->unit_number);
3648 		else
3649 			printf("(noperiph:");
3650 
3651 		if (path->bus != NULL)
3652 			printf("%s%d:%d:", path->bus->sim->sim_name,
3653 			       path->bus->sim->unit_number,
3654 			       path->bus->sim->bus_id);
3655 		else
3656 			printf("nobus:");
3657 
3658 		if (path->target != NULL)
3659 			printf("%d:", path->target->target_id);
3660 		else
3661 			printf("X:");
3662 
3663 		if (path->device != NULL)
3664 			printf("%jx): ", (uintmax_t)path->device->lun_id);
3665 		else
3666 			printf("X): ");
3667 	}
3668 }
3669 
3670 void
3671 xpt_print_device(struct cam_ed *device)
3672 {
3673 
3674 	if (device == NULL)
3675 		printf("(nopath): ");
3676 	else {
3677 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3678 		       device->sim->unit_number,
3679 		       device->sim->bus_id,
3680 		       device->target->target_id,
3681 		       (uintmax_t)device->lun_id);
3682 	}
3683 }
3684 
3685 void
3686 xpt_print(struct cam_path *path, const char *fmt, ...)
3687 {
3688 	va_list ap;
3689 	xpt_print_path(path);
3690 	va_start(ap, fmt);
3691 	vprintf(fmt, ap);
3692 	va_end(ap);
3693 }
3694 
3695 int
3696 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3697 {
3698 	struct sbuf sb;
3699 
3700 	sbuf_new(&sb, str, str_len, 0);
3701 
3702 	if (path == NULL)
3703 		sbuf_printf(&sb, "(nopath): ");
3704 	else {
3705 		if (path->periph != NULL)
3706 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3707 				    path->periph->unit_number);
3708 		else
3709 			sbuf_printf(&sb, "(noperiph:");
3710 
3711 		if (path->bus != NULL)
3712 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3713 				    path->bus->sim->unit_number,
3714 				    path->bus->sim->bus_id);
3715 		else
3716 			sbuf_printf(&sb, "nobus:");
3717 
3718 		if (path->target != NULL)
3719 			sbuf_printf(&sb, "%d:", path->target->target_id);
3720 		else
3721 			sbuf_printf(&sb, "X:");
3722 
3723 		if (path->device != NULL)
3724 			sbuf_printf(&sb, "%jx): ",
3725 			    (uintmax_t)path->device->lun_id);
3726 		else
3727 			sbuf_printf(&sb, "X): ");
3728 	}
3729 	sbuf_finish(&sb);
3730 
3731 	return(sbuf_len(&sb));
3732 }
3733 
3734 path_id_t
3735 xpt_path_path_id(struct cam_path *path)
3736 {
3737 	return(path->bus->path_id);
3738 }
3739 
3740 target_id_t
3741 xpt_path_target_id(struct cam_path *path)
3742 {
3743 	if (path->target != NULL)
3744 		return (path->target->target_id);
3745 	else
3746 		return (CAM_TARGET_WILDCARD);
3747 }
3748 
3749 lun_id_t
3750 xpt_path_lun_id(struct cam_path *path)
3751 {
3752 	if (path->device != NULL)
3753 		return (path->device->lun_id);
3754 	else
3755 		return (CAM_LUN_WILDCARD);
3756 }
3757 
3758 struct cam_sim *
3759 xpt_path_sim(struct cam_path *path)
3760 {
3761 
3762 	return (path->bus->sim);
3763 }
3764 
3765 struct cam_periph*
3766 xpt_path_periph(struct cam_path *path)
3767 {
3768 
3769 	return (path->periph);
3770 }
3771 
3772 /*
3773  * Release a CAM control block for the caller.  Remit the cost of the structure
3774  * to the device referenced by the path.  If the this device had no 'credits'
3775  * and peripheral drivers have registered async callbacks for this notification
3776  * call them now.
3777  */
3778 void
3779 xpt_release_ccb(union ccb *free_ccb)
3780 {
3781 	struct	 cam_ed *device;
3782 	struct	 cam_periph *periph;
3783 
3784 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3785 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3786 	device = free_ccb->ccb_h.path->device;
3787 	periph = free_ccb->ccb_h.path->periph;
3788 
3789 	xpt_free_ccb(free_ccb);
3790 	periph->periph_allocated--;
3791 	cam_ccbq_release_opening(&device->ccbq);
3792 	xpt_run_allocq(periph, 0);
3793 }
3794 
3795 /* Functions accessed by SIM drivers */
3796 
3797 static struct xpt_xport xport_default = {
3798 	.alloc_device = xpt_alloc_device_default,
3799 	.action = xpt_action_default,
3800 	.async = xpt_dev_async_default,
3801 };
3802 
3803 /*
3804  * A sim structure, listing the SIM entry points and instance
3805  * identification info is passed to xpt_bus_register to hook the SIM
3806  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3807  * for this new bus and places it in the array of busses and assigns
3808  * it a path_id.  The path_id may be influenced by "hard wiring"
3809  * information specified by the user.  Once interrupt services are
3810  * available, the bus will be probed.
3811  */
3812 int32_t
3813 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3814 {
3815 	struct cam_eb *new_bus;
3816 	struct cam_eb *old_bus;
3817 	struct ccb_pathinq cpi;
3818 	struct cam_path *path;
3819 	cam_status status;
3820 
3821 	mtx_assert(sim->mtx, MA_OWNED);
3822 
3823 	sim->bus_id = bus;
3824 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3825 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3826 	if (new_bus == NULL) {
3827 		/* Couldn't satisfy request */
3828 		return (CAM_RESRC_UNAVAIL);
3829 	}
3830 
3831 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3832 	TAILQ_INIT(&new_bus->et_entries);
3833 	cam_sim_hold(sim);
3834 	new_bus->sim = sim;
3835 	timevalclear(&new_bus->last_reset);
3836 	new_bus->flags = 0;
3837 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3838 	new_bus->generation = 0;
3839 
3840 	xpt_lock_buses();
3841 	sim->path_id = new_bus->path_id =
3842 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3843 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3844 	while (old_bus != NULL
3845 	    && old_bus->path_id < new_bus->path_id)
3846 		old_bus = TAILQ_NEXT(old_bus, links);
3847 	if (old_bus != NULL)
3848 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3849 	else
3850 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3851 	xsoftc.bus_generation++;
3852 	xpt_unlock_buses();
3853 
3854 	/*
3855 	 * Set a default transport so that a PATH_INQ can be issued to
3856 	 * the SIM.  This will then allow for probing and attaching of
3857 	 * a more appropriate transport.
