xref: /freebsd/sys/cam/cam_xpt.c (revision 10f0bcab61ef441cb5af32fb706688d8cbd55dc0)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/md5.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 
52 #ifdef PC98
53 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_sim.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_sim.h>
62 #include <cam/cam_xpt_periph.h>
63 #include <cam/cam_debug.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 #include <machine/stdarg.h>	/* for xpt_print below */
69 #include "opt_cam.h"
70 
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
73 
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 	struct task	task;
77 	void		*data1;
78 	uintptr_t	data2;
79 };
80 
81 /*
82  * Definition of an async handler callback block.  These are used to add
83  * SIMs and peripherals to the async callback lists.
84  */
85 struct async_node {
86 	SLIST_ENTRY(async_node)	links;
87 	u_int32_t	event_enable;	/* Async Event enables */
88 	void		(*callback)(void *arg, u_int32_t code,
89 				    struct cam_path *path, void *args);
90 	void		*callback_arg;
91 };
92 
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
95 
96 /*
97  * This is the maximum number of high powered commands (e.g. start unit)
98  * that can be outstanding at a particular time.
99  */
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER  4
102 #endif
103 
104 /*
105  * Structure for queueing a device in a run queue.
106  * There is one run queue for allocating new ccbs,
107  * and another for sending ccbs to the controller.
108  */
109 struct cam_ed_qinfo {
110 	cam_pinfo pinfo;
111 	struct	  cam_ed *device;
112 };
113 
114 /*
115  * The CAM EDT (Existing Device Table) contains the device information for
116  * all devices for all busses in the system.  The table contains a
117  * cam_ed structure for each device on the bus.
118  */
119 struct cam_ed {
120 	TAILQ_ENTRY(cam_ed) links;
121 	struct	cam_ed_qinfo alloc_ccb_entry;
122 	struct	cam_ed_qinfo send_ccb_entry;
123 	struct	cam_et	 *target;
124 	struct	cam_sim  *sim;
125 	lun_id_t	 lun_id;
126 	struct	camq drvq;		/*
127 					 * Queue of type drivers wanting to do
128 					 * work on this device.
129 					 */
130 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
131 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
132 	struct	periph_list periphs;	/* All attached devices */
133 	u_int	generation;		/* Generation number */
134 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
135 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
136 					/* Storage for the inquiry data */
137 	cam_proto	 protocol;
138 	u_int		 protocol_version;
139 	cam_xport	 transport;
140 	u_int		 transport_version;
141 	struct		 scsi_inquiry_data inq_data;
142 	u_int8_t	 inq_flags;	/*
143 					 * Current settings for inquiry flags.
144 					 * This allows us to override settings
145 					 * like disconnection and tagged
146 					 * queuing for a device.
147 					 */
148 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
149 	u_int8_t	 serial_num_len;
150 	u_int8_t	*serial_num;
151 	u_int32_t	 qfrozen_cnt;
152 	u_int32_t	 flags;
153 #define CAM_DEV_UNCONFIGURED	 	0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
155 #define CAM_DEV_REL_ON_COMPLETE		0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
158 #define CAM_DEV_TAG_AFTER_COUNT		0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
160 #define	CAM_DEV_IN_DV			0x80
161 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
162 	u_int32_t	 tag_delay_count;
163 #define	CAM_TAG_DELAY_COUNT		5
164 	u_int32_t	 tag_saved_openings;
165 	u_int32_t	 refcount;
166 	struct callout	 callout;
167 };
168 
169 /*
170  * Each target is represented by an ET (Existing Target).  These
171  * entries are created when a target is successfully probed with an
172  * identify, and removed when a device fails to respond after a number
173  * of retries, or a bus rescan finds the device missing.
174  */
175 struct cam_et {
176 	TAILQ_HEAD(, cam_ed) ed_entries;
177 	TAILQ_ENTRY(cam_et) links;
178 	struct	cam_eb	*bus;
179 	target_id_t	target_id;
180 	u_int32_t	refcount;
181 	u_int		generation;
182 	struct		timeval last_reset;
183 };
184 
185 /*
186  * Each bus is represented by an EB (Existing Bus).  These entries
187  * are created by calls to xpt_bus_register and deleted by calls to
188  * xpt_bus_deregister.
189  */
190 struct cam_eb {
191 	TAILQ_HEAD(, cam_et) et_entries;
192 	TAILQ_ENTRY(cam_eb)  links;
193 	path_id_t	     path_id;
194 	struct cam_sim	     *sim;
195 	struct timeval	     last_reset;
196 	u_int32_t	     flags;
197 #define	CAM_EB_RUNQ_SCHEDULED	0x01
198 	u_int32_t	     refcount;
199 	u_int		     generation;
200 	device_t	     parent_dev;
201 };
202 
203 struct cam_path {
204 	struct cam_periph *periph;
205 	struct cam_eb	  *bus;
206 	struct cam_et	  *target;
207 	struct cam_ed	  *device;
208 };
209 
210 struct xpt_quirk_entry {
211 	struct scsi_inquiry_pattern inq_pat;
212 	u_int8_t quirks;
213 #define	CAM_QUIRK_NOLUNS	0x01
214 #define	CAM_QUIRK_NOSERIAL	0x02
215 #define	CAM_QUIRK_HILUNS	0x04
216 #define	CAM_QUIRK_NOHILUNS	0x08
217 	u_int mintags;
218 	u_int maxtags;
219 };
220 
221 static int cam_srch_hi = 0;
222 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
223 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
224 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
225     sysctl_cam_search_luns, "I",
226     "allow search above LUN 7 for SCSI3 and greater devices");
227 
228 #define	CAM_SCSI2_MAXLUN	8
229 /*
230  * If we're not quirked to search <= the first 8 luns
231  * and we are either quirked to search above lun 8,
232  * or we're > SCSI-2 and we've enabled hilun searching,
233  * or we're > SCSI-2 and the last lun was a success,
234  * we can look for luns above lun 8.
235  */
236 #define	CAN_SRCH_HI_SPARSE(dv)				\
237   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
238   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
239   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
240 
241 #define	CAN_SRCH_HI_DENSE(dv)				\
242   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
243   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
244   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
245 
246 typedef enum {
247 	XPT_FLAG_OPEN		= 0x01
248 } xpt_flags;
249 
250 struct xpt_softc {
251 	xpt_flags		flags;
252 	u_int32_t		xpt_generation;
253 
254 	/* number of high powered commands that can go through right now */
255 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
256 	int			num_highpower;
257 
258 	/* queue for handling async rescan requests. */
259 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
260 
261 	/* Registered busses */
262 	TAILQ_HEAD(,cam_eb)	xpt_busses;
263 	u_int			bus_generation;
264 
265 	struct intr_config_hook	*xpt_config_hook;
266 
267 	struct mtx		xpt_topo_lock;
268 	struct mtx		xpt_lock;
269 };
270 
271 static const char quantum[] = "QUANTUM";
272 static const char sony[] = "SONY";
273 static const char west_digital[] = "WDIGTL";
274 static const char samsung[] = "SAMSUNG";
275 static const char seagate[] = "SEAGATE";
276 static const char microp[] = "MICROP";
277 
278 static struct xpt_quirk_entry xpt_quirk_table[] =
279 {
280 	{
281 		/* Reports QUEUE FULL for temporary resource shortages */
282 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
283 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
284 	},
285 	{
286 		/* Reports QUEUE FULL for temporary resource shortages */
287 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
288 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
289 	},
290 	{
291 		/* Reports QUEUE FULL for temporary resource shortages */
292 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
293 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
294 	},
295 	{
296 		/* Broken tagged queuing drive */
297 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
298 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
299 	},
300 	{
301 		/* Broken tagged queuing drive */
302 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
303 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
304 	},
305 	{
306 		/* Broken tagged queuing drive */
307 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
308 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
309 	},
310 	{
311 		/*
312 		 * Unfortunately, the Quantum Atlas III has the same
313 		 * problem as the Atlas II drives above.
314 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
315 		 *
316 		 * For future reference, the drive with the problem was:
317 		 * QUANTUM QM39100TD-SW N1B0
318 		 *
319 		 * It's possible that Quantum will fix the problem in later
320 		 * firmware revisions.  If that happens, the quirk entry
321 		 * will need to be made specific to the firmware revisions
322 		 * with the problem.
323 		 *
324 		 */
325 		/* Reports QUEUE FULL for temporary resource shortages */
326 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
327 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
328 	},
329 	{
330 		/*
331 		 * 18 Gig Atlas III, same problem as the 9G version.
332 		 * Reported by: Andre Albsmeier
333 		 *		<andre.albsmeier@mchp.siemens.de>
334 		 *
335 		 * For future reference, the drive with the problem was:
336 		 * QUANTUM QM318000TD-S N491
337 		 */
338 		/* Reports QUEUE FULL for temporary resource shortages */
339 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
340 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
341 	},
342 	{
343 		/*
344 		 * Broken tagged queuing drive
345 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
346 		 *         and: Martin Renters <martin@tdc.on.ca>
347 		 */
348 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
349 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
350 	},
351 		/*
352 		 * The Seagate Medalist Pro drives have very poor write
353 		 * performance with anything more than 2 tags.
354 		 *
355 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
356 		 * Drive:  <SEAGATE ST36530N 1444>
357 		 *
358 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
359 		 * Drive:  <SEAGATE ST34520W 1281>
360 		 *
361 		 * No one has actually reported that the 9G version
362 		 * (ST39140*) of the Medalist Pro has the same problem, but
363 		 * we're assuming that it does because the 4G and 6.5G
364 		 * versions of the drive are broken.
365 		 */
366 	{
367 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
368 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
369 	},
370 	{
371 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
372 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
373 	},
374 	{
375 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
376 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
377 	},
378 	{
379 		/*
380 		 * Slow when tagged queueing is enabled.  Write performance
381 		 * steadily drops off with more and more concurrent
382 		 * transactions.  Best sequential write performance with
383 		 * tagged queueing turned off and write caching turned on.
384 		 *
385 		 * PR:  kern/10398
386 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
387 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
388 		 *
389 		 * The drive with the problem had the "S65A" firmware
390 		 * revision, and has also been reported (by Stephen J.
391 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
392 		 * firmware revision.
393 		 *
394 		 * Although no one has reported problems with the 2 gig
395 		 * version of the DCAS drive, the assumption is that it
396 		 * has the same problems as the 4 gig version.  Therefore
397 		 * this quirk entries disables tagged queueing for all
398 		 * DCAS drives.
399 		 */
400 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
401 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
402 	},
403 	{
404 		/* Broken tagged queuing drive */
405 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
406 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
407 	},
408 	{
409 		/* Broken tagged queuing drive */
410 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
411 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
412 	},
413 	{
414 		/* This does not support other than LUN 0 */
415 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
416 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
417 	},
418 	{
419 		/*
420 		 * Broken tagged queuing drive.
421 		 * Submitted by:
422 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
423 		 * in PR kern/9535
424 		 */
425 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
426 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
427 	},
428         {
429 		/*
430 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
431 		 * 8MB/sec.)
432 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
433 		 * Best performance with these drives is achieved with
434 		 * tagged queueing turned off, and write caching turned on.
435 		 */
436 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
437 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
438         },
439         {
440 		/*
441 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
442 		 * 8MB/sec.)
443 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
444 		 * Best performance with these drives is achieved with
445 		 * tagged queueing turned off, and write caching turned on.
446 		 */
447 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
448 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
449         },
450 	{
451 		/*
452 		 * Doesn't handle queue full condition correctly,
453 		 * so we need to limit maxtags to what the device
454 		 * can handle instead of determining this automatically.
455 		 */
456 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
457 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
458 	},
459 	{
460 		/* Really only one LUN */
461 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
462 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
463 	},
464 	{
465 		/* I can't believe we need a quirk for DPT volumes. */
466 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
467 		CAM_QUIRK_NOLUNS,
468 		/*mintags*/0, /*maxtags*/255
469 	},
470 	{
471 		/*
472 		 * Many Sony CDROM drives don't like multi-LUN probing.
473 		 */
474 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
475 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
476 	},
477 	{
478 		/*
479 		 * This drive doesn't like multiple LUN probing.
480 		 * Submitted by:  Parag Patel <parag@cgt.com>
481 		 */
482 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
483 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
484 	},
485 	{
486 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
487 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
488 	},
489 	{
490 		/*
491 		 * The 8200 doesn't like multi-lun probing, and probably
492 		 * don't like serial number requests either.
493 		 */
494 		{
495 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
496 			"EXB-8200*", "*"
497 		},
498 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 	},
500 	{
501 		/*
502 		 * Let's try the same as above, but for a drive that says
503 		 * it's an IPL-6860 but is actually an EXB 8200.
