xref: /freebsd/sys/cam/cam_xpt.c (revision 1b99d52f261bfacfb9bb149d33ed6444364ac219)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include "opt_printf.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/time.h>
43 #include <sys/conf.h>
44 #include <sys/fcntl.h>
45 #include <sys/interrupt.h>
46 #include <sys/proc.h>
47 #include <sys/sbuf.h>
48 #include <sys/smp.h>
49 #include <sys/taskqueue.h>
50 
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67 
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71 
72 #include <machine/md_var.h>	/* geometry translation */
73 #include <machine/stdarg.h>	/* for xpt_print below */
74 
75 #include "opt_cam.h"
76 
77 /* Wild guess based on not wanting to grow the stack too much */
78 #define XPT_PRINT_MAXLEN	512
79 #ifdef PRINTF_BUFR_SIZE
80 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
81 #else
82 #define XPT_PRINT_LEN	128
83 #endif
84 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
85 
86 /*
87  * This is the maximum number of high powered commands (e.g. start unit)
88  * that can be outstanding at a particular time.
89  */
90 #ifndef CAM_MAX_HIGHPOWER
91 #define CAM_MAX_HIGHPOWER  4
92 #endif
93 
94 /* Datastructures internal to the xpt layer */
95 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
96 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
97 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
98 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
99 
100 /* Object for defering XPT actions to a taskqueue */
101 struct xpt_task {
102 	struct task	task;
103 	void		*data1;
104 	uintptr_t	data2;
105 };
106 
107 struct xpt_softc {
108 	uint32_t		xpt_generation;
109 
110 	/* number of high powered commands that can go through right now */
111 	struct mtx		xpt_highpower_lock;
112 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
113 	int			num_highpower;
114 
115 	/* queue for handling async rescan requests. */
116 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
117 	int buses_to_config;
118 	int buses_config_done;
119 	int announce_nosbuf;
120 
121 	/*
122 	 * Registered buses
123 	 *
124 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
125 	 * "buses" is preferred.
126 	 */
127 	TAILQ_HEAD(,cam_eb)	xpt_busses;
128 	u_int			bus_generation;
129 
130 	struct intr_config_hook	*xpt_config_hook;
131 
132 	int			boot_delay;
133 	struct callout 		boot_callout;
134 
135 	struct mtx		xpt_topo_lock;
136 	struct mtx		xpt_lock;
137 	struct taskqueue	*xpt_taskq;
138 };
139 
140 typedef enum {
141 	DM_RET_COPY		= 0x01,
142 	DM_RET_FLAG_MASK	= 0x0f,
143 	DM_RET_NONE		= 0x00,
144 	DM_RET_STOP		= 0x10,
145 	DM_RET_DESCEND		= 0x20,
146 	DM_RET_ERROR		= 0x30,
147 	DM_RET_ACTION_MASK	= 0xf0
148 } dev_match_ret;
149 
150 typedef enum {
151 	XPT_DEPTH_BUS,
152 	XPT_DEPTH_TARGET,
153 	XPT_DEPTH_DEVICE,
154 	XPT_DEPTH_PERIPH
155 } xpt_traverse_depth;
156 
157 struct xpt_traverse_config {
158 	xpt_traverse_depth	depth;
159 	void			*tr_func;
160 	void			*tr_arg;
161 };
162 
163 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
164 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
165 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
166 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
167 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
168 
169 /* Transport layer configuration information */
170 static struct xpt_softc xsoftc;
171 
172 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
173 
174 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
175            &xsoftc.boot_delay, 0, "Bus registration wait time");
176 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
177 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
178 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
179 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
180 
181 struct cam_doneq {
182 	struct mtx_padalign	cam_doneq_mtx;
183 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
184 	int			cam_doneq_sleep;
185 };
186 
187 static struct cam_doneq cam_doneqs[MAXCPU];
188 static int cam_num_doneqs;
189 static struct proc *cam_proc;
190 
191 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
192            &cam_num_doneqs, 0, "Number of completion queues/threads");
193 
194 struct cam_periph *xpt_periph;
195 
196 static periph_init_t xpt_periph_init;
197 
198 static struct periph_driver xpt_driver =
199 {
200 	xpt_periph_init, "xpt",
201 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
202 	CAM_PERIPH_DRV_EARLY
203 };
204 
205 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
206 
207 static d_open_t xptopen;
208 static d_close_t xptclose;
209 static d_ioctl_t xptioctl;
210 static d_ioctl_t xptdoioctl;
211 
212 static struct cdevsw xpt_cdevsw = {
213 	.d_version =	D_VERSION,
214 	.d_flags =	0,
215 	.d_open =	xptopen,
216 	.d_close =	xptclose,
217 	.d_ioctl =	xptioctl,
218 	.d_name =	"xpt",
219 };
220 
221 /* Storage for debugging datastructures */
222 struct cam_path *cam_dpath;
223 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
224 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
225 	&cam_dflags, 0, "Enabled debug flags");
226 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
227 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
228 	&cam_debug_delay, 0, "Delay in us after each debug message");
229 
230 /* Our boot-time initialization hook */
231 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
232 
233 static moduledata_t cam_moduledata = {
234 	"cam",
235 	cam_module_event_handler,
236 	NULL
237 };
238 
239 static int	xpt_init(void *);
240 
241 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
242 MODULE_VERSION(cam, 1);
243 
244 
245 static void		xpt_async_bcast(struct async_list *async_head,
246 					u_int32_t async_code,
247 					struct cam_path *path,
248 					void *async_arg);
249 static path_id_t xptnextfreepathid(void);
250 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
251 static union ccb *xpt_get_ccb(struct cam_periph *periph);
252 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
253 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
254 static void	 xpt_run_allocq_task(void *context, int pending);
255 static void	 xpt_run_devq(struct cam_devq *devq);
256 static timeout_t xpt_release_devq_timeout;
257 static void	 xpt_release_simq_timeout(void *arg) __unused;
258 static void	 xpt_acquire_bus(struct cam_eb *bus);
259 static void	 xpt_release_bus(struct cam_eb *bus);
260 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
261 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
262 		    int run_queue);
263 static struct cam_et*
264 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
265 static void	 xpt_acquire_target(struct cam_et *target);
266 static void	 xpt_release_target(struct cam_et *target);
267 static struct cam_eb*
268 		 xpt_find_bus(path_id_t path_id);
269 static struct cam_et*
270 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
271 static struct cam_ed*
272 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
273 static void	 xpt_config(void *arg);
274 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
275 				 u_int32_t new_priority);
276 static xpt_devicefunc_t xptpassannouncefunc;
277 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
278 static void	 xptpoll(struct cam_sim *sim);
279 static void	 camisr_runqueue(void);
280 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
281 static void	 xpt_done_td(void *);
282 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
283 				    u_int num_patterns, struct cam_eb *bus);
284 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
285 				       u_int num_patterns,
286 				       struct cam_ed *device);
287 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
288 				       u_int num_patterns,
289 				       struct cam_periph *periph);
290 static xpt_busfunc_t	xptedtbusfunc;
291 static xpt_targetfunc_t	xptedttargetfunc;
292 static xpt_devicefunc_t	xptedtdevicefunc;
293 static xpt_periphfunc_t	xptedtperiphfunc;
294 static xpt_pdrvfunc_t	xptplistpdrvfunc;
295 static xpt_periphfunc_t	xptplistperiphfunc;
296 static int		xptedtmatch(struct ccb_dev_match *cdm);
297 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
298 static int		xptbustraverse(struct cam_eb *start_bus,
299 				       xpt_busfunc_t *tr_func, void *arg);
300 static int		xpttargettraverse(struct cam_eb *bus,
301 					  struct cam_et *start_target,
302 					  xpt_targetfunc_t *tr_func, void *arg);
303 static int		xptdevicetraverse(struct cam_et *target,
304 					  struct cam_ed *start_device,
305 					  xpt_devicefunc_t *tr_func, void *arg);
306 static int		xptperiphtraverse(struct cam_ed *device,
307 					  struct cam_periph *start_periph,
308 					  xpt_periphfunc_t *tr_func, void *arg);
309 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
310 					xpt_pdrvfunc_t *tr_func, void *arg);
311 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
312 					    struct cam_periph *start_periph,
313 					    xpt_periphfunc_t *tr_func,
314 					    void *arg);
315 static xpt_busfunc_t	xptdefbusfunc;
316 static xpt_targetfunc_t	xptdeftargetfunc;
317 static xpt_devicefunc_t	xptdefdevicefunc;
318 static xpt_periphfunc_t	xptdefperiphfunc;
319 static void		xpt_finishconfig_task(void *context, int pending);
320 static void		xpt_dev_async_default(u_int32_t async_code,
321 					      struct cam_eb *bus,
322 					      struct cam_et *target,
323 					      struct cam_ed *device,
324 					      void *async_arg);
325 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
326 						 struct cam_et *target,
327 						 lun_id_t lun_id);
328 static xpt_devicefunc_t	xptsetasyncfunc;
329 static xpt_busfunc_t	xptsetasyncbusfunc;
330 static cam_status	xptregister(struct cam_periph *periph,
331 				    void *arg);
332 static __inline int device_is_queued(struct cam_ed *device);
333 
334 static __inline int
335 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
336 {
337 	int	retval;
338 
339 	mtx_assert(&devq->send_mtx, MA_OWNED);
340 	if ((dev->ccbq.queue.entries > 0) &&
341 	    (dev->ccbq.dev_openings > 0) &&
342 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
343 		/*
344 		 * The priority of a device waiting for controller
345 		 * resources is that of the highest priority CCB
346 		 * enqueued.
347 		 */
348 		retval =
349 		    xpt_schedule_dev(&devq->send_queue,
350 				     &dev->devq_entry,
351 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
352 	} else {
353 		retval = 0;
354 	}
355 	return (retval);
356 }
357 
358 static __inline int
359 device_is_queued(struct cam_ed *device)
360 {
361 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
362 }
363 
364 static void
365 xpt_periph_init()
366 {
367 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
368 }
369 
370 static int
371 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
372 {
373 
374 	/*
375 	 * Only allow read-write access.
376 	 */
377 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
378 		return(EPERM);
379 
380 	/*
381 	 * We don't allow nonblocking access.
382 	 */
383 	if ((flags & O_NONBLOCK) != 0) {
384 		printf("%s: can't do nonblocking access\n", devtoname(dev));
385 		return(ENODEV);
386 	}
387 
388 	return(0);
389 }
390 
391 static int
392 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
393 {
394 
395 	return(0);
396 }
397 
398 /*
399  * Don't automatically grab the xpt softc lock here even though this is going
400  * through the xpt device.  The xpt device is really just a back door for
401  * accessing other devices and SIMs, so the right thing to do is to grab
402  * the appropriate SIM lock once the bus/SIM is located.
403  */
404 static int
405 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
406 {
407 	int error;
408 
409 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
410 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
411 	}
412 	return (error);
413 }
414 
415 static int
416 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
417 {
418 	int error;
419 
420 	error = 0;
421 
422 	switch(cmd) {
423 	/*
424 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
425 	 * to accept CCB types that don't quite make sense to send through a
426 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
427 	 * in the CAM spec.
428 	 */
429 	case CAMIOCOMMAND: {
430 		union ccb *ccb;
431 		union ccb *inccb;
432 		struct cam_eb *bus;
433 
434 		inccb = (union ccb *)addr;
435 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
436 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
437 			inccb->csio.bio = NULL;
438 #endif
439 
440 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
441 			return (EINVAL);
442 
443 		bus = xpt_find_bus(inccb->ccb_h.path_id);
444 		if (bus == NULL)
445 			return (EINVAL);
446 
447 		switch (inccb->ccb_h.func_code) {
448 		case XPT_SCAN_BUS:
449 		case XPT_RESET_BUS:
450 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
451 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
452 				xpt_release_bus(bus);
453 				return (EINVAL);
454 			}
455 			break;
456 		case XPT_SCAN_TGT:
457 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
458 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
459 				xpt_release_bus(bus);
460 				return (EINVAL);
461 			}
462 			break;
463 		default:
464 			break;
465 		}
466 
467 		switch(inccb->ccb_h.func_code) {
468 		case XPT_SCAN_BUS:
469 		case XPT_RESET_BUS:
470 		case XPT_PATH_INQ:
471 		case XPT_ENG_INQ:
472 		case XPT_SCAN_LUN:
473 		case XPT_SCAN_TGT:
474 
475 			ccb = xpt_alloc_ccb();
476 
477 			/*
478 			 * Create a path using the bus, target, and lun the
479 			 * user passed in.
480 			 */
481 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
482 					    inccb->ccb_h.path_id,
483 					    inccb->ccb_h.target_id,
484 					    inccb->ccb_h.target_lun) !=
485 					    CAM_REQ_CMP){
486 				error = EINVAL;
487 				xpt_free_ccb(ccb);
488 				break;
489 			}
490 			/* Ensure all of our fields are correct */
491 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
492 				      inccb->ccb_h.pinfo.priority);
493 			xpt_merge_ccb(ccb, inccb);
494 			xpt_path_lock(ccb->ccb_h.path);
495 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
496 			xpt_path_unlock(ccb->ccb_h.path);
497 			bcopy(ccb, inccb, sizeof(union ccb));
498 			xpt_free_path(ccb->ccb_h.path);
499 			xpt_free_ccb(ccb);
500 			break;
501 
502 		case XPT_DEBUG: {
503 			union ccb ccb;
504 
505 			/*
506 			 * This is an immediate CCB, so it's okay to
507 			 * allocate it on the stack.
508 			 */
509 
510 			/*
511 			 * Create a path using the bus, target, and lun the
512 			 * user passed in.
513 			 */
514 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
515 					    inccb->ccb_h.path_id,
516 					    inccb->ccb_h.target_id,
517 					    inccb->ccb_h.target_lun) !=
518 					    CAM_REQ_CMP){
519 				error = EINVAL;
520 				break;
521 			}
522 			/* Ensure all of our fields are correct */
523 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
524 				      inccb->ccb_h.pinfo.priority);
525 			xpt_merge_ccb(&ccb, inccb);
526 			xpt_action(&ccb);
527 			bcopy(&ccb, inccb, sizeof(union ccb));
528 			xpt_free_path(ccb.ccb_h.path);
529 			break;
530 
531 		}
532 		case XPT_DEV_MATCH: {
533 			struct cam_periph_map_info mapinfo;
534 			struct cam_path *old_path;
535 
536 			/*
537 			 * We can't deal with physical addresses for this
538 			 * type of transaction.
539 			 */
540 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
541 			    CAM_DATA_VADDR) {
542 				error = EINVAL;
543 				break;
544 			}
545 
546 			/*
547 			 * Save this in case the caller had it set to
548 			 * something in particular.
549 			 */
550 			old_path = inccb->ccb_h.path;
551 
552 			/*
553 			 * We really don't need a path for the matching
554 			 * code.  The path is needed because of the
555 			 * debugging statements in xpt_action().  They
556 			 * assume that the CCB has a valid path.
557 			 */
558 			inccb->ccb_h.path = xpt_periph->path;
559 
560 			bzero(&mapinfo, sizeof(mapinfo));
561 
562 			/*
563 			 * Map the pattern and match buffers into kernel
564 			 * virtual address space.
565 			 */
566 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
567 
568 			if (error) {
569 				inccb->ccb_h.path = old_path;
570 				break;
571 			}
572 
573 			/*
574 			 * This is an immediate CCB, we can send it on directly.
575 			 */
576 			xpt_action(inccb);
577 
578 			/*
579 			 * Map the buffers back into user space.
580 			 */
581 			cam_periph_unmapmem(inccb, &mapinfo);
582 
583 			inccb->ccb_h.path = old_path;
584 
585 			error = 0;
586 			break;
587 		}
588 		default:
589 			error = ENOTSUP;
590 			break;
591 		}
592 		xpt_release_bus(bus);
593 		break;
594 	}
595 	/*
596 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
597 	 * with the periphal driver name and unit name filled in.  The other
598 	 * fields don't really matter as input.  The passthrough driver name
599 	 * ("pass"), and unit number are passed back in the ccb.  The current
600 	 * device generation number, and the index into the device peripheral
601 	 * driver list, and the status are also passed back.  Note that
602 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
603 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
604 	 * (or rather should be) impossible for the device peripheral driver
605 	 * list to change since we look at the whole thing in one pass, and
606 	 * we do it with lock protection.
607 	 *
608 	 */
609 	case CAMGETPASSTHRU: {
610 		union ccb *ccb;
611 		struct cam_periph *periph;
612 		struct periph_driver **p_drv;
613 		char   *name;
614 		u_int unit;
615 		int base_periph_found;
616 
617 		ccb = (union ccb *)addr;
618 		unit = ccb->cgdl.unit_number;
619 		name = ccb->cgdl.periph_name;
620 		base_periph_found = 0;
621 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
622 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
623 			ccb->csio.bio = NULL;
624 #endif
625 
626 		/*
627 		 * Sanity check -- make sure we don't get a null peripheral
628 		 * driver name.
629 		 */
630 		if (*ccb->cgdl.periph_name == '\0') {
631 			error = EINVAL;
632 			break;
633 		}
634 
635 		/* Keep the list from changing while we traverse it */
636 		xpt_lock_buses();
637 
638 		/* first find our driver in the list of drivers */
639 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
640 			if (strcmp((*p_drv)->driver_name, name) == 0)
641 				break;
642 
643 		if (*p_drv == NULL) {
644 			xpt_unlock_buses();
645 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
646 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
647 			*ccb->cgdl.periph_name = '\0';
648 			ccb->cgdl.unit_number = 0;
649 			error = ENOENT;
650 			break;
651 		}
652 
653 		/*
654 		 * Run through every peripheral instance of this driver
655 		 * and check to see whether it matches the unit passed
656 		 * in by the user.  If it does, get out of the loops and
657 		 * find the passthrough driver associated with that
658 		 * peripheral driver.
659 		 */
660 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
661 		     periph = TAILQ_NEXT(periph, unit_links)) {
662 
663 			if (periph->unit_number == unit)
664 				break;
665 		}
666 		/*
667 		 * If we found the peripheral driver that the user passed
668 		 * in, go through all of the peripheral drivers for that
669 		 * particular device and look for a passthrough driver.
670 		 */
671 		if (periph != NULL) {
672 			struct cam_ed *device;
673 			int i;
674 
675 			base_periph_found = 1;
676 			device = periph->path->device;
677 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
678 			     periph != NULL;
679 			     periph = SLIST_NEXT(periph, periph_links), i++) {
680 				/*
681 				 * Check to see whether we have a
682 				 * passthrough device or not.
683 				 */
684 				if (strcmp(periph->periph_name, "pass") == 0) {
685 					/*
686 					 * Fill in the getdevlist fields.
687 					 */
688 					strcpy(ccb->cgdl.periph_name,
689 					       periph->periph_name);
690 					ccb->cgdl.unit_number =
691 						periph->unit_number;
692 					if (SLIST_NEXT(periph, periph_links))
693 						ccb->cgdl.status =
694 							CAM_GDEVLIST_MORE_DEVS;
695 					else
696 						ccb->cgdl.status =
697 						       CAM_GDEVLIST_LAST_DEVICE;
698 					ccb->cgdl.generation =
699 						device->generation;
700 					ccb->cgdl.index = i;
701 					/*
702 					 * Fill in some CCB header fields
703 					 * that the user may want.
704 					 */
705 					ccb->ccb_h.path_id =
706 						periph->path->bus->path_id;
707 					ccb->ccb_h.target_id =
708 						periph->path->target->target_id;
709 					ccb->ccb_h.target_lun =
710 						periph->path->device->lun_id;
711 					ccb->ccb_h.status = CAM_REQ_CMP;
712 					break;
713 				}
714 			}
715 		}
716 
717 		/*
718 		 * If the periph is null here, one of two things has
719 		 * happened.  The first possibility is that we couldn't
720 		 * find the unit number of the particular peripheral driver
721 		 * that the user is asking about.  e.g. the user asks for
722 		 * the passthrough driver for "da11".  We find the list of
723 		 * "da" peripherals all right, but there is no unit 11.
724 		 * The other possibility is that we went through the list
725 		 * of peripheral drivers attached to the device structure,
726 		 * but didn't find one with the name "pass".  Either way,
727 		 * we return ENOENT, since we couldn't find something.
728 		 */
729 		if (periph == NULL) {
730 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
731 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
732 			*ccb->cgdl.periph_name = '\0';
733 			ccb->cgdl.unit_number = 0;
734 			error = ENOENT;
735 			/*
736 			 * It is unfortunate that this is even necessary,
737 			 * but there are many, many clueless users out there.
738 			 * If this is true, the user is looking for the
739 			 * passthrough driver, but doesn't have one in his
740 			 * kernel.
