1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 /* number of high powered commands that can go through right now */ 97 struct mtx xpt_highpower_lock; 98 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 99 int num_highpower; 100 101 /* queue for handling async rescan requests. */ 102 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 103 int buses_to_config; 104 int buses_config_done; 105 106 /* Registered busses */ 107 TAILQ_HEAD(,cam_eb) xpt_busses; 108 u_int bus_generation; 109 110 struct intr_config_hook *xpt_config_hook; 111 112 int boot_delay; 113 struct callout boot_callout; 114 115 struct mtx xpt_topo_lock; 116 struct mtx xpt_lock; 117 struct taskqueue *xpt_taskq; 118 }; 119 120 typedef enum { 121 DM_RET_COPY = 0x01, 122 DM_RET_FLAG_MASK = 0x0f, 123 DM_RET_NONE = 0x00, 124 DM_RET_STOP = 0x10, 125 DM_RET_DESCEND = 0x20, 126 DM_RET_ERROR = 0x30, 127 DM_RET_ACTION_MASK = 0xf0 128 } dev_match_ret; 129 130 typedef enum { 131 XPT_DEPTH_BUS, 132 XPT_DEPTH_TARGET, 133 XPT_DEPTH_DEVICE, 134 XPT_DEPTH_PERIPH 135 } xpt_traverse_depth; 136 137 struct xpt_traverse_config { 138 xpt_traverse_depth depth; 139 void *tr_func; 140 void *tr_arg; 141 }; 142 143 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 144 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 145 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 146 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 147 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 148 149 /* Transport layer configuration information */ 150 static struct xpt_softc xsoftc; 151 152 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 153 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 154 &xsoftc.boot_delay, 0, "Bus registration wait time"); 155 156 struct cam_doneq { 157 struct mtx_padalign cam_doneq_mtx; 158 STAILQ_HEAD(, ccb_hdr) cam_doneq; 159 int cam_doneq_sleep; 160 }; 161 162 static struct cam_doneq cam_doneqs[MAXCPU]; 163 static int cam_num_doneqs; 164 static struct proc *cam_proc; 165 166 TUNABLE_INT("kern.cam.num_doneqs", &cam_num_doneqs); 167 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 168 &cam_num_doneqs, 0, "Number of completion queues/threads"); 169 170 struct cam_periph *xpt_periph; 171 172 static periph_init_t xpt_periph_init; 173 174 static struct periph_driver xpt_driver = 175 { 176 xpt_periph_init, "xpt", 177 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 178 CAM_PERIPH_DRV_EARLY 179 }; 180 181 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 182 183 static d_open_t xptopen; 184 static d_close_t xptclose; 185 static d_ioctl_t xptioctl; 186 static d_ioctl_t xptdoioctl; 187 188 static struct cdevsw xpt_cdevsw = { 189 .d_version = D_VERSION, 190 .d_flags = 0, 191 .d_open = xptopen, 192 .d_close = xptclose, 193 .d_ioctl = xptioctl, 194 .d_name = "xpt", 195 }; 196 197 /* Storage for debugging datastructures */ 198 struct cam_path *cam_dpath; 199 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 200 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 201 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 202 &cam_dflags, 0, "Enabled debug flags"); 203 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 204 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 205 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 206 &cam_debug_delay, 0, "Delay in us after each debug message"); 207 208 /* Our boot-time initialization hook */ 209 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 210 211 static moduledata_t cam_moduledata = { 212 "cam", 213 cam_module_event_handler, 214 NULL 215 }; 216 217 static int xpt_init(void *); 218 219 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 220 MODULE_VERSION(cam, 1); 221 222 223 static void xpt_async_bcast(struct async_list *async_head, 224 u_int32_t async_code, 225 struct cam_path *path, 226 void *async_arg); 227 static path_id_t xptnextfreepathid(void); 228 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 229 static union ccb *xpt_get_ccb(struct cam_periph *periph); 230 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 231 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 232 static void xpt_run_allocq_task(void *context, int pending); 233 static void xpt_run_devq(struct cam_devq *devq); 234 static timeout_t xpt_release_devq_timeout; 235 static void xpt_release_simq_timeout(void *arg) __unused; 236 static void xpt_acquire_bus(struct cam_eb *bus); 237 static void xpt_release_bus(struct cam_eb *bus); 238 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 239 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 240 int run_queue); 241 static struct cam_et* 242 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 243 static void xpt_acquire_target(struct cam_et *target); 244 static void xpt_release_target(struct cam_et *target); 245 static struct cam_eb* 246 xpt_find_bus(path_id_t path_id); 247 static struct cam_et* 248 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 249 static struct cam_ed* 250 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 251 static void xpt_config(void *arg); 252 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 253 u_int32_t new_priority); 254 static xpt_devicefunc_t xptpassannouncefunc; 255 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 256 static void xptpoll(struct cam_sim *sim); 257 static void camisr_runqueue(void); 258 static void xpt_done_process(struct ccb_hdr *ccb_h); 259 static void xpt_done_td(void *); 260 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 261 u_int num_patterns, struct cam_eb *bus); 262 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 263 u_int num_patterns, 264 struct cam_ed *device); 265 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 266 u_int num_patterns, 267 struct cam_periph *periph); 268 static xpt_busfunc_t xptedtbusfunc; 269 static xpt_targetfunc_t xptedttargetfunc; 270 static xpt_devicefunc_t xptedtdevicefunc; 271 static xpt_periphfunc_t xptedtperiphfunc; 272 static xpt_pdrvfunc_t xptplistpdrvfunc; 273 static xpt_periphfunc_t xptplistperiphfunc; 274 static int xptedtmatch(struct ccb_dev_match *cdm); 275 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 276 static int xptbustraverse(struct cam_eb *start_bus, 277 xpt_busfunc_t *tr_func, void *arg); 278 static int xpttargettraverse(struct cam_eb *bus, 279 struct cam_et *start_target, 280 xpt_targetfunc_t *tr_func, void *arg); 281 static int xptdevicetraverse(struct cam_et *target, 282 struct cam_ed *start_device, 283 xpt_devicefunc_t *tr_func, void *arg); 284 static int xptperiphtraverse(struct cam_ed *device, 285 struct cam_periph *start_periph, 286 xpt_periphfunc_t *tr_func, void *arg); 287 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 288 xpt_pdrvfunc_t *tr_func, void *arg); 289 static int xptpdperiphtraverse(struct periph_driver **pdrv, 290 struct cam_periph *start_periph, 291 xpt_periphfunc_t *tr_func, 292 void *arg); 293 static xpt_busfunc_t xptdefbusfunc; 294 static xpt_targetfunc_t xptdeftargetfunc; 295 static xpt_devicefunc_t xptdefdevicefunc; 296 static xpt_periphfunc_t xptdefperiphfunc; 297 static void xpt_finishconfig_task(void *context, int pending); 298 static void xpt_dev_async_default(u_int32_t async_code, 299 struct cam_eb *bus, 300 struct cam_et *target, 301 struct cam_ed *device, 302 void *async_arg); 303 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 304 struct cam_et *target, 305 lun_id_t lun_id); 306 static xpt_devicefunc_t xptsetasyncfunc; 307 static xpt_busfunc_t xptsetasyncbusfunc; 308 static cam_status xptregister(struct cam_periph *periph, 309 void *arg); 310 static __inline int device_is_queued(struct cam_ed *device); 311 312 static __inline int 313 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 314 { 315 int retval; 316 317 mtx_assert(&devq->send_mtx, MA_OWNED); 318 if ((dev->ccbq.queue.entries > 0) && 319 (dev->ccbq.dev_openings > 0) && 320 (dev->ccbq.queue.qfrozen_cnt == 0)) { 321 /* 322 * The priority of a device waiting for controller 323 * resources is that of the highest priority CCB 324 * enqueued. 325 */ 326 retval = 327 xpt_schedule_dev(&devq->send_queue, 328 &dev->devq_entry, 329 CAMQ_GET_PRIO(&dev->ccbq.queue)); 330 } else { 331 retval = 0; 332 } 333 return (retval); 334 } 335 336 static __inline int 337 device_is_queued(struct cam_ed *device) 338 { 339 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 340 } 341 342 static void 343 xpt_periph_init() 344 { 345 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 346 } 347 348 static int 349 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 350 { 351 352 /* 353 * Only allow read-write access. 354 */ 355 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 356 return(EPERM); 357 358 /* 359 * We don't allow nonblocking access. 360 */ 361 if ((flags & O_NONBLOCK) != 0) { 362 printf("%s: can't do nonblocking access\n", devtoname(dev)); 363 return(ENODEV); 364 } 365 366 return(0); 367 } 368 369 static int 370 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 371 { 372 373 return(0); 374 } 375 376 /* 377 * Don't automatically grab the xpt softc lock here even though this is going 378 * through the xpt device. The xpt device is really just a back door for 379 * accessing other devices and SIMs, so the right thing to do is to grab 380 * the appropriate SIM lock once the bus/SIM is located. 381 */ 382 static int 383 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 384 { 385 int error; 386 387 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 388 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 389 } 390 return (error); 391 } 392 393 static int 394 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 395 { 396 int error; 397 398 error = 0; 399 400 switch(cmd) { 401 /* 402 * For the transport layer CAMIOCOMMAND ioctl, we really only want 403 * to accept CCB types that don't quite make sense to send through a 404 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 405 * in the CAM spec. 406 */ 407 case CAMIOCOMMAND: { 408 union ccb *ccb; 409 union ccb *inccb; 410 struct cam_eb *bus; 411 412 inccb = (union ccb *)addr; 413 414 bus = xpt_find_bus(inccb->ccb_h.path_id); 415 if (bus == NULL) 416 return (EINVAL); 417 418 switch (inccb->ccb_h.func_code) { 419 case XPT_SCAN_BUS: 420 case XPT_RESET_BUS: 421 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 422 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 423 xpt_release_bus(bus); 424 return (EINVAL); 425 } 426 break; 427 case XPT_SCAN_TGT: 428 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 429 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 430 xpt_release_bus(bus); 431 return (EINVAL); 432 } 433 break; 434 default: 435 break; 436 } 437 438 switch(inccb->ccb_h.func_code) { 439 case XPT_SCAN_BUS: 440 case XPT_RESET_BUS: 441 case XPT_PATH_INQ: 442 case XPT_ENG_INQ: 443 case XPT_SCAN_LUN: 444 case XPT_SCAN_TGT: 445 446 ccb = xpt_alloc_ccb(); 447 448 /* 449 * Create a path using the bus, target, and lun the 450 * user passed in. 451 */ 452 if (xpt_create_path(&ccb->ccb_h.path, NULL, 453 inccb->ccb_h.path_id, 454 inccb->ccb_h.target_id, 455 inccb->ccb_h.target_lun) != 456 CAM_REQ_CMP){ 457 error = EINVAL; 458 xpt_free_ccb(ccb); 459 break; 460 } 461 /* Ensure all of our fields are correct */ 462 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 463 inccb->ccb_h.pinfo.priority); 464 xpt_merge_ccb(ccb, inccb); 465 xpt_path_lock(ccb->ccb_h.path); 466 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 467 xpt_path_unlock(ccb->ccb_h.path); 468 bcopy(ccb, inccb, sizeof(union ccb)); 469 xpt_free_path(ccb->ccb_h.path); 470 xpt_free_ccb(ccb); 471 break; 472 473 case XPT_DEBUG: { 474 union ccb ccb; 475 476 /* 477 * This is an immediate CCB, so it's okay to 478 * allocate it on the stack. 479 */ 480 481 /* 482 * Create a path using the bus, target, and lun the 483 * user passed in. 484 */ 485 if (xpt_create_path(&ccb.ccb_h.path, NULL, 486 inccb->ccb_h.path_id, 487 inccb->ccb_h.target_id, 488 inccb->ccb_h.target_lun) != 489 CAM_REQ_CMP){ 490 error = EINVAL; 491 break; 492 } 493 /* Ensure all of our fields are correct */ 494 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 495 inccb->ccb_h.pinfo.priority); 496 xpt_merge_ccb(&ccb, inccb); 497 xpt_action(&ccb); 498 bcopy(&ccb, inccb, sizeof(union ccb)); 499 xpt_free_path(ccb.ccb_h.path); 500 break; 501 502 } 503 case XPT_DEV_MATCH: { 504 struct cam_periph_map_info mapinfo; 505 struct cam_path *old_path; 506 507 /* 508 * We can't deal with physical addresses for this 509 * type of transaction. 510 */ 511 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 512 CAM_DATA_VADDR) { 513 error = EINVAL; 514 break; 515 } 516 517 /* 518 * Save this in case the caller had it set to 519 * something in particular. 520 */ 521 old_path = inccb->ccb_h.path; 522 523 /* 524 * We really don't need a path for the matching 525 * code. The path is needed because of the 526 * debugging statements in xpt_action(). They 527 * assume that the CCB has a valid path. 528 */ 529 inccb->ccb_h.path = xpt_periph->path; 530 531 bzero(&mapinfo, sizeof(mapinfo)); 532 533 /* 534 * Map the pattern and match buffers into kernel 535 * virtual address space. 536 */ 537 error = cam_periph_mapmem(inccb, &mapinfo); 538 539 if (error) { 540 inccb->ccb_h.path = old_path; 541 break; 542 } 543 544 /* 545 * This is an immediate CCB, we can send it on directly. 546 */ 547 xpt_action(inccb); 548 549 /* 550 * Map the buffers back into user space. 551 */ 552 cam_periph_unmapmem(inccb, &mapinfo); 553 554 inccb->ccb_h.path = old_path; 555 556 error = 0; 557 break; 558 } 559 default: 560 error = ENOTSUP; 561 break; 562 } 563 xpt_release_bus(bus); 564 break; 565 } 566 /* 567 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 568 * with the periphal driver name and unit name filled in. The other 569 * fields don't really matter as input. The passthrough driver name 570 * ("pass"), and unit number are passed back in the ccb. The current 571 * device generation number, and the index into the device peripheral 572 * driver list, and the status are also passed back. Note that 573 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 574 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 575 * (or rather should be) impossible for the device peripheral driver 576 * list to change since we look at the whole thing in one pass, and 577 * we do it with lock protection. 578 * 579 */ 580 case CAMGETPASSTHRU: { 581 union ccb *ccb; 582 struct cam_periph *periph; 583 struct periph_driver **p_drv; 584 char *name; 585 u_int unit; 586 int base_periph_found; 587 588 ccb = (union ccb *)addr; 589 unit = ccb->cgdl.unit_number; 590 name = ccb->cgdl.periph_name; 591 base_periph_found = 0; 592 593 /* 594 * Sanity check -- make sure we don't get a null peripheral 595 * driver name. 596 */ 597 if (*ccb->cgdl.periph_name == '\0') { 598 error = EINVAL; 599 break; 600 } 601 602 /* Keep the list from changing while we traverse it */ 603 xpt_lock_buses(); 604 605 /* first find our driver in the list of drivers */ 606 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 607 if (strcmp((*p_drv)->driver_name, name) == 0) 608 break; 609 610 if (*p_drv == NULL) { 611 xpt_unlock_buses(); 612 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 613 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 614 *ccb->cgdl.periph_name = '\0'; 615 ccb->cgdl.unit_number = 0; 616 error = ENOENT; 617 break; 618 } 619 620 /* 621 * Run through every peripheral instance of this driver 622 * and check to see whether it matches the unit passed 623 * in by the user. If it does, get out of the loops and 624 * find the passthrough driver associated with that 625 * peripheral driver. 626 */ 627 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 628 periph = TAILQ_NEXT(periph, unit_links)) { 629 630 if (periph->unit_number == unit) 631 break; 632 } 633 /* 634 * If we found the peripheral driver that the user passed 635 * in, go through all of the peripheral drivers for that 636 * particular device and look for a passthrough driver. 637 */ 638 if (periph != NULL) { 639 struct cam_ed *device; 640 int i; 641 642 base_periph_found = 1; 643 device = periph->path->device; 644 for (i = 0, periph = SLIST_FIRST(&device->periphs); 645 periph != NULL; 646 periph = SLIST_NEXT(periph, periph_links), i++) { 647 /* 648 * Check to see whether we have a 649 * passthrough device or not. 650 */ 651 if (strcmp(periph->periph_name, "pass") == 0) { 652 /* 653 * Fill in the getdevlist fields. 654 */ 655 strcpy(ccb->cgdl.periph_name, 656 periph->periph_name); 657 ccb->cgdl.unit_number = 658 periph->unit_number; 659 if (SLIST_NEXT(periph, periph_links)) 660 ccb->cgdl.status = 661 CAM_GDEVLIST_MORE_DEVS; 662 else 663 ccb->cgdl.status = 664 CAM_GDEVLIST_LAST_DEVICE; 665 ccb->cgdl.generation = 666 device->generation; 667 ccb->cgdl.index = i; 668 /* 669 * Fill in some CCB header fields 670 * that the user may want. 671 */ 672 ccb->ccb_h.path_id = 673 periph->path->bus->path_id; 674 ccb->ccb_h.target_id = 675 periph->path->target->target_id; 676 ccb->ccb_h.target_lun = 677 periph->path->device->lun_id; 678 ccb->ccb_h.status = CAM_REQ_CMP; 679 break; 680 } 681 } 682 } 683 684 /* 685 * If the periph is null here, one of two things has 686 * happened. The first possibility is that we couldn't 687 * find the unit number of the particular peripheral driver 688 * that the user is asking about. e.g. the user asks for 689 * the passthrough driver for "da11". We find the list of 690 * "da" peripherals all right, but there is no unit 11. 691 * The other possibility is that we went through the list 692 * of peripheral drivers attached to the device structure, 693 * but didn't find one with the name "pass". Either way, 694 * we return ENOENT, since we couldn't find something. 695 */ 696 if (periph == NULL) { 697 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 698 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 699 *ccb->cgdl.periph_name = '\0'; 700 ccb->cgdl.unit_number = 0; 701 error = ENOENT; 702 /* 703 * It is unfortunate that this is even necessary, 704 * but there are many, many clueless users out there. 705 * If this is true, the user is looking for the 706 * passthrough driver, but doesn't have one in his 707 * kernel. 