3858 	 */
3859 	new_bus->xport = &xport_default;
3860 
3861 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3862 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3863 	if (status != CAM_REQ_CMP) {
3864 		xpt_release_bus(new_bus);
3865 		free(path, M_CAMXPT);
3866 		return (CAM_RESRC_UNAVAIL);
3867 	}
3868 
3869 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3870 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3871 	xpt_action((union ccb *)&cpi);
3872 
3873 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3874 		switch (cpi.transport) {
3875 		case XPORT_SPI:
3876 		case XPORT_SAS:
3877 		case XPORT_FC:
3878 		case XPORT_USB:
3879 		case XPORT_ISCSI:
3880 		case XPORT_SRP:
3881 		case XPORT_PPB:
3882 			new_bus->xport = scsi_get_xport();
3883 			break;
3884 		case XPORT_ATA:
3885 		case XPORT_SATA:
3886 			new_bus->xport = ata_get_xport();
3887 			break;
3888 		default:
3889 			new_bus->xport = &xport_default;
3890 			break;
3891 		}
3892 	}
3893 
3894 	/* Notify interested parties */
3895 	if (sim->path_id != CAM_XPT_PATH_ID) {
3896 
3897 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3898 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3899 			union	ccb *scan_ccb;
3900 
3901 			/* Initiate bus rescan. */
3902 			scan_ccb = xpt_alloc_ccb_nowait();
3903 			if (scan_ccb != NULL) {
3904 				scan_ccb->ccb_h.path = path;
3905 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3906 				scan_ccb->crcn.flags = 0;
3907 				xpt_rescan(scan_ccb);
3908 			} else {
3909 				xpt_print(path,
3910 					  "Can't allocate CCB to scan bus\n");
3911 				xpt_free_path(path);
3912 			}
3913 		} else
3914 			xpt_free_path(path);
3915 	} else
3916 		xpt_free_path(path);
3917 	return (CAM_SUCCESS);
3918 }
3919 
3920 int32_t
3921 xpt_bus_deregister(path_id_t pathid)
3922 {
3923 	struct cam_path bus_path;
3924 	cam_status status;
3925 
3926 	status = xpt_compile_path(&bus_path, NULL, pathid,
3927 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3928 	if (status != CAM_REQ_CMP)
3929 		return (status);
3930 
3931 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3932 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3933 
3934 	/* Release the reference count held while registered. */
3935 	xpt_release_bus(bus_path.bus);
3936 	xpt_release_path(&bus_path);
3937 
3938 	return (CAM_REQ_CMP);
3939 }
3940 
3941 static path_id_t
3942 xptnextfreepathid(void)
3943 {
3944 	struct cam_eb *bus;
3945 	path_id_t pathid;
3946 	const char *strval;
3947 
3948 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3949 	pathid = 0;
3950 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3951 retry:
3952 	/* Find an unoccupied pathid */
3953 	while (bus != NULL && bus->path_id <= pathid) {
3954 		if (bus->path_id == pathid)
3955 			pathid++;
3956 		bus = TAILQ_NEXT(bus, links);
3957 	}
3958 
3959 	/*
3960 	 * Ensure that this pathid is not reserved for
3961 	 * a bus that may be registered in the future.
3962 	 */
3963 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3964 		++pathid;
3965 		/* Start the search over */
3966 		goto retry;
3967 	}
3968 	return (pathid);
3969 }
3970 
3971 static path_id_t
3972 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3973 {
3974 	path_id_t pathid;
3975 	int i, dunit, val;
3976 	char buf[32];
3977 	const char *dname;
3978 
3979 	pathid = CAM_XPT_PATH_ID;
3980 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3981 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
3982 		return (pathid);
3983 	i = 0;
3984 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3985 		if (strcmp(dname, "scbus")) {
3986 			/* Avoid a bit of foot shooting. */
3987 			continue;
3988 		}
3989 		if (dunit < 0)		/* unwired?! */
3990 			continue;
3991 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3992 			if (sim_bus == val) {
3993 				pathid = dunit;
3994 				break;
3995 			}
3996 		} else if (sim_bus == 0) {
3997 			/* Unspecified matches bus 0 */
3998 			pathid = dunit;
3999 			break;
4000 		} else {
4001 			printf("Ambiguous scbus configuration for %s%d "
4002 			       "bus %d, cannot wire down.  The kernel "
4003 			       "config entry for scbus%d should "
4004 			       "specify a controller bus.\n"
4005 			       "Scbus will be assigned dynamically.\n",
4006 			       sim_name, sim_unit, sim_bus, dunit);
4007 			break;
4008 		}
4009 	}
4010 
4011 	if (pathid == CAM_XPT_PATH_ID)
4012 		pathid = xptnextfreepathid();
4013 	return (pathid);
4014 }
4015 
4016 static const char *
4017 xpt_async_string(u_int32_t async_code)
4018 {
4019 
4020 	switch (async_code) {
4021 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4022 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4023 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4024 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4025 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4026 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4027 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4028 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4029 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4030 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4031 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4032 	case AC_CONTRACT: return ("AC_CONTRACT");
4033 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4034 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4035 	}
4036 	return ("AC_UNKNOWN");
4037 }
4038 
4039 static int
4040 xpt_async_size(u_int32_t async_code)
4041 {
4042 
4043 	switch (async_code) {
4044 	case AC_BUS_RESET: return (0);
4045 	case AC_UNSOL_RESEL: return (0);
4046 	case AC_SCSI_AEN: return (0);
4047 	case AC_SENT_BDR: return (0);
4048 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4049 	case AC_PATH_DEREGISTERED: return (0);
4050 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4051 	case AC_LOST_DEVICE: return (0);
4052 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4053 	case AC_INQ_CHANGED: return (0);
4054 	case AC_GETDEV_CHANGED: return (0);
4055 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4056 	case AC_ADVINFO_CHANGED: return (-1);
4057 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4058 	}
4059 	return (0);
4060 }
4061 
4062 static int
4063 xpt_async_process_dev(struct cam_ed *device, void *arg)
4064 {
4065 	union ccb *ccb = arg;
4066 	struct cam_path *path = ccb->ccb_h.path;
4067 	void *async_arg = ccb->casync.async_arg_ptr;
4068 	u_int32_t async_code = ccb->casync.async_code;
4069 	int relock;
4070 
4071 	if (path->device != device
4072 	 && path->device->lun_id != CAM_LUN_WILDCARD
4073 	 && device->lun_id != CAM_LUN_WILDCARD)
4074 		return (1);
4075 
4076 	/*
4077 	 * The async callback could free the device.
