1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/systm.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/time.h> 45 #include <sys/conf.h> 46 #include <sys/fcntl.h> 47 #include <sys/proc.h> 48 #include <sys/sbuf.h> 49 #include <sys/smp.h> 50 #include <sys/taskqueue.h> 51 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/sysctl.h> 55 #include <sys/kthread.h> 56 57 #include <cam/cam.h> 58 #include <cam/cam_ccb.h> 59 #include <cam/cam_iosched.h> 60 #include <cam/cam_periph.h> 61 #include <cam/cam_queue.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt.h> 64 #include <cam/cam_xpt_sim.h> 65 #include <cam/cam_xpt_periph.h> 66 #include <cam/cam_xpt_internal.h> 67 #include <cam/cam_debug.h> 68 #include <cam/cam_compat.h> 69 70 #include <cam/scsi/scsi_all.h> 71 #include <cam/scsi/scsi_message.h> 72 #include <cam/scsi/scsi_pass.h> 73 74 #include <machine/md_var.h> /* geometry translation */ 75 #include <machine/stdarg.h> /* for xpt_print below */ 76 77 #include "opt_cam.h" 78 79 /* Wild guess based on not wanting to grow the stack too much */ 80 #define XPT_PRINT_MAXLEN 512 81 #ifdef PRINTF_BUFR_SIZE 82 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 83 #else 84 #define XPT_PRINT_LEN 128 85 #endif 86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 87 88 /* 89 * This is the maximum number of high powered commands (e.g. start unit) 90 * that can be outstanding at a particular time. 91 */ 92 #ifndef CAM_MAX_HIGHPOWER 93 #define CAM_MAX_HIGHPOWER 4 94 #endif 95 96 /* Datastructures internal to the xpt layer */ 97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 101 102 /* Object for defering XPT actions to a taskqueue */ 103 struct xpt_task { 104 struct task task; 105 void *data1; 106 uintptr_t data2; 107 }; 108 109 struct xpt_softc { 110 uint32_t xpt_generation; 111 112 /* number of high powered commands that can go through right now */ 113 struct mtx xpt_highpower_lock; 114 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 115 int num_highpower; 116 117 /* queue for handling async rescan requests. */ 118 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 119 int buses_to_config; 120 int buses_config_done; 121 int announce_nosbuf; 122 123 /* 124 * Registered buses 125 * 126 * N.B., "busses" is an archaic spelling of "buses". In new code 127 * "buses" is preferred. 128 */ 129 TAILQ_HEAD(,cam_eb) xpt_busses; 130 u_int bus_generation; 131 132 struct intr_config_hook xpt_config_hook; 133 134 int boot_delay; 135 struct callout boot_callout; 136 137 struct mtx xpt_topo_lock; 138 struct mtx xpt_lock; 139 struct taskqueue *xpt_taskq; 140 }; 141 142 typedef enum { 143 DM_RET_COPY = 0x01, 144 DM_RET_FLAG_MASK = 0x0f, 145 DM_RET_NONE = 0x00, 146 DM_RET_STOP = 0x10, 147 DM_RET_DESCEND = 0x20, 148 DM_RET_ERROR = 0x30, 149 DM_RET_ACTION_MASK = 0xf0 150 } dev_match_ret; 151 152 typedef enum { 153 XPT_DEPTH_BUS, 154 XPT_DEPTH_TARGET, 155 XPT_DEPTH_DEVICE, 156 XPT_DEPTH_PERIPH 157 } xpt_traverse_depth; 158 159 struct xpt_traverse_config { 160 xpt_traverse_depth depth; 161 void *tr_func; 162 void *tr_arg; 163 }; 164 165 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 166 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 167 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 168 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 169 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 170 171 /* Transport layer configuration information */ 172 static struct xpt_softc xsoftc; 173 174 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 175 176 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 177 &xsoftc.boot_delay, 0, "Bus registration wait time"); 178 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 179 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 180 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 181 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 182 183 struct cam_doneq { 184 struct mtx_padalign cam_doneq_mtx; 185 STAILQ_HEAD(, ccb_hdr) cam_doneq; 186 int cam_doneq_sleep; 187 }; 188 189 static struct cam_doneq cam_doneqs[MAXCPU]; 190 static int cam_num_doneqs; 191 static struct proc *cam_proc; 192 193 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 194 &cam_num_doneqs, 0, "Number of completion queues/threads"); 195 196 struct cam_periph *xpt_periph; 197 198 static periph_init_t xpt_periph_init; 199 200 static struct periph_driver xpt_driver = 201 { 202 xpt_periph_init, "xpt", 203 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 204 CAM_PERIPH_DRV_EARLY 205 }; 206 207 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 208 209 static d_open_t xptopen; 210 static d_close_t xptclose; 211 static d_ioctl_t xptioctl; 212 static d_ioctl_t xptdoioctl; 213 214 static struct cdevsw xpt_cdevsw = { 215 .d_version = D_VERSION, 216 .d_flags = 0, 217 .d_open = xptopen, 218 .d_close = xptclose, 219 .d_ioctl = xptioctl, 220 .d_name = "xpt", 221 }; 222 223 /* Storage for debugging datastructures */ 224 struct cam_path *cam_dpath; 225 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 226 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 227 &cam_dflags, 0, "Enabled debug flags"); 228 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 229 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 230 &cam_debug_delay, 0, "Delay in us after each debug message"); 231 232 /* Our boot-time initialization hook */ 233 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 234 235 static moduledata_t cam_moduledata = { 236 "cam", 237 cam_module_event_handler, 238 NULL 239 }; 240 241 static int xpt_init(void *); 242 243 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 244 MODULE_VERSION(cam, 1); 245 246 247 static void xpt_async_bcast(struct async_list *async_head, 248 u_int32_t async_code, 249 struct cam_path *path, 250 void *async_arg); 251 static path_id_t xptnextfreepathid(void); 252 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 253 static union ccb *xpt_get_ccb(struct cam_periph *periph); 254 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 255 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 256 static void xpt_run_allocq_task(void *context, int pending); 257 static void xpt_run_devq(struct cam_devq *devq); 258 static timeout_t xpt_release_devq_timeout; 259 static void xpt_release_simq_timeout(void *arg) __unused; 260 static void xpt_acquire_bus(struct cam_eb *bus); 261 static void xpt_release_bus(struct cam_eb *bus); 262 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 263 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 264 int run_queue); 265 static struct cam_et* 266 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 267 static void xpt_acquire_target(struct cam_et *target); 268 static void xpt_release_target(struct cam_et *target); 269 static struct cam_eb* 270 xpt_find_bus(path_id_t path_id); 271 static struct cam_et* 272 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 273 static struct cam_ed* 274 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 275 static void xpt_config(void *arg); 276 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 277 u_int32_t new_priority); 278 static xpt_devicefunc_t xptpassannouncefunc; 279 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 280 static void xptpoll(struct cam_sim *sim); 281 static void camisr_runqueue(void); 282 static void xpt_done_process(struct ccb_hdr *ccb_h); 283 static void xpt_done_td(void *); 284 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 285 u_int num_patterns, struct cam_eb *bus); 286 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 287 u_int num_patterns, 288 struct cam_ed *device); 289 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 290 u_int num_patterns, 291 struct cam_periph *periph); 292 static xpt_busfunc_t xptedtbusfunc; 293 static xpt_targetfunc_t xptedttargetfunc; 294 static xpt_devicefunc_t xptedtdevicefunc; 295 static xpt_periphfunc_t xptedtperiphfunc; 296 static xpt_pdrvfunc_t xptplistpdrvfunc; 297 static xpt_periphfunc_t xptplistperiphfunc; 298 static int xptedtmatch(struct ccb_dev_match *cdm); 299 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 300 static int xptbustraverse(struct cam_eb *start_bus, 301 xpt_busfunc_t *tr_func, void *arg); 302 static int xpttargettraverse(struct cam_eb *bus, 303 struct cam_et *start_target, 304 xpt_targetfunc_t *tr_func, void *arg); 305 static int xptdevicetraverse(struct cam_et *target, 306 struct cam_ed *start_device, 307 xpt_devicefunc_t *tr_func, void *arg); 308 static int xptperiphtraverse(struct cam_ed *device, 309 struct cam_periph *start_periph, 310 xpt_periphfunc_t *tr_func, void *arg); 311 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 312 xpt_pdrvfunc_t *tr_func, void *arg); 313 static int xptpdperiphtraverse(struct periph_driver **pdrv, 314 struct cam_periph *start_periph, 315 xpt_periphfunc_t *tr_func, 316 void *arg); 317 static xpt_busfunc_t xptdefbusfunc; 318 static xpt_targetfunc_t xptdeftargetfunc; 319 static xpt_devicefunc_t xptdefdevicefunc; 320 static xpt_periphfunc_t xptdefperiphfunc; 321 static void xpt_finishconfig_task(void *context, int pending); 322 static void xpt_dev_async_default(u_int32_t async_code, 323 struct cam_eb *bus, 324 struct cam_et *target, 325 struct cam_ed *device, 326 void *async_arg); 327 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 328 struct cam_et *target, 329 lun_id_t lun_id); 330 static xpt_devicefunc_t xptsetasyncfunc; 331 static xpt_busfunc_t xptsetasyncbusfunc; 332 static cam_status xptregister(struct cam_periph *periph, 333 void *arg); 334 static __inline int device_is_queued(struct cam_ed *device); 335 336 static __inline int 337 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 338 { 339 int retval; 340 341 mtx_assert(&devq->send_mtx, MA_OWNED); 342 if ((dev->ccbq.queue.entries > 0) && 343 (dev->ccbq.dev_openings > 0) && 344 (dev->ccbq.queue.qfrozen_cnt == 0)) { 345 /* 346 * The priority of a device waiting for controller 347 * resources is that of the highest priority CCB 348 * enqueued. 349 */ 350 retval = 351 xpt_schedule_dev(&devq->send_queue, 352 &dev->devq_entry, 353 CAMQ_GET_PRIO(&dev->ccbq.queue)); 354 } else { 355 retval = 0; 356 } 357 return (retval); 358 } 359 360 static __inline int 361 device_is_queued(struct cam_ed *device) 362 { 363 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 364 } 365 366 static void 367 xpt_periph_init() 368 { 369 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 370 } 371 372 static int 373 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 374 { 375 376 /* 377 * Only allow read-write access. 378 */ 379 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 380 return(EPERM); 381 382 /* 383 * We don't allow nonblocking access. 384 */ 385 if ((flags & O_NONBLOCK) != 0) { 386 printf("%s: can't do nonblocking access\n", devtoname(dev)); 387 return(ENODEV); 388 } 389 390 return(0); 391 } 392 393 static int 394 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 395 { 396 397 return(0); 398 } 399 400 /* 401 * Don't automatically grab the xpt softc lock here even though this is going 402 * through the xpt device. The xpt device is really just a back door for 403 * accessing other devices and SIMs, so the right thing to do is to grab 404 * the appropriate SIM lock once the bus/SIM is located. 405 */ 406 static int 407 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 408 { 409 int error; 410 411 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 412 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 413 } 414 return (error); 415 } 416 417 static int 418 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 419 { 420 int error; 421 422 error = 0; 423 424 switch(cmd) { 425 /* 426 * For the transport layer CAMIOCOMMAND ioctl, we really only want 427 * to accept CCB types that don't quite make sense to send through a 428 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 429 * in the CAM spec. 430 */ 431 case CAMIOCOMMAND: { 432 union ccb *ccb; 433 union ccb *inccb; 434 struct cam_eb *bus; 435 436 inccb = (union ccb *)addr; 437 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 438 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 439 inccb->csio.bio = NULL; 440 #endif 441 442 if (inccb->ccb_h.flags & CAM_UNLOCKED) 443 return (EINVAL); 444 445 bus = xpt_find_bus(inccb->ccb_h.path_id); 446 if (bus == NULL) 447 return (EINVAL); 448 449 switch (inccb->ccb_h.func_code) { 450 case XPT_SCAN_BUS: 451 case XPT_RESET_BUS: 452 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 453 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 454 xpt_release_bus(bus); 455 return (EINVAL); 456 } 457 break; 458 case XPT_SCAN_TGT: 459 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 461 xpt_release_bus(bus); 462 return (EINVAL); 463 } 464 break; 465 default: 466 break; 467 } 468 469 switch(inccb->ccb_h.func_code) { 470 case XPT_SCAN_BUS: 471 case XPT_RESET_BUS: 472 case XPT_PATH_INQ: 473 case XPT_ENG_INQ: 474 case XPT_SCAN_LUN: 475 case XPT_SCAN_TGT: 476 477 ccb = xpt_alloc_ccb(); 478 479 /* 480 * Create a path using the bus, target, and lun the 481 * user passed in. 482 */ 483 if (xpt_create_path(&ccb->ccb_h.path, NULL, 484 inccb->ccb_h.path_id, 485 inccb->ccb_h.target_id, 486 inccb->ccb_h.target_lun) != 487 CAM_REQ_CMP){ 488 error = EINVAL; 489 xpt_free_ccb(ccb); 490 break; 491 } 492 /* Ensure all of our fields are correct */ 493 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 494 inccb->ccb_h.pinfo.priority); 495 xpt_merge_ccb(ccb, inccb); 496 xpt_path_lock(ccb->ccb_h.path); 497 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 498 xpt_path_unlock(ccb->ccb_h.path); 499 bcopy(ccb, inccb, sizeof(union ccb)); 500 xpt_free_path(ccb->ccb_h.path); 501 xpt_free_ccb(ccb); 502 break; 503 504 case XPT_DEBUG: { 505 union ccb ccb; 506 507 /* 508 * This is an immediate CCB, so it's okay to 509 * allocate it on the stack. 510 */ 511 512 /* 513 * Create a path using the bus, target, and lun the 514 * user passed in. 515 */ 516 if (xpt_create_path(&ccb.ccb_h.path, NULL, 517 inccb->ccb_h.path_id, 518 inccb->ccb_h.target_id, 519 inccb->ccb_h.target_lun) != 520 CAM_REQ_CMP){ 521 error = EINVAL; 522 break; 523 } 524 /* Ensure all of our fields are correct */ 525 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 526 inccb->ccb_h.pinfo.priority); 527 xpt_merge_ccb(&ccb, inccb); 528 xpt_action(&ccb); 529 bcopy(&ccb, inccb, sizeof(union ccb)); 530 xpt_free_path(ccb.ccb_h.path); 531 break; 532 533 } 534 case XPT_DEV_MATCH: { 535 struct cam_periph_map_info mapinfo; 536 struct cam_path *old_path; 537 538 /* 539 * We can't deal with physical addresses for this 540 * type of transaction. 541 */ 542 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 543 CAM_DATA_VADDR) { 544 error = EINVAL; 545 break; 546 } 547 548 /* 549 * Save this in case the caller had it set to 550 * something in particular. 551 */ 552 old_path = inccb->ccb_h.path; 553 554 /* 555 * We really don't need a path for the matching 556 * code. The path is needed because of the 557 * debugging statements in xpt_action(). They 558 * assume that the CCB has a valid path. 559 */ 560 inccb->ccb_h.path = xpt_periph->path; 561 562 bzero(&mapinfo, sizeof(mapinfo)); 563 564 /* 565 * Map the pattern and match buffers into kernel 566 * virtual address space. 567 */ 568 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 569 570 if (error) { 571 inccb->ccb_h.path = old_path; 572 break; 573 } 574 575 /* 576 * This is an immediate CCB, we can send it on directly. 577 */ 578 xpt_action(inccb); 579 580 /* 581 * Map the buffers back into user space. 582 */ 583 cam_periph_unmapmem(inccb, &mapinfo); 584 585 inccb->ccb_h.path = old_path; 586 587 error = 0; 588 break; 589 } 590 default: 591 error = ENOTSUP; 592 break; 593 } 594 xpt_release_bus(bus); 595 break; 596 } 597 /* 598 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 599 * with the periphal driver name and unit name filled in. The other 600 * fields don't really matter as input. The passthrough driver name 601 * ("pass"), and unit number are passed back in the ccb. The current 602 * device generation number, and the index into the device peripheral 603 * driver list, and the status are also passed back. Note that 604 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 605 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 606 * (or rather should be) impossible for the device peripheral driver 607 * list to change since we look at the whole thing in one pass, and 608 * we do it with lock protection. 609 * 610 */ 611 case CAMGETPASSTHRU: { 612 union ccb *ccb; 613 struct cam_periph *periph; 614 struct periph_driver **p_drv; 615 char *name; 616 u_int unit; 617 int base_periph_found; 618 619 ccb = (union ccb *)addr; 620 unit = ccb->cgdl.unit_number; 621 name = ccb->cgdl.periph_name; 622 base_periph_found = 0; 623 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 624 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 625 ccb->csio.bio = NULL; 626 #endif 627 628 /* 629 * Sanity check -- make sure we don't get a null peripheral 630 * driver name. 631 */ 632 if (*ccb->cgdl.periph_name == '\0') { 633 error = EINVAL; 634 break; 635 } 636 637 /* Keep the list from changing while we traverse it */ 638 xpt_lock_buses(); 639 640 /* first find our driver in the list of drivers */ 641 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 642 if (strcmp((*p_drv)->driver_name, name) == 0) 643 break; 644 645 if (*p_drv == NULL) { 646 xpt_unlock_buses(); 647 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 648 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 649 *ccb->cgdl.periph_name = '\0'; 650 ccb->cgdl.unit_number = 0; 651 error = ENOENT; 652 break; 653 } 654 655 /* 656 * Run through every peripheral instance of this driver 657 * and check to see whether it matches the unit passed 658 * in by the user. If it does, get out of the loops and 659 * find the passthrough driver associated with that 660 * peripheral driver. 661 */ 662 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 663 periph = TAILQ_NEXT(periph, unit_links)) { 664 665 if (periph->unit_number == unit) 666 break; 667 } 668 /* 669 * If we found the peripheral driver that the user passed 670 * in, go through all of the peripheral drivers for that 671 * particular device and look for a passthrough driver. 672 */ 673 if (periph != NULL) { 674 struct cam_ed *device; 675 int i; 676 677 base_periph_found = 1; 678 device = periph->path->device; 679 for (i = 0, periph = SLIST_FIRST(&device->periphs); 680 periph != NULL; 681 periph = SLIST_NEXT(periph, periph_links), i++) { 682 /* 683 * Check to see whether we have a 684 * passthrough device or not. 685 */ 686 if (strcmp(periph->periph_name, "pass") == 0) { 687 /* 688 * Fill in the getdevlist fields. 689 */ 690 strlcpy(ccb->cgdl.periph_name, 691 periph->periph_name, 692 sizeof(ccb->cgdl.periph_name)); 693 ccb->cgdl.unit_number = 694 periph->unit_number; 695 if (SLIST_NEXT(periph, periph_links)) 696 ccb->cgdl.status = 697 CAM_GDEVLIST_MORE_DEVS; 698 else 699 ccb->cgdl.status = 700 CAM_GDEVLIST_LAST_DEVICE; 701 ccb->cgdl.generation = 702 device->generation; 703 ccb->cgdl.index = i; 704 /* 705 * Fill in some CCB header fields 706 * that the user may want. 707 */ 708 ccb->ccb_h.path_id = 709 periph->path->bus->path_id; 710 ccb->ccb_h.target_id = 711 periph->path->target->target_id; 712 ccb->ccb_h.target_lun = 713 periph->path->device->lun_id; 714 ccb->ccb_h.status = CAM_REQ_CMP; 715 break; 716 } 717 } 718 } 719 720 /* 721 * If the periph is null here, one of two things has 722 * happened. The first possibility is that we couldn't 723 * find the unit number of the particular peripheral driver 724 * that the user is asking about. e.g. the user asks for 725 * the passthrough driver for "da11". We find the list of 726 * "da" peripherals all right, but there is no unit 11. 727 * The other possibility is that we went through the list 728 * of peripheral drivers attached to the device structure, 729 * but didn't find one with the name "pass". Either way, 730 * we return ENOENT, since we couldn't find something. 