504 		 */
505 		{
506 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
507 			"IPL-6860*", "*"
508 		},
509 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
510 	},
511 	{
512 		/*
513 		 * These Hitachi drives don't like multi-lun probing.
514 		 * The PR submitter has a DK319H, but says that the Linux
515 		 * kernel has a similar work-around for the DK312 and DK314,
516 		 * so all DK31* drives are quirked here.
517 		 * PR:            misc/18793
518 		 * Submitted by:  Paul Haddad <paul@pth.com>
519 		 */
520 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
521 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
522 	},
523 	{
524 		/*
525 		 * The Hitachi CJ series with J8A8 firmware apparantly has
526 		 * problems with tagged commands.
527 		 * PR: 23536
528 		 * Reported by: amagai@nue.org
529 		 */
530 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
531 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
532 	},
533 	{
534 		/*
535 		 * These are the large storage arrays.
536 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
537 		 */
538 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
539 		CAM_QUIRK_HILUNS, 2, 1024
540 	},
541 	{
542 		/*
543 		 * This old revision of the TDC3600 is also SCSI-1, and
544 		 * hangs upon serial number probing.
545 		 */
546 		{
547 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
548 			" TDC 3600", "U07:"
549 		},
550 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
551 	},
552 	{
553 		/*
554 		 * Would repond to all LUNs if asked for.
555 		 */
556 		{
557 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
558 			"CP150", "*"
559 		},
560 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
561 	},
562 	{
563 		/*
564 		 * Would repond to all LUNs if asked for.
565 		 */
566 		{
567 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
568 			"96X2*", "*"
569 		},
570 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
571 	},
572 	{
573 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
574 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
575 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
576 	},
577 	{
578 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
579 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
580 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
581 	},
582 	{
583 		/* TeraSolutions special settings for TRC-22 RAID */
584 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
585 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
586 	},
587 	{
588 		/* Veritas Storage Appliance */
589 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
590 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
591 	},
592 	{
593 		/*
594 		 * Would respond to all LUNs.  Device type and removable
595 		 * flag are jumper-selectable.
596 		 */
597 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
598 		  "Tahiti 1", "*"
599 		},
600 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
601 	},
602 	{
603 		/* EasyRAID E5A aka. areca ARC-6010 */
604 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
605 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
606 	},
607 	{
608 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
609 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
610 	},
611 	{
612 		/* Default tagged queuing parameters for all devices */
613 		{
614 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
615 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
616 		},
617 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
618 	},
619 };
620 
621 static const int xpt_quirk_table_size =
622 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
623 
624 typedef enum {
625 	DM_RET_COPY		= 0x01,
626 	DM_RET_FLAG_MASK	= 0x0f,
627 	DM_RET_NONE		= 0x00,
628 	DM_RET_STOP		= 0x10,
629 	DM_RET_DESCEND		= 0x20,
630 	DM_RET_ERROR		= 0x30,
631 	DM_RET_ACTION_MASK	= 0xf0
632 } dev_match_ret;
633 
634 typedef enum {
635 	XPT_DEPTH_BUS,
636 	XPT_DEPTH_TARGET,
637 	XPT_DEPTH_DEVICE,
638 	XPT_DEPTH_PERIPH
639 } xpt_traverse_depth;
640 
641 struct xpt_traverse_config {
642 	xpt_traverse_depth	depth;
643 	void			*tr_func;
644 	void			*tr_arg;
645 };
646 
647 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
648 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
649 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
650 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
651 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
652 
653 /* Transport layer configuration information */
654 static struct xpt_softc xsoftc;
655 
656 /* Queues for our software interrupt handler */
657 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
658 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
659 static cam_simq_t cam_simq;
660 static struct mtx cam_simq_lock;
661 
662 /* Pointers to software interrupt handlers */
663 static void *cambio_ih;
664 
665 struct cam_periph *xpt_periph;
666 
667 static periph_init_t xpt_periph_init;
668 
669 static periph_init_t probe_periph_init;
670 
671 static struct periph_driver xpt_driver =
672 {
673 	xpt_periph_init, "xpt",
674 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
675 };
676 
677 static struct periph_driver probe_driver =
678 {
679 	probe_periph_init, "probe",
680 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
681 };
682 
683 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
684 PERIPHDRIVER_DECLARE(probe, probe_driver);
685 
686 
687 static d_open_t xptopen;
688 static d_close_t xptclose;
689 static d_ioctl_t xptioctl;
690 
691 static struct cdevsw xpt_cdevsw = {
692 	.d_version =	D_VERSION,
693 	.d_flags =	0,
694 	.d_open =	xptopen,
695 	.d_close =	xptclose,
696 	.d_ioctl =	xptioctl,
697 	.d_name =	"xpt",
698 };
699 
700 
701 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
702 static void dead_sim_poll(struct cam_sim *sim);
703 
704 /* Dummy SIM that is used when the real one has gone. */
705 static struct cam_sim cam_dead_sim = {
706 	.sim_action =	dead_sim_action,
707 	.sim_poll =	dead_sim_poll,
708 	.sim_name =	"dead_sim",
709 };
710 
711 #define SIM_DEAD(sim)	((sim) == &cam_dead_sim)
712 
713 
714 /* Storage for debugging datastructures */
715 #ifdef	CAMDEBUG
716 struct cam_path *cam_dpath;
717 u_int32_t cam_dflags;
718 u_int32_t cam_debug_delay;
719 #endif
720 
721 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
722 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
723 #endif
724 
725 /*
726  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
727  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
728  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
729  */
730 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
731     || defined(CAM_DEBUG_LUN)
732 #ifdef CAMDEBUG
733 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
734     || !defined(CAM_DEBUG_LUN)
735 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
736         and CAM_DEBUG_LUN"
737 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
738 #else /* !CAMDEBUG */
739 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
740 #endif /* CAMDEBUG */
741 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
742 
743 /* Our boot-time initialization hook */
744 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
745 
746 static moduledata_t cam_moduledata = {
747 	"cam",
748 	cam_module_event_handler,
749 	NULL
750 };
751 
752 static int	xpt_init(void *);
753 
754 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
755 MODULE_VERSION(cam, 1);
756 
757 
758 static cam_status	xpt_compile_path(struct cam_path *new_path,
759 					 struct cam_periph *perph,
760 					 path_id_t path_id,
761 					 target_id_t target_id,
762 					 lun_id_t lun_id);
763 
764 static void		xpt_release_path(struct cam_path *path);
765 
766 static void		xpt_async_bcast(struct async_list *async_head,
767 					u_int32_t async_code,
768 					struct cam_path *path,
769 					void *async_arg);
770 static void		xpt_dev_async(u_int32_t async_code,
771 				      struct cam_eb *bus,
772 				      struct cam_et *target,
773 				      struct cam_ed *device,
774 				      void *async_arg);
775 static path_id_t xptnextfreepathid(void);
776 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
777 static union ccb *xpt_get_ccb(struct cam_ed *device);
778 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
779 				  u_int32_t new_priority);
780 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
781 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
782 static timeout_t xpt_release_devq_timeout;
783 static void	 xpt_release_simq_timeout(void *arg) __unused;
784 static void	 xpt_release_bus(struct cam_eb *bus);
785 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
786 					 int run_queue);
787 static struct cam_et*
788 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
789 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
790 static struct cam_ed*
791 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
792 				  lun_id_t lun_id);
793 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
794 				    struct cam_ed *device);
795 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
796 static struct cam_eb*
797 		 xpt_find_bus(path_id_t path_id);
798 static struct cam_et*
799 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
800 static struct cam_ed*
801 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
802 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
803 static void	 xpt_scan_lun(struct cam_periph *periph,
804 			      struct cam_path *path, cam_flags flags,
805 			      union ccb *ccb);
806 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
807 static xpt_busfunc_t	xptconfigbuscountfunc;
808 static xpt_busfunc_t	xptconfigfunc;
809 static void	 xpt_config(void *arg);
810 static xpt_devicefunc_t xptpassannouncefunc;
811 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
812 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
813 static void	 xptpoll(struct cam_sim *sim);
814 static void	 camisr(void *);
815 static void	 camisr_runqueue(void *);
816 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
817 				    u_int num_patterns, struct cam_eb *bus);
818 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
819 				       u_int num_patterns,
820 				       struct cam_ed *device);
821 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
822 				       u_int num_patterns,
823 				       struct cam_periph *periph);
824 static xpt_busfunc_t	xptedtbusfunc;
825 static xpt_targetfunc_t	xptedttargetfunc;
826 static xpt_devicefunc_t	xptedtdevicefunc;
827 static xpt_periphfunc_t	xptedtperiphfunc;
828 static xpt_pdrvfunc_t	xptplistpdrvfunc;
829 static xpt_periphfunc_t	xptplistperiphfunc;
830 static int		xptedtmatch(struct ccb_dev_match *cdm);
831 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
832 static int		xptbustraverse(struct cam_eb *start_bus,
833 				       xpt_busfunc_t *tr_func, void *arg);
834 static int		xpttargettraverse(struct cam_eb *bus,
835 					  struct cam_et *start_target,
836 					  xpt_targetfunc_t *tr_func, void *arg);
837 static int		xptdevicetraverse(struct cam_et *target,
838 					  struct cam_ed *start_device,
839 					  xpt_devicefunc_t *tr_func, void *arg);
840 static int		xptperiphtraverse(struct cam_ed *device,
841 					  struct cam_periph *start_periph,
842 					  xpt_periphfunc_t *tr_func, void *arg);
843 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
844 					xpt_pdrvfunc_t *tr_func, void *arg);
845 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
846 					    struct cam_periph *start_periph,
847 					    xpt_periphfunc_t *tr_func,
848 					    void *arg);
849 static xpt_busfunc_t	xptdefbusfunc;
850 static xpt_targetfunc_t	xptdeftargetfunc;
851 static xpt_devicefunc_t	xptdefdevicefunc;
852 static xpt_periphfunc_t	xptdefperiphfunc;
853 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
854 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
855 					    void *arg);
856 static xpt_devicefunc_t	xptsetasyncfunc;
857 static xpt_busfunc_t	xptsetasyncbusfunc;
858 static cam_status	xptregister(struct cam_periph *periph,
859 				    void *arg);
860 static cam_status	proberegister(struct cam_periph *periph,
861 				      void *arg);
862 static void	 probeschedule(struct cam_periph *probe_periph);
863 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
864 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
865 static int       proberequestbackoff(struct cam_periph *periph,
866 				     struct cam_ed *device);
867 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
868 static void	 probecleanup(struct cam_periph *periph);
869 static void	 xpt_find_quirk(struct cam_ed *device);
870 static void	 xpt_devise_transport(struct cam_path *path);
871 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
872 					   struct cam_ed *device,
873 					   int async_update);
874 static void	 xpt_toggle_tags(struct cam_path *path);
875 static void	 xpt_start_tags(struct cam_path *path);
876 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
877 					    struct cam_ed *dev);
878 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
879 					   struct cam_ed *dev);
880 static __inline int periph_is_queued(struct cam_periph *periph);
881 static __inline int device_is_alloc_queued(struct cam_ed *device);
882 static __inline int device_is_send_queued(struct cam_ed *device);
883 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
884 
885 static __inline int
886 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
887 {
888 	int retval;
889 
890 	if (dev->ccbq.devq_openings > 0) {
891 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
892 			cam_ccbq_resize(&dev->ccbq,
893 					dev->ccbq.dev_openings
894 					+ dev->ccbq.dev_active);
895 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
896 		}
897 		/*
898 		 * The priority of a device waiting for CCB resources
899 		 * is that of the the highest priority peripheral driver
900 		 * enqueued.
901 		 */
902 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
903 					  &dev->alloc_ccb_entry.pinfo,
904 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
905 	} else {
906 		retval = 0;
907 	}
908 
909 	return (retval);
910 }
911 
912 static __inline int
913 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
914 {
915 	int	retval;
916 
917 	if (dev->ccbq.dev_openings > 0) {
918 		/*
919 		 * The priority of a device waiting for controller
920 		 * resources is that of the the highest priority CCB
921 		 * enqueued.
922 		 */
923 		retval =
924 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
925 				     &dev->send_ccb_entry.pinfo,
926 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
927 	} else {
928 		retval = 0;
929 	}
930 	return (retval);
931 }
932 
933 static __inline int
934 periph_is_queued(struct cam_periph *periph)
935 {
936 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
937 }
938 
939 static __inline int
940 device_is_alloc_queued(struct cam_ed *device)
941 {
942 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
943 }
944 
945 static __inline int
946 device_is_send_queued(struct cam_ed *device)
947 {
948 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
949 }
950 
951 static __inline int
952 dev_allocq_is_runnable(struct cam_devq *devq)
953 {
954 	/*
955 	 * Have work to do.
