1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_printf.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bio.h> 37 #include <sys/bus.h> 38 #include <sys/systm.h> 39 #include <sys/types.h> 40 #include <sys/malloc.h> 41 #include <sys/kernel.h> 42 #include <sys/time.h> 43 #include <sys/conf.h> 44 #include <sys/fcntl.h> 45 #include <sys/interrupt.h> 46 #include <sys/proc.h> 47 #include <sys/sbuf.h> 48 #include <sys/smp.h> 49 #include <sys/taskqueue.h> 50 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 #include <sys/sysctl.h> 54 #include <sys/kthread.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_sim.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/cam_xpt_sim.h> 63 #include <cam/cam_xpt_periph.h> 64 #include <cam/cam_xpt_internal.h> 65 #include <cam/cam_debug.h> 66 #include <cam/cam_compat.h> 67 68 #include <cam/scsi/scsi_all.h> 69 #include <cam/scsi/scsi_message.h> 70 #include <cam/scsi/scsi_pass.h> 71 72 #include <machine/md_var.h> /* geometry translation */ 73 #include <machine/stdarg.h> /* for xpt_print below */ 74 75 #include "opt_cam.h" 76 77 /* Wild guess based on not wanting to grow the stack too much */ 78 #define XPT_PRINT_MAXLEN 512 79 #ifdef PRINTF_BUFR_SIZE 80 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 81 #else 82 #define XPT_PRINT_LEN 128 83 #endif 84 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 85 86 /* 87 * This is the maximum number of high powered commands (e.g. start unit) 88 * that can be outstanding at a particular time. 89 */ 90 #ifndef CAM_MAX_HIGHPOWER 91 #define CAM_MAX_HIGHPOWER 4 92 #endif 93 94 /* Datastructures internal to the xpt layer */ 95 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 96 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 97 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 98 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 99 100 /* Object for defering XPT actions to a taskqueue */ 101 struct xpt_task { 102 struct task task; 103 void *data1; 104 uintptr_t data2; 105 }; 106 107 struct xpt_softc { 108 uint32_t xpt_generation; 109 110 /* number of high powered commands that can go through right now */ 111 struct mtx xpt_highpower_lock; 112 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 113 int num_highpower; 114 115 /* queue for handling async rescan requests. */ 116 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 117 int buses_to_config; 118 int buses_config_done; 119 int announce_nosbuf; 120 121 /* 122 * Registered buses 123 * 124 * N.B., "busses" is an archaic spelling of "buses". In new code 125 * "buses" is preferred. 126 */ 127 TAILQ_HEAD(,cam_eb) xpt_busses; 128 u_int bus_generation; 129 130 struct intr_config_hook *xpt_config_hook; 131 132 int boot_delay; 133 struct callout boot_callout; 134 135 struct mtx xpt_topo_lock; 136 struct mtx xpt_lock; 137 struct taskqueue *xpt_taskq; 138 }; 139 140 typedef enum { 141 DM_RET_COPY = 0x01, 142 DM_RET_FLAG_MASK = 0x0f, 143 DM_RET_NONE = 0x00, 144 DM_RET_STOP = 0x10, 145 DM_RET_DESCEND = 0x20, 146 DM_RET_ERROR = 0x30, 147 DM_RET_ACTION_MASK = 0xf0 148 } dev_match_ret; 149 150 typedef enum { 151 XPT_DEPTH_BUS, 152 XPT_DEPTH_TARGET, 153 XPT_DEPTH_DEVICE, 154 XPT_DEPTH_PERIPH 155 } xpt_traverse_depth; 156 157 struct xpt_traverse_config { 158 xpt_traverse_depth depth; 159 void *tr_func; 160 void *tr_arg; 161 }; 162 163 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 164 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 165 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 166 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 167 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 168 169 /* Transport layer configuration information */ 170 static struct xpt_softc xsoftc; 171 172 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 173 174 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 175 &xsoftc.boot_delay, 0, "Bus registration wait time"); 176 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 177 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 178 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 179 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 180 181 struct cam_doneq { 182 struct mtx_padalign cam_doneq_mtx; 183 STAILQ_HEAD(, ccb_hdr) cam_doneq; 184 int cam_doneq_sleep; 185 }; 186 187 static struct cam_doneq cam_doneqs[MAXCPU]; 188 static int cam_num_doneqs; 189 static struct proc *cam_proc; 190 191 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 192 &cam_num_doneqs, 0, "Number of completion queues/threads"); 193 194 struct cam_periph *xpt_periph; 195 196 static periph_init_t xpt_periph_init; 197 198 static struct periph_driver xpt_driver = 199 { 200 xpt_periph_init, "xpt", 201 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 202 CAM_PERIPH_DRV_EARLY 203 }; 204 205 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 206 207 static d_open_t xptopen; 208 static d_close_t xptclose; 209 static d_ioctl_t xptioctl; 210 static d_ioctl_t xptdoioctl; 211 212 static struct cdevsw xpt_cdevsw = { 213 .d_version = D_VERSION, 214 .d_flags = 0, 215 .d_open = xptopen, 216 .d_close = xptclose, 217 .d_ioctl = xptioctl, 218 .d_name = "xpt", 219 }; 220 221 /* Storage for debugging datastructures */ 222 struct cam_path *cam_dpath; 223 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 224 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 225 &cam_dflags, 0, "Enabled debug flags"); 226 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 227 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 228 &cam_debug_delay, 0, "Delay in us after each debug message"); 229 230 /* Our boot-time initialization hook */ 231 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 232 233 static moduledata_t cam_moduledata = { 234 "cam", 235 cam_module_event_handler, 236 NULL 237 }; 238 239 static int xpt_init(void *); 240 241 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 242 MODULE_VERSION(cam, 1); 243 244 245 static void xpt_async_bcast(struct async_list *async_head, 246 u_int32_t async_code, 247 struct cam_path *path, 248 void *async_arg); 249 static path_id_t xptnextfreepathid(void); 250 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 251 static union ccb *xpt_get_ccb(struct cam_periph *periph); 252 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 253 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 254 static void xpt_run_allocq_task(void *context, int pending); 255 static void xpt_run_devq(struct cam_devq *devq); 256 static timeout_t xpt_release_devq_timeout; 257 static void xpt_release_simq_timeout(void *arg) __unused; 258 static void xpt_acquire_bus(struct cam_eb *bus); 259 static void xpt_release_bus(struct cam_eb *bus); 260 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 261 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 262 int run_queue); 263 static struct cam_et* 264 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 265 static void xpt_acquire_target(struct cam_et *target); 266 static void xpt_release_target(struct cam_et *target); 267 static struct cam_eb* 268 xpt_find_bus(path_id_t path_id); 269 static struct cam_et* 270 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 271 static struct cam_ed* 272 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 273 static void xpt_config(void *arg); 274 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 275 u_int32_t new_priority); 276 static xpt_devicefunc_t xptpassannouncefunc; 277 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 278 static void xptpoll(struct cam_sim *sim); 279 static void camisr_runqueue(void); 280 static void xpt_done_process(struct ccb_hdr *ccb_h); 281 static void xpt_done_td(void *); 282 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 283 u_int num_patterns, struct cam_eb *bus); 284 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 285 u_int num_patterns, 286 struct cam_ed *device); 287 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 288 u_int num_patterns, 289 struct cam_periph *periph); 290 static xpt_busfunc_t xptedtbusfunc; 291 static xpt_targetfunc_t xptedttargetfunc; 292 static xpt_devicefunc_t xptedtdevicefunc; 293 static xpt_periphfunc_t xptedtperiphfunc; 294 static xpt_pdrvfunc_t xptplistpdrvfunc; 295 static xpt_periphfunc_t xptplistperiphfunc; 296 static int xptedtmatch(struct ccb_dev_match *cdm); 297 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 298 static int xptbustraverse(struct cam_eb *start_bus, 299 xpt_busfunc_t *tr_func, void *arg); 300 static int xpttargettraverse(struct cam_eb *bus, 301 struct cam_et *start_target, 302 xpt_targetfunc_t *tr_func, void *arg); 303 static int xptdevicetraverse(struct cam_et *target, 304 struct cam_ed *start_device, 305 xpt_devicefunc_t *tr_func, void *arg); 306 static int xptperiphtraverse(struct cam_ed *device, 307 struct cam_periph *start_periph, 308 xpt_periphfunc_t *tr_func, void *arg); 309 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 310 xpt_pdrvfunc_t *tr_func, void *arg); 311 static int xptpdperiphtraverse(struct periph_driver **pdrv, 312 struct cam_periph *start_periph, 313 xpt_periphfunc_t *tr_func, 314 void *arg); 315 static xpt_busfunc_t xptdefbusfunc; 316 static xpt_targetfunc_t xptdeftargetfunc; 317 static xpt_devicefunc_t xptdefdevicefunc; 318 static xpt_periphfunc_t xptdefperiphfunc; 319 static void xpt_finishconfig_task(void *context, int pending); 320 static void xpt_dev_async_default(u_int32_t async_code, 321 struct cam_eb *bus, 322 struct cam_et *target, 323 struct cam_ed *device, 324 void *async_arg); 325 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 326 struct cam_et *target, 327 lun_id_t lun_id); 328 static xpt_devicefunc_t xptsetasyncfunc; 329 static xpt_busfunc_t xptsetasyncbusfunc; 330 static cam_status xptregister(struct cam_periph *periph, 331 void *arg); 332 static __inline int device_is_queued(struct cam_ed *device); 333 334 static __inline int 335 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 336 { 337 int retval; 338 339 mtx_assert(&devq->send_mtx, MA_OWNED); 340 if ((dev->ccbq.queue.entries > 0) && 341 (dev->ccbq.dev_openings > 0) && 342 (dev->ccbq.queue.qfrozen_cnt == 0)) { 343 /* 344 * The priority of a device waiting for controller 345 * resources is that of the highest priority CCB 346 * enqueued. 347 */ 348 retval = 349 xpt_schedule_dev(&devq->send_queue, 350 &dev->devq_entry, 351 CAMQ_GET_PRIO(&dev->ccbq.queue)); 352 } else { 353 retval = 0; 354 } 355 return (retval); 356 } 357 358 static __inline int 359 device_is_queued(struct cam_ed *device) 360 { 361 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 362 } 363 364 static void 365 xpt_periph_init() 366 { 367 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 368 } 369 370 static int 371 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 372 { 373 374 /* 375 * Only allow read-write access. 376 */ 377 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 378 return(EPERM); 379 380 /* 381 * We don't allow nonblocking access. 382 */ 383 if ((flags & O_NONBLOCK) != 0) { 384 printf("%s: can't do nonblocking access\n", devtoname(dev)); 385 return(ENODEV); 386 } 387 388 return(0); 389 } 390 391 static int 392 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 393 { 394 395 return(0); 396 } 397 398 /* 399 * Don't automatically grab the xpt softc lock here even though this is going 400 * through the xpt device. The xpt device is really just a back door for 401 * accessing other devices and SIMs, so the right thing to do is to grab 402 * the appropriate SIM lock once the bus/SIM is located. 403 */ 404 static int 405 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 406 { 407 int error; 408 409 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 410 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 411 } 412 return (error); 413 } 414 415 static int 416 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 417 { 418 int error; 419 420 error = 0; 421 422 switch(cmd) { 423 /* 424 * For the transport layer CAMIOCOMMAND ioctl, we really only want 425 * to accept CCB types that don't quite make sense to send through a 426 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 427 * in the CAM spec. 428 */ 429 case CAMIOCOMMAND: { 430 union ccb *ccb; 431 union ccb *inccb; 432 struct cam_eb *bus; 433 434 inccb = (union ccb *)addr; 435 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 436 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 437 inccb->csio.bio = NULL; 438 #endif 439 440 if (inccb->ccb_h.flags & CAM_UNLOCKED) 441 return (EINVAL); 442 443 bus = xpt_find_bus(inccb->ccb_h.path_id); 444 if (bus == NULL) 445 return (EINVAL); 446 447 switch (inccb->ccb_h.func_code) { 448 case XPT_SCAN_BUS: 449 case XPT_RESET_BUS: 450 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 451 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 452 xpt_release_bus(bus); 453 return (EINVAL); 454 } 455 break; 456 case XPT_SCAN_TGT: 457 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 458 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 459 xpt_release_bus(bus); 460 return (EINVAL); 461 } 462 break; 463 default: 464 break; 465 } 466 467 switch(inccb->ccb_h.func_code) { 468 case XPT_SCAN_BUS: 469 case XPT_RESET_BUS: 470 case XPT_PATH_INQ: 471 case XPT_ENG_INQ: 472 case XPT_SCAN_LUN: 473 case XPT_SCAN_TGT: 474 475 ccb = xpt_alloc_ccb(); 476 477 /* 478 * Create a path using the bus, target, and lun the 479 * user passed in. 480 */ 481 if (xpt_create_path(&ccb->ccb_h.path, NULL, 482 inccb->ccb_h.path_id, 483 inccb->ccb_h.target_id, 484 inccb->ccb_h.target_lun) != 485 CAM_REQ_CMP){ 486 error = EINVAL; 487 xpt_free_ccb(ccb); 488 break; 489 } 490 /* Ensure all of our fields are correct */ 491 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 492 inccb->ccb_h.pinfo.priority); 493 xpt_merge_ccb(ccb, inccb); 494 xpt_path_lock(ccb->ccb_h.path); 495 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 496 xpt_path_unlock(ccb->ccb_h.path); 497 bcopy(ccb, inccb, sizeof(union ccb)); 498 xpt_free_path(ccb->ccb_h.path); 499 xpt_free_ccb(ccb); 500 break; 501 502 case XPT_DEBUG: { 503 union ccb ccb; 504 505 /* 506 * This is an immediate CCB, so it's okay to 507 * allocate it on the stack. 508 */ 509 510 /* 511 * Create a path using the bus, target, and lun the 512 * user passed in. 513 */ 514 if (xpt_create_path(&ccb.ccb_h.path, NULL, 515 inccb->ccb_h.path_id, 516 inccb->ccb_h.target_id, 517 inccb->ccb_h.target_lun) != 518 CAM_REQ_CMP){ 519 error = EINVAL; 520 break; 521 } 522 /* Ensure all of our fields are correct */ 523 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 524 inccb->ccb_h.pinfo.priority); 525 xpt_merge_ccb(&ccb, inccb); 526 xpt_action(&ccb); 527 bcopy(&ccb, inccb, sizeof(union ccb)); 528 xpt_free_path(ccb.ccb_h.path); 529 break; 530 531 } 532 case XPT_DEV_MATCH: { 533 struct cam_periph_map_info mapinfo; 534 struct cam_path *old_path; 535 536 /* 537 * We can't deal with physical addresses for this 538 * type of transaction. 539 */ 540 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 541 CAM_DATA_VADDR) { 542 error = EINVAL; 543 break; 544 } 545 546 /* 547 * Save this in case the caller had it set to 548 * something in particular. 549 */ 550 old_path = inccb->ccb_h.path; 551 552 /* 553 * We really don't need a path for the matching 554 * code. The path is needed because of the 555 * debugging statements in xpt_action(). They 556 * assume that the CCB has a valid path. 557 */ 558 inccb->ccb_h.path = xpt_periph->path; 559 560 bzero(&mapinfo, sizeof(mapinfo)); 561 562 /* 563 * Map the pattern and match buffers into kernel 564 * virtual address space. 565 */ 566 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 567 568 if (error) { 569 inccb->ccb_h.path = old_path; 570 break; 571 } 572 573 /* 574 * This is an immediate CCB, we can send it on directly. 575 */ 576 xpt_action(inccb); 577 578 /* 579 * Map the buffers back into user space. 580 */ 581 cam_periph_unmapmem(inccb, &mapinfo); 582 583 inccb->ccb_h.path = old_path; 584 585 error = 0; 586 break; 587 } 588 default: 589 error = ENOTSUP; 590 break; 591 } 592 xpt_release_bus(bus); 593 break; 594 } 595 /* 596 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 597 * with the periphal driver name and unit name filled in. The other 598 * fields don't really matter as input. The passthrough driver name 599 * ("pass"), and unit number are passed back in the ccb. The current 600 * device generation number, and the index into the device peripheral 601 * driver list, and the status are also passed back. Note that 602 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 603 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 604 * (or rather should be) impossible for the device peripheral driver 605 * list to change since we look at the whole thing in one pass, and 606 * we do it with lock protection. 607 * 608 */ 609 case CAMGETPASSTHRU: { 610 union ccb *ccb; 611 struct cam_periph *periph; 612 struct periph_driver **p_drv; 613 char *name; 614 u_int unit; 615 int base_periph_found; 616 617 ccb = (union ccb *)addr; 618 unit = ccb->cgdl.unit_number; 619 name = ccb->cgdl.periph_name; 620 base_periph_found = 0; 621 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 622 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 623 ccb->csio.bio = NULL; 624 #endif 625 626 /* 627 * Sanity check -- make sure we don't get a null peripheral 628 * driver name. 629 */ 630 if (*ccb->cgdl.periph_name == '\0') { 631 error = EINVAL; 632 break; 633 } 634 635 /* Keep the list from changing while we traverse it */ 636 xpt_lock_buses(); 637 638 /* first find our driver in the list of drivers */ 639 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 640 if (strcmp((*p_drv)->driver_name, name) == 0) 641 break; 642 643 if (*p_drv == NULL) { 644 xpt_unlock_buses(); 645 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 646 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 647 *ccb->cgdl.periph_name = '\0'; 648 ccb->cgdl.unit_number = 0; 649 error = ENOENT; 650 break; 651 } 652 653 /* 654 * Run through every peripheral instance of this driver 655 * and check to see whether it matches the unit passed 656 * in by the user. If it does, get out of the loops and 657 * find the passthrough driver associated with that 658 * peripheral driver. 659 */ 660 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 661 periph = TAILQ_NEXT(periph, unit_links)) { 662 663 if (periph->unit_number == unit) 664 break; 665 } 666 /* 667 * If we found the peripheral driver that the user passed 668 * in, go through all of the peripheral drivers for that 669 * particular device and look for a passthrough driver. 670 */ 671 if (periph != NULL) { 672 struct cam_ed *device; 673 int i; 674 675 base_periph_found = 1; 676 device = periph->path->device; 677 for (i = 0, periph = SLIST_FIRST(&device->periphs); 678 periph != NULL; 679 periph = SLIST_NEXT(periph, periph_links), i++) { 680 /* 681 * Check to see whether we have a 682 * passthrough device or not. 683 */ 684 if (strcmp(periph->periph_name, "pass") == 0) { 685 /* 686 * Fill in the getdevlist fields. 687 */ 688 strcpy(ccb->cgdl.periph_name, 689 periph->periph_name); 690 ccb->cgdl.unit_number = 691 periph->unit_number; 692 if (SLIST_NEXT(periph, periph_links)) 693 ccb->cgdl.status = 694 CAM_GDEVLIST_MORE_DEVS; 695 else 696 ccb->cgdl.status = 697 CAM_GDEVLIST_LAST_DEVICE; 698 ccb->cgdl.generation = 699 device->generation; 700 ccb->cgdl.index = i; 701 /* 702 * Fill in some CCB header fields 703 * that the user may want. 704 */ 705 ccb->ccb_h.path_id = 706 periph->path->bus->path_id; 707 ccb->ccb_h.target_id = 708 periph->path->target->target_id; 709 ccb->ccb_h.target_lun = 710 periph->path->device->lun_id; 711 ccb->ccb_h.status = CAM_REQ_CMP; 712 break; 713 } 714 } 715 } 716 717 /* 718 * If the periph is null here, one of two things has 719 * happened. The first possibility is that we couldn't 720 * find the unit number of the particular peripheral driver 721 * that the user is asking about. e.g. the user asks for 722 * the passthrough driver for "da11". We find the list of 723 * "da" peripherals all right, but there is no unit 11. 