741 			 */
742 			if (base_periph_found == 1) {
743 				printf("xptioctl: pass driver is not in the "
744 				       "kernel\n");
745 				printf("xptioctl: put \"device pass\" in "
746 				       "your kernel config file\n");
747 			}
748 		}
749 		xpt_unlock_buses();
750 		break;
751 		}
752 	default:
753 		error = ENOTTY;
754 		break;
755 	}
756 
757 	return(error);
758 }
759 
760 static int
761 cam_module_event_handler(module_t mod, int what, void *arg)
762 {
763 	int error;
764 
765 	switch (what) {
766 	case MOD_LOAD:
767 		if ((error = xpt_init(NULL)) != 0)
768 			return (error);
769 		break;
770 	case MOD_UNLOAD:
771 		return EBUSY;
772 	default:
773 		return EOPNOTSUPP;
774 	}
775 
776 	return 0;
777 }
778 
779 static struct xpt_proto *
780 xpt_proto_find(cam_proto proto)
781 {
782 	struct xpt_proto **pp;
783 
784 	SET_FOREACH(pp, cam_xpt_proto_set) {
785 		if ((*pp)->proto == proto)
786 			return *pp;
787 	}
788 
789 	return NULL;
790 }
791 
792 static void
793 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
794 {
795 
796 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
797 		xpt_free_path(done_ccb->ccb_h.path);
798 		xpt_free_ccb(done_ccb);
799 	} else {
800 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
801 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
802 	}
803 	xpt_release_boot();
804 }
805 
806 /* thread to handle bus rescans */
807 static void
808 xpt_scanner_thread(void *dummy)
809 {
810 	union ccb	*ccb;
811 	struct cam_path	 path;
812 
813 	xpt_lock_buses();
814 	for (;;) {
815 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
816 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
817 			       "-", 0);
818 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
819 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
820 			xpt_unlock_buses();
821 
822                         printf("xpt_scanner_thread is firing on path ");
823                         xpt_print_path(ccb->ccb_h.path);printf("\n");
824 			/*
825 			 * Since lock can be dropped inside and path freed
826 			 * by completion callback even before return here,
827 			 * take our own path copy for reference.
828 			 */
829 			xpt_copy_path(&path, ccb->ccb_h.path);
830 			xpt_path_lock(&path);
831 			xpt_action(ccb);
832 			xpt_path_unlock(&path);
833 			xpt_release_path(&path);
834 
835 			xpt_lock_buses();
836 		}
837 	}
838 }
839 
840 void
841 xpt_rescan(union ccb *ccb)
842 {
843 	struct ccb_hdr *hdr;
844 
845 	/* Prepare request */
846 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
847 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
848 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
849 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
850 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
851 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
852 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
853 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
854 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
855 	else {
856 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
857 		xpt_free_path(ccb->ccb_h.path);
858 		xpt_free_ccb(ccb);
859 		return;
860 	}
861 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
862 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
863  		xpt_action_name(ccb->ccb_h.func_code)));
864 
865 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
866 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
867 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
868 	/* Don't make duplicate entries for the same paths. */
869 	xpt_lock_buses();
870 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
871 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
872 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
873 				wakeup(&xsoftc.ccb_scanq);
874 				xpt_unlock_buses();
875 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
876 				xpt_free_path(ccb->ccb_h.path);
877 				xpt_free_ccb(ccb);
878 				return;
879 			}
880 		}
881 	}
882 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
883 	xsoftc.buses_to_config++;
884 	wakeup(&xsoftc.ccb_scanq);
885 	xpt_unlock_buses();
886 }
887 
888 /* Functions accessed by the peripheral drivers */
889 static int
890 xpt_init(void *dummy)
891 {
892 	struct cam_sim *xpt_sim;
893 	struct cam_path *path;
894 	struct cam_devq *devq;
895 	cam_status status;
896 	int error, i;
897 
898 	TAILQ_INIT(&xsoftc.xpt_busses);
899 	TAILQ_INIT(&xsoftc.ccb_scanq);
900 	STAILQ_INIT(&xsoftc.highpowerq);
901 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
902 
903 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
904 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
905 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
906 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
907 
908 #ifdef CAM_BOOT_DELAY
909 	/*
910 	 * Override this value at compile time to assist our users
911 	 * who don't use loader to boot a kernel.
912 	 */
913 	xsoftc.boot_delay = CAM_BOOT_DELAY;
914 #endif
915 	/*
916 	 * The xpt layer is, itself, the equivalent of a SIM.
917 	 * Allow 16 ccbs in the ccb pool for it.  This should
918 	 * give decent parallelism when we probe buses and
919 	 * perform other XPT functions.
920 	 */
921 	devq = cam_simq_alloc(16);
922 	xpt_sim = cam_sim_alloc(xptaction,
923 				xptpoll,
924 				"xpt",
925 				/*softc*/NULL,
926 				/*unit*/0,
927 				/*mtx*/&xsoftc.xpt_lock,
928 				/*max_dev_transactions*/0,
929 				/*max_tagged_dev_transactions*/0,
930 				devq);
931 	if (xpt_sim == NULL)
932 		return (ENOMEM);
933 
934 	mtx_lock(&xsoftc.xpt_lock);
935 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
936 		mtx_unlock(&xsoftc.xpt_lock);
937 		printf("xpt_init: xpt_bus_register failed with status %#x,"
938 		       " failing attach\n", status);
939 		return (EINVAL);
940 	}
941 	mtx_unlock(&xsoftc.xpt_lock);
942 
943 	/*
944 	 * Looking at the XPT from the SIM layer, the XPT is
945 	 * the equivalent of a peripheral driver.  Allocate
946 	 * a peripheral driver entry for us.
947 	 */
948 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
949 				      CAM_TARGET_WILDCARD,
950 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
951 		printf("xpt_init: xpt_create_path failed with status %#x,"
952 		       " failing attach\n", status);
953 		return (EINVAL);
954 	}
955 	xpt_path_lock(path);
956 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
957 			 path, NULL, 0, xpt_sim);
958 	xpt_path_unlock(path);
959 	xpt_free_path(path);
960 
961 	if (cam_num_doneqs < 1)
962 		cam_num_doneqs = 1 + mp_ncpus / 6;
963 	else if (cam_num_doneqs > MAXCPU)
964 		cam_num_doneqs = MAXCPU;
965 	for (i = 0; i < cam_num_doneqs; i++) {
966 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
967 		    MTX_DEF);
968 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
969 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
970 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
971 		if (error != 0) {
972 			cam_num_doneqs = i;
973 			break;
974 		}
975 	}
976 	if (cam_num_doneqs < 1) {
977 		printf("xpt_init: Cannot init completion queues "
978 		       "- failing attach\n");
979 		return (ENOMEM);
980 	}
981 	/*
982 	 * Register a callback for when interrupts are enabled.
983 	 */
984 	xsoftc.xpt_config_hook =
985 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
986 					      M_CAMXPT, M_NOWAIT | M_ZERO);
987 	if (xsoftc.xpt_config_hook == NULL) {
988 		printf("xpt_init: Cannot malloc config hook "
989 		       "- failing attach\n");
990 		return (ENOMEM);
991 	}
992 	xsoftc.xpt_config_hook->ich_func = xpt_config;
993 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
994 		free (xsoftc.xpt_config_hook, M_CAMXPT);
995 		printf("xpt_init: config_intrhook_establish failed "
996 		       "- failing attach\n");
997 	}
998 
999 	return (0);
1000 }
1001 
1002 static cam_status
1003 xptregister(struct cam_periph *periph, void *arg)
1004 {
1005 	struct cam_sim *xpt_sim;
1006 
1007 	if (periph == NULL) {
1008 		printf("xptregister: periph was NULL!!\n");
1009 		return(CAM_REQ_CMP_ERR);
1010 	}
1011 
1012 	xpt_sim = (struct cam_sim *)arg;
1013 	xpt_sim->softc = periph;
1014 	xpt_periph = periph;
1015 	periph->softc = NULL;
1016 
1017 	return(CAM_REQ_CMP);
1018 }
1019 
1020 int32_t
1021 xpt_add_periph(struct cam_periph *periph)
1022 {
1023 	struct cam_ed *device;
1024 	int32_t	 status;
1025 
1026 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1027 	device = periph->path->device;
1028 	status = CAM_REQ_CMP;
1029 	if (device != NULL) {
1030 		mtx_lock(&device->target->bus->eb_mtx);
1031 		device->generation++;
1032 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1033 		mtx_unlock(&device->target->bus->eb_mtx);
1034 		atomic_add_32(&xsoftc.xpt_generation, 1);
1035 	}
1036 
1037 	return (status);
1038 }
1039 
1040 void
1041 xpt_remove_periph(struct cam_periph *periph)
1042 {
1043 	struct cam_ed *device;
1044 
1045 	device = periph->path->device;
1046 	if (device != NULL) {
1047 		mtx_lock(&device->target->bus->eb_mtx);
1048 		device->generation++;
1049 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1050 		mtx_unlock(&device->target->bus->eb_mtx);
1051 		atomic_add_32(&xsoftc.xpt_generation, 1);
1052 	}
1053 }
1054 
1055 
1056 void
1057 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1058 {
1059 	struct	cam_path *path = periph->path;
1060 	struct  xpt_proto *proto;
1061 
1062 	cam_periph_assert(periph, MA_OWNED);
1063 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1064 
1065 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1066 	       periph->periph_name, periph->unit_number,
1067 	       path->bus->sim->sim_name,
1068 	       path->bus->sim->unit_number,
1069 	       path->bus->sim->bus_id,
1070 	       path->bus->path_id,
1071 	       path->target->target_id,
1072 	       (uintmax_t)path->device->lun_id);
1073 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1074 	proto = xpt_proto_find(path->device->protocol);
1075 	if (proto)
1076 		proto->ops->announce(path->device);
1077 	else
1078 		printf("%s%d: Unknown protocol device %d\n",
1079 		    periph->periph_name, periph->unit_number,
1080 		    path->device->protocol);
1081 	if (path->device->serial_num_len > 0) {
1082 		/* Don't wrap the screen  - print only the first 60 chars */
1083 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1084 		       periph->unit_number, path->device->serial_num);
1085 	}
1086 	/* Announce transport details. */
1087 	path->bus->xport->ops->announce(periph);
1088 	/* Announce command queueing. */
1089 	if (path->device->inq_flags & SID_CmdQue
1090 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1091 		printf("%s%d: Command Queueing enabled\n",
1092 		       periph->periph_name, periph->unit_number);
1093 	}
1094 	/* Announce caller's details if they've passed in. */
1095 	if (announce_string != NULL)
1096 		printf("%s%d: %s\n", periph->periph_name,
1097 		       periph->unit_number, announce_string);
1098 }
1099 
1100 void
1101 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1102     char *announce_string)
1103 {
1104 	struct	cam_path *path = periph->path;
1105 	struct  xpt_proto *proto;
1106 
1107 	cam_periph_assert(periph, MA_OWNED);
1108 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1109 
1110 	/* Fall back to the non-sbuf method if necessary */
1111 	if (xsoftc.announce_nosbuf != 0) {
1112 		xpt_announce_periph(periph, announce_string);
1113 		return;
1114 	}
1115 	proto = xpt_proto_find(path->device->protocol);
1116 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1117 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1118 		xpt_announce_periph(periph, announce_string);
1119 		return;
1120 	}
1121 
1122 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1123 	    periph->periph_name, periph->unit_number,
1124 	    path->bus->sim->sim_name,
1125 	    path->bus->sim->unit_number,
1126 	    path->bus->sim->bus_id,
1127 	    path->bus->path_id,
1128 	    path->target->target_id,
1129 	    (uintmax_t)path->device->lun_id);
1130 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1131 
1132 	if (proto)
1133 		proto->ops->announce_sbuf(path->device, sb);
1134 	else
1135 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1136 		    periph->periph_name, periph->unit_number,
1137 		    path->device->protocol);
1138 	if (path->device->serial_num_len > 0) {
1139 		/* Don't wrap the screen  - print only the first 60 chars */
1140 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1141 		    periph->periph_name, periph->unit_number,
1142 		    path->device->serial_num);
1143 	}
1144 	/* Announce transport details. */
1145 	path->bus->xport->ops->announce_sbuf(periph, sb);
1146 	/* Announce command queueing. */
1147 	if (path->device->inq_flags & SID_CmdQue
1148 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1149 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1150 		    periph->periph_name, periph->unit_number);
1151 	}
1152 	/* Announce caller's details if they've passed in. */
1153 	if (announce_string != NULL)
1154 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1155 		    periph->unit_number, announce_string);
1156 }
1157 
1158 void
1159 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1160 {
1161 	if (quirks != 0) {
1162 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1163 		    periph->unit_number, quirks, bit_string);
1164 	}
1165 }
1166 
1167 void
1168 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1169 			 int quirks, char *bit_string)
1170 {
1171 	if (xsoftc.announce_nosbuf != 0) {
1172 		xpt_announce_quirks(periph, quirks, bit_string);
1173 		return;
1174 	}
1175 
1176 	if (quirks != 0) {
1177 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1178 		    periph->unit_number, quirks, bit_string);
1179 	}
1180 }
1181 
1182 void
1183 xpt_denounce_periph(struct cam_periph *periph)
1184 {
1185 	struct	cam_path *path = periph->path;
1186 	struct  xpt_proto *proto;
1187 
1188 	cam_periph_assert(periph, MA_OWNED);
1189 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1190 	       periph->periph_name, periph->unit_number,
1191 	       path->bus->sim->sim_name,
1192 	       path->bus->sim->unit_number,
1193 	       path->bus->sim->bus_id,
1194 	       path->bus->path_id,
1195 	       path->target->target_id,
1196 	       (uintmax_t)path->device->lun_id);
1197 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1198 	proto = xpt_proto_find(path->device->protocol);
1199 	if (proto)
1200 		proto->ops->denounce(path->device);
1201 	else
1202 		printf("%s%d: Unknown protocol device %d\n",
1203 		    periph->periph_name, periph->unit_number,
1204 		    path->device->protocol);
1205 	if (path->device->serial_num_len > 0)
1206 		printf(" s/n %.60s", path->device->serial_num);
1207 	printf(" detached\n");
1208 }
1209 
1210 void
1211 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1212 {
1213 	struct cam_path *path = periph->path;
1214 	struct xpt_proto *proto;
1215 
1216 	cam_periph_assert(periph, MA_OWNED);
1217 
1218 	/* Fall back to the non-sbuf method if necessary */
1219 	if (xsoftc.announce_nosbuf != 0) {
1220 		xpt_denounce_periph(periph);
1221 		return;
1222 	}
1223 	proto = xpt_proto_find(path->device->protocol);
1224 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1225 		xpt_denounce_periph(periph);
1226 		return;
1227 	}
1228 
1229 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1230 	    periph->periph_name, periph->unit_number,
1231 	    path->bus->sim->sim_name,
1232 	    path->bus->sim->unit_number,
1233 	    path->bus->sim->bus_id,
1234 	    path->bus->path_id,
1235 	    path->target->target_id,
1236 	    (uintmax_t)path->device->lun_id);
1237 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1238 
1239 	if (proto)
1240 		proto->ops->denounce_sbuf(path->device, sb);
1241 	else
1242 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1243 		    periph->periph_name, periph->unit_number,
1244 		    path->device->protocol);
1245 	if (path->device->serial_num_len > 0)
1246 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1247 	sbuf_printf(sb, " detached\n");
1248 }
1249 
1250 int
1251 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1252 {
1253 	int ret = -1, l, o;
1254 	struct ccb_dev_advinfo cdai;
1255 	struct scsi_vpd_id_descriptor *idd;
1256 
1257 	xpt_path_assert(path, MA_OWNED);
1258 
1259 	memset(&cdai, 0, sizeof(cdai));
1260 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1261 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1262 	cdai.flags = CDAI_FLAG_NONE;
1263 	cdai.bufsiz = len;
1264 
1265 	if (!strcmp(attr, "GEOM::ident"))
1266 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1267 	else if (!strcmp(attr, "GEOM::physpath"))
1268 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1269 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1270 		 strcmp(attr, "GEOM::lunname") == 0) {
1271 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1272 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1273 	} else
1274 		goto out;
1275 
1276 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1277 	if (cdai.buf == NULL) {
1278 		ret = ENOMEM;
1279 		goto out;
1280 	}
1281 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1282 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1283 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1284 	if (cdai.provsiz == 0)
1285 		goto out;
1286 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1287 		if (strcmp(attr, "GEOM::lunid") == 0) {
1288 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1289 			    cdai.provsiz, scsi_devid_is_lun_naa);
1290 			if (idd == NULL)
1291 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1292 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1293 			if (idd == NULL)
1294 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1295 				    cdai.provsiz, scsi_devid_is_lun_uuid);
1296 			if (idd == NULL)
1297 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1298 				    cdai.provsiz, scsi_devid_is_lun_md5);
1299 		} else
1300 			idd = NULL;
1301 		if (idd == NULL)
1302 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1303 			    cdai.provsiz, scsi_devid_is_lun_t10);
1304 		if (idd == NULL)
1305 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1306 			    cdai.provsiz, scsi_devid_is_lun_name);
1307 		if (idd == NULL)
1308 			goto out;
1309 		ret = 0;
1310 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1311 			if (idd->length < len) {
1312 				for (l = 0; l < idd->length; l++)
1313 					buf[l] = idd->identifier[l] ?
1314 					    idd->identifier[l] : ' ';
1315 				buf[l] = 0;
1316 			} else
1317 				ret = EFAULT;
1318 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1319 			l = strnlen(idd->identifier, idd->length);
1320 			if (l < len) {
1321 				bcopy(idd->identifier, buf, l);
1322 				buf[l] = 0;
1323 			} else
1324 				ret = EFAULT;
1325 		} else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
1326 		    && idd->identifier[0] == 0x10) {
1327 			if ((idd->length - 2) * 2 + 4 < len) {
1328 				for (l = 2, o = 0; l < idd->length; l++) {
1329 					if (l == 6 || l == 8 || l == 10 || l == 12)
1330 					    o += sprintf(buf + o, "-");
1331 					o += sprintf(buf + o, "%02x",
1332 					    idd->identifier[l]);
1333 				}
1334 			} else
1335 				ret = EFAULT;
1336 		} else {
1337 			if (idd->length * 2 < len) {
1338 				for (l = 0; l < idd->length; l++)
1339 					sprintf(buf + l * 2, "%02x",
1340 					    idd->identifier[l]);
1341 			} else
1342 				ret = EFAULT;
1343 		}
1344 	} else {
1345 		ret = 0;
1346 		if (strlcpy(buf, cdai.buf, len) >= len)
1347 			ret = EFAULT;
1348 	}
1349 
1350 out:
1351 	if (cdai.buf != NULL)
1352 		free(cdai.buf, M_CAMXPT);
1353 	return ret;
1354 }
1355 
1356 static dev_match_ret
1357 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1358 	    struct cam_eb *bus)
1359 {
1360 	dev_match_ret retval;
1361 	u_int i;
1362 
1363 	retval = DM_RET_NONE;
1364 
1365 	/*
1366 	 * If we aren't given something to match against, that's an error.
1367 	 */
1368 	if (bus == NULL)
1369 		return(DM_RET_ERROR);
1370 
1371 	/*
1372 	 * If there are no match entries, then this bus matches no
1373 	 * matter what.
1374 	 */
1375 	if ((patterns == NULL) || (num_patterns == 0))
1376 		return(DM_RET_DESCEND | DM_RET_COPY);
1377 
1378 	for (i = 0; i < num_patterns; i++) {
1379 		struct bus_match_pattern *cur_pattern;
1380 
1381 		/*
1382 		 * If the pattern in question isn't for a bus node, we
1383 		 * aren't interested.  However, we do indicate to the
1384 		 * calling routine that we should continue descending the
1385 		 * tree, since the user wants to match against lower-level
1386 		 * EDT elements.
1387 		 */
1388 		if (patterns[i].type != DEV_MATCH_BUS) {
1389 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1390 				retval |= DM_RET_DESCEND;
1391 			continue;
1392 		}
1393 
1394 		cur_pattern = &patterns[i].pattern.bus_pattern;
1395 
1396 		/*
1397 		 * If they want to match any bus node, we give them any
1398 		 * device node.
1399 		 */
1400 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1401 			/* set the copy flag */
1402 			retval |= DM_RET_COPY;
1403 
1404 			/*
1405 			 * If we've already decided on an action, go ahead
1406 			 * and return.
1407 			 */
1408 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1409 				return(retval);
1410 		}
1411 
1412 		/*
1413 		 * Not sure why someone would do this...
1414 		 */
1415 		if (cur_pattern->flags == BUS_MATCH_NONE)
1416 			continue;
1417 
1418 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1419 		 && (cur_pattern->path_id != bus->path_id))
1420 			continue;
1421 
1422 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1423 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1424 			continue;
1425 
1426 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1427 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1428 			continue;
1429 
1430 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1431 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1432 			     DEV_IDLEN) != 0))
1433 			continue;
1434 
1435 		/*
1436 		 * If we get to this point, the user definitely wants
1437 		 * information on this bus.  So tell the caller to copy the
1438 		 * data out.