956 	 * Have space to do more work.
957 	 * Allowed to do work.
958 	 */
959 	return ((devq->alloc_queue.qfrozen_cnt == 0)
960 	     && (devq->alloc_queue.entries > 0)
961 	     && (devq->alloc_openings > 0));
962 }
963 
964 static void
965 xpt_periph_init()
966 {
967 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
968 }
969 
970 static void
971 probe_periph_init()
972 {
973 }
974 
975 
976 static void
977 xptdone(struct cam_periph *periph, union ccb *done_ccb)
978 {
979 	/* Caller will release the CCB */
980 	wakeup(&done_ccb->ccb_h.cbfcnp);
981 }
982 
983 static int
984 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
985 {
986 
987 	/*
988 	 * Only allow read-write access.
989 	 */
990 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
991 		return(EPERM);
992 
993 	/*
994 	 * We don't allow nonblocking access.
995 	 */
996 	if ((flags & O_NONBLOCK) != 0) {
997 		printf("%s: can't do nonblocking access\n", devtoname(dev));
998 		return(ENODEV);
999 	}
1000 
1001 	/* Mark ourselves open */
1002 	mtx_lock(&xsoftc.xpt_lock);
1003 	xsoftc.flags |= XPT_FLAG_OPEN;
1004 	mtx_unlock(&xsoftc.xpt_lock);
1005 
1006 	return(0);
1007 }
1008 
1009 static int
1010 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
1011 {
1012 
1013 	/* Mark ourselves closed */
1014 	mtx_lock(&xsoftc.xpt_lock);
1015 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1016 	mtx_unlock(&xsoftc.xpt_lock);
1017 
1018 	return(0);
1019 }
1020 
1021 /*
1022  * Don't automatically grab the xpt softc lock here even though this is going
1023  * through the xpt device.  The xpt device is really just a back door for
1024  * accessing other devices and SIMs, so the right thing to do is to grab
1025  * the appropriate SIM lock once the bus/SIM is located.
1026  */
1027 static int
1028 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1029 {
1030 	int error;
1031 
1032 	error = 0;
1033 
1034 	switch(cmd) {
1035 	/*
1036 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1037 	 * to accept CCB types that don't quite make sense to send through a
1038 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
1039 	 * in the CAM spec.
1040 	 */
1041 	case CAMIOCOMMAND: {
1042 		union ccb *ccb;
1043 		union ccb *inccb;
1044 		struct cam_eb *bus;
1045 
1046 		inccb = (union ccb *)addr;
1047 
1048 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1049 		if (bus == NULL) {
1050 			error = EINVAL;
1051 			break;
1052 		}
1053 
1054 		switch(inccb->ccb_h.func_code) {
1055 		case XPT_SCAN_BUS:
1056 		case XPT_RESET_BUS:
1057 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1058 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1059 				error = EINVAL;
1060 				break;
1061 			}
1062 			/* FALLTHROUGH */
1063 		case XPT_PATH_INQ:
1064 		case XPT_ENG_INQ:
1065 		case XPT_SCAN_LUN:
1066 
1067 			ccb = xpt_alloc_ccb();
1068 
1069 			CAM_SIM_LOCK(bus->sim);
1070 
1071 			/*
1072 			 * Create a path using the bus, target, and lun the
1073 			 * user passed in.
1074 			 */
1075 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1076 					    inccb->ccb_h.path_id,
1077 					    inccb->ccb_h.target_id,
1078 					    inccb->ccb_h.target_lun) !=
1079 					    CAM_REQ_CMP){
1080 				error = EINVAL;
1081 				CAM_SIM_UNLOCK(bus->sim);
1082 				xpt_free_ccb(ccb);
1083 				break;
1084 			}
1085 			/* Ensure all of our fields are correct */
1086 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1087 				      inccb->ccb_h.pinfo.priority);
1088 			xpt_merge_ccb(ccb, inccb);
1089 			ccb->ccb_h.cbfcnp = xptdone;
1090 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1091 			bcopy(ccb, inccb, sizeof(union ccb));
1092 			xpt_free_path(ccb->ccb_h.path);
1093 			xpt_free_ccb(ccb);
1094 			CAM_SIM_UNLOCK(bus->sim);
1095 			break;
1096 
1097 		case XPT_DEBUG: {
1098 			union ccb ccb;
1099 
1100 			/*
1101 			 * This is an immediate CCB, so it's okay to
1102 			 * allocate it on the stack.
1103 			 */
1104 
1105 			CAM_SIM_LOCK(bus->sim);
1106 
1107 			/*
1108 			 * Create a path using the bus, target, and lun the
1109 			 * user passed in.
1110 			 */
1111 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1112 					    inccb->ccb_h.path_id,
1113 					    inccb->ccb_h.target_id,
1114 					    inccb->ccb_h.target_lun) !=
1115 					    CAM_REQ_CMP){
1116 				error = EINVAL;
1117 				CAM_SIM_UNLOCK(bus->sim);
1118 				break;
1119 			}
1120 			/* Ensure all of our fields are correct */
1121 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1122 				      inccb->ccb_h.pinfo.priority);
1123 			xpt_merge_ccb(&ccb, inccb);
1124 			ccb.ccb_h.cbfcnp = xptdone;
1125 			xpt_action(&ccb);
1126 			CAM_SIM_UNLOCK(bus->sim);
1127 			bcopy(&ccb, inccb, sizeof(union ccb));
1128 			xpt_free_path(ccb.ccb_h.path);
1129 			break;
1130 
1131 		}
1132 		case XPT_DEV_MATCH: {
1133 			struct cam_periph_map_info mapinfo;
1134 			struct cam_path *old_path;
1135 
1136 			/*
1137 			 * We can't deal with physical addresses for this
1138 			 * type of transaction.
1139 			 */
1140 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1141 				error = EINVAL;
1142 				break;
1143 			}
1144 
1145 			/*
1146 			 * Save this in case the caller had it set to
1147 			 * something in particular.
1148 			 */
1149 			old_path = inccb->ccb_h.path;
1150 
1151 			/*
1152 			 * We really don't need a path for the matching
1153 			 * code.  The path is needed because of the
1154 			 * debugging statements in xpt_action().  They
1155 			 * assume that the CCB has a valid path.
1156 			 */
1157 			inccb->ccb_h.path = xpt_periph->path;
1158 
1159 			bzero(&mapinfo, sizeof(mapinfo));
1160 
1161 			/*
1162 			 * Map the pattern and match buffers into kernel
1163 			 * virtual address space.
1164 			 */
1165 			error = cam_periph_mapmem(inccb, &mapinfo);
1166 
1167 			if (error) {
1168 				inccb->ccb_h.path = old_path;
1169 				break;
1170 			}
1171 
1172 			/*
1173 			 * This is an immediate CCB, we can send it on directly.
1174 			 */
1175 			xpt_action(inccb);
1176 
1177 			/*
1178 			 * Map the buffers back into user space.
1179 			 */
1180 			cam_periph_unmapmem(inccb, &mapinfo);
1181 
1182 			inccb->ccb_h.path = old_path;
1183 
1184 			error = 0;
1185 			break;
1186 		}
1187 		default:
1188 			error = ENOTSUP;
1189 			break;
1190 		}
1191 		xpt_release_bus(bus);
1192 		break;
1193 	}
1194 	/*
1195 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1196 	 * with the periphal driver name and unit name filled in.  The other
1197 	 * fields don't really matter as input.  The passthrough driver name
1198 	 * ("pass"), and unit number are passed back in the ccb.  The current
1199 	 * device generation number, and the index into the device peripheral
1200 	 * driver list, and the status are also passed back.  Note that
1201 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1202 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1203 	 * (or rather should be) impossible for the device peripheral driver
1204 	 * list to change since we look at the whole thing in one pass, and
1205 	 * we do it with lock protection.
1206 	 *
1207 	 */
1208 	case CAMGETPASSTHRU: {
1209 		union ccb *ccb;
1210 		struct cam_periph *periph;
1211 		struct periph_driver **p_drv;
1212 		char   *name;
1213 		u_int unit;
1214 		u_int cur_generation;
1215 		int base_periph_found;
1216 		int splbreaknum;
1217 
1218 		ccb = (union ccb *)addr;
1219 		unit = ccb->cgdl.unit_number;
1220 		name = ccb->cgdl.periph_name;
1221 		/*
1222 		 * Every 100 devices, we want to drop our lock protection to
1223 		 * give the software interrupt handler a chance to run.
1224 		 * Most systems won't run into this check, but this should
1225 		 * avoid starvation in the software interrupt handler in
1226 		 * large systems.
1227 		 */
1228 		splbreaknum = 100;
1229 
1230 		ccb = (union ccb *)addr;
1231 
1232 		base_periph_found = 0;
1233 
1234 		/*
1235 		 * Sanity check -- make sure we don't get a null peripheral
1236 		 * driver name.
1237 		 */
1238 		if (*ccb->cgdl.periph_name == '\0') {
1239 			error = EINVAL;
1240 			break;
1241 		}
1242 
1243 		/* Keep the list from changing while we traverse it */
1244 		mtx_lock(&xsoftc.xpt_topo_lock);
1245 ptstartover:
1246 		cur_generation = xsoftc.xpt_generation;
1247 
1248 		/* first find our driver in the list of drivers */
1249 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
1250 			if (strcmp((*p_drv)->driver_name, name) == 0)
1251 				break;
1252 
1253 		if (*p_drv == NULL) {
1254 			mtx_unlock(&xsoftc.xpt_topo_lock);
1255 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1256 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1257 			*ccb->cgdl.periph_name = '\0';
1258 			ccb->cgdl.unit_number = 0;
1259 			error = ENOENT;
1260 			break;
1261 		}
1262 
1263 		/*
1264 		 * Run through every peripheral instance of this driver
1265 		 * and check to see whether it matches the unit passed
1266 		 * in by the user.  If it does, get out of the loops and
1267 		 * find the passthrough driver associated with that
1268 		 * peripheral driver.
1269 		 */
1270 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1271 		     periph = TAILQ_NEXT(periph, unit_links)) {
1272 
1273 			if (periph->unit_number == unit) {
1274 				break;
1275 			} else if (--splbreaknum == 0) {
1276 				mtx_unlock(&xsoftc.xpt_topo_lock);
1277 				mtx_lock(&xsoftc.xpt_topo_lock);
1278 				splbreaknum = 100;
1279 				if (cur_generation != xsoftc.xpt_generation)
1280 				       goto ptstartover;
1281 			}
1282 		}
1283 		/*
1284 		 * If we found the peripheral driver that the user passed
1285 		 * in, go through all of the peripheral drivers for that
1286 		 * particular device and look for a passthrough driver.
1287 		 */
1288 		if (periph != NULL) {
1289 			struct cam_ed *device;
1290 			int i;
1291 
1292 			base_periph_found = 1;
1293 			device = periph->path->device;
1294 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1295 			     periph != NULL;
1296 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1297 				/*
1298 				 * Check to see whether we have a
1299 				 * passthrough device or not.
1300 				 */
1301 				if (strcmp(periph->periph_name, "pass") == 0) {
1302 					/*
1303 					 * Fill in the getdevlist fields.
1304 					 */
1305 					strcpy(ccb->cgdl.periph_name,
1306 					       periph->periph_name);
1307 					ccb->cgdl.unit_number =
1308 						periph->unit_number;
1309 					if (SLIST_NEXT(periph, periph_links))
1310 						ccb->cgdl.status =
1311 							CAM_GDEVLIST_MORE_DEVS;
1312 					else
1313 						ccb->cgdl.status =
1314 						       CAM_GDEVLIST_LAST_DEVICE;
1315 					ccb->cgdl.generation =
1316 						device->generation;
1317 					ccb->cgdl.index = i;
1318 					/*
1319 					 * Fill in some CCB header fields
1320 					 * that the user may want.
1321 					 */
1322 					ccb->ccb_h.path_id =
1323 						periph->path->bus->path_id;
1324 					ccb->ccb_h.target_id =
1325 						periph->path->target->target_id;
1326 					ccb->ccb_h.target_lun =
1327 						periph->path->device->lun_id;
1328 					ccb->ccb_h.status = CAM_REQ_CMP;
1329 					break;
1330 				}
1331 			}
1332 		}
1333 
1334 		/*
1335 		 * If the periph is null here, one of two things has
1336 		 * happened.  The first possibility is that we couldn't
1337 		 * find the unit number of the particular peripheral driver
1338 		 * that the user is asking about.  e.g. the user asks for
1339 		 * the passthrough driver for "da11".  We find the list of
1340 		 * "da" peripherals all right, but there is no unit 11.