708 */ 709 if (base_periph_found == 1) { 710 printf("xptioctl: pass driver is not in the " 711 "kernel\n"); 712 printf("xptioctl: put \"device pass\" in " 713 "your kernel config file\n"); 714 } 715 } 716 xpt_unlock_buses(); 717 break; 718 } 719 default: 720 error = ENOTTY; 721 break; 722 } 723 724 return(error); 725 } 726 727 static int 728 cam_module_event_handler(module_t mod, int what, void *arg) 729 { 730 int error; 731 732 switch (what) { 733 case MOD_LOAD: 734 if ((error = xpt_init(NULL)) != 0) 735 return (error); 736 break; 737 case MOD_UNLOAD: 738 return EBUSY; 739 default: 740 return EOPNOTSUPP; 741 } 742 743 return 0; 744 } 745 746 static void 747 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 748 { 749 750 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 751 xpt_free_path(done_ccb->ccb_h.path); 752 xpt_free_ccb(done_ccb); 753 } else { 754 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 755 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 756 } 757 xpt_release_boot(); 758 } 759 760 /* thread to handle bus rescans */ 761 static void 762 xpt_scanner_thread(void *dummy) 763 { 764 union ccb *ccb; 765 struct cam_path path; 766 767 xpt_lock_buses(); 768 for (;;) { 769 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 770 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 771 "ccb_scanq", 0); 772 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 773 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 774 xpt_unlock_buses(); 775 776 /* 777 * Since lock can be dropped inside and path freed 778 * by completion callback even before return here, 779 * take our own path copy for reference. 780 */ 781 xpt_copy_path(&path, ccb->ccb_h.path); 782 xpt_path_lock(&path); 783 xpt_action(ccb); 784 xpt_path_unlock(&path); 785 xpt_release_path(&path); 786 787 xpt_lock_buses(); 788 } 789 } 790 } 791 792 void 793 xpt_rescan(union ccb *ccb) 794 { 795 struct ccb_hdr *hdr; 796 797 /* Prepare request */ 798 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 799 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 800 ccb->ccb_h.func_code = XPT_SCAN_BUS; 801 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 802 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 803 ccb->ccb_h.func_code = XPT_SCAN_TGT; 804 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 805 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 806 ccb->ccb_h.func_code = XPT_SCAN_LUN; 807 else { 808 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 809 xpt_free_path(ccb->ccb_h.path); 810 xpt_free_ccb(ccb); 811 return; 812 } 813 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 814 ccb->ccb_h.cbfcnp = xpt_rescan_done; 815 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 816 /* Don't make duplicate entries for the same paths. */ 817 xpt_lock_buses(); 818 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 819 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 820 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 821 wakeup(&xsoftc.ccb_scanq); 822 xpt_unlock_buses(); 823 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 824 xpt_free_path(ccb->ccb_h.path); 825 xpt_free_ccb(ccb); 826 return; 827 } 828 } 829 } 830 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 831 xsoftc.buses_to_config++; 832 wakeup(&xsoftc.ccb_scanq); 833 xpt_unlock_buses(); 834 } 835 836 /* Functions accessed by the peripheral drivers */ 837 static int 838 xpt_init(void *dummy) 839 { 840 struct cam_sim *xpt_sim; 841 struct cam_path *path; 842 struct cam_devq *devq; 843 cam_status status; 844 int error, i; 845 846 TAILQ_INIT(&xsoftc.xpt_busses); 847 TAILQ_INIT(&xsoftc.ccb_scanq); 848 STAILQ_INIT(&xsoftc.highpowerq); 849 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 850 851 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 852 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 853 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 854 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 855 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 856 857 #ifdef CAM_BOOT_DELAY 858 /* 859 * Override this value at compile time to assist our users 860 * who don't use loader to boot a kernel. 861 */ 862 xsoftc.boot_delay = CAM_BOOT_DELAY; 863 #endif 864 /* 865 * The xpt layer is, itself, the equivelent of a SIM. 866 * Allow 16 ccbs in the ccb pool for it. This should 867 * give decent parallelism when we probe busses and 868 * perform other XPT functions. 869 */ 870 devq = cam_simq_alloc(16); 871 xpt_sim = cam_sim_alloc(xptaction, 872 xptpoll, 873 "xpt", 874 /*softc*/NULL, 875 /*unit*/0, 876 /*mtx*/&xsoftc.xpt_lock, 877 /*max_dev_transactions*/0, 878 /*max_tagged_dev_transactions*/0, 879 devq); 880 if (xpt_sim == NULL) 881 return (ENOMEM); 882 883 mtx_lock(&xsoftc.xpt_lock); 884 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 885 mtx_unlock(&xsoftc.xpt_lock); 886 printf("xpt_init: xpt_bus_register failed with status %#x," 887 " failing attach\n", status); 888 return (EINVAL); 889 } 890 mtx_unlock(&xsoftc.xpt_lock); 891 892 /* 893 * Looking at the XPT from the SIM layer, the XPT is 894 * the equivelent of a peripheral driver. Allocate 895 * a peripheral driver entry for us. 896 */ 897 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 898 CAM_TARGET_WILDCARD, 899 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 900 mtx_unlock(&xsoftc.xpt_lock); 901 printf("xpt_init: xpt_create_path failed with status %#x," 902 " failing attach\n", status); 903 return (EINVAL); 904 } 905 xpt_path_lock(path); 906 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 907 path, NULL, 0, xpt_sim); 908 xpt_path_unlock(path); 909 xpt_free_path(path); 910 911 if (cam_num_doneqs < 1) 912 cam_num_doneqs = 1 + mp_ncpus / 6; 913 else if (cam_num_doneqs > MAXCPU) 914 cam_num_doneqs = MAXCPU; 915 for (i = 0; i < cam_num_doneqs; i++) { 916 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 917 MTX_DEF); 918 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 919 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 920 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 921 if (error != 0) { 922 cam_num_doneqs = i; 923 break; 924 } 925 } 926 if (cam_num_doneqs < 1) { 927 printf("xpt_init: Cannot init completion queues " 928 "- failing attach\n"); 929 return (ENOMEM); 930 } 931 /* 932 * Register a callback for when interrupts are enabled. 933 */ 934 xsoftc.xpt_config_hook = 935 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 936 M_CAMXPT, M_NOWAIT | M_ZERO); 937 if (xsoftc.xpt_config_hook == NULL) { 938 printf("xpt_init: Cannot malloc config hook " 939 "- failing attach\n"); 940 return (ENOMEM); 941 } 942 xsoftc.xpt_config_hook->ich_func = xpt_config; 943 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 944 free (xsoftc.xpt_config_hook, M_CAMXPT); 945 printf("xpt_init: config_intrhook_establish failed " 946 "- failing attach\n"); 947 } 948 949 return (0); 950 } 951 952 static cam_status 953 xptregister(struct cam_periph *periph, void *arg) 954 { 955 struct cam_sim *xpt_sim; 956 957 if (periph == NULL) { 958 printf("xptregister: periph was NULL!!\n"); 959 return(CAM_REQ_CMP_ERR); 960 } 961 962 xpt_sim = (struct cam_sim *)arg; 963 xpt_sim->softc = periph; 964 xpt_periph = periph; 965 periph->softc = NULL; 966 967 return(CAM_REQ_CMP); 968 } 969 970 int32_t 971 xpt_add_periph(struct cam_periph *periph) 972 { 973 struct cam_ed *device; 974 int32_t status; 975 976 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 977 device = periph->path->device; 978 status = CAM_REQ_CMP; 979 if (device != NULL) { 980 mtx_lock(&device->target->bus->eb_mtx); 981 device->generation++; 982 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 983 mtx_unlock(&device->target->bus->eb_mtx); 984 } 985 986 return (status); 987 } 988 989 void 990 xpt_remove_periph(struct cam_periph *periph) 991 { 992 struct cam_ed *device; 993 994 device = periph->path->device; 995 if (device != NULL) { 996 mtx_lock(&device->target->bus->eb_mtx); 997 device->generation++; 998 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 999 mtx_unlock(&device->target->bus->eb_mtx); 1000 } 1001 } 1002 1003 1004 void 1005 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1006 { 1007 struct cam_path *path = periph->path; 1008 1009 cam_periph_assert(periph, MA_OWNED); 1010 periph->flags |= CAM_PERIPH_ANNOUNCED; 1011 1012 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1013 periph->periph_name, periph->unit_number, 1014 path->bus->sim->sim_name, 1015 path->bus->sim->unit_number, 1016 path->bus->sim->bus_id, 1017 path->bus->path_id, 1018 path->target->target_id, 1019 (uintmax_t)path->device->lun_id); 1020 printf("%s%d: ", periph->periph_name, periph->unit_number); 1021 if (path->device->protocol == PROTO_SCSI) 1022 scsi_print_inquiry(&path->device->inq_data); 1023 else if (path->device->protocol == PROTO_ATA || 1024 path->device->protocol == PROTO_SATAPM) 1025 ata_print_ident(&path->device->ident_data); 1026 else if (path->device->protocol == PROTO_SEMB) 1027 semb_print_ident( 1028 (struct sep_identify_data *)&path->device->ident_data); 1029 else 1030 printf("Unknown protocol device\n"); 1031 if (path->device->serial_num_len > 0) { 1032 /* Don't wrap the screen - print only the first 60 chars */ 1033 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1034 periph->unit_number, path->device->serial_num); 1035 } 1036 /* Announce transport details. */ 1037 (*(path->bus->xport->announce))(periph); 1038 /* Announce command queueing. */ 1039 if (path->device->inq_flags & SID_CmdQue 1040 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1041 printf("%s%d: Command Queueing enabled\n", 1042 periph->periph_name, periph->unit_number); 1043 } 1044 /* Announce caller's details if they've passed in. */ 1045 if (announce_string != NULL) 1046 printf("%s%d: %s\n", periph->periph_name, 1047 periph->unit_number, announce_string); 1048 } 1049 1050 void 1051 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1052 { 1053 if (quirks != 0) { 1054 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1055 periph->unit_number, quirks, bit_string); 1056 } 1057 } 1058 1059 void 1060 xpt_denounce_periph(struct cam_periph *periph) 1061 { 1062 struct cam_path *path = periph->path; 1063 1064 cam_periph_assert(periph, MA_OWNED); 1065 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1066 periph->periph_name, periph->unit_number, 1067 path->bus->sim->sim_name, 1068 path->bus->sim->unit_number, 1069 path->bus->sim->bus_id, 1070 path->bus->path_id, 1071 path->target->target_id, 1072 (uintmax_t)path->device->lun_id); 1073 printf("%s%d: ", periph->periph_name, periph->unit_number); 1074 if (path->device->protocol == PROTO_SCSI) 1075 scsi_print_inquiry_short(&path->device->inq_data); 1076 else if (path->device->protocol == PROTO_ATA || 1077 path->device->protocol == PROTO_SATAPM) 1078 ata_print_ident_short(&path->device->ident_data); 1079 else if (path->device->protocol == PROTO_SEMB) 1080 semb_print_ident_short( 1081 (struct sep_identify_data *)&path->device->ident_data); 1082 else 1083 printf("Unknown protocol device"); 1084 if (path->device->serial_num_len > 0) 1085 printf(" s/n %.60s", path->device->serial_num); 1086 printf(" detached\n"); 1087 } 1088 1089 1090 int 1091 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1092 { 1093 int ret = -1, l; 1094 struct ccb_dev_advinfo cdai; 1095 struct scsi_vpd_id_descriptor *idd; 1096 1097 xpt_path_assert(path, MA_OWNED); 1098 1099 memset(&cdai, 0, sizeof(cdai)); 1100 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1101 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1102 cdai.bufsiz = len; 1103 1104 if (!strcmp(attr, "GEOM::ident")) 1105 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1106 else if (!strcmp(attr, "GEOM::physpath")) 1107 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1108 else if (strcmp(attr, "GEOM::lunid") == 0 || 1109 strcmp(attr, "GEOM::lunname") == 0) { 1110 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1111 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1112 } else 1113 goto out; 1114 1115 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1116 if (cdai.buf == NULL) { 1117 ret = ENOMEM; 1118 goto out; 1119 } 1120 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1121 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1122 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1123 if (cdai.provsiz == 0) 1124 goto out; 1125 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1126 if (strcmp(attr, "GEOM::lunid") == 0) { 1127 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1128 cdai.provsiz, scsi_devid_is_lun_naa); 1129 if (idd == NULL) 1130 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1131 cdai.provsiz, scsi_devid_is_lun_eui64); 1132 } else 1133 idd = NULL; 1134 if (idd == NULL) 1135 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1136 cdai.provsiz, scsi_devid_is_lun_t10); 1137 if (idd == NULL) 1138 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1139 cdai.provsiz, scsi_devid_is_lun_name); 1140 if (idd == NULL) 1141 goto out; 1142 ret = 0; 1143 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII || 1144 (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1145 l = strnlen(idd->identifier, idd->length); 1146 if (l < len) { 1147 bcopy(idd->identifier, buf, l); 1148 buf[l] = 0; 1149 } else 1150 ret = EFAULT; 1151 } else { 1152 if (idd->length * 2 < len) { 1153 for (l = 0; l < idd->length; l++) 1154 sprintf(buf + l * 2, "%02x", 1155 idd->identifier[l]); 1156 } else 1157 ret = EFAULT; 1158 } 1159 } else { 1160 ret = 0; 1161 if (strlcpy(buf, cdai.buf, len) >= len) 1162 ret = EFAULT; 1163 } 1164 1165 out: 1166 if (cdai.buf != NULL) 1167 free(cdai.buf, M_CAMXPT); 1168 return ret; 1169 } 1170 1171 static dev_match_ret 1172 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1173 struct cam_eb *bus) 1174 { 1175 dev_match_ret retval; 1176 int i; 1177 1178 retval = DM_RET_NONE; 1179 1180 /* 1181 * If we aren't given something to match against, that's an error. 1182 */ 1183 if (bus == NULL) 1184 return(DM_RET_ERROR); 1185 1186 /* 1187 * If there are no match entries, then this bus matches no 1188 * matter what. 1189 */ 1190 if ((patterns == NULL) || (num_patterns == 0)) 1191 return(DM_RET_DESCEND | DM_RET_COPY); 1192 1193 for (i = 0; i < num_patterns; i++) { 1194 struct bus_match_pattern *cur_pattern; 1195 1196 /* 1197 * If the pattern in question isn't for a bus node, we 1198 * aren't interested. However, we do indicate to the 1199 * calling routine that we should continue descending the 1200 * tree, since the user wants to match against lower-level 1201 * EDT elements. 1202 */ 1203 if (patterns[i].type != DEV_MATCH_BUS) { 1204 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1205 retval |= DM_RET_DESCEND; 1206 continue; 1207 } 1208 1209 cur_pattern = &patterns[i].pattern.bus_pattern; 1210 1211 /* 1212 * If they want to match any bus node, we give them any 1213 * device node. 1214 */ 1215 if (cur_pattern->flags == BUS_MATCH_ANY) { 1216 /* set the copy flag */ 1217 retval |= DM_RET_COPY; 1218 1219 /* 1220 * If we've already decided on an action, go ahead 1221 * and return. 1222 */ 1223 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1224 return(retval); 1225 } 1226 1227 /* 1228 * Not sure why someone would do this... 1229 */ 1230 if (cur_pattern->flags == BUS_MATCH_NONE) 1231 continue; 1232 1233 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1234 && (cur_pattern->path_id != bus->path_id)) 1235 continue; 1236 1237 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1238 && (cur_pattern->bus_id != bus->sim->bus_id)) 1239 continue; 1240 1241 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1242 && (cur_pattern->unit_number != bus->sim->unit_number)) 1243 continue; 1244 1245 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1246 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1247 DEV_IDLEN) != 0)) 1248 continue; 1249 1250 /* 1251 * If we get to this point, the user definitely wants 1252 * information on this bus. So tell the caller to copy the 1253 * data out. 1254 */ 1255 retval |= DM_RET_COPY; 1256 1257 /* 1258 * If the return action has been set to descend, then we 1259 * know that we've already seen a non-bus matching 1260 * expression, therefore we need to further descend the tree. 1261 * This won't change by continuing around the loop, so we 1262 * go ahead and return. If we haven't seen a non-bus 1263 * matching expression, we keep going around the loop until 1264 * we exhaust the matching expressions. We'll set the stop 1265 * flag once we fall out of the loop. 1266 */ 1267 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1268 return(retval); 1269 } 1270 1271 /* 1272 * If the return action hasn't been set to descend yet, that means 1273 * we haven't seen anything other than bus matching patterns. So 1274 * tell the caller to stop descending the tree -- the user doesn't 1275 * want to match against lower level tree elements. 1276 */ 1277 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1278 retval |= DM_RET_STOP; 1279 1280 return(retval); 1281 } 1282 1283 static dev_match_ret 1284 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1285 struct cam_ed *device) 1286 { 1287 dev_match_ret retval; 1288 int i; 1289 1290 retval = DM_RET_NONE; 1291 1292 /* 1293 * If we aren't given something to match against, that's an error. 1294 */ 1295 if (device == NULL) 1296 return(DM_RET_ERROR); 1297 1298 /* 1299 * If there are no match entries, then this device matches no 1300 * matter what. 1301 */ 1302 if ((patterns == NULL) || (num_patterns == 0)) 1303 return(DM_RET_DESCEND | DM_RET_COPY); 1304 1305 for (i = 0; i < num_patterns; i++) { 1306 struct device_match_pattern *cur_pattern; 1307 struct scsi_vpd_device_id *device_id_page; 1308 1309 /* 1310 * If the pattern in question isn't for a device node, we 1311 * aren't interested. 1312 */ 1313 if (patterns[i].type != DEV_MATCH_DEVICE) { 1314 if ((patterns[i].type == DEV_MATCH_PERIPH) 1315 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1316 retval |= DM_RET_DESCEND; 1317 continue; 1318 } 1319 1320 cur_pattern = &patterns[i].pattern.device_pattern; 1321 1322 /* Error out if mutually exclusive options are specified. */ 1323 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1324 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1325 return(DM_RET_ERROR); 1326 1327 /* 1328 * If they want to match any device node, we give them any 1329 * device node. 1330 */ 1331 if (cur_pattern->flags == DEV_MATCH_ANY) 1332 goto copy_dev_node; 1333 1334 /* 1335 * Not sure why someone would do this... 1336 */ 1337 if (cur_pattern->flags == DEV_MATCH_NONE) 1338 continue; 1339 1340 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1341 && (cur_pattern->path_id != device->target->bus->path_id)) 1342 continue; 1343 1344 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1345 && (cur_pattern->target_id != device->target->target_id)) 1346 continue; 1347 1348 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1349 && (cur_pattern->target_lun != device->lun_id)) 1350 continue; 1351 1352 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1353 && (cam_quirkmatch((caddr_t)&device->inq_data, 1354 (caddr_t)&cur_pattern->data.inq_pat, 1355 1, sizeof(cur_pattern->data.inq_pat), 1356 scsi_static_inquiry_match) == NULL)) 1357 continue; 1358 1359 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1360 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1361 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1362 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1363 device->device_id_len 1364 - SVPD_DEVICE_ID_HDR_LEN, 1365 cur_pattern->data.devid_pat.id, 1366 cur_pattern->data.devid_pat.id_len) != 0)) 1367 continue; 1368 1369 copy_dev_node: 1370 /* 1371 * If we get to this point, the user definitely wants 1372 * information on this device. So tell the caller to copy 1373 * the data out. 1374 */ 1375 retval |= DM_RET_COPY; 1376 1377 /* 1378 * If the return action has been set to descend, then we 1379 * know that we've already seen a peripheral matching 1380 * expression, therefore we need to further descend the tree. 1381 * This won't change by continuing around the loop, so we 1382 * go ahead and return. If we haven't seen a peripheral 1383 * matching expression, we keep going around the loop until 1384 * we exhaust the matching expressions. We'll set the stop 1385 * flag once we fall out of the loop. 1386 */ 1387 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1388 return(retval); 1389 } 1390 1391 /* 1392 * If the return action hasn't been set to descend yet, that means 1393 * we haven't seen any peripheral matching patterns. So tell the 1394 * caller to stop descending the tree -- the user doesn't want to 1395 * match against lower level tree elements. 