731 */ 732 if (periph == NULL) { 733 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 734 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 735 *ccb->cgdl.periph_name = '\0'; 736 ccb->cgdl.unit_number = 0; 737 error = ENOENT; 738 /* 739 * It is unfortunate that this is even necessary, 740 * but there are many, many clueless users out there. 741 * If this is true, the user is looking for the 742 * passthrough driver, but doesn't have one in his 743 * kernel. 744 */ 745 if (base_periph_found == 1) { 746 printf("xptioctl: pass driver is not in the " 747 "kernel\n"); 748 printf("xptioctl: put \"device pass\" in " 749 "your kernel config file\n"); 750 } 751 } 752 xpt_unlock_buses(); 753 break; 754 } 755 default: 756 error = ENOTTY; 757 break; 758 } 759 760 return(error); 761 } 762 763 static int 764 cam_module_event_handler(module_t mod, int what, void *arg) 765 { 766 int error; 767 768 switch (what) { 769 case MOD_LOAD: 770 if ((error = xpt_init(NULL)) != 0) 771 return (error); 772 break; 773 case MOD_UNLOAD: 774 return EBUSY; 775 default: 776 return EOPNOTSUPP; 777 } 778 779 return 0; 780 } 781 782 static struct xpt_proto * 783 xpt_proto_find(cam_proto proto) 784 { 785 struct xpt_proto **pp; 786 787 SET_FOREACH(pp, cam_xpt_proto_set) { 788 if ((*pp)->proto == proto) 789 return *pp; 790 } 791 792 return NULL; 793 } 794 795 static void 796 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 797 { 798 799 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 800 xpt_free_path(done_ccb->ccb_h.path); 801 xpt_free_ccb(done_ccb); 802 } else { 803 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 804 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 805 } 806 xpt_release_boot(); 807 } 808 809 /* thread to handle bus rescans */ 810 static void 811 xpt_scanner_thread(void *dummy) 812 { 813 union ccb *ccb; 814 struct cam_path path; 815 816 xpt_lock_buses(); 817 for (;;) { 818 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 819 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 820 "-", 0); 821 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 822 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 823 xpt_unlock_buses(); 824 825 /* 826 * Since lock can be dropped inside and path freed 827 * by completion callback even before return here, 828 * take our own path copy for reference. 829 */ 830 xpt_copy_path(&path, ccb->ccb_h.path); 831 xpt_path_lock(&path); 832 xpt_action(ccb); 833 xpt_path_unlock(&path); 834 xpt_release_path(&path); 835 836 xpt_lock_buses(); 837 } 838 } 839 } 840 841 void 842 xpt_rescan(union ccb *ccb) 843 { 844 struct ccb_hdr *hdr; 845 846 /* Prepare request */ 847 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 848 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 849 ccb->ccb_h.func_code = XPT_SCAN_BUS; 850 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 851 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 852 ccb->ccb_h.func_code = XPT_SCAN_TGT; 853 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 854 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 855 ccb->ccb_h.func_code = XPT_SCAN_LUN; 856 else { 857 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 858 xpt_free_path(ccb->ccb_h.path); 859 xpt_free_ccb(ccb); 860 return; 861 } 862 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 863 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 864 xpt_action_name(ccb->ccb_h.func_code))); 865 866 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 867 ccb->ccb_h.cbfcnp = xpt_rescan_done; 868 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 869 /* Don't make duplicate entries for the same paths. */ 870 xpt_lock_buses(); 871 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 872 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 873 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 874 wakeup(&xsoftc.ccb_scanq); 875 xpt_unlock_buses(); 876 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 877 xpt_free_path(ccb->ccb_h.path); 878 xpt_free_ccb(ccb); 879 return; 880 } 881 } 882 } 883 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 884 xsoftc.buses_to_config++; 885 wakeup(&xsoftc.ccb_scanq); 886 xpt_unlock_buses(); 887 } 888 889 /* Functions accessed by the peripheral drivers */ 890 static int 891 xpt_init(void *dummy) 892 { 893 struct cam_sim *xpt_sim; 894 struct cam_path *path; 895 struct cam_devq *devq; 896 cam_status status; 897 int error, i; 898 899 TAILQ_INIT(&xsoftc.xpt_busses); 900 TAILQ_INIT(&xsoftc.ccb_scanq); 901 STAILQ_INIT(&xsoftc.highpowerq); 902 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 903 904 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 905 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 906 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 907 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 908 909 #ifdef CAM_BOOT_DELAY 910 /* 911 * Override this value at compile time to assist our users 912 * who don't use loader to boot a kernel. 913 */ 914 xsoftc.boot_delay = CAM_BOOT_DELAY; 915 #endif 916 /* 917 * The xpt layer is, itself, the equivalent of a SIM. 918 * Allow 16 ccbs in the ccb pool for it. This should 919 * give decent parallelism when we probe buses and 920 * perform other XPT functions. 921 */ 922 devq = cam_simq_alloc(16); 923 xpt_sim = cam_sim_alloc(xptaction, 924 xptpoll, 925 "xpt", 926 /*softc*/NULL, 927 /*unit*/0, 928 /*mtx*/&xsoftc.xpt_lock, 929 /*max_dev_transactions*/0, 930 /*max_tagged_dev_transactions*/0, 931 devq); 932 if (xpt_sim == NULL) 933 return (ENOMEM); 934 935 mtx_lock(&xsoftc.xpt_lock); 936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 937 mtx_unlock(&xsoftc.xpt_lock); 938 printf("xpt_init: xpt_bus_register failed with status %#x," 939 " failing attach\n", status); 940 return (EINVAL); 941 } 942 mtx_unlock(&xsoftc.xpt_lock); 943 944 /* 945 * Looking at the XPT from the SIM layer, the XPT is 946 * the equivalent of a peripheral driver. Allocate 947 * a peripheral driver entry for us. 948 */ 949 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 950 CAM_TARGET_WILDCARD, 951 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 952 printf("xpt_init: xpt_create_path failed with status %#x," 953 " failing attach\n", status); 954 return (EINVAL); 955 } 956 xpt_path_lock(path); 957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 958 path, NULL, 0, xpt_sim); 959 xpt_path_unlock(path); 960 xpt_free_path(path); 961 962 if (cam_num_doneqs < 1) 963 cam_num_doneqs = 1 + mp_ncpus / 6; 964 else if (cam_num_doneqs > MAXCPU) 965 cam_num_doneqs = MAXCPU; 966 for (i = 0; i < cam_num_doneqs; i++) { 967 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 968 MTX_DEF); 969 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 970 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 971 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 972 if (error != 0) { 973 cam_num_doneqs = i; 974 break; 975 } 976 } 977 if (cam_num_doneqs < 1) { 978 printf("xpt_init: Cannot init completion queues " 979 "- failing attach\n"); 980 return (ENOMEM); 981 } 982 /* 983 * Register a callback for when interrupts are enabled. 984 */ 985 xsoftc.xpt_config_hook.ich_func = xpt_config; 986 if (config_intrhook_establish(&xsoftc.xpt_config_hook) != 0) { 987 printf("xpt_init: config_intrhook_establish failed " 988 "- failing attach\n"); 989 } 990 991 return (0); 992 } 993 994 static cam_status 995 xptregister(struct cam_periph *periph, void *arg) 996 { 997 struct cam_sim *xpt_sim; 998 999 if (periph == NULL) { 1000 printf("xptregister: periph was NULL!!\n"); 1001 return(CAM_REQ_CMP_ERR); 1002 } 1003 1004 xpt_sim = (struct cam_sim *)arg; 1005 xpt_sim->softc = periph; 1006 xpt_periph = periph; 1007 periph->softc = NULL; 1008 1009 return(CAM_REQ_CMP); 1010 } 1011 1012 int32_t 1013 xpt_add_periph(struct cam_periph *periph) 1014 { 1015 struct cam_ed *device; 1016 int32_t status; 1017 1018 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1019 device = periph->path->device; 1020 status = CAM_REQ_CMP; 1021 if (device != NULL) { 1022 mtx_lock(&device->target->bus->eb_mtx); 1023 device->generation++; 1024 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1025 mtx_unlock(&device->target->bus->eb_mtx); 1026 atomic_add_32(&xsoftc.xpt_generation, 1); 1027 } 1028 1029 return (status); 1030 } 1031 1032 void 1033 xpt_remove_periph(struct cam_periph *periph) 1034 { 1035 struct cam_ed *device; 1036 1037 device = periph->path->device; 1038 if (device != NULL) { 1039 mtx_lock(&device->target->bus->eb_mtx); 1040 device->generation++; 1041 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1042 mtx_unlock(&device->target->bus->eb_mtx); 1043 atomic_add_32(&xsoftc.xpt_generation, 1); 1044 } 1045 } 1046 1047 1048 void 1049 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1050 { 1051 struct cam_path *path = periph->path; 1052 struct xpt_proto *proto; 1053 1054 cam_periph_assert(periph, MA_OWNED); 1055 periph->flags |= CAM_PERIPH_ANNOUNCED; 1056 1057 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1058 periph->periph_name, periph->unit_number, 1059 path->bus->sim->sim_name, 1060 path->bus->sim->unit_number, 1061 path->bus->sim->bus_id, 1062 path->bus->path_id, 1063 path->target->target_id, 1064 (uintmax_t)path->device->lun_id); 1065 printf("%s%d: ", periph->periph_name, periph->unit_number); 1066 proto = xpt_proto_find(path->device->protocol); 1067 if (proto) 1068 proto->ops->announce(path->device); 1069 else 1070 printf("%s%d: Unknown protocol device %d\n", 1071 periph->periph_name, periph->unit_number, 1072 path->device->protocol); 1073 if (path->device->serial_num_len > 0) { 1074 /* Don't wrap the screen - print only the first 60 chars */ 1075 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1076 periph->unit_number, path->device->serial_num); 1077 } 1078 /* Announce transport details. */ 1079 path->bus->xport->ops->announce(periph); 1080 /* Announce command queueing. */ 1081 if (path->device->inq_flags & SID_CmdQue 1082 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1083 printf("%s%d: Command Queueing enabled\n", 1084 periph->periph_name, periph->unit_number); 1085 } 1086 /* Announce caller's details if they've passed in. */ 1087 if (announce_string != NULL) 1088 printf("%s%d: %s\n", periph->periph_name, 1089 periph->unit_number, announce_string); 1090 } 1091 1092 void 1093 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1094 char *announce_string) 1095 { 1096 struct cam_path *path = periph->path; 1097 struct xpt_proto *proto; 1098 1099 cam_periph_assert(periph, MA_OWNED); 1100 periph->flags |= CAM_PERIPH_ANNOUNCED; 1101 1102 /* Fall back to the non-sbuf method if necessary */ 1103 if (xsoftc.announce_nosbuf != 0) { 1104 xpt_announce_periph(periph, announce_string); 1105 return; 1106 } 1107 proto = xpt_proto_find(path->device->protocol); 1108 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1109 (path->bus->xport->ops->announce_sbuf == NULL)) { 1110 xpt_announce_periph(periph, announce_string); 1111 return; 1112 } 1113 1114 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1115 periph->periph_name, periph->unit_number, 1116 path->bus->sim->sim_name, 1117 path->bus->sim->unit_number, 1118 path->bus->sim->bus_id, 1119 path->bus->path_id, 1120 path->target->target_id, 1121 (uintmax_t)path->device->lun_id); 1122 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1123 1124 if (proto) 1125 proto->ops->announce_sbuf(path->device, sb); 1126 else 1127 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1128 periph->periph_name, periph->unit_number, 1129 path->device->protocol); 1130 if (path->device->serial_num_len > 0) { 1131 /* Don't wrap the screen - print only the first 60 chars */ 1132 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1133 periph->periph_name, periph->unit_number, 1134 path->device->serial_num); 1135 } 1136 /* Announce transport details. */ 1137 path->bus->xport->ops->announce_sbuf(periph, sb); 1138 /* Announce command queueing. */ 1139 if (path->device->inq_flags & SID_CmdQue 1140 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1141 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1142 periph->periph_name, periph->unit_number); 1143 } 1144 /* Announce caller's details if they've passed in. */ 1145 if (announce_string != NULL) 1146 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1147 periph->unit_number, announce_string); 1148 } 1149 1150 void 1151 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1152 { 1153 if (quirks != 0) { 1154 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1155 periph->unit_number, quirks, bit_string); 1156 } 1157 } 1158 1159 void 1160 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1161 int quirks, char *bit_string) 1162 { 1163 if (xsoftc.announce_nosbuf != 0) { 1164 xpt_announce_quirks(periph, quirks, bit_string); 1165 return; 1166 } 1167 1168 if (quirks != 0) { 1169 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1170 periph->unit_number, quirks, bit_string); 1171 } 1172 } 1173 1174 void 1175 xpt_denounce_periph(struct cam_periph *periph) 1176 { 1177 struct cam_path *path = periph->path; 1178 struct xpt_proto *proto; 1179 1180 cam_periph_assert(periph, MA_OWNED); 1181 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1182 periph->periph_name, periph->unit_number, 1183 path->bus->sim->sim_name, 1184 path->bus->sim->unit_number, 1185 path->bus->sim->bus_id, 1186 path->bus->path_id, 1187 path->target->target_id, 1188 (uintmax_t)path->device->lun_id); 1189 printf("%s%d: ", periph->periph_name, periph->unit_number); 1190 proto = xpt_proto_find(path->device->protocol); 1191 if (proto) 1192 proto->ops->denounce(path->device); 1193 else 1194 printf("%s%d: Unknown protocol device %d\n", 1195 periph->periph_name, periph->unit_number, 1196 path->device->protocol); 1197 if (path->device->serial_num_len > 0) 1198 printf(" s/n %.60s", path->device->serial_num); 1199 printf(" detached\n"); 1200 } 1201 1202 void 1203 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1204 { 1205 struct cam_path *path = periph->path; 1206 struct xpt_proto *proto; 1207 1208 cam_periph_assert(periph, MA_OWNED); 1209 1210 /* Fall back to the non-sbuf method if necessary */ 1211 if (xsoftc.announce_nosbuf != 0) { 1212 xpt_denounce_periph(periph); 1213 return; 1214 } 1215 proto = xpt_proto_find(path->device->protocol); 1216 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1217 xpt_denounce_periph(periph); 1218 return; 1219 } 1220 1221 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1222 periph->periph_name, periph->unit_number, 1223 path->bus->sim->sim_name, 1224 path->bus->sim->unit_number, 1225 path->bus->sim->bus_id, 1226 path->bus->path_id, 1227 path->target->target_id, 1228 (uintmax_t)path->device->lun_id); 1229 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1230 1231 if (proto) 1232 proto->ops->denounce_sbuf(path->device, sb); 1233 else 1234 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1235 periph->periph_name, periph->unit_number, 1236 path->device->protocol); 1237 if (path->device->serial_num_len > 0) 1238 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1239 sbuf_printf(sb, " detached\n"); 1240 } 1241 1242 int 1243 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1244 { 1245 int ret = -1, l, o; 1246 struct ccb_dev_advinfo cdai; 1247 struct scsi_vpd_id_descriptor *idd; 1248 1249 xpt_path_assert(path, MA_OWNED); 1250 1251 memset(&cdai, 0, sizeof(cdai)); 1252 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1253 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1254 cdai.flags = CDAI_FLAG_NONE; 1255 cdai.bufsiz = len; 1256 1257 if (!strcmp(attr, "GEOM::ident")) 1258 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1259 else if (!strcmp(attr, "GEOM::physpath")) 1260 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1261 else if (strcmp(attr, "GEOM::lunid") == 0 || 1262 strcmp(attr, "GEOM::lunname") == 0) { 1263 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1264 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1265 } else 1266 goto out; 1267 1268 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1269 if (cdai.buf == NULL) { 1270 ret = ENOMEM; 1271 goto out; 1272 } 1273 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1274 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1275 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1276 if (cdai.provsiz == 0) 1277 goto out; 1278 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1279 if (strcmp(attr, "GEOM::lunid") == 0) { 1280 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1281 cdai.provsiz, scsi_devid_is_lun_naa); 1282 if (idd == NULL) 1283 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1284 cdai.provsiz, scsi_devid_is_lun_eui64); 1285 if (idd == NULL) 1286 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1287 cdai.provsiz, scsi_devid_is_lun_uuid); 1288 if (idd == NULL) 1289 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1290 cdai.provsiz, scsi_devid_is_lun_md5); 1291 } else 1292 idd = NULL; 1293 if (idd == NULL) 1294 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1295 cdai.provsiz, scsi_devid_is_lun_t10); 1296 if (idd == NULL) 1297 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1298 cdai.provsiz, scsi_devid_is_lun_name); 1299 if (idd == NULL) 1300 goto out; 1301 ret = 0; 1302 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1303 if (idd->length < len) { 1304 for (l = 0; l < idd->length; l++) 1305 buf[l] = idd->identifier[l] ? 1306 idd->identifier[l] : ' '; 1307 buf[l] = 0; 1308 } else 1309 ret = EFAULT; 1310 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1311 l = strnlen(idd->identifier, idd->length); 1312 if (l < len) { 1313 bcopy(idd->identifier, buf, l); 1314 buf[l] = 0; 1315 } else 1316 ret = EFAULT; 1317 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1318 && idd->identifier[0] == 0x10) { 1319 if ((idd->length - 2) * 2 + 4 < len) { 1320 for (l = 2, o = 0; l < idd->length; l++) { 1321 if (l == 6 || l == 8 || l == 10 || l == 12) 1322 o += sprintf(buf + o, "-"); 1323 o += sprintf(buf + o, "%02x", 1324 idd->identifier[l]); 1325 } 1326 } else 1327 ret = EFAULT; 1328 } else { 1329 if (idd->length * 2 < len) { 1330 for (l = 0; l < idd->length; l++) 1331 sprintf(buf + l * 2, "%02x", 1332 idd->identifier[l]); 1333 } else 1334 ret = EFAULT; 1335 } 1336 } else { 1337 ret = 0; 1338 if (strlcpy(buf, cdai.buf, len) >= len) 1339 ret = EFAULT; 1340 } 1341 1342 out: 1343 if (cdai.buf != NULL) 1344 free(cdai.buf, M_CAMXPT); 1345 return ret; 1346 } 1347 1348 static dev_match_ret 1349 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1350 struct cam_eb *bus) 1351 { 1352 dev_match_ret retval; 1353 u_int i; 1354 1355 retval = DM_RET_NONE; 1356 1357 /* 1358 * If we aren't given something to match against, that's an error. 1359 */ 1360 if (bus == NULL) 1361 return(DM_RET_ERROR); 1362 1363 /* 1364 * If there are no match entries, then this bus matches no 1365 * matter what. 1366 */ 1367 if ((patterns == NULL) || (num_patterns == 0)) 1368 return(DM_RET_DESCEND | DM_RET_COPY); 1369 1370 for (i = 0; i < num_patterns; i++) { 1371 struct bus_match_pattern *cur_pattern; 1372 1373 /* 1374 * If the pattern in question isn't for a bus node, we 1375 * aren't interested. However, we do indicate to the 1376 * calling routine that we should continue descending the 1377 * tree, since the user wants to match against lower-level 1378 * EDT elements. 1379 */ 1380 if (patterns[i].type != DEV_MATCH_BUS) { 1381 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1382 retval |= DM_RET_DESCEND; 1383 continue; 1384 } 1385 1386 cur_pattern = &patterns[i].pattern.bus_pattern; 1387 1388 /* 1389 * If they want to match any bus node, we give them any 1390 * device node. 1391 */ 1392 if (cur_pattern->flags == BUS_MATCH_ANY) { 1393 /* set the copy flag */ 1394 retval |= DM_RET_COPY; 1395 1396 /* 1397 * If we've already decided on an action, go ahead 1398 * and return. 