1341 		 * The other possibility is that we went through the list
1342 		 * of peripheral drivers attached to the device structure,
1343 		 * but didn't find one with the name "pass".  Either way,
1344 		 * we return ENOENT, since we couldn't find something.
1345 		 */
1346 		if (periph == NULL) {
1347 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1348 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1349 			*ccb->cgdl.periph_name = '\0';
1350 			ccb->cgdl.unit_number = 0;
1351 			error = ENOENT;
1352 			/*
1353 			 * It is unfortunate that this is even necessary,
1354 			 * but there are many, many clueless users out there.
1355 			 * If this is true, the user is looking for the
1356 			 * passthrough driver, but doesn't have one in his
1357 			 * kernel.
1358 			 */
1359 			if (base_periph_found == 1) {
1360 				printf("xptioctl: pass driver is not in the "
1361 				       "kernel\n");
1362 				printf("xptioctl: put \"device pass\" in "
1363 				       "your kernel config file\n");
1364 			}
1365 		}
1366 		mtx_unlock(&xsoftc.xpt_topo_lock);
1367 		break;
1368 		}
1369 	default:
1370 		error = ENOTTY;
1371 		break;
1372 	}
1373 
1374 	return(error);
1375 }
1376 
1377 static int
1378 cam_module_event_handler(module_t mod, int what, void *arg)
1379 {
1380 	int error;
1381 
1382 	switch (what) {
1383 	case MOD_LOAD:
1384 		if ((error = xpt_init(NULL)) != 0)
1385 			return (error);
1386 		break;
1387 	case MOD_UNLOAD:
1388 		return EBUSY;
1389 	default:
1390 		return EOPNOTSUPP;
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 /* thread to handle bus rescans */
1397 static void
1398 xpt_scanner_thread(void *dummy)
1399 {
1400 	cam_isrq_t	queue;
1401 	union ccb	*ccb;
1402 	struct cam_sim	*sim;
1403 
1404 	for (;;) {
1405 		/*
1406 		 * Wait for a rescan request to come in.  When it does, splice
1407 		 * it onto a queue from local storage so that the xpt lock
1408 		 * doesn't need to be held while the requests are being
1409 		 * processed.
1410 		 */
1411 		xpt_lock_buses();
1412 		msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
1413 		    "ccb_scanq", 0);
1414 		TAILQ_INIT(&queue);
1415 		TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
1416 		xpt_unlock_buses();
1417 
1418 		while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
1419 			TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
1420 
1421 			sim = ccb->ccb_h.path->bus->sim;
1422 			CAM_SIM_LOCK(sim);
1423 
1424 			ccb->ccb_h.func_code = XPT_SCAN_BUS;
1425 			ccb->ccb_h.cbfcnp = xptdone;
1426 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
1427 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1428 			xpt_free_path(ccb->ccb_h.path);
1429 			xpt_free_ccb(ccb);
1430 			CAM_SIM_UNLOCK(sim);
1431 		}
1432 	}
1433 }
1434 
1435 void
1436 xpt_rescan(union ccb *ccb)
1437 {
1438 	struct ccb_hdr *hdr;
1439 
1440 	/*
1441 	 * Don't make duplicate entries for the same paths.
1442 	 */
1443 	xpt_lock_buses();
1444 	TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
1445 		if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
1446 			xpt_unlock_buses();
1447 			xpt_print(ccb->ccb_h.path, "rescan already queued\n");
1448 			xpt_free_path(ccb->ccb_h.path);
1449 			xpt_free_ccb(ccb);
1450 			return;
1451 		}
1452 	}
1453 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1454 	wakeup(&xsoftc.ccb_scanq);
1455 	xpt_unlock_buses();
1456 }
1457 
1458 /* Functions accessed by the peripheral drivers */
1459 static int
1460 xpt_init(void *dummy)
1461 {
1462 	struct cam_sim *xpt_sim;
1463 	struct cam_path *path;
1464 	struct cam_devq *devq;
1465 	cam_status status;
1466 
1467 	TAILQ_INIT(&xsoftc.xpt_busses);
1468 	TAILQ_INIT(&cam_simq);
1469 	TAILQ_INIT(&xsoftc.ccb_scanq);
1470 	STAILQ_INIT(&xsoftc.highpowerq);
1471 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1472 
1473 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
1474 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
1475 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
1476 
1477 	/*
1478 	 * The xpt layer is, itself, the equivelent of a SIM.
1479 	 * Allow 16 ccbs in the ccb pool for it.  This should
1480 	 * give decent parallelism when we probe busses and
1481 	 * perform other XPT functions.
1482 	 */
1483 	devq = cam_simq_alloc(16);
1484 	xpt_sim = cam_sim_alloc(xptaction,
1485 				xptpoll,
1486 				"xpt",
1487 				/*softc*/NULL,
1488 				/*unit*/0,
1489 				/*mtx*/&xsoftc.xpt_lock,
1490 				/*max_dev_transactions*/0,
1491 				/*max_tagged_dev_transactions*/0,
1492 				devq);
1493 	if (xpt_sim == NULL)
1494 		return (ENOMEM);
1495 
1496 	xpt_sim->max_ccbs = 16;
1497 
1498 	mtx_lock(&xsoftc.xpt_lock);
1499 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
1500 		printf("xpt_init: xpt_bus_register failed with status %#x,"
1501 		       " failing attach\n", status);
1502 		return (EINVAL);
1503 	}
1504 
1505 	/*
1506 	 * Looking at the XPT from the SIM layer, the XPT is
1507 	 * the equivelent of a peripheral driver.  Allocate
1508 	 * a peripheral driver entry for us.
1509 	 */
1510 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1511 				      CAM_TARGET_WILDCARD,
1512 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1513 		printf("xpt_init: xpt_create_path failed with status %#x,"
1514 		       " failing attach\n", status);
1515 		return (EINVAL);
1516 	}
1517 
1518 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1519 			 path, NULL, 0, xpt_sim);
1520 	xpt_free_path(path);
1521 	mtx_unlock(&xsoftc.xpt_lock);
1522 
1523 	/*
1524 	 * Register a callback for when interrupts are enabled.
1525 	 */
1526 	xsoftc.xpt_config_hook =
1527 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1528 					      M_CAMXPT, M_NOWAIT | M_ZERO);
1529 	if (xsoftc.xpt_config_hook == NULL) {
1530 		printf("xpt_init: Cannot malloc config hook "
1531 		       "- failing attach\n");
1532 		return (ENOMEM);
1533 	}
1534 
1535 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1536 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1537 		free (xsoftc.xpt_config_hook, M_CAMXPT);
1538 		printf("xpt_init: config_intrhook_establish failed "
1539 		       "- failing attach\n");
1540 	}
1541 
1542 	/* fire up rescan thread */
1543 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
1544 		printf("xpt_init: failed to create rescan thread\n");
1545 	}
1546 	/* Install our software interrupt handlers */
1547 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
1548 
1549 	return (0);
1550 }
1551 
1552 static cam_status
1553 xptregister(struct cam_periph *periph, void *arg)
1554 {
1555 	struct cam_sim *xpt_sim;
1556 
1557 	if (periph == NULL) {
1558 		printf("xptregister: periph was NULL!!\n");
1559 		return(CAM_REQ_CMP_ERR);
1560 	}
1561 
1562 	xpt_sim = (struct cam_sim *)arg;
1563 	xpt_sim->softc = periph;
1564 	xpt_periph = periph;
1565 	periph->softc = NULL;
1566 
1567 	return(CAM_REQ_CMP);
1568 }
1569 
1570 int32_t
1571 xpt_add_periph(struct cam_periph *periph)
1572 {
1573 	struct cam_ed *device;
1574 	int32_t	 status;
1575 	struct periph_list *periph_head;
1576 
1577 	mtx_assert(periph->sim->mtx, MA_OWNED);
1578 
1579 	device = periph->path->device;
1580 
1581 	periph_head = &device->periphs;
1582 
1583 	status = CAM_REQ_CMP;
1584 
1585 	if (device != NULL) {
1586 		/*
1587 		 * Make room for this peripheral
1588 		 * so it will fit in the queue
1589 		 * when it's scheduled to run
1590 		 */
1591 		status = camq_resize(&device->drvq,
1592 				     device->drvq.array_size + 1);
1593 
1594 		device->generation++;
1595 
1596 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1597 	}
1598 
1599 	mtx_lock(&xsoftc.xpt_topo_lock);
1600 	xsoftc.xpt_generation++;
1601 	mtx_unlock(&xsoftc.xpt_topo_lock);
1602 
1603 	return (status);
1604 }
1605 
1606 void
1607 xpt_remove_periph(struct cam_periph *periph)
1608 {
1609 	struct cam_ed *device;
1610 
1611 	mtx_assert(periph->sim->mtx, MA_OWNED);
1612 
1613 	device = periph->path->device;
1614 
1615 	if (device != NULL) {
1616 		struct periph_list *periph_head;
1617 
1618 		periph_head = &device->periphs;
1619 
1620 		/* Release the slot for this peripheral */
1621 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1622 
1623 		device->generation++;
1624 
1625 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1626 	}
1627 
1628 	mtx_lock(&xsoftc.xpt_topo_lock);
1629 	xsoftc.xpt_generation++;
1630 	mtx_unlock(&xsoftc.xpt_topo_lock);
1631 }
1632 
1633 
1634 void
1635 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1636 {
1637 	struct	ccb_pathinq cpi;
1638 	struct	ccb_trans_settings cts;
1639 	struct	cam_path *path;
1640 	u_int	speed;
1641 	u_int	freq;
1642 	u_int	mb;
1643 
1644 	mtx_assert(periph->sim->mtx, MA_OWNED);
1645 
1646 	path = periph->path;
1647 	/*
1648 	 * To ensure that this is printed in one piece,
1649 	 * mask out CAM interrupts.
1650 	 */
1651 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1652 	       periph->periph_name, periph->unit_number,
1653 	       path->bus->sim->sim_name,
1654 	       path->bus->sim->unit_number,
1655 	       path->bus->sim->bus_id,
1656 	       path->target->target_id,
1657 	       path->device->lun_id);
1658 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1659 	scsi_print_inquiry(&path->device->inq_data);
1660 	if (bootverbose && path->device->serial_num_len > 0) {
1661 		/* Don't wrap the screen  - print only the first 60 chars */
1662 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1663 		       periph->unit_number, path->device->serial_num);
1664 	}
1665 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1666 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1667 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1668 	xpt_action((union ccb*)&cts);
1669 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1670 		return;
1671 	}
1672 
1673 	/* Ask the SIM for its base transfer speed */
1674 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1675 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1676 	xpt_action((union ccb *)&cpi);
1677 
1678 	speed = cpi.base_transfer_speed;
1679 	freq = 0;
1680 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1681 		struct	ccb_trans_settings_spi *spi;
1682 
1683 		spi = &cts.xport_specific.spi;
1684 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1685 		  && spi->sync_offset != 0) {
1686 			freq = scsi_calc_syncsrate(spi->sync_period);
1687 			speed = freq;
1688 		}
1689 
1690 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1691 			speed *= (0x01 << spi->bus_width);
1692 	}
1693 
1694 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1695 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1696 		if (fc->valid & CTS_FC_VALID_SPEED) {
1697 			speed = fc->bitrate;
1698 		}
1699 	}
1700 
1701 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1702 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1703 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1704 			speed = sas->bitrate;
1705 		}
1706 	}
1707 
1708 	mb = speed / 1000;
1709 	if (mb > 0)
1710 		printf("%s%d: %d.%03dMB/s transfers",
1711 		       periph->periph_name, periph->unit_number,
1712 		       mb, speed % 1000);
1713 	else
1714 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1715 		       periph->unit_number, speed);
1716 	/* Report additional information about SPI connections */
1717 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1718 		struct	ccb_trans_settings_spi *spi;
1719 
1720 		spi = &cts.xport_specific.spi;
1721 		if (freq != 0) {
1722 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1723 			       freq % 1000,
1724 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1725 			     ? " DT" : "",
1726 			       spi->sync_offset);
1727 		}
1728 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1729 		 && spi->bus_width > 0) {
1730 			if (freq != 0) {
1731 				printf(", ");
1732 			} else {
1733 				printf(" (");
1734 			}
1735 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1736 		} else if (freq != 0) {
1737 			printf(")");
1738 		}
1739 	}
1740 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1741 		struct	ccb_trans_settings_fc *fc;
1742 
1743 		fc = &cts.xport_specific.fc;
1744 		if (fc->valid & CTS_FC_VALID_WWNN)
1745 			printf(" WWNN 0x%llx", (long long) fc->wwnn);
1746 		if (fc->valid & CTS_FC_VALID_WWPN)
1747 			printf(" WWPN 0x%llx", (long long) fc->wwpn);
1748 		if (fc->valid & CTS_FC_VALID_PORT)
1749 			printf(" PortID 0x%x", fc->port);
1750 	}
1751 
1752 	if (path->device->inq_flags & SID_CmdQue
1753 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1754 		printf("\n%s%d: Command Queueing Enabled",
1755 		       periph->periph_name, periph->unit_number);
1756 	}
1757 	printf("\n");
1758 
1759 	/*
1760 	 * We only want to print the caller's announce string if they've
1761 	 * passed one in..