724 * The other possibility is that we went through the list 725 * of peripheral drivers attached to the device structure, 726 * but didn't find one with the name "pass". Either way, 727 * we return ENOENT, since we couldn't find something. 728 */ 729 if (periph == NULL) { 730 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 731 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 732 *ccb->cgdl.periph_name = '\0'; 733 ccb->cgdl.unit_number = 0; 734 error = ENOENT; 735 /* 736 * It is unfortunate that this is even necessary, 737 * but there are many, many clueless users out there. 738 * If this is true, the user is looking for the 739 * passthrough driver, but doesn't have one in his 740 * kernel. 741 */ 742 if (base_periph_found == 1) { 743 printf("xptioctl: pass driver is not in the " 744 "kernel\n"); 745 printf("xptioctl: put \"device pass\" in " 746 "your kernel config file\n"); 747 } 748 } 749 xpt_unlock_buses(); 750 break; 751 } 752 default: 753 error = ENOTTY; 754 break; 755 } 756 757 return(error); 758 } 759 760 static int 761 cam_module_event_handler(module_t mod, int what, void *arg) 762 { 763 int error; 764 765 switch (what) { 766 case MOD_LOAD: 767 if ((error = xpt_init(NULL)) != 0) 768 return (error); 769 break; 770 case MOD_UNLOAD: 771 return EBUSY; 772 default: 773 return EOPNOTSUPP; 774 } 775 776 return 0; 777 } 778 779 static struct xpt_proto * 780 xpt_proto_find(cam_proto proto) 781 { 782 struct xpt_proto **pp; 783 784 SET_FOREACH(pp, cam_xpt_proto_set) { 785 if ((*pp)->proto == proto) 786 return *pp; 787 } 788 789 return NULL; 790 } 791 792 static void 793 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 794 { 795 796 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 797 xpt_free_path(done_ccb->ccb_h.path); 798 xpt_free_ccb(done_ccb); 799 } else { 800 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 801 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 802 } 803 xpt_release_boot(); 804 } 805 806 /* thread to handle bus rescans */ 807 static void 808 xpt_scanner_thread(void *dummy) 809 { 810 union ccb *ccb; 811 struct cam_path path; 812 813 xpt_lock_buses(); 814 for (;;) { 815 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 816 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 817 "-", 0); 818 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 819 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 820 xpt_unlock_buses(); 821 822 printf("xpt_scanner_thread is firing on path "); 823 xpt_print_path(ccb->ccb_h.path);printf("\n"); 824 /* 825 * Since lock can be dropped inside and path freed 826 * by completion callback even before return here, 827 * take our own path copy for reference. 828 */ 829 xpt_copy_path(&path, ccb->ccb_h.path); 830 xpt_path_lock(&path); 831 xpt_action(ccb); 832 xpt_path_unlock(&path); 833 xpt_release_path(&path); 834 835 xpt_lock_buses(); 836 } 837 } 838 } 839 840 void 841 xpt_rescan(union ccb *ccb) 842 { 843 struct ccb_hdr *hdr; 844 845 /* Prepare request */ 846 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 847 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 848 ccb->ccb_h.func_code = XPT_SCAN_BUS; 849 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 850 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 851 ccb->ccb_h.func_code = XPT_SCAN_TGT; 852 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 853 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 854 ccb->ccb_h.func_code = XPT_SCAN_LUN; 855 else { 856 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 857 xpt_free_path(ccb->ccb_h.path); 858 xpt_free_ccb(ccb); 859 return; 860 } 861 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 862 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 863 xpt_action_name(ccb->ccb_h.func_code))); 864 865 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 866 ccb->ccb_h.cbfcnp = xpt_rescan_done; 867 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 868 /* Don't make duplicate entries for the same paths. */ 869 xpt_lock_buses(); 870 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 871 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 872 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 873 wakeup(&xsoftc.ccb_scanq); 874 xpt_unlock_buses(); 875 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 876 xpt_free_path(ccb->ccb_h.path); 877 xpt_free_ccb(ccb); 878 return; 879 } 880 } 881 } 882 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 883 xsoftc.buses_to_config++; 884 wakeup(&xsoftc.ccb_scanq); 885 xpt_unlock_buses(); 886 } 887 888 /* Functions accessed by the peripheral drivers */ 889 static int 890 xpt_init(void *dummy) 891 { 892 struct cam_sim *xpt_sim; 893 struct cam_path *path; 894 struct cam_devq *devq; 895 cam_status status; 896 int error, i; 897 898 TAILQ_INIT(&xsoftc.xpt_busses); 899 TAILQ_INIT(&xsoftc.ccb_scanq); 900 STAILQ_INIT(&xsoftc.highpowerq); 901 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 902 903 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 904 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 905 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 906 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 907 908 #ifdef CAM_BOOT_DELAY 909 /* 910 * Override this value at compile time to assist our users 911 * who don't use loader to boot a kernel. 912 */ 913 xsoftc.boot_delay = CAM_BOOT_DELAY; 914 #endif 915 /* 916 * The xpt layer is, itself, the equivalent of a SIM. 917 * Allow 16 ccbs in the ccb pool for it. This should 918 * give decent parallelism when we probe buses and 919 * perform other XPT functions. 920 */ 921 devq = cam_simq_alloc(16); 922 xpt_sim = cam_sim_alloc(xptaction, 923 xptpoll, 924 "xpt", 925 /*softc*/NULL, 926 /*unit*/0, 927 /*mtx*/&xsoftc.xpt_lock, 928 /*max_dev_transactions*/0, 929 /*max_tagged_dev_transactions*/0, 930 devq); 931 if (xpt_sim == NULL) 932 return (ENOMEM); 933 934 mtx_lock(&xsoftc.xpt_lock); 935 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 936 mtx_unlock(&xsoftc.xpt_lock); 937 printf("xpt_init: xpt_bus_register failed with status %#x," 938 " failing attach\n", status); 939 return (EINVAL); 940 } 941 mtx_unlock(&xsoftc.xpt_lock); 942 943 /* 944 * Looking at the XPT from the SIM layer, the XPT is 945 * the equivalent of a peripheral driver. Allocate 946 * a peripheral driver entry for us. 947 */ 948 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 949 CAM_TARGET_WILDCARD, 950 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 951 printf("xpt_init: xpt_create_path failed with status %#x," 952 " failing attach\n", status); 953 return (EINVAL); 954 } 955 xpt_path_lock(path); 956 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 957 path, NULL, 0, xpt_sim); 958 xpt_path_unlock(path); 959 xpt_free_path(path); 960 961 if (cam_num_doneqs < 1) 962 cam_num_doneqs = 1 + mp_ncpus / 6; 963 else if (cam_num_doneqs > MAXCPU) 964 cam_num_doneqs = MAXCPU; 965 for (i = 0; i < cam_num_doneqs; i++) { 966 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 967 MTX_DEF); 968 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 969 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 970 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 971 if (error != 0) { 972 cam_num_doneqs = i; 973 break; 974 } 975 } 976 if (cam_num_doneqs < 1) { 977 printf("xpt_init: Cannot init completion queues " 978 "- failing attach\n"); 979 return (ENOMEM); 980 } 981 /* 982 * Register a callback for when interrupts are enabled. 983 */ 984 xsoftc.xpt_config_hook = 985 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 986 M_CAMXPT, M_NOWAIT | M_ZERO); 987 if (xsoftc.xpt_config_hook == NULL) { 988 printf("xpt_init: Cannot malloc config hook " 989 "- failing attach\n"); 990 return (ENOMEM); 991 } 992 xsoftc.xpt_config_hook->ich_func = xpt_config; 993 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 994 free (xsoftc.xpt_config_hook, M_CAMXPT); 995 printf("xpt_init: config_intrhook_establish failed " 996 "- failing attach\n"); 997 } 998 999 return (0); 1000 } 1001 1002 static cam_status 1003 xptregister(struct cam_periph *periph, void *arg) 1004 { 1005 struct cam_sim *xpt_sim; 1006 1007 if (periph == NULL) { 1008 printf("xptregister: periph was NULL!!\n"); 1009 return(CAM_REQ_CMP_ERR); 1010 } 1011 1012 xpt_sim = (struct cam_sim *)arg; 1013 xpt_sim->softc = periph; 1014 xpt_periph = periph; 1015 periph->softc = NULL; 1016 1017 return(CAM_REQ_CMP); 1018 } 1019 1020 int32_t 1021 xpt_add_periph(struct cam_periph *periph) 1022 { 1023 struct cam_ed *device; 1024 int32_t status; 1025 1026 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1027 device = periph->path->device; 1028 status = CAM_REQ_CMP; 1029 if (device != NULL) { 1030 mtx_lock(&device->target->bus->eb_mtx); 1031 device->generation++; 1032 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1033 mtx_unlock(&device->target->bus->eb_mtx); 1034 atomic_add_32(&xsoftc.xpt_generation, 1); 1035 } 1036 1037 return (status); 1038 } 1039 1040 void 1041 xpt_remove_periph(struct cam_periph *periph) 1042 { 1043 struct cam_ed *device; 1044 1045 device = periph->path->device; 1046 if (device != NULL) { 1047 mtx_lock(&device->target->bus->eb_mtx); 1048 device->generation++; 1049 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1050 mtx_unlock(&device->target->bus->eb_mtx); 1051 atomic_add_32(&xsoftc.xpt_generation, 1); 1052 } 1053 } 1054 1055 1056 void 1057 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1058 { 1059 struct cam_path *path = periph->path; 1060 struct xpt_proto *proto; 1061 1062 cam_periph_assert(periph, MA_OWNED); 1063 periph->flags |= CAM_PERIPH_ANNOUNCED; 1064 1065 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1066 periph->periph_name, periph->unit_number, 1067 path->bus->sim->sim_name, 1068 path->bus->sim->unit_number, 1069 path->bus->sim->bus_id, 1070 path->bus->path_id, 1071 path->target->target_id, 1072 (uintmax_t)path->device->lun_id); 1073 printf("%s%d: ", periph->periph_name, periph->unit_number); 1074 proto = xpt_proto_find(path->device->protocol); 1075 if (proto) 1076 proto->ops->announce(path->device); 1077 else 1078 printf("%s%d: Unknown protocol device %d\n", 1079 periph->periph_name, periph->unit_number, 1080 path->device->protocol); 1081 if (path->device->serial_num_len > 0) { 1082 /* Don't wrap the screen - print only the first 60 chars */ 1083 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1084 periph->unit_number, path->device->serial_num); 1085 } 1086 /* Announce transport details. */ 1087 path->bus->xport->ops->announce(periph); 1088 /* Announce command queueing. */ 1089 if (path->device->inq_flags & SID_CmdQue 1090 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1091 printf("%s%d: Command Queueing enabled\n", 1092 periph->periph_name, periph->unit_number); 1093 } 1094 /* Announce caller's details if they've passed in. */ 1095 if (announce_string != NULL) 1096 printf("%s%d: %s\n", periph->periph_name, 1097 periph->unit_number, announce_string); 1098 } 1099 1100 void 1101 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1102 char *announce_string) 1103 { 1104 struct cam_path *path = periph->path; 1105 struct xpt_proto *proto; 1106 1107 cam_periph_assert(periph, MA_OWNED); 1108 periph->flags |= CAM_PERIPH_ANNOUNCED; 1109 1110 /* Fall back to the non-sbuf method if necessary */ 1111 if (xsoftc.announce_nosbuf != 0) { 1112 xpt_announce_periph(periph, announce_string); 1113 return; 1114 } 1115 proto = xpt_proto_find(path->device->protocol); 1116 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1117 (path->bus->xport->ops->announce_sbuf == NULL)) { 1118 xpt_announce_periph(periph, announce_string); 1119 return; 1120 } 1121 1122 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1123 periph->periph_name, periph->unit_number, 1124 path->bus->sim->sim_name, 1125 path->bus->sim->unit_number, 1126 path->bus->sim->bus_id, 1127 path->bus->path_id, 1128 path->target->target_id, 1129 (uintmax_t)path->device->lun_id); 1130 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1131 1132 if (proto) 1133 proto->ops->announce_sbuf(path->device, sb); 1134 else 1135 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1136 periph->periph_name, periph->unit_number, 1137 path->device->protocol); 1138 if (path->device->serial_num_len > 0) { 1139 /* Don't wrap the screen - print only the first 60 chars */ 1140 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1141 periph->periph_name, periph->unit_number, 1142 path->device->serial_num); 1143 } 1144 /* Announce transport details. */ 1145 path->bus->xport->ops->announce_sbuf(periph, sb); 1146 /* Announce command queueing. */ 1147 if (path->device->inq_flags & SID_CmdQue 1148 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1149 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1150 periph->periph_name, periph->unit_number); 1151 } 1152 /* Announce caller's details if they've passed in. */ 1153 if (announce_string != NULL) 1154 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1155 periph->unit_number, announce_string); 1156 } 1157 1158 void 1159 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1160 { 1161 if (quirks != 0) { 1162 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1163 periph->unit_number, quirks, bit_string); 1164 } 1165 } 1166 1167 void 1168 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1169 int quirks, char *bit_string) 1170 { 1171 if (xsoftc.announce_nosbuf != 0) { 1172 xpt_announce_quirks(periph, quirks, bit_string); 1173 return; 1174 } 1175 1176 if (quirks != 0) { 1177 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1178 periph->unit_number, quirks, bit_string); 1179 } 1180 } 1181 1182 void 1183 xpt_denounce_periph(struct cam_periph *periph) 1184 { 1185 struct cam_path *path = periph->path; 1186 struct xpt_proto *proto; 1187 1188 cam_periph_assert(periph, MA_OWNED); 1189 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1190 periph->periph_name, periph->unit_number, 1191 path->bus->sim->sim_name, 1192 path->bus->sim->unit_number, 1193 path->bus->sim->bus_id, 1194 path->bus->path_id, 1195 path->target->target_id, 1196 (uintmax_t)path->device->lun_id); 1197 printf("%s%d: ", periph->periph_name, periph->unit_number); 1198 proto = xpt_proto_find(path->device->protocol); 1199 if (proto) 1200 proto->ops->denounce(path->device); 1201 else 1202 printf("%s%d: Unknown protocol device %d\n", 1203 periph->periph_name, periph->unit_number, 1204 path->device->protocol); 1205 if (path->device->serial_num_len > 0) 1206 printf(" s/n %.60s", path->device->serial_num); 1207 printf(" detached\n"); 1208 } 1209 1210 void 1211 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1212 { 1213 struct cam_path *path = periph->path; 1214 struct xpt_proto *proto; 1215 1216 cam_periph_assert(periph, MA_OWNED); 1217 1218 /* Fall back to the non-sbuf method if necessary */ 1219 if (xsoftc.announce_nosbuf != 0) { 1220 xpt_denounce_periph(periph); 1221 return; 1222 } 1223 proto = xpt_proto_find(path->device->protocol); 1224 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1225 xpt_denounce_periph(periph); 1226 return; 1227 } 1228 1229 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1230 periph->periph_name, periph->unit_number, 1231 path->bus->sim->sim_name, 1232 path->bus->sim->unit_number, 1233 path->bus->sim->bus_id, 1234 path->bus->path_id, 1235 path->target->target_id, 1236 (uintmax_t)path->device->lun_id); 1237 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1238 1239 if (proto) 1240 proto->ops->denounce_sbuf(path->device, sb); 1241 else 1242 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1243 periph->periph_name, periph->unit_number, 1244 path->device->protocol); 1245 if (path->device->serial_num_len > 0) 1246 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1247 sbuf_printf(sb, " detached\n"); 1248 } 1249 1250 int 1251 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1252 { 1253 int ret = -1, l, o; 1254 struct ccb_dev_advinfo cdai; 1255 struct scsi_vpd_id_descriptor *idd; 1256 1257 xpt_path_assert(path, MA_OWNED); 1258 1259 memset(&cdai, 0, sizeof(cdai)); 1260 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1261 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1262 cdai.flags = CDAI_FLAG_NONE; 1263 cdai.bufsiz = len; 1264 1265 if (!strcmp(attr, "GEOM::ident")) 1266 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1267 else if (!strcmp(attr, "GEOM::physpath")) 1268 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1269 else if (strcmp(attr, "GEOM::lunid") == 0 || 1270 strcmp(attr, "GEOM::lunname") == 0) { 1271 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1272 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1273 } else 1274 goto out; 1275 1276 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1277 if (cdai.buf == NULL) { 1278 ret = ENOMEM; 1279 goto out; 1280 } 1281 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1282 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1283 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1284 if (cdai.provsiz == 0) 1285 goto out; 1286 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1287 if (strcmp(attr, "GEOM::lunid") == 0) { 1288 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1289 cdai.provsiz, scsi_devid_is_lun_naa); 1290 if (idd == NULL) 1291 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1292 cdai.provsiz, scsi_devid_is_lun_eui64); 1293 if (idd == NULL) 1294 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1295 cdai.provsiz, scsi_devid_is_lun_uuid); 1296 if (idd == NULL) 1297 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1298 cdai.provsiz, scsi_devid_is_lun_md5); 1299 } else 1300 idd = NULL; 1301 if (idd == NULL) 1302 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1303 cdai.provsiz, scsi_devid_is_lun_t10); 1304 if (idd == NULL) 1305 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1306 cdai.provsiz, scsi_devid_is_lun_name); 1307 if (idd == NULL) 1308 goto out; 1309 ret = 0; 1310 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1311 if (idd->length < len) { 1312 for (l = 0; l < idd->length; l++) 1313 buf[l] = idd->identifier[l] ? 1314 idd->identifier[l] : ' '; 1315 buf[l] = 0; 1316 } else 1317 ret = EFAULT; 1318 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1319 l = strnlen(idd->identifier, idd->length); 1320 if (l < len) { 1321 bcopy(idd->identifier, buf, l); 1322 buf[l] = 0; 1323 } else 1324 ret = EFAULT; 1325 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1326 && idd->identifier[0] == 0x10) { 1327 if ((idd->length - 2) * 2 + 4 < len) { 1328 for (l = 2, o = 0; l < idd->length; l++) { 1329 if (l == 6 || l == 8 || l == 10 || l == 12) 1330 o += sprintf(buf + o, "-"); 1331 o += sprintf(buf + o, "%02x", 1332 idd->identifier[l]); 1333 } 1334 } else 1335 ret = EFAULT; 1336 } else { 1337 if (idd->length * 2 < len) { 1338 for (l = 0; l < idd->length; l++) 1339 sprintf(buf + l * 2, "%02x", 1340 idd->identifier[l]); 1341 } else 1342 ret = EFAULT; 1343 } 1344 } else { 1345 ret = 0; 1346 if (strlcpy(buf, cdai.buf, len) >= len) 1347 ret = EFAULT; 1348 } 1349 1350 out: 1351 if (cdai.buf != NULL) 1352 free(cdai.buf, M_CAMXPT); 1353 return ret; 1354 } 1355 1356 static dev_match_ret 1357 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1358 struct cam_eb *bus) 1359 { 1360 dev_match_ret retval; 1361 u_int i; 1362 1363 retval = DM_RET_NONE; 1364 1365 /* 1366 * If we aren't given something to match against, that's an error. 1367 */ 1368 if (bus == NULL) 1369 return(DM_RET_ERROR); 1370 1371 /* 1372 * If there are no match entries, then this bus matches no 1373 * matter what. 1374 */ 1375 if ((patterns == NULL) || (num_patterns == 0)) 1376 return(DM_RET_DESCEND | DM_RET_COPY); 1377 1378 for (i = 0; i < num_patterns; i++) { 1379 struct bus_match_pattern *cur_pattern; 1380 1381 /* 1382 * If the pattern in question isn't for a bus node, we 1383 * aren't interested. However, we do indicate to the 1384 * calling routine that we should continue descending the 1385 * tree, since the user wants to match against lower-level 1386 * EDT elements. 