1439 		 */
1440 		retval |= DM_RET_COPY;
1441 
1442 		/*
1443 		 * If the return action has been set to descend, then we
1444 		 * know that we've already seen a non-bus matching
1445 		 * expression, therefore we need to further descend the tree.
1446 		 * This won't change by continuing around the loop, so we
1447 		 * go ahead and return.  If we haven't seen a non-bus
1448 		 * matching expression, we keep going around the loop until
1449 		 * we exhaust the matching expressions.  We'll set the stop
1450 		 * flag once we fall out of the loop.
1451 		 */
1452 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1453 			return(retval);
1454 	}
1455 
1456 	/*
1457 	 * If the return action hasn't been set to descend yet, that means
1458 	 * we haven't seen anything other than bus matching patterns.  So
1459 	 * tell the caller to stop descending the tree -- the user doesn't
1460 	 * want to match against lower level tree elements.
1461 	 */
1462 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1463 		retval |= DM_RET_STOP;
1464 
1465 	return(retval);
1466 }
1467 
1468 static dev_match_ret
1469 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1470 	       struct cam_ed *device)
1471 {
1472 	dev_match_ret retval;
1473 	u_int i;
1474 
1475 	retval = DM_RET_NONE;
1476 
1477 	/*
1478 	 * If we aren't given something to match against, that's an error.
1479 	 */
1480 	if (device == NULL)
1481 		return(DM_RET_ERROR);
1482 
1483 	/*
1484 	 * If there are no match entries, then this device matches no
1485 	 * matter what.
1486 	 */
1487 	if ((patterns == NULL) || (num_patterns == 0))
1488 		return(DM_RET_DESCEND | DM_RET_COPY);
1489 
1490 	for (i = 0; i < num_patterns; i++) {
1491 		struct device_match_pattern *cur_pattern;
1492 		struct scsi_vpd_device_id *device_id_page;
1493 
1494 		/*
1495 		 * If the pattern in question isn't for a device node, we
1496 		 * aren't interested.
1497 		 */
1498 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1499 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1500 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1501 				retval |= DM_RET_DESCEND;
1502 			continue;
1503 		}
1504 
1505 		cur_pattern = &patterns[i].pattern.device_pattern;
1506 
1507 		/* Error out if mutually exclusive options are specified. */
1508 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1509 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1510 			return(DM_RET_ERROR);
1511 
1512 		/*
1513 		 * If they want to match any device node, we give them any
1514 		 * device node.
1515 		 */
1516 		if (cur_pattern->flags == DEV_MATCH_ANY)
1517 			goto copy_dev_node;
1518 
1519 		/*
1520 		 * Not sure why someone would do this...
1521 		 */
1522 		if (cur_pattern->flags == DEV_MATCH_NONE)
1523 			continue;
1524 
1525 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1526 		 && (cur_pattern->path_id != device->target->bus->path_id))
1527 			continue;
1528 
1529 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1530 		 && (cur_pattern->target_id != device->target->target_id))
1531 			continue;
1532 
1533 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1534 		 && (cur_pattern->target_lun != device->lun_id))
1535 			continue;
1536 
1537 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1538 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1539 				    (caddr_t)&cur_pattern->data.inq_pat,
1540 				    1, sizeof(cur_pattern->data.inq_pat),
1541 				    scsi_static_inquiry_match) == NULL))
1542 			continue;
1543 
1544 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1545 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1546 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1547 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1548 				      device->device_id_len
1549 				    - SVPD_DEVICE_ID_HDR_LEN,
1550 				      cur_pattern->data.devid_pat.id,
1551 				      cur_pattern->data.devid_pat.id_len) != 0))
1552 			continue;
1553 
1554 copy_dev_node:
1555 		/*
1556 		 * If we get to this point, the user definitely wants
1557 		 * information on this device.  So tell the caller to copy
1558 		 * the data out.
1559 		 */
1560 		retval |= DM_RET_COPY;
1561 
1562 		/*
1563 		 * If the return action has been set to descend, then we
1564 		 * know that we've already seen a peripheral matching
1565 		 * expression, therefore we need to further descend the tree.
1566 		 * This won't change by continuing around the loop, so we
1567 		 * go ahead and return.  If we haven't seen a peripheral
1568 		 * matching expression, we keep going around the loop until
1569 		 * we exhaust the matching expressions.  We'll set the stop
1570 		 * flag once we fall out of the loop.
1571 		 */
1572 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1573 			return(retval);
1574 	}
1575 
1576 	/*
1577 	 * If the return action hasn't been set to descend yet, that means
1578 	 * we haven't seen any peripheral matching patterns.  So tell the
1579 	 * caller to stop descending the tree -- the user doesn't want to
1580 	 * match against lower level tree elements.
1581 	 */
1582 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1583 		retval |= DM_RET_STOP;
1584 
1585 	return(retval);
1586 }
1587 
1588 /*
1589  * Match a single peripheral against any number of match patterns.
1590  */
1591 static dev_match_ret
1592 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1593 	       struct cam_periph *periph)
1594 {
1595 	dev_match_ret retval;
1596 	u_int i;
1597 
1598 	/*
1599 	 * If we aren't given something to match against, that's an error.
1600 	 */
1601 	if (periph == NULL)
1602 		return(DM_RET_ERROR);
1603 
1604 	/*
1605 	 * If there are no match entries, then this peripheral matches no
1606 	 * matter what.
1607 	 */
1608 	if ((patterns == NULL) || (num_patterns == 0))
1609 		return(DM_RET_STOP | DM_RET_COPY);
1610 
1611 	/*
1612 	 * There aren't any nodes below a peripheral node, so there's no
1613 	 * reason to descend the tree any further.
1614 	 */
1615 	retval = DM_RET_STOP;
1616 
1617 	for (i = 0; i < num_patterns; i++) {
1618 		struct periph_match_pattern *cur_pattern;
1619 
1620 		/*
1621 		 * If the pattern in question isn't for a peripheral, we
1622 		 * aren't interested.
1623 		 */
1624 		if (patterns[i].type != DEV_MATCH_PERIPH)
1625 			continue;
1626 
1627 		cur_pattern = &patterns[i].pattern.periph_pattern;
1628 
1629 		/*
1630 		 * If they want to match on anything, then we will do so.
1631 		 */
1632 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1633 			/* set the copy flag */
1634 			retval |= DM_RET_COPY;
1635 
1636 			/*
1637 			 * We've already set the return action to stop,
1638 			 * since there are no nodes below peripherals in
1639 			 * the tree.
1640 			 */
1641 			return(retval);
1642 		}
1643 
1644 		/*
1645 		 * Not sure why someone would do this...
1646 		 */
1647 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1648 			continue;
1649 
1650 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1651 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1652 			continue;
1653 
1654 		/*
1655 		 * For the target and lun id's, we have to make sure the
1656 		 * target and lun pointers aren't NULL.  The xpt peripheral
1657 		 * has a wildcard target and device.
1658 		 */
1659 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1660 		 && ((periph->path->target == NULL)
1661 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1662 			continue;
1663 
1664 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1665 		 && ((periph->path->device == NULL)
1666 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1667 			continue;
1668 
1669 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1670 		 && (cur_pattern->unit_number != periph->unit_number))
1671 			continue;
1672 
1673 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1674 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1675 			     DEV_IDLEN) != 0))
1676 			continue;
1677 
1678 		/*
1679 		 * If we get to this point, the user definitely wants
1680 		 * information on this peripheral.  So tell the caller to
1681 		 * copy the data out.
1682 		 */
1683 		retval |= DM_RET_COPY;
1684 
1685 		/*
1686 		 * The return action has already been set to stop, since
1687 		 * peripherals don't have any nodes below them in the EDT.
1688 		 */
1689 		return(retval);
1690 	}
1691 
1692 	/*
1693 	 * If we get to this point, the peripheral that was passed in
1694 	 * doesn't match any of the patterns.
1695 	 */
1696 	return(retval);
1697 }
1698 
1699 static int
1700 xptedtbusfunc(struct cam_eb *bus, void *arg)
1701 {
1702 	struct ccb_dev_match *cdm;
1703 	struct cam_et *target;
1704 	dev_match_ret retval;
1705 
1706 	cdm = (struct ccb_dev_match *)arg;
1707 
1708 	/*
1709 	 * If our position is for something deeper in the tree, that means
1710 	 * that we've already seen this node.  So, we keep going down.
1711 	 */
1712 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1713 	 && (cdm->pos.cookie.bus == bus)
1714 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1715 	 && (cdm->pos.cookie.target != NULL))
1716 		retval = DM_RET_DESCEND;
1717 	else
1718 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1719 
1720 	/*
1721 	 * If we got an error, bail out of the search.
1722 	 */
1723 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1724 		cdm->status = CAM_DEV_MATCH_ERROR;
1725 		return(0);
1726 	}
1727 
1728 	/*
1729 	 * If the copy flag is set, copy this bus out.
1730 	 */
1731 	if (retval & DM_RET_COPY) {
1732 		int spaceleft, j;
1733 
1734 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1735 			sizeof(struct dev_match_result));
1736 
1737 		/*
1738 		 * If we don't have enough space to put in another
1739 		 * match result, save our position and tell the
1740 		 * user there are more devices to check.
1741 		 */
1742 		if (spaceleft < sizeof(struct dev_match_result)) {
1743 			bzero(&cdm->pos, sizeof(cdm->pos));
1744 			cdm->pos.position_type =
1745 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1746 
1747 			cdm->pos.cookie.bus = bus;
1748 			cdm->pos.generations[CAM_BUS_GENERATION]=
1749 				xsoftc.bus_generation;
1750 			cdm->status = CAM_DEV_MATCH_MORE;
1751 			return(0);
1752 		}
1753 		j = cdm->num_matches;
1754 		cdm->num_matches++;
1755 		cdm->matches[j].type = DEV_MATCH_BUS;
1756 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1757 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1758 		cdm->matches[j].result.bus_result.unit_number =
1759 			bus->sim->unit_number;
1760 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1761 			bus->sim->sim_name, DEV_IDLEN);
1762 	}
1763 
1764 	/*
1765 	 * If the user is only interested in buses, there's no
1766 	 * reason to descend to the next level in the tree.
1767 	 */
1768 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1769 		return(1);
1770 
1771 	/*
1772 	 * If there is a target generation recorded, check it to
1773 	 * make sure the target list hasn't changed.
1774 	 */
1775 	mtx_lock(&bus->eb_mtx);
1776 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1777 	 && (cdm->pos.cookie.bus == bus)
1778 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1779 	 && (cdm->pos.cookie.target != NULL)) {
1780 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1781 		    bus->generation)) {
1782 			mtx_unlock(&bus->eb_mtx);
1783 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1784 			return (0);
1785 		}
1786 		target = (struct cam_et *)cdm->pos.cookie.target;
1787 		target->refcount++;
1788 	} else
1789 		target = NULL;
1790 	mtx_unlock(&bus->eb_mtx);
1791 
1792 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1793 }
1794 
1795 static int
1796 xptedttargetfunc(struct cam_et *target, void *arg)
1797 {
1798 	struct ccb_dev_match *cdm;
1799 	struct cam_eb *bus;
1800 	struct cam_ed *device;
1801 
1802 	cdm = (struct ccb_dev_match *)arg;
1803 	bus = target->bus;
1804 
1805 	/*
1806 	 * If there is a device list generation recorded, check it to
1807 	 * make sure the device list hasn't changed.
1808 	 */
1809 	mtx_lock(&bus->eb_mtx);
1810 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1811 	 && (cdm->pos.cookie.bus == bus)
1812 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1813 	 && (cdm->pos.cookie.target == target)
1814 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1815 	 && (cdm->pos.cookie.device != NULL)) {
1816 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1817 		    target->generation) {
1818 			mtx_unlock(&bus->eb_mtx);
1819 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1820 			return(0);
1821 		}
1822 		device = (struct cam_ed *)cdm->pos.cookie.device;
1823 		device->refcount++;
1824 	} else
1825 		device = NULL;
1826 	mtx_unlock(&bus->eb_mtx);
1827 
1828 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1829 }
1830 
1831 static int
1832 xptedtdevicefunc(struct cam_ed *device, void *arg)
1833 {
1834 	struct cam_eb *bus;
1835 	struct cam_periph *periph;
1836 	struct ccb_dev_match *cdm;
1837 	dev_match_ret retval;
1838 
1839 	cdm = (struct ccb_dev_match *)arg;
1840 	bus = device->target->bus;
1841 
1842 	/*
1843 	 * If our position is for something deeper in the tree, that means
1844 	 * that we've already seen this node.  So, we keep going down.
1845 	 */
1846 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1847 	 && (cdm->pos.cookie.device == device)
1848 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1849 	 && (cdm->pos.cookie.periph != NULL))
1850 		retval = DM_RET_DESCEND;
1851 	else
1852 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1853 					device);
1854 
1855 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1856 		cdm->status = CAM_DEV_MATCH_ERROR;
1857 		return(0);
1858 	}
1859 
1860 	/*
1861 	 * If the copy flag is set, copy this device out.
1862 	 */
1863 	if (retval & DM_RET_COPY) {
1864 		int spaceleft, j;
1865 
1866 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1867 			sizeof(struct dev_match_result));
1868 
1869 		/*
1870 		 * If we don't have enough space to put in another
1871 		 * match result, save our position and tell the
1872 		 * user there are more devices to check.
1873 		 */
1874 		if (spaceleft < sizeof(struct dev_match_result)) {
1875 			bzero(&cdm->pos, sizeof(cdm->pos));
1876 			cdm->pos.position_type =
1877 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1878 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1879 
1880 			cdm->pos.cookie.bus = device->target->bus;
1881 			cdm->pos.generations[CAM_BUS_GENERATION]=
1882 				xsoftc.bus_generation;
1883 			cdm->pos.cookie.target = device->target;
1884 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1885 				device->target->bus->generation;
1886 			cdm->pos.cookie.device = device;
1887 			cdm->pos.generations[CAM_DEV_GENERATION] =
1888 				device->target->generation;
1889 			cdm->status = CAM_DEV_MATCH_MORE;
1890 			return(0);
1891 		}
1892 		j = cdm->num_matches;
1893 		cdm->num_matches++;
1894 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1895 		cdm->matches[j].result.device_result.path_id =
1896 			device->target->bus->path_id;
1897 		cdm->matches[j].result.device_result.target_id =
1898 			device->target->target_id;
1899 		cdm->matches[j].result.device_result.target_lun =
1900 			device->lun_id;
1901 		cdm->matches[j].result.device_result.protocol =
1902 			device->protocol;
1903 		bcopy(&device->inq_data,
1904 		      &cdm->matches[j].result.device_result.inq_data,
1905 		      sizeof(struct scsi_inquiry_data));
1906 		bcopy(&device->ident_data,
1907 		      &cdm->matches[j].result.device_result.ident_data,
1908 		      sizeof(struct ata_params));
1909 		bcopy(&device->mmc_ident_data,
1910 		      &cdm->matches[j].result.device_result.mmc_ident_data,
1911 		      sizeof(struct mmc_params));
1912 
1913 		/* Let the user know whether this device is unconfigured */
1914 		if (device->flags & CAM_DEV_UNCONFIGURED)
1915 			cdm->matches[j].result.device_result.flags =
1916 				DEV_RESULT_UNCONFIGURED;
1917 		else
1918 			cdm->matches[j].result.device_result.flags =
1919 				DEV_RESULT_NOFLAG;
1920 	}
1921 
1922 	/*
1923 	 * If the user isn't interested in peripherals, don't descend
1924 	 * the tree any further.
1925 	 */
1926 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1927 		return(1);
1928 
1929 	/*
1930 	 * If there is a peripheral list generation recorded, make sure
1931 	 * it hasn't changed.
1932 	 */
1933 	xpt_lock_buses();
1934 	mtx_lock(&bus->eb_mtx);
1935 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1936 	 && (cdm->pos.cookie.bus == bus)
1937 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1938 	 && (cdm->pos.cookie.target == device->target)
1939 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1940 	 && (cdm->pos.cookie.device == device)
1941 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1942 	 && (cdm->pos.cookie.periph != NULL)) {
1943 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1944 		    device->generation) {
1945 			mtx_unlock(&bus->eb_mtx);
1946 			xpt_unlock_buses();
1947 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1948 			return(0);
1949 		}
1950 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1951 		periph->refcount++;
1952 	} else
1953 		periph = NULL;
1954 	mtx_unlock(&bus->eb_mtx);
1955 	xpt_unlock_buses();
1956 
1957 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1958 }
1959 
1960 static int
1961 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1962 {
1963 	struct ccb_dev_match *cdm;
1964 	dev_match_ret retval;
1965 
1966 	cdm = (struct ccb_dev_match *)arg;
1967 
1968 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1969 
1970 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1971 		cdm->status = CAM_DEV_MATCH_ERROR;
1972 		return(0);
1973 	}
1974 
1975 	/*
1976 	 * If the copy flag is set, copy this peripheral out.
1977 	 */
1978 	if (retval & DM_RET_COPY) {
1979 		int spaceleft, j;
1980 
1981 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1982 			sizeof(struct dev_match_result));
1983 
1984 		/*
1985 		 * If we don't have enough space to put in another
1986 		 * match result, save our position and tell the
1987 		 * user there are more devices to check.
1988 		 */
1989 		if (spaceleft < sizeof(struct dev_match_result)) {
1990 			bzero(&cdm->pos, sizeof(cdm->pos));
1991 			cdm->pos.position_type =
1992 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1993 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1994 				CAM_DEV_POS_PERIPH;
1995 
1996 			cdm->pos.cookie.bus = periph->path->bus;
1997 			cdm->pos.generations[CAM_BUS_GENERATION]=
1998 				xsoftc.bus_generation;
1999 			cdm->pos.cookie.target = periph->path->target;
2000 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2001 				periph->path->bus->generation;
2002 			cdm->pos.cookie.device = periph->path->device;
2003 			cdm->pos.generations[CAM_DEV_GENERATION] =
2004 				periph->path->target->generation;
2005 			cdm->pos.cookie.periph = periph;
2006 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2007 				periph->path->device->generation;
2008 			cdm->status = CAM_DEV_MATCH_MORE;
2009 			return(0);
2010 		}
2011 
2012 		j = cdm->num_matches;
2013 		cdm->num_matches++;
2014 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2015 		cdm->matches[j].result.periph_result.path_id =
2016 			periph->path->bus->path_id;
2017 		cdm->matches[j].result.periph_result.target_id =
2018 			periph->path->target->target_id;
2019 		cdm->matches[j].result.periph_result.target_lun =
2020 			periph->path->device->lun_id;
2021 		cdm->matches[j].result.periph_result.unit_number =
2022 			periph->unit_number;
2023 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2024 			periph->periph_name, DEV_IDLEN);
2025 	}
2026 
2027 	return(1);
2028 }
2029 
2030 static int
2031 xptedtmatch(struct ccb_dev_match *cdm)
2032 {
2033 	struct cam_eb *bus;
2034 	int ret;
2035 
2036 	cdm->num_matches = 0;
2037 
2038 	/*
2039 	 * Check the bus list generation.  If it has changed, the user
2040 	 * needs to reset everything and start over.
2041 	 */
2042 	xpt_lock_buses();
2043 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2044 	 && (cdm->pos.cookie.bus != NULL)) {
2045 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2046 		    xsoftc.bus_generation) {
2047 			xpt_unlock_buses();
2048 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2049 			return(0);
2050 		}
2051 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2052 		bus->refcount++;
2053 	} else
2054 		bus = NULL;
2055 	xpt_unlock_buses();
2056 
2057 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2058 
2059 	/*
2060 	 * If we get back 0, that means that we had to stop before fully
2061 	 * traversing the EDT.  It also means that one of the subroutines
2062 	 * has set the status field to the proper value.  If we get back 1,
2063 	 * we've fully traversed the EDT and copied out any matching entries.
2064 	 */
2065 	if (ret == 1)
2066 		cdm->status = CAM_DEV_MATCH_LAST;
2067 
2068 	return(ret);
2069 }
2070 
2071 static int
2072 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2073 {
2074 	struct cam_periph *periph;
2075 	struct ccb_dev_match *cdm;
2076 
2077 	cdm = (struct ccb_dev_match *)arg;
2078 
2079 	xpt_lock_buses();
2080 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2081 	 && (cdm->pos.cookie.pdrv == pdrv)
2082 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2083 	 && (cdm->pos.cookie.periph != NULL)) {
2084 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2085 		    (*pdrv)->generation) {
2086 			xpt_unlock_buses();
2087 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2088 			return(0);
2089 		}
2090 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2091 		periph->refcount++;
2092 	} else
2093 		periph = NULL;
2094 	xpt_unlock_buses();
2095 
2096 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2097 }
2098 
2099 static int
2100 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2101 {
2102 	struct ccb_dev_match *cdm;
2103 	dev_match_ret retval;
2104 
2105 	cdm = (struct ccb_dev_match *)arg;
2106 
2107 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2108 
2109 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2110 		cdm->status = CAM_DEV_MATCH_ERROR;
2111 		return(0);
2112 	}
2113 
2114 	/*
2115 	 * If the copy flag is set, copy this peripheral out.