1399 */ 1400 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1401 return(retval); 1402 } 1403 1404 /* 1405 * Not sure why someone would do this... 1406 */ 1407 if (cur_pattern->flags == BUS_MATCH_NONE) 1408 continue; 1409 1410 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1411 && (cur_pattern->path_id != bus->path_id)) 1412 continue; 1413 1414 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1415 && (cur_pattern->bus_id != bus->sim->bus_id)) 1416 continue; 1417 1418 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1419 && (cur_pattern->unit_number != bus->sim->unit_number)) 1420 continue; 1421 1422 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1423 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1424 DEV_IDLEN) != 0)) 1425 continue; 1426 1427 /* 1428 * If we get to this point, the user definitely wants 1429 * information on this bus. So tell the caller to copy the 1430 * data out. 1431 */ 1432 retval |= DM_RET_COPY; 1433 1434 /* 1435 * If the return action has been set to descend, then we 1436 * know that we've already seen a non-bus matching 1437 * expression, therefore we need to further descend the tree. 1438 * This won't change by continuing around the loop, so we 1439 * go ahead and return. If we haven't seen a non-bus 1440 * matching expression, we keep going around the loop until 1441 * we exhaust the matching expressions. We'll set the stop 1442 * flag once we fall out of the loop. 1443 */ 1444 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1445 return(retval); 1446 } 1447 1448 /* 1449 * If the return action hasn't been set to descend yet, that means 1450 * we haven't seen anything other than bus matching patterns. So 1451 * tell the caller to stop descending the tree -- the user doesn't 1452 * want to match against lower level tree elements. 1453 */ 1454 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1455 retval |= DM_RET_STOP; 1456 1457 return(retval); 1458 } 1459 1460 static dev_match_ret 1461 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1462 struct cam_ed *device) 1463 { 1464 dev_match_ret retval; 1465 u_int i; 1466 1467 retval = DM_RET_NONE; 1468 1469 /* 1470 * If we aren't given something to match against, that's an error. 1471 */ 1472 if (device == NULL) 1473 return(DM_RET_ERROR); 1474 1475 /* 1476 * If there are no match entries, then this device matches no 1477 * matter what. 1478 */ 1479 if ((patterns == NULL) || (num_patterns == 0)) 1480 return(DM_RET_DESCEND | DM_RET_COPY); 1481 1482 for (i = 0; i < num_patterns; i++) { 1483 struct device_match_pattern *cur_pattern; 1484 struct scsi_vpd_device_id *device_id_page; 1485 1486 /* 1487 * If the pattern in question isn't for a device node, we 1488 * aren't interested. 1489 */ 1490 if (patterns[i].type != DEV_MATCH_DEVICE) { 1491 if ((patterns[i].type == DEV_MATCH_PERIPH) 1492 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1493 retval |= DM_RET_DESCEND; 1494 continue; 1495 } 1496 1497 cur_pattern = &patterns[i].pattern.device_pattern; 1498 1499 /* Error out if mutually exclusive options are specified. */ 1500 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1501 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1502 return(DM_RET_ERROR); 1503 1504 /* 1505 * If they want to match any device node, we give them any 1506 * device node. 1507 */ 1508 if (cur_pattern->flags == DEV_MATCH_ANY) 1509 goto copy_dev_node; 1510 1511 /* 1512 * Not sure why someone would do this... 1513 */ 1514 if (cur_pattern->flags == DEV_MATCH_NONE) 1515 continue; 1516 1517 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1518 && (cur_pattern->path_id != device->target->bus->path_id)) 1519 continue; 1520 1521 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1522 && (cur_pattern->target_id != device->target->target_id)) 1523 continue; 1524 1525 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1526 && (cur_pattern->target_lun != device->lun_id)) 1527 continue; 1528 1529 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1530 && (cam_quirkmatch((caddr_t)&device->inq_data, 1531 (caddr_t)&cur_pattern->data.inq_pat, 1532 1, sizeof(cur_pattern->data.inq_pat), 1533 scsi_static_inquiry_match) == NULL)) 1534 continue; 1535 1536 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1537 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1538 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1539 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1540 device->device_id_len 1541 - SVPD_DEVICE_ID_HDR_LEN, 1542 cur_pattern->data.devid_pat.id, 1543 cur_pattern->data.devid_pat.id_len) != 0)) 1544 continue; 1545 1546 copy_dev_node: 1547 /* 1548 * If we get to this point, the user definitely wants 1549 * information on this device. So tell the caller to copy 1550 * the data out. 1551 */ 1552 retval |= DM_RET_COPY; 1553 1554 /* 1555 * If the return action has been set to descend, then we 1556 * know that we've already seen a peripheral matching 1557 * expression, therefore we need to further descend the tree. 1558 * This won't change by continuing around the loop, so we 1559 * go ahead and return. If we haven't seen a peripheral 1560 * matching expression, we keep going around the loop until 1561 * we exhaust the matching expressions. We'll set the stop 1562 * flag once we fall out of the loop. 1563 */ 1564 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1565 return(retval); 1566 } 1567 1568 /* 1569 * If the return action hasn't been set to descend yet, that means 1570 * we haven't seen any peripheral matching patterns. So tell the 1571 * caller to stop descending the tree -- the user doesn't want to 1572 * match against lower level tree elements. 1573 */ 1574 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1575 retval |= DM_RET_STOP; 1576 1577 return(retval); 1578 } 1579 1580 /* 1581 * Match a single peripheral against any number of match patterns. 1582 */ 1583 static dev_match_ret 1584 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1585 struct cam_periph *periph) 1586 { 1587 dev_match_ret retval; 1588 u_int i; 1589 1590 /* 1591 * If we aren't given something to match against, that's an error. 1592 */ 1593 if (periph == NULL) 1594 return(DM_RET_ERROR); 1595 1596 /* 1597 * If there are no match entries, then this peripheral matches no 1598 * matter what. 1599 */ 1600 if ((patterns == NULL) || (num_patterns == 0)) 1601 return(DM_RET_STOP | DM_RET_COPY); 1602 1603 /* 1604 * There aren't any nodes below a peripheral node, so there's no 1605 * reason to descend the tree any further. 1606 */ 1607 retval = DM_RET_STOP; 1608 1609 for (i = 0; i < num_patterns; i++) { 1610 struct periph_match_pattern *cur_pattern; 1611 1612 /* 1613 * If the pattern in question isn't for a peripheral, we 1614 * aren't interested. 1615 */ 1616 if (patterns[i].type != DEV_MATCH_PERIPH) 1617 continue; 1618 1619 cur_pattern = &patterns[i].pattern.periph_pattern; 1620 1621 /* 1622 * If they want to match on anything, then we will do so. 1623 */ 1624 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1625 /* set the copy flag */ 1626 retval |= DM_RET_COPY; 1627 1628 /* 1629 * We've already set the return action to stop, 1630 * since there are no nodes below peripherals in 1631 * the tree. 1632 */ 1633 return(retval); 1634 } 1635 1636 /* 1637 * Not sure why someone would do this... 1638 */ 1639 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1640 continue; 1641 1642 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1643 && (cur_pattern->path_id != periph->path->bus->path_id)) 1644 continue; 1645 1646 /* 1647 * For the target and lun id's, we have to make sure the 1648 * target and lun pointers aren't NULL. The xpt peripheral 1649 * has a wildcard target and device. 1650 */ 1651 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1652 && ((periph->path->target == NULL) 1653 ||(cur_pattern->target_id != periph->path->target->target_id))) 1654 continue; 1655 1656 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1657 && ((periph->path->device == NULL) 1658 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1659 continue; 1660 1661 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1662 && (cur_pattern->unit_number != periph->unit_number)) 1663 continue; 1664 1665 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1666 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1667 DEV_IDLEN) != 0)) 1668 continue; 1669 1670 /* 1671 * If we get to this point, the user definitely wants 1672 * information on this peripheral. So tell the caller to 1673 * copy the data out. 1674 */ 1675 retval |= DM_RET_COPY; 1676 1677 /* 1678 * The return action has already been set to stop, since 1679 * peripherals don't have any nodes below them in the EDT. 1680 */ 1681 return(retval); 1682 } 1683 1684 /* 1685 * If we get to this point, the peripheral that was passed in 1686 * doesn't match any of the patterns. 1687 */ 1688 return(retval); 1689 } 1690 1691 static int 1692 xptedtbusfunc(struct cam_eb *bus, void *arg) 1693 { 1694 struct ccb_dev_match *cdm; 1695 struct cam_et *target; 1696 dev_match_ret retval; 1697 1698 cdm = (struct ccb_dev_match *)arg; 1699 1700 /* 1701 * If our position is for something deeper in the tree, that means 1702 * that we've already seen this node. So, we keep going down. 1703 */ 1704 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1705 && (cdm->pos.cookie.bus == bus) 1706 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1707 && (cdm->pos.cookie.target != NULL)) 1708 retval = DM_RET_DESCEND; 1709 else 1710 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1711 1712 /* 1713 * If we got an error, bail out of the search. 1714 */ 1715 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1716 cdm->status = CAM_DEV_MATCH_ERROR; 1717 return(0); 1718 } 1719 1720 /* 1721 * If the copy flag is set, copy this bus out. 1722 */ 1723 if (retval & DM_RET_COPY) { 1724 int spaceleft, j; 1725 1726 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1727 sizeof(struct dev_match_result)); 1728 1729 /* 1730 * If we don't have enough space to put in another 1731 * match result, save our position and tell the 1732 * user there are more devices to check. 1733 */ 1734 if (spaceleft < sizeof(struct dev_match_result)) { 1735 bzero(&cdm->pos, sizeof(cdm->pos)); 1736 cdm->pos.position_type = 1737 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1738 1739 cdm->pos.cookie.bus = bus; 1740 cdm->pos.generations[CAM_BUS_GENERATION]= 1741 xsoftc.bus_generation; 1742 cdm->status = CAM_DEV_MATCH_MORE; 1743 return(0); 1744 } 1745 j = cdm->num_matches; 1746 cdm->num_matches++; 1747 cdm->matches[j].type = DEV_MATCH_BUS; 1748 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1749 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1750 cdm->matches[j].result.bus_result.unit_number = 1751 bus->sim->unit_number; 1752 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1753 bus->sim->sim_name, 1754 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1755 } 1756 1757 /* 1758 * If the user is only interested in buses, there's no 1759 * reason to descend to the next level in the tree. 1760 */ 1761 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1762 return(1); 1763 1764 /* 1765 * If there is a target generation recorded, check it to 1766 * make sure the target list hasn't changed. 1767 */ 1768 mtx_lock(&bus->eb_mtx); 1769 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1770 && (cdm->pos.cookie.bus == bus) 1771 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1772 && (cdm->pos.cookie.target != NULL)) { 1773 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1774 bus->generation)) { 1775 mtx_unlock(&bus->eb_mtx); 1776 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1777 return (0); 1778 } 1779 target = (struct cam_et *)cdm->pos.cookie.target; 1780 target->refcount++; 1781 } else 1782 target = NULL; 1783 mtx_unlock(&bus->eb_mtx); 1784 1785 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1786 } 1787 1788 static int 1789 xptedttargetfunc(struct cam_et *target, void *arg) 1790 { 1791 struct ccb_dev_match *cdm; 1792 struct cam_eb *bus; 1793 struct cam_ed *device; 1794 1795 cdm = (struct ccb_dev_match *)arg; 1796 bus = target->bus; 1797 1798 /* 1799 * If there is a device list generation recorded, check it to 1800 * make sure the device list hasn't changed. 1801 */ 1802 mtx_lock(&bus->eb_mtx); 1803 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1804 && (cdm->pos.cookie.bus == bus) 1805 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1806 && (cdm->pos.cookie.target == target) 1807 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1808 && (cdm->pos.cookie.device != NULL)) { 1809 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1810 target->generation) { 1811 mtx_unlock(&bus->eb_mtx); 1812 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1813 return(0); 1814 } 1815 device = (struct cam_ed *)cdm->pos.cookie.device; 1816 device->refcount++; 1817 } else 1818 device = NULL; 1819 mtx_unlock(&bus->eb_mtx); 1820 1821 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1822 } 1823 1824 static int 1825 xptedtdevicefunc(struct cam_ed *device, void *arg) 1826 { 1827 struct cam_eb *bus; 1828 struct cam_periph *periph; 1829 struct ccb_dev_match *cdm; 1830 dev_match_ret retval; 1831 1832 cdm = (struct ccb_dev_match *)arg; 1833 bus = device->target->bus; 1834 1835 /* 1836 * If our position is for something deeper in the tree, that means 1837 * that we've already seen this node. So, we keep going down. 1838 */ 1839 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1840 && (cdm->pos.cookie.device == device) 1841 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1842 && (cdm->pos.cookie.periph != NULL)) 1843 retval = DM_RET_DESCEND; 1844 else 1845 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1846 device); 1847 1848 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1849 cdm->status = CAM_DEV_MATCH_ERROR; 1850 return(0); 1851 } 1852 1853 /* 1854 * If the copy flag is set, copy this device out. 1855 */ 1856 if (retval & DM_RET_COPY) { 1857 int spaceleft, j; 1858 1859 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1860 sizeof(struct dev_match_result)); 1861 1862 /* 1863 * If we don't have enough space to put in another 1864 * match result, save our position and tell the 1865 * user there are more devices to check. 1866 */ 1867 if (spaceleft < sizeof(struct dev_match_result)) { 1868 bzero(&cdm->pos, sizeof(cdm->pos)); 1869 cdm->pos.position_type = 1870 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1871 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1872 1873 cdm->pos.cookie.bus = device->target->bus; 1874 cdm->pos.generations[CAM_BUS_GENERATION]= 1875 xsoftc.bus_generation; 1876 cdm->pos.cookie.target = device->target; 1877 cdm->pos.generations[CAM_TARGET_GENERATION] = 1878 device->target->bus->generation; 1879 cdm->pos.cookie.device = device; 1880 cdm->pos.generations[CAM_DEV_GENERATION] = 1881 device->target->generation; 1882 cdm->status = CAM_DEV_MATCH_MORE; 1883 return(0); 1884 } 1885 j = cdm->num_matches; 1886 cdm->num_matches++; 1887 cdm->matches[j].type = DEV_MATCH_DEVICE; 1888 cdm->matches[j].result.device_result.path_id = 1889 device->target->bus->path_id; 1890 cdm->matches[j].result.device_result.target_id = 1891 device->target->target_id; 1892 cdm->matches[j].result.device_result.target_lun = 1893 device->lun_id; 1894 cdm->matches[j].result.device_result.protocol = 1895 device->protocol; 1896 bcopy(&device->inq_data, 1897 &cdm->matches[j].result.device_result.inq_data, 1898 sizeof(struct scsi_inquiry_data)); 1899 bcopy(&device->ident_data, 1900 &cdm->matches[j].result.device_result.ident_data, 1901 sizeof(struct ata_params)); 1902 1903 /* Let the user know whether this device is unconfigured */ 1904 if (device->flags & CAM_DEV_UNCONFIGURED) 1905 cdm->matches[j].result.device_result.flags = 1906 DEV_RESULT_UNCONFIGURED; 1907 else 1908 cdm->matches[j].result.device_result.flags = 1909 DEV_RESULT_NOFLAG; 1910 } 1911 1912 /* 1913 * If the user isn't interested in peripherals, don't descend 1914 * the tree any further. 1915 */ 1916 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1917 return(1); 1918 1919 /* 1920 * If there is a peripheral list generation recorded, make sure 1921 * it hasn't changed. 1922 */ 1923 xpt_lock_buses(); 1924 mtx_lock(&bus->eb_mtx); 1925 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1926 && (cdm->pos.cookie.bus == bus) 1927 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1928 && (cdm->pos.cookie.target == device->target) 1929 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1930 && (cdm->pos.cookie.device == device) 1931 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1932 && (cdm->pos.cookie.periph != NULL)) { 1933 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1934 device->generation) { 1935 mtx_unlock(&bus->eb_mtx); 1936 xpt_unlock_buses(); 1937 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1938 return(0); 1939 } 1940 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1941 periph->refcount++; 1942 } else 1943 periph = NULL; 1944 mtx_unlock(&bus->eb_mtx); 1945 xpt_unlock_buses(); 1946 1947 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1948 } 1949 1950 static int 1951 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1952 { 1953 struct ccb_dev_match *cdm; 1954 dev_match_ret retval; 1955 1956 cdm = (struct ccb_dev_match *)arg; 1957 1958 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1959 1960 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1961 cdm->status = CAM_DEV_MATCH_ERROR; 1962 return(0); 1963 } 1964 1965 /* 1966 * If the copy flag is set, copy this peripheral out. 1967 */ 1968 if (retval & DM_RET_COPY) { 1969 int spaceleft, j; 1970 size_t l; 1971 1972 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1973 sizeof(struct dev_match_result)); 1974 1975 /* 1976 * If we don't have enough space to put in another 1977 * match result, save our position and tell the 1978 * user there are more devices to check. 1979 */ 1980 if (spaceleft < sizeof(struct dev_match_result)) { 1981 bzero(&cdm->pos, sizeof(cdm->pos)); 1982 cdm->pos.position_type = 1983 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1984 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1985 CAM_DEV_POS_PERIPH; 1986 1987 cdm->pos.cookie.bus = periph->path->bus; 1988 cdm->pos.generations[CAM_BUS_GENERATION]= 1989 xsoftc.bus_generation; 1990 cdm->pos.cookie.target = periph->path->target; 1991 cdm->pos.generations[CAM_TARGET_GENERATION] = 1992 periph->path->bus->generation; 1993 cdm->pos.cookie.device = periph->path->device; 1994 cdm->pos.generations[CAM_DEV_GENERATION] = 1995 periph->path->target->generation; 1996 cdm->pos.cookie.periph = periph; 1997 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1998 periph->path->device->generation; 1999 cdm->status = CAM_DEV_MATCH_MORE; 2000 return(0); 2001 } 2002 2003 j = cdm->num_matches; 2004 cdm->num_matches++; 2005 cdm->matches[j].type = DEV_MATCH_PERIPH; 2006 cdm->matches[j].result.periph_result.path_id = 2007 periph->path->bus->path_id; 2008 cdm->matches[j].result.periph_result.target_id = 2009 periph->path->target->target_id; 2010 cdm->matches[j].result.periph_result.target_lun = 2011 periph->path->device->lun_id; 2012 cdm->matches[j].result.periph_result.unit_number = 2013 periph->unit_number; 2014 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2015 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2016 periph->periph_name, l); 2017 } 2018 2019 return(1); 2020 } 2021 2022 static int 2023 xptedtmatch(struct ccb_dev_match *cdm) 2024 { 2025 struct cam_eb *bus; 2026 int ret; 2027 2028 cdm->num_matches = 0; 2029 2030 /* 2031 * Check the bus list generation. If it has changed, the user 2032 * needs to reset everything and start over. 2033 */ 2034 xpt_lock_buses(); 2035 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2036 && (cdm->pos.cookie.bus != NULL)) { 2037 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2038 xsoftc.bus_generation) { 2039 xpt_unlock_buses(); 2040 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2041 return(0); 2042 } 2043 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2044 bus->refcount++; 2045 } else 2046 bus = NULL; 2047 xpt_unlock_buses(); 2048 2049 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2050 2051 /* 2052 * If we get back 0, that means that we had to stop before fully 2053 * traversing the EDT. It also means that one of the subroutines 2054 * has set the status field to the proper value. If we get back 1, 2055 * we've fully traversed the EDT and copied out any matching entries. 