1387 */ 1388 if (patterns[i].type != DEV_MATCH_BUS) { 1389 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1390 retval |= DM_RET_DESCEND; 1391 continue; 1392 } 1393 1394 cur_pattern = &patterns[i].pattern.bus_pattern; 1395 1396 /* 1397 * If they want to match any bus node, we give them any 1398 * device node. 1399 */ 1400 if (cur_pattern->flags == BUS_MATCH_ANY) { 1401 /* set the copy flag */ 1402 retval |= DM_RET_COPY; 1403 1404 /* 1405 * If we've already decided on an action, go ahead 1406 * and return. 1407 */ 1408 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1409 return(retval); 1410 } 1411 1412 /* 1413 * Not sure why someone would do this... 1414 */ 1415 if (cur_pattern->flags == BUS_MATCH_NONE) 1416 continue; 1417 1418 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1419 && (cur_pattern->path_id != bus->path_id)) 1420 continue; 1421 1422 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1423 && (cur_pattern->bus_id != bus->sim->bus_id)) 1424 continue; 1425 1426 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1427 && (cur_pattern->unit_number != bus->sim->unit_number)) 1428 continue; 1429 1430 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1431 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1432 DEV_IDLEN) != 0)) 1433 continue; 1434 1435 /* 1436 * If we get to this point, the user definitely wants 1437 * information on this bus. So tell the caller to copy the 1438 * data out. 1439 */ 1440 retval |= DM_RET_COPY; 1441 1442 /* 1443 * If the return action has been set to descend, then we 1444 * know that we've already seen a non-bus matching 1445 * expression, therefore we need to further descend the tree. 1446 * This won't change by continuing around the loop, so we 1447 * go ahead and return. If we haven't seen a non-bus 1448 * matching expression, we keep going around the loop until 1449 * we exhaust the matching expressions. We'll set the stop 1450 * flag once we fall out of the loop. 1451 */ 1452 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1453 return(retval); 1454 } 1455 1456 /* 1457 * If the return action hasn't been set to descend yet, that means 1458 * we haven't seen anything other than bus matching patterns. So 1459 * tell the caller to stop descending the tree -- the user doesn't 1460 * want to match against lower level tree elements. 1461 */ 1462 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1463 retval |= DM_RET_STOP; 1464 1465 return(retval); 1466 } 1467 1468 static dev_match_ret 1469 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1470 struct cam_ed *device) 1471 { 1472 dev_match_ret retval; 1473 u_int i; 1474 1475 retval = DM_RET_NONE; 1476 1477 /* 1478 * If we aren't given something to match against, that's an error. 1479 */ 1480 if (device == NULL) 1481 return(DM_RET_ERROR); 1482 1483 /* 1484 * If there are no match entries, then this device matches no 1485 * matter what. 1486 */ 1487 if ((patterns == NULL) || (num_patterns == 0)) 1488 return(DM_RET_DESCEND | DM_RET_COPY); 1489 1490 for (i = 0; i < num_patterns; i++) { 1491 struct device_match_pattern *cur_pattern; 1492 struct scsi_vpd_device_id *device_id_page; 1493 1494 /* 1495 * If the pattern in question isn't for a device node, we 1496 * aren't interested. 1497 */ 1498 if (patterns[i].type != DEV_MATCH_DEVICE) { 1499 if ((patterns[i].type == DEV_MATCH_PERIPH) 1500 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1501 retval |= DM_RET_DESCEND; 1502 continue; 1503 } 1504 1505 cur_pattern = &patterns[i].pattern.device_pattern; 1506 1507 /* Error out if mutually exclusive options are specified. */ 1508 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1509 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1510 return(DM_RET_ERROR); 1511 1512 /* 1513 * If they want to match any device node, we give them any 1514 * device node. 1515 */ 1516 if (cur_pattern->flags == DEV_MATCH_ANY) 1517 goto copy_dev_node; 1518 1519 /* 1520 * Not sure why someone would do this... 1521 */ 1522 if (cur_pattern->flags == DEV_MATCH_NONE) 1523 continue; 1524 1525 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1526 && (cur_pattern->path_id != device->target->bus->path_id)) 1527 continue; 1528 1529 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1530 && (cur_pattern->target_id != device->target->target_id)) 1531 continue; 1532 1533 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1534 && (cur_pattern->target_lun != device->lun_id)) 1535 continue; 1536 1537 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1538 && (cam_quirkmatch((caddr_t)&device->inq_data, 1539 (caddr_t)&cur_pattern->data.inq_pat, 1540 1, sizeof(cur_pattern->data.inq_pat), 1541 scsi_static_inquiry_match) == NULL)) 1542 continue; 1543 1544 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1545 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1546 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1547 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1548 device->device_id_len 1549 - SVPD_DEVICE_ID_HDR_LEN, 1550 cur_pattern->data.devid_pat.id, 1551 cur_pattern->data.devid_pat.id_len) != 0)) 1552 continue; 1553 1554 copy_dev_node: 1555 /* 1556 * If we get to this point, the user definitely wants 1557 * information on this device. So tell the caller to copy 1558 * the data out. 1559 */ 1560 retval |= DM_RET_COPY; 1561 1562 /* 1563 * If the return action has been set to descend, then we 1564 * know that we've already seen a peripheral matching 1565 * expression, therefore we need to further descend the tree. 1566 * This won't change by continuing around the loop, so we 1567 * go ahead and return. If we haven't seen a peripheral 1568 * matching expression, we keep going around the loop until 1569 * we exhaust the matching expressions. We'll set the stop 1570 * flag once we fall out of the loop. 1571 */ 1572 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1573 return(retval); 1574 } 1575 1576 /* 1577 * If the return action hasn't been set to descend yet, that means 1578 * we haven't seen any peripheral matching patterns. So tell the 1579 * caller to stop descending the tree -- the user doesn't want to 1580 * match against lower level tree elements. 1581 */ 1582 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1583 retval |= DM_RET_STOP; 1584 1585 return(retval); 1586 } 1587 1588 /* 1589 * Match a single peripheral against any number of match patterns. 1590 */ 1591 static dev_match_ret 1592 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1593 struct cam_periph *periph) 1594 { 1595 dev_match_ret retval; 1596 u_int i; 1597 1598 /* 1599 * If we aren't given something to match against, that's an error. 1600 */ 1601 if (periph == NULL) 1602 return(DM_RET_ERROR); 1603 1604 /* 1605 * If there are no match entries, then this peripheral matches no 1606 * matter what. 1607 */ 1608 if ((patterns == NULL) || (num_patterns == 0)) 1609 return(DM_RET_STOP | DM_RET_COPY); 1610 1611 /* 1612 * There aren't any nodes below a peripheral node, so there's no 1613 * reason to descend the tree any further. 1614 */ 1615 retval = DM_RET_STOP; 1616 1617 for (i = 0; i < num_patterns; i++) { 1618 struct periph_match_pattern *cur_pattern; 1619 1620 /* 1621 * If the pattern in question isn't for a peripheral, we 1622 * aren't interested. 1623 */ 1624 if (patterns[i].type != DEV_MATCH_PERIPH) 1625 continue; 1626 1627 cur_pattern = &patterns[i].pattern.periph_pattern; 1628 1629 /* 1630 * If they want to match on anything, then we will do so. 1631 */ 1632 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1633 /* set the copy flag */ 1634 retval |= DM_RET_COPY; 1635 1636 /* 1637 * We've already set the return action to stop, 1638 * since there are no nodes below peripherals in 1639 * the tree. 1640 */ 1641 return(retval); 1642 } 1643 1644 /* 1645 * Not sure why someone would do this... 1646 */ 1647 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1648 continue; 1649 1650 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1651 && (cur_pattern->path_id != periph->path->bus->path_id)) 1652 continue; 1653 1654 /* 1655 * For the target and lun id's, we have to make sure the 1656 * target and lun pointers aren't NULL. The xpt peripheral 1657 * has a wildcard target and device. 1658 */ 1659 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1660 && ((periph->path->target == NULL) 1661 ||(cur_pattern->target_id != periph->path->target->target_id))) 1662 continue; 1663 1664 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1665 && ((periph->path->device == NULL) 1666 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1667 continue; 1668 1669 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1670 && (cur_pattern->unit_number != periph->unit_number)) 1671 continue; 1672 1673 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1674 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1675 DEV_IDLEN) != 0)) 1676 continue; 1677 1678 /* 1679 * If we get to this point, the user definitely wants 1680 * information on this peripheral. So tell the caller to 1681 * copy the data out. 1682 */ 1683 retval |= DM_RET_COPY; 1684 1685 /* 1686 * The return action has already been set to stop, since 1687 * peripherals don't have any nodes below them in the EDT. 1688 */ 1689 return(retval); 1690 } 1691 1692 /* 1693 * If we get to this point, the peripheral that was passed in 1694 * doesn't match any of the patterns. 1695 */ 1696 return(retval); 1697 } 1698 1699 static int 1700 xptedtbusfunc(struct cam_eb *bus, void *arg) 1701 { 1702 struct ccb_dev_match *cdm; 1703 struct cam_et *target; 1704 dev_match_ret retval; 1705 1706 cdm = (struct ccb_dev_match *)arg; 1707 1708 /* 1709 * If our position is for something deeper in the tree, that means 1710 * that we've already seen this node. So, we keep going down. 1711 */ 1712 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1713 && (cdm->pos.cookie.bus == bus) 1714 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1715 && (cdm->pos.cookie.target != NULL)) 1716 retval = DM_RET_DESCEND; 1717 else 1718 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1719 1720 /* 1721 * If we got an error, bail out of the search. 1722 */ 1723 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1724 cdm->status = CAM_DEV_MATCH_ERROR; 1725 return(0); 1726 } 1727 1728 /* 1729 * If the copy flag is set, copy this bus out. 1730 */ 1731 if (retval & DM_RET_COPY) { 1732 int spaceleft, j; 1733 1734 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1735 sizeof(struct dev_match_result)); 1736 1737 /* 1738 * If we don't have enough space to put in another 1739 * match result, save our position and tell the 1740 * user there are more devices to check. 1741 */ 1742 if (spaceleft < sizeof(struct dev_match_result)) { 1743 bzero(&cdm->pos, sizeof(cdm->pos)); 1744 cdm->pos.position_type = 1745 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1746 1747 cdm->pos.cookie.bus = bus; 1748 cdm->pos.generations[CAM_BUS_GENERATION]= 1749 xsoftc.bus_generation; 1750 cdm->status = CAM_DEV_MATCH_MORE; 1751 return(0); 1752 } 1753 j = cdm->num_matches; 1754 cdm->num_matches++; 1755 cdm->matches[j].type = DEV_MATCH_BUS; 1756 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1757 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1758 cdm->matches[j].result.bus_result.unit_number = 1759 bus->sim->unit_number; 1760 strncpy(cdm->matches[j].result.bus_result.dev_name, 1761 bus->sim->sim_name, DEV_IDLEN); 1762 } 1763 1764 /* 1765 * If the user is only interested in buses, there's no 1766 * reason to descend to the next level in the tree. 1767 */ 1768 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1769 return(1); 1770 1771 /* 1772 * If there is a target generation recorded, check it to 1773 * make sure the target list hasn't changed. 1774 */ 1775 mtx_lock(&bus->eb_mtx); 1776 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1777 && (cdm->pos.cookie.bus == bus) 1778 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1779 && (cdm->pos.cookie.target != NULL)) { 1780 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1781 bus->generation)) { 1782 mtx_unlock(&bus->eb_mtx); 1783 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1784 return (0); 1785 } 1786 target = (struct cam_et *)cdm->pos.cookie.target; 1787 target->refcount++; 1788 } else 1789 target = NULL; 1790 mtx_unlock(&bus->eb_mtx); 1791 1792 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1793 } 1794 1795 static int 1796 xptedttargetfunc(struct cam_et *target, void *arg) 1797 { 1798 struct ccb_dev_match *cdm; 1799 struct cam_eb *bus; 1800 struct cam_ed *device; 1801 1802 cdm = (struct ccb_dev_match *)arg; 1803 bus = target->bus; 1804 1805 /* 1806 * If there is a device list generation recorded, check it to 1807 * make sure the device list hasn't changed. 1808 */ 1809 mtx_lock(&bus->eb_mtx); 1810 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1811 && (cdm->pos.cookie.bus == bus) 1812 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1813 && (cdm->pos.cookie.target == target) 1814 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1815 && (cdm->pos.cookie.device != NULL)) { 1816 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1817 target->generation) { 1818 mtx_unlock(&bus->eb_mtx); 1819 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1820 return(0); 1821 } 1822 device = (struct cam_ed *)cdm->pos.cookie.device; 1823 device->refcount++; 1824 } else 1825 device = NULL; 1826 mtx_unlock(&bus->eb_mtx); 1827 1828 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1829 } 1830 1831 static int 1832 xptedtdevicefunc(struct cam_ed *device, void *arg) 1833 { 1834 struct cam_eb *bus; 1835 struct cam_periph *periph; 1836 struct ccb_dev_match *cdm; 1837 dev_match_ret retval; 1838 1839 cdm = (struct ccb_dev_match *)arg; 1840 bus = device->target->bus; 1841 1842 /* 1843 * If our position is for something deeper in the tree, that means 1844 * that we've already seen this node. So, we keep going down. 1845 */ 1846 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1847 && (cdm->pos.cookie.device == device) 1848 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1849 && (cdm->pos.cookie.periph != NULL)) 1850 retval = DM_RET_DESCEND; 1851 else 1852 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1853 device); 1854 1855 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1856 cdm->status = CAM_DEV_MATCH_ERROR; 1857 return(0); 1858 } 1859 1860 /* 1861 * If the copy flag is set, copy this device out. 1862 */ 1863 if (retval & DM_RET_COPY) { 1864 int spaceleft, j; 1865 1866 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1867 sizeof(struct dev_match_result)); 1868 1869 /* 1870 * If we don't have enough space to put in another 1871 * match result, save our position and tell the 1872 * user there are more devices to check. 1873 */ 1874 if (spaceleft < sizeof(struct dev_match_result)) { 1875 bzero(&cdm->pos, sizeof(cdm->pos)); 1876 cdm->pos.position_type = 1877 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1878 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1879 1880 cdm->pos.cookie.bus = device->target->bus; 1881 cdm->pos.generations[CAM_BUS_GENERATION]= 1882 xsoftc.bus_generation; 1883 cdm->pos.cookie.target = device->target; 1884 cdm->pos.generations[CAM_TARGET_GENERATION] = 1885 device->target->bus->generation; 1886 cdm->pos.cookie.device = device; 1887 cdm->pos.generations[CAM_DEV_GENERATION] = 1888 device->target->generation; 1889 cdm->status = CAM_DEV_MATCH_MORE; 1890 return(0); 1891 } 1892 j = cdm->num_matches; 1893 cdm->num_matches++; 1894 cdm->matches[j].type = DEV_MATCH_DEVICE; 1895 cdm->matches[j].result.device_result.path_id = 1896 device->target->bus->path_id; 1897 cdm->matches[j].result.device_result.target_id = 1898 device->target->target_id; 1899 cdm->matches[j].result.device_result.target_lun = 1900 device->lun_id; 1901 cdm->matches[j].result.device_result.protocol = 1902 device->protocol; 1903 bcopy(&device->inq_data, 1904 &cdm->matches[j].result.device_result.inq_data, 1905 sizeof(struct scsi_inquiry_data)); 1906 bcopy(&device->ident_data, 1907 &cdm->matches[j].result.device_result.ident_data, 1908 sizeof(struct ata_params)); 1909 bcopy(&device->mmc_ident_data, 1910 &cdm->matches[j].result.device_result.mmc_ident_data, 1911 sizeof(struct mmc_params)); 1912 1913 /* Let the user know whether this device is unconfigured */ 1914 if (device->flags & CAM_DEV_UNCONFIGURED) 1915 cdm->matches[j].result.device_result.flags = 1916 DEV_RESULT_UNCONFIGURED; 1917 else 1918 cdm->matches[j].result.device_result.flags = 1919 DEV_RESULT_NOFLAG; 1920 } 1921 1922 /* 1923 * If the user isn't interested in peripherals, don't descend 1924 * the tree any further. 1925 */ 1926 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1927 return(1); 1928 1929 /* 1930 * If there is a peripheral list generation recorded, make sure 1931 * it hasn't changed. 1932 */ 1933 xpt_lock_buses(); 1934 mtx_lock(&bus->eb_mtx); 1935 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1936 && (cdm->pos.cookie.bus == bus) 1937 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1938 && (cdm->pos.cookie.target == device->target) 1939 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1940 && (cdm->pos.cookie.device == device) 1941 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1942 && (cdm->pos.cookie.periph != NULL)) { 1943 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1944 device->generation) { 1945 mtx_unlock(&bus->eb_mtx); 1946 xpt_unlock_buses(); 1947 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1948 return(0); 1949 } 1950 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1951 periph->refcount++; 1952 } else 1953 periph = NULL; 1954 mtx_unlock(&bus->eb_mtx); 1955 xpt_unlock_buses(); 1956 1957 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1958 } 1959 1960 static int 1961 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1962 { 1963 struct ccb_dev_match *cdm; 1964 dev_match_ret retval; 1965 1966 cdm = (struct ccb_dev_match *)arg; 1967 1968 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1969 1970 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1971 cdm->status = CAM_DEV_MATCH_ERROR; 1972 return(0); 1973 } 1974 1975 /* 1976 * If the copy flag is set, copy this peripheral out. 1977 */ 1978 if (retval & DM_RET_COPY) { 1979 int spaceleft, j; 1980 1981 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1982 sizeof(struct dev_match_result)); 1983 1984 /* 1985 * If we don't have enough space to put in another 1986 * match result, save our position and tell the 1987 * user there are more devices to check. 1988 */ 1989 if (spaceleft < sizeof(struct dev_match_result)) { 1990 bzero(&cdm->pos, sizeof(cdm->pos)); 1991 cdm->pos.position_type = 1992 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1993 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1994 CAM_DEV_POS_PERIPH; 1995 1996 cdm->pos.cookie.bus = periph->path->bus; 1997 cdm->pos.generations[CAM_BUS_GENERATION]= 1998 xsoftc.bus_generation; 1999 cdm->pos.cookie.target = periph->path->target; 2000 cdm->pos.generations[CAM_TARGET_GENERATION] = 2001 periph->path->bus->generation; 2002 cdm->pos.cookie.device = periph->path->device; 2003 cdm->pos.generations[CAM_DEV_GENERATION] = 2004 periph->path->target->generation; 2005 cdm->pos.cookie.periph = periph; 2006 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2007 periph->path->device->generation; 2008 cdm->status = CAM_DEV_MATCH_MORE; 2009 return(0); 2010 } 2011 2012 j = cdm->num_matches; 2013 cdm->num_matches++; 2014 cdm->matches[j].type = DEV_MATCH_PERIPH; 2015 cdm->matches[j].result.periph_result.path_id = 2016 periph->path->bus->path_id; 2017 cdm->matches[j].result.periph_result.target_id = 2018 periph->path->target->target_id; 2019 cdm->matches[j].result.periph_result.target_lun = 2020 periph->path->device->lun_id; 2021 cdm->matches[j].result.periph_result.unit_number = 2022 periph->unit_number; 2023 strncpy(cdm->matches[j].result.periph_result.periph_name, 2024 periph->periph_name, DEV_IDLEN); 2025 } 2026 2027 return(1); 2028 } 2029 2030 static int 2031 xptedtmatch(struct ccb_dev_match *cdm) 2032 { 2033 struct cam_eb *bus; 2034 int ret; 2035 2036 cdm->num_matches = 0; 2037 2038 /* 2039 * Check the bus list generation. If it has changed, the user 2040 * needs to reset everything and start over. 2041 */ 2042 xpt_lock_buses(); 2043 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2044 && (cdm->pos.cookie.bus != NULL)) { 2045 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2046 xsoftc.bus_generation) { 2047 xpt_unlock_buses(); 2048 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2049 return(0); 2050 } 2051 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2052 bus->refcount++; 2053 } else 2054 bus = NULL; 2055 xpt_unlock_buses(); 2056 2057 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2058 2059 /* 2060 * If we get back 0, that means that we had to stop before fully 2061 * traversing the EDT. It also means that one of the subroutines 2062 * has set the status field to the proper value. If we get back 1, 2063 * we've fully traversed the EDT and copied out any matching entries. 