1762 	 */
1763 	if (announce_string != NULL)
1764 		printf("%s%d: %s\n", periph->periph_name,
1765 		       periph->unit_number, announce_string);
1766 }
1767 
1768 static dev_match_ret
1769 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1770 	    struct cam_eb *bus)
1771 {
1772 	dev_match_ret retval;
1773 	int i;
1774 
1775 	retval = DM_RET_NONE;
1776 
1777 	/*
1778 	 * If we aren't given something to match against, that's an error.
1779 	 */
1780 	if (bus == NULL)
1781 		return(DM_RET_ERROR);
1782 
1783 	/*
1784 	 * If there are no match entries, then this bus matches no
1785 	 * matter what.
1786 	 */
1787 	if ((patterns == NULL) || (num_patterns == 0))
1788 		return(DM_RET_DESCEND | DM_RET_COPY);
1789 
1790 	for (i = 0; i < num_patterns; i++) {
1791 		struct bus_match_pattern *cur_pattern;
1792 
1793 		/*
1794 		 * If the pattern in question isn't for a bus node, we
1795 		 * aren't interested.  However, we do indicate to the
1796 		 * calling routine that we should continue descending the
1797 		 * tree, since the user wants to match against lower-level
1798 		 * EDT elements.
1799 		 */
1800 		if (patterns[i].type != DEV_MATCH_BUS) {
1801 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1802 				retval |= DM_RET_DESCEND;
1803 			continue;
1804 		}
1805 
1806 		cur_pattern = &patterns[i].pattern.bus_pattern;
1807 
1808 		/*
1809 		 * If they want to match any bus node, we give them any
1810 		 * device node.
1811 		 */
1812 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1813 			/* set the copy flag */
1814 			retval |= DM_RET_COPY;
1815 
1816 			/*
1817 			 * If we've already decided on an action, go ahead
1818 			 * and return.
1819 			 */
1820 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1821 				return(retval);
1822 		}
1823 
1824 		/*
1825 		 * Not sure why someone would do this...
1826 		 */
1827 		if (cur_pattern->flags == BUS_MATCH_NONE)
1828 			continue;
1829 
1830 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1831 		 && (cur_pattern->path_id != bus->path_id))
1832 			continue;
1833 
1834 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1835 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1836 			continue;
1837 
1838 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1839 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1840 			continue;
1841 
1842 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1843 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1844 			     DEV_IDLEN) != 0))
1845 			continue;
1846 
1847 		/*
1848 		 * If we get to this point, the user definitely wants
1849 		 * information on this bus.  So tell the caller to copy the
1850 		 * data out.
1851 		 */
1852 		retval |= DM_RET_COPY;
1853 
1854 		/*
1855 		 * If the return action has been set to descend, then we
1856 		 * know that we've already seen a non-bus matching
1857 		 * expression, therefore we need to further descend the tree.
1858 		 * This won't change by continuing around the loop, so we
1859 		 * go ahead and return.  If we haven't seen a non-bus
1860 		 * matching expression, we keep going around the loop until
1861 		 * we exhaust the matching expressions.  We'll set the stop
1862 		 * flag once we fall out of the loop.
1863 		 */
1864 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1865 			return(retval);
1866 	}
1867 
1868 	/*
1869 	 * If the return action hasn't been set to descend yet, that means
1870 	 * we haven't seen anything other than bus matching patterns.  So
1871 	 * tell the caller to stop descending the tree -- the user doesn't
1872 	 * want to match against lower level tree elements.
1873 	 */
1874 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1875 		retval |= DM_RET_STOP;
1876 
1877 	return(retval);
1878 }
1879 
1880 static dev_match_ret
1881 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1882 	       struct cam_ed *device)
1883 {
1884 	dev_match_ret retval;
1885 	int i;
1886 
1887 	retval = DM_RET_NONE;
1888 
1889 	/*
1890 	 * If we aren't given something to match against, that's an error.
1891 	 */
1892 	if (device == NULL)
1893 		return(DM_RET_ERROR);
1894 
1895 	/*
1896 	 * If there are no match entries, then this device matches no
1897 	 * matter what.
1898 	 */
1899 	if ((patterns == NULL) || (num_patterns == 0))
1900 		return(DM_RET_DESCEND | DM_RET_COPY);
1901 
1902 	for (i = 0; i < num_patterns; i++) {
1903 		struct device_match_pattern *cur_pattern;
1904 
1905 		/*
1906 		 * If the pattern in question isn't for a device node, we
1907 		 * aren't interested.
1908 		 */
1909 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1910 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1911 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1912 				retval |= DM_RET_DESCEND;
1913 			continue;
1914 		}
1915 
1916 		cur_pattern = &patterns[i].pattern.device_pattern;
1917 
1918 		/*
1919 		 * If they want to match any device node, we give them any
1920 		 * device node.
1921 		 */
1922 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1923 			/* set the copy flag */
1924 			retval |= DM_RET_COPY;
1925 
1926 
1927 			/*
1928 			 * If we've already decided on an action, go ahead
1929 			 * and return.
1930 			 */
1931 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1932 				return(retval);
1933 		}
1934 
1935 		/*
1936 		 * Not sure why someone would do this...
1937 		 */
1938 		if (cur_pattern->flags == DEV_MATCH_NONE)
1939 			continue;
1940 
1941 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1942 		 && (cur_pattern->path_id != device->target->bus->path_id))
1943 			continue;
1944 
1945 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1946 		 && (cur_pattern->target_id != device->target->target_id))
1947 			continue;
1948 
1949 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1950 		 && (cur_pattern->target_lun != device->lun_id))
1951 			continue;
1952 
1953 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1954 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1955 				    (caddr_t)&cur_pattern->inq_pat,
1956 				    1, sizeof(cur_pattern->inq_pat),
1957 				    scsi_static_inquiry_match) == NULL))
1958 			continue;
1959 
1960 		/*
1961 		 * If we get to this point, the user definitely wants
1962 		 * information on this device.  So tell the caller to copy
1963 		 * the data out.
1964 		 */
1965 		retval |= DM_RET_COPY;
1966 
1967 		/*
1968 		 * If the return action has been set to descend, then we
1969 		 * know that we've already seen a peripheral matching
1970 		 * expression, therefore we need to further descend the tree.
1971 		 * This won't change by continuing around the loop, so we
1972 		 * go ahead and return.  If we haven't seen a peripheral
1973 		 * matching expression, we keep going around the loop until
1974 		 * we exhaust the matching expressions.  We'll set the stop
1975 		 * flag once we fall out of the loop.
1976 		 */
1977 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1978 			return(retval);
1979 	}
1980 
1981 	/*
1982 	 * If the return action hasn't been set to descend yet, that means
1983 	 * we haven't seen any peripheral matching patterns.  So tell the
1984 	 * caller to stop descending the tree -- the user doesn't want to
1985 	 * match against lower level tree elements.
1986 	 */
1987 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1988 		retval |= DM_RET_STOP;
1989 
1990 	return(retval);
1991 }
1992 
1993 /*
1994  * Match a single peripheral against any number of match patterns.
1995  */
1996 static dev_match_ret
1997 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1998 	       struct cam_periph *periph)
1999 {
2000 	dev_match_ret retval;
2001 	int i;
2002 
2003 	/*
2004 	 * If we aren't given something to match against, that's an error.
2005 	 */
2006 	if (periph == NULL)
2007 		return(DM_RET_ERROR);
2008 
2009 	/*
2010 	 * If there are no match entries, then this peripheral matches no
2011 	 * matter what.
2012 	 */
2013 	if ((patterns == NULL) || (num_patterns == 0))
2014 		return(DM_RET_STOP | DM_RET_COPY);
2015 
2016 	/*
2017 	 * There aren't any nodes below a peripheral node, so there's no
2018 	 * reason to descend the tree any further.
2019 	 */
2020 	retval = DM_RET_STOP;
2021 
2022 	for (i = 0; i < num_patterns; i++) {
2023 		struct periph_match_pattern *cur_pattern;
2024 
2025 		/*
2026 		 * If the pattern in question isn't for a peripheral, we
2027 		 * aren't interested.
2028 		 */
2029 		if (patterns[i].type != DEV_MATCH_PERIPH)
2030 			continue;
2031 
2032 		cur_pattern = &patterns[i].pattern.periph_pattern;
2033 
2034 		/*
2035 		 * If they want to match on anything, then we will do so.
2036 		 */
2037 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2038 			/* set the copy flag */
2039 			retval |= DM_RET_COPY;
2040 
2041 			/*
2042 			 * We've already set the return action to stop,
2043 			 * since there are no nodes below peripherals in
2044 			 * the tree.
2045 			 */
2046 			return(retval);
2047 		}
2048 
2049 		/*
2050 		 * Not sure why someone would do this...
2051 		 */
2052 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2053 			continue;
2054 
2055 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2056 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2057 			continue;
2058 
2059 		/*
2060 		 * For the target and lun id's, we have to make sure the
2061 		 * target and lun pointers aren't NULL.  The xpt peripheral
2062 		 * has a wildcard target and device.
2063 		 */
2064 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2065 		 && ((periph->path->target == NULL)
2066 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2067 			continue;
2068 
2069 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2070 		 && ((periph->path->device == NULL)
2071 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2072 			continue;
2073 
2074 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2075 		 && (cur_pattern->unit_number != periph->unit_number))
2076 			continue;
2077 
2078 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2079 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2080 			     DEV_IDLEN) != 0))
2081 			continue;
2082 
2083 		/*
2084 		 * If we get to this point, the user definitely wants
2085 		 * information on this peripheral.  So tell the caller to
2086 		 * copy the data out.
2087 		 */
2088 		retval |= DM_RET_COPY;
2089 
2090 		/*
2091 		 * The return action has already been set to stop, since
2092 		 * peripherals don't have any nodes below them in the EDT.
2093 		 */
2094 		return(retval);
2095 	}
2096 
2097 	/*
2098 	 * If we get to this point, the peripheral that was passed in
2099 	 * doesn't match any of the patterns.
2100 	 */
2101 	return(retval);
2102 }
2103 
2104 static int
2105 xptedtbusfunc(struct cam_eb *bus, void *arg)
2106 {
2107 	struct ccb_dev_match *cdm;
2108 	dev_match_ret retval;
2109 
2110 	cdm = (struct ccb_dev_match *)arg;
2111 
2112 	/*
2113 	 * If our position is for something deeper in the tree, that means
2114 	 * that we've already seen this node.  So, we keep going down.
2115 	 */
2116 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2117 	 && (cdm->pos.cookie.bus == bus)
2118 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2119 	 && (cdm->pos.cookie.target != NULL))
2120 		retval = DM_RET_DESCEND;
2121 	else
2122 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2123 
2124 	/*
2125 	 * If we got an error, bail out of the search.
2126 	 */
2127 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2128 		cdm->status = CAM_DEV_MATCH_ERROR;
2129 		return(0);
2130 	}
2131 
2132 	/*
2133 	 * If the copy flag is set, copy this bus out.
2134 	 */
2135 	if (retval & DM_RET_COPY) {
2136 		int spaceleft, j;
2137 
2138 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2139 			sizeof(struct dev_match_result));
2140 
2141 		/*
2142 		 * If we don't have enough space to put in another
2143 		 * match result, save our position and tell the
2144 		 * user there are more devices to check.
2145 		 */
2146 		if (spaceleft < sizeof(struct dev_match_result)) {
2147 			bzero(&cdm->pos, sizeof(cdm->pos));
2148 			cdm->pos.position_type =
2149 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2150 
2151 			cdm->pos.cookie.bus = bus;
2152 			cdm->pos.generations[CAM_BUS_GENERATION]=
2153 				xsoftc.bus_generation;
2154 			cdm->status = CAM_DEV_MATCH_MORE;
2155 			return(0);
2156 		}
2157 		j = cdm->num_matches;
2158 		cdm->num_matches++;
2159 		cdm->matches[j].type = DEV_MATCH_BUS;
2160 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2161 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2162 		cdm->matches[j].result.bus_result.unit_number =
2163 			bus->sim->unit_number;
2164 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2165 			bus->sim->sim_name, DEV_IDLEN);
2166 	}
2167 
2168 	/*
2169 	 * If the user is only interested in busses, there's no
2170 	 * reason to descend to the next level in the tree.