2056 */ 2057 if (ret == 1) 2058 cdm->status = CAM_DEV_MATCH_LAST; 2059 2060 return(ret); 2061 } 2062 2063 static int 2064 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2065 { 2066 struct cam_periph *periph; 2067 struct ccb_dev_match *cdm; 2068 2069 cdm = (struct ccb_dev_match *)arg; 2070 2071 xpt_lock_buses(); 2072 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2073 && (cdm->pos.cookie.pdrv == pdrv) 2074 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2075 && (cdm->pos.cookie.periph != NULL)) { 2076 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2077 (*pdrv)->generation) { 2078 xpt_unlock_buses(); 2079 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2080 return(0); 2081 } 2082 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2083 periph->refcount++; 2084 } else 2085 periph = NULL; 2086 xpt_unlock_buses(); 2087 2088 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2089 } 2090 2091 static int 2092 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2093 { 2094 struct ccb_dev_match *cdm; 2095 dev_match_ret retval; 2096 2097 cdm = (struct ccb_dev_match *)arg; 2098 2099 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2100 2101 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2102 cdm->status = CAM_DEV_MATCH_ERROR; 2103 return(0); 2104 } 2105 2106 /* 2107 * If the copy flag is set, copy this peripheral out. 2108 */ 2109 if (retval & DM_RET_COPY) { 2110 int spaceleft, j; 2111 size_t l; 2112 2113 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2114 sizeof(struct dev_match_result)); 2115 2116 /* 2117 * If we don't have enough space to put in another 2118 * match result, save our position and tell the 2119 * user there are more devices to check. 2120 */ 2121 if (spaceleft < sizeof(struct dev_match_result)) { 2122 struct periph_driver **pdrv; 2123 2124 pdrv = NULL; 2125 bzero(&cdm->pos, sizeof(cdm->pos)); 2126 cdm->pos.position_type = 2127 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2128 CAM_DEV_POS_PERIPH; 2129 2130 /* 2131 * This may look a bit non-sensical, but it is 2132 * actually quite logical. There are very few 2133 * peripheral drivers, and bloating every peripheral 2134 * structure with a pointer back to its parent 2135 * peripheral driver linker set entry would cost 2136 * more in the long run than doing this quick lookup. 2137 */ 2138 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2139 if (strcmp((*pdrv)->driver_name, 2140 periph->periph_name) == 0) 2141 break; 2142 } 2143 2144 if (*pdrv == NULL) { 2145 cdm->status = CAM_DEV_MATCH_ERROR; 2146 return(0); 2147 } 2148 2149 cdm->pos.cookie.pdrv = pdrv; 2150 /* 2151 * The periph generation slot does double duty, as 2152 * does the periph pointer slot. They are used for 2153 * both edt and pdrv lookups and positioning. 2154 */ 2155 cdm->pos.cookie.periph = periph; 2156 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2157 (*pdrv)->generation; 2158 cdm->status = CAM_DEV_MATCH_MORE; 2159 return(0); 2160 } 2161 2162 j = cdm->num_matches; 2163 cdm->num_matches++; 2164 cdm->matches[j].type = DEV_MATCH_PERIPH; 2165 cdm->matches[j].result.periph_result.path_id = 2166 periph->path->bus->path_id; 2167 2168 /* 2169 * The transport layer peripheral doesn't have a target or 2170 * lun. 2171 */ 2172 if (periph->path->target) 2173 cdm->matches[j].result.periph_result.target_id = 2174 periph->path->target->target_id; 2175 else 2176 cdm->matches[j].result.periph_result.target_id = 2177 CAM_TARGET_WILDCARD; 2178 2179 if (periph->path->device) 2180 cdm->matches[j].result.periph_result.target_lun = 2181 periph->path->device->lun_id; 2182 else 2183 cdm->matches[j].result.periph_result.target_lun = 2184 CAM_LUN_WILDCARD; 2185 2186 cdm->matches[j].result.periph_result.unit_number = 2187 periph->unit_number; 2188 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2189 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2190 periph->periph_name, l); 2191 } 2192 2193 return(1); 2194 } 2195 2196 static int 2197 xptperiphlistmatch(struct ccb_dev_match *cdm) 2198 { 2199 int ret; 2200 2201 cdm->num_matches = 0; 2202 2203 /* 2204 * At this point in the edt traversal function, we check the bus 2205 * list generation to make sure that no buses have been added or 2206 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2207 * For the peripheral driver list traversal function, however, we 2208 * don't have to worry about new peripheral driver types coming or 2209 * going; they're in a linker set, and therefore can't change 2210 * without a recompile. 2211 */ 2212 2213 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2214 && (cdm->pos.cookie.pdrv != NULL)) 2215 ret = xptpdrvtraverse( 2216 (struct periph_driver **)cdm->pos.cookie.pdrv, 2217 xptplistpdrvfunc, cdm); 2218 else 2219 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2220 2221 /* 2222 * If we get back 0, that means that we had to stop before fully 2223 * traversing the peripheral driver tree. It also means that one of 2224 * the subroutines has set the status field to the proper value. If 2225 * we get back 1, we've fully traversed the EDT and copied out any 2226 * matching entries. 2227 */ 2228 if (ret == 1) 2229 cdm->status = CAM_DEV_MATCH_LAST; 2230 2231 return(ret); 2232 } 2233 2234 static int 2235 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2236 { 2237 struct cam_eb *bus, *next_bus; 2238 int retval; 2239 2240 retval = 1; 2241 if (start_bus) 2242 bus = start_bus; 2243 else { 2244 xpt_lock_buses(); 2245 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2246 if (bus == NULL) { 2247 xpt_unlock_buses(); 2248 return (retval); 2249 } 2250 bus->refcount++; 2251 xpt_unlock_buses(); 2252 } 2253 for (; bus != NULL; bus = next_bus) { 2254 retval = tr_func(bus, arg); 2255 if (retval == 0) { 2256 xpt_release_bus(bus); 2257 break; 2258 } 2259 xpt_lock_buses(); 2260 next_bus = TAILQ_NEXT(bus, links); 2261 if (next_bus) 2262 next_bus->refcount++; 2263 xpt_unlock_buses(); 2264 xpt_release_bus(bus); 2265 } 2266 return(retval); 2267 } 2268 2269 static int 2270 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2271 xpt_targetfunc_t *tr_func, void *arg) 2272 { 2273 struct cam_et *target, *next_target; 2274 int retval; 2275 2276 retval = 1; 2277 if (start_target) 2278 target = start_target; 2279 else { 2280 mtx_lock(&bus->eb_mtx); 2281 target = TAILQ_FIRST(&bus->et_entries); 2282 if (target == NULL) { 2283 mtx_unlock(&bus->eb_mtx); 2284 return (retval); 2285 } 2286 target->refcount++; 2287 mtx_unlock(&bus->eb_mtx); 2288 } 2289 for (; target != NULL; target = next_target) { 2290 retval = tr_func(target, arg); 2291 if (retval == 0) { 2292 xpt_release_target(target); 2293 break; 2294 } 2295 mtx_lock(&bus->eb_mtx); 2296 next_target = TAILQ_NEXT(target, links); 2297 if (next_target) 2298 next_target->refcount++; 2299 mtx_unlock(&bus->eb_mtx); 2300 xpt_release_target(target); 2301 } 2302 return(retval); 2303 } 2304 2305 static int 2306 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2307 xpt_devicefunc_t *tr_func, void *arg) 2308 { 2309 struct cam_eb *bus; 2310 struct cam_ed *device, *next_device; 2311 int retval; 2312 2313 retval = 1; 2314 bus = target->bus; 2315 if (start_device) 2316 device = start_device; 2317 else { 2318 mtx_lock(&bus->eb_mtx); 2319 device = TAILQ_FIRST(&target->ed_entries); 2320 if (device == NULL) { 2321 mtx_unlock(&bus->eb_mtx); 2322 return (retval); 2323 } 2324 device->refcount++; 2325 mtx_unlock(&bus->eb_mtx); 2326 } 2327 for (; device != NULL; device = next_device) { 2328 mtx_lock(&device->device_mtx); 2329 retval = tr_func(device, arg); 2330 mtx_unlock(&device->device_mtx); 2331 if (retval == 0) { 2332 xpt_release_device(device); 2333 break; 2334 } 2335 mtx_lock(&bus->eb_mtx); 2336 next_device = TAILQ_NEXT(device, links); 2337 if (next_device) 2338 next_device->refcount++; 2339 mtx_unlock(&bus->eb_mtx); 2340 xpt_release_device(device); 2341 } 2342 return(retval); 2343 } 2344 2345 static int 2346 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2347 xpt_periphfunc_t *tr_func, void *arg) 2348 { 2349 struct cam_eb *bus; 2350 struct cam_periph *periph, *next_periph; 2351 int retval; 2352 2353 retval = 1; 2354 2355 bus = device->target->bus; 2356 if (start_periph) 2357 periph = start_periph; 2358 else { 2359 xpt_lock_buses(); 2360 mtx_lock(&bus->eb_mtx); 2361 periph = SLIST_FIRST(&device->periphs); 2362 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2363 periph = SLIST_NEXT(periph, periph_links); 2364 if (periph == NULL) { 2365 mtx_unlock(&bus->eb_mtx); 2366 xpt_unlock_buses(); 2367 return (retval); 2368 } 2369 periph->refcount++; 2370 mtx_unlock(&bus->eb_mtx); 2371 xpt_unlock_buses(); 2372 } 2373 for (; periph != NULL; periph = next_periph) { 2374 retval = tr_func(periph, arg); 2375 if (retval == 0) { 2376 cam_periph_release_locked(periph); 2377 break; 2378 } 2379 xpt_lock_buses(); 2380 mtx_lock(&bus->eb_mtx); 2381 next_periph = SLIST_NEXT(periph, periph_links); 2382 while (next_periph != NULL && 2383 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2384 next_periph = SLIST_NEXT(next_periph, periph_links); 2385 if (next_periph) 2386 next_periph->refcount++; 2387 mtx_unlock(&bus->eb_mtx); 2388 xpt_unlock_buses(); 2389 cam_periph_release_locked(periph); 2390 } 2391 return(retval); 2392 } 2393 2394 static int 2395 xptpdrvtraverse(struct periph_driver **start_pdrv, 2396 xpt_pdrvfunc_t *tr_func, void *arg) 2397 { 2398 struct periph_driver **pdrv; 2399 int retval; 2400 2401 retval = 1; 2402 2403 /* 2404 * We don't traverse the peripheral driver list like we do the 2405 * other lists, because it is a linker set, and therefore cannot be 2406 * changed during runtime. If the peripheral driver list is ever 2407 * re-done to be something other than a linker set (i.e. it can 2408 * change while the system is running), the list traversal should 2409 * be modified to work like the other traversal functions. 2410 */ 2411 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2412 *pdrv != NULL; pdrv++) { 2413 retval = tr_func(pdrv, arg); 2414 2415 if (retval == 0) 2416 return(retval); 2417 } 2418 2419 return(retval); 2420 } 2421 2422 static int 2423 xptpdperiphtraverse(struct periph_driver **pdrv, 2424 struct cam_periph *start_periph, 2425 xpt_periphfunc_t *tr_func, void *arg) 2426 { 2427 struct cam_periph *periph, *next_periph; 2428 int retval; 2429 2430 retval = 1; 2431 2432 if (start_periph) 2433 periph = start_periph; 2434 else { 2435 xpt_lock_buses(); 2436 periph = TAILQ_FIRST(&(*pdrv)->units); 2437 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2438 periph = TAILQ_NEXT(periph, unit_links); 2439 if (periph == NULL) { 2440 xpt_unlock_buses(); 2441 return (retval); 2442 } 2443 periph->refcount++; 2444 xpt_unlock_buses(); 2445 } 2446 for (; periph != NULL; periph = next_periph) { 2447 cam_periph_lock(periph); 2448 retval = tr_func(periph, arg); 2449 cam_periph_unlock(periph); 2450 if (retval == 0) { 2451 cam_periph_release(periph); 2452 break; 2453 } 2454 xpt_lock_buses(); 2455 next_periph = TAILQ_NEXT(periph, unit_links); 2456 while (next_periph != NULL && 2457 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2458 next_periph = TAILQ_NEXT(next_periph, unit_links); 2459 if (next_periph) 2460 next_periph->refcount++; 2461 xpt_unlock_buses(); 2462 cam_periph_release(periph); 2463 } 2464 return(retval); 2465 } 2466 2467 static int 2468 xptdefbusfunc(struct cam_eb *bus, void *arg) 2469 { 2470 struct xpt_traverse_config *tr_config; 2471 2472 tr_config = (struct xpt_traverse_config *)arg; 2473 2474 if (tr_config->depth == XPT_DEPTH_BUS) { 2475 xpt_busfunc_t *tr_func; 2476 2477 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2478 2479 return(tr_func(bus, tr_config->tr_arg)); 2480 } else 2481 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2482 } 2483 2484 static int 2485 xptdeftargetfunc(struct cam_et *target, void *arg) 2486 { 2487 struct xpt_traverse_config *tr_config; 2488 2489 tr_config = (struct xpt_traverse_config *)arg; 2490 2491 if (tr_config->depth == XPT_DEPTH_TARGET) { 2492 xpt_targetfunc_t *tr_func; 2493 2494 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2495 2496 return(tr_func(target, tr_config->tr_arg)); 2497 } else 2498 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2499 } 2500 2501 static int 2502 xptdefdevicefunc(struct cam_ed *device, void *arg) 2503 { 2504 struct xpt_traverse_config *tr_config; 2505 2506 tr_config = (struct xpt_traverse_config *)arg; 2507 2508 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2509 xpt_devicefunc_t *tr_func; 2510 2511 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2512 2513 return(tr_func(device, tr_config->tr_arg)); 2514 } else 2515 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2516 } 2517 2518 static int 2519 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2520 { 2521 struct xpt_traverse_config *tr_config; 2522 xpt_periphfunc_t *tr_func; 2523 2524 tr_config = (struct xpt_traverse_config *)arg; 2525 2526 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2527 2528 /* 2529 * Unlike the other default functions, we don't check for depth 2530 * here. The peripheral driver level is the last level in the EDT, 2531 * so if we're here, we should execute the function in question. 2532 */ 2533 return(tr_func(periph, tr_config->tr_arg)); 2534 } 2535 2536 /* 2537 * Execute the given function for every bus in the EDT. 2538 */ 2539 static int 2540 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2541 { 2542 struct xpt_traverse_config tr_config; 2543 2544 tr_config.depth = XPT_DEPTH_BUS; 2545 tr_config.tr_func = tr_func; 2546 tr_config.tr_arg = arg; 2547 2548 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2549 } 2550 2551 /* 2552 * Execute the given function for every device in the EDT. 2553 */ 2554 static int 2555 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2556 { 2557 struct xpt_traverse_config tr_config; 2558 2559 tr_config.depth = XPT_DEPTH_DEVICE; 2560 tr_config.tr_func = tr_func; 2561 tr_config.tr_arg = arg; 2562 2563 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2564 } 2565 2566 static int 2567 xptsetasyncfunc(struct cam_ed *device, void *arg) 2568 { 2569 struct cam_path path; 2570 struct ccb_getdev cgd; 2571 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2572 2573 /* 2574 * Don't report unconfigured devices (Wildcard devs, 2575 * devices only for target mode, device instances 2576 * that have been invalidated but are waiting for 2577 * their last reference count to be released). 2578 */ 2579 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2580 return (1); 2581 2582 xpt_compile_path(&path, 2583 NULL, 2584 device->target->bus->path_id, 2585 device->target->target_id, 2586 device->lun_id); 2587 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2588 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2589 xpt_action((union ccb *)&cgd); 2590 csa->callback(csa->callback_arg, 2591 AC_FOUND_DEVICE, 2592 &path, &cgd); 2593 xpt_release_path(&path); 2594 2595 return(1); 2596 } 2597 2598 static int 2599 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2600 { 2601 struct cam_path path; 2602 struct ccb_pathinq cpi; 2603 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2604 2605 xpt_compile_path(&path, /*periph*/NULL, 2606 bus->path_id, 2607 CAM_TARGET_WILDCARD, 2608 CAM_LUN_WILDCARD); 2609 xpt_path_lock(&path); 2610 xpt_path_inq(&cpi, &path); 2611 csa->callback(csa->callback_arg, 2612 AC_PATH_REGISTERED, 2613 &path, &cpi); 2614 xpt_path_unlock(&path); 2615 xpt_release_path(&path); 2616 2617 return(1); 2618 } 2619 2620 void 2621 xpt_action(union ccb *start_ccb) 2622 { 2623 2624 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2625 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2626 xpt_action_name(start_ccb->ccb_h.func_code))); 2627 2628 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2629 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2630 } 2631 2632 void 2633 xpt_action_default(union ccb *start_ccb) 2634 { 2635 struct cam_path *path; 2636 struct cam_sim *sim; 2637 struct mtx *mtx; 2638 2639 path = start_ccb->ccb_h.path; 2640 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2641 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2642 xpt_action_name(start_ccb->ccb_h.func_code))); 2643 2644 switch (start_ccb->ccb_h.func_code) { 2645 case XPT_SCSI_IO: 2646 { 2647 struct cam_ed *device; 2648 2649 /* 2650 * For the sake of compatibility with SCSI-1 2651 * devices that may not understand the identify 2652 * message, we include lun information in the 2653 * second byte of all commands. SCSI-1 specifies 2654 * that luns are a 3 bit value and reserves only 3 2655 * bits for lun information in the CDB. Later 2656 * revisions of the SCSI spec allow for more than 8 2657 * luns, but have deprecated lun information in the 2658 * CDB. So, if the lun won't fit, we must omit. 2659 * 2660 * Also be aware that during initial probing for devices, 2661 * the inquiry information is unknown but initialized to 0. 2662 * This means that this code will be exercised while probing 2663 * devices with an ANSI revision greater than 2. 2664 */ 2665 device = path->device; 2666 if (device->protocol_version <= SCSI_REV_2 2667 && start_ccb->ccb_h.target_lun < 8 2668 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2669 2670 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2671 start_ccb->ccb_h.target_lun << 5; 2672 } 2673 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2674 } 2675 /* FALLTHROUGH */ 2676 case XPT_TARGET_IO: 2677 case XPT_CONT_TARGET_IO: 2678 start_ccb->csio.sense_resid = 0; 2679 start_ccb->csio.resid = 0; 2680 /* FALLTHROUGH */ 2681 case XPT_ATA_IO: 2682 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2683 start_ccb->ataio.resid = 0; 2684 /* FALLTHROUGH */ 2685 case XPT_NVME_IO: 2686 /* FALLTHROUGH */ 2687 case XPT_NVME_ADMIN: 2688 /* FALLTHROUGH */ 2689 case XPT_MMC_IO: 2690 /* XXX just like nmve_io? */ 2691 case XPT_RESET_DEV: 2692 case XPT_ENG_EXEC: 2693 case XPT_SMP_IO: 2694 { 2695 struct cam_devq *devq; 2696 2697 devq = path->bus->sim->devq; 2698 mtx_lock(&devq->send_mtx); 2699 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2700 if (xpt_schedule_devq(devq, path->device) != 0) 2701 xpt_run_devq(devq); 2702 mtx_unlock(&devq->send_mtx); 2703 break; 2704 } 2705 case XPT_CALC_GEOMETRY: 2706 /* Filter out garbage */ 2707 if (start_ccb->ccg.block_size == 0 2708 || start_ccb->ccg.volume_size == 0) { 2709 start_ccb->ccg.cylinders = 0; 2710 start_ccb->ccg.heads = 0; 2711 start_ccb->ccg.secs_per_track = 0; 2712 start_ccb->ccb_h.status = CAM_REQ_CMP; 2713 break; 2714 } 2715 #if defined(__sparc64__) 2716 /* 2717 * For sparc64, we may need adjust the geometry of large 2718 * disks in order to fit the limitations of the 16-bit 2719 * fields of the VTOC8 disk label. 2720 */ 2721 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2722 start_ccb->ccb_h.status = CAM_REQ_CMP; 2723 break; 2724 } 2725 #endif 2726 goto call_sim; 2727 case XPT_ABORT: 2728 { 2729 union ccb* abort_ccb; 2730 2731 abort_ccb = start_ccb->cab.abort_ccb; 2732 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2733 struct cam_ed *device; 2734 struct cam_devq *devq; 2735 2736 device = abort_ccb->ccb_h.path->device; 2737 devq = device->sim->devq; 2738 2739 mtx_lock(&devq->send_mtx); 2740 if (abort_ccb->ccb_h.pinfo.index > 0) { 2741 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2742 abort_ccb->ccb_h.status = 2743 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2744 xpt_freeze_devq_device(device, 1); 2745 mtx_unlock(&devq->send_mtx); 2746 xpt_done(abort_ccb); 2747 start_ccb->ccb_h.status = CAM_REQ_CMP; 2748 break; 2749 } 2750 mtx_unlock(&devq->send_mtx); 2751 2752 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2753 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2754 /* 2755 * We've caught this ccb en route to 2756 * the SIM. Flag it for abort and the 2757 * SIM will do so just before starting 2758 * real work on the CCB. 2759 */ 2760 abort_ccb->ccb_h.status = 2761 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2762 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2763 start_ccb->ccb_h.status = CAM_REQ_CMP; 2764 break; 2765 } 2766 } 2767 if (XPT_FC_IS_QUEUED(abort_ccb) 2768 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2769 /* 2770 * It's already completed but waiting 2771 * for our SWI to get to it. 2772 */ 2773 start_ccb->ccb_h.status = CAM_UA_ABORT; 2774 break; 2775 } 2776 /* 2777 * If we weren't able to take care of the abort request 2778 * in the XPT, pass the request down to the SIM for processing. 