2064 */ 2065 if (ret == 1) 2066 cdm->status = CAM_DEV_MATCH_LAST; 2067 2068 return(ret); 2069 } 2070 2071 static int 2072 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2073 { 2074 struct cam_periph *periph; 2075 struct ccb_dev_match *cdm; 2076 2077 cdm = (struct ccb_dev_match *)arg; 2078 2079 xpt_lock_buses(); 2080 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2081 && (cdm->pos.cookie.pdrv == pdrv) 2082 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2083 && (cdm->pos.cookie.periph != NULL)) { 2084 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2085 (*pdrv)->generation) { 2086 xpt_unlock_buses(); 2087 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2088 return(0); 2089 } 2090 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2091 periph->refcount++; 2092 } else 2093 periph = NULL; 2094 xpt_unlock_buses(); 2095 2096 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2097 } 2098 2099 static int 2100 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2101 { 2102 struct ccb_dev_match *cdm; 2103 dev_match_ret retval; 2104 2105 cdm = (struct ccb_dev_match *)arg; 2106 2107 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2108 2109 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2110 cdm->status = CAM_DEV_MATCH_ERROR; 2111 return(0); 2112 } 2113 2114 /* 2115 * If the copy flag is set, copy this peripheral out. 2116 */ 2117 if (retval & DM_RET_COPY) { 2118 int spaceleft, j; 2119 2120 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2121 sizeof(struct dev_match_result)); 2122 2123 /* 2124 * If we don't have enough space to put in another 2125 * match result, save our position and tell the 2126 * user there are more devices to check. 2127 */ 2128 if (spaceleft < sizeof(struct dev_match_result)) { 2129 struct periph_driver **pdrv; 2130 2131 pdrv = NULL; 2132 bzero(&cdm->pos, sizeof(cdm->pos)); 2133 cdm->pos.position_type = 2134 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2135 CAM_DEV_POS_PERIPH; 2136 2137 /* 2138 * This may look a bit non-sensical, but it is 2139 * actually quite logical. There are very few 2140 * peripheral drivers, and bloating every peripheral 2141 * structure with a pointer back to its parent 2142 * peripheral driver linker set entry would cost 2143 * more in the long run than doing this quick lookup. 2144 */ 2145 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2146 if (strcmp((*pdrv)->driver_name, 2147 periph->periph_name) == 0) 2148 break; 2149 } 2150 2151 if (*pdrv == NULL) { 2152 cdm->status = CAM_DEV_MATCH_ERROR; 2153 return(0); 2154 } 2155 2156 cdm->pos.cookie.pdrv = pdrv; 2157 /* 2158 * The periph generation slot does double duty, as 2159 * does the periph pointer slot. They are used for 2160 * both edt and pdrv lookups and positioning. 2161 */ 2162 cdm->pos.cookie.periph = periph; 2163 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2164 (*pdrv)->generation; 2165 cdm->status = CAM_DEV_MATCH_MORE; 2166 return(0); 2167 } 2168 2169 j = cdm->num_matches; 2170 cdm->num_matches++; 2171 cdm->matches[j].type = DEV_MATCH_PERIPH; 2172 cdm->matches[j].result.periph_result.path_id = 2173 periph->path->bus->path_id; 2174 2175 /* 2176 * The transport layer peripheral doesn't have a target or 2177 * lun. 2178 */ 2179 if (periph->path->target) 2180 cdm->matches[j].result.periph_result.target_id = 2181 periph->path->target->target_id; 2182 else 2183 cdm->matches[j].result.periph_result.target_id = 2184 CAM_TARGET_WILDCARD; 2185 2186 if (periph->path->device) 2187 cdm->matches[j].result.periph_result.target_lun = 2188 periph->path->device->lun_id; 2189 else 2190 cdm->matches[j].result.periph_result.target_lun = 2191 CAM_LUN_WILDCARD; 2192 2193 cdm->matches[j].result.periph_result.unit_number = 2194 periph->unit_number; 2195 strncpy(cdm->matches[j].result.periph_result.periph_name, 2196 periph->periph_name, DEV_IDLEN); 2197 } 2198 2199 return(1); 2200 } 2201 2202 static int 2203 xptperiphlistmatch(struct ccb_dev_match *cdm) 2204 { 2205 int ret; 2206 2207 cdm->num_matches = 0; 2208 2209 /* 2210 * At this point in the edt traversal function, we check the bus 2211 * list generation to make sure that no buses have been added or 2212 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2213 * For the peripheral driver list traversal function, however, we 2214 * don't have to worry about new peripheral driver types coming or 2215 * going; they're in a linker set, and therefore can't change 2216 * without a recompile. 2217 */ 2218 2219 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2220 && (cdm->pos.cookie.pdrv != NULL)) 2221 ret = xptpdrvtraverse( 2222 (struct periph_driver **)cdm->pos.cookie.pdrv, 2223 xptplistpdrvfunc, cdm); 2224 else 2225 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2226 2227 /* 2228 * If we get back 0, that means that we had to stop before fully 2229 * traversing the peripheral driver tree. It also means that one of 2230 * the subroutines has set the status field to the proper value. If 2231 * we get back 1, we've fully traversed the EDT and copied out any 2232 * matching entries. 2233 */ 2234 if (ret == 1) 2235 cdm->status = CAM_DEV_MATCH_LAST; 2236 2237 return(ret); 2238 } 2239 2240 static int 2241 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2242 { 2243 struct cam_eb *bus, *next_bus; 2244 int retval; 2245 2246 retval = 1; 2247 if (start_bus) 2248 bus = start_bus; 2249 else { 2250 xpt_lock_buses(); 2251 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2252 if (bus == NULL) { 2253 xpt_unlock_buses(); 2254 return (retval); 2255 } 2256 bus->refcount++; 2257 xpt_unlock_buses(); 2258 } 2259 for (; bus != NULL; bus = next_bus) { 2260 retval = tr_func(bus, arg); 2261 if (retval == 0) { 2262 xpt_release_bus(bus); 2263 break; 2264 } 2265 xpt_lock_buses(); 2266 next_bus = TAILQ_NEXT(bus, links); 2267 if (next_bus) 2268 next_bus->refcount++; 2269 xpt_unlock_buses(); 2270 xpt_release_bus(bus); 2271 } 2272 return(retval); 2273 } 2274 2275 static int 2276 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2277 xpt_targetfunc_t *tr_func, void *arg) 2278 { 2279 struct cam_et *target, *next_target; 2280 int retval; 2281 2282 retval = 1; 2283 if (start_target) 2284 target = start_target; 2285 else { 2286 mtx_lock(&bus->eb_mtx); 2287 target = TAILQ_FIRST(&bus->et_entries); 2288 if (target == NULL) { 2289 mtx_unlock(&bus->eb_mtx); 2290 return (retval); 2291 } 2292 target->refcount++; 2293 mtx_unlock(&bus->eb_mtx); 2294 } 2295 for (; target != NULL; target = next_target) { 2296 retval = tr_func(target, arg); 2297 if (retval == 0) { 2298 xpt_release_target(target); 2299 break; 2300 } 2301 mtx_lock(&bus->eb_mtx); 2302 next_target = TAILQ_NEXT(target, links); 2303 if (next_target) 2304 next_target->refcount++; 2305 mtx_unlock(&bus->eb_mtx); 2306 xpt_release_target(target); 2307 } 2308 return(retval); 2309 } 2310 2311 static int 2312 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2313 xpt_devicefunc_t *tr_func, void *arg) 2314 { 2315 struct cam_eb *bus; 2316 struct cam_ed *device, *next_device; 2317 int retval; 2318 2319 retval = 1; 2320 bus = target->bus; 2321 if (start_device) 2322 device = start_device; 2323 else { 2324 mtx_lock(&bus->eb_mtx); 2325 device = TAILQ_FIRST(&target->ed_entries); 2326 if (device == NULL) { 2327 mtx_unlock(&bus->eb_mtx); 2328 return (retval); 2329 } 2330 device->refcount++; 2331 mtx_unlock(&bus->eb_mtx); 2332 } 2333 for (; device != NULL; device = next_device) { 2334 mtx_lock(&device->device_mtx); 2335 retval = tr_func(device, arg); 2336 mtx_unlock(&device->device_mtx); 2337 if (retval == 0) { 2338 xpt_release_device(device); 2339 break; 2340 } 2341 mtx_lock(&bus->eb_mtx); 2342 next_device = TAILQ_NEXT(device, links); 2343 if (next_device) 2344 next_device->refcount++; 2345 mtx_unlock(&bus->eb_mtx); 2346 xpt_release_device(device); 2347 } 2348 return(retval); 2349 } 2350 2351 static int 2352 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2353 xpt_periphfunc_t *tr_func, void *arg) 2354 { 2355 struct cam_eb *bus; 2356 struct cam_periph *periph, *next_periph; 2357 int retval; 2358 2359 retval = 1; 2360 2361 bus = device->target->bus; 2362 if (start_periph) 2363 periph = start_periph; 2364 else { 2365 xpt_lock_buses(); 2366 mtx_lock(&bus->eb_mtx); 2367 periph = SLIST_FIRST(&device->periphs); 2368 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2369 periph = SLIST_NEXT(periph, periph_links); 2370 if (periph == NULL) { 2371 mtx_unlock(&bus->eb_mtx); 2372 xpt_unlock_buses(); 2373 return (retval); 2374 } 2375 periph->refcount++; 2376 mtx_unlock(&bus->eb_mtx); 2377 xpt_unlock_buses(); 2378 } 2379 for (; periph != NULL; periph = next_periph) { 2380 retval = tr_func(periph, arg); 2381 if (retval == 0) { 2382 cam_periph_release_locked(periph); 2383 break; 2384 } 2385 xpt_lock_buses(); 2386 mtx_lock(&bus->eb_mtx); 2387 next_periph = SLIST_NEXT(periph, periph_links); 2388 while (next_periph != NULL && 2389 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2390 next_periph = SLIST_NEXT(next_periph, periph_links); 2391 if (next_periph) 2392 next_periph->refcount++; 2393 mtx_unlock(&bus->eb_mtx); 2394 xpt_unlock_buses(); 2395 cam_periph_release_locked(periph); 2396 } 2397 return(retval); 2398 } 2399 2400 static int 2401 xptpdrvtraverse(struct periph_driver **start_pdrv, 2402 xpt_pdrvfunc_t *tr_func, void *arg) 2403 { 2404 struct periph_driver **pdrv; 2405 int retval; 2406 2407 retval = 1; 2408 2409 /* 2410 * We don't traverse the peripheral driver list like we do the 2411 * other lists, because it is a linker set, and therefore cannot be 2412 * changed during runtime. If the peripheral driver list is ever 2413 * re-done to be something other than a linker set (i.e. it can 2414 * change while the system is running), the list traversal should 2415 * be modified to work like the other traversal functions. 2416 */ 2417 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2418 *pdrv != NULL; pdrv++) { 2419 retval = tr_func(pdrv, arg); 2420 2421 if (retval == 0) 2422 return(retval); 2423 } 2424 2425 return(retval); 2426 } 2427 2428 static int 2429 xptpdperiphtraverse(struct periph_driver **pdrv, 2430 struct cam_periph *start_periph, 2431 xpt_periphfunc_t *tr_func, void *arg) 2432 { 2433 struct cam_periph *periph, *next_periph; 2434 int retval; 2435 2436 retval = 1; 2437 2438 if (start_periph) 2439 periph = start_periph; 2440 else { 2441 xpt_lock_buses(); 2442 periph = TAILQ_FIRST(&(*pdrv)->units); 2443 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2444 periph = TAILQ_NEXT(periph, unit_links); 2445 if (periph == NULL) { 2446 xpt_unlock_buses(); 2447 return (retval); 2448 } 2449 periph->refcount++; 2450 xpt_unlock_buses(); 2451 } 2452 for (; periph != NULL; periph = next_periph) { 2453 cam_periph_lock(periph); 2454 retval = tr_func(periph, arg); 2455 cam_periph_unlock(periph); 2456 if (retval == 0) { 2457 cam_periph_release(periph); 2458 break; 2459 } 2460 xpt_lock_buses(); 2461 next_periph = TAILQ_NEXT(periph, unit_links); 2462 while (next_periph != NULL && 2463 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2464 next_periph = TAILQ_NEXT(next_periph, unit_links); 2465 if (next_periph) 2466 next_periph->refcount++; 2467 xpt_unlock_buses(); 2468 cam_periph_release(periph); 2469 } 2470 return(retval); 2471 } 2472 2473 static int 2474 xptdefbusfunc(struct cam_eb *bus, void *arg) 2475 { 2476 struct xpt_traverse_config *tr_config; 2477 2478 tr_config = (struct xpt_traverse_config *)arg; 2479 2480 if (tr_config->depth == XPT_DEPTH_BUS) { 2481 xpt_busfunc_t *tr_func; 2482 2483 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2484 2485 return(tr_func(bus, tr_config->tr_arg)); 2486 } else 2487 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2488 } 2489 2490 static int 2491 xptdeftargetfunc(struct cam_et *target, void *arg) 2492 { 2493 struct xpt_traverse_config *tr_config; 2494 2495 tr_config = (struct xpt_traverse_config *)arg; 2496 2497 if (tr_config->depth == XPT_DEPTH_TARGET) { 2498 xpt_targetfunc_t *tr_func; 2499 2500 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2501 2502 return(tr_func(target, tr_config->tr_arg)); 2503 } else 2504 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2505 } 2506 2507 static int 2508 xptdefdevicefunc(struct cam_ed *device, void *arg) 2509 { 2510 struct xpt_traverse_config *tr_config; 2511 2512 tr_config = (struct xpt_traverse_config *)arg; 2513 2514 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2515 xpt_devicefunc_t *tr_func; 2516 2517 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2518 2519 return(tr_func(device, tr_config->tr_arg)); 2520 } else 2521 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2522 } 2523 2524 static int 2525 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2526 { 2527 struct xpt_traverse_config *tr_config; 2528 xpt_periphfunc_t *tr_func; 2529 2530 tr_config = (struct xpt_traverse_config *)arg; 2531 2532 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2533 2534 /* 2535 * Unlike the other default functions, we don't check for depth 2536 * here. The peripheral driver level is the last level in the EDT, 2537 * so if we're here, we should execute the function in question. 2538 */ 2539 return(tr_func(periph, tr_config->tr_arg)); 2540 } 2541 2542 /* 2543 * Execute the given function for every bus in the EDT. 2544 */ 2545 static int 2546 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2547 { 2548 struct xpt_traverse_config tr_config; 2549 2550 tr_config.depth = XPT_DEPTH_BUS; 2551 tr_config.tr_func = tr_func; 2552 tr_config.tr_arg = arg; 2553 2554 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2555 } 2556 2557 /* 2558 * Execute the given function for every device in the EDT. 2559 */ 2560 static int 2561 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2562 { 2563 struct xpt_traverse_config tr_config; 2564 2565 tr_config.depth = XPT_DEPTH_DEVICE; 2566 tr_config.tr_func = tr_func; 2567 tr_config.tr_arg = arg; 2568 2569 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2570 } 2571 2572 static int 2573 xptsetasyncfunc(struct cam_ed *device, void *arg) 2574 { 2575 struct cam_path path; 2576 struct ccb_getdev cgd; 2577 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2578 2579 /* 2580 * Don't report unconfigured devices (Wildcard devs, 2581 * devices only for target mode, device instances 2582 * that have been invalidated but are waiting for 2583 * their last reference count to be released). 2584 */ 2585 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2586 return (1); 2587 2588 xpt_compile_path(&path, 2589 NULL, 2590 device->target->bus->path_id, 2591 device->target->target_id, 2592 device->lun_id); 2593 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2594 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2595 xpt_action((union ccb *)&cgd); 2596 csa->callback(csa->callback_arg, 2597 AC_FOUND_DEVICE, 2598 &path, &cgd); 2599 xpt_release_path(&path); 2600 2601 return(1); 2602 } 2603 2604 static int 2605 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2606 { 2607 struct cam_path path; 2608 struct ccb_pathinq cpi; 2609 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2610 2611 xpt_compile_path(&path, /*periph*/NULL, 2612 bus->path_id, 2613 CAM_TARGET_WILDCARD, 2614 CAM_LUN_WILDCARD); 2615 xpt_path_lock(&path); 2616 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2617 cpi.ccb_h.func_code = XPT_PATH_INQ; 2618 xpt_action((union ccb *)&cpi); 2619 csa->callback(csa->callback_arg, 2620 AC_PATH_REGISTERED, 2621 &path, &cpi); 2622 xpt_path_unlock(&path); 2623 xpt_release_path(&path); 2624 2625 return(1); 2626 } 2627 2628 void 2629 xpt_action(union ccb *start_ccb) 2630 { 2631 2632 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2633 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2634 xpt_action_name(start_ccb->ccb_h.func_code))); 2635 2636 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2637 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2638 } 2639 2640 void 2641 xpt_action_default(union ccb *start_ccb) 2642 { 2643 struct cam_path *path; 2644 struct cam_sim *sim; 2645 struct mtx *mtx; 2646 2647 path = start_ccb->ccb_h.path; 2648 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2649 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2650 xpt_action_name(start_ccb->ccb_h.func_code))); 2651 2652 switch (start_ccb->ccb_h.func_code) { 2653 case XPT_SCSI_IO: 2654 { 2655 struct cam_ed *device; 2656 2657 /* 2658 * For the sake of compatibility with SCSI-1 2659 * devices that may not understand the identify 2660 * message, we include lun information in the 2661 * second byte of all commands. SCSI-1 specifies 2662 * that luns are a 3 bit value and reserves only 3 2663 * bits for lun information in the CDB. Later 2664 * revisions of the SCSI spec allow for more than 8 2665 * luns, but have deprecated lun information in the 2666 * CDB. So, if the lun won't fit, we must omit. 2667 * 2668 * Also be aware that during initial probing for devices, 2669 * the inquiry information is unknown but initialized to 0. 2670 * This means that this code will be exercised while probing 2671 * devices with an ANSI revision greater than 2. 2672 */ 2673 device = path->device; 2674 if (device->protocol_version <= SCSI_REV_2 2675 && start_ccb->ccb_h.target_lun < 8 2676 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2677 2678 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2679 start_ccb->ccb_h.target_lun << 5; 2680 } 2681 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2682 } 2683 /* FALLTHROUGH */ 2684 case XPT_TARGET_IO: 2685 case XPT_CONT_TARGET_IO: 2686 start_ccb->csio.sense_resid = 0; 2687 start_ccb->csio.resid = 0; 2688 /* FALLTHROUGH */ 2689 case XPT_ATA_IO: 2690 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2691 start_ccb->ataio.resid = 0; 2692 /* FALLTHROUGH */ 2693 case XPT_NVME_IO: 2694 if (start_ccb->ccb_h.func_code == XPT_NVME_IO) 2695 start_ccb->nvmeio.resid = 0; 2696 /* FALLTHROUGH */ 2697 case XPT_MMC_IO: 2698 /* XXX just like nmve_io? */ 2699 case XPT_RESET_DEV: 2700 case XPT_ENG_EXEC: 2701 case XPT_SMP_IO: 2702 { 2703 struct cam_devq *devq; 2704 2705 devq = path->bus->sim->devq; 2706 mtx_lock(&devq->send_mtx); 2707 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2708 if (xpt_schedule_devq(devq, path->device) != 0) 2709 xpt_run_devq(devq); 2710 mtx_unlock(&devq->send_mtx); 2711 break; 2712 } 2713 case XPT_CALC_GEOMETRY: 2714 /* Filter out garbage */ 2715 if (start_ccb->ccg.block_size == 0 2716 || start_ccb->ccg.volume_size == 0) { 2717 start_ccb->ccg.cylinders = 0; 2718 start_ccb->ccg.heads = 0; 2719 start_ccb->ccg.secs_per_track = 0; 2720 start_ccb->ccb_h.status = CAM_REQ_CMP; 2721 break; 2722 } 2723 #if defined(__sparc64__) 2724 /* 2725 * For sparc64, we may need adjust the geometry of large 2726 * disks in order to fit the limitations of the 16-bit 2727 * fields of the VTOC8 disk label. 