2116 	 */
2117 	if (retval & DM_RET_COPY) {
2118 		int spaceleft, j;
2119 
2120 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2121 			sizeof(struct dev_match_result));
2122 
2123 		/*
2124 		 * If we don't have enough space to put in another
2125 		 * match result, save our position and tell the
2126 		 * user there are more devices to check.
2127 		 */
2128 		if (spaceleft < sizeof(struct dev_match_result)) {
2129 			struct periph_driver **pdrv;
2130 
2131 			pdrv = NULL;
2132 			bzero(&cdm->pos, sizeof(cdm->pos));
2133 			cdm->pos.position_type =
2134 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2135 				CAM_DEV_POS_PERIPH;
2136 
2137 			/*
2138 			 * This may look a bit non-sensical, but it is
2139 			 * actually quite logical.  There are very few
2140 			 * peripheral drivers, and bloating every peripheral
2141 			 * structure with a pointer back to its parent
2142 			 * peripheral driver linker set entry would cost
2143 			 * more in the long run than doing this quick lookup.
2144 			 */
2145 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2146 				if (strcmp((*pdrv)->driver_name,
2147 				    periph->periph_name) == 0)
2148 					break;
2149 			}
2150 
2151 			if (*pdrv == NULL) {
2152 				cdm->status = CAM_DEV_MATCH_ERROR;
2153 				return(0);
2154 			}
2155 
2156 			cdm->pos.cookie.pdrv = pdrv;
2157 			/*
2158 			 * The periph generation slot does double duty, as
2159 			 * does the periph pointer slot.  They are used for
2160 			 * both edt and pdrv lookups and positioning.
2161 			 */
2162 			cdm->pos.cookie.periph = periph;
2163 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2164 				(*pdrv)->generation;
2165 			cdm->status = CAM_DEV_MATCH_MORE;
2166 			return(0);
2167 		}
2168 
2169 		j = cdm->num_matches;
2170 		cdm->num_matches++;
2171 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2172 		cdm->matches[j].result.periph_result.path_id =
2173 			periph->path->bus->path_id;
2174 
2175 		/*
2176 		 * The transport layer peripheral doesn't have a target or
2177 		 * lun.
2178 		 */
2179 		if (periph->path->target)
2180 			cdm->matches[j].result.periph_result.target_id =
2181 				periph->path->target->target_id;
2182 		else
2183 			cdm->matches[j].result.periph_result.target_id =
2184 				CAM_TARGET_WILDCARD;
2185 
2186 		if (periph->path->device)
2187 			cdm->matches[j].result.periph_result.target_lun =
2188 				periph->path->device->lun_id;
2189 		else
2190 			cdm->matches[j].result.periph_result.target_lun =
2191 				CAM_LUN_WILDCARD;
2192 
2193 		cdm->matches[j].result.periph_result.unit_number =
2194 			periph->unit_number;
2195 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2196 			periph->periph_name, DEV_IDLEN);
2197 	}
2198 
2199 	return(1);
2200 }
2201 
2202 static int
2203 xptperiphlistmatch(struct ccb_dev_match *cdm)
2204 {
2205 	int ret;
2206 
2207 	cdm->num_matches = 0;
2208 
2209 	/*
2210 	 * At this point in the edt traversal function, we check the bus
2211 	 * list generation to make sure that no buses have been added or
2212 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2213 	 * For the peripheral driver list traversal function, however, we
2214 	 * don't have to worry about new peripheral driver types coming or
2215 	 * going; they're in a linker set, and therefore can't change
2216 	 * without a recompile.
2217 	 */
2218 
2219 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2220 	 && (cdm->pos.cookie.pdrv != NULL))
2221 		ret = xptpdrvtraverse(
2222 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2223 				xptplistpdrvfunc, cdm);
2224 	else
2225 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2226 
2227 	/*
2228 	 * If we get back 0, that means that we had to stop before fully
2229 	 * traversing the peripheral driver tree.  It also means that one of
2230 	 * the subroutines has set the status field to the proper value.  If
2231 	 * we get back 1, we've fully traversed the EDT and copied out any
2232 	 * matching entries.
2233 	 */
2234 	if (ret == 1)
2235 		cdm->status = CAM_DEV_MATCH_LAST;
2236 
2237 	return(ret);
2238 }
2239 
2240 static int
2241 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2242 {
2243 	struct cam_eb *bus, *next_bus;
2244 	int retval;
2245 
2246 	retval = 1;
2247 	if (start_bus)
2248 		bus = start_bus;
2249 	else {
2250 		xpt_lock_buses();
2251 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2252 		if (bus == NULL) {
2253 			xpt_unlock_buses();
2254 			return (retval);
2255 		}
2256 		bus->refcount++;
2257 		xpt_unlock_buses();
2258 	}
2259 	for (; bus != NULL; bus = next_bus) {
2260 		retval = tr_func(bus, arg);
2261 		if (retval == 0) {
2262 			xpt_release_bus(bus);
2263 			break;
2264 		}
2265 		xpt_lock_buses();
2266 		next_bus = TAILQ_NEXT(bus, links);
2267 		if (next_bus)
2268 			next_bus->refcount++;
2269 		xpt_unlock_buses();
2270 		xpt_release_bus(bus);
2271 	}
2272 	return(retval);
2273 }
2274 
2275 static int
2276 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2277 		  xpt_targetfunc_t *tr_func, void *arg)
2278 {
2279 	struct cam_et *target, *next_target;
2280 	int retval;
2281 
2282 	retval = 1;
2283 	if (start_target)
2284 		target = start_target;
2285 	else {
2286 		mtx_lock(&bus->eb_mtx);
2287 		target = TAILQ_FIRST(&bus->et_entries);
2288 		if (target == NULL) {
2289 			mtx_unlock(&bus->eb_mtx);
2290 			return (retval);
2291 		}
2292 		target->refcount++;
2293 		mtx_unlock(&bus->eb_mtx);
2294 	}
2295 	for (; target != NULL; target = next_target) {
2296 		retval = tr_func(target, arg);
2297 		if (retval == 0) {
2298 			xpt_release_target(target);
2299 			break;
2300 		}
2301 		mtx_lock(&bus->eb_mtx);
2302 		next_target = TAILQ_NEXT(target, links);
2303 		if (next_target)
2304 			next_target->refcount++;
2305 		mtx_unlock(&bus->eb_mtx);
2306 		xpt_release_target(target);
2307 	}
2308 	return(retval);
2309 }
2310 
2311 static int
2312 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2313 		  xpt_devicefunc_t *tr_func, void *arg)
2314 {
2315 	struct cam_eb *bus;
2316 	struct cam_ed *device, *next_device;
2317 	int retval;
2318 
2319 	retval = 1;
2320 	bus = target->bus;
2321 	if (start_device)
2322 		device = start_device;
2323 	else {
2324 		mtx_lock(&bus->eb_mtx);
2325 		device = TAILQ_FIRST(&target->ed_entries);
2326 		if (device == NULL) {
2327 			mtx_unlock(&bus->eb_mtx);
2328 			return (retval);
2329 		}
2330 		device->refcount++;
2331 		mtx_unlock(&bus->eb_mtx);
2332 	}
2333 	for (; device != NULL; device = next_device) {
2334 		mtx_lock(&device->device_mtx);
2335 		retval = tr_func(device, arg);
2336 		mtx_unlock(&device->device_mtx);
2337 		if (retval == 0) {
2338 			xpt_release_device(device);
2339 			break;
2340 		}
2341 		mtx_lock(&bus->eb_mtx);
2342 		next_device = TAILQ_NEXT(device, links);
2343 		if (next_device)
2344 			next_device->refcount++;
2345 		mtx_unlock(&bus->eb_mtx);
2346 		xpt_release_device(device);
2347 	}
2348 	return(retval);
2349 }
2350 
2351 static int
2352 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2353 		  xpt_periphfunc_t *tr_func, void *arg)
2354 {
2355 	struct cam_eb *bus;
2356 	struct cam_periph *periph, *next_periph;
2357 	int retval;
2358 
2359 	retval = 1;
2360 
2361 	bus = device->target->bus;
2362 	if (start_periph)
2363 		periph = start_periph;
2364 	else {
2365 		xpt_lock_buses();
2366 		mtx_lock(&bus->eb_mtx);
2367 		periph = SLIST_FIRST(&device->periphs);
2368 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2369 			periph = SLIST_NEXT(periph, periph_links);
2370 		if (periph == NULL) {
2371 			mtx_unlock(&bus->eb_mtx);
2372 			xpt_unlock_buses();
2373 			return (retval);
2374 		}
2375 		periph->refcount++;
2376 		mtx_unlock(&bus->eb_mtx);
2377 		xpt_unlock_buses();
2378 	}
2379 	for (; periph != NULL; periph = next_periph) {
2380 		retval = tr_func(periph, arg);
2381 		if (retval == 0) {
2382 			cam_periph_release_locked(periph);
2383 			break;
2384 		}
2385 		xpt_lock_buses();
2386 		mtx_lock(&bus->eb_mtx);
2387 		next_periph = SLIST_NEXT(periph, periph_links);
2388 		while (next_periph != NULL &&
2389 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2390 			next_periph = SLIST_NEXT(next_periph, periph_links);
2391 		if (next_periph)
2392 			next_periph->refcount++;
2393 		mtx_unlock(&bus->eb_mtx);
2394 		xpt_unlock_buses();
2395 		cam_periph_release_locked(periph);
2396 	}
2397 	return(retval);
2398 }
2399 
2400 static int
2401 xptpdrvtraverse(struct periph_driver **start_pdrv,
2402 		xpt_pdrvfunc_t *tr_func, void *arg)
2403 {
2404 	struct periph_driver **pdrv;
2405 	int retval;
2406 
2407 	retval = 1;
2408 
2409 	/*
2410 	 * We don't traverse the peripheral driver list like we do the
2411 	 * other lists, because it is a linker set, and therefore cannot be
2412 	 * changed during runtime.  If the peripheral driver list is ever
2413 	 * re-done to be something other than a linker set (i.e. it can
2414 	 * change while the system is running), the list traversal should
2415 	 * be modified to work like the other traversal functions.
2416 	 */
2417 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2418 	     *pdrv != NULL; pdrv++) {
2419 		retval = tr_func(pdrv, arg);
2420 
2421 		if (retval == 0)
2422 			return(retval);
2423 	}
2424 
2425 	return(retval);
2426 }
2427 
2428 static int
2429 xptpdperiphtraverse(struct periph_driver **pdrv,
2430 		    struct cam_periph *start_periph,
2431 		    xpt_periphfunc_t *tr_func, void *arg)
2432 {
2433 	struct cam_periph *periph, *next_periph;
2434 	int retval;
2435 
2436 	retval = 1;
2437 
2438 	if (start_periph)
2439 		periph = start_periph;
2440 	else {
2441 		xpt_lock_buses();
2442 		periph = TAILQ_FIRST(&(*pdrv)->units);
2443 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2444 			periph = TAILQ_NEXT(periph, unit_links);
2445 		if (periph == NULL) {
2446 			xpt_unlock_buses();
2447 			return (retval);
2448 		}
2449 		periph->refcount++;
2450 		xpt_unlock_buses();
2451 	}
2452 	for (; periph != NULL; periph = next_periph) {
2453 		cam_periph_lock(periph);
2454 		retval = tr_func(periph, arg);
2455 		cam_periph_unlock(periph);
2456 		if (retval == 0) {
2457 			cam_periph_release(periph);
2458 			break;
2459 		}
2460 		xpt_lock_buses();
2461 		next_periph = TAILQ_NEXT(periph, unit_links);
2462 		while (next_periph != NULL &&
2463 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2464 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2465 		if (next_periph)
2466 			next_periph->refcount++;
2467 		xpt_unlock_buses();
2468 		cam_periph_release(periph);
2469 	}
2470 	return(retval);
2471 }
2472 
2473 static int
2474 xptdefbusfunc(struct cam_eb *bus, void *arg)
2475 {
2476 	struct xpt_traverse_config *tr_config;
2477 
2478 	tr_config = (struct xpt_traverse_config *)arg;
2479 
2480 	if (tr_config->depth == XPT_DEPTH_BUS) {
2481 		xpt_busfunc_t *tr_func;
2482 
2483 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2484 
2485 		return(tr_func(bus, tr_config->tr_arg));
2486 	} else
2487 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2488 }
2489 
2490 static int
2491 xptdeftargetfunc(struct cam_et *target, void *arg)
2492 {
2493 	struct xpt_traverse_config *tr_config;
2494 
2495 	tr_config = (struct xpt_traverse_config *)arg;
2496 
2497 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2498 		xpt_targetfunc_t *tr_func;
2499 
2500 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2501 
2502 		return(tr_func(target, tr_config->tr_arg));
2503 	} else
2504 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2505 }
2506 
2507 static int
2508 xptdefdevicefunc(struct cam_ed *device, void *arg)
2509 {
2510 	struct xpt_traverse_config *tr_config;
2511 
2512 	tr_config = (struct xpt_traverse_config *)arg;
2513 
2514 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2515 		xpt_devicefunc_t *tr_func;
2516 
2517 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2518 
2519 		return(tr_func(device, tr_config->tr_arg));
2520 	} else
2521 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2522 }
2523 
2524 static int
2525 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2526 {
2527 	struct xpt_traverse_config *tr_config;
2528 	xpt_periphfunc_t *tr_func;
2529 
2530 	tr_config = (struct xpt_traverse_config *)arg;
2531 
2532 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2533 
2534 	/*
2535 	 * Unlike the other default functions, we don't check for depth
2536 	 * here.  The peripheral driver level is the last level in the EDT,
2537 	 * so if we're here, we should execute the function in question.
2538 	 */
2539 	return(tr_func(periph, tr_config->tr_arg));
2540 }
2541 
2542 /*
2543  * Execute the given function for every bus in the EDT.
2544  */
2545 static int
2546 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2547 {
2548 	struct xpt_traverse_config tr_config;
2549 
2550 	tr_config.depth = XPT_DEPTH_BUS;
2551 	tr_config.tr_func = tr_func;
2552 	tr_config.tr_arg = arg;
2553 
2554 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2555 }
2556 
2557 /*
2558  * Execute the given function for every device in the EDT.
2559  */
2560 static int
2561 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2562 {
2563 	struct xpt_traverse_config tr_config;
2564 
2565 	tr_config.depth = XPT_DEPTH_DEVICE;
2566 	tr_config.tr_func = tr_func;
2567 	tr_config.tr_arg = arg;
2568 
2569 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2570 }
2571 
2572 static int
2573 xptsetasyncfunc(struct cam_ed *device, void *arg)
2574 {
2575 	struct cam_path path;
2576 	struct ccb_getdev cgd;
2577 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2578 
2579 	/*
2580 	 * Don't report unconfigured devices (Wildcard devs,
2581 	 * devices only for target mode, device instances
2582 	 * that have been invalidated but are waiting for
2583 	 * their last reference count to be released).
2584 	 */
2585 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2586 		return (1);
2587 
2588 	xpt_compile_path(&path,
2589 			 NULL,
2590 			 device->target->bus->path_id,
2591 			 device->target->target_id,
2592 			 device->lun_id);
2593 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2594 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2595 	xpt_action((union ccb *)&cgd);
2596 	csa->callback(csa->callback_arg,
2597 			    AC_FOUND_DEVICE,
2598 			    &path, &cgd);
2599 	xpt_release_path(&path);
2600 
2601 	return(1);
2602 }
2603 
2604 static int
2605 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2606 {
2607 	struct cam_path path;
2608 	struct ccb_pathinq cpi;
2609 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2610 
2611 	xpt_compile_path(&path, /*periph*/NULL,
2612 			 bus->path_id,
2613 			 CAM_TARGET_WILDCARD,
2614 			 CAM_LUN_WILDCARD);
2615 	xpt_path_lock(&path);
2616 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2617 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2618 	xpt_action((union ccb *)&cpi);
2619 	csa->callback(csa->callback_arg,
2620 			    AC_PATH_REGISTERED,
2621 			    &path, &cpi);
2622 	xpt_path_unlock(&path);
2623 	xpt_release_path(&path);
2624 
2625 	return(1);
2626 }
2627 
2628 void
2629 xpt_action(union ccb *start_ccb)
2630 {
2631 
2632 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2633 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2634 		xpt_action_name(start_ccb->ccb_h.func_code)));
2635 
2636 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2637 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2638 }
2639 
2640 void
2641 xpt_action_default(union ccb *start_ccb)
2642 {
2643 	struct cam_path *path;
2644 	struct cam_sim *sim;
2645 	struct mtx *mtx;
2646 
2647 	path = start_ccb->ccb_h.path;
2648 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2649 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2650 		xpt_action_name(start_ccb->ccb_h.func_code)));
2651 
2652 	switch (start_ccb->ccb_h.func_code) {
2653 	case XPT_SCSI_IO:
2654 	{
2655 		struct cam_ed *device;
2656 
2657 		/*
2658 		 * For the sake of compatibility with SCSI-1
2659 		 * devices that may not understand the identify
2660 		 * message, we include lun information in the
2661 		 * second byte of all commands.  SCSI-1 specifies
2662 		 * that luns are a 3 bit value and reserves only 3
2663 		 * bits for lun information in the CDB.  Later
2664 		 * revisions of the SCSI spec allow for more than 8
2665 		 * luns, but have deprecated lun information in the
2666 		 * CDB.  So, if the lun won't fit, we must omit.
2667 		 *
2668 		 * Also be aware that during initial probing for devices,
2669 		 * the inquiry information is unknown but initialized to 0.
2670 		 * This means that this code will be exercised while probing
2671 		 * devices with an ANSI revision greater than 2.
2672 		 */
2673 		device = path->device;
2674 		if (device->protocol_version <= SCSI_REV_2
2675 		 && start_ccb->ccb_h.target_lun < 8
2676 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2677 
2678 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2679 			    start_ccb->ccb_h.target_lun << 5;
2680 		}
2681 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2682 	}
2683 	/* FALLTHROUGH */
2684 	case XPT_TARGET_IO:
2685 	case XPT_CONT_TARGET_IO:
2686 		start_ccb->csio.sense_resid = 0;
2687 		start_ccb->csio.resid = 0;
2688 		/* FALLTHROUGH */
2689 	case XPT_ATA_IO:
2690 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2691 			start_ccb->ataio.resid = 0;
2692 		/* FALLTHROUGH */
2693 	case XPT_NVME_IO:
2694 		if (start_ccb->ccb_h.func_code == XPT_NVME_IO)
2695 			start_ccb->nvmeio.resid = 0;
2696 		/* FALLTHROUGH */
2697 	case XPT_MMC_IO:
2698 		/* XXX just like nmve_io? */
2699 	case XPT_RESET_DEV:
2700 	case XPT_ENG_EXEC:
2701 	case XPT_SMP_IO:
2702 	{
2703 		struct cam_devq *devq;
2704 
2705 		devq = path->bus->sim->devq;
2706 		mtx_lock(&devq->send_mtx);
2707 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2708 		if (xpt_schedule_devq(devq, path->device) != 0)
2709 			xpt_run_devq(devq);
2710 		mtx_unlock(&devq->send_mtx);
2711 		break;
2712 	}
2713 	case XPT_CALC_GEOMETRY:
2714 		/* Filter out garbage */
2715 		if (start_ccb->ccg.block_size == 0
2716 		 || start_ccb->ccg.volume_size == 0) {
2717 			start_ccb->ccg.cylinders = 0;
2718 			start_ccb->ccg.heads = 0;
2719 			start_ccb->ccg.secs_per_track = 0;
2720 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2721 			break;
2722 		}
2723 #if defined(__sparc64__)
2724 		/*
2725 		 * For sparc64, we may need adjust the geometry of large
2726 		 * disks in order to fit the limitations of the 16-bit
2727 		 * fields of the VTOC8 disk label.
2728 		 */
2729 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2730 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2731 			break;
2732 		}
2733 #endif
2734 		goto call_sim;
2735 	case XPT_ABORT:
2736 	{
2737 		union ccb* abort_ccb;
2738 
2739 		abort_ccb = start_ccb->cab.abort_ccb;
2740 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2741 			struct cam_ed *device;
2742 			struct cam_devq *devq;
2743 
2744 			device = abort_ccb->ccb_h.path->device;
2745 			devq = device->sim->devq;
2746 
2747 			mtx_lock(&devq->send_mtx);
2748 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2749 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2750 				abort_ccb->ccb_h.status =
2751 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2752 				xpt_freeze_devq_device(device, 1);
2753 				mtx_unlock(&devq->send_mtx);
2754 				xpt_done(abort_ccb);
2755 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2756 				break;
2757 			}
2758 			mtx_unlock(&devq->send_mtx);
2759 
2760 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2761 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2762 				/*
2763 				 * We've caught this ccb en route to
2764 				 * the SIM.  Flag it for abort and the
2765 				 * SIM will do so just before starting
2766 				 * real work on the CCB.