4078 	 * If it is a broadcast async, it doesn't hold
4079 	 * device reference, so take our own reference.
4080 	 */
4081 	xpt_acquire_device(device);
4082 
4083 	/*
4084 	 * If async for specific device is to be delivered to
4085 	 * the wildcard client, take the specific device lock.
4086 	 * XXX: We may need a way for client to specify it.
4087 	 */
4088 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4089 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4090 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4091 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4092 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4093 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4094 		mtx_unlock(&device->device_mtx);
4095 		xpt_path_lock(path);
4096 		relock = 1;
4097 	} else
4098 		relock = 0;
4099 
4100 	(*(device->target->bus->xport->async))(async_code,
4101 	    device->target->bus, device->target, device, async_arg);
4102 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4103 
4104 	if (relock) {
4105 		xpt_path_unlock(path);
4106 		mtx_lock(&device->device_mtx);
4107 	}
4108 	xpt_release_device(device);
4109 	return (1);
4110 }
4111 
4112 static int
4113 xpt_async_process_tgt(struct cam_et *target, void *arg)
4114 {
4115 	union ccb *ccb = arg;
4116 	struct cam_path *path = ccb->ccb_h.path;
4117 
4118 	if (path->target != target
4119 	 && path->target->target_id != CAM_TARGET_WILDCARD
4120 	 && target->target_id != CAM_TARGET_WILDCARD)
4121 		return (1);
4122 
4123 	if (ccb->casync.async_code == AC_SENT_BDR) {
4124 		/* Update our notion of when the last reset occurred */
4125 		microtime(&target->last_reset);
4126 	}
4127 
4128 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4129 }
4130 
4131 static void
4132 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4133 {
4134 	struct cam_eb *bus;
4135 	struct cam_path *path;
4136 	void *async_arg;
4137 	u_int32_t async_code;
4138 
4139 	path = ccb->ccb_h.path;
4140 	async_code = ccb->casync.async_code;
4141 	async_arg = ccb->casync.async_arg_ptr;
4142 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4143 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4144 	bus = path->bus;
4145 
4146 	if (async_code == AC_BUS_RESET) {
4147 		/* Update our notion of when the last reset occurred */
4148 		microtime(&bus->last_reset);
4149 	}
4150 
4151 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4152 
4153 	/*
4154 	 * If this wasn't a fully wildcarded async, tell all
4155 	 * clients that want all async events.
4156 	 */
4157 	if (bus != xpt_periph->path->bus) {
4158 		xpt_path_lock(xpt_periph->path);
4159 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4160 		xpt_path_unlock(xpt_periph->path);
4161 	}
4162 
4163 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4164 		xpt_release_devq(path, 1, TRUE);
4165 	else
4166 		xpt_release_simq(path->bus->sim, TRUE);
4167 	if (ccb->casync.async_arg_size > 0)
4168 		free(async_arg, M_CAMXPT);
4169 	xpt_free_path(path);
4170 	xpt_free_ccb(ccb);
4171 }
4172 
4173 static void
4174 xpt_async_bcast(struct async_list *async_head,
4175 		u_int32_t async_code,
4176 		struct cam_path *path, void *async_arg)
4177 {
4178 	struct async_node *cur_entry;
4179 	int lock;
4180 
4181 	cur_entry = SLIST_FIRST(async_head);
4182 	while (cur_entry != NULL) {
4183 		struct async_node *next_entry;
4184 		/*
4185 		 * Grab the next list entry before we call the current
4186 		 * entry's callback.  This is because the callback function
4187 		 * can delete its async callback entry.
4188 		 */
4189 		next_entry = SLIST_NEXT(cur_entry, links);
4190 		if ((cur_entry->event_enable & async_code) != 0) {
4191 			lock = cur_entry->event_lock;
4192 			if (lock)
4193 				CAM_SIM_LOCK(path->device->sim);
4194 			cur_entry->callback(cur_entry->callback_arg,
4195 					    async_code, path,
4196 					    async_arg);
4197 			if (lock)
4198 				CAM_SIM_UNLOCK(path->device->sim);
4199 		}
4200 		cur_entry = next_entry;
4201 	}
4202 }
4203 
4204 void
4205 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4206 {
4207 	union ccb *ccb;
4208 	int size;
4209 
4210 	ccb = xpt_alloc_ccb_nowait();
4211 	if (ccb == NULL) {
4212 		xpt_print(path, "Can't allocate CCB to send %s\n",
4213 		    xpt_async_string(async_code));
4214 		return;
4215 	}
4216 
4217 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4218 		xpt_print(path, "Can't allocate path to send %s\n",
4219 		    xpt_async_string(async_code));
4220 		xpt_free_ccb(ccb);
4221 		return;
4222 	}
4223 	ccb->ccb_h.path->periph = NULL;
4224 	ccb->ccb_h.func_code = XPT_ASYNC;
4225 	ccb->ccb_h.cbfcnp = xpt_async_process;
4226 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4227 	ccb->casync.async_code = async_code;
4228 	ccb->casync.async_arg_size = 0;
4229 	size = xpt_async_size(async_code);
4230 	if (size > 0 && async_arg != NULL) {
4231 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4232 		if (ccb->casync.async_arg_ptr == NULL) {
4233 			xpt_print(path, "Can't allocate argument to send %s\n",
4234 			    xpt_async_string(async_code));
4235 			xpt_free_path(ccb->ccb_h.path);
4236 			xpt_free_ccb(ccb);
4237 			return;
4238 		}
4239 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4240 		ccb->casync.async_arg_size = size;
4241 	} else if (size < 0) {
4242 		ccb->casync.async_arg_ptr = async_arg;
4243 		ccb->casync.async_arg_size = size;
4244 	}
4245 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4246 		xpt_freeze_devq(path, 1);
4247 	else
4248 		xpt_freeze_simq(path->bus->sim, 1);
4249 	xpt_done(ccb);
4250 }
4251 
4252 static void
4253 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4254 		      struct cam_et *target, struct cam_ed *device,
4255 		      void *async_arg)
4256 {
4257 
4258 	/*
4259 	 * We only need to handle events for real devices.