2171 	 */
2172 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2173 		return(1);
2174 
2175 	/*
2176 	 * If there is a target generation recorded, check it to
2177 	 * make sure the target list hasn't changed.
2178 	 */
2179 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2180 	 && (bus == cdm->pos.cookie.bus)
2181 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2182 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2183 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2184 	     bus->generation)) {
2185 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2186 		return(0);
2187 	}
2188 
2189 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2190 	 && (cdm->pos.cookie.bus == bus)
2191 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2192 	 && (cdm->pos.cookie.target != NULL))
2193 		return(xpttargettraverse(bus,
2194 					(struct cam_et *)cdm->pos.cookie.target,
2195 					 xptedttargetfunc, arg));
2196 	else
2197 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2198 }
2199 
2200 static int
2201 xptedttargetfunc(struct cam_et *target, void *arg)
2202 {
2203 	struct ccb_dev_match *cdm;
2204 
2205 	cdm = (struct ccb_dev_match *)arg;
2206 
2207 	/*
2208 	 * If there is a device list generation recorded, check it to
2209 	 * make sure the device list hasn't changed.
2210 	 */
2211 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2212 	 && (cdm->pos.cookie.bus == target->bus)
2213 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2214 	 && (cdm->pos.cookie.target == target)
2215 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2216 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2217 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2218 	     target->generation)) {
2219 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2220 		return(0);
2221 	}
2222 
2223 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2224 	 && (cdm->pos.cookie.bus == target->bus)
2225 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2226 	 && (cdm->pos.cookie.target == target)
2227 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2228 	 && (cdm->pos.cookie.device != NULL))
2229 		return(xptdevicetraverse(target,
2230 					(struct cam_ed *)cdm->pos.cookie.device,
2231 					 xptedtdevicefunc, arg));
2232 	else
2233 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2234 }
2235 
2236 static int
2237 xptedtdevicefunc(struct cam_ed *device, void *arg)
2238 {
2239 
2240 	struct ccb_dev_match *cdm;
2241 	dev_match_ret retval;
2242 
2243 	cdm = (struct ccb_dev_match *)arg;
2244 
2245 	/*
2246 	 * If our position is for something deeper in the tree, that means
2247 	 * that we've already seen this node.  So, we keep going down.
2248 	 */
2249 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2250 	 && (cdm->pos.cookie.device == device)
2251 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2252 	 && (cdm->pos.cookie.periph != NULL))
2253 		retval = DM_RET_DESCEND;
2254 	else
2255 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2256 					device);
2257 
2258 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2259 		cdm->status = CAM_DEV_MATCH_ERROR;
2260 		return(0);
2261 	}
2262 
2263 	/*
2264 	 * If the copy flag is set, copy this device out.
2265 	 */
2266 	if (retval & DM_RET_COPY) {
2267 		int spaceleft, j;
2268 
2269 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2270 			sizeof(struct dev_match_result));
2271 
2272 		/*
2273 		 * If we don't have enough space to put in another
2274 		 * match result, save our position and tell the
2275 		 * user there are more devices to check.
2276 		 */
2277 		if (spaceleft < sizeof(struct dev_match_result)) {
2278 			bzero(&cdm->pos, sizeof(cdm->pos));
2279 			cdm->pos.position_type =
2280 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2281 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2282 
2283 			cdm->pos.cookie.bus = device->target->bus;
2284 			cdm->pos.generations[CAM_BUS_GENERATION]=
2285 				xsoftc.bus_generation;
2286 			cdm->pos.cookie.target = device->target;
2287 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2288 				device->target->bus->generation;
2289 			cdm->pos.cookie.device = device;
2290 			cdm->pos.generations[CAM_DEV_GENERATION] =
2291 				device->target->generation;
2292 			cdm->status = CAM_DEV_MATCH_MORE;
2293 			return(0);
2294 		}
2295 		j = cdm->num_matches;
2296 		cdm->num_matches++;
2297 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2298 		cdm->matches[j].result.device_result.path_id =
2299 			device->target->bus->path_id;
2300 		cdm->matches[j].result.device_result.target_id =
2301 			device->target->target_id;
2302 		cdm->matches[j].result.device_result.target_lun =
2303 			device->lun_id;
2304 		bcopy(&device->inq_data,
2305 		      &cdm->matches[j].result.device_result.inq_data,
2306 		      sizeof(struct scsi_inquiry_data));
2307 
2308 		/* Let the user know whether this device is unconfigured */
2309 		if (device->flags & CAM_DEV_UNCONFIGURED)
2310 			cdm->matches[j].result.device_result.flags =
2311 				DEV_RESULT_UNCONFIGURED;
2312 		else
2313 			cdm->matches[j].result.device_result.flags =
2314 				DEV_RESULT_NOFLAG;
2315 	}
2316 
2317 	/*
2318 	 * If the user isn't interested in peripherals, don't descend
2319 	 * the tree any further.
2320 	 */
2321 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2322 		return(1);
2323 
2324 	/*
2325 	 * If there is a peripheral list generation recorded, make sure
2326 	 * it hasn't changed.
2327 	 */
2328 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2329 	 && (device->target->bus == cdm->pos.cookie.bus)
2330 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2331 	 && (device->target == cdm->pos.cookie.target)
2332 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2333 	 && (device == cdm->pos.cookie.device)
2334 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2335 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2336 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2337 	     device->generation)){
2338 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2339 		return(0);
2340 	}
2341 
2342 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2343 	 && (cdm->pos.cookie.bus == device->target->bus)
2344 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2345 	 && (cdm->pos.cookie.target == device->target)
2346 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2347 	 && (cdm->pos.cookie.device == device)
2348 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2349 	 && (cdm->pos.cookie.periph != NULL))
2350 		return(xptperiphtraverse(device,
2351 				(struct cam_periph *)cdm->pos.cookie.periph,
2352 				xptedtperiphfunc, arg));
2353 	else
2354 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2355 }
2356 
2357 static int
2358 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2359 {
2360 	struct ccb_dev_match *cdm;
2361 	dev_match_ret retval;
2362 
2363 	cdm = (struct ccb_dev_match *)arg;
2364 
2365 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2366 
2367 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2368 		cdm->status = CAM_DEV_MATCH_ERROR;
2369 		return(0);
2370 	}
2371 
2372 	/*
2373 	 * If the copy flag is set, copy this peripheral out.
2374 	 */
2375 	if (retval & DM_RET_COPY) {
2376 		int spaceleft, j;
2377 
2378 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2379 			sizeof(struct dev_match_result));
2380 
2381 		/*
2382 		 * If we don't have enough space to put in another
2383 		 * match result, save our position and tell the
2384 		 * user there are more devices to check.
2385 		 */
2386 		if (spaceleft < sizeof(struct dev_match_result)) {
2387 			bzero(&cdm->pos, sizeof(cdm->pos));
2388 			cdm->pos.position_type =
2389 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2390 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2391 				CAM_DEV_POS_PERIPH;
2392 
2393 			cdm->pos.cookie.bus = periph->path->bus;
2394 			cdm->pos.generations[CAM_BUS_GENERATION]=
2395 				xsoftc.bus_generation;
2396 			cdm->pos.cookie.target = periph->path->target;
2397 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2398 				periph->path->bus->generation;
2399 			cdm->pos.cookie.device = periph->path->device;
2400 			cdm->pos.generations[CAM_DEV_GENERATION] =
2401 				periph->path->target->generation;
2402 			cdm->pos.cookie.periph = periph;
2403 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2404 				periph->path->device->generation;
2405 			cdm->status = CAM_DEV_MATCH_MORE;
2406 			return(0);
2407 		}
2408 
2409 		j = cdm->num_matches;
2410 		cdm->num_matches++;
2411 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2412 		cdm->matches[j].result.periph_result.path_id =
2413 			periph->path->bus->path_id;
2414 		cdm->matches[j].result.periph_result.target_id =
2415 			periph->path->target->target_id;
2416 		cdm->matches[j].result.periph_result.target_lun =
2417 			periph->path->device->lun_id;
2418 		cdm->matches[j].result.periph_result.unit_number =
2419 			periph->unit_number;
2420 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2421 			periph->periph_name, DEV_IDLEN);
2422 	}
2423 
2424 	return(1);
2425 }
2426 
2427 static int
2428 xptedtmatch(struct ccb_dev_match *cdm)
2429 {
2430 	int ret;
2431 
2432 	cdm->num_matches = 0;
2433 
2434 	/*
2435 	 * Check the bus list generation.  If it has changed, the user
2436 	 * needs to reset everything and start over.
2437 	 */
2438 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2439 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2440 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2441 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2442 		return(0);
2443 	}
2444 
2445 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2446 	 && (cdm->pos.cookie.bus != NULL))
2447 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2448 				     xptedtbusfunc, cdm);
2449 	else
2450 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2451 
2452 	/*
2453 	 * If we get back 0, that means that we had to stop before fully
2454 	 * traversing the EDT.  It also means that one of the subroutines
2455 	 * has set the status field to the proper value.  If we get back 1,
2456 	 * we've fully traversed the EDT and copied out any matching entries.
2457 	 */
2458 	if (ret == 1)
2459 		cdm->status = CAM_DEV_MATCH_LAST;
2460 
2461 	return(ret);
2462 }
2463 
2464 static int
2465 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2466 {
2467 	struct ccb_dev_match *cdm;
2468 
2469 	cdm = (struct ccb_dev_match *)arg;
2470 
2471 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2472 	 && (cdm->pos.cookie.pdrv == pdrv)
2473 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2474 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2475 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2476 	     (*pdrv)->generation)) {
2477 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2478 		return(0);
2479 	}
2480 
2481 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2482 	 && (cdm->pos.cookie.pdrv == pdrv)
2483 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2484 	 && (cdm->pos.cookie.periph != NULL))
2485 		return(xptpdperiphtraverse(pdrv,
2486 				(struct cam_periph *)cdm->pos.cookie.periph,
2487 				xptplistperiphfunc, arg));
2488 	else
2489 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2490 }
2491 
2492 static int
2493 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2494 {
2495 	struct ccb_dev_match *cdm;
2496 	dev_match_ret retval;
2497 
2498 	cdm = (struct ccb_dev_match *)arg;
2499 
2500 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2501 
2502 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2503 		cdm->status = CAM_DEV_MATCH_ERROR;
2504 		return(0);
2505 	}
2506 
2507 	/*
2508 	 * If the copy flag is set, copy this peripheral out.
2509 	 */
2510 	if (retval & DM_RET_COPY) {
2511 		int spaceleft, j;
2512 
2513 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2514 			sizeof(struct dev_match_result));
2515 
2516 		/*
2517 		 * If we don't have enough space to put in another
2518 		 * match result, save our position and tell the
2519 		 * user there are more devices to check.
2520 		 */
2521 		if (spaceleft < sizeof(struct dev_match_result)) {
2522 			struct periph_driver **pdrv;
2523 
2524 			pdrv = NULL;
2525 			bzero(&cdm->pos, sizeof(cdm->pos));
2526 			cdm->pos.position_type =
2527 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2528 				CAM_DEV_POS_PERIPH;
2529 
2530 			/*
2531 			 * This may look a bit non-sensical, but it is
2532 			 * actually quite logical.  There are very few
2533 			 * peripheral drivers, and bloating every peripheral
2534 			 * structure with a pointer back to its parent
2535 			 * peripheral driver linker set entry would cost
2536 			 * more in the long run than doing this quick lookup.
2537 			 */
2538 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2539 				if (strcmp((*pdrv)->driver_name,
2540 				    periph->periph_name) == 0)
2541 					break;
2542 			}
2543 
2544 			if (*pdrv == NULL) {
2545 				cdm->status = CAM_DEV_MATCH_ERROR;
2546 				return(0);
2547 			}
2548 
2549 			cdm->pos.cookie.pdrv = pdrv;
2550 			/*
2551 			 * The periph generation slot does double duty, as
2552 			 * does the periph pointer slot.  They are used for
2553 			 * both edt and pdrv lookups and positioning.
2554 			 */
2555 			cdm->pos.cookie.periph = periph;
2556 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2557 				(*pdrv)->generation;
2558 			cdm->status = CAM_DEV_MATCH_MORE;
2559 			return(0);
2560 		}
2561 
2562 		j = cdm->num_matches;
2563 		cdm->num_matches++;
2564 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2565 		cdm->matches[j].result.periph_result.path_id =
2566 			periph->path->bus->path_id;
2567 
2568 		/*
2569 		 * The transport layer peripheral doesn't have a target or
2570 		 * lun.