1396 */ 1397 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1398 retval |= DM_RET_STOP; 1399 1400 return(retval); 1401 } 1402 1403 /* 1404 * Match a single peripheral against any number of match patterns. 1405 */ 1406 static dev_match_ret 1407 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1408 struct cam_periph *periph) 1409 { 1410 dev_match_ret retval; 1411 int i; 1412 1413 /* 1414 * If we aren't given something to match against, that's an error. 1415 */ 1416 if (periph == NULL) 1417 return(DM_RET_ERROR); 1418 1419 /* 1420 * If there are no match entries, then this peripheral matches no 1421 * matter what. 1422 */ 1423 if ((patterns == NULL) || (num_patterns == 0)) 1424 return(DM_RET_STOP | DM_RET_COPY); 1425 1426 /* 1427 * There aren't any nodes below a peripheral node, so there's no 1428 * reason to descend the tree any further. 1429 */ 1430 retval = DM_RET_STOP; 1431 1432 for (i = 0; i < num_patterns; i++) { 1433 struct periph_match_pattern *cur_pattern; 1434 1435 /* 1436 * If the pattern in question isn't for a peripheral, we 1437 * aren't interested. 1438 */ 1439 if (patterns[i].type != DEV_MATCH_PERIPH) 1440 continue; 1441 1442 cur_pattern = &patterns[i].pattern.periph_pattern; 1443 1444 /* 1445 * If they want to match on anything, then we will do so. 1446 */ 1447 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1448 /* set the copy flag */ 1449 retval |= DM_RET_COPY; 1450 1451 /* 1452 * We've already set the return action to stop, 1453 * since there are no nodes below peripherals in 1454 * the tree. 1455 */ 1456 return(retval); 1457 } 1458 1459 /* 1460 * Not sure why someone would do this... 1461 */ 1462 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1463 continue; 1464 1465 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1466 && (cur_pattern->path_id != periph->path->bus->path_id)) 1467 continue; 1468 1469 /* 1470 * For the target and lun id's, we have to make sure the 1471 * target and lun pointers aren't NULL. The xpt peripheral 1472 * has a wildcard target and device. 1473 */ 1474 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1475 && ((periph->path->target == NULL) 1476 ||(cur_pattern->target_id != periph->path->target->target_id))) 1477 continue; 1478 1479 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1480 && ((periph->path->device == NULL) 1481 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1482 continue; 1483 1484 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1485 && (cur_pattern->unit_number != periph->unit_number)) 1486 continue; 1487 1488 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1489 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1490 DEV_IDLEN) != 0)) 1491 continue; 1492 1493 /* 1494 * If we get to this point, the user definitely wants 1495 * information on this peripheral. So tell the caller to 1496 * copy the data out. 1497 */ 1498 retval |= DM_RET_COPY; 1499 1500 /* 1501 * The return action has already been set to stop, since 1502 * peripherals don't have any nodes below them in the EDT. 1503 */ 1504 return(retval); 1505 } 1506 1507 /* 1508 * If we get to this point, the peripheral that was passed in 1509 * doesn't match any of the patterns. 1510 */ 1511 return(retval); 1512 } 1513 1514 static int 1515 xptedtbusfunc(struct cam_eb *bus, void *arg) 1516 { 1517 struct ccb_dev_match *cdm; 1518 struct cam_et *target; 1519 dev_match_ret retval; 1520 1521 cdm = (struct ccb_dev_match *)arg; 1522 1523 /* 1524 * If our position is for something deeper in the tree, that means 1525 * that we've already seen this node. So, we keep going down. 1526 */ 1527 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1528 && (cdm->pos.cookie.bus == bus) 1529 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1530 && (cdm->pos.cookie.target != NULL)) 1531 retval = DM_RET_DESCEND; 1532 else 1533 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1534 1535 /* 1536 * If we got an error, bail out of the search. 1537 */ 1538 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1539 cdm->status = CAM_DEV_MATCH_ERROR; 1540 return(0); 1541 } 1542 1543 /* 1544 * If the copy flag is set, copy this bus out. 1545 */ 1546 if (retval & DM_RET_COPY) { 1547 int spaceleft, j; 1548 1549 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1550 sizeof(struct dev_match_result)); 1551 1552 /* 1553 * If we don't have enough space to put in another 1554 * match result, save our position and tell the 1555 * user there are more devices to check. 1556 */ 1557 if (spaceleft < sizeof(struct dev_match_result)) { 1558 bzero(&cdm->pos, sizeof(cdm->pos)); 1559 cdm->pos.position_type = 1560 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1561 1562 cdm->pos.cookie.bus = bus; 1563 cdm->pos.generations[CAM_BUS_GENERATION]= 1564 xsoftc.bus_generation; 1565 cdm->status = CAM_DEV_MATCH_MORE; 1566 return(0); 1567 } 1568 j = cdm->num_matches; 1569 cdm->num_matches++; 1570 cdm->matches[j].type = DEV_MATCH_BUS; 1571 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1572 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1573 cdm->matches[j].result.bus_result.unit_number = 1574 bus->sim->unit_number; 1575 strncpy(cdm->matches[j].result.bus_result.dev_name, 1576 bus->sim->sim_name, DEV_IDLEN); 1577 } 1578 1579 /* 1580 * If the user is only interested in busses, there's no 1581 * reason to descend to the next level in the tree. 1582 */ 1583 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1584 return(1); 1585 1586 /* 1587 * If there is a target generation recorded, check it to 1588 * make sure the target list hasn't changed. 1589 */ 1590 mtx_lock(&bus->eb_mtx); 1591 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1592 && (cdm->pos.cookie.bus == bus) 1593 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1594 && (cdm->pos.cookie.target != NULL)) { 1595 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1596 bus->generation)) { 1597 mtx_unlock(&bus->eb_mtx); 1598 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1599 return (0); 1600 } 1601 target = (struct cam_et *)cdm->pos.cookie.target; 1602 target->refcount++; 1603 } else 1604 target = NULL; 1605 mtx_unlock(&bus->eb_mtx); 1606 1607 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1608 } 1609 1610 static int 1611 xptedttargetfunc(struct cam_et *target, void *arg) 1612 { 1613 struct ccb_dev_match *cdm; 1614 struct cam_eb *bus; 1615 struct cam_ed *device; 1616 1617 cdm = (struct ccb_dev_match *)arg; 1618 bus = target->bus; 1619 1620 /* 1621 * If there is a device list generation recorded, check it to 1622 * make sure the device list hasn't changed. 1623 */ 1624 mtx_lock(&bus->eb_mtx); 1625 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1626 && (cdm->pos.cookie.bus == bus) 1627 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1628 && (cdm->pos.cookie.target == target) 1629 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1630 && (cdm->pos.cookie.device != NULL)) { 1631 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1632 target->generation) { 1633 mtx_unlock(&bus->eb_mtx); 1634 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1635 return(0); 1636 } 1637 device = (struct cam_ed *)cdm->pos.cookie.device; 1638 device->refcount++; 1639 } else 1640 device = NULL; 1641 mtx_unlock(&bus->eb_mtx); 1642 1643 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1644 } 1645 1646 static int 1647 xptedtdevicefunc(struct cam_ed *device, void *arg) 1648 { 1649 struct cam_eb *bus; 1650 struct cam_periph *periph; 1651 struct ccb_dev_match *cdm; 1652 dev_match_ret retval; 1653 1654 cdm = (struct ccb_dev_match *)arg; 1655 bus = device->target->bus; 1656 1657 /* 1658 * If our position is for something deeper in the tree, that means 1659 * that we've already seen this node. So, we keep going down. 1660 */ 1661 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1662 && (cdm->pos.cookie.device == device) 1663 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1664 && (cdm->pos.cookie.periph != NULL)) 1665 retval = DM_RET_DESCEND; 1666 else 1667 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1668 device); 1669 1670 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1671 cdm->status = CAM_DEV_MATCH_ERROR; 1672 return(0); 1673 } 1674 1675 /* 1676 * If the copy flag is set, copy this device out. 1677 */ 1678 if (retval & DM_RET_COPY) { 1679 int spaceleft, j; 1680 1681 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1682 sizeof(struct dev_match_result)); 1683 1684 /* 1685 * If we don't have enough space to put in another 1686 * match result, save our position and tell the 1687 * user there are more devices to check. 1688 */ 1689 if (spaceleft < sizeof(struct dev_match_result)) { 1690 bzero(&cdm->pos, sizeof(cdm->pos)); 1691 cdm->pos.position_type = 1692 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1693 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1694 1695 cdm->pos.cookie.bus = device->target->bus; 1696 cdm->pos.generations[CAM_BUS_GENERATION]= 1697 xsoftc.bus_generation; 1698 cdm->pos.cookie.target = device->target; 1699 cdm->pos.generations[CAM_TARGET_GENERATION] = 1700 device->target->bus->generation; 1701 cdm->pos.cookie.device = device; 1702 cdm->pos.generations[CAM_DEV_GENERATION] = 1703 device->target->generation; 1704 cdm->status = CAM_DEV_MATCH_MORE; 1705 return(0); 1706 } 1707 j = cdm->num_matches; 1708 cdm->num_matches++; 1709 cdm->matches[j].type = DEV_MATCH_DEVICE; 1710 cdm->matches[j].result.device_result.path_id = 1711 device->target->bus->path_id; 1712 cdm->matches[j].result.device_result.target_id = 1713 device->target->target_id; 1714 cdm->matches[j].result.device_result.target_lun = 1715 device->lun_id; 1716 cdm->matches[j].result.device_result.protocol = 1717 device->protocol; 1718 bcopy(&device->inq_data, 1719 &cdm->matches[j].result.device_result.inq_data, 1720 sizeof(struct scsi_inquiry_data)); 1721 bcopy(&device->ident_data, 1722 &cdm->matches[j].result.device_result.ident_data, 1723 sizeof(struct ata_params)); 1724 1725 /* Let the user know whether this device is unconfigured */ 1726 if (device->flags & CAM_DEV_UNCONFIGURED) 1727 cdm->matches[j].result.device_result.flags = 1728 DEV_RESULT_UNCONFIGURED; 1729 else 1730 cdm->matches[j].result.device_result.flags = 1731 DEV_RESULT_NOFLAG; 1732 } 1733 1734 /* 1735 * If the user isn't interested in peripherals, don't descend 1736 * the tree any further. 1737 */ 1738 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1739 return(1); 1740 1741 /* 1742 * If there is a peripheral list generation recorded, make sure 1743 * it hasn't changed. 1744 */ 1745 xpt_lock_buses(); 1746 mtx_lock(&bus->eb_mtx); 1747 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1748 && (cdm->pos.cookie.bus == bus) 1749 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1750 && (cdm->pos.cookie.target == device->target) 1751 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1752 && (cdm->pos.cookie.device == device) 1753 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1754 && (cdm->pos.cookie.periph != NULL)) { 1755 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1756 device->generation) { 1757 mtx_unlock(&bus->eb_mtx); 1758 xpt_unlock_buses(); 1759 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1760 return(0); 1761 } 1762 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1763 periph->refcount++; 1764 } else 1765 periph = NULL; 1766 mtx_unlock(&bus->eb_mtx); 1767 xpt_unlock_buses(); 1768 1769 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1770 } 1771 1772 static int 1773 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1774 { 1775 struct ccb_dev_match *cdm; 1776 dev_match_ret retval; 1777 1778 cdm = (struct ccb_dev_match *)arg; 1779 1780 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1781 1782 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1783 cdm->status = CAM_DEV_MATCH_ERROR; 1784 return(0); 1785 } 1786 1787 /* 1788 * If the copy flag is set, copy this peripheral out. 1789 */ 1790 if (retval & DM_RET_COPY) { 1791 int spaceleft, j; 1792 1793 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1794 sizeof(struct dev_match_result)); 1795 1796 /* 1797 * If we don't have enough space to put in another 1798 * match result, save our position and tell the 1799 * user there are more devices to check. 1800 */ 1801 if (spaceleft < sizeof(struct dev_match_result)) { 1802 bzero(&cdm->pos, sizeof(cdm->pos)); 1803 cdm->pos.position_type = 1804 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1805 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1806 CAM_DEV_POS_PERIPH; 1807 1808 cdm->pos.cookie.bus = periph->path->bus; 1809 cdm->pos.generations[CAM_BUS_GENERATION]= 1810 xsoftc.bus_generation; 1811 cdm->pos.cookie.target = periph->path->target; 1812 cdm->pos.generations[CAM_TARGET_GENERATION] = 1813 periph->path->bus->generation; 1814 cdm->pos.cookie.device = periph->path->device; 1815 cdm->pos.generations[CAM_DEV_GENERATION] = 1816 periph->path->target->generation; 1817 cdm->pos.cookie.periph = periph; 1818 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1819 periph->path->device->generation; 1820 cdm->status = CAM_DEV_MATCH_MORE; 1821 return(0); 1822 } 1823 1824 j = cdm->num_matches; 1825 cdm->num_matches++; 1826 cdm->matches[j].type = DEV_MATCH_PERIPH; 1827 cdm->matches[j].result.periph_result.path_id = 1828 periph->path->bus->path_id; 1829 cdm->matches[j].result.periph_result.target_id = 1830 periph->path->target->target_id; 1831 cdm->matches[j].result.periph_result.target_lun = 1832 periph->path->device->lun_id; 1833 cdm->matches[j].result.periph_result.unit_number = 1834 periph->unit_number; 1835 strncpy(cdm->matches[j].result.periph_result.periph_name, 1836 periph->periph_name, DEV_IDLEN); 1837 } 1838 1839 return(1); 1840 } 1841 1842 static int 1843 xptedtmatch(struct ccb_dev_match *cdm) 1844 { 1845 struct cam_eb *bus; 1846 int ret; 1847 1848 cdm->num_matches = 0; 1849 1850 /* 1851 * Check the bus list generation. If it has changed, the user 1852 * needs to reset everything and start over. 1853 */ 1854 xpt_lock_buses(); 1855 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1856 && (cdm->pos.cookie.bus != NULL)) { 1857 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1858 xsoftc.bus_generation) { 1859 xpt_unlock_buses(); 1860 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1861 return(0); 1862 } 1863 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1864 bus->refcount++; 1865 } else 1866 bus = NULL; 1867 xpt_unlock_buses(); 1868 1869 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1870 1871 /* 1872 * If we get back 0, that means that we had to stop before fully 1873 * traversing the EDT. It also means that one of the subroutines 1874 * has set the status field to the proper value. If we get back 1, 1875 * we've fully traversed the EDT and copied out any matching entries. 1876 */ 1877 if (ret == 1) 1878 cdm->status = CAM_DEV_MATCH_LAST; 1879 1880 return(ret); 1881 } 1882 1883 static int 1884 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1885 { 1886 struct cam_periph *periph; 1887 struct ccb_dev_match *cdm; 1888 1889 cdm = (struct ccb_dev_match *)arg; 1890 1891 xpt_lock_buses(); 1892 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1893 && (cdm->pos.cookie.pdrv == pdrv) 1894 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1895 && (cdm->pos.cookie.periph != NULL)) { 1896 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1897 (*pdrv)->generation) { 1898 xpt_unlock_buses(); 1899 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1900 return(0); 1901 } 1902 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1903 periph->refcount++; 1904 } else 1905 periph = NULL; 1906 xpt_unlock_buses(); 1907 1908 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1909 } 1910 1911 static int 1912 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1913 { 1914 struct ccb_dev_match *cdm; 1915 dev_match_ret retval; 1916 1917 cdm = (struct ccb_dev_match *)arg; 1918 1919 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1920 1921 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1922 cdm->status = CAM_DEV_MATCH_ERROR; 1923 return(0); 1924 } 1925 1926 /* 1927 * If the copy flag is set, copy this peripheral out. 1928 */ 1929 if (retval & DM_RET_COPY) { 1930 int spaceleft, j; 1931 1932 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1933 sizeof(struct dev_match_result)); 1934 1935 /* 1936 * If we don't have enough space to put in another 1937 * match result, save our position and tell the 1938 * user there are more devices to check. 1939 */ 1940 if (spaceleft < sizeof(struct dev_match_result)) { 1941 struct periph_driver **pdrv; 1942 1943 pdrv = NULL; 1944 bzero(&cdm->pos, sizeof(cdm->pos)); 1945 cdm->pos.position_type = 1946 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1947 CAM_DEV_POS_PERIPH; 1948 1949 /* 1950 * This may look a bit non-sensical, but it is 1951 * actually quite logical. There are very few 1952 * peripheral drivers, and bloating every peripheral 1953 * structure with a pointer back to its parent 1954 * peripheral driver linker set entry would cost 1955 * more in the long run than doing this quick lookup. 1956 */ 1957 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1958 if (strcmp((*pdrv)->driver_name, 1959 periph->periph_name) == 0) 1960 break; 1961 } 1962 1963 if (*pdrv == NULL) { 1964 cdm->status = CAM_DEV_MATCH_ERROR; 1965 return(0); 1966 } 1967 1968 cdm->pos.cookie.pdrv = pdrv; 1969 /* 1970 * The periph generation slot does double duty, as 1971 * does the periph pointer slot. They are used for 1972 * both edt and pdrv lookups and positioning. 