4260 	 */
4261 	if (target->target_id == CAM_TARGET_WILDCARD
4262 	 || device->lun_id == CAM_LUN_WILDCARD)
4263 		return;
4264 
4265 	printf("%s called\n", __func__);
4266 }
4267 
4268 static uint32_t
4269 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4270 {
4271 	struct cam_devq	*devq;
4272 	uint32_t freeze;
4273 
4274 	devq = dev->sim->devq;
4275 	mtx_assert(&devq->send_mtx, MA_OWNED);
4276 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4277 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4278 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4279 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4280 	/* Remove frozen device from sendq. */
4281 	if (device_is_queued(dev))
4282 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4283 	return (freeze);
4284 }
4285 
4286 u_int32_t
4287 xpt_freeze_devq(struct cam_path *path, u_int count)
4288 {
4289 	struct cam_ed	*dev = path->device;
4290 	struct cam_devq	*devq;
4291 	uint32_t	 freeze;
4292 
4293 	devq = dev->sim->devq;
4294 	mtx_lock(&devq->send_mtx);
4295 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4296 	freeze = xpt_freeze_devq_device(dev, count);
4297 	mtx_unlock(&devq->send_mtx);
4298 	return (freeze);
4299 }
4300 
4301 u_int32_t
4302 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4303 {
4304 	struct cam_devq	*devq;
4305 	uint32_t	 freeze;
4306 
4307 	devq = sim->devq;
4308 	mtx_lock(&devq->send_mtx);
4309 	freeze = (devq->send_queue.qfrozen_cnt += count);
4310 	mtx_unlock(&devq->send_mtx);
4311 	return (freeze);
4312 }
4313 
4314 static void
4315 xpt_release_devq_timeout(void *arg)
4316 {
4317 	struct cam_ed *dev;
4318 	struct cam_devq *devq;
4319 
4320 	dev = (struct cam_ed *)arg;
4321 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4322 	devq = dev->sim->devq;
4323 	mtx_assert(&devq->send_mtx, MA_OWNED);
4324 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4325 		xpt_run_devq(devq);
4326 }
4327 
4328 void
4329 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4330 {
4331 	struct cam_ed *dev;
4332 	struct cam_devq *devq;
4333 
4334 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4335 	    count, run_queue));
4336 	dev = path->device;
4337 	devq = dev->sim->devq;
4338 	mtx_lock(&devq->send_mtx);
4339 	if (xpt_release_devq_device(dev, count, run_queue))
4340 		xpt_run_devq(dev->sim->devq);
4341 	mtx_unlock(&devq->send_mtx);
4342 }
4343 
4344 static int
4345 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4346 {
4347 
4348 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4349 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4350 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4351 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4352 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4353 #ifdef INVARIANTS
4354 		printf("xpt_release_devq(): requested %u > present %u\n",
4355 		    count, dev->ccbq.queue.qfrozen_cnt);
4356 #endif
4357 		count = dev->ccbq.queue.qfrozen_cnt;
4358 	}
4359 	dev->ccbq.queue.qfrozen_cnt -= count;
4360 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4361 		/*
4362 		 * No longer need to wait for a successful
4363 		 * command completion.
4364 		 */
4365 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4366 		/*
4367 		 * Remove any timeouts that might be scheduled
4368 		 * to release this queue.
4369 		 */
4370 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4371 			callout_stop(&dev->callout);
4372 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4373 		}
4374 		/*
4375 		 * Now that we are unfrozen schedule the
4376 		 * device so any pending transactions are
4377 		 * run.
4378 		 */
4379 		xpt_schedule_devq(dev->sim->devq, dev);
4380 	} else
4381 		run_queue = 0;
4382 	return (run_queue);
4383 }
4384 
4385 void
4386 xpt_release_simq(struct cam_sim *sim, int run_queue)
4387 {
4388 	struct cam_devq	*devq;
4389 
4390 	devq = sim->devq;
4391 	mtx_lock(&devq->send_mtx);
4392 	if (devq->send_queue.qfrozen_cnt <= 0) {
4393 #ifdef INVARIANTS
4394 		printf("xpt_release_simq: requested 1 > present %u\n",
4395 		    devq->send_queue.qfrozen_cnt);
4396 #endif
4397 	} else
4398 		devq->send_queue.qfrozen_cnt--;
4399 	if (devq->send_queue.qfrozen_cnt == 0) {
4400 		/*
4401 		 * If there is a timeout scheduled to release this
4402 		 * sim queue, remove it.  The queue frozen count is
4403 		 * already at 0.
4404 		 */
4405 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4406 			callout_stop(&sim->callout);
4407 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4408 		}
4409 		if (run_queue) {
4410 			/*
4411 			 * Now that we are unfrozen run the send queue.
4412 			 */
4413 			xpt_run_devq(sim->devq);
4414 		}
4415 	}
4416 	mtx_unlock(&devq->send_mtx);
4417 }
4418 
4419 /*
4420  * XXX Appears to be unused.
4421  */
4422 static void
4423 xpt_release_simq_timeout(void *arg)
4424 {
4425 	struct cam_sim *sim;
4426 
4427 	sim = (struct cam_sim *)arg;
4428 	xpt_release_simq(sim, /* run_queue */ TRUE);
4429 }
4430 
4431 void
4432 xpt_done(union ccb *done_ccb)
4433 {
4434 	struct cam_doneq *queue;
4435 	int	run, hash;
4436 
4437 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4438 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4439 		return;
4440 
4441 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4442 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4443 	queue = &cam_doneqs[hash];
4444 	mtx_lock(&queue->cam_doneq_mtx);
4445 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4446 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4447 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4448 	mtx_unlock(&queue->cam_doneq_mtx);
4449 	if (run)
4450 		wakeup(&queue->cam_doneq);
4451 }
4452 
4453 void
4454 xpt_done_direct(union ccb *done_ccb)
4455 {
4456 
4457 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n"));
4458 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4459 		return;
4460 
4461 	xpt_done_process(&done_ccb->ccb_h);
4462 }
4463 
4464 union ccb *
4465 xpt_alloc_ccb()
4466 {
4467 	union ccb *new_ccb;
4468 
4469 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4470 	return (new_ccb);
4471 }
4472 
4473 union ccb *
4474 xpt_alloc_ccb_nowait()
4475 {
4476 	union ccb *new_ccb;
4477 
4478 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4479 	return (new_ccb);
4480 }
4481 
4482 void
4483 xpt_free_ccb(union ccb *free_ccb)
4484 {
4485 	free(free_ccb, M_CAMCCB);
4486 }
4487 
4488 
4489 
4490 /* Private XPT functions */
4491 
4492 /*
4493  * Get a CAM control block for the caller. Charge the structure to the device
4494  * referenced by the path.  If we don't have sufficient resources to allocate
4495  * more ccbs, we return NULL.