2779 */ 2780 } 2781 /* FALLTHROUGH */ 2782 case XPT_ACCEPT_TARGET_IO: 2783 case XPT_EN_LUN: 2784 case XPT_IMMED_NOTIFY: 2785 case XPT_NOTIFY_ACK: 2786 case XPT_RESET_BUS: 2787 case XPT_IMMEDIATE_NOTIFY: 2788 case XPT_NOTIFY_ACKNOWLEDGE: 2789 case XPT_GET_SIM_KNOB_OLD: 2790 case XPT_GET_SIM_KNOB: 2791 case XPT_SET_SIM_KNOB: 2792 case XPT_GET_TRAN_SETTINGS: 2793 case XPT_SET_TRAN_SETTINGS: 2794 case XPT_PATH_INQ: 2795 call_sim: 2796 sim = path->bus->sim; 2797 mtx = sim->mtx; 2798 if (mtx && !mtx_owned(mtx)) 2799 mtx_lock(mtx); 2800 else 2801 mtx = NULL; 2802 2803 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2804 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2805 (*(sim->sim_action))(sim, start_ccb); 2806 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2807 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2808 if (mtx) 2809 mtx_unlock(mtx); 2810 break; 2811 case XPT_PATH_STATS: 2812 start_ccb->cpis.last_reset = path->bus->last_reset; 2813 start_ccb->ccb_h.status = CAM_REQ_CMP; 2814 break; 2815 case XPT_GDEV_TYPE: 2816 { 2817 struct cam_ed *dev; 2818 2819 dev = path->device; 2820 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2821 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2822 } else { 2823 struct ccb_getdev *cgd; 2824 2825 cgd = &start_ccb->cgd; 2826 cgd->protocol = dev->protocol; 2827 cgd->inq_data = dev->inq_data; 2828 cgd->ident_data = dev->ident_data; 2829 cgd->inq_flags = dev->inq_flags; 2830 cgd->ccb_h.status = CAM_REQ_CMP; 2831 cgd->serial_num_len = dev->serial_num_len; 2832 if ((dev->serial_num_len > 0) 2833 && (dev->serial_num != NULL)) 2834 bcopy(dev->serial_num, cgd->serial_num, 2835 dev->serial_num_len); 2836 } 2837 break; 2838 } 2839 case XPT_GDEV_STATS: 2840 { 2841 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2842 struct cam_ed *dev = path->device; 2843 struct cam_eb *bus = path->bus; 2844 struct cam_et *tar = path->target; 2845 struct cam_devq *devq = bus->sim->devq; 2846 2847 mtx_lock(&devq->send_mtx); 2848 cgds->dev_openings = dev->ccbq.dev_openings; 2849 cgds->dev_active = dev->ccbq.dev_active; 2850 cgds->allocated = dev->ccbq.allocated; 2851 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2852 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2853 cgds->last_reset = tar->last_reset; 2854 cgds->maxtags = dev->maxtags; 2855 cgds->mintags = dev->mintags; 2856 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2857 cgds->last_reset = bus->last_reset; 2858 mtx_unlock(&devq->send_mtx); 2859 cgds->ccb_h.status = CAM_REQ_CMP; 2860 break; 2861 } 2862 case XPT_GDEVLIST: 2863 { 2864 struct cam_periph *nperiph; 2865 struct periph_list *periph_head; 2866 struct ccb_getdevlist *cgdl; 2867 u_int i; 2868 struct cam_ed *device; 2869 int found; 2870 2871 2872 found = 0; 2873 2874 /* 2875 * Don't want anyone mucking with our data. 2876 */ 2877 device = path->device; 2878 periph_head = &device->periphs; 2879 cgdl = &start_ccb->cgdl; 2880 2881 /* 2882 * Check and see if the list has changed since the user 2883 * last requested a list member. If so, tell them that the 2884 * list has changed, and therefore they need to start over 2885 * from the beginning. 2886 */ 2887 if ((cgdl->index != 0) && 2888 (cgdl->generation != device->generation)) { 2889 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2890 break; 2891 } 2892 2893 /* 2894 * Traverse the list of peripherals and attempt to find 2895 * the requested peripheral. 2896 */ 2897 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2898 (nperiph != NULL) && (i <= cgdl->index); 2899 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2900 if (i == cgdl->index) { 2901 strlcpy(cgdl->periph_name, 2902 nperiph->periph_name, 2903 sizeof(cgdl->periph_name)); 2904 cgdl->unit_number = nperiph->unit_number; 2905 found = 1; 2906 } 2907 } 2908 if (found == 0) { 2909 cgdl->status = CAM_GDEVLIST_ERROR; 2910 break; 2911 } 2912 2913 if (nperiph == NULL) 2914 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2915 else 2916 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2917 2918 cgdl->index++; 2919 cgdl->generation = device->generation; 2920 2921 cgdl->ccb_h.status = CAM_REQ_CMP; 2922 break; 2923 } 2924 case XPT_DEV_MATCH: 2925 { 2926 dev_pos_type position_type; 2927 struct ccb_dev_match *cdm; 2928 2929 cdm = &start_ccb->cdm; 2930 2931 /* 2932 * There are two ways of getting at information in the EDT. 2933 * The first way is via the primary EDT tree. It starts 2934 * with a list of buses, then a list of targets on a bus, 2935 * then devices/luns on a target, and then peripherals on a 2936 * device/lun. The "other" way is by the peripheral driver 2937 * lists. The peripheral driver lists are organized by 2938 * peripheral driver. (obviously) So it makes sense to 2939 * use the peripheral driver list if the user is looking 2940 * for something like "da1", or all "da" devices. If the 2941 * user is looking for something on a particular bus/target 2942 * or lun, it's generally better to go through the EDT tree. 2943 */ 2944 2945 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2946 position_type = cdm->pos.position_type; 2947 else { 2948 u_int i; 2949 2950 position_type = CAM_DEV_POS_NONE; 2951 2952 for (i = 0; i < cdm->num_patterns; i++) { 2953 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2954 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2955 position_type = CAM_DEV_POS_EDT; 2956 break; 2957 } 2958 } 2959 2960 if (cdm->num_patterns == 0) 2961 position_type = CAM_DEV_POS_EDT; 2962 else if (position_type == CAM_DEV_POS_NONE) 2963 position_type = CAM_DEV_POS_PDRV; 2964 } 2965 2966 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2967 case CAM_DEV_POS_EDT: 2968 xptedtmatch(cdm); 2969 break; 2970 case CAM_DEV_POS_PDRV: 2971 xptperiphlistmatch(cdm); 2972 break; 2973 default: 2974 cdm->status = CAM_DEV_MATCH_ERROR; 2975 break; 2976 } 2977 2978 if (cdm->status == CAM_DEV_MATCH_ERROR) 2979 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2980 else 2981 start_ccb->ccb_h.status = CAM_REQ_CMP; 2982 2983 break; 2984 } 2985 case XPT_SASYNC_CB: 2986 { 2987 struct ccb_setasync *csa; 2988 struct async_node *cur_entry; 2989 struct async_list *async_head; 2990 u_int32_t added; 2991 2992 csa = &start_ccb->csa; 2993 added = csa->event_enable; 2994 async_head = &path->device->asyncs; 2995 2996 /* 2997 * If there is already an entry for us, simply 2998 * update it. 2999 */ 3000 cur_entry = SLIST_FIRST(async_head); 3001 while (cur_entry != NULL) { 3002 if ((cur_entry->callback_arg == csa->callback_arg) 3003 && (cur_entry->callback == csa->callback)) 3004 break; 3005 cur_entry = SLIST_NEXT(cur_entry, links); 3006 } 3007 3008 if (cur_entry != NULL) { 3009 /* 3010 * If the request has no flags set, 3011 * remove the entry. 3012 */ 3013 added &= ~cur_entry->event_enable; 3014 if (csa->event_enable == 0) { 3015 SLIST_REMOVE(async_head, cur_entry, 3016 async_node, links); 3017 xpt_release_device(path->device); 3018 free(cur_entry, M_CAMXPT); 3019 } else { 3020 cur_entry->event_enable = csa->event_enable; 3021 } 3022 csa->event_enable = added; 3023 } else { 3024 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3025 M_NOWAIT); 3026 if (cur_entry == NULL) { 3027 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3028 break; 3029 } 3030 cur_entry->event_enable = csa->event_enable; 3031 cur_entry->event_lock = (path->bus->sim->mtx && 3032 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3033 cur_entry->callback_arg = csa->callback_arg; 3034 cur_entry->callback = csa->callback; 3035 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3036 xpt_acquire_device(path->device); 3037 } 3038 start_ccb->ccb_h.status = CAM_REQ_CMP; 3039 break; 3040 } 3041 case XPT_REL_SIMQ: 3042 { 3043 struct ccb_relsim *crs; 3044 struct cam_ed *dev; 3045 3046 crs = &start_ccb->crs; 3047 dev = path->device; 3048 if (dev == NULL) { 3049 3050 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3051 break; 3052 } 3053 3054 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3055 3056 /* Don't ever go below one opening */ 3057 if (crs->openings > 0) { 3058 xpt_dev_ccbq_resize(path, crs->openings); 3059 if (bootverbose) { 3060 xpt_print(path, 3061 "number of openings is now %d\n", 3062 crs->openings); 3063 } 3064 } 3065 } 3066 3067 mtx_lock(&dev->sim->devq->send_mtx); 3068 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3069 3070 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3071 3072 /* 3073 * Just extend the old timeout and decrement 3074 * the freeze count so that a single timeout 3075 * is sufficient for releasing the queue. 3076 */ 3077 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3078 callout_stop(&dev->callout); 3079 } else { 3080 3081 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3082 } 3083 3084 callout_reset_sbt(&dev->callout, 3085 SBT_1MS * crs->release_timeout, 0, 3086 xpt_release_devq_timeout, dev, 0); 3087 3088 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3089 3090 } 3091 3092 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3093 3094 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3095 /* 3096 * Decrement the freeze count so that a single 3097 * completion is still sufficient to unfreeze 3098 * the queue. 3099 */ 3100 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3101 } else { 3102 3103 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3104 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3105 } 3106 } 3107 3108 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3109 3110 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3111 || (dev->ccbq.dev_active == 0)) { 3112 3113 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3114 } else { 3115 3116 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3117 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3118 } 3119 } 3120 mtx_unlock(&dev->sim->devq->send_mtx); 3121 3122 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3123 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3124 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3125 start_ccb->ccb_h.status = CAM_REQ_CMP; 3126 break; 3127 } 3128 case XPT_DEBUG: { 3129 struct cam_path *oldpath; 3130 3131 /* Check that all request bits are supported. */ 3132 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3133 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3134 break; 3135 } 3136 3137 cam_dflags = CAM_DEBUG_NONE; 3138 if (cam_dpath != NULL) { 3139 oldpath = cam_dpath; 3140 cam_dpath = NULL; 3141 xpt_free_path(oldpath); 3142 } 3143 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3144 if (xpt_create_path(&cam_dpath, NULL, 3145 start_ccb->ccb_h.path_id, 3146 start_ccb->ccb_h.target_id, 3147 start_ccb->ccb_h.target_lun) != 3148 CAM_REQ_CMP) { 3149 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3150 } else { 3151 cam_dflags = start_ccb->cdbg.flags; 3152 start_ccb->ccb_h.status = CAM_REQ_CMP; 3153 xpt_print(cam_dpath, "debugging flags now %x\n", 3154 cam_dflags); 3155 } 3156 } else 3157 start_ccb->ccb_h.status = CAM_REQ_CMP; 3158 break; 3159 } 3160 case XPT_NOOP: 3161 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3162 xpt_freeze_devq(path, 1); 3163 start_ccb->ccb_h.status = CAM_REQ_CMP; 3164 break; 3165 case XPT_REPROBE_LUN: 3166 xpt_async(AC_INQ_CHANGED, path, NULL); 3167 start_ccb->ccb_h.status = CAM_REQ_CMP; 3168 xpt_done(start_ccb); 3169 break; 3170 default: 3171 case XPT_SDEV_TYPE: 3172 case XPT_TERM_IO: 3173 case XPT_ENG_INQ: 3174 /* XXX Implement */ 3175 xpt_print(start_ccb->ccb_h.path, 3176 "%s: CCB type %#x %s not supported\n", __func__, 3177 start_ccb->ccb_h.func_code, 3178 xpt_action_name(start_ccb->ccb_h.func_code)); 3179 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3180 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3181 xpt_done(start_ccb); 3182 } 3183 break; 3184 } 3185 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3186 ("xpt_action_default: func= %#x %s status %#x\n", 3187 start_ccb->ccb_h.func_code, 3188 xpt_action_name(start_ccb->ccb_h.func_code), 3189 start_ccb->ccb_h.status)); 3190 } 3191 3192 /* 3193 * Call the sim poll routine to allow the sim to complete 3194 * any inflight requests, then call camisr_runqueue to 3195 * complete any CCB that the polling completed. 3196 */ 3197 void 3198 xpt_sim_poll(struct cam_sim *sim) 3199 { 3200 struct mtx *mtx; 3201 3202 mtx = sim->mtx; 3203 if (mtx) 3204 mtx_lock(mtx); 3205 (*(sim->sim_poll))(sim); 3206 if (mtx) 3207 mtx_unlock(mtx); 3208 camisr_runqueue(); 3209 } 3210 3211 uint32_t 3212 xpt_poll_setup(union ccb *start_ccb) 3213 { 3214 u_int32_t timeout; 3215 struct cam_sim *sim; 3216 struct cam_devq *devq; 3217 struct cam_ed *dev; 3218 3219 timeout = start_ccb->ccb_h.timeout * 10; 3220 sim = start_ccb->ccb_h.path->bus->sim; 3221 devq = sim->devq; 3222 dev = start_ccb->ccb_h.path->device; 3223 3224 /* 3225 * Steal an opening so that no other queued requests 3226 * can get it before us while we simulate interrupts. 3227 */ 3228 mtx_lock(&devq->send_mtx); 3229 dev->ccbq.dev_openings--; 3230 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3231 (--timeout > 0)) { 3232 mtx_unlock(&devq->send_mtx); 3233 DELAY(100); 3234 xpt_sim_poll(sim); 3235 mtx_lock(&devq->send_mtx); 3236 } 3237 dev->ccbq.dev_openings++; 3238 mtx_unlock(&devq->send_mtx); 3239 3240 return (timeout); 3241 } 3242 3243 void 3244 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3245 { 3246 3247 while (--timeout > 0) { 3248 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); 3249 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3250 != CAM_REQ_INPROG) 3251 break; 3252 DELAY(100); 3253 } 3254 3255 if (timeout == 0) { 3256 /* 3257 * XXX Is it worth adding a sim_timeout entry 3258 * point so we can attempt recovery? If 3259 * this is only used for dumps, I don't think 3260 * it is. 3261 */ 3262 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3263 } 3264 } 3265 3266 void 3267 xpt_polled_action(union ccb *start_ccb) 3268 { 3269 uint32_t timeout; 3270 struct cam_ed *dev; 3271 3272 timeout = start_ccb->ccb_h.timeout * 10; 3273 dev = start_ccb->ccb_h.path->device; 3274 3275 mtx_unlock(&dev->device_mtx); 3276 3277 timeout = xpt_poll_setup(start_ccb); 3278 if (timeout > 0) { 3279 xpt_action(start_ccb); 3280 xpt_pollwait(start_ccb, timeout); 3281 } else { 3282 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3283 } 3284 3285 mtx_lock(&dev->device_mtx); 3286 } 3287 3288 /* 3289 * Schedule a peripheral driver to receive a ccb when its 3290 * target device has space for more transactions. 3291 */ 3292 void 3293 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3294 { 3295 3296 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3297 cam_periph_assert(periph, MA_OWNED); 3298 if (new_priority < periph->scheduled_priority) { 3299 periph->scheduled_priority = new_priority; 3300 xpt_run_allocq(periph, 0); 3301 } 3302 } 3303 3304 3305 /* 3306 * Schedule a device to run on a given queue. 3307 * If the device was inserted as a new entry on the queue, 3308 * return 1 meaning the device queue should be run. If we 3309 * were already queued, implying someone else has already 3310 * started the queue, return 0 so the caller doesn't attempt 3311 * to run the queue. 3312 */ 3313 static int 3314 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3315 u_int32_t new_priority) 3316 { 3317 int retval; 3318 u_int32_t old_priority; 3319 3320 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3321 3322 3323 old_priority = pinfo->priority; 3324 3325 /* 3326 * Are we already queued? 3327 */ 3328 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3329 /* Simply reorder based on new priority */ 3330 if (new_priority < old_priority) { 3331 camq_change_priority(queue, pinfo->index, 3332 new_priority); 3333 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3334 ("changed priority to %d\n", 3335 new_priority)); 3336 retval = 1; 3337 } else 3338 retval = 0; 3339 } else { 3340 /* New entry on the queue */ 3341 if (new_priority < old_priority) 3342 pinfo->priority = new_priority; 3343 3344 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3345 ("Inserting onto queue\n")); 3346 pinfo->generation = ++queue->generation; 3347 camq_insert(queue, pinfo); 3348 retval = 1; 3349 } 3350 return (retval); 3351 } 3352 3353 static void 3354 xpt_run_allocq_task(void *context, int pending) 3355 { 3356 struct cam_periph *periph = context; 3357 3358 cam_periph_lock(periph); 3359 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3360 xpt_run_allocq(periph, 1); 3361 cam_periph_unlock(periph); 3362 cam_periph_release(periph); 3363 } 3364 3365 static void 3366 xpt_run_allocq(struct cam_periph *periph, int sleep) 3367 { 3368 struct cam_ed *device; 3369 union ccb *ccb; 3370 uint32_t prio; 3371 3372 cam_periph_assert(periph, MA_OWNED); 3373 if (periph->periph_allocating) 3374 return; 3375 cam_periph_doacquire(periph); 3376 periph->periph_allocating = 1; 3377 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3378 device = periph->path->device; 3379 ccb = NULL; 3380 restart: 3381 while ((prio = min(periph->scheduled_priority, 3382 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3383 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3384 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3385 3386 if (ccb == NULL && 3387 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3388 if (sleep) { 3389 ccb = xpt_get_ccb(periph); 3390 goto restart; 3391 } 3392 if (periph->flags & CAM_PERIPH_RUN_TASK) 3393 break; 3394 cam_periph_doacquire(periph); 3395 periph->flags |= CAM_PERIPH_RUN_TASK; 3396 taskqueue_enqueue(xsoftc.xpt_taskq, 3397 &periph->periph_run_task); 3398 break; 3399 } 3400 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3401 if (prio == periph->immediate_priority) { 3402 periph->immediate_priority = CAM_PRIORITY_NONE; 3403 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3404 ("waking cam_periph_getccb()\n")); 3405 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3406 periph_links.sle); 3407 wakeup(&periph->ccb_list); 3408 } else { 3409 periph->scheduled_priority = CAM_PRIORITY_NONE; 3410 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3411 ("calling periph_start()\n")); 3412 periph->periph_start(periph, ccb); 3413 } 3414 ccb = NULL; 3415 } 3416 if (ccb != NULL) 3417 xpt_release_ccb(ccb); 3418 periph->periph_allocating = 0; 3419 cam_periph_release_locked(periph); 3420 } 3421 3422 static void 3423 xpt_run_devq(struct cam_devq *devq) 3424 { 3425 struct mtx *mtx; 3426 3427 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3428 3429 devq->send_queue.qfrozen_cnt++; 3430 while ((devq->send_queue.entries > 0) 3431 && (devq->send_openings > 0) 3432 && (devq->send_queue.qfrozen_cnt <= 1)) { 3433 struct cam_ed *device; 3434 union ccb *work_ccb; 3435 struct cam_sim *sim; 3436 struct xpt_proto *proto; 3437 3438 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3439 CAMQ_HEAD); 3440 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3441 ("running device %p\n", device)); 3442 3443 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3444 if (work_ccb == NULL) { 3445 printf("device on run queue with no ccbs???\n"); 3446 continue; 3447 } 3448 3449 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3450 3451 mtx_lock(&xsoftc.xpt_highpower_lock); 3452 if (xsoftc.num_highpower <= 0) { 3453 /* 3454 * We got a high power command, but we 3455 * don't have any available slots. Freeze 3456 * the device queue until we have a slot 3457 * available. 