2728 */ 2729 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2730 start_ccb->ccb_h.status = CAM_REQ_CMP; 2731 break; 2732 } 2733 #endif 2734 goto call_sim; 2735 case XPT_ABORT: 2736 { 2737 union ccb* abort_ccb; 2738 2739 abort_ccb = start_ccb->cab.abort_ccb; 2740 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2741 struct cam_ed *device; 2742 struct cam_devq *devq; 2743 2744 device = abort_ccb->ccb_h.path->device; 2745 devq = device->sim->devq; 2746 2747 mtx_lock(&devq->send_mtx); 2748 if (abort_ccb->ccb_h.pinfo.index > 0) { 2749 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2750 abort_ccb->ccb_h.status = 2751 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2752 xpt_freeze_devq_device(device, 1); 2753 mtx_unlock(&devq->send_mtx); 2754 xpt_done(abort_ccb); 2755 start_ccb->ccb_h.status = CAM_REQ_CMP; 2756 break; 2757 } 2758 mtx_unlock(&devq->send_mtx); 2759 2760 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2761 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2762 /* 2763 * We've caught this ccb en route to 2764 * the SIM. Flag it for abort and the 2765 * SIM will do so just before starting 2766 * real work on the CCB. 2767 */ 2768 abort_ccb->ccb_h.status = 2769 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2770 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2771 start_ccb->ccb_h.status = CAM_REQ_CMP; 2772 break; 2773 } 2774 } 2775 if (XPT_FC_IS_QUEUED(abort_ccb) 2776 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2777 /* 2778 * It's already completed but waiting 2779 * for our SWI to get to it. 2780 */ 2781 start_ccb->ccb_h.status = CAM_UA_ABORT; 2782 break; 2783 } 2784 /* 2785 * If we weren't able to take care of the abort request 2786 * in the XPT, pass the request down to the SIM for processing. 2787 */ 2788 } 2789 /* FALLTHROUGH */ 2790 case XPT_ACCEPT_TARGET_IO: 2791 case XPT_EN_LUN: 2792 case XPT_IMMED_NOTIFY: 2793 case XPT_NOTIFY_ACK: 2794 case XPT_RESET_BUS: 2795 case XPT_IMMEDIATE_NOTIFY: 2796 case XPT_NOTIFY_ACKNOWLEDGE: 2797 case XPT_GET_SIM_KNOB_OLD: 2798 case XPT_GET_SIM_KNOB: 2799 case XPT_SET_SIM_KNOB: 2800 case XPT_GET_TRAN_SETTINGS: 2801 case XPT_SET_TRAN_SETTINGS: 2802 case XPT_PATH_INQ: 2803 call_sim: 2804 sim = path->bus->sim; 2805 mtx = sim->mtx; 2806 if (mtx && !mtx_owned(mtx)) 2807 mtx_lock(mtx); 2808 else 2809 mtx = NULL; 2810 2811 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2812 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2813 (*(sim->sim_action))(sim, start_ccb); 2814 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2815 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2816 if (mtx) 2817 mtx_unlock(mtx); 2818 break; 2819 case XPT_PATH_STATS: 2820 start_ccb->cpis.last_reset = path->bus->last_reset; 2821 start_ccb->ccb_h.status = CAM_REQ_CMP; 2822 break; 2823 case XPT_GDEV_TYPE: 2824 { 2825 struct cam_ed *dev; 2826 2827 dev = path->device; 2828 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2829 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2830 } else { 2831 struct ccb_getdev *cgd; 2832 2833 cgd = &start_ccb->cgd; 2834 cgd->protocol = dev->protocol; 2835 cgd->inq_data = dev->inq_data; 2836 cgd->ident_data = dev->ident_data; 2837 cgd->inq_flags = dev->inq_flags; 2838 cgd->nvme_data = dev->nvme_data; 2839 cgd->nvme_cdata = dev->nvme_cdata; 2840 cgd->ccb_h.status = CAM_REQ_CMP; 2841 cgd->serial_num_len = dev->serial_num_len; 2842 if ((dev->serial_num_len > 0) 2843 && (dev->serial_num != NULL)) 2844 bcopy(dev->serial_num, cgd->serial_num, 2845 dev->serial_num_len); 2846 } 2847 break; 2848 } 2849 case XPT_GDEV_STATS: 2850 { 2851 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2852 struct cam_ed *dev = path->device; 2853 struct cam_eb *bus = path->bus; 2854 struct cam_et *tar = path->target; 2855 struct cam_devq *devq = bus->sim->devq; 2856 2857 mtx_lock(&devq->send_mtx); 2858 cgds->dev_openings = dev->ccbq.dev_openings; 2859 cgds->dev_active = dev->ccbq.dev_active; 2860 cgds->allocated = dev->ccbq.allocated; 2861 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2862 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2863 cgds->last_reset = tar->last_reset; 2864 cgds->maxtags = dev->maxtags; 2865 cgds->mintags = dev->mintags; 2866 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2867 cgds->last_reset = bus->last_reset; 2868 mtx_unlock(&devq->send_mtx); 2869 cgds->ccb_h.status = CAM_REQ_CMP; 2870 break; 2871 } 2872 case XPT_GDEVLIST: 2873 { 2874 struct cam_periph *nperiph; 2875 struct periph_list *periph_head; 2876 struct ccb_getdevlist *cgdl; 2877 u_int i; 2878 struct cam_ed *device; 2879 int found; 2880 2881 2882 found = 0; 2883 2884 /* 2885 * Don't want anyone mucking with our data. 2886 */ 2887 device = path->device; 2888 periph_head = &device->periphs; 2889 cgdl = &start_ccb->cgdl; 2890 2891 /* 2892 * Check and see if the list has changed since the user 2893 * last requested a list member. If so, tell them that the 2894 * list has changed, and therefore they need to start over 2895 * from the beginning. 2896 */ 2897 if ((cgdl->index != 0) && 2898 (cgdl->generation != device->generation)) { 2899 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2900 break; 2901 } 2902 2903 /* 2904 * Traverse the list of peripherals and attempt to find 2905 * the requested peripheral. 2906 */ 2907 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2908 (nperiph != NULL) && (i <= cgdl->index); 2909 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2910 if (i == cgdl->index) { 2911 strncpy(cgdl->periph_name, 2912 nperiph->periph_name, 2913 DEV_IDLEN); 2914 cgdl->unit_number = nperiph->unit_number; 2915 found = 1; 2916 } 2917 } 2918 if (found == 0) { 2919 cgdl->status = CAM_GDEVLIST_ERROR; 2920 break; 2921 } 2922 2923 if (nperiph == NULL) 2924 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2925 else 2926 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2927 2928 cgdl->index++; 2929 cgdl->generation = device->generation; 2930 2931 cgdl->ccb_h.status = CAM_REQ_CMP; 2932 break; 2933 } 2934 case XPT_DEV_MATCH: 2935 { 2936 dev_pos_type position_type; 2937 struct ccb_dev_match *cdm; 2938 2939 cdm = &start_ccb->cdm; 2940 2941 /* 2942 * There are two ways of getting at information in the EDT. 2943 * The first way is via the primary EDT tree. It starts 2944 * with a list of buses, then a list of targets on a bus, 2945 * then devices/luns on a target, and then peripherals on a 2946 * device/lun. The "other" way is by the peripheral driver 2947 * lists. The peripheral driver lists are organized by 2948 * peripheral driver. (obviously) So it makes sense to 2949 * use the peripheral driver list if the user is looking 2950 * for something like "da1", or all "da" devices. If the 2951 * user is looking for something on a particular bus/target 2952 * or lun, it's generally better to go through the EDT tree. 2953 */ 2954 2955 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2956 position_type = cdm->pos.position_type; 2957 else { 2958 u_int i; 2959 2960 position_type = CAM_DEV_POS_NONE; 2961 2962 for (i = 0; i < cdm->num_patterns; i++) { 2963 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2964 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2965 position_type = CAM_DEV_POS_EDT; 2966 break; 2967 } 2968 } 2969 2970 if (cdm->num_patterns == 0) 2971 position_type = CAM_DEV_POS_EDT; 2972 else if (position_type == CAM_DEV_POS_NONE) 2973 position_type = CAM_DEV_POS_PDRV; 2974 } 2975 2976 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2977 case CAM_DEV_POS_EDT: 2978 xptedtmatch(cdm); 2979 break; 2980 case CAM_DEV_POS_PDRV: 2981 xptperiphlistmatch(cdm); 2982 break; 2983 default: 2984 cdm->status = CAM_DEV_MATCH_ERROR; 2985 break; 2986 } 2987 2988 if (cdm->status == CAM_DEV_MATCH_ERROR) 2989 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2990 else 2991 start_ccb->ccb_h.status = CAM_REQ_CMP; 2992 2993 break; 2994 } 2995 case XPT_SASYNC_CB: 2996 { 2997 struct ccb_setasync *csa; 2998 struct async_node *cur_entry; 2999 struct async_list *async_head; 3000 u_int32_t added; 3001 3002 csa = &start_ccb->csa; 3003 added = csa->event_enable; 3004 async_head = &path->device->asyncs; 3005 3006 /* 3007 * If there is already an entry for us, simply 3008 * update it. 3009 */ 3010 cur_entry = SLIST_FIRST(async_head); 3011 while (cur_entry != NULL) { 3012 if ((cur_entry->callback_arg == csa->callback_arg) 3013 && (cur_entry->callback == csa->callback)) 3014 break; 3015 cur_entry = SLIST_NEXT(cur_entry, links); 3016 } 3017 3018 if (cur_entry != NULL) { 3019 /* 3020 * If the request has no flags set, 3021 * remove the entry. 3022 */ 3023 added &= ~cur_entry->event_enable; 3024 if (csa->event_enable == 0) { 3025 SLIST_REMOVE(async_head, cur_entry, 3026 async_node, links); 3027 xpt_release_device(path->device); 3028 free(cur_entry, M_CAMXPT); 3029 } else { 3030 cur_entry->event_enable = csa->event_enable; 3031 } 3032 csa->event_enable = added; 3033 } else { 3034 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3035 M_NOWAIT); 3036 if (cur_entry == NULL) { 3037 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3038 break; 3039 } 3040 cur_entry->event_enable = csa->event_enable; 3041 cur_entry->event_lock = (path->bus->sim->mtx && 3042 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3043 cur_entry->callback_arg = csa->callback_arg; 3044 cur_entry->callback = csa->callback; 3045 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3046 xpt_acquire_device(path->device); 3047 } 3048 start_ccb->ccb_h.status = CAM_REQ_CMP; 3049 break; 3050 } 3051 case XPT_REL_SIMQ: 3052 { 3053 struct ccb_relsim *crs; 3054 struct cam_ed *dev; 3055 3056 crs = &start_ccb->crs; 3057 dev = path->device; 3058 if (dev == NULL) { 3059 3060 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3061 break; 3062 } 3063 3064 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3065 3066 /* Don't ever go below one opening */ 3067 if (crs->openings > 0) { 3068 xpt_dev_ccbq_resize(path, crs->openings); 3069 if (bootverbose) { 3070 xpt_print(path, 3071 "number of openings is now %d\n", 3072 crs->openings); 3073 } 3074 } 3075 } 3076 3077 mtx_lock(&dev->sim->devq->send_mtx); 3078 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3079 3080 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3081 3082 /* 3083 * Just extend the old timeout and decrement 3084 * the freeze count so that a single timeout 3085 * is sufficient for releasing the queue. 3086 */ 3087 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3088 callout_stop(&dev->callout); 3089 } else { 3090 3091 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3092 } 3093 3094 callout_reset_sbt(&dev->callout, 3095 SBT_1MS * crs->release_timeout, 0, 3096 xpt_release_devq_timeout, dev, 0); 3097 3098 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3099 3100 } 3101 3102 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3103 3104 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3105 /* 3106 * Decrement the freeze count so that a single 3107 * completion is still sufficient to unfreeze 3108 * the queue. 3109 */ 3110 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3111 } else { 3112 3113 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3114 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3115 } 3116 } 3117 3118 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3119 3120 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3121 || (dev->ccbq.dev_active == 0)) { 3122 3123 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3124 } else { 3125 3126 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3127 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3128 } 3129 } 3130 mtx_unlock(&dev->sim->devq->send_mtx); 3131 3132 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3133 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3134 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3135 start_ccb->ccb_h.status = CAM_REQ_CMP; 3136 break; 3137 } 3138 case XPT_DEBUG: { 3139 struct cam_path *oldpath; 3140 3141 /* Check that all request bits are supported. */ 3142 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3143 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3144 break; 3145 } 3146 3147 cam_dflags = CAM_DEBUG_NONE; 3148 if (cam_dpath != NULL) { 3149 oldpath = cam_dpath; 3150 cam_dpath = NULL; 3151 xpt_free_path(oldpath); 3152 } 3153 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3154 if (xpt_create_path(&cam_dpath, NULL, 3155 start_ccb->ccb_h.path_id, 3156 start_ccb->ccb_h.target_id, 3157 start_ccb->ccb_h.target_lun) != 3158 CAM_REQ_CMP) { 3159 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3160 } else { 3161 cam_dflags = start_ccb->cdbg.flags; 3162 start_ccb->ccb_h.status = CAM_REQ_CMP; 3163 xpt_print(cam_dpath, "debugging flags now %x\n", 3164 cam_dflags); 3165 } 3166 } else 3167 start_ccb->ccb_h.status = CAM_REQ_CMP; 3168 break; 3169 } 3170 case XPT_NOOP: 3171 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3172 xpt_freeze_devq(path, 1); 3173 start_ccb->ccb_h.status = CAM_REQ_CMP; 3174 break; 3175 case XPT_REPROBE_LUN: 3176 xpt_async(AC_INQ_CHANGED, path, NULL); 3177 start_ccb->ccb_h.status = CAM_REQ_CMP; 3178 xpt_done(start_ccb); 3179 break; 3180 default: 3181 case XPT_SDEV_TYPE: 3182 case XPT_TERM_IO: 3183 case XPT_ENG_INQ: 3184 /* XXX Implement */ 3185 xpt_print(start_ccb->ccb_h.path, 3186 "%s: CCB type %#x %s not supported\n", __func__, 3187 start_ccb->ccb_h.func_code, 3188 xpt_action_name(start_ccb->ccb_h.func_code)); 3189 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3190 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3191 xpt_done(start_ccb); 3192 } 3193 break; 3194 } 3195 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3196 ("xpt_action_default: func= %#x %s status %#x\n", 3197 start_ccb->ccb_h.func_code, 3198 xpt_action_name(start_ccb->ccb_h.func_code), 3199 start_ccb->ccb_h.status)); 3200 } 3201 3202 void 3203 xpt_polled_action(union ccb *start_ccb) 3204 { 3205 u_int32_t timeout; 3206 struct cam_sim *sim; 3207 struct cam_devq *devq; 3208 struct cam_ed *dev; 3209 struct mtx *mtx; 3210 3211 timeout = start_ccb->ccb_h.timeout * 10; 3212 sim = start_ccb->ccb_h.path->bus->sim; 3213 devq = sim->devq; 3214 mtx = sim->mtx; 3215 dev = start_ccb->ccb_h.path->device; 3216 3217 mtx_unlock(&dev->device_mtx); 3218 3219 /* 3220 * Steal an opening so that no other queued requests 3221 * can get it before us while we simulate interrupts. 3222 */ 3223 mtx_lock(&devq->send_mtx); 3224 dev->ccbq.dev_openings--; 3225 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3226 (--timeout > 0)) { 3227 mtx_unlock(&devq->send_mtx); 3228 DELAY(100); 3229 if (mtx) 3230 mtx_lock(mtx); 3231 (*(sim->sim_poll))(sim); 3232 if (mtx) 3233 mtx_unlock(mtx); 3234 camisr_runqueue(); 3235 mtx_lock(&devq->send_mtx); 3236 } 3237 dev->ccbq.dev_openings++; 3238 mtx_unlock(&devq->send_mtx); 3239 3240 if (timeout != 0) { 3241 xpt_action(start_ccb); 3242 while(--timeout > 0) { 3243 if (mtx) 3244 mtx_lock(mtx); 3245 (*(sim->sim_poll))(sim); 3246 if (mtx) 3247 mtx_unlock(mtx); 3248 camisr_runqueue(); 3249 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3250 != CAM_REQ_INPROG) 3251 break; 3252 DELAY(100); 3253 } 3254 if (timeout == 0) { 3255 /* 3256 * XXX Is it worth adding a sim_timeout entry 3257 * point so we can attempt recovery? If 3258 * this is only used for dumps, I don't think 3259 * it is. 3260 */ 3261 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3262 } 3263 } else { 3264 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3265 } 3266 3267 mtx_lock(&dev->device_mtx); 3268 } 3269 3270 /* 3271 * Schedule a peripheral driver to receive a ccb when its 3272 * target device has space for more transactions. 3273 */ 3274 void 3275 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3276 { 3277 3278 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3279 cam_periph_assert(periph, MA_OWNED); 3280 if (new_priority < periph->scheduled_priority) { 3281 periph->scheduled_priority = new_priority; 3282 xpt_run_allocq(periph, 0); 3283 } 3284 } 3285 3286 3287 /* 3288 * Schedule a device to run on a given queue. 3289 * If the device was inserted as a new entry on the queue, 3290 * return 1 meaning the device queue should be run. If we 3291 * were already queued, implying someone else has already 3292 * started the queue, return 0 so the caller doesn't attempt 3293 * to run the queue. 3294 */ 3295 static int 3296 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3297 u_int32_t new_priority) 3298 { 3299 int retval; 3300 u_int32_t old_priority; 3301 3302 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3303 3304 old_priority = pinfo->priority; 3305 3306 /* 3307 * Are we already queued? 3308 */ 3309 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3310 /* Simply reorder based on new priority */ 3311 if (new_priority < old_priority) { 3312 camq_change_priority(queue, pinfo->index, 3313 new_priority); 3314 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3315 ("changed priority to %d\n", 3316 new_priority)); 3317 retval = 1; 3318 } else 3319 retval = 0; 3320 } else { 3321 /* New entry on the queue */ 3322 if (new_priority < old_priority) 3323 pinfo->priority = new_priority; 3324 3325 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3326 ("Inserting onto queue\n")); 3327 pinfo->generation = ++queue->generation; 3328 camq_insert(queue, pinfo); 3329 retval = 1; 3330 } 3331 return (retval); 3332 } 3333 3334 static void 3335 xpt_run_allocq_task(void *context, int pending) 3336 { 3337 struct cam_periph *periph = context; 3338 3339 cam_periph_lock(periph); 3340 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3341 xpt_run_allocq(periph, 1); 3342 cam_periph_unlock(periph); 3343 cam_periph_release(periph); 3344 } 3345 3346 static void 3347 xpt_run_allocq(struct cam_periph *periph, int sleep) 3348 { 3349 struct cam_ed *device; 3350 union ccb *ccb; 3351 uint32_t prio; 3352 3353 cam_periph_assert(periph, MA_OWNED); 3354 if (periph->periph_allocating) 3355 return; 3356 periph->periph_allocating = 1; 3357 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3358 device = periph->path->device; 3359 ccb = NULL; 3360 restart: 3361 while ((prio = min(periph->scheduled_priority, 3362 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3363 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3364 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3365 3366 if (ccb == NULL && 3367 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3368 if (sleep) { 3369 ccb = xpt_get_ccb(periph); 3370 goto restart; 3371 } 3372 if (periph->flags & CAM_PERIPH_RUN_TASK) 3373 break; 3374 cam_periph_doacquire(periph); 3375 periph->flags |= CAM_PERIPH_RUN_TASK; 3376 taskqueue_enqueue(xsoftc.xpt_taskq, 3377 &periph->periph_run_task); 3378 break; 3379 } 3380 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3381 if (prio == periph->immediate_priority) { 3382 periph->immediate_priority = CAM_PRIORITY_NONE; 3383 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3384 ("waking cam_periph_getccb()\n")); 3385 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3386 periph_links.sle); 3387 wakeup(&periph->ccb_list); 3388 } else { 3389 periph->scheduled_priority = CAM_PRIORITY_NONE; 3390 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3391 ("calling periph_start()\n")); 3392 periph->periph_start(periph, ccb); 3393 } 3394 ccb = NULL; 3395 } 3396 if (ccb != NULL) 3397 xpt_release_ccb(ccb); 3398 periph->periph_allocating = 0; 3399 } 3400 3401 static void 3402 xpt_run_devq(struct cam_devq *devq) 3403 { 3404 struct mtx *mtx; 3405 3406 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3407 3408 devq->send_queue.qfrozen_cnt++; 3409 while ((devq->send_queue.entries > 0) 3410 && (devq->send_openings > 0) 3411 && (devq->send_queue.qfrozen_cnt <= 1)) { 3412 struct cam_ed *device; 3413 union ccb *work_ccb; 3414 struct cam_sim *sim; 3415 struct xpt_proto *proto; 3416 3417 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3418 CAMQ_HEAD); 3419 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3420 ("running device %p\n", device)); 3421 3422 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3423 if (work_ccb == NULL) { 3424 printf("device on run queue with no ccbs???\n"); 3425 continue; 3426 } 3427 3428 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3429 3430 mtx_lock(&xsoftc.xpt_highpower_lock); 3431 if (xsoftc.num_highpower <= 0) { 3432 /* 3433 * We got a high power command, but we 3434 * don't have any available slots. Freeze 3435 * the device queue until we have a slot 3436 * available. 