1973 */ 1974 cdm->pos.cookie.periph = periph; 1975 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1976 (*pdrv)->generation; 1977 cdm->status = CAM_DEV_MATCH_MORE; 1978 return(0); 1979 } 1980 1981 j = cdm->num_matches; 1982 cdm->num_matches++; 1983 cdm->matches[j].type = DEV_MATCH_PERIPH; 1984 cdm->matches[j].result.periph_result.path_id = 1985 periph->path->bus->path_id; 1986 1987 /* 1988 * The transport layer peripheral doesn't have a target or 1989 * lun. 1990 */ 1991 if (periph->path->target) 1992 cdm->matches[j].result.periph_result.target_id = 1993 periph->path->target->target_id; 1994 else 1995 cdm->matches[j].result.periph_result.target_id = -1; 1996 1997 if (periph->path->device) 1998 cdm->matches[j].result.periph_result.target_lun = 1999 periph->path->device->lun_id; 2000 else 2001 cdm->matches[j].result.periph_result.target_lun = -1; 2002 2003 cdm->matches[j].result.periph_result.unit_number = 2004 periph->unit_number; 2005 strncpy(cdm->matches[j].result.periph_result.periph_name, 2006 periph->periph_name, DEV_IDLEN); 2007 } 2008 2009 return(1); 2010 } 2011 2012 static int 2013 xptperiphlistmatch(struct ccb_dev_match *cdm) 2014 { 2015 int ret; 2016 2017 cdm->num_matches = 0; 2018 2019 /* 2020 * At this point in the edt traversal function, we check the bus 2021 * list generation to make sure that no busses have been added or 2022 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2023 * For the peripheral driver list traversal function, however, we 2024 * don't have to worry about new peripheral driver types coming or 2025 * going; they're in a linker set, and therefore can't change 2026 * without a recompile. 2027 */ 2028 2029 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2030 && (cdm->pos.cookie.pdrv != NULL)) 2031 ret = xptpdrvtraverse( 2032 (struct periph_driver **)cdm->pos.cookie.pdrv, 2033 xptplistpdrvfunc, cdm); 2034 else 2035 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2036 2037 /* 2038 * If we get back 0, that means that we had to stop before fully 2039 * traversing the peripheral driver tree. It also means that one of 2040 * the subroutines has set the status field to the proper value. If 2041 * we get back 1, we've fully traversed the EDT and copied out any 2042 * matching entries. 2043 */ 2044 if (ret == 1) 2045 cdm->status = CAM_DEV_MATCH_LAST; 2046 2047 return(ret); 2048 } 2049 2050 static int 2051 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2052 { 2053 struct cam_eb *bus, *next_bus; 2054 int retval; 2055 2056 retval = 1; 2057 if (start_bus) 2058 bus = start_bus; 2059 else { 2060 xpt_lock_buses(); 2061 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2062 if (bus == NULL) { 2063 xpt_unlock_buses(); 2064 return (retval); 2065 } 2066 bus->refcount++; 2067 xpt_unlock_buses(); 2068 } 2069 for (; bus != NULL; bus = next_bus) { 2070 retval = tr_func(bus, arg); 2071 if (retval == 0) { 2072 xpt_release_bus(bus); 2073 break; 2074 } 2075 xpt_lock_buses(); 2076 next_bus = TAILQ_NEXT(bus, links); 2077 if (next_bus) 2078 next_bus->refcount++; 2079 xpt_unlock_buses(); 2080 xpt_release_bus(bus); 2081 } 2082 return(retval); 2083 } 2084 2085 static int 2086 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2087 xpt_targetfunc_t *tr_func, void *arg) 2088 { 2089 struct cam_et *target, *next_target; 2090 int retval; 2091 2092 retval = 1; 2093 if (start_target) 2094 target = start_target; 2095 else { 2096 mtx_lock(&bus->eb_mtx); 2097 target = TAILQ_FIRST(&bus->et_entries); 2098 if (target == NULL) { 2099 mtx_unlock(&bus->eb_mtx); 2100 return (retval); 2101 } 2102 target->refcount++; 2103 mtx_unlock(&bus->eb_mtx); 2104 } 2105 for (; target != NULL; target = next_target) { 2106 retval = tr_func(target, arg); 2107 if (retval == 0) { 2108 xpt_release_target(target); 2109 break; 2110 } 2111 mtx_lock(&bus->eb_mtx); 2112 next_target = TAILQ_NEXT(target, links); 2113 if (next_target) 2114 next_target->refcount++; 2115 mtx_unlock(&bus->eb_mtx); 2116 xpt_release_target(target); 2117 } 2118 return(retval); 2119 } 2120 2121 static int 2122 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2123 xpt_devicefunc_t *tr_func, void *arg) 2124 { 2125 struct cam_eb *bus; 2126 struct cam_ed *device, *next_device; 2127 int retval; 2128 2129 retval = 1; 2130 bus = target->bus; 2131 if (start_device) 2132 device = start_device; 2133 else { 2134 mtx_lock(&bus->eb_mtx); 2135 device = TAILQ_FIRST(&target->ed_entries); 2136 if (device == NULL) { 2137 mtx_unlock(&bus->eb_mtx); 2138 return (retval); 2139 } 2140 device->refcount++; 2141 mtx_unlock(&bus->eb_mtx); 2142 } 2143 for (; device != NULL; device = next_device) { 2144 mtx_lock(&device->device_mtx); 2145 retval = tr_func(device, arg); 2146 mtx_unlock(&device->device_mtx); 2147 if (retval == 0) { 2148 xpt_release_device(device); 2149 break; 2150 } 2151 mtx_lock(&bus->eb_mtx); 2152 next_device = TAILQ_NEXT(device, links); 2153 if (next_device) 2154 next_device->refcount++; 2155 mtx_unlock(&bus->eb_mtx); 2156 xpt_release_device(device); 2157 } 2158 return(retval); 2159 } 2160 2161 static int 2162 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2163 xpt_periphfunc_t *tr_func, void *arg) 2164 { 2165 struct cam_eb *bus; 2166 struct cam_periph *periph, *next_periph; 2167 int retval; 2168 2169 retval = 1; 2170 2171 bus = device->target->bus; 2172 if (start_periph) 2173 periph = start_periph; 2174 else { 2175 xpt_lock_buses(); 2176 mtx_lock(&bus->eb_mtx); 2177 periph = SLIST_FIRST(&device->periphs); 2178 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2179 periph = SLIST_NEXT(periph, periph_links); 2180 if (periph == NULL) { 2181 mtx_unlock(&bus->eb_mtx); 2182 xpt_unlock_buses(); 2183 return (retval); 2184 } 2185 periph->refcount++; 2186 mtx_unlock(&bus->eb_mtx); 2187 xpt_unlock_buses(); 2188 } 2189 for (; periph != NULL; periph = next_periph) { 2190 retval = tr_func(periph, arg); 2191 if (retval == 0) { 2192 cam_periph_release_locked(periph); 2193 break; 2194 } 2195 xpt_lock_buses(); 2196 mtx_lock(&bus->eb_mtx); 2197 next_periph = SLIST_NEXT(periph, periph_links); 2198 while (next_periph != NULL && 2199 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2200 next_periph = SLIST_NEXT(periph, periph_links); 2201 if (next_periph) 2202 next_periph->refcount++; 2203 mtx_unlock(&bus->eb_mtx); 2204 xpt_unlock_buses(); 2205 cam_periph_release_locked(periph); 2206 } 2207 return(retval); 2208 } 2209 2210 static int 2211 xptpdrvtraverse(struct periph_driver **start_pdrv, 2212 xpt_pdrvfunc_t *tr_func, void *arg) 2213 { 2214 struct periph_driver **pdrv; 2215 int retval; 2216 2217 retval = 1; 2218 2219 /* 2220 * We don't traverse the peripheral driver list like we do the 2221 * other lists, because it is a linker set, and therefore cannot be 2222 * changed during runtime. If the peripheral driver list is ever 2223 * re-done to be something other than a linker set (i.e. it can 2224 * change while the system is running), the list traversal should 2225 * be modified to work like the other traversal functions. 2226 */ 2227 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2228 *pdrv != NULL; pdrv++) { 2229 retval = tr_func(pdrv, arg); 2230 2231 if (retval == 0) 2232 return(retval); 2233 } 2234 2235 return(retval); 2236 } 2237 2238 static int 2239 xptpdperiphtraverse(struct periph_driver **pdrv, 2240 struct cam_periph *start_periph, 2241 xpt_periphfunc_t *tr_func, void *arg) 2242 { 2243 struct cam_periph *periph, *next_periph; 2244 int retval; 2245 2246 retval = 1; 2247 2248 if (start_periph) 2249 periph = start_periph; 2250 else { 2251 xpt_lock_buses(); 2252 periph = TAILQ_FIRST(&(*pdrv)->units); 2253 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2254 periph = TAILQ_NEXT(periph, unit_links); 2255 if (periph == NULL) { 2256 xpt_unlock_buses(); 2257 return (retval); 2258 } 2259 periph->refcount++; 2260 xpt_unlock_buses(); 2261 } 2262 for (; periph != NULL; periph = next_periph) { 2263 cam_periph_lock(periph); 2264 retval = tr_func(periph, arg); 2265 cam_periph_unlock(periph); 2266 if (retval == 0) { 2267 cam_periph_release(periph); 2268 break; 2269 } 2270 xpt_lock_buses(); 2271 next_periph = TAILQ_NEXT(periph, unit_links); 2272 while (next_periph != NULL && 2273 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2274 next_periph = TAILQ_NEXT(periph, unit_links); 2275 if (next_periph) 2276 next_periph->refcount++; 2277 xpt_unlock_buses(); 2278 cam_periph_release(periph); 2279 } 2280 return(retval); 2281 } 2282 2283 static int 2284 xptdefbusfunc(struct cam_eb *bus, void *arg) 2285 { 2286 struct xpt_traverse_config *tr_config; 2287 2288 tr_config = (struct xpt_traverse_config *)arg; 2289 2290 if (tr_config->depth == XPT_DEPTH_BUS) { 2291 xpt_busfunc_t *tr_func; 2292 2293 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2294 2295 return(tr_func(bus, tr_config->tr_arg)); 2296 } else 2297 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2298 } 2299 2300 static int 2301 xptdeftargetfunc(struct cam_et *target, void *arg) 2302 { 2303 struct xpt_traverse_config *tr_config; 2304 2305 tr_config = (struct xpt_traverse_config *)arg; 2306 2307 if (tr_config->depth == XPT_DEPTH_TARGET) { 2308 xpt_targetfunc_t *tr_func; 2309 2310 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2311 2312 return(tr_func(target, tr_config->tr_arg)); 2313 } else 2314 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2315 } 2316 2317 static int 2318 xptdefdevicefunc(struct cam_ed *device, void *arg) 2319 { 2320 struct xpt_traverse_config *tr_config; 2321 2322 tr_config = (struct xpt_traverse_config *)arg; 2323 2324 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2325 xpt_devicefunc_t *tr_func; 2326 2327 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2328 2329 return(tr_func(device, tr_config->tr_arg)); 2330 } else 2331 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2332 } 2333 2334 static int 2335 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2336 { 2337 struct xpt_traverse_config *tr_config; 2338 xpt_periphfunc_t *tr_func; 2339 2340 tr_config = (struct xpt_traverse_config *)arg; 2341 2342 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2343 2344 /* 2345 * Unlike the other default functions, we don't check for depth 2346 * here. The peripheral driver level is the last level in the EDT, 2347 * so if we're here, we should execute the function in question. 2348 */ 2349 return(tr_func(periph, tr_config->tr_arg)); 2350 } 2351 2352 /* 2353 * Execute the given function for every bus in the EDT. 2354 */ 2355 static int 2356 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2357 { 2358 struct xpt_traverse_config tr_config; 2359 2360 tr_config.depth = XPT_DEPTH_BUS; 2361 tr_config.tr_func = tr_func; 2362 tr_config.tr_arg = arg; 2363 2364 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2365 } 2366 2367 /* 2368 * Execute the given function for every device in the EDT. 2369 */ 2370 static int 2371 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2372 { 2373 struct xpt_traverse_config tr_config; 2374 2375 tr_config.depth = XPT_DEPTH_DEVICE; 2376 tr_config.tr_func = tr_func; 2377 tr_config.tr_arg = arg; 2378 2379 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2380 } 2381 2382 static int 2383 xptsetasyncfunc(struct cam_ed *device, void *arg) 2384 { 2385 struct cam_path path; 2386 struct ccb_getdev cgd; 2387 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2388 2389 /* 2390 * Don't report unconfigured devices (Wildcard devs, 2391 * devices only for target mode, device instances 2392 * that have been invalidated but are waiting for 2393 * their last reference count to be released). 2394 */ 2395 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2396 return (1); 2397 2398 xpt_compile_path(&path, 2399 NULL, 2400 device->target->bus->path_id, 2401 device->target->target_id, 2402 device->lun_id); 2403 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2404 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2405 xpt_action((union ccb *)&cgd); 2406 csa->callback(csa->callback_arg, 2407 AC_FOUND_DEVICE, 2408 &path, &cgd); 2409 xpt_release_path(&path); 2410 2411 return(1); 2412 } 2413 2414 static int 2415 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2416 { 2417 struct cam_path path; 2418 struct ccb_pathinq cpi; 2419 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2420 2421 xpt_compile_path(&path, /*periph*/NULL, 2422 bus->path_id, 2423 CAM_TARGET_WILDCARD, 2424 CAM_LUN_WILDCARD); 2425 xpt_path_lock(&path); 2426 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2427 cpi.ccb_h.func_code = XPT_PATH_INQ; 2428 xpt_action((union ccb *)&cpi); 2429 csa->callback(csa->callback_arg, 2430 AC_PATH_REGISTERED, 2431 &path, &cpi); 2432 xpt_path_unlock(&path); 2433 xpt_release_path(&path); 2434 2435 return(1); 2436 } 2437 2438 void 2439 xpt_action(union ccb *start_ccb) 2440 { 2441 2442 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2443 2444 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2445 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2446 } 2447 2448 void 2449 xpt_action_default(union ccb *start_ccb) 2450 { 2451 struct cam_path *path; 2452 struct cam_sim *sim; 2453 int lock; 2454 2455 path = start_ccb->ccb_h.path; 2456 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2457 2458 switch (start_ccb->ccb_h.func_code) { 2459 case XPT_SCSI_IO: 2460 { 2461 struct cam_ed *device; 2462 2463 /* 2464 * For the sake of compatibility with SCSI-1 2465 * devices that may not understand the identify 2466 * message, we include lun information in the 2467 * second byte of all commands. SCSI-1 specifies 2468 * that luns are a 3 bit value and reserves only 3 2469 * bits for lun information in the CDB. Later 2470 * revisions of the SCSI spec allow for more than 8 2471 * luns, but have deprecated lun information in the 2472 * CDB. So, if the lun won't fit, we must omit. 2473 * 2474 * Also be aware that during initial probing for devices, 2475 * the inquiry information is unknown but initialized to 0. 2476 * This means that this code will be exercised while probing 2477 * devices with an ANSI revision greater than 2. 2478 */ 2479 device = path->device; 2480 if (device->protocol_version <= SCSI_REV_2 2481 && start_ccb->ccb_h.target_lun < 8 2482 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2483 2484 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2485 start_ccb->ccb_h.target_lun << 5; 2486 } 2487 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2488 } 2489 /* FALLTHROUGH */ 2490 case XPT_TARGET_IO: 2491 case XPT_CONT_TARGET_IO: 2492 start_ccb->csio.sense_resid = 0; 2493 start_ccb->csio.resid = 0; 2494 /* FALLTHROUGH */ 2495 case XPT_ATA_IO: 2496 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2497 start_ccb->ataio.resid = 0; 2498 /* FALLTHROUGH */ 2499 case XPT_RESET_DEV: 2500 case XPT_ENG_EXEC: 2501 case XPT_SMP_IO: 2502 { 2503 struct cam_devq *devq; 2504 2505 devq = path->bus->sim->devq; 2506 mtx_lock(&devq->send_mtx); 2507 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2508 if (xpt_schedule_devq(devq, path->device) != 0) 2509 xpt_run_devq(devq); 2510 mtx_unlock(&devq->send_mtx); 2511 break; 2512 } 2513 case XPT_CALC_GEOMETRY: 2514 /* Filter out garbage */ 2515 if (start_ccb->ccg.block_size == 0 2516 || start_ccb->ccg.volume_size == 0) { 2517 start_ccb->ccg.cylinders = 0; 2518 start_ccb->ccg.heads = 0; 2519 start_ccb->ccg.secs_per_track = 0; 2520 start_ccb->ccb_h.status = CAM_REQ_CMP; 2521 break; 2522 } 2523 #if defined(PC98) || defined(__sparc64__) 2524 /* 2525 * In a PC-98 system, geometry translation depens on 2526 * the "real" device geometry obtained from mode page 4. 2527 * SCSI geometry translation is performed in the 2528 * initialization routine of the SCSI BIOS and the result 2529 * stored in host memory. If the translation is available 2530 * in host memory, use it. If not, rely on the default 2531 * translation the device driver performs. 2532 * For sparc64, we may need adjust the geometry of large 2533 * disks in order to fit the limitations of the 16-bit 2534 * fields of the VTOC8 disk label. 2535 */ 2536 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2537 start_ccb->ccb_h.status = CAM_REQ_CMP; 2538 break; 2539 } 2540 #endif 2541 goto call_sim; 2542 case XPT_ABORT: 2543 { 2544 union ccb* abort_ccb; 2545 2546 abort_ccb = start_ccb->cab.abort_ccb; 2547 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2548 2549 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2550 struct cam_ccbq *ccbq; 2551 struct cam_ed *device; 2552 2553 device = abort_ccb->ccb_h.path->device; 2554 ccbq = &device->ccbq; 2555 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2556 abort_ccb->ccb_h.status = 2557 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2558 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2559 xpt_done(abort_ccb); 2560 start_ccb->ccb_h.status = CAM_REQ_CMP; 2561 break; 2562 } 2563 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2564 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2565 /* 2566 * We've caught this ccb en route to 2567 * the SIM. Flag it for abort and the 2568 * SIM will do so just before starting 2569 * real work on the CCB. 2570 */ 2571 abort_ccb->ccb_h.status = 2572 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2573 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2574 start_ccb->ccb_h.status = CAM_REQ_CMP; 2575 break; 2576 } 2577 } 2578 if (XPT_FC_IS_QUEUED(abort_ccb) 2579 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2580 /* 2581 * It's already completed but waiting 2582 * for our SWI to get to it. 2583 */ 2584 start_ccb->ccb_h.status = CAM_UA_ABORT; 2585 break; 2586 } 2587 /* 2588 * If we weren't able to take care of the abort request 2589 * in the XPT, pass the request down to the SIM for processing. 