3458 */ 3459 xpt_freeze_devq_device(device, 1); 3460 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3461 highpowerq_entry); 3462 3463 mtx_unlock(&xsoftc.xpt_highpower_lock); 3464 continue; 3465 } else { 3466 /* 3467 * Consume a high power slot while 3468 * this ccb runs. 3469 */ 3470 xsoftc.num_highpower--; 3471 } 3472 mtx_unlock(&xsoftc.xpt_highpower_lock); 3473 } 3474 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3475 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3476 devq->send_openings--; 3477 devq->send_active++; 3478 xpt_schedule_devq(devq, device); 3479 mtx_unlock(&devq->send_mtx); 3480 3481 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3482 /* 3483 * The client wants to freeze the queue 3484 * after this CCB is sent. 3485 */ 3486 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3487 } 3488 3489 /* In Target mode, the peripheral driver knows best... */ 3490 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3491 if ((device->inq_flags & SID_CmdQue) != 0 3492 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3493 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3494 else 3495 /* 3496 * Clear this in case of a retried CCB that 3497 * failed due to a rejected tag. 3498 */ 3499 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3500 } 3501 3502 KASSERT(device == work_ccb->ccb_h.path->device, 3503 ("device (%p) / path->device (%p) mismatch", 3504 device, work_ccb->ccb_h.path->device)); 3505 proto = xpt_proto_find(device->protocol); 3506 if (proto && proto->ops->debug_out) 3507 proto->ops->debug_out(work_ccb); 3508 3509 /* 3510 * Device queues can be shared among multiple SIM instances 3511 * that reside on different buses. Use the SIM from the 3512 * queued device, rather than the one from the calling bus. 3513 */ 3514 sim = device->sim; 3515 mtx = sim->mtx; 3516 if (mtx && !mtx_owned(mtx)) 3517 mtx_lock(mtx); 3518 else 3519 mtx = NULL; 3520 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3521 (*(sim->sim_action))(sim, work_ccb); 3522 if (mtx) 3523 mtx_unlock(mtx); 3524 mtx_lock(&devq->send_mtx); 3525 } 3526 devq->send_queue.qfrozen_cnt--; 3527 } 3528 3529 /* 3530 * This function merges stuff from the slave ccb into the master ccb, while 3531 * keeping important fields in the master ccb constant. 3532 */ 3533 void 3534 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3535 { 3536 3537 /* 3538 * Pull fields that are valid for peripheral drivers to set 3539 * into the master CCB along with the CCB "payload". 3540 */ 3541 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3542 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3543 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3544 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3545 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3546 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3547 } 3548 3549 void 3550 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3551 u_int32_t priority, u_int32_t flags) 3552 { 3553 3554 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3555 ccb_h->pinfo.priority = priority; 3556 ccb_h->path = path; 3557 ccb_h->path_id = path->bus->path_id; 3558 if (path->target) 3559 ccb_h->target_id = path->target->target_id; 3560 else 3561 ccb_h->target_id = CAM_TARGET_WILDCARD; 3562 if (path->device) { 3563 ccb_h->target_lun = path->device->lun_id; 3564 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3565 } else { 3566 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3567 } 3568 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3569 ccb_h->flags = flags; 3570 ccb_h->xflags = 0; 3571 } 3572 3573 void 3574 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3575 { 3576 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3577 } 3578 3579 /* Path manipulation functions */ 3580 cam_status 3581 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3582 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3583 { 3584 struct cam_path *path; 3585 cam_status status; 3586 3587 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3588 3589 if (path == NULL) { 3590 status = CAM_RESRC_UNAVAIL; 3591 return(status); 3592 } 3593 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3594 if (status != CAM_REQ_CMP) { 3595 free(path, M_CAMPATH); 3596 path = NULL; 3597 } 3598 *new_path_ptr = path; 3599 return (status); 3600 } 3601 3602 cam_status 3603 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3604 struct cam_periph *periph, path_id_t path_id, 3605 target_id_t target_id, lun_id_t lun_id) 3606 { 3607 3608 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3609 lun_id)); 3610 } 3611 3612 cam_status 3613 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3614 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3615 { 3616 struct cam_eb *bus; 3617 struct cam_et *target; 3618 struct cam_ed *device; 3619 cam_status status; 3620 3621 status = CAM_REQ_CMP; /* Completed without error */ 3622 target = NULL; /* Wildcarded */ 3623 device = NULL; /* Wildcarded */ 3624 3625 /* 3626 * We will potentially modify the EDT, so block interrupts 3627 * that may attempt to create cam paths. 3628 */ 3629 bus = xpt_find_bus(path_id); 3630 if (bus == NULL) { 3631 status = CAM_PATH_INVALID; 3632 } else { 3633 xpt_lock_buses(); 3634 mtx_lock(&bus->eb_mtx); 3635 target = xpt_find_target(bus, target_id); 3636 if (target == NULL) { 3637 /* Create one */ 3638 struct cam_et *new_target; 3639 3640 new_target = xpt_alloc_target(bus, target_id); 3641 if (new_target == NULL) { 3642 status = CAM_RESRC_UNAVAIL; 3643 } else { 3644 target = new_target; 3645 } 3646 } 3647 xpt_unlock_buses(); 3648 if (target != NULL) { 3649 device = xpt_find_device(target, lun_id); 3650 if (device == NULL) { 3651 /* Create one */ 3652 struct cam_ed *new_device; 3653 3654 new_device = 3655 (*(bus->xport->ops->alloc_device))(bus, 3656 target, 3657 lun_id); 3658 if (new_device == NULL) { 3659 status = CAM_RESRC_UNAVAIL; 3660 } else { 3661 device = new_device; 3662 } 3663 } 3664 } 3665 mtx_unlock(&bus->eb_mtx); 3666 } 3667 3668 /* 3669 * Only touch the user's data if we are successful. 3670 */ 3671 if (status == CAM_REQ_CMP) { 3672 new_path->periph = perph; 3673 new_path->bus = bus; 3674 new_path->target = target; 3675 new_path->device = device; 3676 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3677 } else { 3678 if (device != NULL) 3679 xpt_release_device(device); 3680 if (target != NULL) 3681 xpt_release_target(target); 3682 if (bus != NULL) 3683 xpt_release_bus(bus); 3684 } 3685 return (status); 3686 } 3687 3688 cam_status 3689 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3690 { 3691 struct cam_path *new_path; 3692 3693 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3694 if (new_path == NULL) 3695 return(CAM_RESRC_UNAVAIL); 3696 xpt_copy_path(new_path, path); 3697 *new_path_ptr = new_path; 3698 return (CAM_REQ_CMP); 3699 } 3700 3701 void 3702 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3703 { 3704 3705 *new_path = *path; 3706 if (path->bus != NULL) 3707 xpt_acquire_bus(path->bus); 3708 if (path->target != NULL) 3709 xpt_acquire_target(path->target); 3710 if (path->device != NULL) 3711 xpt_acquire_device(path->device); 3712 } 3713 3714 void 3715 xpt_release_path(struct cam_path *path) 3716 { 3717 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3718 if (path->device != NULL) { 3719 xpt_release_device(path->device); 3720 path->device = NULL; 3721 } 3722 if (path->target != NULL) { 3723 xpt_release_target(path->target); 3724 path->target = NULL; 3725 } 3726 if (path->bus != NULL) { 3727 xpt_release_bus(path->bus); 3728 path->bus = NULL; 3729 } 3730 } 3731 3732 void 3733 xpt_free_path(struct cam_path *path) 3734 { 3735 3736 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3737 xpt_release_path(path); 3738 free(path, M_CAMPATH); 3739 } 3740 3741 void 3742 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3743 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3744 { 3745 3746 xpt_lock_buses(); 3747 if (bus_ref) { 3748 if (path->bus) 3749 *bus_ref = path->bus->refcount; 3750 else 3751 *bus_ref = 0; 3752 } 3753 if (periph_ref) { 3754 if (path->periph) 3755 *periph_ref = path->periph->refcount; 3756 else 3757 *periph_ref = 0; 3758 } 3759 xpt_unlock_buses(); 3760 if (target_ref) { 3761 if (path->target) 3762 *target_ref = path->target->refcount; 3763 else 3764 *target_ref = 0; 3765 } 3766 if (device_ref) { 3767 if (path->device) 3768 *device_ref = path->device->refcount; 3769 else 3770 *device_ref = 0; 3771 } 3772 } 3773 3774 /* 3775 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3776 * in path1, 2 for match with wildcards in path2. 3777 */ 3778 int 3779 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3780 { 3781 int retval = 0; 3782 3783 if (path1->bus != path2->bus) { 3784 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3785 retval = 1; 3786 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3787 retval = 2; 3788 else 3789 return (-1); 3790 } 3791 if (path1->target != path2->target) { 3792 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3793 if (retval == 0) 3794 retval = 1; 3795 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3796 retval = 2; 3797 else 3798 return (-1); 3799 } 3800 if (path1->device != path2->device) { 3801 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3802 if (retval == 0) 3803 retval = 1; 3804 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3805 retval = 2; 3806 else 3807 return (-1); 3808 } 3809 return (retval); 3810 } 3811 3812 int 3813 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3814 { 3815 int retval = 0; 3816 3817 if (path->bus != dev->target->bus) { 3818 if (path->bus->path_id == CAM_BUS_WILDCARD) 3819 retval = 1; 3820 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3821 retval = 2; 3822 else 3823 return (-1); 3824 } 3825 if (path->target != dev->target) { 3826 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3827 if (retval == 0) 3828 retval = 1; 3829 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3830 retval = 2; 3831 else 3832 return (-1); 3833 } 3834 if (path->device != dev) { 3835 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3836 if (retval == 0) 3837 retval = 1; 3838 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3839 retval = 2; 3840 else 3841 return (-1); 3842 } 3843 return (retval); 3844 } 3845 3846 void 3847 xpt_print_path(struct cam_path *path) 3848 { 3849 struct sbuf sb; 3850 char buffer[XPT_PRINT_LEN]; 3851 3852 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3853 xpt_path_sbuf(path, &sb); 3854 sbuf_finish(&sb); 3855 printf("%s", sbuf_data(&sb)); 3856 sbuf_delete(&sb); 3857 } 3858 3859 void 3860 xpt_print_device(struct cam_ed *device) 3861 { 3862 3863 if (device == NULL) 3864 printf("(nopath): "); 3865 else { 3866 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3867 device->sim->unit_number, 3868 device->sim->bus_id, 3869 device->target->target_id, 3870 (uintmax_t)device->lun_id); 3871 } 3872 } 3873 3874 void 3875 xpt_print(struct cam_path *path, const char *fmt, ...) 3876 { 3877 va_list ap; 3878 struct sbuf sb; 3879 char buffer[XPT_PRINT_LEN]; 3880 3881 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3882 3883 xpt_path_sbuf(path, &sb); 3884 va_start(ap, fmt); 3885 sbuf_vprintf(&sb, fmt, ap); 3886 va_end(ap); 3887 3888 sbuf_finish(&sb); 3889 printf("%s", sbuf_data(&sb)); 3890 sbuf_delete(&sb); 3891 } 3892 3893 int 3894 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3895 { 3896 struct sbuf sb; 3897 int len; 3898 3899 sbuf_new(&sb, str, str_len, 0); 3900 len = xpt_path_sbuf(path, &sb); 3901 sbuf_finish(&sb); 3902 return (len); 3903 } 3904 3905 int 3906 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3907 { 3908 3909 if (path == NULL) 3910 sbuf_printf(sb, "(nopath): "); 3911 else { 3912 if (path->periph != NULL) 3913 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3914 path->periph->unit_number); 3915 else 3916 sbuf_printf(sb, "(noperiph:"); 3917 3918 if (path->bus != NULL) 3919 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3920 path->bus->sim->unit_number, 3921 path->bus->sim->bus_id); 3922 else 3923 sbuf_printf(sb, "nobus:"); 3924 3925 if (path->target != NULL) 3926 sbuf_printf(sb, "%d:", path->target->target_id); 3927 else 3928 sbuf_printf(sb, "X:"); 3929 3930 if (path->device != NULL) 3931 sbuf_printf(sb, "%jx): ", 3932 (uintmax_t)path->device->lun_id); 3933 else 3934 sbuf_printf(sb, "X): "); 3935 } 3936 3937 return(sbuf_len(sb)); 3938 } 3939 3940 path_id_t 3941 xpt_path_path_id(struct cam_path *path) 3942 { 3943 return(path->bus->path_id); 3944 } 3945 3946 target_id_t 3947 xpt_path_target_id(struct cam_path *path) 3948 { 3949 if (path->target != NULL) 3950 return (path->target->target_id); 3951 else 3952 return (CAM_TARGET_WILDCARD); 3953 } 3954 3955 lun_id_t 3956 xpt_path_lun_id(struct cam_path *path) 3957 { 3958 if (path->device != NULL) 3959 return (path->device->lun_id); 3960 else 3961 return (CAM_LUN_WILDCARD); 3962 } 3963 3964 struct cam_sim * 3965 xpt_path_sim(struct cam_path *path) 3966 { 3967 3968 return (path->bus->sim); 3969 } 3970 3971 struct cam_periph* 3972 xpt_path_periph(struct cam_path *path) 3973 { 3974 3975 return (path->periph); 3976 } 3977 3978 /* 3979 * Release a CAM control block for the caller. Remit the cost of the structure 3980 * to the device referenced by the path. If the this device had no 'credits' 3981 * and peripheral drivers have registered async callbacks for this notification 3982 * call them now. 3983 */ 3984 void 3985 xpt_release_ccb(union ccb *free_ccb) 3986 { 3987 struct cam_ed *device; 3988 struct cam_periph *periph; 3989 3990 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3991 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3992 device = free_ccb->ccb_h.path->device; 3993 periph = free_ccb->ccb_h.path->periph; 3994 3995 xpt_free_ccb(free_ccb); 3996 periph->periph_allocated--; 3997 cam_ccbq_release_opening(&device->ccbq); 3998 xpt_run_allocq(periph, 0); 3999 } 4000 4001 /* Functions accessed by SIM drivers */ 4002 4003 static struct xpt_xport_ops xport_default_ops = { 4004 .alloc_device = xpt_alloc_device_default, 4005 .action = xpt_action_default, 4006 .async = xpt_dev_async_default, 4007 }; 4008 static struct xpt_xport xport_default = { 4009 .xport = XPORT_UNKNOWN, 4010 .name = "unknown", 4011 .ops = &xport_default_ops, 4012 }; 4013 4014 CAM_XPT_XPORT(xport_default); 4015 4016 /* 4017 * A sim structure, listing the SIM entry points and instance 4018 * identification info is passed to xpt_bus_register to hook the SIM 4019 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4020 * for this new bus and places it in the array of buses and assigns 4021 * it a path_id. The path_id may be influenced by "hard wiring" 4022 * information specified by the user. Once interrupt services are 4023 * available, the bus will be probed. 4024 */ 4025 int32_t 4026 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4027 { 4028 struct cam_eb *new_bus; 4029 struct cam_eb *old_bus; 4030 struct ccb_pathinq cpi; 4031 struct cam_path *path; 4032 cam_status status; 4033 4034 sim->bus_id = bus; 4035 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4036 M_CAMXPT, M_NOWAIT|M_ZERO); 4037 if (new_bus == NULL) { 4038 /* Couldn't satisfy request */ 4039 return (CAM_RESRC_UNAVAIL); 4040 } 4041 4042 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4043 TAILQ_INIT(&new_bus->et_entries); 4044 cam_sim_hold(sim); 4045 new_bus->sim = sim; 4046 timevalclear(&new_bus->last_reset); 4047 new_bus->flags = 0; 4048 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4049 new_bus->generation = 0; 4050 4051 xpt_lock_buses(); 4052 sim->path_id = new_bus->path_id = 4053 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4054 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4055 while (old_bus != NULL 4056 && old_bus->path_id < new_bus->path_id) 4057 old_bus = TAILQ_NEXT(old_bus, links); 4058 if (old_bus != NULL) 4059 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4060 else 4061 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4062 xsoftc.bus_generation++; 4063 xpt_unlock_buses(); 4064 4065 /* 4066 * Set a default transport so that a PATH_INQ can be issued to 4067 * the SIM. This will then allow for probing and attaching of 4068 * a more appropriate transport. 4069 */ 4070 new_bus->xport = &xport_default; 4071 4072 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4073 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4074 if (status != CAM_REQ_CMP) { 4075 xpt_release_bus(new_bus); 4076 return (CAM_RESRC_UNAVAIL); 4077 } 4078 4079 xpt_path_inq(&cpi, path); 4080 4081 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4082 struct xpt_xport **xpt; 4083 4084 SET_FOREACH(xpt, cam_xpt_xport_set) { 4085 if ((*xpt)->xport == cpi.transport) { 4086 new_bus->xport = *xpt; 4087 break; 4088 } 4089 } 4090 if (new_bus->xport == NULL) { 4091 xpt_print(path, 4092 "No transport found for %d\n", cpi.transport); 4093 xpt_release_bus(new_bus); 4094 free(path, M_CAMXPT); 4095 return (CAM_RESRC_UNAVAIL); 4096 } 4097 } 4098 4099 /* Notify interested parties */ 4100 if (sim->path_id != CAM_XPT_PATH_ID) { 4101 4102 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4103 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4104 union ccb *scan_ccb; 4105 4106 /* Initiate bus rescan. */ 4107 scan_ccb = xpt_alloc_ccb_nowait(); 4108 if (scan_ccb != NULL) { 4109 scan_ccb->ccb_h.path = path; 4110 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4111 scan_ccb->crcn.flags = 0; 4112 xpt_rescan(scan_ccb); 4113 } else { 4114 xpt_print(path, 4115 "Can't allocate CCB to scan bus\n"); 4116 xpt_free_path(path); 4117 } 4118 } else 4119 xpt_free_path(path); 4120 } else 4121 xpt_free_path(path); 4122 return (CAM_SUCCESS); 4123 } 4124 4125 int32_t 4126 xpt_bus_deregister(path_id_t pathid) 4127 { 4128 struct cam_path bus_path; 4129 cam_status status; 4130 4131 status = xpt_compile_path(&bus_path, NULL, pathid, 4132 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4133 if (status != CAM_REQ_CMP) 4134 return (status); 4135 4136 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4137 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4138 4139 /* Release the reference count held while registered. */ 4140 xpt_release_bus(bus_path.bus); 4141 xpt_release_path(&bus_path); 4142 4143 return (CAM_REQ_CMP); 4144 } 4145 4146 static path_id_t 4147 xptnextfreepathid(void) 4148 { 4149 struct cam_eb *bus; 4150 path_id_t pathid; 4151 const char *strval; 4152 4153 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4154 pathid = 0; 4155 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4156 retry: 4157 /* Find an unoccupied pathid */ 4158 while (bus != NULL && bus->path_id <= pathid) { 4159 if (bus->path_id == pathid) 4160 pathid++; 4161 bus = TAILQ_NEXT(bus, links); 4162 } 4163 4164 /* 4165 * Ensure that this pathid is not reserved for 4166 * a bus that may be registered in the future. 4167 */ 4168 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4169 ++pathid; 4170 /* Start the search over */ 4171 goto retry; 4172 } 4173 return (pathid); 4174 } 4175 4176 static path_id_t 4177 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4178 { 4179 path_id_t pathid; 4180 int i, dunit, val; 4181 char buf[32]; 4182 const char *dname; 4183 4184 pathid = CAM_XPT_PATH_ID; 4185 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4186 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4187 return (pathid); 4188 i = 0; 4189 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4190 if (strcmp(dname, "scbus")) { 4191 /* Avoid a bit of foot shooting. */ 4192 continue; 4193 } 4194 if (dunit < 0) /* unwired?! */ 4195 continue; 4196 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4197 if (sim_bus == val) { 4198 pathid = dunit; 4199 break; 4200 } 4201 } else if (sim_bus == 0) { 4202 /* Unspecified matches bus 0 */ 4203 pathid = dunit; 4204 break; 4205 } else { 4206 printf("Ambiguous scbus configuration for %s%d " 4207 "bus %d, cannot wire down. The kernel " 4208 "config entry for scbus%d should " 4209 "specify a controller bus.\n" 4210 "Scbus will be assigned dynamically.