4496  */
4497 static union ccb *
4498 xpt_get_ccb_nowait(struct cam_periph *periph)
4499 {
4500 	union ccb *new_ccb;
4501 
4502 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4503 	if (new_ccb == NULL)
4504 		return (NULL);
4505 	periph->periph_allocated++;
4506 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4507 	return (new_ccb);
4508 }
4509 
4510 static union ccb *
4511 xpt_get_ccb(struct cam_periph *periph)
4512 {
4513 	union ccb *new_ccb;
4514 
4515 	cam_periph_unlock(periph);
4516 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4517 	cam_periph_lock(periph);
4518 	periph->periph_allocated++;
4519 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4520 	return (new_ccb);
4521 }
4522 
4523 union ccb *
4524 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4525 {
4526 	struct ccb_hdr *ccb_h;
4527 
4528 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4529 	cam_periph_assert(periph, MA_OWNED);
4530 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4531 	    ccb_h->pinfo.priority != priority) {
4532 		if (priority < periph->immediate_priority) {
4533 			periph->immediate_priority = priority;
4534 			xpt_run_allocq(periph, 0);
4535 		} else
4536 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4537 			    "cgticb", 0);
4538 	}
4539 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4540 	return ((union ccb *)ccb_h);
4541 }
4542 
4543 static void
4544 xpt_acquire_bus(struct cam_eb *bus)
4545 {
4546 
4547 	xpt_lock_buses();
4548 	bus->refcount++;
4549 	xpt_unlock_buses();
4550 }
4551 
4552 static void
4553 xpt_release_bus(struct cam_eb *bus)
4554 {
4555 
4556 	xpt_lock_buses();
4557 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4558 	if (--bus->refcount > 0) {
4559 		xpt_unlock_buses();
4560 		return;
4561 	}
4562 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4563 	xsoftc.bus_generation++;
4564 	xpt_unlock_buses();
4565 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4566 	    ("destroying bus, but target list is not empty"));
4567 	cam_sim_release(bus->sim);
4568 	mtx_destroy(&bus->eb_mtx);
4569 	free(bus, M_CAMXPT);
4570 }
4571 
4572 static struct cam_et *
4573 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4574 {
4575 	struct cam_et *cur_target, *target;
4576 
4577 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4578 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4579 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4580 					 M_NOWAIT|M_ZERO);
4581 	if (target == NULL)
4582 		return (NULL);
4583 
4584 	TAILQ_INIT(&target->ed_entries);
4585 	target->bus = bus;
4586 	target->target_id = target_id;
4587 	target->refcount = 1;
4588 	target->generation = 0;
4589 	target->luns = NULL;
4590 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4591 	timevalclear(&target->last_reset);
4592 	/*
4593 	 * Hold a reference to our parent bus so it
4594 	 * will not go away before we do.
4595 	 */
4596 	bus->refcount++;
4597 
4598 	/* Insertion sort into our bus's target list */
4599 	cur_target = TAILQ_FIRST(&bus->et_entries);
4600 	while (cur_target != NULL && cur_target->target_id < target_id)
4601 		cur_target = TAILQ_NEXT(cur_target, links);
4602 	if (cur_target != NULL) {
4603 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4604 	} else {
4605 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4606 	}
4607 	bus->generation++;
4608 	return (target);
4609 }
4610 
4611 static void
4612 xpt_acquire_target(struct cam_et *target)
4613 {
4614 	struct cam_eb *bus = target->bus;
4615 
4616 	mtx_lock(&bus->eb_mtx);
4617 	target->refcount++;
4618 	mtx_unlock(&bus->eb_mtx);
4619 }
4620 
4621 static void
4622 xpt_release_target(struct cam_et *target)
4623 {
4624 	struct cam_eb *bus = target->bus;
4625 
4626 	mtx_lock(&bus->eb_mtx);
4627 	if (--target->refcount > 0) {
4628 		mtx_unlock(&bus->eb_mtx);
4629 		return;
4630 	}
4631 	TAILQ_REMOVE(&bus->et_entries, target, links);
4632 	bus->generation++;
4633 	mtx_unlock(&bus->eb_mtx);
4634 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4635 	    ("destroying target, but device list is not empty"));
4636 	xpt_release_bus(bus);
4637 	mtx_destroy(&target->luns_mtx);
4638 	if (target->luns)
4639 		free(target->luns, M_CAMXPT);
4640 	free(target, M_CAMXPT);
4641 }
4642 
4643 static struct cam_ed *
4644 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4645 			 lun_id_t lun_id)
4646 {
4647 	struct cam_ed *device;
4648 
4649 	device = xpt_alloc_device(bus, target, lun_id);
4650 	if (device == NULL)
4651 		return (NULL);
4652 
4653 	device->mintags = 1;
4654 	device->maxtags = 1;
4655 	return (device);
4656 }
4657 
4658 static void
4659 xpt_destroy_device(void *context, int pending)
4660 {
4661 	struct cam_ed	*device = context;
4662 
4663 	mtx_lock(&device->device_mtx);
4664 	mtx_destroy(&device->device_mtx);
4665 	free(device, M_CAMDEV);
4666 }
4667 
4668 struct cam_ed *
4669 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4670 {
4671 	struct cam_ed	*cur_device, *device;
4672 	struct cam_devq	*devq;
4673 	cam_status status;
4674 
4675 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4676 	/* Make space for us in the device queue on our bus */
4677 	devq = bus->sim->devq;
4678 	mtx_lock(&devq->send_mtx);
4679 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4680 	mtx_unlock(&devq->send_mtx);
4681 	if (status != CAM_REQ_CMP)
4682 		return (NULL);
4683 
4684 	device = (struct cam_ed *)malloc(sizeof(*device),
4685 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4686 	if (device == NULL)
4687 		return (NULL);
4688 
4689 	cam_init_pinfo(&device->devq_entry);
4690 	device->target = target;
4691 	device->lun_id = lun_id;
4692 	device->sim = bus->sim;
4693 	if (cam_ccbq_init(&device->ccbq,
4694 			  bus->sim->max_dev_openings) != 0) {
4695 		free(device, M_CAMDEV);
4696 		return (NULL);
4697 	}
4698 	SLIST_INIT(&device->asyncs);
4699 	SLIST_INIT(&device->periphs);
4700 	device->generation = 0;
4701 	device->flags = CAM_DEV_UNCONFIGURED;
4702 	device->tag_delay_count = 0;
4703 	device->tag_saved_openings = 0;
4704 	device->refcount = 1;
4705 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4706 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4707 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4708 	/*
4709 	 * Hold a reference to our parent bus so it
4710 	 * will not go away before we do.