3437 */ 3438 xpt_freeze_devq_device(device, 1); 3439 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3440 highpowerq_entry); 3441 3442 mtx_unlock(&xsoftc.xpt_highpower_lock); 3443 continue; 3444 } else { 3445 /* 3446 * Consume a high power slot while 3447 * this ccb runs. 3448 */ 3449 xsoftc.num_highpower--; 3450 } 3451 mtx_unlock(&xsoftc.xpt_highpower_lock); 3452 } 3453 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3454 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3455 devq->send_openings--; 3456 devq->send_active++; 3457 xpt_schedule_devq(devq, device); 3458 mtx_unlock(&devq->send_mtx); 3459 3460 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3461 /* 3462 * The client wants to freeze the queue 3463 * after this CCB is sent. 3464 */ 3465 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3466 } 3467 3468 /* In Target mode, the peripheral driver knows best... */ 3469 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3470 if ((device->inq_flags & SID_CmdQue) != 0 3471 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3472 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3473 else 3474 /* 3475 * Clear this in case of a retried CCB that 3476 * failed due to a rejected tag. 3477 */ 3478 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3479 } 3480 3481 KASSERT(device == work_ccb->ccb_h.path->device, 3482 ("device (%p) / path->device (%p) mismatch", 3483 device, work_ccb->ccb_h.path->device)); 3484 proto = xpt_proto_find(device->protocol); 3485 if (proto && proto->ops->debug_out) 3486 proto->ops->debug_out(work_ccb); 3487 3488 /* 3489 * Device queues can be shared among multiple SIM instances 3490 * that reside on different buses. Use the SIM from the 3491 * queued device, rather than the one from the calling bus. 3492 */ 3493 sim = device->sim; 3494 mtx = sim->mtx; 3495 if (mtx && !mtx_owned(mtx)) 3496 mtx_lock(mtx); 3497 else 3498 mtx = NULL; 3499 work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms 3500 (*(sim->sim_action))(sim, work_ccb); 3501 if (mtx) 3502 mtx_unlock(mtx); 3503 mtx_lock(&devq->send_mtx); 3504 } 3505 devq->send_queue.qfrozen_cnt--; 3506 } 3507 3508 /* 3509 * This function merges stuff from the slave ccb into the master ccb, while 3510 * keeping important fields in the master ccb constant. 3511 */ 3512 void 3513 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3514 { 3515 3516 /* 3517 * Pull fields that are valid for peripheral drivers to set 3518 * into the master CCB along with the CCB "payload". 3519 */ 3520 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3521 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3522 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3523 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3524 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3525 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3526 } 3527 3528 void 3529 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3530 u_int32_t priority, u_int32_t flags) 3531 { 3532 3533 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3534 ccb_h->pinfo.priority = priority; 3535 ccb_h->path = path; 3536 ccb_h->path_id = path->bus->path_id; 3537 if (path->target) 3538 ccb_h->target_id = path->target->target_id; 3539 else 3540 ccb_h->target_id = CAM_TARGET_WILDCARD; 3541 if (path->device) { 3542 ccb_h->target_lun = path->device->lun_id; 3543 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3544 } else { 3545 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3546 } 3547 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3548 ccb_h->flags = flags; 3549 ccb_h->xflags = 0; 3550 } 3551 3552 void 3553 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3554 { 3555 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3556 } 3557 3558 /* Path manipulation functions */ 3559 cam_status 3560 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3561 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3562 { 3563 struct cam_path *path; 3564 cam_status status; 3565 3566 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3567 3568 if (path == NULL) { 3569 status = CAM_RESRC_UNAVAIL; 3570 return(status); 3571 } 3572 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3573 if (status != CAM_REQ_CMP) { 3574 free(path, M_CAMPATH); 3575 path = NULL; 3576 } 3577 *new_path_ptr = path; 3578 return (status); 3579 } 3580 3581 cam_status 3582 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3583 struct cam_periph *periph, path_id_t path_id, 3584 target_id_t target_id, lun_id_t lun_id) 3585 { 3586 3587 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3588 lun_id)); 3589 } 3590 3591 cam_status 3592 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3593 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3594 { 3595 struct cam_eb *bus; 3596 struct cam_et *target; 3597 struct cam_ed *device; 3598 cam_status status; 3599 3600 status = CAM_REQ_CMP; /* Completed without error */ 3601 target = NULL; /* Wildcarded */ 3602 device = NULL; /* Wildcarded */ 3603 3604 /* 3605 * We will potentially modify the EDT, so block interrupts 3606 * that may attempt to create cam paths. 3607 */ 3608 bus = xpt_find_bus(path_id); 3609 if (bus == NULL) { 3610 status = CAM_PATH_INVALID; 3611 } else { 3612 xpt_lock_buses(); 3613 mtx_lock(&bus->eb_mtx); 3614 target = xpt_find_target(bus, target_id); 3615 if (target == NULL) { 3616 /* Create one */ 3617 struct cam_et *new_target; 3618 3619 new_target = xpt_alloc_target(bus, target_id); 3620 if (new_target == NULL) { 3621 status = CAM_RESRC_UNAVAIL; 3622 } else { 3623 target = new_target; 3624 } 3625 } 3626 xpt_unlock_buses(); 3627 if (target != NULL) { 3628 device = xpt_find_device(target, lun_id); 3629 if (device == NULL) { 3630 /* Create one */ 3631 struct cam_ed *new_device; 3632 3633 new_device = 3634 (*(bus->xport->ops->alloc_device))(bus, 3635 target, 3636 lun_id); 3637 if (new_device == NULL) { 3638 status = CAM_RESRC_UNAVAIL; 3639 } else { 3640 device = new_device; 3641 } 3642 } 3643 } 3644 mtx_unlock(&bus->eb_mtx); 3645 } 3646 3647 /* 3648 * Only touch the user's data if we are successful. 3649 */ 3650 if (status == CAM_REQ_CMP) { 3651 new_path->periph = perph; 3652 new_path->bus = bus; 3653 new_path->target = target; 3654 new_path->device = device; 3655 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3656 } else { 3657 if (device != NULL) 3658 xpt_release_device(device); 3659 if (target != NULL) 3660 xpt_release_target(target); 3661 if (bus != NULL) 3662 xpt_release_bus(bus); 3663 } 3664 return (status); 3665 } 3666 3667 cam_status 3668 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3669 { 3670 struct cam_path *new_path; 3671 3672 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3673 if (new_path == NULL) 3674 return(CAM_RESRC_UNAVAIL); 3675 xpt_copy_path(new_path, path); 3676 *new_path_ptr = new_path; 3677 return (CAM_REQ_CMP); 3678 } 3679 3680 void 3681 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3682 { 3683 3684 *new_path = *path; 3685 if (path->bus != NULL) 3686 xpt_acquire_bus(path->bus); 3687 if (path->target != NULL) 3688 xpt_acquire_target(path->target); 3689 if (path->device != NULL) 3690 xpt_acquire_device(path->device); 3691 } 3692 3693 void 3694 xpt_release_path(struct cam_path *path) 3695 { 3696 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3697 if (path->device != NULL) { 3698 xpt_release_device(path->device); 3699 path->device = NULL; 3700 } 3701 if (path->target != NULL) { 3702 xpt_release_target(path->target); 3703 path->target = NULL; 3704 } 3705 if (path->bus != NULL) { 3706 xpt_release_bus(path->bus); 3707 path->bus = NULL; 3708 } 3709 } 3710 3711 void 3712 xpt_free_path(struct cam_path *path) 3713 { 3714 3715 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3716 xpt_release_path(path); 3717 free(path, M_CAMPATH); 3718 } 3719 3720 void 3721 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3722 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3723 { 3724 3725 xpt_lock_buses(); 3726 if (bus_ref) { 3727 if (path->bus) 3728 *bus_ref = path->bus->refcount; 3729 else 3730 *bus_ref = 0; 3731 } 3732 if (periph_ref) { 3733 if (path->periph) 3734 *periph_ref = path->periph->refcount; 3735 else 3736 *periph_ref = 0; 3737 } 3738 xpt_unlock_buses(); 3739 if (target_ref) { 3740 if (path->target) 3741 *target_ref = path->target->refcount; 3742 else 3743 *target_ref = 0; 3744 } 3745 if (device_ref) { 3746 if (path->device) 3747 *device_ref = path->device->refcount; 3748 else 3749 *device_ref = 0; 3750 } 3751 } 3752 3753 /* 3754 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3755 * in path1, 2 for match with wildcards in path2. 3756 */ 3757 int 3758 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3759 { 3760 int retval = 0; 3761 3762 if (path1->bus != path2->bus) { 3763 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3764 retval = 1; 3765 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3766 retval = 2; 3767 else 3768 return (-1); 3769 } 3770 if (path1->target != path2->target) { 3771 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3772 if (retval == 0) 3773 retval = 1; 3774 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3775 retval = 2; 3776 else 3777 return (-1); 3778 } 3779 if (path1->device != path2->device) { 3780 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3781 if (retval == 0) 3782 retval = 1; 3783 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3784 retval = 2; 3785 else 3786 return (-1); 3787 } 3788 return (retval); 3789 } 3790 3791 int 3792 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3793 { 3794 int retval = 0; 3795 3796 if (path->bus != dev->target->bus) { 3797 if (path->bus->path_id == CAM_BUS_WILDCARD) 3798 retval = 1; 3799 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3800 retval = 2; 3801 else 3802 return (-1); 3803 } 3804 if (path->target != dev->target) { 3805 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3806 if (retval == 0) 3807 retval = 1; 3808 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3809 retval = 2; 3810 else 3811 return (-1); 3812 } 3813 if (path->device != dev) { 3814 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3815 if (retval == 0) 3816 retval = 1; 3817 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3818 retval = 2; 3819 else 3820 return (-1); 3821 } 3822 return (retval); 3823 } 3824 3825 void 3826 xpt_print_path(struct cam_path *path) 3827 { 3828 struct sbuf sb; 3829 char buffer[XPT_PRINT_LEN]; 3830 3831 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3832 xpt_path_sbuf(path, &sb); 3833 sbuf_finish(&sb); 3834 printf("%s", sbuf_data(&sb)); 3835 sbuf_delete(&sb); 3836 } 3837 3838 void 3839 xpt_print_device(struct cam_ed *device) 3840 { 3841 3842 if (device == NULL) 3843 printf("(nopath): "); 3844 else { 3845 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3846 device->sim->unit_number, 3847 device->sim->bus_id, 3848 device->target->target_id, 3849 (uintmax_t)device->lun_id); 3850 } 3851 } 3852 3853 void 3854 xpt_print(struct cam_path *path, const char *fmt, ...) 3855 { 3856 va_list ap; 3857 struct sbuf sb; 3858 char buffer[XPT_PRINT_LEN]; 3859 3860 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3861 3862 xpt_path_sbuf(path, &sb); 3863 va_start(ap, fmt); 3864 sbuf_vprintf(&sb, fmt, ap); 3865 va_end(ap); 3866 3867 sbuf_finish(&sb); 3868 printf("%s", sbuf_data(&sb)); 3869 sbuf_delete(&sb); 3870 } 3871 3872 int 3873 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3874 { 3875 struct sbuf sb; 3876 int len; 3877 3878 sbuf_new(&sb, str, str_len, 0); 3879 len = xpt_path_sbuf(path, &sb); 3880 sbuf_finish(&sb); 3881 return (len); 3882 } 3883 3884 int 3885 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3886 { 3887 3888 if (path == NULL) 3889 sbuf_printf(sb, "(nopath): "); 3890 else { 3891 if (path->periph != NULL) 3892 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3893 path->periph->unit_number); 3894 else 3895 sbuf_printf(sb, "(noperiph:"); 3896 3897 if (path->bus != NULL) 3898 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3899 path->bus->sim->unit_number, 3900 path->bus->sim->bus_id); 3901 else 3902 sbuf_printf(sb, "nobus:"); 3903 3904 if (path->target != NULL) 3905 sbuf_printf(sb, "%d:", path->target->target_id); 3906 else 3907 sbuf_printf(sb, "X:"); 3908 3909 if (path->device != NULL) 3910 sbuf_printf(sb, "%jx): ", 3911 (uintmax_t)path->device->lun_id); 3912 else 3913 sbuf_printf(sb, "X): "); 3914 } 3915 3916 return(sbuf_len(sb)); 3917 } 3918 3919 path_id_t 3920 xpt_path_path_id(struct cam_path *path) 3921 { 3922 return(path->bus->path_id); 3923 } 3924 3925 target_id_t 3926 xpt_path_target_id(struct cam_path *path) 3927 { 3928 if (path->target != NULL) 3929 return (path->target->target_id); 3930 else 3931 return (CAM_TARGET_WILDCARD); 3932 } 3933 3934 lun_id_t 3935 xpt_path_lun_id(struct cam_path *path) 3936 { 3937 if (path->device != NULL) 3938 return (path->device->lun_id); 3939 else 3940 return (CAM_LUN_WILDCARD); 3941 } 3942 3943 struct cam_sim * 3944 xpt_path_sim(struct cam_path *path) 3945 { 3946 3947 return (path->bus->sim); 3948 } 3949 3950 struct cam_periph* 3951 xpt_path_periph(struct cam_path *path) 3952 { 3953 3954 return (path->periph); 3955 } 3956 3957 /* 3958 * Release a CAM control block for the caller. Remit the cost of the structure 3959 * to the device referenced by the path. If the this device had no 'credits' 3960 * and peripheral drivers have registered async callbacks for this notification 3961 * call them now. 3962 */ 3963 void 3964 xpt_release_ccb(union ccb *free_ccb) 3965 { 3966 struct cam_ed *device; 3967 struct cam_periph *periph; 3968 3969 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3970 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3971 device = free_ccb->ccb_h.path->device; 3972 periph = free_ccb->ccb_h.path->periph; 3973 3974 xpt_free_ccb(free_ccb); 3975 periph->periph_allocated--; 3976 cam_ccbq_release_opening(&device->ccbq); 3977 xpt_run_allocq(periph, 0); 3978 } 3979 3980 /* Functions accessed by SIM drivers */ 3981 3982 static struct xpt_xport_ops xport_default_ops = { 3983 .alloc_device = xpt_alloc_device_default, 3984 .action = xpt_action_default, 3985 .async = xpt_dev_async_default, 3986 }; 3987 static struct xpt_xport xport_default = { 3988 .xport = XPORT_UNKNOWN, 3989 .name = "unknown", 3990 .ops = &xport_default_ops, 3991 }; 3992 3993 CAM_XPT_XPORT(xport_default); 3994 3995 /* 3996 * A sim structure, listing the SIM entry points and instance 3997 * identification info is passed to xpt_bus_register to hook the SIM 3998 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3999 * for this new bus and places it in the array of buses and assigns 4000 * it a path_id. The path_id may be influenced by "hard wiring" 4001 * information specified by the user. Once interrupt services are 4002 * available, the bus will be probed. 4003 */ 4004 int32_t 4005 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4006 { 4007 struct cam_eb *new_bus; 4008 struct cam_eb *old_bus; 4009 struct ccb_pathinq cpi; 4010 struct cam_path *path; 4011 cam_status status; 4012 4013 sim->bus_id = bus; 4014 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4015 M_CAMXPT, M_NOWAIT|M_ZERO); 4016 if (new_bus == NULL) { 4017 /* Couldn't satisfy request */ 4018 return (CAM_RESRC_UNAVAIL); 4019 } 4020 4021 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4022 TAILQ_INIT(&new_bus->et_entries); 4023 cam_sim_hold(sim); 4024 new_bus->sim = sim; 4025 timevalclear(&new_bus->last_reset); 4026 new_bus->flags = 0; 4027 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4028 new_bus->generation = 0; 4029 4030 xpt_lock_buses(); 4031 sim->path_id = new_bus->path_id = 4032 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4033 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4034 while (old_bus != NULL 4035 && old_bus->path_id < new_bus->path_id) 4036 old_bus = TAILQ_NEXT(old_bus, links); 4037 if (old_bus != NULL) 4038 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4039 else 4040 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4041 xsoftc.bus_generation++; 4042 xpt_unlock_buses(); 4043 4044 /* 4045 * Set a default transport so that a PATH_INQ can be issued to 4046 * the SIM. This will then allow for probing and attaching of 4047 * a more appropriate transport. 4048 */ 4049 new_bus->xport = &xport_default; 4050 4051 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4052 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4053 if (status != CAM_REQ_CMP) { 4054 xpt_release_bus(new_bus); 4055 free(path, M_CAMXPT); 4056 return (CAM_RESRC_UNAVAIL); 4057 } 4058 4059 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 4060 cpi.ccb_h.func_code = XPT_PATH_INQ; 4061 xpt_action((union ccb *)&cpi); 4062 4063 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4064 struct xpt_xport **xpt; 4065 4066 SET_FOREACH(xpt, cam_xpt_xport_set) { 4067 if ((*xpt)->xport == cpi.transport) { 4068 new_bus->xport = *xpt; 4069 break; 4070 } 4071 } 4072 if (new_bus->xport == NULL) { 4073 xpt_print(path, 4074 "No transport found for %d\n", cpi.transport); 4075 xpt_release_bus(new_bus); 4076 free(path, M_CAMXPT); 4077 return (CAM_RESRC_UNAVAIL); 4078 } 4079 } 4080 4081 /* Notify interested parties */ 4082 if (sim->path_id != CAM_XPT_PATH_ID) { 4083 4084 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4085 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4086 union ccb *scan_ccb; 4087 4088 /* Initiate bus rescan. */ 4089 scan_ccb = xpt_alloc_ccb_nowait(); 4090 if (scan_ccb != NULL) { 4091 scan_ccb->ccb_h.path = path; 4092 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4093 scan_ccb->crcn.flags = 0; 4094 xpt_rescan(scan_ccb); 4095 } else { 4096 xpt_print(path, 4097 "Can't allocate CCB to scan bus\n"); 4098 xpt_free_path(path); 4099 } 4100 } else 4101 xpt_free_path(path); 4102 } else 4103 xpt_free_path(path); 4104 return (CAM_SUCCESS); 4105 } 4106 4107 int32_t 4108 xpt_bus_deregister(path_id_t pathid) 4109 { 4110 struct cam_path bus_path; 4111 cam_status status; 4112 4113 status = xpt_compile_path(&bus_path, NULL, pathid, 4114 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4115 if (status != CAM_REQ_CMP) 4116 return (status); 4117 4118 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4119 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4120 4121 /* Release the reference count held while registered. */ 4122 xpt_release_bus(bus_path.bus); 4123 xpt_release_path(&bus_path); 4124 4125 return (CAM_REQ_CMP); 4126 } 4127 4128 static path_id_t 4129 xptnextfreepathid(void) 4130 { 4131 struct cam_eb *bus; 4132 path_id_t pathid; 4133 const char *strval; 4134 4135 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4136 pathid = 0; 4137 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4138 retry: 4139 /* Find an unoccupied pathid */ 4140 while (bus != NULL && bus->path_id <= pathid) { 4141 if (bus->path_id == pathid) 4142 pathid++; 4143 bus = TAILQ_NEXT(bus, links); 4144 } 4145 4146 /* 4147 * Ensure that this pathid is not reserved for 4148 * a bus that may be registered in the future. 4149 */ 4150 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4151 ++pathid; 4152 /* Start the search over */ 4153 goto retry; 4154 } 4155 return (pathid); 4156 } 4157 4158 static path_id_t 4159 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4160 { 4161 path_id_t pathid; 4162 int i, dunit, val; 4163 char buf[32]; 4164 const char *dname; 4165 4166 pathid = CAM_XPT_PATH_ID; 4167 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4168 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4169 return (pathid); 4170 i = 0; 4171 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4172 if (strcmp(dname, "scbus")) { 4173 /* Avoid a bit of foot shooting. */ 4174 continue; 4175 } 4176 if (dunit < 0) /* unwired?! */ 4177 continue; 4178 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4179 if (sim_bus == val) { 4180 pathid = dunit; 4181 break; 4182 } 4183 } else if (sim_bus == 0) { 4184 /* Unspecified matches bus 0 */ 4185 pathid = dunit; 4186 break; 4187 } else { 4188 printf("Ambiguous scbus configuration for %s%d " 4189 "bus %d, cannot wire down. The kernel " 4190 "config entry for scbus%d should " 4191 "specify a controller bus.\n" 4192 "Scbus will be assigned dynamically.