2590 */ 2591 } 2592 /* FALLTHROUGH */ 2593 case XPT_ACCEPT_TARGET_IO: 2594 case XPT_EN_LUN: 2595 case XPT_IMMED_NOTIFY: 2596 case XPT_NOTIFY_ACK: 2597 case XPT_RESET_BUS: 2598 case XPT_IMMEDIATE_NOTIFY: 2599 case XPT_NOTIFY_ACKNOWLEDGE: 2600 case XPT_GET_SIM_KNOB: 2601 case XPT_SET_SIM_KNOB: 2602 case XPT_GET_TRAN_SETTINGS: 2603 case XPT_SET_TRAN_SETTINGS: 2604 case XPT_PATH_INQ: 2605 call_sim: 2606 sim = path->bus->sim; 2607 lock = (mtx_owned(sim->mtx) == 0); 2608 if (lock) 2609 CAM_SIM_LOCK(sim); 2610 (*(sim->sim_action))(sim, start_ccb); 2611 if (lock) 2612 CAM_SIM_UNLOCK(sim); 2613 break; 2614 case XPT_PATH_STATS: 2615 start_ccb->cpis.last_reset = path->bus->last_reset; 2616 start_ccb->ccb_h.status = CAM_REQ_CMP; 2617 break; 2618 case XPT_GDEV_TYPE: 2619 { 2620 struct cam_ed *dev; 2621 2622 dev = path->device; 2623 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2624 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2625 } else { 2626 struct ccb_getdev *cgd; 2627 2628 cgd = &start_ccb->cgd; 2629 cgd->protocol = dev->protocol; 2630 cgd->inq_data = dev->inq_data; 2631 cgd->ident_data = dev->ident_data; 2632 cgd->inq_flags = dev->inq_flags; 2633 cgd->ccb_h.status = CAM_REQ_CMP; 2634 cgd->serial_num_len = dev->serial_num_len; 2635 if ((dev->serial_num_len > 0) 2636 && (dev->serial_num != NULL)) 2637 bcopy(dev->serial_num, cgd->serial_num, 2638 dev->serial_num_len); 2639 } 2640 break; 2641 } 2642 case XPT_GDEV_STATS: 2643 { 2644 struct cam_ed *dev; 2645 2646 dev = path->device; 2647 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2648 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2649 } else { 2650 struct ccb_getdevstats *cgds; 2651 struct cam_eb *bus; 2652 struct cam_et *tar; 2653 2654 cgds = &start_ccb->cgds; 2655 bus = path->bus; 2656 tar = path->target; 2657 cgds->dev_openings = dev->ccbq.dev_openings; 2658 cgds->dev_active = dev->ccbq.dev_active; 2659 cgds->devq_openings = dev->ccbq.devq_openings; 2660 cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2661 cgds->held = dev->ccbq.held; 2662 cgds->last_reset = tar->last_reset; 2663 cgds->maxtags = dev->maxtags; 2664 cgds->mintags = dev->mintags; 2665 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2666 cgds->last_reset = bus->last_reset; 2667 cgds->ccb_h.status = CAM_REQ_CMP; 2668 } 2669 break; 2670 } 2671 case XPT_GDEVLIST: 2672 { 2673 struct cam_periph *nperiph; 2674 struct periph_list *periph_head; 2675 struct ccb_getdevlist *cgdl; 2676 u_int i; 2677 struct cam_ed *device; 2678 int found; 2679 2680 2681 found = 0; 2682 2683 /* 2684 * Don't want anyone mucking with our data. 2685 */ 2686 device = path->device; 2687 periph_head = &device->periphs; 2688 cgdl = &start_ccb->cgdl; 2689 2690 /* 2691 * Check and see if the list has changed since the user 2692 * last requested a list member. If so, tell them that the 2693 * list has changed, and therefore they need to start over 2694 * from the beginning. 2695 */ 2696 if ((cgdl->index != 0) && 2697 (cgdl->generation != device->generation)) { 2698 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2699 break; 2700 } 2701 2702 /* 2703 * Traverse the list of peripherals and attempt to find 2704 * the requested peripheral. 2705 */ 2706 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2707 (nperiph != NULL) && (i <= cgdl->index); 2708 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2709 if (i == cgdl->index) { 2710 strncpy(cgdl->periph_name, 2711 nperiph->periph_name, 2712 DEV_IDLEN); 2713 cgdl->unit_number = nperiph->unit_number; 2714 found = 1; 2715 } 2716 } 2717 if (found == 0) { 2718 cgdl->status = CAM_GDEVLIST_ERROR; 2719 break; 2720 } 2721 2722 if (nperiph == NULL) 2723 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2724 else 2725 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2726 2727 cgdl->index++; 2728 cgdl->generation = device->generation; 2729 2730 cgdl->ccb_h.status = CAM_REQ_CMP; 2731 break; 2732 } 2733 case XPT_DEV_MATCH: 2734 { 2735 dev_pos_type position_type; 2736 struct ccb_dev_match *cdm; 2737 2738 cdm = &start_ccb->cdm; 2739 2740 /* 2741 * There are two ways of getting at information in the EDT. 2742 * The first way is via the primary EDT tree. It starts 2743 * with a list of busses, then a list of targets on a bus, 2744 * then devices/luns on a target, and then peripherals on a 2745 * device/lun. The "other" way is by the peripheral driver 2746 * lists. The peripheral driver lists are organized by 2747 * peripheral driver. (obviously) So it makes sense to 2748 * use the peripheral driver list if the user is looking 2749 * for something like "da1", or all "da" devices. If the 2750 * user is looking for something on a particular bus/target 2751 * or lun, it's generally better to go through the EDT tree. 2752 */ 2753 2754 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2755 position_type = cdm->pos.position_type; 2756 else { 2757 u_int i; 2758 2759 position_type = CAM_DEV_POS_NONE; 2760 2761 for (i = 0; i < cdm->num_patterns; i++) { 2762 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2763 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2764 position_type = CAM_DEV_POS_EDT; 2765 break; 2766 } 2767 } 2768 2769 if (cdm->num_patterns == 0) 2770 position_type = CAM_DEV_POS_EDT; 2771 else if (position_type == CAM_DEV_POS_NONE) 2772 position_type = CAM_DEV_POS_PDRV; 2773 } 2774 2775 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2776 case CAM_DEV_POS_EDT: 2777 xptedtmatch(cdm); 2778 break; 2779 case CAM_DEV_POS_PDRV: 2780 xptperiphlistmatch(cdm); 2781 break; 2782 default: 2783 cdm->status = CAM_DEV_MATCH_ERROR; 2784 break; 2785 } 2786 2787 if (cdm->status == CAM_DEV_MATCH_ERROR) 2788 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2789 else 2790 start_ccb->ccb_h.status = CAM_REQ_CMP; 2791 2792 break; 2793 } 2794 case XPT_SASYNC_CB: 2795 { 2796 struct ccb_setasync *csa; 2797 struct async_node *cur_entry; 2798 struct async_list *async_head; 2799 u_int32_t added; 2800 2801 csa = &start_ccb->csa; 2802 added = csa->event_enable; 2803 async_head = &path->device->asyncs; 2804 2805 /* 2806 * If there is already an entry for us, simply 2807 * update it. 2808 */ 2809 cur_entry = SLIST_FIRST(async_head); 2810 while (cur_entry != NULL) { 2811 if ((cur_entry->callback_arg == csa->callback_arg) 2812 && (cur_entry->callback == csa->callback)) 2813 break; 2814 cur_entry = SLIST_NEXT(cur_entry, links); 2815 } 2816 2817 if (cur_entry != NULL) { 2818 /* 2819 * If the request has no flags set, 2820 * remove the entry. 2821 */ 2822 added &= ~cur_entry->event_enable; 2823 if (csa->event_enable == 0) { 2824 SLIST_REMOVE(async_head, cur_entry, 2825 async_node, links); 2826 xpt_release_device(path->device); 2827 free(cur_entry, M_CAMXPT); 2828 } else { 2829 cur_entry->event_enable = csa->event_enable; 2830 } 2831 csa->event_enable = added; 2832 } else { 2833 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2834 M_NOWAIT); 2835 if (cur_entry == NULL) { 2836 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2837 break; 2838 } 2839 cur_entry->event_enable = csa->event_enable; 2840 cur_entry->event_lock = 2841 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2842 cur_entry->callback_arg = csa->callback_arg; 2843 cur_entry->callback = csa->callback; 2844 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2845 xpt_acquire_device(path->device); 2846 } 2847 start_ccb->ccb_h.status = CAM_REQ_CMP; 2848 break; 2849 } 2850 case XPT_REL_SIMQ: 2851 { 2852 struct ccb_relsim *crs; 2853 struct cam_ed *dev; 2854 2855 crs = &start_ccb->crs; 2856 dev = path->device; 2857 if (dev == NULL) { 2858 2859 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2860 break; 2861 } 2862 2863 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2864 2865 /* Don't ever go below one opening */ 2866 if (crs->openings > 0) { 2867 xpt_dev_ccbq_resize(path, crs->openings); 2868 if (bootverbose) { 2869 xpt_print(path, 2870 "number of openings is now %d\n", 2871 crs->openings); 2872 } 2873 } 2874 } 2875 2876 mtx_lock(&dev->sim->devq->send_mtx); 2877 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2878 2879 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2880 2881 /* 2882 * Just extend the old timeout and decrement 2883 * the freeze count so that a single timeout 2884 * is sufficient for releasing the queue. 2885 */ 2886 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2887 callout_stop(&dev->callout); 2888 } else { 2889 2890 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2891 } 2892 2893 callout_reset(&dev->callout, 2894 (crs->release_timeout * hz) / 1000, 2895 xpt_release_devq_timeout, dev); 2896 2897 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2898 2899 } 2900 2901 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2902 2903 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2904 /* 2905 * Decrement the freeze count so that a single 2906 * completion is still sufficient to unfreeze 2907 * the queue. 2908 */ 2909 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2910 } else { 2911 2912 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2913 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2914 } 2915 } 2916 2917 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2918 2919 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2920 || (dev->ccbq.dev_active == 0)) { 2921 2922 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2923 } else { 2924 2925 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2926 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2927 } 2928 } 2929 mtx_unlock(&dev->sim->devq->send_mtx); 2930 2931 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2932 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2933 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2934 start_ccb->ccb_h.status = CAM_REQ_CMP; 2935 break; 2936 } 2937 case XPT_DEBUG: { 2938 struct cam_path *oldpath; 2939 2940 /* Check that all request bits are supported. */ 2941 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2942 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2943 break; 2944 } 2945 2946 cam_dflags = CAM_DEBUG_NONE; 2947 if (cam_dpath != NULL) { 2948 oldpath = cam_dpath; 2949 cam_dpath = NULL; 2950 xpt_free_path(oldpath); 2951 } 2952 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2953 if (xpt_create_path(&cam_dpath, NULL, 2954 start_ccb->ccb_h.path_id, 2955 start_ccb->ccb_h.target_id, 2956 start_ccb->ccb_h.target_lun) != 2957 CAM_REQ_CMP) { 2958 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2959 } else { 2960 cam_dflags = start_ccb->cdbg.flags; 2961 start_ccb->ccb_h.status = CAM_REQ_CMP; 2962 xpt_print(cam_dpath, "debugging flags now %x\n", 2963 cam_dflags); 2964 } 2965 } else 2966 start_ccb->ccb_h.status = CAM_REQ_CMP; 2967 break; 2968 } 2969 case XPT_NOOP: 2970 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2971 xpt_freeze_devq(path, 1); 2972 start_ccb->ccb_h.status = CAM_REQ_CMP; 2973 break; 2974 default: 2975 case XPT_SDEV_TYPE: 2976 case XPT_TERM_IO: 2977 case XPT_ENG_INQ: 2978 /* XXX Implement */ 2979 printf("%s: CCB type %#x not supported\n", __func__, 2980 start_ccb->ccb_h.func_code); 2981 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2982 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2983 xpt_done(start_ccb); 2984 } 2985 break; 2986 } 2987 } 2988 2989 void 2990 xpt_polled_action(union ccb *start_ccb) 2991 { 2992 u_int32_t timeout; 2993 struct cam_sim *sim; 2994 struct cam_devq *devq; 2995 struct cam_ed *dev; 2996 2997 timeout = start_ccb->ccb_h.timeout * 10; 2998 sim = start_ccb->ccb_h.path->bus->sim; 2999 devq = sim->devq; 3000 dev = start_ccb->ccb_h.path->device; 3001 3002 mtx_unlock(&dev->device_mtx); 3003 3004 /* 3005 * Steal an opening so that no other queued requests 3006 * can get it before us while we simulate interrupts. 3007 */ 3008 mtx_lock(&devq->send_mtx); 3009 dev->ccbq.devq_openings--; 3010 dev->ccbq.dev_openings--; 3011 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3012 (--timeout > 0)) { 3013 mtx_unlock(&devq->send_mtx); 3014 DELAY(100); 3015 CAM_SIM_LOCK(sim); 3016 (*(sim->sim_poll))(sim); 3017 CAM_SIM_UNLOCK(sim); 3018 camisr_runqueue(); 3019 mtx_lock(&devq->send_mtx); 3020 } 3021 dev->ccbq.devq_openings++; 3022 dev->ccbq.dev_openings++; 3023 mtx_unlock(&devq->send_mtx); 3024 3025 if (timeout != 0) { 3026 xpt_action(start_ccb); 3027 while(--timeout > 0) { 3028 CAM_SIM_LOCK(sim); 3029 (*(sim->sim_poll))(sim); 3030 CAM_SIM_UNLOCK(sim); 3031 camisr_runqueue(); 3032 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3033 != CAM_REQ_INPROG) 3034 break; 3035 DELAY(100); 3036 } 3037 if (timeout == 0) { 3038 /* 3039 * XXX Is it worth adding a sim_timeout entry 3040 * point so we can attempt recovery? If 3041 * this is only used for dumps, I don't think 3042 * it is. 3043 */ 3044 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3045 } 3046 } else { 3047 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3048 } 3049 3050 mtx_lock(&dev->device_mtx); 3051 } 3052 3053 /* 3054 * Schedule a peripheral driver to receive a ccb when it's 3055 * target device has space for more transactions. 3056 */ 3057 void 3058 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3059 { 3060 3061 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3062 cam_periph_assert(periph, MA_OWNED); 3063 if (new_priority < periph->scheduled_priority) { 3064 periph->scheduled_priority = new_priority; 3065 xpt_run_allocq(periph, 0); 3066 } 3067 } 3068 3069 3070 /* 3071 * Schedule a device to run on a given queue. 3072 * If the device was inserted as a new entry on the queue, 3073 * return 1 meaning the device queue should be run. If we 3074 * were already queued, implying someone else has already 3075 * started the queue, return 0 so the caller doesn't attempt 3076 * to run the queue. 3077 */ 3078 static int 3079 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3080 u_int32_t new_priority) 3081 { 3082 int retval; 3083 u_int32_t old_priority; 3084 3085 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3086 3087 old_priority = pinfo->priority; 3088 3089 /* 3090 * Are we already queued? 3091 */ 3092 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3093 /* Simply reorder based on new priority */ 3094 if (new_priority < old_priority) { 3095 camq_change_priority(queue, pinfo->index, 3096 new_priority); 3097 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3098 ("changed priority to %d\n", 3099 new_priority)); 3100 retval = 1; 3101 } else 3102 retval = 0; 3103 } else { 3104 /* New entry on the queue */ 3105 if (new_priority < old_priority) 3106 pinfo->priority = new_priority; 3107 3108 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3109 ("Inserting onto queue\n")); 3110 pinfo->generation = ++queue->generation; 3111 camq_insert(queue, pinfo); 3112 retval = 1; 3113 } 3114 return (retval); 3115 } 3116 3117 static void 3118 xpt_run_allocq_task(void *context, int pending) 3119 { 3120 struct cam_periph *periph = context; 3121 3122 cam_periph_lock(periph); 3123 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3124 xpt_run_allocq(periph, 1); 3125 cam_periph_unlock(periph); 3126 cam_periph_release(periph); 3127 } 3128 3129 static void 3130 xpt_run_allocq(struct cam_periph *periph, int sleep) 3131 { 3132 struct cam_ed *device; 3133 union ccb *ccb; 3134 uint32_t prio; 3135 3136 cam_periph_assert(periph, MA_OWNED); 3137 if (periph->periph_allocating) 3138 return; 3139 periph->periph_allocating = 1; 3140 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3141 device = periph->path->device; 3142 ccb = NULL; 3143 restart: 3144 while ((prio = min(periph->scheduled_priority, 3145 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3146 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3147 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3148 3149 if (ccb == NULL && 3150 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3151 if (sleep) { 3152 ccb = xpt_get_ccb(periph); 3153 goto restart; 3154 } 3155 if (periph->flags & CAM_PERIPH_RUN_TASK) 3156 break; 3157 xpt_lock_buses(); 3158 periph->refcount++; /* Unconditionally acquire */ 3159 xpt_unlock_buses(); 3160 periph->flags |= CAM_PERIPH_RUN_TASK; 3161 taskqueue_enqueue(xsoftc.xpt_taskq, 3162 &periph->periph_run_task); 3163 break; 3164 } 3165 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3166 if (prio == periph->immediate_priority) { 3167 periph->immediate_priority = CAM_PRIORITY_NONE; 3168 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3169 ("waking cam_periph_getccb()\n")); 3170 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3171 periph_links.sle); 3172 wakeup(&periph->ccb_list); 3173 } else { 3174 periph->scheduled_priority = CAM_PRIORITY_NONE; 3175 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3176 ("calling periph_start()\n")); 3177 periph->periph_start(periph, ccb); 3178 } 3179 ccb = NULL; 3180 } 3181 if (ccb != NULL) 3182 xpt_release_ccb(ccb); 3183 periph->periph_allocating = 0; 3184 } 3185 3186 static void 3187 xpt_run_devq(struct cam_devq *devq) 3188 { 3189 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3190 int lock; 3191 3192 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3193 3194 devq->send_queue.qfrozen_cnt++; 3195 while ((devq->send_queue.entries > 0) 3196 && (devq->send_openings > 0) 3197 && (devq->send_queue.qfrozen_cnt <= 1)) { 3198 struct cam_ed *device; 3199 union ccb *work_ccb; 3200 struct cam_sim *sim; 3201 3202 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3203 CAMQ_HEAD); 3204 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3205 ("running device %p\n", device)); 3206 3207 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3208 if (work_ccb == NULL) { 3209 printf("device on run queue with no ccbs???\n"); 3210 continue; 3211 } 3212 3213 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3214 3215 mtx_lock(&xsoftc.xpt_highpower_lock); 3216 if (xsoftc.num_highpower <= 0) { 3217 /* 3218 * We got a high power command, but we 3219 * don't have any available slots. Freeze 3220 * the device queue until we have a slot 3221 * available. 3222 */ 3223 xpt_freeze_devq_device(device, 1); 3224 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3225 highpowerq_entry); 3226 3227 mtx_unlock(&xsoftc.xpt_highpower_lock); 3228 continue; 3229 } else { 3230 /* 3231 * Consume a high power slot while 3232 * this ccb runs. 3233 */ 3234 xsoftc.num_highpower--; 3235 } 3236 mtx_unlock(&xsoftc.xpt_highpower_lock); 3237 } 3238 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3239 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3240 devq->send_openings--; 3241 devq->send_active++; 3242 xpt_schedule_devq(devq, device); 3243 mtx_unlock(&devq->send_mtx); 3244 3245 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3246 /* 3247 * The client wants to freeze the queue 3248 * after this CCB is sent. 3249 */ 3250 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3251 } 3252 3253 /* In Target mode, the peripheral driver knows best... */ 3254 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3255 if ((device->inq_flags & SID_CmdQue) != 0 3256 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3257 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3258 else 3259 /* 3260 * Clear this in case of a retried CCB that 3261 * failed due to a rejected tag. 3262 */ 3263 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3264 } 3265 3266 switch (work_ccb->ccb_h.func_code) { 3267 case XPT_SCSI_IO: 3268 CAM_DEBUG(work_ccb->ccb_h.path, 3269 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3270 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3271 &device->inq_data), 3272 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3273 cdb_str, sizeof(cdb_str)))); 3274 break; 3275 case XPT_ATA_IO: 3276 CAM_DEBUG(work_ccb->ccb_h.path, 3277 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3278 ata_op_string(&work_ccb->ataio.cmd), 3279 ata_cmd_string(&work_ccb->ataio.cmd, 3280 cdb_str, sizeof(cdb_str)))); 3281 break; 3282 default: 3283 break; 3284 } 3285 3286 /* 3287 * Device queues can be shared among multiple SIM instances 3288 * that reside on different busses. Use the SIM from the 3289 * queued device, rather than the one from the calling bus. 3290 */ 3291 sim = device->sim; 3292 lock = (mtx_owned(sim->mtx) == 0); 3293 if (lock) 3294 CAM_SIM_LOCK(sim); 3295 (*(sim->sim_action))(sim, work_ccb); 3296 if (lock) 3297 CAM_SIM_UNLOCK(sim); 3298 mtx_lock(&devq->send_mtx); 3299 } 3300 devq->send_queue.qfrozen_cnt--; 3301 } 3302 3303 /* 3304 * This function merges stuff from the slave ccb into the master ccb, while 3305 * keeping important fields in the master ccb constant. 