4711 	 */
4712 	target->refcount++;
4713 
4714 	cur_device = TAILQ_FIRST(&target->ed_entries);
4715 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4716 		cur_device = TAILQ_NEXT(cur_device, links);
4717 	if (cur_device != NULL)
4718 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4719 	else
4720 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4721 	target->generation++;
4722 	return (device);
4723 }
4724 
4725 void
4726 xpt_acquire_device(struct cam_ed *device)
4727 {
4728 	struct cam_eb *bus = device->target->bus;
4729 
4730 	mtx_lock(&bus->eb_mtx);
4731 	device->refcount++;
4732 	mtx_unlock(&bus->eb_mtx);
4733 }
4734 
4735 void
4736 xpt_release_device(struct cam_ed *device)
4737 {
4738 	struct cam_eb *bus = device->target->bus;
4739 	struct cam_devq *devq;
4740 
4741 	mtx_lock(&bus->eb_mtx);
4742 	if (--device->refcount > 0) {
4743 		mtx_unlock(&bus->eb_mtx);
4744 		return;
4745 	}
4746 
4747 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4748 	device->target->generation++;
4749 	mtx_unlock(&bus->eb_mtx);
4750 
4751 	/* Release our slot in the devq */
4752 	devq = bus->sim->devq;
4753 	mtx_lock(&devq->send_mtx);
4754 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4755 	mtx_unlock(&devq->send_mtx);
4756 
4757 	KASSERT(SLIST_EMPTY(&device->periphs),
4758 	    ("destroying device, but periphs list is not empty"));
4759 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4760 	    ("destroying device while still queued for ccbs"));
4761 
4762 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4763 		callout_stop(&device->callout);
4764 
4765 	xpt_release_target(device->target);
4766 
4767 	cam_ccbq_fini(&device->ccbq);
4768 	/*
4769 	 * Free allocated memory.  free(9) does nothing if the
4770 	 * supplied pointer is NULL, so it is safe to call without
4771 	 * checking.
4772 	 */
4773 	free(device->supported_vpds, M_CAMXPT);
4774 	free(device->device_id, M_CAMXPT);
4775 	free(device->ext_inq, M_CAMXPT);
4776 	free(device->physpath, M_CAMXPT);
4777 	free(device->rcap_buf, M_CAMXPT);
4778 	free(device->serial_num, M_CAMXPT);
4779 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4780 }
4781 
4782 u_int32_t
4783 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4784 {
4785 	int	result;
4786 	struct	cam_ed *dev;
4787 
4788 	dev = path->device;
4789 	mtx_lock(&dev->sim->devq->send_mtx);
4790 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4791 	mtx_unlock(&dev->sim->devq->send_mtx);
4792 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4793 	 || (dev->inq_flags & SID_CmdQue) != 0)
4794 		dev->tag_saved_openings = newopenings;
4795 	return (result);
4796 }
4797 
4798 static struct cam_eb *
4799 xpt_find_bus(path_id_t path_id)
4800 {
4801 	struct cam_eb *bus;
4802 
4803 	xpt_lock_buses();
4804 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4805 	     bus != NULL;
4806 	     bus = TAILQ_NEXT(bus, links)) {
4807 		if (bus->path_id == path_id) {
4808 			bus->refcount++;
4809 			break;
4810 		}
4811 	}
4812 	xpt_unlock_buses();
4813 	return (bus);
4814 }
4815 
4816 static struct cam_et *
4817 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4818 {
4819 	struct cam_et *target;
4820 
4821 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4822 	for (target = TAILQ_FIRST(&bus->et_entries);
4823 	     target != NULL;
4824 	     target = TAILQ_NEXT(target, links)) {
4825 		if (target->target_id == target_id) {
4826 			target->refcount++;
4827 			break;
4828 		}
4829 	}
4830 	return (target);
4831 }
4832 
4833 static struct cam_ed *
4834 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4835 {
4836 	struct cam_ed *device;
4837 
4838 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4839 	for (device = TAILQ_FIRST(&target->ed_entries);
4840 	     device != NULL;
4841 	     device = TAILQ_NEXT(device, links)) {
4842 		if (device->lun_id == lun_id) {
4843 			device->refcount++;
4844 			break;
4845 		}
4846 	}
4847 	return (device);
4848 }
4849 
4850 void
4851 xpt_start_tags(struct cam_path *path)
4852 {
4853 	struct ccb_relsim crs;
4854 	struct cam_ed *device;
4855 	struct cam_sim *sim;
4856 	int    newopenings;
4857 
4858 	device = path->device;
4859 	sim = path->bus->sim;
4860 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4861 	xpt_freeze_devq(path, /*count*/1);
4862 	device->inq_flags |= SID_CmdQue;
4863 	if (device->tag_saved_openings != 0)
4864 		newopenings = device->tag_saved_openings;
4865 	else
4866 		newopenings = min(device->maxtags,
4867 				  sim->max_tagged_dev_openings);
4868 	xpt_dev_ccbq_resize(path, newopenings);
4869 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4870 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4871 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4872 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4873 	crs.openings
4874 	    = crs.release_timeout
4875 	    = crs.qfrozen_cnt
4876 	    = 0;
4877 	xpt_action((union ccb *)&crs);
4878 }
4879 
4880 void
4881 xpt_stop_tags(struct cam_path *path)
4882 {
4883 	struct ccb_relsim crs;
4884 	struct cam_ed *device;
4885 	struct cam_sim *sim;
4886 
4887 	device = path->device;
4888 	sim = path->bus->sim;
4889 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4890 	device->tag_delay_count = 0;
4891 	xpt_freeze_devq(path, /*count*/1);
4892 	device->inq_flags &= ~SID_CmdQue;
4893 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4894 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4895 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4896 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4897 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4898 	crs.openings
4899 	    = crs.release_timeout
4900 	    = crs.qfrozen_cnt
4901 	    = 0;
4902 	xpt_action((union ccb *)&crs);
4903 }
4904 
4905 static void
4906 xpt_boot_delay(void *arg)
4907 {
4908 
4909 	xpt_release_boot();
4910 }
4911 
4912 static void
4913 xpt_config(void *arg)
4914 {
4915 	/*
4916 	 * Now that interrupts are enabled, go find our devices