2571 		 */
2572 		if (periph->path->target)
2573 			cdm->matches[j].result.periph_result.target_id =
2574 				periph->path->target->target_id;
2575 		else
2576 			cdm->matches[j].result.periph_result.target_id = -1;
2577 
2578 		if (periph->path->device)
2579 			cdm->matches[j].result.periph_result.target_lun =
2580 				periph->path->device->lun_id;
2581 		else
2582 			cdm->matches[j].result.periph_result.target_lun = -1;
2583 
2584 		cdm->matches[j].result.periph_result.unit_number =
2585 			periph->unit_number;
2586 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2587 			periph->periph_name, DEV_IDLEN);
2588 	}
2589 
2590 	return(1);
2591 }
2592 
2593 static int
2594 xptperiphlistmatch(struct ccb_dev_match *cdm)
2595 {
2596 	int ret;
2597 
2598 	cdm->num_matches = 0;
2599 
2600 	/*
2601 	 * At this point in the edt traversal function, we check the bus
2602 	 * list generation to make sure that no busses have been added or
2603 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2604 	 * For the peripheral driver list traversal function, however, we
2605 	 * don't have to worry about new peripheral driver types coming or
2606 	 * going; they're in a linker set, and therefore can't change
2607 	 * without a recompile.
2608 	 */
2609 
2610 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2611 	 && (cdm->pos.cookie.pdrv != NULL))
2612 		ret = xptpdrvtraverse(
2613 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2614 				xptplistpdrvfunc, cdm);
2615 	else
2616 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2617 
2618 	/*
2619 	 * If we get back 0, that means that we had to stop before fully
2620 	 * traversing the peripheral driver tree.  It also means that one of
2621 	 * the subroutines has set the status field to the proper value.  If
2622 	 * we get back 1, we've fully traversed the EDT and copied out any
2623 	 * matching entries.
2624 	 */
2625 	if (ret == 1)
2626 		cdm->status = CAM_DEV_MATCH_LAST;
2627 
2628 	return(ret);
2629 }
2630 
2631 static int
2632 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2633 {
2634 	struct cam_eb *bus, *next_bus;
2635 	int retval;
2636 
2637 	retval = 1;
2638 
2639 	mtx_lock(&xsoftc.xpt_topo_lock);
2640 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2641 	     bus != NULL;
2642 	     bus = next_bus) {
2643 		next_bus = TAILQ_NEXT(bus, links);
2644 
2645 		mtx_unlock(&xsoftc.xpt_topo_lock);
2646 		CAM_SIM_LOCK(bus->sim);
2647 		retval = tr_func(bus, arg);
2648 		CAM_SIM_UNLOCK(bus->sim);
2649 		if (retval == 0)
2650 			return(retval);
2651 		mtx_lock(&xsoftc.xpt_topo_lock);
2652 	}
2653 	mtx_unlock(&xsoftc.xpt_topo_lock);
2654 
2655 	return(retval);
2656 }
2657 
2658 static int
2659 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2660 		  xpt_targetfunc_t *tr_func, void *arg)
2661 {
2662 	struct cam_et *target, *next_target;
2663 	int retval;
2664 
2665 	retval = 1;
2666 	for (target = (start_target ? start_target :
2667 		       TAILQ_FIRST(&bus->et_entries));
2668 	     target != NULL; target = next_target) {
2669 
2670 		next_target = TAILQ_NEXT(target, links);
2671 
2672 		retval = tr_func(target, arg);
2673 
2674 		if (retval == 0)
2675 			return(retval);
2676 	}
2677 
2678 	return(retval);
2679 }
2680 
2681 static int
2682 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2683 		  xpt_devicefunc_t *tr_func, void *arg)
2684 {
2685 	struct cam_ed *device, *next_device;
2686 	int retval;
2687 
2688 	retval = 1;
2689 	for (device = (start_device ? start_device :
2690 		       TAILQ_FIRST(&target->ed_entries));
2691 	     device != NULL;
2692 	     device = next_device) {
2693 
2694 		next_device = TAILQ_NEXT(device, links);
2695 
2696 		retval = tr_func(device, arg);
2697 
2698 		if (retval == 0)
2699 			return(retval);
2700 	}
2701 
2702 	return(retval);
2703 }
2704 
2705 static int
2706 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2707 		  xpt_periphfunc_t *tr_func, void *arg)
2708 {
2709 	struct cam_periph *periph, *next_periph;
2710 	int retval;
2711 
2712 	retval = 1;
2713 
2714 	for (periph = (start_periph ? start_periph :
2715 		       SLIST_FIRST(&device->periphs));
2716 	     periph != NULL;
2717 	     periph = next_periph) {
2718 
2719 		next_periph = SLIST_NEXT(periph, periph_links);
2720 
2721 		retval = tr_func(periph, arg);
2722 		if (retval == 0)
2723 			return(retval);
2724 	}
2725 
2726 	return(retval);
2727 }
2728 
2729 static int
2730 xptpdrvtraverse(struct periph_driver **start_pdrv,
2731 		xpt_pdrvfunc_t *tr_func, void *arg)
2732 {
2733 	struct periph_driver **pdrv;
2734 	int retval;
2735 
2736 	retval = 1;
2737 
2738 	/*
2739 	 * We don't traverse the peripheral driver list like we do the
2740 	 * other lists, because it is a linker set, and therefore cannot be
2741 	 * changed during runtime.  If the peripheral driver list is ever
2742 	 * re-done to be something other than a linker set (i.e. it can
2743 	 * change while the system is running), the list traversal should
2744 	 * be modified to work like the other traversal functions.
2745 	 */
2746 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2747 	     *pdrv != NULL; pdrv++) {
2748 		retval = tr_func(pdrv, arg);
2749 
2750 		if (retval == 0)
2751 			return(retval);
2752 	}
2753 
2754 	return(retval);
2755 }
2756 
2757 static int
2758 xptpdperiphtraverse(struct periph_driver **pdrv,
2759 		    struct cam_periph *start_periph,
2760 		    xpt_periphfunc_t *tr_func, void *arg)
2761 {
2762 	struct cam_periph *periph, *next_periph;
2763 	int retval;
2764 
2765 	retval = 1;
2766 
2767 	for (periph = (start_periph ? start_periph :
2768 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2769 	     periph = next_periph) {
2770 
2771 		next_periph = TAILQ_NEXT(periph, unit_links);
2772 
2773 		retval = tr_func(periph, arg);
2774 		if (retval == 0)
2775 			return(retval);
2776 	}
2777 	return(retval);
2778 }
2779 
2780 static int
2781 xptdefbusfunc(struct cam_eb *bus, void *arg)
2782 {
2783 	struct xpt_traverse_config *tr_config;
2784 
2785 	tr_config = (struct xpt_traverse_config *)arg;
2786 
2787 	if (tr_config->depth == XPT_DEPTH_BUS) {
2788 		xpt_busfunc_t *tr_func;
2789 
2790 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2791 
2792 		return(tr_func(bus, tr_config->tr_arg));
2793 	} else
2794 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2795 }
2796 
2797 static int
2798 xptdeftargetfunc(struct cam_et *target, void *arg)
2799 {
2800 	struct xpt_traverse_config *tr_config;
2801 
2802 	tr_config = (struct xpt_traverse_config *)arg;
2803 
2804 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2805 		xpt_targetfunc_t *tr_func;
2806 
2807 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2808 
2809 		return(tr_func(target, tr_config->tr_arg));
2810 	} else
2811 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2812 }
2813 
2814 static int
2815 xptdefdevicefunc(struct cam_ed *device, void *arg)
2816 {
2817 	struct xpt_traverse_config *tr_config;
2818 
2819 	tr_config = (struct xpt_traverse_config *)arg;
2820 
2821 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2822 		xpt_devicefunc_t *tr_func;
2823 
2824 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2825 
2826 		return(tr_func(device, tr_config->tr_arg));
2827 	} else
2828 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2829 }
2830 
2831 static int
2832 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2833 {
2834 	struct xpt_traverse_config *tr_config;
2835 	xpt_periphfunc_t *tr_func;
2836 
2837 	tr_config = (struct xpt_traverse_config *)arg;
2838 
2839 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2840 
2841 	/*
2842 	 * Unlike the other default functions, we don't check for depth
2843 	 * here.  The peripheral driver level is the last level in the EDT,
2844 	 * so if we're here, we should execute the function in question.
2845 	 */
2846 	return(tr_func(periph, tr_config->tr_arg));
2847 }
2848 
2849 /*
2850  * Execute the given function for every bus in the EDT.
2851  */
2852 static int
2853 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2854 {
2855 	struct xpt_traverse_config tr_config;
2856 
2857 	tr_config.depth = XPT_DEPTH_BUS;
2858 	tr_config.tr_func = tr_func;
2859 	tr_config.tr_arg = arg;
2860 
2861 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2862 }
2863 
2864 /*
2865  * Execute the given function for every device in the EDT.
2866  */
2867 static int
2868 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2869 {
2870 	struct xpt_traverse_config tr_config;
2871 
2872 	tr_config.depth = XPT_DEPTH_DEVICE;
2873 	tr_config.tr_func = tr_func;
2874 	tr_config.tr_arg = arg;
2875 
2876 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2877 }
2878 
2879 static int
2880 xptsetasyncfunc(struct cam_ed *device, void *arg)
2881 {
2882 	struct cam_path path;
2883 	struct ccb_getdev cgd;
2884 	struct async_node *cur_entry;
2885 
2886 	cur_entry = (struct async_node *)arg;
2887 
2888 	/*
2889 	 * Don't report unconfigured devices (Wildcard devs,
2890 	 * devices only for target mode, device instances
2891 	 * that have been invalidated but are waiting for
2892 	 * their last reference count to be released).
2893 	 */
2894 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2895 		return (1);
2896 
2897 	xpt_compile_path(&path,
2898 			 NULL,
2899 			 device->target->bus->path_id,
2900 			 device->target->target_id,
2901 			 device->lun_id);
2902 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2903 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2904 	xpt_action((union ccb *)&cgd);
2905 	cur_entry->callback(cur_entry->callback_arg,
2906 			    AC_FOUND_DEVICE,
2907 			    &path, &cgd);
2908 	xpt_release_path(&path);
2909 
2910 	return(1);
2911 }
2912 
2913 static int
2914 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2915 {
2916 	struct cam_path path;
2917 	struct ccb_pathinq cpi;
2918 	struct async_node *cur_entry;
2919 
2920 	cur_entry = (struct async_node *)arg;
2921 
2922 	xpt_compile_path(&path, /*periph*/NULL,
2923 			 bus->sim->path_id,
2924 			 CAM_TARGET_WILDCARD,
2925 			 CAM_LUN_WILDCARD);
2926 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2927 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2928 	xpt_action((union ccb *)&cpi);
2929 	cur_entry->callback(cur_entry->callback_arg,
2930 			    AC_PATH_REGISTERED,
2931 			    &path, &cpi);
2932 	xpt_release_path(&path);
2933 
2934 	return(1);
2935 }
2936 
2937 static void
2938 xpt_action_sasync_cb(void *context, int pending)
2939 {
2940 	struct async_node *cur_entry;
2941 	struct xpt_task *task;
2942 	uint32_t added;
2943 
2944 	task = (struct xpt_task *)context;
2945 	cur_entry = (struct async_node *)task->data1;
2946 	added = task->data2;
2947 
2948 	if ((added & AC_FOUND_DEVICE) != 0) {
2949 		/*
2950 		 * Get this peripheral up to date with all
2951 		 * the currently existing devices.
2952 		 */
2953 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2954 	}
2955 	if ((added & AC_PATH_REGISTERED) != 0) {
2956 		/*
2957 		 * Get this peripheral up to date with all
2958 		 * the currently existing busses.
2959 		 */
2960 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2961 		}
2962 
2963 	free(task, M_CAMXPT);
2964 }
2965 
2966 void
2967 xpt_action(union ccb *start_ccb)
2968 {
2969 
2970 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2971 
2972 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2973 
2974 	switch (start_ccb->ccb_h.func_code) {
2975 	case XPT_SCSI_IO:
2976 	{
2977 		struct cam_ed *device;
2978 #ifdef CAMDEBUG
2979 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2980 		struct cam_path *path;
2981 
2982 		path = start_ccb->ccb_h.path;
2983 #endif
2984 
2985 		/*
2986 		 * For the sake of compatibility with SCSI-1
2987 		 * devices that may not understand the identify
2988 		 * message, we include lun information in the
2989 		 * second byte of all commands.  SCSI-1 specifies
2990 		 * that luns are a 3 bit value and reserves only 3
2991 		 * bits for lun information in the CDB.  Later
2992 		 * revisions of the SCSI spec allow for more than 8
2993 		 * luns, but have deprecated lun information in the
2994 		 * CDB.  So, if the lun won't fit, we must omit.