3306 */ 3307 void 3308 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3309 { 3310 3311 /* 3312 * Pull fields that are valid for peripheral drivers to set 3313 * into the master CCB along with the CCB "payload". 3314 */ 3315 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3316 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3317 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3318 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3319 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3320 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3321 } 3322 3323 void 3324 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3325 { 3326 3327 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3328 ccb_h->pinfo.priority = priority; 3329 ccb_h->path = path; 3330 ccb_h->path_id = path->bus->path_id; 3331 if (path->target) 3332 ccb_h->target_id = path->target->target_id; 3333 else 3334 ccb_h->target_id = CAM_TARGET_WILDCARD; 3335 if (path->device) { 3336 ccb_h->target_lun = path->device->lun_id; 3337 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3338 } else { 3339 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3340 } 3341 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3342 ccb_h->flags = 0; 3343 ccb_h->xflags = 0; 3344 } 3345 3346 /* Path manipulation functions */ 3347 cam_status 3348 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3349 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3350 { 3351 struct cam_path *path; 3352 cam_status status; 3353 3354 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3355 3356 if (path == NULL) { 3357 status = CAM_RESRC_UNAVAIL; 3358 return(status); 3359 } 3360 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3361 if (status != CAM_REQ_CMP) { 3362 free(path, M_CAMPATH); 3363 path = NULL; 3364 } 3365 *new_path_ptr = path; 3366 return (status); 3367 } 3368 3369 cam_status 3370 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3371 struct cam_periph *periph, path_id_t path_id, 3372 target_id_t target_id, lun_id_t lun_id) 3373 { 3374 3375 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3376 lun_id)); 3377 } 3378 3379 cam_status 3380 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3381 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3382 { 3383 struct cam_eb *bus; 3384 struct cam_et *target; 3385 struct cam_ed *device; 3386 cam_status status; 3387 3388 status = CAM_REQ_CMP; /* Completed without error */ 3389 target = NULL; /* Wildcarded */ 3390 device = NULL; /* Wildcarded */ 3391 3392 /* 3393 * We will potentially modify the EDT, so block interrupts 3394 * that may attempt to create cam paths. 3395 */ 3396 bus = xpt_find_bus(path_id); 3397 if (bus == NULL) { 3398 status = CAM_PATH_INVALID; 3399 } else { 3400 xpt_lock_buses(); 3401 mtx_lock(&bus->eb_mtx); 3402 target = xpt_find_target(bus, target_id); 3403 if (target == NULL) { 3404 /* Create one */ 3405 struct cam_et *new_target; 3406 3407 new_target = xpt_alloc_target(bus, target_id); 3408 if (new_target == NULL) { 3409 status = CAM_RESRC_UNAVAIL; 3410 } else { 3411 target = new_target; 3412 } 3413 } 3414 xpt_unlock_buses(); 3415 if (target != NULL) { 3416 device = xpt_find_device(target, lun_id); 3417 if (device == NULL) { 3418 /* Create one */ 3419 struct cam_ed *new_device; 3420 3421 new_device = 3422 (*(bus->xport->alloc_device))(bus, 3423 target, 3424 lun_id); 3425 if (new_device == NULL) { 3426 status = CAM_RESRC_UNAVAIL; 3427 } else { 3428 device = new_device; 3429 } 3430 } 3431 } 3432 mtx_unlock(&bus->eb_mtx); 3433 } 3434 3435 /* 3436 * Only touch the user's data if we are successful. 3437 */ 3438 if (status == CAM_REQ_CMP) { 3439 new_path->periph = perph; 3440 new_path->bus = bus; 3441 new_path->target = target; 3442 new_path->device = device; 3443 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3444 } else { 3445 if (device != NULL) 3446 xpt_release_device(device); 3447 if (target != NULL) 3448 xpt_release_target(target); 3449 if (bus != NULL) 3450 xpt_release_bus(bus); 3451 } 3452 return (status); 3453 } 3454 3455 cam_status 3456 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3457 { 3458 struct cam_path *new_path; 3459 3460 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3461 if (new_path == NULL) 3462 return(CAM_RESRC_UNAVAIL); 3463 xpt_copy_path(new_path, path); 3464 *new_path_ptr = new_path; 3465 return (CAM_REQ_CMP); 3466 } 3467 3468 void 3469 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3470 { 3471 3472 *new_path = *path; 3473 if (path->bus != NULL) 3474 xpt_acquire_bus(path->bus); 3475 if (path->target != NULL) 3476 xpt_acquire_target(path->target); 3477 if (path->device != NULL) 3478 xpt_acquire_device(path->device); 3479 } 3480 3481 void 3482 xpt_release_path(struct cam_path *path) 3483 { 3484 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3485 if (path->device != NULL) { 3486 xpt_release_device(path->device); 3487 path->device = NULL; 3488 } 3489 if (path->target != NULL) { 3490 xpt_release_target(path->target); 3491 path->target = NULL; 3492 } 3493 if (path->bus != NULL) { 3494 xpt_release_bus(path->bus); 3495 path->bus = NULL; 3496 } 3497 } 3498 3499 void 3500 xpt_free_path(struct cam_path *path) 3501 { 3502 3503 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3504 xpt_release_path(path); 3505 free(path, M_CAMPATH); 3506 } 3507 3508 void 3509 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3510 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3511 { 3512 3513 xpt_lock_buses(); 3514 if (bus_ref) { 3515 if (path->bus) 3516 *bus_ref = path->bus->refcount; 3517 else 3518 *bus_ref = 0; 3519 } 3520 if (periph_ref) { 3521 if (path->periph) 3522 *periph_ref = path->periph->refcount; 3523 else 3524 *periph_ref = 0; 3525 } 3526 xpt_unlock_buses(); 3527 if (target_ref) { 3528 if (path->target) 3529 *target_ref = path->target->refcount; 3530 else 3531 *target_ref = 0; 3532 } 3533 if (device_ref) { 3534 if (path->device) 3535 *device_ref = path->device->refcount; 3536 else 3537 *device_ref = 0; 3538 } 3539 } 3540 3541 /* 3542 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3543 * in path1, 2 for match with wildcards in path2. 3544 */ 3545 int 3546 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3547 { 3548 int retval = 0; 3549 3550 if (path1->bus != path2->bus) { 3551 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3552 retval = 1; 3553 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3554 retval = 2; 3555 else 3556 return (-1); 3557 } 3558 if (path1->target != path2->target) { 3559 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3560 if (retval == 0) 3561 retval = 1; 3562 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3563 retval = 2; 3564 else 3565 return (-1); 3566 } 3567 if (path1->device != path2->device) { 3568 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3569 if (retval == 0) 3570 retval = 1; 3571 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3572 retval = 2; 3573 else 3574 return (-1); 3575 } 3576 return (retval); 3577 } 3578 3579 int 3580 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3581 { 3582 int retval = 0; 3583 3584 if (path->bus != dev->target->bus) { 3585 if (path->bus->path_id == CAM_BUS_WILDCARD) 3586 retval = 1; 3587 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3588 retval = 2; 3589 else 3590 return (-1); 3591 } 3592 if (path->target != dev->target) { 3593 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3594 if (retval == 0) 3595 retval = 1; 3596 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3597 retval = 2; 3598 else 3599 return (-1); 3600 } 3601 if (path->device != dev) { 3602 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3603 if (retval == 0) 3604 retval = 1; 3605 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3606 retval = 2; 3607 else 3608 return (-1); 3609 } 3610 return (retval); 3611 } 3612 3613 void 3614 xpt_print_path(struct cam_path *path) 3615 { 3616 3617 if (path == NULL) 3618 printf("(nopath): "); 3619 else { 3620 if (path->periph != NULL) 3621 printf("(%s%d:", path->periph->periph_name, 3622 path->periph->unit_number); 3623 else 3624 printf("(noperiph:"); 3625 3626 if (path->bus != NULL) 3627 printf("%s%d:%d:", path->bus->sim->sim_name, 3628 path->bus->sim->unit_number, 3629 path->bus->sim->bus_id); 3630 else 3631 printf("nobus:"); 3632 3633 if (path->target != NULL) 3634 printf("%d:", path->target->target_id); 3635 else 3636 printf("X:"); 3637 3638 if (path->device != NULL) 3639 printf("%jx): ", (uintmax_t)path->device->lun_id); 3640 else 3641 printf("X): "); 3642 } 3643 } 3644 3645 void 3646 xpt_print_device(struct cam_ed *device) 3647 { 3648 3649 if (device == NULL) 3650 printf("(nopath): "); 3651 else { 3652 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3653 device->sim->unit_number, 3654 device->sim->bus_id, 3655 device->target->target_id, 3656 (uintmax_t)device->lun_id); 3657 } 3658 } 3659 3660 void 3661 xpt_print(struct cam_path *path, const char *fmt, ...) 3662 { 3663 va_list ap; 3664 xpt_print_path(path); 3665 va_start(ap, fmt); 3666 vprintf(fmt, ap); 3667 va_end(ap); 3668 } 3669 3670 int 3671 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3672 { 3673 struct sbuf sb; 3674 3675 sbuf_new(&sb, str, str_len, 0); 3676 3677 if (path == NULL) 3678 sbuf_printf(&sb, "(nopath): "); 3679 else { 3680 if (path->periph != NULL) 3681 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3682 path->periph->unit_number); 3683 else 3684 sbuf_printf(&sb, "(noperiph:"); 3685 3686 if (path->bus != NULL) 3687 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3688 path->bus->sim->unit_number, 3689 path->bus->sim->bus_id); 3690 else 3691 sbuf_printf(&sb, "nobus:"); 3692 3693 if (path->target != NULL) 3694 sbuf_printf(&sb, "%d:", path->target->target_id); 3695 else 3696 sbuf_printf(&sb, "X:"); 3697 3698 if (path->device != NULL) 3699 sbuf_printf(&sb, "%jx): ", 3700 (uintmax_t)path->device->lun_id); 3701 else 3702 sbuf_printf(&sb, "X): "); 3703 } 3704 sbuf_finish(&sb); 3705 3706 return(sbuf_len(&sb)); 3707 } 3708 3709 path_id_t 3710 xpt_path_path_id(struct cam_path *path) 3711 { 3712 return(path->bus->path_id); 3713 } 3714 3715 target_id_t 3716 xpt_path_target_id(struct cam_path *path) 3717 { 3718 if (path->target != NULL) 3719 return (path->target->target_id); 3720 else 3721 return (CAM_TARGET_WILDCARD); 3722 } 3723 3724 lun_id_t 3725 xpt_path_lun_id(struct cam_path *path) 3726 { 3727 if (path->device != NULL) 3728 return (path->device->lun_id); 3729 else 3730 return (CAM_LUN_WILDCARD); 3731 } 3732 3733 struct cam_sim * 3734 xpt_path_sim(struct cam_path *path) 3735 { 3736 3737 return (path->bus->sim); 3738 } 3739 3740 struct cam_periph* 3741 xpt_path_periph(struct cam_path *path) 3742 { 3743 3744 return (path->periph); 3745 } 3746 3747 int 3748 xpt_path_legacy_ata_id(struct cam_path *path) 3749 { 3750 struct cam_eb *bus; 3751 int bus_id; 3752 3753 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3754 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3755 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3756 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3757 return (-1); 3758 3759 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3760 path->bus->sim->unit_number < 2) { 3761 bus_id = path->bus->sim->unit_number; 3762 } else { 3763 bus_id = 2; 3764 xpt_lock_buses(); 3765 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3766 if (bus == path->bus) 3767 break; 3768 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3769 bus->sim->unit_number >= 2) || 3770 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3771 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3772 strcmp(bus->sim->sim_name, "siisch") == 0) 3773 bus_id++; 3774 } 3775 xpt_unlock_buses(); 3776 } 3777 if (path->target != NULL) { 3778 if (path->target->target_id < 2) 3779 return (bus_id * 2 + path->target->target_id); 3780 else 3781 return (-1); 3782 } else 3783 return (bus_id * 2); 3784 } 3785 3786 /* 3787 * Release a CAM control block for the caller. Remit the cost of the structure 3788 * to the device referenced by the path. If the this device had no 'credits' 3789 * and peripheral drivers have registered async callbacks for this notification 3790 * call them now. 3791 */ 3792 void 3793 xpt_release_ccb(union ccb *free_ccb) 3794 { 3795 struct cam_ed *device; 3796 struct cam_periph *periph; 3797 3798 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3799 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3800 device = free_ccb->ccb_h.path->device; 3801 periph = free_ccb->ccb_h.path->periph; 3802 3803 xpt_free_ccb(free_ccb); 3804 periph->periph_allocated--; 3805 cam_ccbq_release_opening(&device->ccbq); 3806 xpt_run_allocq(periph, 0); 3807 } 3808 3809 /* Functions accessed by SIM drivers */ 3810 3811 static struct xpt_xport xport_default = { 3812 .alloc_device = xpt_alloc_device_default, 3813 .action = xpt_action_default, 3814 .async = xpt_dev_async_default, 3815 }; 3816 3817 /* 3818 * A sim structure, listing the SIM entry points and instance 3819 * identification info is passed to xpt_bus_register to hook the SIM 3820 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3821 * for this new bus and places it in the array of busses and assigns 3822 * it a path_id. The path_id may be influenced by "hard wiring" 3823 * information specified by the user. Once interrupt services are 3824 * available, the bus will be probed. 3825 */ 3826 int32_t 3827 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3828 { 3829 struct cam_eb *new_bus; 3830 struct cam_eb *old_bus; 3831 struct ccb_pathinq cpi; 3832 struct cam_path *path; 3833 cam_status status; 3834 3835 mtx_assert(sim->mtx, MA_OWNED); 3836 3837 sim->bus_id = bus; 3838 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3839 M_CAMXPT, M_NOWAIT|M_ZERO); 3840 if (new_bus == NULL) { 3841 /* Couldn't satisfy request */ 3842 return (CAM_RESRC_UNAVAIL); 3843 } 3844 3845 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3846 TAILQ_INIT(&new_bus->et_entries); 3847 cam_sim_hold(sim); 3848 new_bus->sim = sim; 3849 timevalclear(&new_bus->last_reset); 3850 new_bus->flags = 0; 3851 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3852 new_bus->generation = 0; 3853 3854 xpt_lock_buses(); 3855 sim->path_id = new_bus->path_id = 3856 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3857 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3858 while (old_bus != NULL 3859 && old_bus->path_id < new_bus->path_id) 3860 old_bus = TAILQ_NEXT(old_bus, links); 3861 if (old_bus != NULL) 3862 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3863 else 3864 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3865 xsoftc.bus_generation++; 3866 xpt_unlock_buses(); 3867 3868 /* 3869 * Set a default transport so that a PATH_INQ can be issued to 3870 * the SIM. This will then allow for probing and attaching of 3871 * a more appropriate transport. 3872 */ 3873 new_bus->xport = &xport_default; 3874 3875 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3876 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3877 if (status != CAM_REQ_CMP) { 3878 xpt_release_bus(new_bus); 3879 free(path, M_CAMXPT); 3880 return (CAM_RESRC_UNAVAIL); 3881 } 3882 3883 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3884 cpi.ccb_h.func_code = XPT_PATH_INQ; 3885 xpt_action((union ccb *)&cpi); 3886 3887 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3888 switch (cpi.transport) { 3889 case XPORT_SPI: 3890 case XPORT_SAS: 3891 case XPORT_FC: 3892 case XPORT_USB: 3893 case XPORT_ISCSI: 3894 case XPORT_SRP: 3895 case XPORT_PPB: 3896 new_bus->xport = scsi_get_xport(); 3897 break; 3898 case XPORT_ATA: 3899 case XPORT_SATA: 3900 new_bus->xport = ata_get_xport(); 3901 break; 3902 default: 3903 new_bus->xport = &xport_default; 3904 break; 3905 } 3906 } 3907 3908 /* Notify interested parties */ 3909 if (sim->path_id != CAM_XPT_PATH_ID) { 3910 3911 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3912 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3913 union ccb *scan_ccb; 3914 3915 /* Initiate bus rescan. */ 3916 scan_ccb = xpt_alloc_ccb_nowait(); 3917 if (scan_ccb != NULL) { 3918 scan_ccb->ccb_h.path = path; 3919 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3920 scan_ccb->crcn.flags = 0; 3921 xpt_rescan(scan_ccb); 3922 } else 3923 xpt_print(path, 3924 "Can't allocate CCB to scan bus\n"); 3925 } else 3926 xpt_free_path(path); 3927 } else 3928 xpt_free_path(path); 3929 return (CAM_SUCCESS); 3930 } 3931 3932 int32_t 3933 xpt_bus_deregister(path_id_t pathid) 3934 { 3935 struct cam_path bus_path; 3936 cam_status status; 3937 3938 status = xpt_compile_path(&bus_path, NULL, pathid, 3939 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3940 if (status != CAM_REQ_CMP) 3941 return (status); 3942 3943 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3944 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3945 3946 /* Release the reference count held while registered. */ 3947 xpt_release_bus(bus_path.bus); 3948 xpt_release_path(&bus_path); 3949 3950 return (CAM_REQ_CMP); 3951 } 3952 3953 static path_id_t 3954 xptnextfreepathid(void) 3955 { 3956 struct cam_eb *bus; 3957 path_id_t pathid; 3958 const char *strval; 3959 3960 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3961 pathid = 0; 3962 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3963 retry: 3964 /* Find an unoccupied pathid */ 3965 while (bus != NULL && bus->path_id <= pathid) { 3966 if (bus->path_id == pathid) 3967 pathid++; 3968 bus = TAILQ_NEXT(bus, links); 3969 } 3970 3971 /* 3972 * Ensure that this pathid is not reserved for 3973 * a bus that may be registered in the future. 