\n", 4193 sim_name, sim_unit, sim_bus, dunit); 4194 break; 4195 } 4196 } 4197 4198 if (pathid == CAM_XPT_PATH_ID) 4199 pathid = xptnextfreepathid(); 4200 return (pathid); 4201 } 4202 4203 static const char * 4204 xpt_async_string(u_int32_t async_code) 4205 { 4206 4207 switch (async_code) { 4208 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4209 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4210 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4211 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4212 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4213 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4214 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4215 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4216 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4217 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4218 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4219 case AC_CONTRACT: return ("AC_CONTRACT"); 4220 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4221 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4222 } 4223 return ("AC_UNKNOWN"); 4224 } 4225 4226 static int 4227 xpt_async_size(u_int32_t async_code) 4228 { 4229 4230 switch (async_code) { 4231 case AC_BUS_RESET: return (0); 4232 case AC_UNSOL_RESEL: return (0); 4233 case AC_SCSI_AEN: return (0); 4234 case AC_SENT_BDR: return (0); 4235 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4236 case AC_PATH_DEREGISTERED: return (0); 4237 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4238 case AC_LOST_DEVICE: return (0); 4239 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4240 case AC_INQ_CHANGED: return (0); 4241 case AC_GETDEV_CHANGED: return (0); 4242 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4243 case AC_ADVINFO_CHANGED: return (-1); 4244 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4245 } 4246 return (0); 4247 } 4248 4249 static int 4250 xpt_async_process_dev(struct cam_ed *device, void *arg) 4251 { 4252 union ccb *ccb = arg; 4253 struct cam_path *path = ccb->ccb_h.path; 4254 void *async_arg = ccb->casync.async_arg_ptr; 4255 u_int32_t async_code = ccb->casync.async_code; 4256 int relock; 4257 4258 if (path->device != device 4259 && path->device->lun_id != CAM_LUN_WILDCARD 4260 && device->lun_id != CAM_LUN_WILDCARD) 4261 return (1); 4262 4263 /* 4264 * The async callback could free the device. 4265 * If it is a broadcast async, it doesn't hold 4266 * device reference, so take our own reference. 4267 */ 4268 xpt_acquire_device(device); 4269 4270 /* 4271 * If async for specific device is to be delivered to 4272 * the wildcard client, take the specific device lock. 4273 * XXX: We may need a way for client to specify it. 4274 */ 4275 if ((device->lun_id == CAM_LUN_WILDCARD && 4276 path->device->lun_id != CAM_LUN_WILDCARD) || 4277 (device->target->target_id == CAM_TARGET_WILDCARD && 4278 path->target->target_id != CAM_TARGET_WILDCARD) || 4279 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4280 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4281 mtx_unlock(&device->device_mtx); 4282 xpt_path_lock(path); 4283 relock = 1; 4284 } else 4285 relock = 0; 4286 4287 (*(device->target->bus->xport->ops->async))(async_code, 4288 device->target->bus, device->target, device, async_arg); 4289 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4290 4291 if (relock) { 4292 xpt_path_unlock(path); 4293 mtx_lock(&device->device_mtx); 4294 } 4295 xpt_release_device(device); 4296 return (1); 4297 } 4298 4299 static int 4300 xpt_async_process_tgt(struct cam_et *target, void *arg) 4301 { 4302 union ccb *ccb = arg; 4303 struct cam_path *path = ccb->ccb_h.path; 4304 4305 if (path->target != target 4306 && path->target->target_id != CAM_TARGET_WILDCARD 4307 && target->target_id != CAM_TARGET_WILDCARD) 4308 return (1); 4309 4310 if (ccb->casync.async_code == AC_SENT_BDR) { 4311 /* Update our notion of when the last reset occurred */ 4312 microtime(&target->last_reset); 4313 } 4314 4315 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4316 } 4317 4318 static void 4319 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4320 { 4321 struct cam_eb *bus; 4322 struct cam_path *path; 4323 void *async_arg; 4324 u_int32_t async_code; 4325 4326 path = ccb->ccb_h.path; 4327 async_code = ccb->casync.async_code; 4328 async_arg = ccb->casync.async_arg_ptr; 4329 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4330 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4331 bus = path->bus; 4332 4333 if (async_code == AC_BUS_RESET) { 4334 /* Update our notion of when the last reset occurred */ 4335 microtime(&bus->last_reset); 4336 } 4337 4338 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4339 4340 /* 4341 * If this wasn't a fully wildcarded async, tell all 4342 * clients that want all async events. 4343 */ 4344 if (bus != xpt_periph->path->bus) { 4345 xpt_path_lock(xpt_periph->path); 4346 xpt_async_process_dev(xpt_periph->path->device, ccb); 4347 xpt_path_unlock(xpt_periph->path); 4348 } 4349 4350 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4351 xpt_release_devq(path, 1, TRUE); 4352 else 4353 xpt_release_simq(path->bus->sim, TRUE); 4354 if (ccb->casync.async_arg_size > 0) 4355 free(async_arg, M_CAMXPT); 4356 xpt_free_path(path); 4357 xpt_free_ccb(ccb); 4358 } 4359 4360 static void 4361 xpt_async_bcast(struct async_list *async_head, 4362 u_int32_t async_code, 4363 struct cam_path *path, void *async_arg) 4364 { 4365 struct async_node *cur_entry; 4366 struct mtx *mtx; 4367 4368 cur_entry = SLIST_FIRST(async_head); 4369 while (cur_entry != NULL) { 4370 struct async_node *next_entry; 4371 /* 4372 * Grab the next list entry before we call the current 4373 * entry's callback. This is because the callback function 4374 * can delete its async callback entry. 4375 */ 4376 next_entry = SLIST_NEXT(cur_entry, links); 4377 if ((cur_entry->event_enable & async_code) != 0) { 4378 mtx = cur_entry->event_lock ? 4379 path->device->sim->mtx : NULL; 4380 if (mtx) 4381 mtx_lock(mtx); 4382 cur_entry->callback(cur_entry->callback_arg, 4383 async_code, path, 4384 async_arg); 4385 if (mtx) 4386 mtx_unlock(mtx); 4387 } 4388 cur_entry = next_entry; 4389 } 4390 } 4391 4392 void 4393 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4394 { 4395 union ccb *ccb; 4396 int size; 4397 4398 ccb = xpt_alloc_ccb_nowait(); 4399 if (ccb == NULL) { 4400 xpt_print(path, "Can't allocate CCB to send %s\n", 4401 xpt_async_string(async_code)); 4402 return; 4403 } 4404 4405 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4406 xpt_print(path, "Can't allocate path to send %s\n", 4407 xpt_async_string(async_code)); 4408 xpt_free_ccb(ccb); 4409 return; 4410 } 4411 ccb->ccb_h.path->periph = NULL; 4412 ccb->ccb_h.func_code = XPT_ASYNC; 4413 ccb->ccb_h.cbfcnp = xpt_async_process; 4414 ccb->ccb_h.flags |= CAM_UNLOCKED; 4415 ccb->casync.async_code = async_code; 4416 ccb->casync.async_arg_size = 0; 4417 size = xpt_async_size(async_code); 4418 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4419 ("xpt_async: func %#x %s aync_code %d %s\n", 4420 ccb->ccb_h.func_code, 4421 xpt_action_name(ccb->ccb_h.func_code), 4422 async_code, 4423 xpt_async_string(async_code))); 4424 if (size > 0 && async_arg != NULL) { 4425 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4426 if (ccb->casync.async_arg_ptr == NULL) { 4427 xpt_print(path, "Can't allocate argument to send %s\n", 4428 xpt_async_string(async_code)); 4429 xpt_free_path(ccb->ccb_h.path); 4430 xpt_free_ccb(ccb); 4431 return; 4432 } 4433 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4434 ccb->casync.async_arg_size = size; 4435 } else if (size < 0) { 4436 ccb->casync.async_arg_ptr = async_arg; 4437 ccb->casync.async_arg_size = size; 4438 } 4439 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4440 xpt_freeze_devq(path, 1); 4441 else 4442 xpt_freeze_simq(path->bus->sim, 1); 4443 xpt_done(ccb); 4444 } 4445 4446 static void 4447 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4448 struct cam_et *target, struct cam_ed *device, 4449 void *async_arg) 4450 { 4451 4452 /* 4453 * We only need to handle events for real devices. 4454 */ 4455 if (target->target_id == CAM_TARGET_WILDCARD 4456 || device->lun_id == CAM_LUN_WILDCARD) 4457 return; 4458 4459 printf("%s called\n", __func__); 4460 } 4461 4462 static uint32_t 4463 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4464 { 4465 struct cam_devq *devq; 4466 uint32_t freeze; 4467 4468 devq = dev->sim->devq; 4469 mtx_assert(&devq->send_mtx, MA_OWNED); 4470 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4471 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4472 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4473 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4474 /* Remove frozen device from sendq. */ 4475 if (device_is_queued(dev)) 4476 camq_remove(&devq->send_queue, dev->devq_entry.index); 4477 return (freeze); 4478 } 4479 4480 u_int32_t 4481 xpt_freeze_devq(struct cam_path *path, u_int count) 4482 { 4483 struct cam_ed *dev = path->device; 4484 struct cam_devq *devq; 4485 uint32_t freeze; 4486 4487 devq = dev->sim->devq; 4488 mtx_lock(&devq->send_mtx); 4489 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4490 freeze = xpt_freeze_devq_device(dev, count); 4491 mtx_unlock(&devq->send_mtx); 4492 return (freeze); 4493 } 4494 4495 u_int32_t 4496 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4497 { 4498 struct cam_devq *devq; 4499 uint32_t freeze; 4500 4501 devq = sim->devq; 4502 mtx_lock(&devq->send_mtx); 4503 freeze = (devq->send_queue.qfrozen_cnt += count); 4504 mtx_unlock(&devq->send_mtx); 4505 return (freeze); 4506 } 4507 4508 static void 4509 xpt_release_devq_timeout(void *arg) 4510 { 4511 struct cam_ed *dev; 4512 struct cam_devq *devq; 4513 4514 dev = (struct cam_ed *)arg; 4515 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4516 devq = dev->sim->devq; 4517 mtx_assert(&devq->send_mtx, MA_OWNED); 4518 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4519 xpt_run_devq(devq); 4520 } 4521 4522 void 4523 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4524 { 4525 struct cam_ed *dev; 4526 struct cam_devq *devq; 4527 4528 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4529 count, run_queue)); 4530 dev = path->device; 4531 devq = dev->sim->devq; 4532 mtx_lock(&devq->send_mtx); 4533 if (xpt_release_devq_device(dev, count, run_queue)) 4534 xpt_run_devq(dev->sim->devq); 4535 mtx_unlock(&devq->send_mtx); 4536 } 4537 4538 static int 4539 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4540 { 4541 4542 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4543 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4544 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4545 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4546 if (count > dev->ccbq.queue.qfrozen_cnt) { 4547 #ifdef INVARIANTS 4548 printf("xpt_release_devq(): requested %u > present %u\n", 4549 count, dev->ccbq.queue.qfrozen_cnt); 4550 #endif 4551 count = dev->ccbq.queue.qfrozen_cnt; 4552 } 4553 dev->ccbq.queue.qfrozen_cnt -= count; 4554 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4555 /* 4556 * No longer need to wait for a successful 4557 * command completion. 4558 */ 4559 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4560 /* 4561 * Remove any timeouts that might be scheduled 4562 * to release this queue. 4563 */ 4564 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4565 callout_stop(&dev->callout); 4566 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4567 } 4568 /* 4569 * Now that we are unfrozen schedule the 4570 * device so any pending transactions are 4571 * run. 4572 */ 4573 xpt_schedule_devq(dev->sim->devq, dev); 4574 } else 4575 run_queue = 0; 4576 return (run_queue); 4577 } 4578 4579 void 4580 xpt_release_simq(struct cam_sim *sim, int run_queue) 4581 { 4582 struct cam_devq *devq; 4583 4584 devq = sim->devq; 4585 mtx_lock(&devq->send_mtx); 4586 if (devq->send_queue.qfrozen_cnt <= 0) { 4587 #ifdef INVARIANTS 4588 printf("xpt_release_simq: requested 1 > present %u\n", 4589 devq->send_queue.qfrozen_cnt); 4590 #endif 4591 } else 4592 devq->send_queue.qfrozen_cnt--; 4593 if (devq->send_queue.qfrozen_cnt == 0) { 4594 /* 4595 * If there is a timeout scheduled to release this 4596 * sim queue, remove it. The queue frozen count is 4597 * already at 0. 4598 */ 4599 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4600 callout_stop(&sim->callout); 4601 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4602 } 4603 if (run_queue) { 4604 /* 4605 * Now that we are unfrozen run the send queue. 4606 */ 4607 xpt_run_devq(sim->devq); 4608 } 4609 } 4610 mtx_unlock(&devq->send_mtx); 4611 } 4612 4613 /* 4614 * XXX Appears to be unused. 4615 */ 4616 static void 4617 xpt_release_simq_timeout(void *arg) 4618 { 4619 struct cam_sim *sim; 4620 4621 sim = (struct cam_sim *)arg; 4622 xpt_release_simq(sim, /* run_queue */ TRUE); 4623 } 4624 4625 void 4626 xpt_done(union ccb *done_ccb) 4627 { 4628 struct cam_doneq *queue; 4629 int run, hash; 4630 4631 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4632 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4633 done_ccb->csio.bio != NULL) 4634 biotrack(done_ccb->csio.bio, __func__); 4635 #endif 4636 4637 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4638 ("xpt_done: func= %#x %s status %#x\n", 4639 done_ccb->ccb_h.func_code, 4640 xpt_action_name(done_ccb->ccb_h.func_code), 4641 done_ccb->ccb_h.status)); 4642 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4643 return; 4644 4645 /* Store the time the ccb was in the sim */ 4646 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4647 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4648 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4649 queue = &cam_doneqs[hash]; 4650 mtx_lock(&queue->cam_doneq_mtx); 4651 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4652 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4653 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4654 mtx_unlock(&queue->cam_doneq_mtx); 4655 if (run) 4656 wakeup(&queue->cam_doneq); 4657 } 4658 4659 void 4660 xpt_done_direct(union ccb *done_ccb) 4661 { 4662 4663 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4664 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4665 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4666 return; 4667 4668 /* Store the time the ccb was in the sim */ 4669 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4670 xpt_done_process(&done_ccb->ccb_h); 4671 } 4672 4673 union ccb * 4674 xpt_alloc_ccb() 4675 { 4676 union ccb *new_ccb; 4677 4678 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4679 return (new_ccb); 4680 } 4681 4682 union ccb * 4683 xpt_alloc_ccb_nowait() 4684 { 4685 union ccb *new_ccb; 4686 4687 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4688 return (new_ccb); 4689 } 4690 4691 void 4692 xpt_free_ccb(union ccb *free_ccb) 4693 { 4694 free(free_ccb, M_CAMCCB); 4695 } 4696 4697 4698 4699 /* Private XPT functions */ 4700 4701 /* 4702 * Get a CAM control block for the caller. Charge the structure to the device 4703 * referenced by the path. If we don't have sufficient resources to allocate 4704 * more ccbs, we return NULL. 4705 */ 4706 static union ccb * 4707 xpt_get_ccb_nowait(struct cam_periph *periph) 4708 { 4709 union ccb *new_ccb; 4710 4711 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4712 if (new_ccb == NULL) 4713 return (NULL); 4714 periph->periph_allocated++; 4715 cam_ccbq_take_opening(&periph->path->device->ccbq); 4716 return (new_ccb); 4717 } 4718 4719 static union ccb * 4720 xpt_get_ccb(struct cam_periph *periph) 4721 { 4722 union ccb *new_ccb; 4723 4724 cam_periph_unlock(periph); 4725 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4726 cam_periph_lock(periph); 4727 periph->periph_allocated++; 4728 cam_ccbq_take_opening(&periph->path->device->ccbq); 4729 return (new_ccb); 4730 } 4731 4732 union ccb * 4733 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4734 { 4735 struct ccb_hdr *ccb_h; 4736 4737 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4738 cam_periph_assert(periph, MA_OWNED); 4739 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4740 ccb_h->pinfo.priority != priority) { 4741 if (priority < periph->immediate_priority) { 4742 periph->immediate_priority = priority; 4743 xpt_run_allocq(periph, 0); 4744 } else 4745 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4746 "cgticb", 0); 4747 } 4748 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4749 return ((union ccb *)ccb_h); 4750 } 4751 4752 static void 4753 xpt_acquire_bus(struct cam_eb *bus) 4754 { 4755 4756 xpt_lock_buses(); 4757 bus->refcount++; 4758 xpt_unlock_buses(); 4759 } 4760 4761 static void 4762 xpt_release_bus(struct cam_eb *bus) 4763 { 4764 4765 xpt_lock_buses(); 4766 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4767 if (--bus->refcount > 0) { 4768 xpt_unlock_buses(); 4769 return; 4770 } 4771 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4772 xsoftc.bus_generation++; 4773 xpt_unlock_buses(); 4774 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4775 ("destroying bus, but target list is not empty")); 4776 cam_sim_release(bus->sim); 4777 mtx_destroy(&bus->eb_mtx); 4778 free(bus, M_CAMXPT); 4779 } 4780 4781 static struct cam_et * 4782 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4783 { 4784 struct cam_et *cur_target, *target; 4785 4786 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4787 mtx_assert(&bus->eb_mtx, MA_OWNED); 4788 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4789 M_NOWAIT|M_ZERO); 4790 if (target == NULL) 4791 return (NULL); 4792 4793 TAILQ_INIT(&target->ed_entries); 4794 target->bus = bus; 4795 target->target_id = target_id; 4796 target->refcount = 1; 4797 target->generation = 0; 4798 target->luns = NULL; 4799 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4800 timevalclear(&target->last_reset); 4801 /* 4802 * Hold a reference to our parent bus so it 4803 * will not go away before we do. 4804 */ 4805 bus->refcount++; 4806 4807 /* Insertion sort into our bus's target list */ 4808 cur_target = TAILQ_FIRST(&bus->et_entries); 4809 while (cur_target != NULL && cur_target->target_id < target_id) 4810 cur_target = TAILQ_NEXT(cur_target, links); 4811 if (cur_target != NULL) { 4812 TAILQ_INSERT_BEFORE(cur_target, target, links); 4813 } else { 4814 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4815 } 4816 bus->generation++; 4817 return (target); 4818 } 4819 4820 static void 4821 xpt_acquire_target(struct cam_et *target) 4822 { 4823 struct cam_eb *bus = target->bus; 4824 4825 mtx_lock(&bus->eb_mtx); 4826 target->refcount++; 4827 mtx_unlock(&bus->eb_mtx); 4828 } 4829 4830 static void 4831 xpt_release_target(struct cam_et *target) 4832 { 4833 struct cam_eb *bus = target->bus; 4834 4835 mtx_lock(&bus->eb_mtx); 4836 if (--target->refcount > 0) { 4837 mtx_unlock(&bus->eb_mtx); 4838 return; 4839 } 4840 TAILQ_REMOVE(&bus->et_entries, target, links); 4841 bus->generation++; 4842 mtx_unlock(&bus->eb_mtx); 4843 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4844 ("destroying target, but device list is not empty")); 4845 xpt_release_bus(bus); 4846 mtx_destroy(&target->luns_mtx); 4847 if (target->luns) 4848 free(target->luns, M_CAMXPT); 4849 free(target, M_CAMXPT); 4850 } 4851 4852 static struct cam_ed * 4853 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4854 lun_id_t lun_id) 4855 { 4856 struct cam_ed *device; 4857 4858 device = xpt_alloc_device(bus, target, lun_id); 4859 if (device == NULL) 4860 return (NULL); 4861 4862 device->mintags = 1; 4863 device->maxtags = 1; 4864 return (device); 4865 } 4866 4867 static void 4868 xpt_destroy_device(void *context, int pending) 4869 { 4870 struct cam_ed *device = context; 4871 4872 mtx_lock(&device->device_mtx); 4873 mtx_destroy(&device->device_mtx); 4874 free(device, M_CAMDEV); 4875 } 4876 4877 struct cam_ed * 4878 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4879 { 4880 struct cam_ed *cur_device, *device; 4881 struct cam_devq *devq; 4882 cam_status status; 4883 4884 mtx_assert(&bus->eb_mtx, MA_OWNED); 4885 /* Make space for us in the device queue on our bus */ 4886 devq = bus->sim->devq; 4887 mtx_lock(&devq->send_mtx); 4888 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4889 mtx_unlock(&devq->send_mtx); 4890 if (status != CAM_REQ_CMP) 4891 return (NULL); 4892 4893 device = (struct cam_ed *)malloc(sizeof(*device), 4894 M_CAMDEV, M_NOWAIT|M_ZERO); 4895 if (device == NULL) 4896 return (NULL); 4897 4898 cam_init_pinfo(&device->devq_entry); 4899 device->target = target; 4900 device->lun_id = lun_id; 4901 device->sim = bus->sim; 4902 if (cam_ccbq_init(&device->ccbq, 4903 bus->sim->max_dev_openings) != 0) { 4904 free(device, M_CAMDEV); 4905 return (NULL); 4906 } 4907 SLIST_INIT(&device->asyncs); 4908 SLIST_INIT(&device->periphs); 4909 device->generation = 0; 4910 device->flags = CAM_DEV_UNCONFIGURED; 4911 device->tag_delay_count = 0; 4912 device->tag_saved_openings = 0; 4913 device->refcount = 1; 4914 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4915 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4916 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4917 /* 4918 * Hold a reference to our parent bus so it 4919 * will not go away before we do. 4920 */ 4921 target->refcount++; 4922 4923 cur_device = TAILQ_FIRST(&target->ed_entries); 4924 while (cur_device != NULL && cur_device->lun_id < lun_id) 4925 cur_device = TAILQ_NEXT(cur_device, links); 4926 if (cur_device != NULL) 4927 TAILQ_INSERT_BEFORE(cur_device, device, links); 4928 else 4929 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4930 target->generation++; 4931 return (device); 4932 } 4933 4934 void 4935 xpt_acquire_device(struct cam_ed *device) 4936 { 4937 struct cam_eb *bus = device->target->bus; 4938 4939 mtx_lock(&bus->eb_mtx); 4940 device->refcount++; 4941 mtx_unlock(&bus->eb_mtx); 4942 } 4943 4944 void 4945 xpt_release_device(struct cam_ed *device) 4946 { 4947 struct cam_eb *bus = device->target->bus; 4948 struct cam_devq *devq; 4949 4950 mtx_lock(&bus->eb_mtx); 4951 if (--device->refcount > 0) { 4952 mtx_unlock(&bus->eb_mtx); 4953 return; 4954 } 4955 4956 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4957 device->target->generation++; 4958 mtx_unlock(&bus->eb_mtx); 4959 4960 /* Release our slot in the devq */ 4961 devq = bus->sim->devq; 4962 mtx_lock(&devq->send_mtx); 4963 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4964 mtx_unlock(&devq->send_mtx); 4965 4966 KASSERT(SLIST_EMPTY(&device->periphs), 4967 ("destroying device, but periphs list is not empty")); 4968 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4969 ("destroying device while still queued for ccbs")); 4970 4971 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4972 callout_stop(&device->callout); 4973 4974 xpt_release_target(device->target); 4975 4976 cam_ccbq_fini(&device->ccbq); 4977 /* 4978 * Free allocated memory. free(9) does nothing if the 4979 * supplied pointer is NULL, so it is safe to call without 4980 * checking. 