4917 	 */
4918 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4919 		printf("xpt_config: failed to create taskqueue thread.\n");
4920 
4921 	/* Setup debugging path */
4922 	if (cam_dflags != CAM_DEBUG_NONE) {
4923 		if (xpt_create_path(&cam_dpath, NULL,
4924 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4925 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4926 			printf("xpt_config: xpt_create_path() failed for debug"
4927 			       " target %d:%d:%d, debugging disabled\n",
4928 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4929 			cam_dflags = CAM_DEBUG_NONE;
4930 		}
4931 	} else
4932 		cam_dpath = NULL;
4933 
4934 	periphdriver_init(1);
4935 	xpt_hold_boot();
4936 	callout_init(&xsoftc.boot_callout, 1);
4937 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
4938 	    xpt_boot_delay, NULL, 0);
4939 	/* Fire up rescan thread. */
4940 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
4941 	    "cam", "scanner")) {
4942 		printf("xpt_config: failed to create rescan thread.\n");
4943 	}
4944 }
4945 
4946 void
4947 xpt_hold_boot(void)
4948 {
4949 	xpt_lock_buses();
4950 	xsoftc.buses_to_config++;
4951 	xpt_unlock_buses();
4952 }
4953 
4954 void
4955 xpt_release_boot(void)
4956 {
4957 	xpt_lock_buses();
4958 	xsoftc.buses_to_config--;
4959 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4960 		struct	xpt_task *task;
4961 
4962 		xsoftc.buses_config_done = 1;
4963 		xpt_unlock_buses();
4964 		/* Call manually because we don't have any busses */
4965 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4966 		if (task != NULL) {
4967 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4968 			taskqueue_enqueue(taskqueue_thread, &task->task);
4969 		}
4970 	} else
4971 		xpt_unlock_buses();
4972 }
4973 
4974 /*
4975  * If the given device only has one peripheral attached to it, and if that
4976  * peripheral is the passthrough driver, announce it.  This insures that the
4977  * user sees some sort of announcement for every peripheral in their system.
4978  */
4979 static int
4980 xptpassannouncefunc(struct cam_ed *device, void *arg)
4981 {
4982 	struct cam_periph *periph;
4983 	int i;
4984 
4985 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4986 	     periph = SLIST_NEXT(periph, periph_links), i++);
4987 
4988 	periph = SLIST_FIRST(&device->periphs);
4989 	if ((i == 1)
4990 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4991 		xpt_announce_periph(periph, NULL);
4992 
4993 	return(1);
4994 }
4995 
4996 static void
4997 xpt_finishconfig_task(void *context, int pending)
4998 {
4999 
5000 	periphdriver_init(2);
5001 	/*
5002 	 * Check for devices with no "standard" peripheral driver
5003 	 * attached.  For any devices like that, announce the
5004 	 * passthrough driver so the user will see something.
5005 	 */
5006 	if (!bootverbose)
5007 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5008 
5009 	/* Release our hook so that the boot can continue. */
5010 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5011 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5012 	xsoftc.xpt_config_hook = NULL;
5013 
5014 	free(context, M_CAMXPT);
5015 }
5016 
5017 cam_status
5018 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5019 		   struct cam_path *path)
5020 {
5021 	struct ccb_setasync csa;
5022 	cam_status status;
5023 	int xptpath = 0;
5024 
5025 	if (path == NULL) {
5026 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5027 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5028 		if (status != CAM_REQ_CMP)
5029 			return (status);
5030 		xpt_path_lock(path);
5031 		xptpath = 1;
5032 	}
5033 
5034 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5035 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5036 	csa.event_enable = event;
5037 	csa.callback = cbfunc;
5038 	csa.callback_arg = cbarg;
5039 	xpt_action((union ccb *)&csa);
5040 	status = csa.ccb_h.status;
5041 
5042 	if (xptpath) {
5043 		xpt_path_unlock(path);
5044 		xpt_free_path(path);
5045 	}
5046 
5047 	if ((status == CAM_REQ_CMP) &&
5048 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5049 		/*
5050 		 * Get this peripheral up to date with all
5051 		 * the currently existing devices.
5052 		 */
5053 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5054 	}
5055 	if ((status == CAM_REQ_CMP) &&
5056 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5057 		/*
5058 		 * Get this peripheral up to date with all
5059 		 * the currently existing busses.
5060 		 */
5061 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5062 	}
5063 
5064 	return (status);
5065 }
5066 
5067 static void
5068 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5069 {
5070 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5071 
5072 	switch (work_ccb->ccb_h.func_code) {
5073 	/* Common cases first */
5074 	case XPT_PATH_INQ:		/* Path routing inquiry */
5075 	{
5076 		struct ccb_pathinq *cpi;
5077 
5078 		cpi = &work_ccb->cpi;
5079 		cpi->version_num = 1; /* XXX??? */
5080 		cpi->hba_inquiry = 0;
5081 		cpi->target_sprt = 0;
5082 		cpi->hba_misc = 0;
5083 		cpi->hba_eng_cnt = 0;
5084 		cpi->max_target = 0;
5085 		cpi->max_lun = 0;
5086 		cpi->initiator_id = 0;
5087 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5088 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
5089 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5090 		cpi->unit_number = sim->unit_number;
5091 		cpi->bus_id = sim->bus_id;
5092 		cpi->base_transfer_speed = 0;
5093 		cpi->protocol = PROTO_UNSPECIFIED;
5094 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5095 		cpi->transport = XPORT_UNSPECIFIED;
5096 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5097 		cpi->ccb_h.status = CAM_REQ_CMP;
5098 		xpt_done(work_ccb);
5099 		break;
5100 	}
5101 	default:
5102 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5103 		xpt_done(work_ccb);
5104 		break;
5105 	}
5106 }
5107 
5108 /*
5109  * The xpt as a "controller" has no interrupt sources, so polling
5110  * is a no-op.