\n", 4211 sim_name, sim_unit, sim_bus, dunit); 4212 break; 4213 } 4214 } 4215 4216 if (pathid == CAM_XPT_PATH_ID) 4217 pathid = xptnextfreepathid(); 4218 return (pathid); 4219 } 4220 4221 static const char * 4222 xpt_async_string(u_int32_t async_code) 4223 { 4224 4225 switch (async_code) { 4226 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4227 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4228 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4229 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4230 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4231 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4232 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4233 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4234 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4235 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4236 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4237 case AC_CONTRACT: return ("AC_CONTRACT"); 4238 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4239 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4240 } 4241 return ("AC_UNKNOWN"); 4242 } 4243 4244 static int 4245 xpt_async_size(u_int32_t async_code) 4246 { 4247 4248 switch (async_code) { 4249 case AC_BUS_RESET: return (0); 4250 case AC_UNSOL_RESEL: return (0); 4251 case AC_SCSI_AEN: return (0); 4252 case AC_SENT_BDR: return (0); 4253 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4254 case AC_PATH_DEREGISTERED: return (0); 4255 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4256 case AC_LOST_DEVICE: return (0); 4257 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4258 case AC_INQ_CHANGED: return (0); 4259 case AC_GETDEV_CHANGED: return (0); 4260 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4261 case AC_ADVINFO_CHANGED: return (-1); 4262 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4263 } 4264 return (0); 4265 } 4266 4267 static int 4268 xpt_async_process_dev(struct cam_ed *device, void *arg) 4269 { 4270 union ccb *ccb = arg; 4271 struct cam_path *path = ccb->ccb_h.path; 4272 void *async_arg = ccb->casync.async_arg_ptr; 4273 u_int32_t async_code = ccb->casync.async_code; 4274 int relock; 4275 4276 if (path->device != device 4277 && path->device->lun_id != CAM_LUN_WILDCARD 4278 && device->lun_id != CAM_LUN_WILDCARD) 4279 return (1); 4280 4281 /* 4282 * The async callback could free the device. 4283 * If it is a broadcast async, it doesn't hold 4284 * device reference, so take our own reference. 4285 */ 4286 xpt_acquire_device(device); 4287 4288 /* 4289 * If async for specific device is to be delivered to 4290 * the wildcard client, take the specific device lock. 4291 * XXX: We may need a way for client to specify it. 4292 */ 4293 if ((device->lun_id == CAM_LUN_WILDCARD && 4294 path->device->lun_id != CAM_LUN_WILDCARD) || 4295 (device->target->target_id == CAM_TARGET_WILDCARD && 4296 path->target->target_id != CAM_TARGET_WILDCARD) || 4297 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4298 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4299 mtx_unlock(&device->device_mtx); 4300 xpt_path_lock(path); 4301 relock = 1; 4302 } else 4303 relock = 0; 4304 4305 (*(device->target->bus->xport->ops->async))(async_code, 4306 device->target->bus, device->target, device, async_arg); 4307 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4308 4309 if (relock) { 4310 xpt_path_unlock(path); 4311 mtx_lock(&device->device_mtx); 4312 } 4313 xpt_release_device(device); 4314 return (1); 4315 } 4316 4317 static int 4318 xpt_async_process_tgt(struct cam_et *target, void *arg) 4319 { 4320 union ccb *ccb = arg; 4321 struct cam_path *path = ccb->ccb_h.path; 4322 4323 if (path->target != target 4324 && path->target->target_id != CAM_TARGET_WILDCARD 4325 && target->target_id != CAM_TARGET_WILDCARD) 4326 return (1); 4327 4328 if (ccb->casync.async_code == AC_SENT_BDR) { 4329 /* Update our notion of when the last reset occurred */ 4330 microtime(&target->last_reset); 4331 } 4332 4333 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4334 } 4335 4336 static void 4337 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4338 { 4339 struct cam_eb *bus; 4340 struct cam_path *path; 4341 void *async_arg; 4342 u_int32_t async_code; 4343 4344 path = ccb->ccb_h.path; 4345 async_code = ccb->casync.async_code; 4346 async_arg = ccb->casync.async_arg_ptr; 4347 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4348 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4349 bus = path->bus; 4350 4351 if (async_code == AC_BUS_RESET) { 4352 /* Update our notion of when the last reset occurred */ 4353 microtime(&bus->last_reset); 4354 } 4355 4356 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4357 4358 /* 4359 * If this wasn't a fully wildcarded async, tell all 4360 * clients that want all async events. 4361 */ 4362 if (bus != xpt_periph->path->bus) { 4363 xpt_path_lock(xpt_periph->path); 4364 xpt_async_process_dev(xpt_periph->path->device, ccb); 4365 xpt_path_unlock(xpt_periph->path); 4366 } 4367 4368 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4369 xpt_release_devq(path, 1, TRUE); 4370 else 4371 xpt_release_simq(path->bus->sim, TRUE); 4372 if (ccb->casync.async_arg_size > 0) 4373 free(async_arg, M_CAMXPT); 4374 xpt_free_path(path); 4375 xpt_free_ccb(ccb); 4376 } 4377 4378 static void 4379 xpt_async_bcast(struct async_list *async_head, 4380 u_int32_t async_code, 4381 struct cam_path *path, void *async_arg) 4382 { 4383 struct async_node *cur_entry; 4384 struct mtx *mtx; 4385 4386 cur_entry = SLIST_FIRST(async_head); 4387 while (cur_entry != NULL) { 4388 struct async_node *next_entry; 4389 /* 4390 * Grab the next list entry before we call the current 4391 * entry's callback. This is because the callback function 4392 * can delete its async callback entry. 4393 */ 4394 next_entry = SLIST_NEXT(cur_entry, links); 4395 if ((cur_entry->event_enable & async_code) != 0) { 4396 mtx = cur_entry->event_lock ? 4397 path->device->sim->mtx : NULL; 4398 if (mtx) 4399 mtx_lock(mtx); 4400 cur_entry->callback(cur_entry->callback_arg, 4401 async_code, path, 4402 async_arg); 4403 if (mtx) 4404 mtx_unlock(mtx); 4405 } 4406 cur_entry = next_entry; 4407 } 4408 } 4409 4410 void 4411 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4412 { 4413 union ccb *ccb; 4414 int size; 4415 4416 ccb = xpt_alloc_ccb_nowait(); 4417 if (ccb == NULL) { 4418 xpt_print(path, "Can't allocate CCB to send %s\n", 4419 xpt_async_string(async_code)); 4420 return; 4421 } 4422 4423 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4424 xpt_print(path, "Can't allocate path to send %s\n", 4425 xpt_async_string(async_code)); 4426 xpt_free_ccb(ccb); 4427 return; 4428 } 4429 ccb->ccb_h.path->periph = NULL; 4430 ccb->ccb_h.func_code = XPT_ASYNC; 4431 ccb->ccb_h.cbfcnp = xpt_async_process; 4432 ccb->ccb_h.flags |= CAM_UNLOCKED; 4433 ccb->casync.async_code = async_code; 4434 ccb->casync.async_arg_size = 0; 4435 size = xpt_async_size(async_code); 4436 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4437 ("xpt_async: func %#x %s aync_code %d %s\n", 4438 ccb->ccb_h.func_code, 4439 xpt_action_name(ccb->ccb_h.func_code), 4440 async_code, 4441 xpt_async_string(async_code))); 4442 if (size > 0 && async_arg != NULL) { 4443 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4444 if (ccb->casync.async_arg_ptr == NULL) { 4445 xpt_print(path, "Can't allocate argument to send %s\n", 4446 xpt_async_string(async_code)); 4447 xpt_free_path(ccb->ccb_h.path); 4448 xpt_free_ccb(ccb); 4449 return; 4450 } 4451 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4452 ccb->casync.async_arg_size = size; 4453 } else if (size < 0) { 4454 ccb->casync.async_arg_ptr = async_arg; 4455 ccb->casync.async_arg_size = size; 4456 } 4457 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4458 xpt_freeze_devq(path, 1); 4459 else 4460 xpt_freeze_simq(path->bus->sim, 1); 4461 xpt_done(ccb); 4462 } 4463 4464 static void 4465 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4466 struct cam_et *target, struct cam_ed *device, 4467 void *async_arg) 4468 { 4469 4470 /* 4471 * We only need to handle events for real devices. 4472 */ 4473 if (target->target_id == CAM_TARGET_WILDCARD 4474 || device->lun_id == CAM_LUN_WILDCARD) 4475 return; 4476 4477 printf("%s called\n", __func__); 4478 } 4479 4480 static uint32_t 4481 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4482 { 4483 struct cam_devq *devq; 4484 uint32_t freeze; 4485 4486 devq = dev->sim->devq; 4487 mtx_assert(&devq->send_mtx, MA_OWNED); 4488 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4489 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4490 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4491 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4492 /* Remove frozen device from sendq. */ 4493 if (device_is_queued(dev)) 4494 camq_remove(&devq->send_queue, dev->devq_entry.index); 4495 return (freeze); 4496 } 4497 4498 u_int32_t 4499 xpt_freeze_devq(struct cam_path *path, u_int count) 4500 { 4501 struct cam_ed *dev = path->device; 4502 struct cam_devq *devq; 4503 uint32_t freeze; 4504 4505 devq = dev->sim->devq; 4506 mtx_lock(&devq->send_mtx); 4507 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4508 freeze = xpt_freeze_devq_device(dev, count); 4509 mtx_unlock(&devq->send_mtx); 4510 return (freeze); 4511 } 4512 4513 u_int32_t 4514 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4515 { 4516 struct cam_devq *devq; 4517 uint32_t freeze; 4518 4519 devq = sim->devq; 4520 mtx_lock(&devq->send_mtx); 4521 freeze = (devq->send_queue.qfrozen_cnt += count); 4522 mtx_unlock(&devq->send_mtx); 4523 return (freeze); 4524 } 4525 4526 static void 4527 xpt_release_devq_timeout(void *arg) 4528 { 4529 struct cam_ed *dev; 4530 struct cam_devq *devq; 4531 4532 dev = (struct cam_ed *)arg; 4533 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4534 devq = dev->sim->devq; 4535 mtx_assert(&devq->send_mtx, MA_OWNED); 4536 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4537 xpt_run_devq(devq); 4538 } 4539 4540 void 4541 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4542 { 4543 struct cam_ed *dev; 4544 struct cam_devq *devq; 4545 4546 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4547 count, run_queue)); 4548 dev = path->device; 4549 devq = dev->sim->devq; 4550 mtx_lock(&devq->send_mtx); 4551 if (xpt_release_devq_device(dev, count, run_queue)) 4552 xpt_run_devq(dev->sim->devq); 4553 mtx_unlock(&devq->send_mtx); 4554 } 4555 4556 static int 4557 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4558 { 4559 4560 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4561 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4562 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4563 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4564 if (count > dev->ccbq.queue.qfrozen_cnt) { 4565 #ifdef INVARIANTS 4566 printf("xpt_release_devq(): requested %u > present %u\n", 4567 count, dev->ccbq.queue.qfrozen_cnt); 4568 #endif 4569 count = dev->ccbq.queue.qfrozen_cnt; 4570 } 4571 dev->ccbq.queue.qfrozen_cnt -= count; 4572 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4573 /* 4574 * No longer need to wait for a successful 4575 * command completion. 4576 */ 4577 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4578 /* 4579 * Remove any timeouts that might be scheduled 4580 * to release this queue. 4581 */ 4582 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4583 callout_stop(&dev->callout); 4584 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4585 } 4586 /* 4587 * Now that we are unfrozen schedule the 4588 * device so any pending transactions are 4589 * run. 4590 */ 4591 xpt_schedule_devq(dev->sim->devq, dev); 4592 } else 4593 run_queue = 0; 4594 return (run_queue); 4595 } 4596 4597 void 4598 xpt_release_simq(struct cam_sim *sim, int run_queue) 4599 { 4600 struct cam_devq *devq; 4601 4602 devq = sim->devq; 4603 mtx_lock(&devq->send_mtx); 4604 if (devq->send_queue.qfrozen_cnt <= 0) { 4605 #ifdef INVARIANTS 4606 printf("xpt_release_simq: requested 1 > present %u\n", 4607 devq->send_queue.qfrozen_cnt); 4608 #endif 4609 } else 4610 devq->send_queue.qfrozen_cnt--; 4611 if (devq->send_queue.qfrozen_cnt == 0) { 4612 /* 4613 * If there is a timeout scheduled to release this 4614 * sim queue, remove it. The queue frozen count is 4615 * already at 0. 4616 */ 4617 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4618 callout_stop(&sim->callout); 4619 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4620 } 4621 if (run_queue) { 4622 /* 4623 * Now that we are unfrozen run the send queue. 4624 */ 4625 xpt_run_devq(sim->devq); 4626 } 4627 } 4628 mtx_unlock(&devq->send_mtx); 4629 } 4630 4631 /* 4632 * XXX Appears to be unused. 4633 */ 4634 static void 4635 xpt_release_simq_timeout(void *arg) 4636 { 4637 struct cam_sim *sim; 4638 4639 sim = (struct cam_sim *)arg; 4640 xpt_release_simq(sim, /* run_queue */ TRUE); 4641 } 4642 4643 void 4644 xpt_done(union ccb *done_ccb) 4645 { 4646 struct cam_doneq *queue; 4647 int run, hash; 4648 4649 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4650 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4651 done_ccb->csio.bio != NULL) 4652 biotrack(done_ccb->csio.bio, __func__); 4653 #endif 4654 4655 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4656 ("xpt_done: func= %#x %s status %#x\n", 4657 done_ccb->ccb_h.func_code, 4658 xpt_action_name(done_ccb->ccb_h.func_code), 4659 done_ccb->ccb_h.status)); 4660 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4661 return; 4662 4663 /* Store the time the ccb was in the sim */ 4664 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4665 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4666 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4667 queue = &cam_doneqs[hash]; 4668 mtx_lock(&queue->cam_doneq_mtx); 4669 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4670 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4671 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4672 mtx_unlock(&queue->cam_doneq_mtx); 4673 if (run) 4674 wakeup(&queue->cam_doneq); 4675 } 4676 4677 void 4678 xpt_done_direct(union ccb *done_ccb) 4679 { 4680 4681 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4682 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4683 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4684 return; 4685 4686 /* Store the time the ccb was in the sim */ 4687 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4688 xpt_done_process(&done_ccb->ccb_h); 4689 } 4690 4691 union ccb * 4692 xpt_alloc_ccb() 4693 { 4694 union ccb *new_ccb; 4695 4696 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4697 return (new_ccb); 4698 } 4699 4700 union ccb * 4701 xpt_alloc_ccb_nowait() 4702 { 4703 union ccb *new_ccb; 4704 4705 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4706 return (new_ccb); 4707 } 4708 4709 void 4710 xpt_free_ccb(union ccb *free_ccb) 4711 { 4712 free(free_ccb, M_CAMCCB); 4713 } 4714 4715 4716 4717 /* Private XPT functions */ 4718 4719 /* 4720 * Get a CAM control block for the caller. Charge the structure to the device 4721 * referenced by the path. If we don't have sufficient resources to allocate 4722 * more ccbs, we return NULL. 4723 */ 4724 static union ccb * 4725 xpt_get_ccb_nowait(struct cam_periph *periph) 4726 { 4727 union ccb *new_ccb; 4728 4729 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4730 if (new_ccb == NULL) 4731 return (NULL); 4732 periph->periph_allocated++; 4733 cam_ccbq_take_opening(&periph->path->device->ccbq); 4734 return (new_ccb); 4735 } 4736 4737 static union ccb * 4738 xpt_get_ccb(struct cam_periph *periph) 4739 { 4740 union ccb *new_ccb; 4741 4742 cam_periph_unlock(periph); 4743 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4744 cam_periph_lock(periph); 4745 periph->periph_allocated++; 4746 cam_ccbq_take_opening(&periph->path->device->ccbq); 4747 return (new_ccb); 4748 } 4749 4750 union ccb * 4751 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4752 { 4753 struct ccb_hdr *ccb_h; 4754 4755 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4756 cam_periph_assert(periph, MA_OWNED); 4757 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4758 ccb_h->pinfo.priority != priority) { 4759 if (priority < periph->immediate_priority) { 4760 periph->immediate_priority = priority; 4761 xpt_run_allocq(periph, 0); 4762 } else 4763 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4764 "cgticb", 0); 4765 } 4766 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4767 return ((union ccb *)ccb_h); 4768 } 4769 4770 static void 4771 xpt_acquire_bus(struct cam_eb *bus) 4772 { 4773 4774 xpt_lock_buses(); 4775 bus->refcount++; 4776 xpt_unlock_buses(); 4777 } 4778 4779 static void 4780 xpt_release_bus(struct cam_eb *bus) 4781 { 4782 4783 xpt_lock_buses(); 4784 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4785 if (--bus->refcount > 0) { 4786 xpt_unlock_buses(); 4787 return; 4788 } 4789 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4790 xsoftc.bus_generation++; 4791 xpt_unlock_buses(); 4792 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4793 ("destroying bus, but target list is not empty")); 4794 cam_sim_release(bus->sim); 4795 mtx_destroy(&bus->eb_mtx); 4796 free(bus, M_CAMXPT); 4797 } 4798 4799 static struct cam_et * 4800 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4801 { 4802 struct cam_et *cur_target, *target; 4803 4804 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4805 mtx_assert(&bus->eb_mtx, MA_OWNED); 4806 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4807 M_NOWAIT|M_ZERO); 4808 if (target == NULL) 4809 return (NULL); 4810 4811 TAILQ_INIT(&target->ed_entries); 4812 target->bus = bus; 4813 target->target_id = target_id; 4814 target->refcount = 1; 4815 target->generation = 0; 4816 target->luns = NULL; 4817 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4818 timevalclear(&target->last_reset); 4819 /* 4820 * Hold a reference to our parent bus so it 4821 * will not go away before we do. 4822 */ 4823 bus->refcount++; 4824 4825 /* Insertion sort into our bus's target list */ 4826 cur_target = TAILQ_FIRST(&bus->et_entries); 4827 while (cur_target != NULL && cur_target->target_id < target_id) 4828 cur_target = TAILQ_NEXT(cur_target, links); 4829 if (cur_target != NULL) { 4830 TAILQ_INSERT_BEFORE(cur_target, target, links); 4831 } else { 4832 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4833 } 4834 bus->generation++; 4835 return (target); 4836 } 4837 4838 static void 4839 xpt_acquire_target(struct cam_et *target) 4840 { 4841 struct cam_eb *bus = target->bus; 4842 4843 mtx_lock(&bus->eb_mtx); 4844 target->refcount++; 4845 mtx_unlock(&bus->eb_mtx); 4846 } 4847 4848 static void 4849 xpt_release_target(struct cam_et *target) 4850 { 4851 struct cam_eb *bus = target->bus; 4852 4853 mtx_lock(&bus->eb_mtx); 4854 if (--target->refcount > 0) { 4855 mtx_unlock(&bus->eb_mtx); 4856 return; 4857 } 4858 TAILQ_REMOVE(&bus->et_entries, target, links); 4859 bus->generation++; 4860 mtx_unlock(&bus->eb_mtx); 4861 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4862 ("destroying target, but device list is not empty")); 4863 xpt_release_bus(bus); 4864 mtx_destroy(&target->luns_mtx); 4865 if (target->luns) 4866 free(target->luns, M_CAMXPT); 4867 free(target, M_CAMXPT); 4868 } 4869 4870 static struct cam_ed * 4871 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4872 lun_id_t lun_id) 4873 { 4874 struct cam_ed *device; 4875 4876 device = xpt_alloc_device(bus, target, lun_id); 4877 if (device == NULL) 4878 return (NULL); 4879 4880 device->mintags = 1; 4881 device->maxtags = 1; 4882 return (device); 4883 } 4884 4885 static void 4886 xpt_destroy_device(void *context, int pending) 4887 { 4888 struct cam_ed *device = context; 4889 4890 mtx_lock(&device->device_mtx); 4891 mtx_destroy(&device->device_mtx); 4892 free(device, M_CAMDEV); 4893 } 4894 4895 struct cam_ed * 4896 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4897 { 4898 struct cam_ed *cur_device, *device; 4899 struct cam_devq *devq; 4900 cam_status status; 4901 4902 mtx_assert(&bus->eb_mtx, MA_OWNED); 4903 /* Make space for us in the device queue on our bus */ 4904 devq = bus->sim->devq; 4905 mtx_lock(&devq->send_mtx); 4906 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4907 mtx_unlock(&devq->send_mtx); 4908 if (status != CAM_REQ_CMP) 4909 return (NULL); 4910 4911 device = (struct cam_ed *)malloc(sizeof(*device), 4912 M_CAMDEV, M_NOWAIT|M_ZERO); 4913 if (device == NULL) 4914 return (NULL); 4915 4916 cam_init_pinfo(&device->devq_entry); 4917 device->target = target; 4918 device->lun_id = lun_id; 4919 device->sim = bus->sim; 4920 if (cam_ccbq_init(&device->ccbq, 4921 bus->sim->max_dev_openings) != 0) { 4922 free(device, M_CAMDEV); 4923 return (NULL); 4924 } 4925 SLIST_INIT(&device->asyncs); 4926 SLIST_INIT(&device->periphs); 4927 device->generation = 0; 4928 device->flags = CAM_DEV_UNCONFIGURED; 4929 device->tag_delay_count = 0; 4930 device->tag_saved_openings = 0; 4931 device->refcount = 1; 4932 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4933 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4934 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4935 /* 4936 * Hold a reference to our parent bus so it 4937 * will not go away before we do. 4938 */ 4939 target->refcount++; 4940 4941 cur_device = TAILQ_FIRST(&target->ed_entries); 4942 while (cur_device != NULL && cur_device->lun_id < lun_id) 4943 cur_device = TAILQ_NEXT(cur_device, links); 4944 if (cur_device != NULL) 4945 TAILQ_INSERT_BEFORE(cur_device, device, links); 4946 else 4947 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4948 target->generation++; 4949 return (device); 4950 } 4951 4952 void 4953 xpt_acquire_device(struct cam_ed *device) 4954 { 4955 struct cam_eb *bus = device->target->bus; 4956 4957 mtx_lock(&bus->eb_mtx); 4958 device->refcount++; 4959 mtx_unlock(&bus->eb_mtx); 4960 } 4961 4962 void 4963 xpt_release_device(struct cam_ed *device) 4964 { 4965 struct cam_eb *bus = device->target->bus; 4966 struct cam_devq *devq; 4967 4968 mtx_lock(&bus->eb_mtx); 4969 if (--device->refcount > 0) { 4970 mtx_unlock(&bus->eb_mtx); 4971 return; 4972 } 4973 4974 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4975 device->target->generation++; 4976 mtx_unlock(&bus->eb_mtx); 4977 4978 /* Release our slot in the devq */ 4979 devq = bus->sim->devq; 4980 mtx_lock(&devq->send_mtx); 4981 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4982 mtx_unlock(&devq->send_mtx); 4983 4984 KASSERT(SLIST_EMPTY(&device->periphs), 4985 ("destroying device, but periphs list is not empty")); 4986 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4987 ("destroying device while still queued for ccbs")); 4988 4989 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4990 callout_stop(&device->callout); 4991 4992 xpt_release_target(device->target); 4993 4994 cam_ccbq_fini(&device->ccbq); 4995 /* 4996 * Free allocated memory. free(9) does nothing if the 4997 * supplied pointer is NULL, so it is safe to call without 4998 * checking. 