2767 				 */
2768 				abort_ccb->ccb_h.status =
2769 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2770 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2771 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2772 				break;
2773 			}
2774 		}
2775 		if (XPT_FC_IS_QUEUED(abort_ccb)
2776 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2777 			/*
2778 			 * It's already completed but waiting
2779 			 * for our SWI to get to it.
2780 			 */
2781 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2782 			break;
2783 		}
2784 		/*
2785 		 * If we weren't able to take care of the abort request
2786 		 * in the XPT, pass the request down to the SIM for processing.
2787 		 */
2788 	}
2789 	/* FALLTHROUGH */
2790 	case XPT_ACCEPT_TARGET_IO:
2791 	case XPT_EN_LUN:
2792 	case XPT_IMMED_NOTIFY:
2793 	case XPT_NOTIFY_ACK:
2794 	case XPT_RESET_BUS:
2795 	case XPT_IMMEDIATE_NOTIFY:
2796 	case XPT_NOTIFY_ACKNOWLEDGE:
2797 	case XPT_GET_SIM_KNOB_OLD:
2798 	case XPT_GET_SIM_KNOB:
2799 	case XPT_SET_SIM_KNOB:
2800 	case XPT_GET_TRAN_SETTINGS:
2801 	case XPT_SET_TRAN_SETTINGS:
2802 	case XPT_PATH_INQ:
2803 call_sim:
2804 		sim = path->bus->sim;
2805 		mtx = sim->mtx;
2806 		if (mtx && !mtx_owned(mtx))
2807 			mtx_lock(mtx);
2808 		else
2809 			mtx = NULL;
2810 
2811 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2812 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2813 		(*(sim->sim_action))(sim, start_ccb);
2814 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2815 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2816 		if (mtx)
2817 			mtx_unlock(mtx);
2818 		break;
2819 	case XPT_PATH_STATS:
2820 		start_ccb->cpis.last_reset = path->bus->last_reset;
2821 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2822 		break;
2823 	case XPT_GDEV_TYPE:
2824 	{
2825 		struct cam_ed *dev;
2826 
2827 		dev = path->device;
2828 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2829 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2830 		} else {
2831 			struct ccb_getdev *cgd;
2832 
2833 			cgd = &start_ccb->cgd;
2834 			cgd->protocol = dev->protocol;
2835 			cgd->inq_data = dev->inq_data;
2836 			cgd->ident_data = dev->ident_data;
2837 			cgd->inq_flags = dev->inq_flags;
2838 			cgd->nvme_data = dev->nvme_data;
2839 			cgd->nvme_cdata = dev->nvme_cdata;
2840 			cgd->ccb_h.status = CAM_REQ_CMP;
2841 			cgd->serial_num_len = dev->serial_num_len;
2842 			if ((dev->serial_num_len > 0)
2843 			 && (dev->serial_num != NULL))
2844 				bcopy(dev->serial_num, cgd->serial_num,
2845 				      dev->serial_num_len);
2846 		}
2847 		break;
2848 	}
2849 	case XPT_GDEV_STATS:
2850 	{
2851 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2852 		struct cam_ed *dev = path->device;
2853 		struct cam_eb *bus = path->bus;
2854 		struct cam_et *tar = path->target;
2855 		struct cam_devq *devq = bus->sim->devq;
2856 
2857 		mtx_lock(&devq->send_mtx);
2858 		cgds->dev_openings = dev->ccbq.dev_openings;
2859 		cgds->dev_active = dev->ccbq.dev_active;
2860 		cgds->allocated = dev->ccbq.allocated;
2861 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2862 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2863 		cgds->last_reset = tar->last_reset;
2864 		cgds->maxtags = dev->maxtags;
2865 		cgds->mintags = dev->mintags;
2866 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2867 			cgds->last_reset = bus->last_reset;
2868 		mtx_unlock(&devq->send_mtx);
2869 		cgds->ccb_h.status = CAM_REQ_CMP;
2870 		break;
2871 	}
2872 	case XPT_GDEVLIST:
2873 	{
2874 		struct cam_periph	*nperiph;
2875 		struct periph_list	*periph_head;
2876 		struct ccb_getdevlist	*cgdl;
2877 		u_int			i;
2878 		struct cam_ed		*device;
2879 		int			found;
2880 
2881 
2882 		found = 0;
2883 
2884 		/*
2885 		 * Don't want anyone mucking with our data.
2886 		 */
2887 		device = path->device;
2888 		periph_head = &device->periphs;
2889 		cgdl = &start_ccb->cgdl;
2890 
2891 		/*
2892 		 * Check and see if the list has changed since the user
2893 		 * last requested a list member.  If so, tell them that the
2894 		 * list has changed, and therefore they need to start over
2895 		 * from the beginning.
2896 		 */
2897 		if ((cgdl->index != 0) &&
2898 		    (cgdl->generation != device->generation)) {
2899 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2900 			break;
2901 		}
2902 
2903 		/*
2904 		 * Traverse the list of peripherals and attempt to find
2905 		 * the requested peripheral.
2906 		 */
2907 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2908 		     (nperiph != NULL) && (i <= cgdl->index);
2909 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2910 			if (i == cgdl->index) {
2911 				strncpy(cgdl->periph_name,
2912 					nperiph->periph_name,
2913 					DEV_IDLEN);
2914 				cgdl->unit_number = nperiph->unit_number;
2915 				found = 1;
2916 			}
2917 		}
2918 		if (found == 0) {
2919 			cgdl->status = CAM_GDEVLIST_ERROR;
2920 			break;
2921 		}
2922 
2923 		if (nperiph == NULL)
2924 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2925 		else
2926 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2927 
2928 		cgdl->index++;
2929 		cgdl->generation = device->generation;
2930 
2931 		cgdl->ccb_h.status = CAM_REQ_CMP;
2932 		break;
2933 	}
2934 	case XPT_DEV_MATCH:
2935 	{
2936 		dev_pos_type position_type;
2937 		struct ccb_dev_match *cdm;
2938 
2939 		cdm = &start_ccb->cdm;
2940 
2941 		/*
2942 		 * There are two ways of getting at information in the EDT.
2943 		 * The first way is via the primary EDT tree.  It starts
2944 		 * with a list of buses, then a list of targets on a bus,
2945 		 * then devices/luns on a target, and then peripherals on a
2946 		 * device/lun.  The "other" way is by the peripheral driver
2947 		 * lists.  The peripheral driver lists are organized by
2948 		 * peripheral driver.  (obviously)  So it makes sense to
2949 		 * use the peripheral driver list if the user is looking
2950 		 * for something like "da1", or all "da" devices.  If the
2951 		 * user is looking for something on a particular bus/target
2952 		 * or lun, it's generally better to go through the EDT tree.
2953 		 */
2954 
2955 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2956 			position_type = cdm->pos.position_type;
2957 		else {
2958 			u_int i;
2959 
2960 			position_type = CAM_DEV_POS_NONE;
2961 
2962 			for (i = 0; i < cdm->num_patterns; i++) {
2963 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2964 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2965 					position_type = CAM_DEV_POS_EDT;
2966 					break;
2967 				}
2968 			}
2969 
2970 			if (cdm->num_patterns == 0)
2971 				position_type = CAM_DEV_POS_EDT;
2972 			else if (position_type == CAM_DEV_POS_NONE)
2973 				position_type = CAM_DEV_POS_PDRV;
2974 		}
2975 
2976 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2977 		case CAM_DEV_POS_EDT:
2978 			xptedtmatch(cdm);
2979 			break;
2980 		case CAM_DEV_POS_PDRV:
2981 			xptperiphlistmatch(cdm);
2982 			break;
2983 		default:
2984 			cdm->status = CAM_DEV_MATCH_ERROR;
2985 			break;
2986 		}
2987 
2988 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2989 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2990 		else
2991 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2992 
2993 		break;
2994 	}
2995 	case XPT_SASYNC_CB:
2996 	{
2997 		struct ccb_setasync *csa;
2998 		struct async_node *cur_entry;
2999 		struct async_list *async_head;
3000 		u_int32_t added;
3001 
3002 		csa = &start_ccb->csa;
3003 		added = csa->event_enable;
3004 		async_head = &path->device->asyncs;
3005 
3006 		/*
3007 		 * If there is already an entry for us, simply
3008 		 * update it.
3009 		 */
3010 		cur_entry = SLIST_FIRST(async_head);
3011 		while (cur_entry != NULL) {
3012 			if ((cur_entry->callback_arg == csa->callback_arg)
3013 			 && (cur_entry->callback == csa->callback))
3014 				break;
3015 			cur_entry = SLIST_NEXT(cur_entry, links);
3016 		}
3017 
3018 		if (cur_entry != NULL) {
3019 		 	/*
3020 			 * If the request has no flags set,
3021 			 * remove the entry.
3022 			 */
3023 			added &= ~cur_entry->event_enable;
3024 			if (csa->event_enable == 0) {
3025 				SLIST_REMOVE(async_head, cur_entry,
3026 					     async_node, links);
3027 				xpt_release_device(path->device);
3028 				free(cur_entry, M_CAMXPT);
3029 			} else {
3030 				cur_entry->event_enable = csa->event_enable;
3031 			}
3032 			csa->event_enable = added;
3033 		} else {
3034 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3035 					   M_NOWAIT);
3036 			if (cur_entry == NULL) {
3037 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3038 				break;
3039 			}
3040 			cur_entry->event_enable = csa->event_enable;
3041 			cur_entry->event_lock = (path->bus->sim->mtx &&
3042 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3043 			cur_entry->callback_arg = csa->callback_arg;
3044 			cur_entry->callback = csa->callback;
3045 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3046 			xpt_acquire_device(path->device);
3047 		}
3048 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3049 		break;
3050 	}
3051 	case XPT_REL_SIMQ:
3052 	{
3053 		struct ccb_relsim *crs;
3054 		struct cam_ed *dev;
3055 
3056 		crs = &start_ccb->crs;
3057 		dev = path->device;
3058 		if (dev == NULL) {
3059 
3060 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3061 			break;
3062 		}
3063 
3064 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3065 
3066 			/* Don't ever go below one opening */
3067 			if (crs->openings > 0) {
3068 				xpt_dev_ccbq_resize(path, crs->openings);
3069 				if (bootverbose) {
3070 					xpt_print(path,
3071 					    "number of openings is now %d\n",
3072 					    crs->openings);
3073 				}
3074 			}
3075 		}
3076 
3077 		mtx_lock(&dev->sim->devq->send_mtx);
3078 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3079 
3080 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3081 
3082 				/*
3083 				 * Just extend the old timeout and decrement
3084 				 * the freeze count so that a single timeout
3085 				 * is sufficient for releasing the queue.
3086 				 */
3087 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3088 				callout_stop(&dev->callout);
3089 			} else {
3090 
3091 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3092 			}
3093 
3094 			callout_reset_sbt(&dev->callout,
3095 			    SBT_1MS * crs->release_timeout, 0,
3096 			    xpt_release_devq_timeout, dev, 0);
3097 
3098 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3099 
3100 		}
3101 
3102 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3103 
3104 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3105 				/*
3106 				 * Decrement the freeze count so that a single
3107 				 * completion is still sufficient to unfreeze
3108 				 * the queue.
3109 				 */
3110 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3111 			} else {
3112 
3113 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3114 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3115 			}
3116 		}
3117 
3118 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3119 
3120 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3121 			 || (dev->ccbq.dev_active == 0)) {
3122 
3123 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3124 			} else {
3125 
3126 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3127 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3128 			}
3129 		}
3130 		mtx_unlock(&dev->sim->devq->send_mtx);
3131 
3132 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3133 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3134 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3135 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3136 		break;
3137 	}
3138 	case XPT_DEBUG: {
3139 		struct cam_path *oldpath;
3140 
3141 		/* Check that all request bits are supported. */
3142 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3143 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3144 			break;
3145 		}
3146 
3147 		cam_dflags = CAM_DEBUG_NONE;
3148 		if (cam_dpath != NULL) {
3149 			oldpath = cam_dpath;
3150 			cam_dpath = NULL;
3151 			xpt_free_path(oldpath);
3152 		}
3153 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3154 			if (xpt_create_path(&cam_dpath, NULL,
3155 					    start_ccb->ccb_h.path_id,
3156 					    start_ccb->ccb_h.target_id,
3157 					    start_ccb->ccb_h.target_lun) !=
3158 					    CAM_REQ_CMP) {
3159 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3160 			} else {
3161 				cam_dflags = start_ccb->cdbg.flags;
3162 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3163 				xpt_print(cam_dpath, "debugging flags now %x\n",
3164 				    cam_dflags);
3165 			}
3166 		} else
3167 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3168 		break;
3169 	}
3170 	case XPT_NOOP:
3171 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3172 			xpt_freeze_devq(path, 1);
3173 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3174 		break;
3175 	case XPT_REPROBE_LUN:
3176 		xpt_async(AC_INQ_CHANGED, path, NULL);
3177 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3178 		xpt_done(start_ccb);
3179 		break;
3180 	default:
3181 	case XPT_SDEV_TYPE:
3182 	case XPT_TERM_IO:
3183 	case XPT_ENG_INQ:
3184 		/* XXX Implement */
3185 		xpt_print(start_ccb->ccb_h.path,
3186 		    "%s: CCB type %#x %s not supported\n", __func__,
3187 		    start_ccb->ccb_h.func_code,
3188 		    xpt_action_name(start_ccb->ccb_h.func_code));
3189 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3190 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3191 			xpt_done(start_ccb);
3192 		}
3193 		break;
3194 	}
3195 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3196 	    ("xpt_action_default: func= %#x %s status %#x\n",
3197 		start_ccb->ccb_h.func_code,
3198  		xpt_action_name(start_ccb->ccb_h.func_code),
3199 		start_ccb->ccb_h.status));
3200 }
3201 
3202 void
3203 xpt_polled_action(union ccb *start_ccb)
3204 {
3205 	u_int32_t timeout;
3206 	struct	  cam_sim *sim;
3207 	struct	  cam_devq *devq;
3208 	struct	  cam_ed *dev;
3209 	struct mtx *mtx;
3210 
3211 	timeout = start_ccb->ccb_h.timeout * 10;
3212 	sim = start_ccb->ccb_h.path->bus->sim;
3213 	devq = sim->devq;
3214 	mtx = sim->mtx;
3215 	dev = start_ccb->ccb_h.path->device;
3216 
3217 	mtx_unlock(&dev->device_mtx);
3218 
3219 	/*
3220 	 * Steal an opening so that no other queued requests
3221 	 * can get it before us while we simulate interrupts.
3222 	 */
3223 	mtx_lock(&devq->send_mtx);
3224 	dev->ccbq.dev_openings--;
3225 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3226 	    (--timeout > 0)) {
3227 		mtx_unlock(&devq->send_mtx);
3228 		DELAY(100);
3229 		if (mtx)
3230 			mtx_lock(mtx);
3231 		(*(sim->sim_poll))(sim);
3232 		if (mtx)
3233 			mtx_unlock(mtx);
3234 		camisr_runqueue();
3235 		mtx_lock(&devq->send_mtx);
3236 	}
3237 	dev->ccbq.dev_openings++;
3238 	mtx_unlock(&devq->send_mtx);
3239 
3240 	if (timeout != 0) {
3241 		xpt_action(start_ccb);
3242 		while(--timeout > 0) {
3243 			if (mtx)
3244 				mtx_lock(mtx);
3245 			(*(sim->sim_poll))(sim);
3246 			if (mtx)
3247 				mtx_unlock(mtx);
3248 			camisr_runqueue();
3249 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3250 			    != CAM_REQ_INPROG)
3251 				break;
3252 			DELAY(100);
3253 		}
3254 		if (timeout == 0) {
3255 			/*
3256 			 * XXX Is it worth adding a sim_timeout entry
3257 			 * point so we can attempt recovery?  If
3258 			 * this is only used for dumps, I don't think
3259 			 * it is.
3260 			 */
3261 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3262 		}
3263 	} else {
3264 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3265 	}
3266 
3267 	mtx_lock(&dev->device_mtx);
3268 }
3269 
3270 /*
3271  * Schedule a peripheral driver to receive a ccb when its
3272  * target device has space for more transactions.
3273  */
3274 void
3275 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3276 {
3277 
3278 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3279 	cam_periph_assert(periph, MA_OWNED);
3280 	if (new_priority < periph->scheduled_priority) {
3281 		periph->scheduled_priority = new_priority;
3282 		xpt_run_allocq(periph, 0);
3283 	}
3284 }
3285 
3286 
3287 /*
3288  * Schedule a device to run on a given queue.
3289  * If the device was inserted as a new entry on the queue,
3290  * return 1 meaning the device queue should be run. If we
3291  * were already queued, implying someone else has already
3292  * started the queue, return 0 so the caller doesn't attempt
3293  * to run the queue.
3294  */
3295 static int
3296 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3297 		 u_int32_t new_priority)
3298 {
3299 	int retval;
3300 	u_int32_t old_priority;
3301 
3302 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3303 
3304 	old_priority = pinfo->priority;
3305 
3306 	/*
3307 	 * Are we already queued?
3308 	 */
3309 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3310 		/* Simply reorder based on new priority */
3311 		if (new_priority < old_priority) {
3312 			camq_change_priority(queue, pinfo->index,
3313 					     new_priority);
3314 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3315 					("changed priority to %d\n",
3316 					 new_priority));
3317 			retval = 1;
3318 		} else
3319 			retval = 0;
3320 	} else {
3321 		/* New entry on the queue */
3322 		if (new_priority < old_priority)
3323 			pinfo->priority = new_priority;
3324 
3325 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3326 				("Inserting onto queue\n"));
3327 		pinfo->generation = ++queue->generation;
3328 		camq_insert(queue, pinfo);
3329 		retval = 1;
3330 	}
3331 	return (retval);
3332 }
3333 
3334 static void
3335 xpt_run_allocq_task(void *context, int pending)
3336 {
3337 	struct cam_periph *periph = context;
3338 
3339 	cam_periph_lock(periph);
3340 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3341 	xpt_run_allocq(periph, 1);
3342 	cam_periph_unlock(periph);
3343 	cam_periph_release(periph);
3344 }
3345 
3346 static void
3347 xpt_run_allocq(struct cam_periph *periph, int sleep)
3348 {
3349 	struct cam_ed	*device;
3350 	union ccb	*ccb;
3351 	uint32_t	 prio;
3352 
3353 	cam_periph_assert(periph, MA_OWNED);
3354 	if (periph->periph_allocating)
3355 		return;
3356 	periph->periph_allocating = 1;
3357 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3358 	device = periph->path->device;
3359 	ccb = NULL;
3360 restart:
3361 	while ((prio = min(periph->scheduled_priority,
3362 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3363 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3364 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3365 
3366 		if (ccb == NULL &&
3367 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3368 			if (sleep) {
3369 				ccb = xpt_get_ccb(periph);
3370 				goto restart;
3371 			}
3372 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3373 				break;
3374 			cam_periph_doacquire(periph);
3375 			periph->flags |= CAM_PERIPH_RUN_TASK;
3376 			taskqueue_enqueue(xsoftc.xpt_taskq,
3377 			    &periph->periph_run_task);
3378 			break;
3379 		}
3380 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3381 		if (prio == periph->immediate_priority) {
3382 			periph->immediate_priority = CAM_PRIORITY_NONE;
3383 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3384 					("waking cam_periph_getccb()\n"));
3385 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3386 					  periph_links.sle);
3387 			wakeup(&periph->ccb_list);
3388 		} else {
3389 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3390 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3391 					("calling periph_start()\n"));
3392 			periph->periph_start(periph, ccb);
3393 		}
3394 		ccb = NULL;
3395 	}
3396 	if (ccb != NULL)
3397 		xpt_release_ccb(ccb);
3398 	periph->periph_allocating = 0;
3399 }
3400 
3401 static void
3402 xpt_run_devq(struct cam_devq *devq)
3403 {
3404 	struct mtx *mtx;
3405 
3406 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3407 
3408 	devq->send_queue.qfrozen_cnt++;
3409 	while ((devq->send_queue.entries > 0)
3410 	    && (devq->send_openings > 0)
3411 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3412 		struct	cam_ed *device;
3413 		union ccb *work_ccb;
3414 		struct	cam_sim *sim;
3415 		struct xpt_proto *proto;
3416 
3417 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3418 							   CAMQ_HEAD);
3419 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3420 				("running device %p\n", device));
3421 
3422 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3423 		if (work_ccb == NULL) {
3424 			printf("device on run queue with no ccbs???\n");
3425 			continue;
3426 		}
3427 
3428 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3429 
3430 			mtx_lock(&xsoftc.xpt_highpower_lock);
3431 		 	if (xsoftc.num_highpower <= 0) {
3432 				/*
3433 				 * We got a high power command, but we
3434 				 * don't have any available slots.  Freeze
3435 				 * the device queue until we have a slot
3436 				 * available.