5111  */
5112 static void
5113 xptpoll(struct cam_sim *sim)
5114 {
5115 }
5116 
5117 void
5118 xpt_lock_buses(void)
5119 {
5120 	mtx_lock(&xsoftc.xpt_topo_lock);
5121 }
5122 
5123 void
5124 xpt_unlock_buses(void)
5125 {
5126 	mtx_unlock(&xsoftc.xpt_topo_lock);
5127 }
5128 
5129 struct mtx *
5130 xpt_path_mtx(struct cam_path *path)
5131 {
5132 
5133 	return (&path->device->device_mtx);
5134 }
5135 
5136 static void
5137 xpt_done_process(struct ccb_hdr *ccb_h)
5138 {
5139 	struct cam_sim *sim;
5140 	struct cam_devq *devq;
5141 	struct mtx *mtx = NULL;
5142 
5143 	if (ccb_h->flags & CAM_HIGH_POWER) {
5144 		struct highpowerlist	*hphead;
5145 		struct cam_ed		*device;
5146 
5147 		mtx_lock(&xsoftc.xpt_highpower_lock);
5148 		hphead = &xsoftc.highpowerq;
5149 
5150 		device = STAILQ_FIRST(hphead);
5151 
5152 		/*
5153 		 * Increment the count since this command is done.
5154 		 */
5155 		xsoftc.num_highpower++;
5156 
5157 		/*
5158 		 * Any high powered commands queued up?
5159 		 */
5160 		if (device != NULL) {
5161 
5162 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5163 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5164 
5165 			mtx_lock(&device->sim->devq->send_mtx);
5166 			xpt_release_devq_device(device,
5167 					 /*count*/1, /*runqueue*/TRUE);
5168 			mtx_unlock(&device->sim->devq->send_mtx);
5169 		} else
5170 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5171 	}
5172 
5173 	sim = ccb_h->path->bus->sim;
5174 
5175 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5176 		xpt_release_simq(sim, /*run_queue*/FALSE);
5177 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5178 	}
5179 
5180 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5181 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5182 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5183 		ccb_h->status &= ~CAM_DEV_QFRZN;
5184 	}
5185 
5186 	devq = sim->devq;
5187 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5188 		struct cam_ed *dev = ccb_h->path->device;
5189 
5190 		mtx_lock(&devq->send_mtx);
5191 		devq->send_active--;
5192 		devq->send_openings++;
5193 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5194 
5195 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5196 		  && (dev->ccbq.dev_active == 0))) {
5197 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5198 			xpt_release_devq_device(dev, /*count*/1,
5199 					 /*run_queue*/FALSE);
5200 		}
5201 
5202 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5203 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5204 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5205 			xpt_release_devq_device(dev, /*count*/1,
5206 					 /*run_queue*/FALSE);
5207 		}
5208 
5209 		if (!device_is_queued(dev))
5210 			(void)xpt_schedule_devq(devq, dev);
5211 		xpt_run_devq(devq);
5212 		mtx_unlock(&devq->send_mtx);
5213 
5214 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5215 			mtx = xpt_path_mtx(ccb_h->path);
5216 			mtx_lock(mtx);
5217 
5218 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5219 			 && (--dev->tag_delay_count == 0))
5220 				xpt_start_tags(ccb_h->path);
5221 		}
5222 	}
5223 
5224 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5225 		if (mtx == NULL) {
5226 			mtx = xpt_path_mtx(ccb_h->path);
5227 			mtx_lock(mtx);
5228 		}
5229 	} else {
5230 		if (mtx != NULL) {
5231 			mtx_unlock(mtx);
5232 			mtx = NULL;
5233 		}
5234 	}
5235 
5236 	/* Call the peripheral driver's callback */
5237 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5238 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5239 	if (mtx != NULL)
5240 		mtx_unlock(mtx);
5241 }
5242 
5243 void
5244 xpt_done_td(void *arg)
5245 {
5246 	struct cam_doneq *queue = arg;
5247 	struct ccb_hdr *ccb_h;
5248 	STAILQ_HEAD(, ccb_hdr)	doneq;
5249 
5250 	STAILQ_INIT(&doneq);
5251 	mtx_lock(&queue->cam_doneq_mtx);
5252 	while (1) {
5253 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5254 			queue->cam_doneq_sleep = 1;
5255 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5256 			    PRIBIO, "-", 0);
5257 			queue->cam_doneq_sleep = 0;
5258 		}
5259 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5260 		mtx_unlock(&queue->cam_doneq_mtx);
5261 
5262 		THREAD_NO_SLEEPING();
5263 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5264 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5265 			xpt_done_process(ccb_h);
5266 		}
5267 		THREAD_SLEEPING_OK();
5268 
5269 		mtx_lock(&queue->cam_doneq_mtx);
5270 	}
5271 }
5272 
5273 static void
5274 camisr_runqueue(void)
5275 {
5276 	struct	ccb_hdr *ccb_h;
5277 	struct cam_doneq *queue;
5278 	int i;
5279 
5280 	/* Process global queues. */
5281 	for (i = 0; i < cam_num_doneqs; i++) {
5282 		queue = &cam_doneqs[i];
5283 		mtx_lock(&queue->cam_doneq_mtx);
5284 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5285 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5286 			mtx_unlock(&queue->cam_doneq_mtx);
5287 			xpt_done_process(ccb_h);
5288 			mtx_lock(&queue->cam_doneq_mtx);
5289 		}
5290 		mtx_unlock(&queue->cam_doneq_mtx);
5291 	}
5292 }
5293