4981 */ 4982 free(device->supported_vpds, M_CAMXPT); 4983 free(device->device_id, M_CAMXPT); 4984 free(device->ext_inq, M_CAMXPT); 4985 free(device->physpath, M_CAMXPT); 4986 free(device->rcap_buf, M_CAMXPT); 4987 free(device->serial_num, M_CAMXPT); 4988 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4989 } 4990 4991 u_int32_t 4992 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4993 { 4994 int result; 4995 struct cam_ed *dev; 4996 4997 dev = path->device; 4998 mtx_lock(&dev->sim->devq->send_mtx); 4999 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5000 mtx_unlock(&dev->sim->devq->send_mtx); 5001 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5002 || (dev->inq_flags & SID_CmdQue) != 0) 5003 dev->tag_saved_openings = newopenings; 5004 return (result); 5005 } 5006 5007 static struct cam_eb * 5008 xpt_find_bus(path_id_t path_id) 5009 { 5010 struct cam_eb *bus; 5011 5012 xpt_lock_buses(); 5013 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5014 bus != NULL; 5015 bus = TAILQ_NEXT(bus, links)) { 5016 if (bus->path_id == path_id) { 5017 bus->refcount++; 5018 break; 5019 } 5020 } 5021 xpt_unlock_buses(); 5022 return (bus); 5023 } 5024 5025 static struct cam_et * 5026 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5027 { 5028 struct cam_et *target; 5029 5030 mtx_assert(&bus->eb_mtx, MA_OWNED); 5031 for (target = TAILQ_FIRST(&bus->et_entries); 5032 target != NULL; 5033 target = TAILQ_NEXT(target, links)) { 5034 if (target->target_id == target_id) { 5035 target->refcount++; 5036 break; 5037 } 5038 } 5039 return (target); 5040 } 5041 5042 static struct cam_ed * 5043 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5044 { 5045 struct cam_ed *device; 5046 5047 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5048 for (device = TAILQ_FIRST(&target->ed_entries); 5049 device != NULL; 5050 device = TAILQ_NEXT(device, links)) { 5051 if (device->lun_id == lun_id) { 5052 device->refcount++; 5053 break; 5054 } 5055 } 5056 return (device); 5057 } 5058 5059 void 5060 xpt_start_tags(struct cam_path *path) 5061 { 5062 struct ccb_relsim crs; 5063 struct cam_ed *device; 5064 struct cam_sim *sim; 5065 int newopenings; 5066 5067 device = path->device; 5068 sim = path->bus->sim; 5069 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5070 xpt_freeze_devq(path, /*count*/1); 5071 device->inq_flags |= SID_CmdQue; 5072 if (device->tag_saved_openings != 0) 5073 newopenings = device->tag_saved_openings; 5074 else 5075 newopenings = min(device->maxtags, 5076 sim->max_tagged_dev_openings); 5077 xpt_dev_ccbq_resize(path, newopenings); 5078 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5079 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5080 crs.ccb_h.func_code = XPT_REL_SIMQ; 5081 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5082 crs.openings 5083 = crs.release_timeout 5084 = crs.qfrozen_cnt 5085 = 0; 5086 xpt_action((union ccb *)&crs); 5087 } 5088 5089 void 5090 xpt_stop_tags(struct cam_path *path) 5091 { 5092 struct ccb_relsim crs; 5093 struct cam_ed *device; 5094 struct cam_sim *sim; 5095 5096 device = path->device; 5097 sim = path->bus->sim; 5098 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5099 device->tag_delay_count = 0; 5100 xpt_freeze_devq(path, /*count*/1); 5101 device->inq_flags &= ~SID_CmdQue; 5102 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5103 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5104 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5105 crs.ccb_h.func_code = XPT_REL_SIMQ; 5106 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5107 crs.openings 5108 = crs.release_timeout 5109 = crs.qfrozen_cnt 5110 = 0; 5111 xpt_action((union ccb *)&crs); 5112 } 5113 5114 static void 5115 xpt_boot_delay(void *arg) 5116 { 5117 5118 xpt_release_boot(); 5119 } 5120 5121 static void 5122 xpt_config(void *arg) 5123 { 5124 /* 5125 * Now that interrupts are enabled, go find our devices 5126 */ 5127 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5128 printf("xpt_config: failed to create taskqueue thread.\n"); 5129 5130 /* Setup debugging path */ 5131 if (cam_dflags != CAM_DEBUG_NONE) { 5132 if (xpt_create_path(&cam_dpath, NULL, 5133 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5134 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5135 printf("xpt_config: xpt_create_path() failed for debug" 5136 " target %d:%d:%d, debugging disabled\n", 5137 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5138 cam_dflags = CAM_DEBUG_NONE; 5139 } 5140 } else 5141 cam_dpath = NULL; 5142 5143 periphdriver_init(1); 5144 xpt_hold_boot(); 5145 callout_init(&xsoftc.boot_callout, 1); 5146 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5147 xpt_boot_delay, NULL, 0); 5148 /* Fire up rescan thread. */ 5149 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5150 "cam", "scanner")) { 5151 printf("xpt_config: failed to create rescan thread.\n"); 5152 } 5153 } 5154 5155 void 5156 xpt_hold_boot(void) 5157 { 5158 xpt_lock_buses(); 5159 xsoftc.buses_to_config++; 5160 xpt_unlock_buses(); 5161 } 5162 5163 void 5164 xpt_release_boot(void) 5165 { 5166 xpt_lock_buses(); 5167 xsoftc.buses_to_config--; 5168 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5169 struct xpt_task *task; 5170 5171 xsoftc.buses_config_done = 1; 5172 xpt_unlock_buses(); 5173 /* Call manually because we don't have any buses */ 5174 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5175 if (task != NULL) { 5176 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5177 taskqueue_enqueue(taskqueue_thread, &task->task); 5178 } 5179 } else 5180 xpt_unlock_buses(); 5181 } 5182 5183 /* 5184 * If the given device only has one peripheral attached to it, and if that 5185 * peripheral is the passthrough driver, announce it. This insures that the 5186 * user sees some sort of announcement for every peripheral in their system. 5187 */ 5188 static int 5189 xptpassannouncefunc(struct cam_ed *device, void *arg) 5190 { 5191 struct cam_periph *periph; 5192 int i; 5193 5194 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5195 periph = SLIST_NEXT(periph, periph_links), i++); 5196 5197 periph = SLIST_FIRST(&device->periphs); 5198 if ((i == 1) 5199 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5200 xpt_announce_periph(periph, NULL); 5201 5202 return(1); 5203 } 5204 5205 static void 5206 xpt_finishconfig_task(void *context, int pending) 5207 { 5208 5209 periphdriver_init(2); 5210 /* 5211 * Check for devices with no "standard" peripheral driver 5212 * attached. For any devices like that, announce the 5213 * passthrough driver so the user will see something. 5214 */ 5215 if (!bootverbose) 5216 xpt_for_all_devices(xptpassannouncefunc, NULL); 5217 5218 /* Release our hook so that the boot can continue. */ 5219 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5220 free(xsoftc.xpt_config_hook, M_CAMXPT); 5221 xsoftc.xpt_config_hook = NULL; 5222 5223 free(context, M_CAMXPT); 5224 } 5225 5226 cam_status 5227 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5228 struct cam_path *path) 5229 { 5230 struct ccb_setasync csa; 5231 cam_status status; 5232 int xptpath = 0; 5233 5234 if (path == NULL) { 5235 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5236 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5237 if (status != CAM_REQ_CMP) 5238 return (status); 5239 xpt_path_lock(path); 5240 xptpath = 1; 5241 } 5242 5243 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5244 csa.ccb_h.func_code = XPT_SASYNC_CB; 5245 csa.event_enable = event; 5246 csa.callback = cbfunc; 5247 csa.callback_arg = cbarg; 5248 xpt_action((union ccb *)&csa); 5249 status = csa.ccb_h.status; 5250 5251 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5252 ("xpt_register_async: func %p\n", cbfunc)); 5253 5254 if (xptpath) { 5255 xpt_path_unlock(path); 5256 xpt_free_path(path); 5257 } 5258 5259 if ((status == CAM_REQ_CMP) && 5260 (csa.event_enable & AC_FOUND_DEVICE)) { 5261 /* 5262 * Get this peripheral up to date with all 5263 * the currently existing devices. 5264 */ 5265 xpt_for_all_devices(xptsetasyncfunc, &csa); 5266 } 5267 if ((status == CAM_REQ_CMP) && 5268 (csa.event_enable & AC_PATH_REGISTERED)) { 5269 /* 5270 * Get this peripheral up to date with all 5271 * the currently existing buses. 5272 */ 5273 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5274 } 5275 5276 return (status); 5277 } 5278 5279 static void 5280 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5281 { 5282 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5283 5284 switch (work_ccb->ccb_h.func_code) { 5285 /* Common cases first */ 5286 case XPT_PATH_INQ: /* Path routing inquiry */ 5287 { 5288 struct ccb_pathinq *cpi; 5289 5290 cpi = &work_ccb->cpi; 5291 cpi->version_num = 1; /* XXX??? */ 5292 cpi->hba_inquiry = 0; 5293 cpi->target_sprt = 0; 5294 cpi->hba_misc = 0; 5295 cpi->hba_eng_cnt = 0; 5296 cpi->max_target = 0; 5297 cpi->max_lun = 0; 5298 cpi->initiator_id = 0; 5299 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5300 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5301 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5302 cpi->unit_number = sim->unit_number; 5303 cpi->bus_id = sim->bus_id; 5304 cpi->base_transfer_speed = 0; 5305 cpi->protocol = PROTO_UNSPECIFIED; 5306 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5307 cpi->transport = XPORT_UNSPECIFIED; 5308 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5309 cpi->ccb_h.status = CAM_REQ_CMP; 5310 xpt_done(work_ccb); 5311 break; 5312 } 5313 default: 5314 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5315 xpt_done(work_ccb); 5316 break; 5317 } 5318 } 5319 5320 /* 5321 * The xpt as a "controller" has no interrupt sources, so polling 5322 * is a no-op. 5323 */ 5324 static void 5325 xptpoll(struct cam_sim *sim) 5326 { 5327 } 5328 5329 void 5330 xpt_lock_buses(void) 5331 { 5332 mtx_lock(&xsoftc.xpt_topo_lock); 5333 } 5334 5335 void 5336 xpt_unlock_buses(void) 5337 { 5338 mtx_unlock(&xsoftc.xpt_topo_lock); 5339 } 5340 5341 struct mtx * 5342 xpt_path_mtx(struct cam_path *path) 5343 { 5344 5345 return (&path->device->device_mtx); 5346 } 5347 5348 static void 5349 xpt_done_process(struct ccb_hdr *ccb_h) 5350 { 5351 struct cam_sim *sim; 5352 struct cam_devq *devq; 5353 struct mtx *mtx = NULL; 5354 5355 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5356 struct ccb_scsiio *csio; 5357 5358 if (ccb_h->func_code == XPT_SCSI_IO) { 5359 csio = &((union ccb *)ccb_h)->csio; 5360 if (csio->bio != NULL) 5361 biotrack(csio->bio, __func__); 5362 } 5363 #endif 5364 5365 if (ccb_h->flags & CAM_HIGH_POWER) { 5366 struct highpowerlist *hphead; 5367 struct cam_ed *device; 5368 5369 mtx_lock(&xsoftc.xpt_highpower_lock); 5370 hphead = &xsoftc.highpowerq; 5371 5372 device = STAILQ_FIRST(hphead); 5373 5374 /* 5375 * Increment the count since this command is done. 5376 */ 5377 xsoftc.num_highpower++; 5378 5379 /* 5380 * Any high powered commands queued up? 5381 */ 5382 if (device != NULL) { 5383 5384 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5385 mtx_unlock(&xsoftc.xpt_highpower_lock); 5386 5387 mtx_lock(&device->sim->devq->send_mtx); 5388 xpt_release_devq_device(device, 5389 /*count*/1, /*runqueue*/TRUE); 5390 mtx_unlock(&device->sim->devq->send_mtx); 5391 } else 5392 mtx_unlock(&xsoftc.xpt_highpower_lock); 5393 } 5394 5395 sim = ccb_h->path->bus->sim; 5396 5397 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5398 xpt_release_simq(sim, /*run_queue*/FALSE); 5399 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5400 } 5401 5402 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5403 && (ccb_h->status & CAM_DEV_QFRZN)) { 5404 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5405 ccb_h->status &= ~CAM_DEV_QFRZN; 5406 } 5407 5408 devq = sim->devq; 5409 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5410 struct cam_ed *dev = ccb_h->path->device; 5411 5412 mtx_lock(&devq->send_mtx); 5413 devq->send_active--; 5414 devq->send_openings++; 5415 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5416 5417 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5418 && (dev->ccbq.dev_active == 0))) { 5419 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5420 xpt_release_devq_device(dev, /*count*/1, 5421 /*run_queue*/FALSE); 5422 } 5423 5424 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5425 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5426 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5427 xpt_release_devq_device(dev, /*count*/1, 5428 /*run_queue*/FALSE); 5429 } 5430 5431 if (!device_is_queued(dev)) 5432 (void)xpt_schedule_devq(devq, dev); 5433 xpt_run_devq(devq); 5434 mtx_unlock(&devq->send_mtx); 5435 5436 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5437 mtx = xpt_path_mtx(ccb_h->path); 5438 mtx_lock(mtx); 5439 5440 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5441 && (--dev->tag_delay_count == 0)) 5442 xpt_start_tags(ccb_h->path); 5443 } 5444 } 5445 5446 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5447 if (mtx == NULL) { 5448 mtx = xpt_path_mtx(ccb_h->path); 5449 mtx_lock(mtx); 5450 } 5451 } else { 5452 if (mtx != NULL) { 5453 mtx_unlock(mtx); 5454 mtx = NULL; 5455 } 5456 } 5457 5458 /* Call the peripheral driver's callback */ 5459 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5460 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5461 if (mtx != NULL) 5462 mtx_unlock(mtx); 5463 } 5464 5465 void 5466 xpt_done_td(void *arg) 5467 { 5468 struct cam_doneq *queue = arg; 5469 struct ccb_hdr *ccb_h; 5470 STAILQ_HEAD(, ccb_hdr) doneq; 5471 5472 STAILQ_INIT(&doneq); 5473 mtx_lock(&queue->cam_doneq_mtx); 5474 while (1) { 5475 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5476 queue->cam_doneq_sleep = 1; 5477 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5478 PRIBIO, "-", 0); 5479 queue->cam_doneq_sleep = 0; 5480 } 5481 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5482 mtx_unlock(&queue->cam_doneq_mtx); 5483 5484 THREAD_NO_SLEEPING(); 5485 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5486 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5487 xpt_done_process(ccb_h); 5488 } 5489 THREAD_SLEEPING_OK(); 5490 5491 mtx_lock(&queue->cam_doneq_mtx); 5492 } 5493 } 5494 5495 static void 5496 camisr_runqueue(void) 5497 { 5498 struct ccb_hdr *ccb_h; 5499 struct cam_doneq *queue; 5500 int i; 5501 5502 /* Process global queues. */ 5503 for (i = 0; i < cam_num_doneqs; i++) { 5504 queue = &cam_doneqs[i]; 5505 mtx_lock(&queue->cam_doneq_mtx); 5506 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5507 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5508 mtx_unlock(&queue->cam_doneq_mtx); 5509 xpt_done_process(ccb_h); 5510 mtx_lock(&queue->cam_doneq_mtx); 5511 } 5512 mtx_unlock(&queue->cam_doneq_mtx); 5513 } 5514 } 5515 5516 struct kv 5517 { 5518 uint32_t v; 5519 const char *name; 5520 }; 5521 5522 static struct kv map[] = { 5523 { XPT_NOOP, "XPT_NOOP" }, 5524 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5525 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5526 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5527 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5528 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5529 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5530 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5531 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5532 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5533 { XPT_DEBUG, "XPT_DEBUG" }, 5534 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5535 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5536 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5537 { XPT_ASYNC, "XPT_ASYNC" }, 5538 { XPT_ABORT, "XPT_ABORT" }, 5539 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5540 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5541 { XPT_TERM_IO, "XPT_TERM_IO" }, 5542 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5543 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5544 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5545 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5546 { XPT_ATA_IO, "XPT_ATA_IO" }, 5547 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5548 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5549 { XPT_NVME_IO, "XPT_NVME_IO" }, 5550 { XPT_MMC_IO, "XPT_MMC_IO" }, 5551 { XPT_SMP_IO, "XPT_SMP_IO" }, 5552 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5553 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5554 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5555 { XPT_EN_LUN, "XPT_EN_LUN" }, 5556 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5557 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5558 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5559 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5560 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5561 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5562 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5563 { 0, 0 } 5564 }; 5565 5566 const char * 5567 xpt_action_name(uint32_t action) 5568 { 5569 static char buffer[32]; /* Only for unknown messages -- racy */ 5570 struct kv *walker = map; 5571 5572 while (walker->name != NULL) { 5573 if (walker->v == action) 5574 return (walker->name); 5575 walker++; 5576 } 5577 5578 snprintf(buffer, sizeof(buffer), "%#x", action); 5579 return (buffer); 5580 } 5581