3437 				 */
3438 				xpt_freeze_devq_device(device, 1);
3439 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3440 						   highpowerq_entry);
3441 
3442 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3443 				continue;
3444 			} else {
3445 				/*
3446 				 * Consume a high power slot while
3447 				 * this ccb runs.
3448 				 */
3449 				xsoftc.num_highpower--;
3450 			}
3451 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3452 		}
3453 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3454 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3455 		devq->send_openings--;
3456 		devq->send_active++;
3457 		xpt_schedule_devq(devq, device);
3458 		mtx_unlock(&devq->send_mtx);
3459 
3460 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3461 			/*
3462 			 * The client wants to freeze the queue
3463 			 * after this CCB is sent.
3464 			 */
3465 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3466 		}
3467 
3468 		/* In Target mode, the peripheral driver knows best... */
3469 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3470 			if ((device->inq_flags & SID_CmdQue) != 0
3471 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3472 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3473 			else
3474 				/*
3475 				 * Clear this in case of a retried CCB that
3476 				 * failed due to a rejected tag.
3477 				 */
3478 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3479 		}
3480 
3481 		KASSERT(device == work_ccb->ccb_h.path->device,
3482 		    ("device (%p) / path->device (%p) mismatch",
3483 			device, work_ccb->ccb_h.path->device));
3484 		proto = xpt_proto_find(device->protocol);
3485 		if (proto && proto->ops->debug_out)
3486 			proto->ops->debug_out(work_ccb);
3487 
3488 		/*
3489 		 * Device queues can be shared among multiple SIM instances
3490 		 * that reside on different buses.  Use the SIM from the
3491 		 * queued device, rather than the one from the calling bus.
3492 		 */
3493 		sim = device->sim;
3494 		mtx = sim->mtx;
3495 		if (mtx && !mtx_owned(mtx))
3496 			mtx_lock(mtx);
3497 		else
3498 			mtx = NULL;
3499 		work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
3500 		(*(sim->sim_action))(sim, work_ccb);
3501 		if (mtx)
3502 			mtx_unlock(mtx);
3503 		mtx_lock(&devq->send_mtx);
3504 	}
3505 	devq->send_queue.qfrozen_cnt--;
3506 }
3507 
3508 /*
3509  * This function merges stuff from the slave ccb into the master ccb, while
3510  * keeping important fields in the master ccb constant.
3511  */
3512 void
3513 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3514 {
3515 
3516 	/*
3517 	 * Pull fields that are valid for peripheral drivers to set
3518 	 * into the master CCB along with the CCB "payload".
3519 	 */
3520 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3521 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3522 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3523 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3524 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3525 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3526 }
3527 
3528 void
3529 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3530 		    u_int32_t priority, u_int32_t flags)
3531 {
3532 
3533 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3534 	ccb_h->pinfo.priority = priority;
3535 	ccb_h->path = path;
3536 	ccb_h->path_id = path->bus->path_id;
3537 	if (path->target)
3538 		ccb_h->target_id = path->target->target_id;
3539 	else
3540 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3541 	if (path->device) {
3542 		ccb_h->target_lun = path->device->lun_id;
3543 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3544 	} else {
3545 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3546 	}
3547 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3548 	ccb_h->flags = flags;
3549 	ccb_h->xflags = 0;
3550 }
3551 
3552 void
3553 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3554 {
3555 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3556 }
3557 
3558 /* Path manipulation functions */
3559 cam_status
3560 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3561 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3562 {
3563 	struct	   cam_path *path;
3564 	cam_status status;
3565 
3566 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3567 
3568 	if (path == NULL) {
3569 		status = CAM_RESRC_UNAVAIL;
3570 		return(status);
3571 	}
3572 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3573 	if (status != CAM_REQ_CMP) {
3574 		free(path, M_CAMPATH);
3575 		path = NULL;
3576 	}
3577 	*new_path_ptr = path;
3578 	return (status);
3579 }
3580 
3581 cam_status
3582 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3583 			 struct cam_periph *periph, path_id_t path_id,
3584 			 target_id_t target_id, lun_id_t lun_id)
3585 {
3586 
3587 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3588 	    lun_id));
3589 }
3590 
3591 cam_status
3592 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3593 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3594 {
3595 	struct	     cam_eb *bus;
3596 	struct	     cam_et *target;
3597 	struct	     cam_ed *device;
3598 	cam_status   status;
3599 
3600 	status = CAM_REQ_CMP;	/* Completed without error */
3601 	target = NULL;		/* Wildcarded */
3602 	device = NULL;		/* Wildcarded */
3603 
3604 	/*
3605 	 * We will potentially modify the EDT, so block interrupts
3606 	 * that may attempt to create cam paths.
3607 	 */
3608 	bus = xpt_find_bus(path_id);
3609 	if (bus == NULL) {
3610 		status = CAM_PATH_INVALID;
3611 	} else {
3612 		xpt_lock_buses();
3613 		mtx_lock(&bus->eb_mtx);
3614 		target = xpt_find_target(bus, target_id);
3615 		if (target == NULL) {
3616 			/* Create one */
3617 			struct cam_et *new_target;
3618 
3619 			new_target = xpt_alloc_target(bus, target_id);
3620 			if (new_target == NULL) {
3621 				status = CAM_RESRC_UNAVAIL;
3622 			} else {
3623 				target = new_target;
3624 			}
3625 		}
3626 		xpt_unlock_buses();
3627 		if (target != NULL) {
3628 			device = xpt_find_device(target, lun_id);
3629 			if (device == NULL) {
3630 				/* Create one */
3631 				struct cam_ed *new_device;
3632 
3633 				new_device =
3634 				    (*(bus->xport->ops->alloc_device))(bus,
3635 								       target,
3636 								       lun_id);
3637 				if (new_device == NULL) {
3638 					status = CAM_RESRC_UNAVAIL;
3639 				} else {
3640 					device = new_device;
3641 				}
3642 			}
3643 		}
3644 		mtx_unlock(&bus->eb_mtx);
3645 	}
3646 
3647 	/*
3648 	 * Only touch the user's data if we are successful.
3649 	 */
3650 	if (status == CAM_REQ_CMP) {
3651 		new_path->periph = perph;
3652 		new_path->bus = bus;
3653 		new_path->target = target;
3654 		new_path->device = device;
3655 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3656 	} else {
3657 		if (device != NULL)
3658 			xpt_release_device(device);
3659 		if (target != NULL)
3660 			xpt_release_target(target);
3661 		if (bus != NULL)
3662 			xpt_release_bus(bus);
3663 	}
3664 	return (status);
3665 }
3666 
3667 cam_status
3668 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3669 {
3670 	struct	   cam_path *new_path;
3671 
3672 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3673 	if (new_path == NULL)
3674 		return(CAM_RESRC_UNAVAIL);
3675 	xpt_copy_path(new_path, path);
3676 	*new_path_ptr = new_path;
3677 	return (CAM_REQ_CMP);
3678 }
3679 
3680 void
3681 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3682 {
3683 
3684 	*new_path = *path;
3685 	if (path->bus != NULL)
3686 		xpt_acquire_bus(path->bus);
3687 	if (path->target != NULL)
3688 		xpt_acquire_target(path->target);
3689 	if (path->device != NULL)
3690 		xpt_acquire_device(path->device);
3691 }
3692 
3693 void
3694 xpt_release_path(struct cam_path *path)
3695 {
3696 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3697 	if (path->device != NULL) {
3698 		xpt_release_device(path->device);
3699 		path->device = NULL;
3700 	}
3701 	if (path->target != NULL) {
3702 		xpt_release_target(path->target);
3703 		path->target = NULL;
3704 	}
3705 	if (path->bus != NULL) {
3706 		xpt_release_bus(path->bus);
3707 		path->bus = NULL;
3708 	}
3709 }
3710 
3711 void
3712 xpt_free_path(struct cam_path *path)
3713 {
3714 
3715 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3716 	xpt_release_path(path);
3717 	free(path, M_CAMPATH);
3718 }
3719 
3720 void
3721 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3722     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3723 {
3724 
3725 	xpt_lock_buses();
3726 	if (bus_ref) {
3727 		if (path->bus)
3728 			*bus_ref = path->bus->refcount;
3729 		else
3730 			*bus_ref = 0;
3731 	}
3732 	if (periph_ref) {
3733 		if (path->periph)
3734 			*periph_ref = path->periph->refcount;
3735 		else
3736 			*periph_ref = 0;
3737 	}
3738 	xpt_unlock_buses();
3739 	if (target_ref) {
3740 		if (path->target)
3741 			*target_ref = path->target->refcount;
3742 		else
3743 			*target_ref = 0;
3744 	}
3745 	if (device_ref) {
3746 		if (path->device)
3747 			*device_ref = path->device->refcount;
3748 		else
3749 			*device_ref = 0;
3750 	}
3751 }
3752 
3753 /*
3754  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3755  * in path1, 2 for match with wildcards in path2.
3756  */
3757 int
3758 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3759 {
3760 	int retval = 0;
3761 
3762 	if (path1->bus != path2->bus) {
3763 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3764 			retval = 1;
3765 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3766 			retval = 2;
3767 		else
3768 			return (-1);
3769 	}
3770 	if (path1->target != path2->target) {
3771 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3772 			if (retval == 0)
3773 				retval = 1;
3774 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3775 			retval = 2;
3776 		else
3777 			return (-1);
3778 	}
3779 	if (path1->device != path2->device) {
3780 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3781 			if (retval == 0)
3782 				retval = 1;
3783 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3784 			retval = 2;
3785 		else
3786 			return (-1);
3787 	}
3788 	return (retval);
3789 }
3790 
3791 int
3792 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3793 {
3794 	int retval = 0;
3795 
3796 	if (path->bus != dev->target->bus) {
3797 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3798 			retval = 1;
3799 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3800 			retval = 2;
3801 		else
3802 			return (-1);
3803 	}
3804 	if (path->target != dev->target) {
3805 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3806 			if (retval == 0)
3807 				retval = 1;
3808 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3809 			retval = 2;
3810 		else
3811 			return (-1);
3812 	}
3813 	if (path->device != dev) {
3814 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3815 			if (retval == 0)
3816 				retval = 1;
3817 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3818 			retval = 2;
3819 		else
3820 			return (-1);
3821 	}
3822 	return (retval);
3823 }
3824 
3825 void
3826 xpt_print_path(struct cam_path *path)
3827 {
3828 	struct sbuf sb;
3829 	char buffer[XPT_PRINT_LEN];
3830 
3831 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3832 	xpt_path_sbuf(path, &sb);
3833 	sbuf_finish(&sb);
3834 	printf("%s", sbuf_data(&sb));
3835 	sbuf_delete(&sb);
3836 }
3837 
3838 void
3839 xpt_print_device(struct cam_ed *device)
3840 {
3841 
3842 	if (device == NULL)
3843 		printf("(nopath): ");
3844 	else {
3845 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3846 		       device->sim->unit_number,
3847 		       device->sim->bus_id,
3848 		       device->target->target_id,
3849 		       (uintmax_t)device->lun_id);
3850 	}
3851 }
3852 
3853 void
3854 xpt_print(struct cam_path *path, const char *fmt, ...)
3855 {
3856 	va_list ap;
3857 	struct sbuf sb;
3858 	char buffer[XPT_PRINT_LEN];
3859 
3860 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3861 
3862 	xpt_path_sbuf(path, &sb);
3863 	va_start(ap, fmt);
3864 	sbuf_vprintf(&sb, fmt, ap);
3865 	va_end(ap);
3866 
3867 	sbuf_finish(&sb);
3868 	printf("%s", sbuf_data(&sb));
3869 	sbuf_delete(&sb);
3870 }
3871 
3872 int
3873 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3874 {
3875 	struct sbuf sb;
3876 	int len;
3877 
3878 	sbuf_new(&sb, str, str_len, 0);
3879 	len = xpt_path_sbuf(path, &sb);
3880 	sbuf_finish(&sb);
3881 	return (len);
3882 }
3883 
3884 int
3885 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3886 {
3887 
3888 	if (path == NULL)
3889 		sbuf_printf(sb, "(nopath): ");
3890 	else {
3891 		if (path->periph != NULL)
3892 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3893 				    path->periph->unit_number);
3894 		else
3895 			sbuf_printf(sb, "(noperiph:");
3896 
3897 		if (path->bus != NULL)
3898 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3899 				    path->bus->sim->unit_number,
3900 				    path->bus->sim->bus_id);
3901 		else
3902 			sbuf_printf(sb, "nobus:");
3903 
3904 		if (path->target != NULL)
3905 			sbuf_printf(sb, "%d:", path->target->target_id);
3906 		else
3907 			sbuf_printf(sb, "X:");
3908 
3909 		if (path->device != NULL)
3910 			sbuf_printf(sb, "%jx): ",
3911 			    (uintmax_t)path->device->lun_id);
3912 		else
3913 			sbuf_printf(sb, "X): ");
3914 	}
3915 
3916 	return(sbuf_len(sb));
3917 }
3918 
3919 path_id_t
3920 xpt_path_path_id(struct cam_path *path)
3921 {
3922 	return(path->bus->path_id);
3923 }
3924 
3925 target_id_t
3926 xpt_path_target_id(struct cam_path *path)
3927 {
3928 	if (path->target != NULL)
3929 		return (path->target->target_id);
3930 	else
3931 		return (CAM_TARGET_WILDCARD);
3932 }
3933 
3934 lun_id_t
3935 xpt_path_lun_id(struct cam_path *path)
3936 {
3937 	if (path->device != NULL)
3938 		return (path->device->lun_id);
3939 	else
3940 		return (CAM_LUN_WILDCARD);
3941 }
3942 
3943 struct cam_sim *
3944 xpt_path_sim(struct cam_path *path)
3945 {
3946 
3947 	return (path->bus->sim);
3948 }
3949 
3950 struct cam_periph*
3951 xpt_path_periph(struct cam_path *path)
3952 {
3953 
3954 	return (path->periph);
3955 }
3956 
3957 /*
3958  * Release a CAM control block for the caller.  Remit the cost of the structure
3959  * to the device referenced by the path.  If the this device had no 'credits'
3960  * and peripheral drivers have registered async callbacks for this notification
3961  * call them now.
3962  */
3963 void
3964 xpt_release_ccb(union ccb *free_ccb)
3965 {
3966 	struct	 cam_ed *device;
3967 	struct	 cam_periph *periph;
3968 
3969 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3970 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3971 	device = free_ccb->ccb_h.path->device;
3972 	periph = free_ccb->ccb_h.path->periph;
3973 
3974 	xpt_free_ccb(free_ccb);
3975 	periph->periph_allocated--;
3976 	cam_ccbq_release_opening(&device->ccbq);
3977 	xpt_run_allocq(periph, 0);
3978 }
3979 
3980 /* Functions accessed by SIM drivers */
3981 
3982 static struct xpt_xport_ops xport_default_ops = {
3983 	.alloc_device = xpt_alloc_device_default,
3984 	.action = xpt_action_default,
3985 	.async = xpt_dev_async_default,
3986 };
3987 static struct xpt_xport xport_default = {
3988 	.xport = XPORT_UNKNOWN,
3989 	.name = "unknown",
3990 	.ops = &xport_default_ops,
3991 };
3992 
3993 CAM_XPT_XPORT(xport_default);
3994 
3995 /*
3996  * A sim structure, listing the SIM entry points and instance
3997  * identification info is passed to xpt_bus_register to hook the SIM
3998  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3999  * for this new bus and places it in the array of buses and assigns
4000  * it a path_id.  The path_id may be influenced by "hard wiring"
4001  * information specified by the user.  Once interrupt services are
4002  * available, the bus will be probed.
4003  */
4004 int32_t
4005 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4006 {
4007 	struct cam_eb *new_bus;
4008 	struct cam_eb *old_bus;
4009 	struct ccb_pathinq cpi;
4010 	struct cam_path *path;
4011 	cam_status status;
4012 
4013 	sim->bus_id = bus;
4014 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4015 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4016 	if (new_bus == NULL) {
4017 		/* Couldn't satisfy request */
4018 		return (CAM_RESRC_UNAVAIL);
4019 	}
4020 
4021 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4022 	TAILQ_INIT(&new_bus->et_entries);
4023 	cam_sim_hold(sim);
4024 	new_bus->sim = sim;
4025 	timevalclear(&new_bus->last_reset);
4026 	new_bus->flags = 0;
4027 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4028 	new_bus->generation = 0;
4029 
4030 	xpt_lock_buses();
4031 	sim->path_id = new_bus->path_id =
4032 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4033 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4034 	while (old_bus != NULL
4035 	    && old_bus->path_id < new_bus->path_id)
4036 		old_bus = TAILQ_NEXT(old_bus, links);
4037 	if (old_bus != NULL)
4038 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4039 	else
4040 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4041 	xsoftc.bus_generation++;
4042 	xpt_unlock_buses();
4043 
4044 	/*
4045 	 * Set a default transport so that a PATH_INQ can be issued to
4046 	 * the SIM.  This will then allow for probing and attaching of
4047 	 * a more appropriate transport.
4048 	 */
4049 	new_bus->xport = &xport_default;
4050 
4051 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4052 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4053 	if (status != CAM_REQ_CMP) {
4054 		xpt_release_bus(new_bus);
4055 		free(path, M_CAMXPT);
4056 		return (CAM_RESRC_UNAVAIL);
4057 	}
4058 
4059 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
4060 	cpi.ccb_h.func_code = XPT_PATH_INQ;
4061 	xpt_action((union ccb *)&cpi);
4062 
4063 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4064 		struct xpt_xport **xpt;
4065 
4066 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4067 			if ((*xpt)->xport == cpi.transport) {
4068 				new_bus->xport = *xpt;
4069 				break;
4070 			}
4071 		}
4072 		if (new_bus->xport == NULL) {
4073 			xpt_print(path,
4074 			    "No transport found for %d\n", cpi.transport);
4075 			xpt_release_bus(new_bus);
4076 			free(path, M_CAMXPT);
4077 			return (CAM_RESRC_UNAVAIL);
4078 		}
4079 	}
4080 
4081 	/* Notify interested parties */
4082 	if (sim->path_id != CAM_XPT_PATH_ID) {
4083 
4084 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4085 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4086 			union	ccb *scan_ccb;
4087 
4088 			/* Initiate bus rescan. */
4089 			scan_ccb = xpt_alloc_ccb_nowait();
4090 			if (scan_ccb != NULL) {
4091 				scan_ccb->ccb_h.path = path;
4092 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4093 				scan_ccb->crcn.flags = 0;
4094 				xpt_rescan(scan_ccb);
4095 			} else {
4096 				xpt_print(path,
4097 					  "Can't allocate CCB to scan bus\n");
4098 				xpt_free_path(path);
4099 			}
4100 		} else
4101 			xpt_free_path(path);
4102 	} else
4103 		xpt_free_path(path);
4104 	return (CAM_SUCCESS);
4105 }
4106 
4107 int32_t
4108 xpt_bus_deregister(path_id_t pathid)
4109 {
4110 	struct cam_path bus_path;
4111 	cam_status status;
4112 
4113 	status = xpt_compile_path(&bus_path, NULL, pathid,
4114 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4115 	if (status != CAM_REQ_CMP)
4116 		return (status);
4117 
4118 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4119 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4120 
4121 	/* Release the reference count held while registered. */
4122 	xpt_release_bus(bus_path.bus);
4123 	xpt_release_path(&bus_path);
4124 
4125 	return (CAM_REQ_CMP);
4126 }
4127 
4128 static path_id_t
4129 xptnextfreepathid(void)
4130 {
4131 	struct cam_eb *bus;
4132 	path_id_t pathid;
4133 	const char *strval;
4134 
4135 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4136 	pathid = 0;
4137 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4138 retry:
4139 	/* Find an unoccupied pathid */
4140 	while (bus != NULL && bus->path_id <= pathid) {
4141 		if (bus->path_id == pathid)
4142 			pathid++;
4143 		bus = TAILQ_NEXT(bus, links);
4144 	}
4145 
4146 	/*
4147 	 * Ensure that this pathid is not reserved for
4148 	 * a bus that may be registered in the future.