4999 */ 5000 free(device->supported_vpds, M_CAMXPT); 5001 free(device->device_id, M_CAMXPT); 5002 free(device->ext_inq, M_CAMXPT); 5003 free(device->physpath, M_CAMXPT); 5004 free(device->rcap_buf, M_CAMXPT); 5005 free(device->serial_num, M_CAMXPT); 5006 free(device->nvme_data, M_CAMXPT); 5007 free(device->nvme_cdata, M_CAMXPT); 5008 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 5009 } 5010 5011 u_int32_t 5012 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5013 { 5014 int result; 5015 struct cam_ed *dev; 5016 5017 dev = path->device; 5018 mtx_lock(&dev->sim->devq->send_mtx); 5019 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5020 mtx_unlock(&dev->sim->devq->send_mtx); 5021 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5022 || (dev->inq_flags & SID_CmdQue) != 0) 5023 dev->tag_saved_openings = newopenings; 5024 return (result); 5025 } 5026 5027 static struct cam_eb * 5028 xpt_find_bus(path_id_t path_id) 5029 { 5030 struct cam_eb *bus; 5031 5032 xpt_lock_buses(); 5033 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5034 bus != NULL; 5035 bus = TAILQ_NEXT(bus, links)) { 5036 if (bus->path_id == path_id) { 5037 bus->refcount++; 5038 break; 5039 } 5040 } 5041 xpt_unlock_buses(); 5042 return (bus); 5043 } 5044 5045 static struct cam_et * 5046 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5047 { 5048 struct cam_et *target; 5049 5050 mtx_assert(&bus->eb_mtx, MA_OWNED); 5051 for (target = TAILQ_FIRST(&bus->et_entries); 5052 target != NULL; 5053 target = TAILQ_NEXT(target, links)) { 5054 if (target->target_id == target_id) { 5055 target->refcount++; 5056 break; 5057 } 5058 } 5059 return (target); 5060 } 5061 5062 static struct cam_ed * 5063 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5064 { 5065 struct cam_ed *device; 5066 5067 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5068 for (device = TAILQ_FIRST(&target->ed_entries); 5069 device != NULL; 5070 device = TAILQ_NEXT(device, links)) { 5071 if (device->lun_id == lun_id) { 5072 device->refcount++; 5073 break; 5074 } 5075 } 5076 return (device); 5077 } 5078 5079 void 5080 xpt_start_tags(struct cam_path *path) 5081 { 5082 struct ccb_relsim crs; 5083 struct cam_ed *device; 5084 struct cam_sim *sim; 5085 int newopenings; 5086 5087 device = path->device; 5088 sim = path->bus->sim; 5089 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5090 xpt_freeze_devq(path, /*count*/1); 5091 device->inq_flags |= SID_CmdQue; 5092 if (device->tag_saved_openings != 0) 5093 newopenings = device->tag_saved_openings; 5094 else 5095 newopenings = min(device->maxtags, 5096 sim->max_tagged_dev_openings); 5097 xpt_dev_ccbq_resize(path, newopenings); 5098 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5099 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5100 crs.ccb_h.func_code = XPT_REL_SIMQ; 5101 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5102 crs.openings 5103 = crs.release_timeout 5104 = crs.qfrozen_cnt 5105 = 0; 5106 xpt_action((union ccb *)&crs); 5107 } 5108 5109 void 5110 xpt_stop_tags(struct cam_path *path) 5111 { 5112 struct ccb_relsim crs; 5113 struct cam_ed *device; 5114 struct cam_sim *sim; 5115 5116 device = path->device; 5117 sim = path->bus->sim; 5118 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5119 device->tag_delay_count = 0; 5120 xpt_freeze_devq(path, /*count*/1); 5121 device->inq_flags &= ~SID_CmdQue; 5122 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5123 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5124 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5125 crs.ccb_h.func_code = XPT_REL_SIMQ; 5126 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5127 crs.openings 5128 = crs.release_timeout 5129 = crs.qfrozen_cnt 5130 = 0; 5131 xpt_action((union ccb *)&crs); 5132 } 5133 5134 static void 5135 xpt_boot_delay(void *arg) 5136 { 5137 5138 xpt_release_boot(); 5139 } 5140 5141 static void 5142 xpt_config(void *arg) 5143 { 5144 /* 5145 * Now that interrupts are enabled, go find our devices 5146 */ 5147 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5148 printf("xpt_config: failed to create taskqueue thread.\n"); 5149 5150 /* Setup debugging path */ 5151 if (cam_dflags != CAM_DEBUG_NONE) { 5152 if (xpt_create_path(&cam_dpath, NULL, 5153 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5154 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5155 printf("xpt_config: xpt_create_path() failed for debug" 5156 " target %d:%d:%d, debugging disabled\n", 5157 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5158 cam_dflags = CAM_DEBUG_NONE; 5159 } 5160 } else 5161 cam_dpath = NULL; 5162 5163 periphdriver_init(1); 5164 xpt_hold_boot(); 5165 callout_init(&xsoftc.boot_callout, 1); 5166 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5167 xpt_boot_delay, NULL, 0); 5168 /* Fire up rescan thread. */ 5169 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5170 "cam", "scanner")) { 5171 printf("xpt_config: failed to create rescan thread.\n"); 5172 } 5173 } 5174 5175 void 5176 xpt_hold_boot(void) 5177 { 5178 xpt_lock_buses(); 5179 xsoftc.buses_to_config++; 5180 xpt_unlock_buses(); 5181 } 5182 5183 void 5184 xpt_release_boot(void) 5185 { 5186 xpt_lock_buses(); 5187 xsoftc.buses_to_config--; 5188 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5189 struct xpt_task *task; 5190 5191 xsoftc.buses_config_done = 1; 5192 xpt_unlock_buses(); 5193 /* Call manually because we don't have any buses */ 5194 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5195 if (task != NULL) { 5196 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5197 taskqueue_enqueue(taskqueue_thread, &task->task); 5198 } 5199 } else 5200 xpt_unlock_buses(); 5201 } 5202 5203 /* 5204 * If the given device only has one peripheral attached to it, and if that 5205 * peripheral is the passthrough driver, announce it. This insures that the 5206 * user sees some sort of announcement for every peripheral in their system. 5207 */ 5208 static int 5209 xptpassannouncefunc(struct cam_ed *device, void *arg) 5210 { 5211 struct cam_periph *periph; 5212 int i; 5213 5214 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5215 periph = SLIST_NEXT(periph, periph_links), i++); 5216 5217 periph = SLIST_FIRST(&device->periphs); 5218 if ((i == 1) 5219 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5220 xpt_announce_periph(periph, NULL); 5221 5222 return(1); 5223 } 5224 5225 static void 5226 xpt_finishconfig_task(void *context, int pending) 5227 { 5228 5229 periphdriver_init(2); 5230 /* 5231 * Check for devices with no "standard" peripheral driver 5232 * attached. For any devices like that, announce the 5233 * passthrough driver so the user will see something. 5234 */ 5235 if (!bootverbose) 5236 xpt_for_all_devices(xptpassannouncefunc, NULL); 5237 5238 /* Release our hook so that the boot can continue. */ 5239 config_intrhook_disestablish(&xsoftc.xpt_config_hook); 5240 5241 free(context, M_CAMXPT); 5242 } 5243 5244 cam_status 5245 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5246 struct cam_path *path) 5247 { 5248 struct ccb_setasync csa; 5249 cam_status status; 5250 int xptpath = 0; 5251 5252 if (path == NULL) { 5253 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5254 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5255 if (status != CAM_REQ_CMP) 5256 return (status); 5257 xpt_path_lock(path); 5258 xptpath = 1; 5259 } 5260 5261 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5262 csa.ccb_h.func_code = XPT_SASYNC_CB; 5263 csa.event_enable = event; 5264 csa.callback = cbfunc; 5265 csa.callback_arg = cbarg; 5266 xpt_action((union ccb *)&csa); 5267 status = csa.ccb_h.status; 5268 5269 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5270 ("xpt_register_async: func %p\n", cbfunc)); 5271 5272 if (xptpath) { 5273 xpt_path_unlock(path); 5274 xpt_free_path(path); 5275 } 5276 5277 if ((status == CAM_REQ_CMP) && 5278 (csa.event_enable & AC_FOUND_DEVICE)) { 5279 /* 5280 * Get this peripheral up to date with all 5281 * the currently existing devices. 5282 */ 5283 xpt_for_all_devices(xptsetasyncfunc, &csa); 5284 } 5285 if ((status == CAM_REQ_CMP) && 5286 (csa.event_enable & AC_PATH_REGISTERED)) { 5287 /* 5288 * Get this peripheral up to date with all 5289 * the currently existing buses. 5290 */ 5291 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5292 } 5293 5294 return (status); 5295 } 5296 5297 static void 5298 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5299 { 5300 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5301 5302 switch (work_ccb->ccb_h.func_code) { 5303 /* Common cases first */ 5304 case XPT_PATH_INQ: /* Path routing inquiry */ 5305 { 5306 struct ccb_pathinq *cpi; 5307 5308 cpi = &work_ccb->cpi; 5309 cpi->version_num = 1; /* XXX??? */ 5310 cpi->hba_inquiry = 0; 5311 cpi->target_sprt = 0; 5312 cpi->hba_misc = 0; 5313 cpi->hba_eng_cnt = 0; 5314 cpi->max_target = 0; 5315 cpi->max_lun = 0; 5316 cpi->initiator_id = 0; 5317 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5318 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5319 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5320 cpi->unit_number = sim->unit_number; 5321 cpi->bus_id = sim->bus_id; 5322 cpi->base_transfer_speed = 0; 5323 cpi->protocol = PROTO_UNSPECIFIED; 5324 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5325 cpi->transport = XPORT_UNSPECIFIED; 5326 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5327 cpi->ccb_h.status = CAM_REQ_CMP; 5328 xpt_done(work_ccb); 5329 break; 5330 } 5331 default: 5332 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5333 xpt_done(work_ccb); 5334 break; 5335 } 5336 } 5337 5338 /* 5339 * The xpt as a "controller" has no interrupt sources, so polling 5340 * is a no-op. 5341 */ 5342 static void 5343 xptpoll(struct cam_sim *sim) 5344 { 5345 } 5346 5347 void 5348 xpt_lock_buses(void) 5349 { 5350 mtx_lock(&xsoftc.xpt_topo_lock); 5351 } 5352 5353 void 5354 xpt_unlock_buses(void) 5355 { 5356 mtx_unlock(&xsoftc.xpt_topo_lock); 5357 } 5358 5359 struct mtx * 5360 xpt_path_mtx(struct cam_path *path) 5361 { 5362 5363 return (&path->device->device_mtx); 5364 } 5365 5366 static void 5367 xpt_done_process(struct ccb_hdr *ccb_h) 5368 { 5369 struct cam_sim *sim = NULL; 5370 struct cam_devq *devq = NULL; 5371 struct mtx *mtx = NULL; 5372 5373 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5374 struct ccb_scsiio *csio; 5375 5376 if (ccb_h->func_code == XPT_SCSI_IO) { 5377 csio = &((union ccb *)ccb_h)->csio; 5378 if (csio->bio != NULL) 5379 biotrack(csio->bio, __func__); 5380 } 5381 #endif 5382 5383 if (ccb_h->flags & CAM_HIGH_POWER) { 5384 struct highpowerlist *hphead; 5385 struct cam_ed *device; 5386 5387 mtx_lock(&xsoftc.xpt_highpower_lock); 5388 hphead = &xsoftc.highpowerq; 5389 5390 device = STAILQ_FIRST(hphead); 5391 5392 /* 5393 * Increment the count since this command is done. 5394 */ 5395 xsoftc.num_highpower++; 5396 5397 /* 5398 * Any high powered commands queued up? 5399 */ 5400 if (device != NULL) { 5401 5402 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5403 mtx_unlock(&xsoftc.xpt_highpower_lock); 5404 5405 mtx_lock(&device->sim->devq->send_mtx); 5406 xpt_release_devq_device(device, 5407 /*count*/1, /*runqueue*/TRUE); 5408 mtx_unlock(&device->sim->devq->send_mtx); 5409 } else 5410 mtx_unlock(&xsoftc.xpt_highpower_lock); 5411 } 5412 5413 /* 5414 * Insulate against a race where the periph is destroyed but CCBs are 5415 * still not all processed. This shouldn't happen, but allows us better 5416 * bug diagnostic when it does. 5417 */ 5418 if (ccb_h->path->bus) 5419 sim = ccb_h->path->bus->sim; 5420 5421 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5422 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); 5423 xpt_release_simq(sim, /*run_queue*/FALSE); 5424 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5425 } 5426 5427 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5428 && (ccb_h->status & CAM_DEV_QFRZN)) { 5429 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5430 ccb_h->status &= ~CAM_DEV_QFRZN; 5431 } 5432 5433 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5434 struct cam_ed *dev = ccb_h->path->device; 5435 5436 if (sim) 5437 devq = sim->devq; 5438 KASSERT(devq, ("Periph disappeared with request pending.")); 5439 5440 mtx_lock(&devq->send_mtx); 5441 devq->send_active--; 5442 devq->send_openings++; 5443 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5444 5445 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5446 && (dev->ccbq.dev_active == 0))) { 5447 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5448 xpt_release_devq_device(dev, /*count*/1, 5449 /*run_queue*/FALSE); 5450 } 5451 5452 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5453 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5454 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5455 xpt_release_devq_device(dev, /*count*/1, 5456 /*run_queue*/FALSE); 5457 } 5458 5459 if (!device_is_queued(dev)) 5460 (void)xpt_schedule_devq(devq, dev); 5461 xpt_run_devq(devq); 5462 mtx_unlock(&devq->send_mtx); 5463 5464 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5465 mtx = xpt_path_mtx(ccb_h->path); 5466 mtx_lock(mtx); 5467 5468 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5469 && (--dev->tag_delay_count == 0)) 5470 xpt_start_tags(ccb_h->path); 5471 } 5472 } 5473 5474 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5475 if (mtx == NULL) { 5476 mtx = xpt_path_mtx(ccb_h->path); 5477 mtx_lock(mtx); 5478 } 5479 } else { 5480 if (mtx != NULL) { 5481 mtx_unlock(mtx); 5482 mtx = NULL; 5483 } 5484 } 5485 5486 /* Call the peripheral driver's callback */ 5487 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5488 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5489 if (mtx != NULL) 5490 mtx_unlock(mtx); 5491 } 5492 5493 void 5494 xpt_done_td(void *arg) 5495 { 5496 struct cam_doneq *queue = arg; 5497 struct ccb_hdr *ccb_h; 5498 STAILQ_HEAD(, ccb_hdr) doneq; 5499 5500 STAILQ_INIT(&doneq); 5501 mtx_lock(&queue->cam_doneq_mtx); 5502 while (1) { 5503 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5504 queue->cam_doneq_sleep = 1; 5505 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5506 PRIBIO, "-", 0); 5507 queue->cam_doneq_sleep = 0; 5508 } 5509 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5510 mtx_unlock(&queue->cam_doneq_mtx); 5511 5512 THREAD_NO_SLEEPING(); 5513 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5514 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5515 xpt_done_process(ccb_h); 5516 } 5517 THREAD_SLEEPING_OK(); 5518 5519 mtx_lock(&queue->cam_doneq_mtx); 5520 } 5521 } 5522 5523 static void 5524 camisr_runqueue(void) 5525 { 5526 struct ccb_hdr *ccb_h; 5527 struct cam_doneq *queue; 5528 int i; 5529 5530 /* Process global queues. */ 5531 for (i = 0; i < cam_num_doneqs; i++) { 5532 queue = &cam_doneqs[i]; 5533 mtx_lock(&queue->cam_doneq_mtx); 5534 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5535 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5536 mtx_unlock(&queue->cam_doneq_mtx); 5537 xpt_done_process(ccb_h); 5538 mtx_lock(&queue->cam_doneq_mtx); 5539 } 5540 mtx_unlock(&queue->cam_doneq_mtx); 5541 } 5542 } 5543 5544 struct kv 5545 { 5546 uint32_t v; 5547 const char *name; 5548 }; 5549 5550 static struct kv map[] = { 5551 { XPT_NOOP, "XPT_NOOP" }, 5552 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5553 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5554 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5555 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5556 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5557 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5558 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5559 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5560 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5561 { XPT_DEBUG, "XPT_DEBUG" }, 5562 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5563 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5564 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5565 { XPT_ASYNC, "XPT_ASYNC" }, 5566 { XPT_ABORT, "XPT_ABORT" }, 5567 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5568 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5569 { XPT_TERM_IO, "XPT_TERM_IO" }, 5570 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5571 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5572 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5573 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5574 { XPT_ATA_IO, "XPT_ATA_IO" }, 5575 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5576 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5577 { XPT_NVME_IO, "XPT_NVME_IO" }, 5578 { XPT_MMC_IO, "XPT_MMC_IO" }, 5579 { XPT_SMP_IO, "XPT_SMP_IO" }, 5580 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5581 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5582 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5583 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5584 { XPT_EN_LUN, "XPT_EN_LUN" }, 5585 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5586 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5587 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5588 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5589 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5590 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5591 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5592 { 0, 0 } 5593 }; 5594 5595 const char * 5596 xpt_action_name(uint32_t action) 5597 { 5598 static char buffer[32]; /* Only for unknown messages -- racy */ 5599 struct kv *walker = map; 5600 5601 while (walker->name != NULL) { 5602 if (walker->v == action) 5603 return (walker->name); 5604 walker++; 5605 } 5606 5607 snprintf(buffer, sizeof(buffer), "%#x", action); 5608 return (buffer); 5609 } 5610