3974 */ 3975 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3976 ++pathid; 3977 /* Start the search over */ 3978 goto retry; 3979 } 3980 return (pathid); 3981 } 3982 3983 static path_id_t 3984 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3985 { 3986 path_id_t pathid; 3987 int i, dunit, val; 3988 char buf[32]; 3989 const char *dname; 3990 3991 pathid = CAM_XPT_PATH_ID; 3992 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3993 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 3994 return (pathid); 3995 i = 0; 3996 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3997 if (strcmp(dname, "scbus")) { 3998 /* Avoid a bit of foot shooting. */ 3999 continue; 4000 } 4001 if (dunit < 0) /* unwired?! */ 4002 continue; 4003 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4004 if (sim_bus == val) { 4005 pathid = dunit; 4006 break; 4007 } 4008 } else if (sim_bus == 0) { 4009 /* Unspecified matches bus 0 */ 4010 pathid = dunit; 4011 break; 4012 } else { 4013 printf("Ambiguous scbus configuration for %s%d " 4014 "bus %d, cannot wire down. The kernel " 4015 "config entry for scbus%d should " 4016 "specify a controller bus.\n" 4017 "Scbus will be assigned dynamically.\n", 4018 sim_name, sim_unit, sim_bus, dunit); 4019 break; 4020 } 4021 } 4022 4023 if (pathid == CAM_XPT_PATH_ID) 4024 pathid = xptnextfreepathid(); 4025 return (pathid); 4026 } 4027 4028 static const char * 4029 xpt_async_string(u_int32_t async_code) 4030 { 4031 4032 switch (async_code) { 4033 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4034 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4035 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4036 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4037 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4038 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4039 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4040 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4041 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4042 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4043 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4044 case AC_CONTRACT: return ("AC_CONTRACT"); 4045 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4046 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4047 } 4048 return ("AC_UNKNOWN"); 4049 } 4050 4051 static int 4052 xpt_async_size(u_int32_t async_code) 4053 { 4054 4055 switch (async_code) { 4056 case AC_BUS_RESET: return (0); 4057 case AC_UNSOL_RESEL: return (0); 4058 case AC_SCSI_AEN: return (0); 4059 case AC_SENT_BDR: return (0); 4060 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4061 case AC_PATH_DEREGISTERED: return (0); 4062 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4063 case AC_LOST_DEVICE: return (0); 4064 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4065 case AC_INQ_CHANGED: return (0); 4066 case AC_GETDEV_CHANGED: return (0); 4067 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4068 case AC_ADVINFO_CHANGED: return (-1); 4069 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4070 } 4071 return (0); 4072 } 4073 4074 static int 4075 xpt_async_process_dev(struct cam_ed *device, void *arg) 4076 { 4077 union ccb *ccb = arg; 4078 struct cam_path *path = ccb->ccb_h.path; 4079 void *async_arg = ccb->casync.async_arg_ptr; 4080 u_int32_t async_code = ccb->casync.async_code; 4081 int relock; 4082 4083 if (path->device != device 4084 && path->device->lun_id != CAM_LUN_WILDCARD 4085 && device->lun_id != CAM_LUN_WILDCARD) 4086 return (1); 4087 4088 /* 4089 * The async callback could free the device. 4090 * If it is a broadcast async, it doesn't hold 4091 * device reference, so take our own reference. 4092 */ 4093 xpt_acquire_device(device); 4094 4095 /* 4096 * If async for specific device is to be delivered to 4097 * the wildcard client, take the specific device lock. 4098 * XXX: We may need a way for client to specify it. 4099 */ 4100 if ((device->lun_id == CAM_LUN_WILDCARD && 4101 path->device->lun_id != CAM_LUN_WILDCARD) || 4102 (device->target->target_id == CAM_TARGET_WILDCARD && 4103 path->target->target_id != CAM_TARGET_WILDCARD) || 4104 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4105 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4106 mtx_unlock(&device->device_mtx); 4107 xpt_path_lock(path); 4108 relock = 1; 4109 } else 4110 relock = 0; 4111 4112 (*(device->target->bus->xport->async))(async_code, 4113 device->target->bus, device->target, device, async_arg); 4114 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4115 4116 if (relock) { 4117 xpt_path_unlock(path); 4118 mtx_lock(&device->device_mtx); 4119 } 4120 xpt_release_device(device); 4121 return (1); 4122 } 4123 4124 static int 4125 xpt_async_process_tgt(struct cam_et *target, void *arg) 4126 { 4127 union ccb *ccb = arg; 4128 struct cam_path *path = ccb->ccb_h.path; 4129 4130 if (path->target != target 4131 && path->target->target_id != CAM_TARGET_WILDCARD 4132 && target->target_id != CAM_TARGET_WILDCARD) 4133 return (1); 4134 4135 if (ccb->casync.async_code == AC_SENT_BDR) { 4136 /* Update our notion of when the last reset occurred */ 4137 microtime(&target->last_reset); 4138 } 4139 4140 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4141 } 4142 4143 static void 4144 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4145 { 4146 struct cam_eb *bus; 4147 struct cam_path *path; 4148 void *async_arg; 4149 u_int32_t async_code; 4150 4151 path = ccb->ccb_h.path; 4152 async_code = ccb->casync.async_code; 4153 async_arg = ccb->casync.async_arg_ptr; 4154 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4155 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4156 bus = path->bus; 4157 4158 if (async_code == AC_BUS_RESET) { 4159 /* Update our notion of when the last reset occurred */ 4160 microtime(&bus->last_reset); 4161 } 4162 4163 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4164 4165 /* 4166 * If this wasn't a fully wildcarded async, tell all 4167 * clients that want all async events. 4168 */ 4169 if (bus != xpt_periph->path->bus) { 4170 xpt_path_lock(xpt_periph->path); 4171 xpt_async_process_dev(xpt_periph->path->device, ccb); 4172 xpt_path_unlock(xpt_periph->path); 4173 } 4174 4175 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4176 xpt_release_devq(path, 1, TRUE); 4177 else 4178 xpt_release_simq(path->bus->sim, TRUE); 4179 if (ccb->casync.async_arg_size > 0) 4180 free(async_arg, M_CAMXPT); 4181 xpt_free_path(path); 4182 xpt_free_ccb(ccb); 4183 } 4184 4185 static void 4186 xpt_async_bcast(struct async_list *async_head, 4187 u_int32_t async_code, 4188 struct cam_path *path, void *async_arg) 4189 { 4190 struct async_node *cur_entry; 4191 int lock; 4192 4193 cur_entry = SLIST_FIRST(async_head); 4194 while (cur_entry != NULL) { 4195 struct async_node *next_entry; 4196 /* 4197 * Grab the next list entry before we call the current 4198 * entry's callback. This is because the callback function 4199 * can delete its async callback entry. 4200 */ 4201 next_entry = SLIST_NEXT(cur_entry, links); 4202 if ((cur_entry->event_enable & async_code) != 0) { 4203 lock = cur_entry->event_lock; 4204 if (lock) 4205 CAM_SIM_LOCK(path->device->sim); 4206 cur_entry->callback(cur_entry->callback_arg, 4207 async_code, path, 4208 async_arg); 4209 if (lock) 4210 CAM_SIM_UNLOCK(path->device->sim); 4211 } 4212 cur_entry = next_entry; 4213 } 4214 } 4215 4216 void 4217 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4218 { 4219 union ccb *ccb; 4220 int size; 4221 4222 ccb = xpt_alloc_ccb_nowait(); 4223 if (ccb == NULL) { 4224 xpt_print(path, "Can't allocate CCB to send %s\n", 4225 xpt_async_string(async_code)); 4226 return; 4227 } 4228 4229 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4230 xpt_print(path, "Can't allocate path to send %s\n", 4231 xpt_async_string(async_code)); 4232 xpt_free_ccb(ccb); 4233 return; 4234 } 4235 ccb->ccb_h.path->periph = NULL; 4236 ccb->ccb_h.func_code = XPT_ASYNC; 4237 ccb->ccb_h.cbfcnp = xpt_async_process; 4238 ccb->ccb_h.flags |= CAM_UNLOCKED; 4239 ccb->casync.async_code = async_code; 4240 ccb->casync.async_arg_size = 0; 4241 size = xpt_async_size(async_code); 4242 if (size > 0 && async_arg != NULL) { 4243 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4244 if (ccb->casync.async_arg_ptr == NULL) { 4245 xpt_print(path, "Can't allocate argument to send %s\n", 4246 xpt_async_string(async_code)); 4247 xpt_free_path(ccb->ccb_h.path); 4248 xpt_free_ccb(ccb); 4249 return; 4250 } 4251 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4252 ccb->casync.async_arg_size = size; 4253 } else if (size < 0) 4254 ccb->casync.async_arg_size = size; 4255 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4256 xpt_freeze_devq(path, 1); 4257 else 4258 xpt_freeze_simq(path->bus->sim, 1); 4259 xpt_done(ccb); 4260 } 4261 4262 static void 4263 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4264 struct cam_et *target, struct cam_ed *device, 4265 void *async_arg) 4266 { 4267 4268 /* 4269 * We only need to handle events for real devices. 4270 */ 4271 if (target->target_id == CAM_TARGET_WILDCARD 4272 || device->lun_id == CAM_LUN_WILDCARD) 4273 return; 4274 4275 printf("%s called\n", __func__); 4276 } 4277 4278 static uint32_t 4279 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4280 { 4281 struct cam_devq *devq; 4282 uint32_t freeze; 4283 4284 devq = dev->sim->devq; 4285 mtx_assert(&devq->send_mtx, MA_OWNED); 4286 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4287 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4288 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4289 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4290 /* Remove frozen device from sendq. */ 4291 if (device_is_queued(dev)) 4292 camq_remove(&devq->send_queue, dev->devq_entry.index); 4293 return (freeze); 4294 } 4295 4296 u_int32_t 4297 xpt_freeze_devq(struct cam_path *path, u_int count) 4298 { 4299 struct cam_ed *dev = path->device; 4300 struct cam_devq *devq; 4301 uint32_t freeze; 4302 4303 devq = dev->sim->devq; 4304 mtx_lock(&devq->send_mtx); 4305 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4306 freeze = xpt_freeze_devq_device(dev, count); 4307 mtx_unlock(&devq->send_mtx); 4308 return (freeze); 4309 } 4310 4311 u_int32_t 4312 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4313 { 4314 struct cam_devq *devq; 4315 uint32_t freeze; 4316 4317 devq = sim->devq; 4318 mtx_lock(&devq->send_mtx); 4319 freeze = (devq->send_queue.qfrozen_cnt += count); 4320 mtx_unlock(&devq->send_mtx); 4321 return (freeze); 4322 } 4323 4324 static void 4325 xpt_release_devq_timeout(void *arg) 4326 { 4327 struct cam_ed *dev; 4328 struct cam_devq *devq; 4329 4330 dev = (struct cam_ed *)arg; 4331 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4332 devq = dev->sim->devq; 4333 mtx_assert(&devq->send_mtx, MA_OWNED); 4334 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4335 xpt_run_devq(devq); 4336 } 4337 4338 void 4339 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4340 { 4341 struct cam_ed *dev; 4342 struct cam_devq *devq; 4343 4344 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4345 count, run_queue)); 4346 dev = path->device; 4347 devq = dev->sim->devq; 4348 mtx_lock(&devq->send_mtx); 4349 if (xpt_release_devq_device(dev, count, run_queue)) 4350 xpt_run_devq(dev->sim->devq); 4351 mtx_unlock(&devq->send_mtx); 4352 } 4353 4354 static int 4355 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4356 { 4357 4358 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4359 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4360 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4361 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4362 if (count > dev->ccbq.queue.qfrozen_cnt) { 4363 #ifdef INVARIANTS 4364 printf("xpt_release_devq(): requested %u > present %u\n", 4365 count, dev->ccbq.queue.qfrozen_cnt); 4366 #endif 4367 count = dev->ccbq.queue.qfrozen_cnt; 4368 } 4369 dev->ccbq.queue.qfrozen_cnt -= count; 4370 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4371 /* 4372 * No longer need to wait for a successful 4373 * command completion. 4374 */ 4375 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4376 /* 4377 * Remove any timeouts that might be scheduled 4378 * to release this queue. 4379 */ 4380 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4381 callout_stop(&dev->callout); 4382 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4383 } 4384 /* 4385 * Now that we are unfrozen schedule the 4386 * device so any pending transactions are 4387 * run. 4388 */ 4389 xpt_schedule_devq(dev->sim->devq, dev); 4390 } else 4391 run_queue = 0; 4392 return (run_queue); 4393 } 4394 4395 void 4396 xpt_release_simq(struct cam_sim *sim, int run_queue) 4397 { 4398 struct cam_devq *devq; 4399 4400 devq = sim->devq; 4401 mtx_lock(&devq->send_mtx); 4402 if (devq->send_queue.qfrozen_cnt <= 0) { 4403 #ifdef INVARIANTS 4404 printf("xpt_release_simq: requested 1 > present %u\n", 4405 devq->send_queue.qfrozen_cnt); 4406 #endif 4407 } else 4408 devq->send_queue.qfrozen_cnt--; 4409 if (devq->send_queue.qfrozen_cnt == 0) { 4410 /* 4411 * If there is a timeout scheduled to release this 4412 * sim queue, remove it. The queue frozen count is 4413 * already at 0. 4414 */ 4415 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4416 callout_stop(&sim->callout); 4417 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4418 } 4419 if (run_queue) { 4420 /* 4421 * Now that we are unfrozen run the send queue. 4422 */ 4423 xpt_run_devq(sim->devq); 4424 } 4425 } 4426 mtx_unlock(&devq->send_mtx); 4427 } 4428 4429 /* 4430 * XXX Appears to be unused. 4431 */ 4432 static void 4433 xpt_release_simq_timeout(void *arg) 4434 { 4435 struct cam_sim *sim; 4436 4437 sim = (struct cam_sim *)arg; 4438 xpt_release_simq(sim, /* run_queue */ TRUE); 4439 } 4440 4441 void 4442 xpt_done(union ccb *done_ccb) 4443 { 4444 struct cam_doneq *queue; 4445 int run, hash; 4446 4447 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4448 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4449 return; 4450 4451 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4452 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4453 queue = &cam_doneqs[hash]; 4454 mtx_lock(&queue->cam_doneq_mtx); 4455 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4456 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4457 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4458 mtx_unlock(&queue->cam_doneq_mtx); 4459 if (run) 4460 wakeup(&queue->cam_doneq); 4461 } 4462 4463 void 4464 xpt_done_direct(union ccb *done_ccb) 4465 { 4466 4467 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); 4468 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4469 return; 4470 4471 xpt_done_process(&done_ccb->ccb_h); 4472 } 4473 4474 union ccb * 4475 xpt_alloc_ccb() 4476 { 4477 union ccb *new_ccb; 4478 4479 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4480 return (new_ccb); 4481 } 4482 4483 union ccb * 4484 xpt_alloc_ccb_nowait() 4485 { 4486 union ccb *new_ccb; 4487 4488 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4489 return (new_ccb); 4490 } 4491 4492 void 4493 xpt_free_ccb(union ccb *free_ccb) 4494 { 4495 free(free_ccb, M_CAMCCB); 4496 } 4497 4498 4499 4500 /* Private XPT functions */ 4501 4502 /* 4503 * Get a CAM control block for the caller. Charge the structure to the device 4504 * referenced by the path. If we don't have sufficient resources to allocate 4505 * more ccbs, we return NULL. 4506 */ 4507 static union ccb * 4508 xpt_get_ccb_nowait(struct cam_periph *periph) 4509 { 4510 union ccb *new_ccb; 4511 4512 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_NOWAIT); 4513 if (new_ccb == NULL) 4514 return (NULL); 4515 periph->periph_allocated++; 4516 cam_ccbq_take_opening(&periph->path->device->ccbq); 4517 return (new_ccb); 4518 } 4519 4520 static union ccb * 4521 xpt_get_ccb(struct cam_periph *periph) 4522 { 4523 union ccb *new_ccb; 4524 4525 cam_periph_unlock(periph); 4526 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_WAITOK); 4527 cam_periph_lock(periph); 4528 periph->periph_allocated++; 4529 cam_ccbq_take_opening(&periph->path->device->ccbq); 4530 return (new_ccb); 4531 } 4532 4533 union ccb * 4534 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4535 { 4536 struct ccb_hdr *ccb_h; 4537 4538 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4539 cam_periph_assert(periph, MA_OWNED); 4540 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4541 ccb_h->pinfo.priority != priority) { 4542 if (priority < periph->immediate_priority) { 4543 periph->immediate_priority = priority; 4544 xpt_run_allocq(periph, 0); 4545 } else 4546 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4547 "cgticb", 0); 4548 } 4549 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4550 return ((union ccb *)ccb_h); 4551 } 4552 4553 static void 4554 xpt_acquire_bus(struct cam_eb *bus) 4555 { 4556 4557 xpt_lock_buses(); 4558 bus->refcount++; 4559 xpt_unlock_buses(); 4560 } 4561 4562 static void 4563 xpt_release_bus(struct cam_eb *bus) 4564 { 4565 4566 xpt_lock_buses(); 4567 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4568 if (--bus->refcount > 0) { 4569 xpt_unlock_buses(); 4570 return; 4571 } 4572 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4573 xsoftc.bus_generation++; 4574 xpt_unlock_buses(); 4575 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4576 ("destroying bus, but target list is not empty")); 4577 cam_sim_release(bus->sim); 4578 mtx_destroy(&bus->eb_mtx); 4579 free(bus, M_CAMXPT); 4580 } 4581 4582 static struct cam_et * 4583 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4584 { 4585 struct cam_et *cur_target, *target; 4586 4587 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4588 mtx_assert(&bus->eb_mtx, MA_OWNED); 4589 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4590 M_NOWAIT|M_ZERO); 4591 if (target == NULL) 4592 return (NULL); 4593 4594 TAILQ_INIT(&target->ed_entries); 4595 target->bus = bus; 4596 target->target_id = target_id; 4597 target->refcount = 1; 4598 target->generation = 0; 4599 target->luns = NULL; 4600 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4601 timevalclear(&target->last_reset); 4602 /* 4603 * Hold a reference to our parent bus so it 4604 * will not go away before we do. 4605 */ 4606 bus->refcount++; 4607 4608 /* Insertion sort into our bus's target list */ 4609 cur_target = TAILQ_FIRST(&bus->et_entries); 4610 while (cur_target != NULL && cur_target->target_id < target_id) 4611 cur_target = TAILQ_NEXT(cur_target, links); 4612 if (cur_target != NULL) { 4613 TAILQ_INSERT_BEFORE(cur_target, target, links); 4614 } else { 4615 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4616 } 4617 bus->generation++; 4618 return (target); 4619 } 4620 4621 static void 4622 xpt_acquire_target(struct cam_et *target) 4623 { 4624 struct cam_eb *bus = target->bus; 4625 4626 mtx_lock(&bus->eb_mtx); 4627 target->refcount++; 4628 mtx_unlock(&bus->eb_mtx); 4629 } 