4149 	 */
4150 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4151 		++pathid;
4152 		/* Start the search over */
4153 		goto retry;
4154 	}
4155 	return (pathid);
4156 }
4157 
4158 static path_id_t
4159 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4160 {
4161 	path_id_t pathid;
4162 	int i, dunit, val;
4163 	char buf[32];
4164 	const char *dname;
4165 
4166 	pathid = CAM_XPT_PATH_ID;
4167 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4168 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4169 		return (pathid);
4170 	i = 0;
4171 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4172 		if (strcmp(dname, "scbus")) {
4173 			/* Avoid a bit of foot shooting. */
4174 			continue;
4175 		}
4176 		if (dunit < 0)		/* unwired?! */
4177 			continue;
4178 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4179 			if (sim_bus == val) {
4180 				pathid = dunit;
4181 				break;
4182 			}
4183 		} else if (sim_bus == 0) {
4184 			/* Unspecified matches bus 0 */
4185 			pathid = dunit;
4186 			break;
4187 		} else {
4188 			printf("Ambiguous scbus configuration for %s%d "
4189 			       "bus %d, cannot wire down.  The kernel "
4190 			       "config entry for scbus%d should "
4191 			       "specify a controller bus.\n"
4192 			       "Scbus will be assigned dynamically.\n",
4193 			       sim_name, sim_unit, sim_bus, dunit);
4194 			break;
4195 		}
4196 	}
4197 
4198 	if (pathid == CAM_XPT_PATH_ID)
4199 		pathid = xptnextfreepathid();
4200 	return (pathid);
4201 }
4202 
4203 static const char *
4204 xpt_async_string(u_int32_t async_code)
4205 {
4206 
4207 	switch (async_code) {
4208 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4209 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4210 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4211 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4212 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4213 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4214 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4215 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4216 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4217 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4218 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4219 	case AC_CONTRACT: return ("AC_CONTRACT");
4220 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4221 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4222 	}
4223 	return ("AC_UNKNOWN");
4224 }
4225 
4226 static int
4227 xpt_async_size(u_int32_t async_code)
4228 {
4229 
4230 	switch (async_code) {
4231 	case AC_BUS_RESET: return (0);
4232 	case AC_UNSOL_RESEL: return (0);
4233 	case AC_SCSI_AEN: return (0);
4234 	case AC_SENT_BDR: return (0);
4235 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4236 	case AC_PATH_DEREGISTERED: return (0);
4237 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4238 	case AC_LOST_DEVICE: return (0);
4239 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4240 	case AC_INQ_CHANGED: return (0);
4241 	case AC_GETDEV_CHANGED: return (0);
4242 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4243 	case AC_ADVINFO_CHANGED: return (-1);
4244 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4245 	}
4246 	return (0);
4247 }
4248 
4249 static int
4250 xpt_async_process_dev(struct cam_ed *device, void *arg)
4251 {
4252 	union ccb *ccb = arg;
4253 	struct cam_path *path = ccb->ccb_h.path;
4254 	void *async_arg = ccb->casync.async_arg_ptr;
4255 	u_int32_t async_code = ccb->casync.async_code;
4256 	int relock;
4257 
4258 	if (path->device != device
4259 	 && path->device->lun_id != CAM_LUN_WILDCARD
4260 	 && device->lun_id != CAM_LUN_WILDCARD)
4261 		return (1);
4262 
4263 	/*
4264 	 * The async callback could free the device.
4265 	 * If it is a broadcast async, it doesn't hold
4266 	 * device reference, so take our own reference.
4267 	 */
4268 	xpt_acquire_device(device);
4269 
4270 	/*
4271 	 * If async for specific device is to be delivered to
4272 	 * the wildcard client, take the specific device lock.
4273 	 * XXX: We may need a way for client to specify it.
4274 	 */
4275 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4276 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4277 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4278 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4279 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4280 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4281 		mtx_unlock(&device->device_mtx);
4282 		xpt_path_lock(path);
4283 		relock = 1;
4284 	} else
4285 		relock = 0;
4286 
4287 	(*(device->target->bus->xport->ops->async))(async_code,
4288 	    device->target->bus, device->target, device, async_arg);
4289 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4290 
4291 	if (relock) {
4292 		xpt_path_unlock(path);
4293 		mtx_lock(&device->device_mtx);
4294 	}
4295 	xpt_release_device(device);
4296 	return (1);
4297 }
4298 
4299 static int
4300 xpt_async_process_tgt(struct cam_et *target, void *arg)
4301 {
4302 	union ccb *ccb = arg;
4303 	struct cam_path *path = ccb->ccb_h.path;
4304 
4305 	if (path->target != target
4306 	 && path->target->target_id != CAM_TARGET_WILDCARD
4307 	 && target->target_id != CAM_TARGET_WILDCARD)
4308 		return (1);
4309 
4310 	if (ccb->casync.async_code == AC_SENT_BDR) {
4311 		/* Update our notion of when the last reset occurred */
4312 		microtime(&target->last_reset);
4313 	}
4314 
4315 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4316 }
4317 
4318 static void
4319 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4320 {
4321 	struct cam_eb *bus;
4322 	struct cam_path *path;
4323 	void *async_arg;
4324 	u_int32_t async_code;
4325 
4326 	path = ccb->ccb_h.path;
4327 	async_code = ccb->casync.async_code;
4328 	async_arg = ccb->casync.async_arg_ptr;
4329 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4330 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4331 	bus = path->bus;
4332 
4333 	if (async_code == AC_BUS_RESET) {
4334 		/* Update our notion of when the last reset occurred */
4335 		microtime(&bus->last_reset);
4336 	}
4337 
4338 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4339 
4340 	/*
4341 	 * If this wasn't a fully wildcarded async, tell all
4342 	 * clients that want all async events.
4343 	 */
4344 	if (bus != xpt_periph->path->bus) {
4345 		xpt_path_lock(xpt_periph->path);
4346 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4347 		xpt_path_unlock(xpt_periph->path);
4348 	}
4349 
4350 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4351 		xpt_release_devq(path, 1, TRUE);
4352 	else
4353 		xpt_release_simq(path->bus->sim, TRUE);
4354 	if (ccb->casync.async_arg_size > 0)
4355 		free(async_arg, M_CAMXPT);
4356 	xpt_free_path(path);
4357 	xpt_free_ccb(ccb);
4358 }
4359 
4360 static void
4361 xpt_async_bcast(struct async_list *async_head,
4362 		u_int32_t async_code,
4363 		struct cam_path *path, void *async_arg)
4364 {
4365 	struct async_node *cur_entry;
4366 	struct mtx *mtx;
4367 
4368 	cur_entry = SLIST_FIRST(async_head);
4369 	while (cur_entry != NULL) {
4370 		struct async_node *next_entry;
4371 		/*
4372 		 * Grab the next list entry before we call the current
4373 		 * entry's callback.  This is because the callback function
4374 		 * can delete its async callback entry.
4375 		 */
4376 		next_entry = SLIST_NEXT(cur_entry, links);
4377 		if ((cur_entry->event_enable & async_code) != 0) {
4378 			mtx = cur_entry->event_lock ?
4379 			    path->device->sim->mtx : NULL;
4380 			if (mtx)
4381 				mtx_lock(mtx);
4382 			cur_entry->callback(cur_entry->callback_arg,
4383 					    async_code, path,
4384 					    async_arg);
4385 			if (mtx)
4386 				mtx_unlock(mtx);
4387 		}
4388 		cur_entry = next_entry;
4389 	}
4390 }
4391 
4392 void
4393 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4394 {
4395 	union ccb *ccb;
4396 	int size;
4397 
4398 	ccb = xpt_alloc_ccb_nowait();
4399 	if (ccb == NULL) {
4400 		xpt_print(path, "Can't allocate CCB to send %s\n",
4401 		    xpt_async_string(async_code));
4402 		return;
4403 	}
4404 
4405 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4406 		xpt_print(path, "Can't allocate path to send %s\n",
4407 		    xpt_async_string(async_code));
4408 		xpt_free_ccb(ccb);
4409 		return;
4410 	}
4411 	ccb->ccb_h.path->periph = NULL;
4412 	ccb->ccb_h.func_code = XPT_ASYNC;
4413 	ccb->ccb_h.cbfcnp = xpt_async_process;
4414 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4415 	ccb->casync.async_code = async_code;
4416 	ccb->casync.async_arg_size = 0;
4417 	size = xpt_async_size(async_code);
4418 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4419 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4420 		ccb->ccb_h.func_code,
4421 		xpt_action_name(ccb->ccb_h.func_code),
4422 		async_code,
4423 		xpt_async_string(async_code)));
4424 	if (size > 0 && async_arg != NULL) {
4425 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4426 		if (ccb->casync.async_arg_ptr == NULL) {
4427 			xpt_print(path, "Can't allocate argument to send %s\n",
4428 			    xpt_async_string(async_code));
4429 			xpt_free_path(ccb->ccb_h.path);
4430 			xpt_free_ccb(ccb);
4431 			return;
4432 		}
4433 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4434 		ccb->casync.async_arg_size = size;
4435 	} else if (size < 0) {
4436 		ccb->casync.async_arg_ptr = async_arg;
4437 		ccb->casync.async_arg_size = size;
4438 	}
4439 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4440 		xpt_freeze_devq(path, 1);
4441 	else
4442 		xpt_freeze_simq(path->bus->sim, 1);
4443 	xpt_done(ccb);
4444 }
4445 
4446 static void
4447 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4448 		      struct cam_et *target, struct cam_ed *device,
4449 		      void *async_arg)
4450 {
4451 
4452 	/*
4453 	 * We only need to handle events for real devices.
4454 	 */
4455 	if (target->target_id == CAM_TARGET_WILDCARD
4456 	 || device->lun_id == CAM_LUN_WILDCARD)
4457 		return;
4458 
4459 	printf("%s called\n", __func__);
4460 }
4461 
4462 static uint32_t
4463 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4464 {
4465 	struct cam_devq	*devq;
4466 	uint32_t freeze;
4467 
4468 	devq = dev->sim->devq;
4469 	mtx_assert(&devq->send_mtx, MA_OWNED);
4470 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4471 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4472 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4473 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4474 	/* Remove frozen device from sendq. */
4475 	if (device_is_queued(dev))
4476 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4477 	return (freeze);
4478 }
4479 
4480 u_int32_t
4481 xpt_freeze_devq(struct cam_path *path, u_int count)
4482 {
4483 	struct cam_ed	*dev = path->device;
4484 	struct cam_devq	*devq;
4485 	uint32_t	 freeze;
4486 
4487 	devq = dev->sim->devq;
4488 	mtx_lock(&devq->send_mtx);
4489 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4490 	freeze = xpt_freeze_devq_device(dev, count);
4491 	mtx_unlock(&devq->send_mtx);
4492 	return (freeze);
4493 }
4494 
4495 u_int32_t
4496 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4497 {
4498 	struct cam_devq	*devq;
4499 	uint32_t	 freeze;
4500 
4501 	devq = sim->devq;
4502 	mtx_lock(&devq->send_mtx);
4503 	freeze = (devq->send_queue.qfrozen_cnt += count);
4504 	mtx_unlock(&devq->send_mtx);
4505 	return (freeze);
4506 }
4507 
4508 static void
4509 xpt_release_devq_timeout(void *arg)
4510 {
4511 	struct cam_ed *dev;
4512 	struct cam_devq *devq;
4513 
4514 	dev = (struct cam_ed *)arg;
4515 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4516 	devq = dev->sim->devq;
4517 	mtx_assert(&devq->send_mtx, MA_OWNED);
4518 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4519 		xpt_run_devq(devq);
4520 }
4521 
4522 void
4523 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4524 {
4525 	struct cam_ed *dev;
4526 	struct cam_devq *devq;
4527 
4528 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4529 	    count, run_queue));
4530 	dev = path->device;
4531 	devq = dev->sim->devq;
4532 	mtx_lock(&devq->send_mtx);
4533 	if (xpt_release_devq_device(dev, count, run_queue))
4534 		xpt_run_devq(dev->sim->devq);
4535 	mtx_unlock(&devq->send_mtx);
4536 }
4537 
4538 static int
4539 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4540 {
4541 
4542 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4543 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4544 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4545 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4546 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4547 #ifdef INVARIANTS
4548 		printf("xpt_release_devq(): requested %u > present %u\n",
4549 		    count, dev->ccbq.queue.qfrozen_cnt);
4550 #endif
4551 		count = dev->ccbq.queue.qfrozen_cnt;
4552 	}
4553 	dev->ccbq.queue.qfrozen_cnt -= count;
4554 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4555 		/*
4556 		 * No longer need to wait for a successful
4557 		 * command completion.
4558 		 */
4559 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4560 		/*
4561 		 * Remove any timeouts that might be scheduled
4562 		 * to release this queue.
4563 		 */
4564 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4565 			callout_stop(&dev->callout);
4566 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4567 		}
4568 		/*
4569 		 * Now that we are unfrozen schedule the
4570 		 * device so any pending transactions are
4571 		 * run.
4572 		 */
4573 		xpt_schedule_devq(dev->sim->devq, dev);
4574 	} else
4575 		run_queue = 0;
4576 	return (run_queue);
4577 }
4578 
4579 void
4580 xpt_release_simq(struct cam_sim *sim, int run_queue)
4581 {
4582 	struct cam_devq	*devq;
4583 
4584 	devq = sim->devq;
4585 	mtx_lock(&devq->send_mtx);
4586 	if (devq->send_queue.qfrozen_cnt <= 0) {
4587 #ifdef INVARIANTS
4588 		printf("xpt_release_simq: requested 1 > present %u\n",
4589 		    devq->send_queue.qfrozen_cnt);
4590 #endif
4591 	} else
4592 		devq->send_queue.qfrozen_cnt--;
4593 	if (devq->send_queue.qfrozen_cnt == 0) {
4594 		/*
4595 		 * If there is a timeout scheduled to release this
4596 		 * sim queue, remove it.  The queue frozen count is
4597 		 * already at 0.
4598 		 */
4599 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4600 			callout_stop(&sim->callout);
4601 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4602 		}
4603 		if (run_queue) {
4604 			/*
4605 			 * Now that we are unfrozen run the send queue.
4606 			 */
4607 			xpt_run_devq(sim->devq);
4608 		}
4609 	}
4610 	mtx_unlock(&devq->send_mtx);
4611 }
4612 
4613 /*
4614  * XXX Appears to be unused.
4615  */
4616 static void
4617 xpt_release_simq_timeout(void *arg)
4618 {
4619 	struct cam_sim *sim;
4620 
4621 	sim = (struct cam_sim *)arg;
4622 	xpt_release_simq(sim, /* run_queue */ TRUE);
4623 }
4624 
4625 void
4626 xpt_done(union ccb *done_ccb)
4627 {
4628 	struct cam_doneq *queue;
4629 	int	run, hash;
4630 
4631 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4632 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4633 	    done_ccb->csio.bio != NULL)
4634 		biotrack(done_ccb->csio.bio, __func__);
4635 #endif
4636 
4637 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4638 	    ("xpt_done: func= %#x %s status %#x\n",
4639 		done_ccb->ccb_h.func_code,
4640 		xpt_action_name(done_ccb->ccb_h.func_code),
4641 		done_ccb->ccb_h.status));
4642 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4643 		return;
4644 
4645 	/* Store the time the ccb was in the sim */
4646 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4647 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4648 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4649 	queue = &cam_doneqs[hash];
4650 	mtx_lock(&queue->cam_doneq_mtx);
4651 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4652 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4653 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4654 	mtx_unlock(&queue->cam_doneq_mtx);
4655 	if (run)
4656 		wakeup(&queue->cam_doneq);
4657 }
4658 
4659 void
4660 xpt_done_direct(union ccb *done_ccb)
4661 {
4662 
4663 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4664 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4665 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4666 		return;
4667 
4668 	/* Store the time the ccb was in the sim */
4669 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4670 	xpt_done_process(&done_ccb->ccb_h);
4671 }
4672 
4673 union ccb *
4674 xpt_alloc_ccb()
4675 {
4676 	union ccb *new_ccb;
4677 
4678 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4679 	return (new_ccb);
4680 }
4681 
4682 union ccb *
4683 xpt_alloc_ccb_nowait()
4684 {
4685 	union ccb *new_ccb;
4686 
4687 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4688 	return (new_ccb);
4689 }
4690 
4691 void
4692 xpt_free_ccb(union ccb *free_ccb)
4693 {
4694 	free(free_ccb, M_CAMCCB);
4695 }
4696 
4697 
4698 
4699 /* Private XPT functions */
4700 
4701 /*
4702  * Get a CAM control block for the caller. Charge the structure to the device
4703  * referenced by the path.  If we don't have sufficient resources to allocate
4704  * more ccbs, we return NULL.
4705  */
4706 static union ccb *
4707 xpt_get_ccb_nowait(struct cam_periph *periph)
4708 {
4709 	union ccb *new_ccb;
4710 
4711 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4712 	if (new_ccb == NULL)
4713 		return (NULL);
4714 	periph->periph_allocated++;
4715 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4716 	return (new_ccb);
4717 }
4718 
4719 static union ccb *
4720 xpt_get_ccb(struct cam_periph *periph)
4721 {
4722 	union ccb *new_ccb;
4723 
4724 	cam_periph_unlock(periph);
4725 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4726 	cam_periph_lock(periph);
4727 	periph->periph_allocated++;
4728 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4729 	return (new_ccb);
4730 }
4731 
4732 union ccb *
4733 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4734 {
4735 	struct ccb_hdr *ccb_h;
4736 
4737 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4738 	cam_periph_assert(periph, MA_OWNED);
4739 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4740 	    ccb_h->pinfo.priority != priority) {
4741 		if (priority < periph->immediate_priority) {
4742 			periph->immediate_priority = priority;
4743 			xpt_run_allocq(periph, 0);
4744 		} else
4745 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4746 			    "cgticb", 0);
4747 	}
4748 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4749 	return ((union ccb *)ccb_h);
4750 }
4751 
4752 static void
4753 xpt_acquire_bus(struct cam_eb *bus)
4754 {
4755 
4756 	xpt_lock_buses();
4757 	bus->refcount++;
4758 	xpt_unlock_buses();
4759 }
4760 
4761 static void
4762 xpt_release_bus(struct cam_eb *bus)
4763 {
4764 
4765 	xpt_lock_buses();
4766 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4767 	if (--bus->refcount > 0) {
4768 		xpt_unlock_buses();
4769 		return;
4770 	}
4771 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4772 	xsoftc.bus_generation++;
4773 	xpt_unlock_buses();
4774 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4775 	    ("destroying bus, but target list is not empty"));
4776 	cam_sim_release(bus->sim);
4777 	mtx_destroy(&bus->eb_mtx);
4778 	free(bus, M_CAMXPT);
4779 }
4780 
4781 static struct cam_et *
4782 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4783 {
4784 	struct cam_et *cur_target, *target;
4785 
4786 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4787 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4788 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4789 					 M_NOWAIT|M_ZERO);
4790 	if (target == NULL)
4791 		return (NULL);
4792 
4793 	TAILQ_INIT(&target->ed_entries);
4794 	target->bus = bus;
4795 	target->target_id = target_id;
4796 	target->refcount = 1;
4797 	target->generation = 0;
4798 	target->luns = NULL;
4799 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4800 	timevalclear(&target->last_reset);
4801 	/*
4802 	 * Hold a reference to our parent bus so it
4803 	 * will not go away before we do.
4804 	 */
4805 	bus->refcount++;
4806 
4807 	/* Insertion sort into our bus's target list */
4808 	cur_target = TAILQ_FIRST(&bus->et_entries);
4809 	while (cur_target != NULL && cur_target->target_id < target_id)
4810 		cur_target = TAILQ_NEXT(cur_target, links);
4811 	if (cur_target != NULL) {
4812 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4813 	} else {
4814 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4815 	}
4816 	bus->generation++;
4817 	return (target);
4818 }
4819 
4820 static void
4821 xpt_acquire_target(struct cam_et *target)
4822 {
4823 	struct cam_eb *bus = target->bus;
4824 
4825 	mtx_lock(&bus->eb_mtx);
4826 	target->refcount++;
4827 	mtx_unlock(&bus->eb_mtx);
4828 }
4829 
4830 static void
4831 xpt_release_target(struct cam_et *target)
4832 {
4833 	struct cam_eb *bus = target->bus;
4834 
4835 	mtx_lock(&bus->eb_mtx);
4836 	if (--target->refcount > 0) {
4837 		mtx_unlock(&bus->eb_mtx);
4838 		return;
4839 	}
4840 	TAILQ_REMOVE(&bus->et_entries, target, links);
4841 	bus->generation++;
4842 	mtx_unlock(&bus->eb_mtx);
4843 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4844 	    ("destroying target, but device list is not empty"));
4845 	xpt_release_bus(bus);
4846 	mtx_destroy(&target->luns_mtx);
4847 	if (target->luns)
4848 		free(target->luns, M_CAMXPT);
4849 	free(target, M_CAMXPT);
4850 }
4851 
4852 static struct cam_ed *
4853 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4854 			 lun_id_t lun_id)
4855 {
4856 	struct cam_ed *device;
4857 
4858 	device = xpt_alloc_device(bus, target, lun_id);
4859 	if (device == NULL)
4860 		return (NULL);
4861 
4862 	device->mintags = 1;
4863 	device->maxtags = 1;
4864 	return (device);
4865 }
4866 
4867 static void
4868 xpt_destroy_device(void *context, int pending)
4869 {
4870 	struct cam_ed	*device = context;
4871 
4872 	mtx_lock(&device->device_mtx);
4873 	mtx_destroy(&device->device_mtx);
4874 	free(device, M_CAMDEV);
4875 }
4876 
4877 struct cam_ed *
4878 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4879 {
4880 	struct cam_ed	*cur_device, *device;
4881 	struct cam_devq	*devq;
4882 	cam_status status;
4883 
4884 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4885 	/* Make space for us in the device queue on our bus */
4886 	devq = bus->sim->devq;
4887 	mtx_lock(&devq->send_mtx);
4888 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4889 	mtx_unlock(&devq->send_mtx);
4890 	if (status != CAM_REQ_CMP)
4891 		return (NULL);
4892 
4893 	device = (struct cam_ed *)malloc(sizeof(*device),
4894 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4895 	if (device == NULL)
4896 		return (NULL);
4897 
4898 	cam_init_pinfo(&device->devq_entry);
4899 	device->target = target;
4900 	device->lun_id = lun_id;
4901 	device->sim = bus->sim;
4902 	if (cam_ccbq_init(&device->ccbq,
4903 			  bus->sim->max_dev_openings) != 0) {
4904 		free(device, M_CAMDEV);
4905 		return (NULL);
4906 	}
4907 	SLIST_INIT(&device->asyncs);
4908 	SLIST_INIT(&device->periphs);
4909 	device->generation = 0;
4910 	device->flags = CAM_DEV_UNCONFIGURED;
4911 	device->tag_delay_count = 0;
4912 	device->tag_saved_openings = 0;
4913 	device->refcount = 1;
4914 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4915 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4916 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4917 	/*
4918 	 * Hold a reference to our parent bus so it
4919 	 * will not go away before we do.
4920 	 */
4921 	target->refcount++;
4922 
4923 	cur_device = TAILQ_FIRST(&target->ed_entries);
4924 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4925 		cur_device = TAILQ_NEXT(cur_device, links);
4926 	if (cur_device != NULL)
4927 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4928 	else
4929 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4930 	target->generation++;
4931 	return (device);
4932 }
4933 
4934 void
4935 xpt_acquire_device(struct cam_ed *device)
4936 {
4937 	struct cam_eb *bus = device->target->bus;
4938 
4939 	mtx_lock(&bus->eb_mtx);
4940 	device->refcount++;
4941 	mtx_unlock(&bus->eb_mtx);
4942 }
4943 
4944 void
4945 xpt_release_device(struct cam_ed *device)
4946 {
4947 	struct cam_eb *bus = device->target->bus;
4948 	struct cam_devq *devq;
4949 
4950 	mtx_lock(&bus->eb_mtx);
4951 	if (--device->refcount > 0) {
4952 		mtx_unlock(&bus->eb_mtx);
4953 		return;
4954 	}
4955 
4956 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4957 	device->target->generation++;
4958 	mtx_unlock(&bus->eb_mtx);
4959 
4960 	/* Release our slot in the devq */
4961 	devq = bus->sim->devq;
4962 	mtx_lock(&devq->send_mtx);
4963 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4964 	mtx_unlock(&devq->send_mtx);
4965 
4966 	KASSERT(SLIST_EMPTY(&device->periphs),
4967 	    ("destroying device, but periphs list is not empty"));
4968 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4969 	    ("destroying device while still queued for ccbs"));
4970 
4971 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4972 		callout_stop(&device->callout);
4973 
4974 	xpt_release_target(device->target);
4975 
4976 	cam_ccbq_fini(&device->ccbq);
4977 	/*
4978 	 * Free allocated memory.  free(9) does nothing if the
4979 	 * supplied pointer is NULL, so it is safe to call without
4980 	 * checking.
4981 	 */
4982 	free(device->supported_vpds, M_CAMXPT);
4983 	free(device->device_id, M_CAMXPT);
4984 	free(device->ext_inq, M_CAMXPT);
4985 	free(device->physpath, M_CAMXPT);
4986 	free(device->rcap_buf, M_CAMXPT);
4987 	free(device->serial_num, M_CAMXPT);
4988 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4989 }
4990 
4991 u_int32_t
4992 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4993 {
4994 	int	result;
4995 	struct	cam_ed *dev;
4996 
4997 	dev = path->device;
4998 	mtx_lock(&dev->sim->devq->send_mtx);
4999 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5000 	mtx_unlock(&dev->sim->devq->send_mtx);
5001 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5002 	 || (dev->inq_flags & SID_CmdQue) != 0)
5003 		dev->tag_saved_openings = newopenings;
5004 	return (result);
5005 }
5006 
5007 static struct cam_eb *
5008 xpt_find_bus(path_id_t path_id)
5009 {
5010 	struct cam_eb *bus;
5011 
5012 	xpt_lock_buses();
5013 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5014 	     bus != NULL;
5015 	     bus = TAILQ_NEXT(bus, links)) {
5016 		if (bus->path_id == path_id) {
5017 			bus->refcount++;
5018 			break;
5019 		}
5020 	}
5021 	xpt_unlock_buses();
5022 	return (bus);
5023 }
5024 
5025 static struct cam_et *
5026 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5027 {
5028 	struct cam_et *target;
5029 
5030 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5031 	for (target = TAILQ_FIRST(&bus->et_entries);
5032 	     target != NULL;
5033 	     target = TAILQ_NEXT(target, links)) {
5034 		if (target->target_id == target_id) {
5035 			target->refcount++;
5036 			break;
5037 		}
5038 	}
5039 	return (target);
5040 }
5041 
5042 static struct cam_ed *
5043 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5044 {
5045 	struct cam_ed *device;
5046 
5047 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5048 	for (device = TAILQ_FIRST(&target->ed_entries);
5049 	     device != NULL;
5050 	     device = TAILQ_NEXT(device, links)) {
5051 		if (device->lun_id == lun_id) {
5052 			device->refcount++;
5053 			break;
5054 		}
5055 	}
5056 	return (device);
5057 }
5058 
5059 void
5060 xpt_start_tags(struct cam_path *path)
5061 {
5062 	struct ccb_relsim crs;
5063 	struct cam_ed *device;
5064 	struct cam_sim *sim;
5065 	int    newopenings;
5066 
5067 	device = path->device;
5068 	sim = path->bus->sim;
5069 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5070 	xpt_freeze_devq(path, /*count*/1);
5071 	device->inq_flags |= SID_CmdQue;
5072 	if (device->tag_saved_openings != 0)
5073 		newopenings = device->tag_saved_openings;
5074 	else
5075 		newopenings = min(device->maxtags,
5076 				  sim->max_tagged_dev_openings);
5077 	xpt_dev_ccbq_resize(path, newopenings);
5078 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5079 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5080 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5081 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5082 	crs.openings
5083 	    = crs.release_timeout
5084 	    = crs.qfrozen_cnt
5085 	    = 0;
5086 	xpt_action((union ccb *)&crs);
5087 }
5088 
5089 void
5090 xpt_stop_tags(struct cam_path *path)
5091 {
5092 	struct ccb_relsim crs;
5093 	struct cam_ed *device;
5094 	struct cam_sim *sim;
5095 
5096 	device = path->device;
5097 	sim = path->bus->sim;
5098 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5099 	device->tag_delay_count = 0;
5100 	xpt_freeze_devq(path, /*count*/1);
5101 	device->inq_flags &= ~SID_CmdQue;
5102 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5103 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5104 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5105 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5106 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5107 	crs.openings
5108 	    = crs.release_timeout
5109 	    = crs.qfrozen_cnt
5110 	    = 0;
5111 	xpt_action((union ccb *)&crs);
5112 }
5113 
5114 static void
5115 xpt_boot_delay(void *arg)
5116 {
5117 
5118 	xpt_release_boot();
5119 }
5120 
5121 static void
5122 xpt_config(void *arg)
5123 {
5124 	/*
5125 	 * Now that interrupts are enabled, go find our devices
5126 	 */
5127 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5128 		printf("xpt_config: failed to create taskqueue thread.\n");
5129 
5130 	/* Setup debugging path */
5131 	if (cam_dflags != CAM_DEBUG_NONE) {
5132 		if (xpt_create_path(&cam_dpath, NULL,
5133 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5134 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5135 			printf("xpt_config: xpt_create_path() failed for debug"
5136 			       " target %d:%d:%d, debugging disabled\n",
5137 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5138 			cam_dflags = CAM_DEBUG_NONE;
5139 		}
5140 	} else
5141 		cam_dpath = NULL;
5142 
5143 	periphdriver_init(1);
5144 	xpt_hold_boot();
5145 	callout_init(&xsoftc.boot_callout, 1);
5146 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5147 	    xpt_boot_delay, NULL, 0);
5148 	/* Fire up rescan thread. */
5149 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5150 	    "cam", "scanner")) {
5151 		printf("xpt_config: failed to create rescan thread.\n");
5152 	}
5153 }
5154 
5155 void
5156 xpt_hold_boot(void)
5157 {
5158 	xpt_lock_buses();
5159 	xsoftc.buses_to_config++;
5160 	xpt_unlock_buses();
5161 }
5162 
5163 void
5164 xpt_release_boot(void)
5165 {
5166 	xpt_lock_buses();
5167 	xsoftc.buses_to_config--;
5168 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5169 		struct	xpt_task *task;
5170 
5171 		xsoftc.buses_config_done = 1;
5172 		xpt_unlock_buses();
5173 		/* Call manually because we don't have any buses */
5174 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5175 		if (task != NULL) {
5176 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5177 			taskqueue_enqueue(taskqueue_thread, &task->task);
5178 		}
5179 	} else
5180 		xpt_unlock_buses();
5181 }
5182 
5183 /*
5184  * If the given device only has one peripheral attached to it, and if that
5185  * peripheral is the passthrough driver, announce it.  This insures that the
5186  * user sees some sort of announcement for every peripheral in their system.
5187  */
5188 static int
5189 xptpassannouncefunc(struct cam_ed *device, void *arg)
5190 {
5191 	struct cam_periph *periph;
5192 	int i;
5193 
5194 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5195 	     periph = SLIST_NEXT(periph, periph_links), i++);
5196 
5197 	periph = SLIST_FIRST(&device->periphs);
5198 	if ((i == 1)
5199 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5200 		xpt_announce_periph(periph, NULL);
5201 
5202 	return(1);
5203 }
5204 
5205 static void
5206 xpt_finishconfig_task(void *context, int pending)
5207 {
5208 
5209 	periphdriver_init(2);
5210 	/*
5211 	 * Check for devices with no "standard" peripheral driver
5212 	 * attached.  For any devices like that, announce the
5213 	 * passthrough driver so the user will see something.
5214 	 */
5215 	if (!bootverbose)
5216 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5217 
5218 	/* Release our hook so that the boot can continue. */
5219 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5220 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5221 	xsoftc.xpt_config_hook = NULL;
5222 
5223 	free(context, M_CAMXPT);
5224 }
5225 
5226 cam_status
5227 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5228 		   struct cam_path *path)
5229 {
5230 	struct ccb_setasync csa;
5231 	cam_status status;
5232 	int xptpath = 0;
5233 
5234 	if (path == NULL) {
5235 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5236 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5237 		if (status != CAM_REQ_CMP)
5238 			return (status);
5239 		xpt_path_lock(path);
5240 		xptpath = 1;
5241 	}
5242 
5243 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5244 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5245 	csa.event_enable = event;
5246 	csa.callback = cbfunc;
5247 	csa.callback_arg = cbarg;
5248 	xpt_action((union ccb *)&csa);
5249 	status = csa.ccb_h.status;
5250 
5251 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5252 	    ("xpt_register_async: func %p\n", cbfunc));
5253 
5254 	if (xptpath) {
5255 		xpt_path_unlock(path);
5256 		xpt_free_path(path);
5257 	}
5258 
5259 	if ((status == CAM_REQ_CMP) &&
5260 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5261 		/*
5262 		 * Get this peripheral up to date with all
5263 		 * the currently existing devices.
5264 		 */
5265 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5266 	}
5267 	if ((status == CAM_REQ_CMP) &&
5268 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5269 		/*
5270 		 * Get this peripheral up to date with all
5271 		 * the currently existing buses.
5272 		 */
5273 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5274 	}
5275 
5276 	return (status);
5277 }
5278 
5279 static void
5280 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5281 {
5282 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5283 
5284 	switch (work_ccb->ccb_h.func_code) {
5285 	/* Common cases first */
5286 	case XPT_PATH_INQ:		/* Path routing inquiry */
5287 	{
5288 		struct ccb_pathinq *cpi;
5289 
5290 		cpi = &work_ccb->cpi;
5291 		cpi->version_num = 1; /* XXX??? */
5292 		cpi->hba_inquiry = 0;
5293 		cpi->target_sprt = 0;
5294 		cpi->hba_misc = 0;
5295 		cpi->hba_eng_cnt = 0;
5296 		cpi->max_target = 0;
5297 		cpi->max_lun = 0;
5298 		cpi->initiator_id = 0;
5299 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5300 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5301 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5302 		cpi->unit_number = sim->unit_number;
5303 		cpi->bus_id = sim->bus_id;
5304 		cpi->base_transfer_speed = 0;
5305 		cpi->protocol = PROTO_UNSPECIFIED;
5306 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5307 		cpi->transport = XPORT_UNSPECIFIED;
5308 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5309 		cpi->ccb_h.status = CAM_REQ_CMP;
5310 		xpt_done(work_ccb);
5311 		break;
5312 	}
5313 	default:
5314 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5315 		xpt_done(work_ccb);
5316 		break;
5317 	}
5318 }
5319 
5320 /*
5321  * The xpt as a "controller" has no interrupt sources, so polling
5322  * is a no-op.
5323  */
5324 static void
5325 xptpoll(struct cam_sim *sim)
5326 {
5327 }
5328 
5329 void
5330 xpt_lock_buses(void)
5331 {
5332 	mtx_lock(&xsoftc.xpt_topo_lock);
5333 }
5334 
5335 void
5336 xpt_unlock_buses(void)
5337 {
5338 	mtx_unlock(&xsoftc.xpt_topo_lock);
5339 }
5340 
5341 struct mtx *
5342 xpt_path_mtx(struct cam_path *path)
5343 {
5344 
5345 	return (&path->device->device_mtx);
5346 }
5347 
5348 static void
5349 xpt_done_process(struct ccb_hdr *ccb_h)
5350 {
5351 	struct cam_sim *sim;
5352 	struct cam_devq *devq;
5353 	struct mtx *mtx = NULL;
5354 
5355 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5356 	struct ccb_scsiio *csio;
5357 
5358 	if (ccb_h->func_code == XPT_SCSI_IO) {
5359 		csio = &((union ccb *)ccb_h)->csio;
5360 		if (csio->bio != NULL)
5361 			biotrack(csio->bio, __func__);
5362 	}
5363 #endif
5364 
5365 	if (ccb_h->flags & CAM_HIGH_POWER) {
5366 		struct highpowerlist	*hphead;
5367 		struct cam_ed		*device;
5368 
5369 		mtx_lock(&xsoftc.xpt_highpower_lock);
5370 		hphead = &xsoftc.highpowerq;
5371 
5372 		device = STAILQ_FIRST(hphead);
5373 
5374 		/*
5375 		 * Increment the count since this command is done.
5376 		 */
5377 		xsoftc.num_highpower++;
5378 
5379 		/*
5380 		 * Any high powered commands queued up?
5381 		 */
5382 		if (device != NULL) {
5383 
5384 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5385 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5386 
5387 			mtx_lock(&device->sim->devq->send_mtx);
5388 			xpt_release_devq_device(device,
5389 					 /*count*/1, /*runqueue*/TRUE);
5390 			mtx_unlock(&device->sim->devq->send_mtx);
5391 		} else
5392 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5393 	}
5394 
5395 	sim = ccb_h->path->bus->sim;
5396 
5397 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5398 		xpt_release_simq(sim, /*run_queue*/FALSE);
5399 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5400 	}
5401 
5402 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5403 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5404 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5405 		ccb_h->status &= ~CAM_DEV_QFRZN;
5406 	}
5407 
5408 	devq = sim->devq;
5409 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5410 		struct cam_ed *dev = ccb_h->path->device;
5411 
5412 		mtx_lock(&devq->send_mtx);
5413 		devq->send_active--;
5414 		devq->send_openings++;
5415 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5416 
5417 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5418 		  && (dev->ccbq.dev_active == 0))) {
5419 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5420 			xpt_release_devq_device(dev, /*count*/1,
5421 					 /*run_queue*/FALSE);
5422 		}
5423 
5424 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5425 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5426 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5427 			xpt_release_devq_device(dev, /*count*/1,
5428 					 /*run_queue*/FALSE);
5429 		}
5430 
5431 		if (!device_is_queued(dev))
5432 			(void)xpt_schedule_devq(devq, dev);
5433 		xpt_run_devq(devq);
5434 		mtx_unlock(&devq->send_mtx);
5435 
5436 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5437 			mtx = xpt_path_mtx(ccb_h->path);
5438 			mtx_lock(mtx);
5439 
5440 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5441 			 && (--dev->tag_delay_count == 0))
5442 				xpt_start_tags(ccb_h->path);
5443 		}
5444 	}
5445 
5446 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5447 		if (mtx == NULL) {
5448 			mtx = xpt_path_mtx(ccb_h->path);
5449 			mtx_lock(mtx);
5450 		}
5451 	} else {
5452 		if (mtx != NULL) {
5453 			mtx_unlock(mtx);
5454 			mtx = NULL;
5455 		}
5456 	}
5457 
5458 	/* Call the peripheral driver's callback */
5459 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5460 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5461 	if (mtx != NULL)
5462 		mtx_unlock(mtx);
5463 }
5464 
5465 void
5466 xpt_done_td(void *arg)
5467 {
5468 	struct cam_doneq *queue = arg;
5469 	struct ccb_hdr *ccb_h;
5470 	STAILQ_HEAD(, ccb_hdr)	doneq;
5471 
5472 	STAILQ_INIT(&doneq);
5473 	mtx_lock(&queue->cam_doneq_mtx);
5474 	while (1) {
5475 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5476 			queue->cam_doneq_sleep = 1;
5477 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5478 			    PRIBIO, "-", 0);
5479 			queue->cam_doneq_sleep = 0;
5480 		}
5481 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5482 		mtx_unlock(&queue->cam_doneq_mtx);
5483 
5484 		THREAD_NO_SLEEPING();
5485 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5486 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5487 			xpt_done_process(ccb_h);
5488 		}
5489 		THREAD_SLEEPING_OK();
5490 
5491 		mtx_lock(&queue->cam_doneq_mtx);
5492 	}
5493 }
5494 
5495 static void
5496 camisr_runqueue(void)
5497 {
5498 	struct	ccb_hdr *ccb_h;
5499 	struct cam_doneq *queue;
5500 	int i;
5501 
5502 	/* Process global queues. */
5503 	for (i = 0; i < cam_num_doneqs; i++) {
5504 		queue = &cam_doneqs[i];
5505 		mtx_lock(&queue->cam_doneq_mtx);
5506 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5507 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5508 			mtx_unlock(&queue->cam_doneq_mtx);
5509 			xpt_done_process(ccb_h);
5510 			mtx_lock(&queue->cam_doneq_mtx);
5511 		}
5512 		mtx_unlock(&queue->cam_doneq_mtx);
5513 	}
5514 }
5515 
5516 struct kv
5517 {
5518 	uint32_t v;
5519 	const char *name;
5520 };
5521 
5522 static struct kv map[] = {
5523 	{ XPT_NOOP, "XPT_NOOP" },
5524 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5525 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5526 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5527 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5528 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5529 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5530 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5531 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5532 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5533 	{ XPT_DEBUG, "XPT_DEBUG" },
5534 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5535 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5536 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5537 	{ XPT_ASYNC, "XPT_ASYNC" },
5538 	{ XPT_ABORT, "XPT_ABORT" },
5539 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5540 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5541 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5542 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5543 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5544 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5545 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5546 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5547 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5548 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5549 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5550 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5551 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5552 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5553 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5554 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5555 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5556 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5557 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5558 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5559 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5560 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5561 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5562 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5563 	{ 0, 0 }
5564 };
5565 
5566 const char *
5567 xpt_action_name(uint32_t action)
5568 {
5569 	static char buffer[32];	/* Only for unknown messages -- racy */
5570 	struct kv *walker = map;
5571 
5572 	while (walker->name != NULL) {
5573 		if (walker->v == action)
5574 			return (walker->name);
5575 		walker++;
5576 	}
5577 
5578 	snprintf(buffer, sizeof(buffer), "%#x", action);
5579 	return (buffer);
5580 }
5581