4630 4631 static void 4632 xpt_release_target(struct cam_et *target) 4633 { 4634 struct cam_eb *bus = target->bus; 4635 4636 mtx_lock(&bus->eb_mtx); 4637 if (--target->refcount > 0) { 4638 mtx_unlock(&bus->eb_mtx); 4639 return; 4640 } 4641 TAILQ_REMOVE(&bus->et_entries, target, links); 4642 bus->generation++; 4643 mtx_unlock(&bus->eb_mtx); 4644 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4645 ("destroying target, but device list is not empty")); 4646 xpt_release_bus(bus); 4647 mtx_destroy(&target->luns_mtx); 4648 if (target->luns) 4649 free(target->luns, M_CAMXPT); 4650 free(target, M_CAMXPT); 4651 } 4652 4653 static struct cam_ed * 4654 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4655 lun_id_t lun_id) 4656 { 4657 struct cam_ed *device; 4658 4659 device = xpt_alloc_device(bus, target, lun_id); 4660 if (device == NULL) 4661 return (NULL); 4662 4663 device->mintags = 1; 4664 device->maxtags = 1; 4665 return (device); 4666 } 4667 4668 static void 4669 xpt_destroy_device(void *context, int pending) 4670 { 4671 struct cam_ed *device = context; 4672 4673 mtx_lock(&device->device_mtx); 4674 mtx_destroy(&device->device_mtx); 4675 free(device, M_CAMDEV); 4676 } 4677 4678 struct cam_ed * 4679 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4680 { 4681 struct cam_ed *cur_device, *device; 4682 struct cam_devq *devq; 4683 cam_status status; 4684 4685 mtx_assert(&bus->eb_mtx, MA_OWNED); 4686 /* Make space for us in the device queue on our bus */ 4687 devq = bus->sim->devq; 4688 mtx_lock(&devq->send_mtx); 4689 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4690 mtx_unlock(&devq->send_mtx); 4691 if (status != CAM_REQ_CMP) 4692 return (NULL); 4693 4694 device = (struct cam_ed *)malloc(sizeof(*device), 4695 M_CAMDEV, M_NOWAIT|M_ZERO); 4696 if (device == NULL) 4697 return (NULL); 4698 4699 cam_init_pinfo(&device->devq_entry); 4700 device->target = target; 4701 device->lun_id = lun_id; 4702 device->sim = bus->sim; 4703 if (cam_ccbq_init(&device->ccbq, 4704 bus->sim->max_dev_openings) != 0) { 4705 free(device, M_CAMDEV); 4706 return (NULL); 4707 } 4708 SLIST_INIT(&device->asyncs); 4709 SLIST_INIT(&device->periphs); 4710 device->generation = 0; 4711 device->flags = CAM_DEV_UNCONFIGURED; 4712 device->tag_delay_count = 0; 4713 device->tag_saved_openings = 0; 4714 device->refcount = 1; 4715 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4716 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4717 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4718 /* 4719 * Hold a reference to our parent bus so it 4720 * will not go away before we do. 4721 */ 4722 target->refcount++; 4723 4724 cur_device = TAILQ_FIRST(&target->ed_entries); 4725 while (cur_device != NULL && cur_device->lun_id < lun_id) 4726 cur_device = TAILQ_NEXT(cur_device, links); 4727 if (cur_device != NULL) 4728 TAILQ_INSERT_BEFORE(cur_device, device, links); 4729 else 4730 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4731 target->generation++; 4732 return (device); 4733 } 4734 4735 void 4736 xpt_acquire_device(struct cam_ed *device) 4737 { 4738 struct cam_eb *bus = device->target->bus; 4739 4740 mtx_lock(&bus->eb_mtx); 4741 device->refcount++; 4742 mtx_unlock(&bus->eb_mtx); 4743 } 4744 4745 void 4746 xpt_release_device(struct cam_ed *device) 4747 { 4748 struct cam_eb *bus = device->target->bus; 4749 struct cam_devq *devq; 4750 4751 mtx_lock(&bus->eb_mtx); 4752 if (--device->refcount > 0) { 4753 mtx_unlock(&bus->eb_mtx); 4754 return; 4755 } 4756 4757 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4758 device->target->generation++; 4759 mtx_unlock(&bus->eb_mtx); 4760 4761 /* Release our slot in the devq */ 4762 devq = bus->sim->devq; 4763 mtx_lock(&devq->send_mtx); 4764 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4765 mtx_unlock(&devq->send_mtx); 4766 4767 KASSERT(SLIST_EMPTY(&device->periphs), 4768 ("destroying device, but periphs list is not empty")); 4769 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4770 ("destroying device while still queued for ccbs")); 4771 4772 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4773 callout_stop(&device->callout); 4774 4775 xpt_release_target(device->target); 4776 4777 cam_ccbq_fini(&device->ccbq); 4778 /* 4779 * Free allocated memory. free(9) does nothing if the 4780 * supplied pointer is NULL, so it is safe to call without 4781 * checking. 4782 */ 4783 free(device->supported_vpds, M_CAMXPT); 4784 free(device->device_id, M_CAMXPT); 4785 free(device->physpath, M_CAMXPT); 4786 free(device->rcap_buf, M_CAMXPT); 4787 free(device->serial_num, M_CAMXPT); 4788 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4789 } 4790 4791 u_int32_t 4792 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4793 { 4794 int result; 4795 struct cam_ed *dev; 4796 4797 dev = path->device; 4798 mtx_lock(&dev->sim->devq->send_mtx); 4799 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4800 mtx_unlock(&dev->sim->devq->send_mtx); 4801 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4802 || (dev->inq_flags & SID_CmdQue) != 0) 4803 dev->tag_saved_openings = newopenings; 4804 return (result); 4805 } 4806 4807 static struct cam_eb * 4808 xpt_find_bus(path_id_t path_id) 4809 { 4810 struct cam_eb *bus; 4811 4812 xpt_lock_buses(); 4813 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4814 bus != NULL; 4815 bus = TAILQ_NEXT(bus, links)) { 4816 if (bus->path_id == path_id) { 4817 bus->refcount++; 4818 break; 4819 } 4820 } 4821 xpt_unlock_buses(); 4822 return (bus); 4823 } 4824 4825 static struct cam_et * 4826 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4827 { 4828 struct cam_et *target; 4829 4830 mtx_assert(&bus->eb_mtx, MA_OWNED); 4831 for (target = TAILQ_FIRST(&bus->et_entries); 4832 target != NULL; 4833 target = TAILQ_NEXT(target, links)) { 4834 if (target->target_id == target_id) { 4835 target->refcount++; 4836 break; 4837 } 4838 } 4839 return (target); 4840 } 4841 4842 static struct cam_ed * 4843 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4844 { 4845 struct cam_ed *device; 4846 4847 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4848 for (device = TAILQ_FIRST(&target->ed_entries); 4849 device != NULL; 4850 device = TAILQ_NEXT(device, links)) { 4851 if (device->lun_id == lun_id) { 4852 device->refcount++; 4853 break; 4854 } 4855 } 4856 return (device); 4857 } 4858 4859 void 4860 xpt_start_tags(struct cam_path *path) 4861 { 4862 struct ccb_relsim crs; 4863 struct cam_ed *device; 4864 struct cam_sim *sim; 4865 int newopenings; 4866 4867 device = path->device; 4868 sim = path->bus->sim; 4869 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4870 xpt_freeze_devq(path, /*count*/1); 4871 device->inq_flags |= SID_CmdQue; 4872 if (device->tag_saved_openings != 0) 4873 newopenings = device->tag_saved_openings; 4874 else 4875 newopenings = min(device->maxtags, 4876 sim->max_tagged_dev_openings); 4877 xpt_dev_ccbq_resize(path, newopenings); 4878 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4879 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4880 crs.ccb_h.func_code = XPT_REL_SIMQ; 4881 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4882 crs.openings 4883 = crs.release_timeout 4884 = crs.qfrozen_cnt 4885 = 0; 4886 xpt_action((union ccb *)&crs); 4887 } 4888 4889 void 4890 xpt_stop_tags(struct cam_path *path) 4891 { 4892 struct ccb_relsim crs; 4893 struct cam_ed *device; 4894 struct cam_sim *sim; 4895 4896 device = path->device; 4897 sim = path->bus->sim; 4898 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4899 device->tag_delay_count = 0; 4900 xpt_freeze_devq(path, /*count*/1); 4901 device->inq_flags &= ~SID_CmdQue; 4902 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4903 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4904 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4905 crs.ccb_h.func_code = XPT_REL_SIMQ; 4906 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4907 crs.openings 4908 = crs.release_timeout 4909 = crs.qfrozen_cnt 4910 = 0; 4911 xpt_action((union ccb *)&crs); 4912 } 4913 4914 static void 4915 xpt_boot_delay(void *arg) 4916 { 4917 4918 xpt_release_boot(); 4919 } 4920 4921 static void 4922 xpt_config(void *arg) 4923 { 4924 /* 4925 * Now that interrupts are enabled, go find our devices 4926 */ 4927 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4928 printf("xpt_config: failed to create taskqueue thread.\n"); 4929 4930 /* Setup debugging path */ 4931 if (cam_dflags != CAM_DEBUG_NONE) { 4932 if (xpt_create_path(&cam_dpath, NULL, 4933 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4934 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4935 printf("xpt_config: xpt_create_path() failed for debug" 4936 " target %d:%d:%d, debugging disabled\n", 4937 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4938 cam_dflags = CAM_DEBUG_NONE; 4939 } 4940 } else 4941 cam_dpath = NULL; 4942 4943 periphdriver_init(1); 4944 xpt_hold_boot(); 4945 callout_init(&xsoftc.boot_callout, 1); 4946 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4947 xpt_boot_delay, NULL); 4948 /* Fire up rescan thread. */ 4949 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4950 "cam", "scanner")) { 4951 printf("xpt_config: failed to create rescan thread.\n"); 4952 } 4953 } 4954 4955 void 4956 xpt_hold_boot(void) 4957 { 4958 xpt_lock_buses(); 4959 xsoftc.buses_to_config++; 4960 xpt_unlock_buses(); 4961 } 4962 4963 void 4964 xpt_release_boot(void) 4965 { 4966 xpt_lock_buses(); 4967 xsoftc.buses_to_config--; 4968 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4969 struct xpt_task *task; 4970 4971 xsoftc.buses_config_done = 1; 4972 xpt_unlock_buses(); 4973 /* Call manually because we don't have any busses */ 4974 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4975 if (task != NULL) { 4976 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4977 taskqueue_enqueue(taskqueue_thread, &task->task); 4978 } 4979 } else 4980 xpt_unlock_buses(); 4981 } 4982 4983 /* 4984 * If the given device only has one peripheral attached to it, and if that 4985 * peripheral is the passthrough driver, announce it. This insures that the 4986 * user sees some sort of announcement for every peripheral in their system. 4987 */ 4988 static int 4989 xptpassannouncefunc(struct cam_ed *device, void *arg) 4990 { 4991 struct cam_periph *periph; 4992 int i; 4993 4994 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4995 periph = SLIST_NEXT(periph, periph_links), i++); 4996 4997 periph = SLIST_FIRST(&device->periphs); 4998 if ((i == 1) 4999 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5000 xpt_announce_periph(periph, NULL); 5001 5002 return(1); 5003 } 5004 5005 static void 5006 xpt_finishconfig_task(void *context, int pending) 5007 { 5008 5009 periphdriver_init(2); 5010 /* 5011 * Check for devices with no "standard" peripheral driver 5012 * attached. For any devices like that, announce the 5013 * passthrough driver so the user will see something. 5014 */ 5015 if (!bootverbose) 5016 xpt_for_all_devices(xptpassannouncefunc, NULL); 5017 5018 /* Release our hook so that the boot can continue. */ 5019 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5020 free(xsoftc.xpt_config_hook, M_CAMXPT); 5021 xsoftc.xpt_config_hook = NULL; 5022 5023 free(context, M_CAMXPT); 5024 } 5025 5026 cam_status 5027 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5028 struct cam_path *path) 5029 { 5030 struct ccb_setasync csa; 5031 cam_status status; 5032 int xptpath = 0; 5033 5034 if (path == NULL) { 5035 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5036 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5037 if (status != CAM_REQ_CMP) 5038 return (status); 5039 xpt_path_lock(path); 5040 xptpath = 1; 5041 } 5042 5043 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5044 csa.ccb_h.func_code = XPT_SASYNC_CB; 5045 csa.event_enable = event; 5046 csa.callback = cbfunc; 5047 csa.callback_arg = cbarg; 5048 xpt_action((union ccb *)&csa); 5049 status = csa.ccb_h.status; 5050 5051 if (xptpath) { 5052 xpt_path_unlock(path); 5053 xpt_free_path(path); 5054 } 5055 5056 if ((status == CAM_REQ_CMP) && 5057 (csa.event_enable & AC_FOUND_DEVICE)) { 5058 /* 5059 * Get this peripheral up to date with all 5060 * the currently existing devices. 5061 */ 5062 xpt_for_all_devices(xptsetasyncfunc, &csa); 5063 } 5064 if ((status == CAM_REQ_CMP) && 5065 (csa.event_enable & AC_PATH_REGISTERED)) { 5066 /* 5067 * Get this peripheral up to date with all 5068 * the currently existing busses. 5069 */ 5070 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5071 } 5072 5073 return (status); 5074 } 5075 5076 static void 5077 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5078 { 5079 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5080 5081 switch (work_ccb->ccb_h.func_code) { 5082 /* Common cases first */ 5083 case XPT_PATH_INQ: /* Path routing inquiry */ 5084 { 5085 struct ccb_pathinq *cpi; 5086 5087 cpi = &work_ccb->cpi; 5088 cpi->version_num = 1; /* XXX??? */ 5089 cpi->hba_inquiry = 0; 5090 cpi->target_sprt = 0; 5091 cpi->hba_misc = 0; 5092 cpi->hba_eng_cnt = 0; 5093 cpi->max_target = 0; 5094 cpi->max_lun = 0; 5095 cpi->initiator_id = 0; 5096 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5097 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5098 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5099 cpi->unit_number = sim->unit_number; 5100 cpi->bus_id = sim->bus_id; 5101 cpi->base_transfer_speed = 0; 5102 cpi->protocol = PROTO_UNSPECIFIED; 5103 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5104 cpi->transport = XPORT_UNSPECIFIED; 5105 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5106 cpi->ccb_h.status = CAM_REQ_CMP; 5107 xpt_done(work_ccb); 5108 break; 5109 } 5110 default: 5111 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5112 xpt_done(work_ccb); 5113 break; 5114 } 5115 } 5116 5117 /* 5118 * The xpt as a "controller" has no interrupt sources, so polling 5119 * is a no-op. 5120 */ 5121 static void 5122 xptpoll(struct cam_sim *sim) 5123 { 5124 } 5125 5126 void 5127 xpt_lock_buses(void) 5128 { 5129 mtx_lock(&xsoftc.xpt_topo_lock); 5130 } 5131 5132 void 5133 xpt_unlock_buses(void) 5134 { 5135 mtx_unlock(&xsoftc.xpt_topo_lock); 5136 } 5137 5138 struct mtx * 5139 xpt_path_mtx(struct cam_path *path) 5140 { 5141 5142 return (&path->device->device_mtx); 5143 } 5144 5145 static void 5146 xpt_done_process(struct ccb_hdr *ccb_h) 5147 { 5148 struct cam_sim *sim; 5149 struct cam_devq *devq; 5150 struct mtx *mtx = NULL; 5151 5152 if (ccb_h->flags & CAM_HIGH_POWER) { 5153 struct highpowerlist *hphead; 5154 struct cam_ed *device; 5155 5156 mtx_lock(&xsoftc.xpt_highpower_lock); 5157 hphead = &xsoftc.highpowerq; 5158 5159 device = STAILQ_FIRST(hphead); 5160 5161 /* 5162 * Increment the count since this command is done. 5163 */ 5164 xsoftc.num_highpower++; 5165 5166 /* 5167 * Any high powered commands queued up? 5168 */ 5169 if (device != NULL) { 5170 5171 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5172 mtx_unlock(&xsoftc.xpt_highpower_lock); 5173 5174 mtx_lock(&device->sim->devq->send_mtx); 5175 xpt_release_devq_device(device, 5176 /*count*/1, /*runqueue*/TRUE); 5177 mtx_unlock(&device->sim->devq->send_mtx); 5178 } else 5179 mtx_unlock(&xsoftc.xpt_highpower_lock); 5180 } 5181 5182 sim = ccb_h->path->bus->sim; 5183 5184 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5185 xpt_release_simq(sim, /*run_queue*/FALSE); 5186 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5187 } 5188 5189 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5190 && (ccb_h->status & CAM_DEV_QFRZN)) { 5191 xpt_release_devq(ccb_h->path, /*count*/1, 5192 /*run_queue*/FALSE); 5193 ccb_h->status &= ~CAM_DEV_QFRZN; 5194 } 5195 5196 devq = sim->devq; 5197 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5198 struct cam_ed *dev = ccb_h->path->device; 5199 5200 mtx_lock(&devq->send_mtx); 5201 devq->send_active--; 5202 devq->send_openings++; 5203 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5204 5205 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5206 && (dev->ccbq.dev_active == 0))) { 5207 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5208 xpt_release_devq_device(dev, /*count*/1, 5209 /*run_queue*/FALSE); 5210 } 5211 5212 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5213 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5214 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5215 xpt_release_devq_device(dev, /*count*/1, 5216 /*run_queue*/FALSE); 5217 } 5218 5219 if (!device_is_queued(dev)) 5220 (void)xpt_schedule_devq(devq, dev); 5221 mtx_unlock(&devq->send_mtx); 5222 5223 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5224 mtx = xpt_path_mtx(ccb_h->path); 5225 mtx_lock(mtx); 5226 5227 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5228 && (--dev->tag_delay_count == 0)) 5229 xpt_start_tags(ccb_h->path); 5230 } 5231 } 5232 5233 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5234 if (mtx == NULL) { 5235 mtx = xpt_path_mtx(ccb_h->path); 5236 mtx_lock(mtx); 5237 } 5238 } else { 5239 if (mtx != NULL) { 5240 mtx_unlock(mtx); 5241 mtx = NULL; 5242 } 5243 } 5244 5245 /* Call the peripheral driver's callback */ 5246 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5247 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5248 if (mtx != NULL) 5249 mtx_unlock(mtx); 5250 5251 mtx_lock(&devq->send_mtx); 5252 xpt_run_devq(devq); 5253 mtx_unlock(&devq->send_mtx); 5254 } 5255 5256 void 5257 xpt_done_td(void *arg) 5258 { 5259 struct cam_doneq *queue = arg; 5260 struct ccb_hdr *ccb_h; 5261 STAILQ_HEAD(, ccb_hdr) doneq; 5262 5263 STAILQ_INIT(&doneq); 5264 mtx_lock(&queue->cam_doneq_mtx); 5265 while (1) { 5266 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5267 queue->cam_doneq_sleep = 1; 5268 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5269 PRIBIO, "-", 0); 5270 queue->cam_doneq_sleep = 0; 5271 } 5272 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5273 mtx_unlock(&queue->cam_doneq_mtx); 5274 5275 THREAD_NO_SLEEPING(); 5276 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5277 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5278 xpt_done_process(ccb_h); 5279 } 5280 THREAD_SLEEPING_OK(); 5281 5282 mtx_lock(&queue->cam_doneq_mtx); 5283 } 5284 } 5285 5286 static void 5287 camisr_runqueue(void) 5288 { 5289 struct ccb_hdr *ccb_h; 5290 struct cam_doneq *queue; 5291 int i; 5292 5293 /* Process global queues. */ 5294 for (i = 0; i < cam_num_doneqs; i++) { 5295 queue = &cam_doneqs[i]; 5296 mtx_lock(&queue->cam_doneq_mtx); 5297 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5298 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5299 mtx_unlock(&queue->cam_doneq_mtx); 5300 xpt_done_process(ccb_h); 5301 mtx_lock(&queue->cam_doneq_mtx); 5302 } 5303 mtx_unlock(&queue->cam_doneq_mtx); 5304 } 5305 } 5306