2995 		 *
2996 		 * Also be aware that during initial probing for devices,
2997 		 * the inquiry information is unknown but initialized to 0.
2998 		 * This means that this code will be exercised while probing
2999 		 * devices with an ANSI revision greater than 2.
3000 		 */
3001 		device = start_ccb->ccb_h.path->device;
3002 		if (device->protocol_version <= SCSI_REV_2
3003 		 && start_ccb->ccb_h.target_lun < 8
3004 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
3005 
3006 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
3007 			    start_ccb->ccb_h.target_lun << 5;
3008 		}
3009 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3010 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3011 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3012 			  	       &path->device->inq_data),
3013 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3014 					  cdb_str, sizeof(cdb_str))));
3015 	}
3016 	/* FALLTHROUGH */
3017 	case XPT_TARGET_IO:
3018 	case XPT_CONT_TARGET_IO:
3019 		start_ccb->csio.sense_resid = 0;
3020 		start_ccb->csio.resid = 0;
3021 		/* FALLTHROUGH */
3022 	case XPT_RESET_DEV:
3023 	case XPT_ENG_EXEC:
3024 	{
3025 		struct cam_path *path;
3026 		struct cam_sim *sim;
3027 		int runq;
3028 
3029 		path = start_ccb->ccb_h.path;
3030 
3031 		sim = path->bus->sim;
3032 		if (SIM_DEAD(sim)) {
3033 			/* The SIM has gone; just execute the CCB directly. */
3034 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3035 			(*(sim->sim_action))(sim, start_ccb);
3036 			break;
3037 		}
3038 
3039 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3040 		if (path->device->qfrozen_cnt == 0)
3041 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3042 		else
3043 			runq = 0;
3044 		if (runq != 0)
3045 			xpt_run_dev_sendq(path->bus);
3046 		break;
3047 	}
3048 	case XPT_SET_TRAN_SETTINGS:
3049 	{
3050 		xpt_set_transfer_settings(&start_ccb->cts,
3051 					  start_ccb->ccb_h.path->device,
3052 					  /*async_update*/FALSE);
3053 		break;
3054 	}
3055 	case XPT_CALC_GEOMETRY:
3056 	{
3057 		struct cam_sim *sim;
3058 
3059 		/* Filter out garbage */
3060 		if (start_ccb->ccg.block_size == 0
3061 		 || start_ccb->ccg.volume_size == 0) {
3062 			start_ccb->ccg.cylinders = 0;
3063 			start_ccb->ccg.heads = 0;
3064 			start_ccb->ccg.secs_per_track = 0;
3065 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3066 			break;
3067 		}
3068 #ifdef PC98
3069 		/*
3070 		 * In a PC-98 system, geometry translation depens on
3071 		 * the "real" device geometry obtained from mode page 4.
3072 		 * SCSI geometry translation is performed in the
3073 		 * initialization routine of the SCSI BIOS and the result
3074 		 * stored in host memory.  If the translation is available
3075 		 * in host memory, use it.  If not, rely on the default
3076 		 * translation the device driver performs.
3077 		 */
3078 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
3079 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3080 			break;
3081 		}
3082 #endif
3083 		sim = start_ccb->ccb_h.path->bus->sim;
3084 		(*(sim->sim_action))(sim, start_ccb);
3085 		break;
3086 	}
3087 	case XPT_ABORT:
3088 	{
3089 		union ccb* abort_ccb;
3090 
3091 		abort_ccb = start_ccb->cab.abort_ccb;
3092 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3093 
3094 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3095 				struct cam_ccbq *ccbq;
3096 
3097 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3098 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3099 				abort_ccb->ccb_h.status =
3100 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3101 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3102 				xpt_done(abort_ccb);
3103 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3104 				break;
3105 			}
3106 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3107 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3108 				/*
3109 				 * We've caught this ccb en route to
3110 				 * the SIM.  Flag it for abort and the
3111 				 * SIM will do so just before starting
3112 				 * real work on the CCB.
3113 				 */
3114 				abort_ccb->ccb_h.status =
3115 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3116 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3117 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3118 				break;
3119 			}
3120 		}
3121 		if (XPT_FC_IS_QUEUED(abort_ccb)
3122 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3123 			/*
3124 			 * It's already completed but waiting
3125 			 * for our SWI to get to it.
3126 			 */
3127 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3128 			break;
3129 		}
3130 		/*
3131 		 * If we weren't able to take care of the abort request
3132 		 * in the XPT, pass the request down to the SIM for processing.
3133 		 */
3134 	}
3135 	/* FALLTHROUGH */
3136 	case XPT_ACCEPT_TARGET_IO:
3137 	case XPT_EN_LUN:
3138 	case XPT_IMMED_NOTIFY:
3139 	case XPT_NOTIFY_ACK:
3140 	case XPT_GET_TRAN_SETTINGS:
3141 	case XPT_RESET_BUS:
3142 	{
3143 		struct cam_sim *sim;
3144 
3145 		sim = start_ccb->ccb_h.path->bus->sim;
3146 		(*(sim->sim_action))(sim, start_ccb);
3147 		break;
3148 	}
3149 	case XPT_PATH_INQ:
3150 	{
3151 		struct cam_sim *sim;
3152 
3153 		sim = start_ccb->ccb_h.path->bus->sim;
3154 		(*(sim->sim_action))(sim, start_ccb);
3155 		break;
3156 	}
3157 	case XPT_PATH_STATS:
3158 		start_ccb->cpis.last_reset =
3159 			start_ccb->ccb_h.path->bus->last_reset;
3160 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3161 		break;
3162 	case XPT_GDEV_TYPE:
3163 	{
3164 		struct cam_ed *dev;
3165 
3166 		dev = start_ccb->ccb_h.path->device;
3167 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3168 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3169 		} else {
3170 			struct ccb_getdev *cgd;
3171 			struct cam_eb *bus;
3172 			struct cam_et *tar;
3173 
3174 			cgd = &start_ccb->cgd;
3175 			bus = cgd->ccb_h.path->bus;
3176 			tar = cgd->ccb_h.path->target;
3177 			cgd->inq_data = dev->inq_data;
3178 			cgd->ccb_h.status = CAM_REQ_CMP;
3179 			cgd->serial_num_len = dev->serial_num_len;
3180 			if ((dev->serial_num_len > 0)
3181 			 && (dev->serial_num != NULL))
3182 				bcopy(dev->serial_num, cgd->serial_num,
3183 				      dev->serial_num_len);
3184 		}
3185 		break;
3186 	}
3187 	case XPT_GDEV_STATS:
3188 	{
3189 		struct cam_ed *dev;
3190 
3191 		dev = start_ccb->ccb_h.path->device;
3192 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3193 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3194 		} else {
3195 			struct ccb_getdevstats *cgds;
3196 			struct cam_eb *bus;
3197 			struct cam_et *tar;
3198 
3199 			cgds = &start_ccb->cgds;
3200 			bus = cgds->ccb_h.path->bus;
3201 			tar = cgds->ccb_h.path->target;
3202 			cgds->dev_openings = dev->ccbq.dev_openings;
3203 			cgds->dev_active = dev->ccbq.dev_active;
3204 			cgds->devq_openings = dev->ccbq.devq_openings;
3205 			cgds->devq_queued = dev->ccbq.queue.entries;
3206 			cgds->held = dev->ccbq.held;
3207 			cgds->last_reset = tar->last_reset;
3208 			cgds->maxtags = dev->quirk->maxtags;
3209 			cgds->mintags = dev->quirk->mintags;
3210 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3211 				cgds->last_reset = bus->last_reset;
3212 			cgds->ccb_h.status = CAM_REQ_CMP;
3213 		}
3214 		break;
3215 	}
3216 	case XPT_GDEVLIST:
3217 	{
3218 		struct cam_periph	*nperiph;
3219 		struct periph_list	*periph_head;
3220 		struct ccb_getdevlist	*cgdl;
3221 		u_int			i;
3222 		struct cam_ed		*device;
3223 		int			found;
3224 
3225 
3226 		found = 0;
3227 
3228 		/*
3229 		 * Don't want anyone mucking with our data.
3230 		 */
3231 		device = start_ccb->ccb_h.path->device;
3232 		periph_head = &device->periphs;
3233 		cgdl = &start_ccb->cgdl;
3234 
3235 		/*
3236 		 * Check and see if the list has changed since the user
3237 		 * last requested a list member.  If so, tell them that the
3238 		 * list has changed, and therefore they need to start over
3239 		 * from the beginning.
3240 		 */
3241 		if ((cgdl->index != 0) &&
3242 		    (cgdl->generation != device->generation)) {
3243 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3244 			break;
3245 		}
3246 
3247 		/*
3248 		 * Traverse the list of peripherals and attempt to find
3249 		 * the requested peripheral.
3250 		 */
3251 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3252 		     (nperiph != NULL) && (i <= cgdl->index);
3253 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3254 			if (i == cgdl->index) {
3255 				strncpy(cgdl->periph_name,
3256 					nperiph->periph_name,
3257 					DEV_IDLEN);
3258 				cgdl->unit_number = nperiph->unit_number;
3259 				found = 1;
3260 			}
3261 		}
3262 		if (found == 0) {
3263 			cgdl->status = CAM_GDEVLIST_ERROR;
3264 			break;
3265 		}
3266 
3267 		if (nperiph == NULL)
3268 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3269 		else
3270 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3271 
3272 		cgdl->index++;
3273 		cgdl->generation = device->generation;
3274 
3275 		cgdl->ccb_h.status = CAM_REQ_CMP;
3276 		break;
3277 	}
3278 	case XPT_DEV_MATCH:
3279 	{
3280 		dev_pos_type position_type;
3281 		struct ccb_dev_match *cdm;
3282 
3283 		cdm = &start_ccb->cdm;
3284 
3285 		/*
3286 		 * There are two ways of getting at information in the EDT.
3287 		 * The first way is via the primary EDT tree.  It starts
3288 		 * with a list of busses, then a list of targets on a bus,
3289 		 * then devices/luns on a target, and then peripherals on a
3290 		 * device/lun.  The "other" way is by the peripheral driver
3291 		 * lists.  The peripheral driver lists are organized by
3292 		 * peripheral driver.  (obviously)  So it makes sense to
3293 		 * use the peripheral driver list if the user is looking
3294 		 * for something like "da1", or all "da" devices.  If the
3295 		 * user is looking for something on a particular bus/target
3296 		 * or lun, it's generally better to go through the EDT tree.
3297 		 */
3298 
3299 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3300 			position_type = cdm->pos.position_type;
3301 		else {
3302 			u_int i;
3303 
3304 			position_type = CAM_DEV_POS_NONE;
3305 
3306 			for (i = 0; i < cdm->num_patterns; i++) {
3307 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3308 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3309 					position_type = CAM_DEV_POS_EDT;
3310 					break;
3311 				}
3312 			}
3313 
3314 			if (cdm->num_patterns == 0)
3315 				position_type = CAM_DEV_POS_EDT;
3316 			else if (position_type == CAM_DEV_POS_NONE)
3317 				position_type = CAM_DEV_POS_PDRV;
3318 		}
3319 
3320 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3321 		case CAM_DEV_POS_EDT:
3322 			xptedtmatch(cdm);
3323 			break;
3324 		case CAM_DEV_POS_PDRV:
3325 			xptperiphlistmatch(cdm);
3326 			break;
3327 		default:
3328 			cdm->status = CAM_DEV_MATCH_ERROR;
3329 			break;
3330 		}
3331 
3332 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3333 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3334 		else
3335 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3336 
3337 		break;
3338 	}
3339 	case XPT_SASYNC_CB:
3340 	{
3341 		struct ccb_setasync *csa;
3342 		struct async_node *cur_entry;
3343 		struct async_list *async_head;
3344 		u_int32_t added;
3345 
3346 		csa = &start_ccb->csa;
3347 		added = csa->event_enable;
3348 		async_head = &csa->ccb_h.path->device->asyncs;
3349 
3350 		/*
3351 		 * If there is already an entry for us, simply
3352 		 * update it.
3353 		 */
3354 		cur_entry = SLIST_FIRST(async_head);
3355 		while (cur_entry != NULL) {
3356 			if ((cur_entry->callback_arg == csa->callback_arg)
3357 			 && (cur_entry->callback == csa->callback))
3358 				break;
3359 			cur_entry = SLIST_NEXT(cur_entry, links);
3360 		}
3361 
3362 		if (cur_entry != NULL) {
3363 		 	/*
3364 			 * If the request has no flags set,
3365 			 * remove the entry.
3366 			 */
3367 			added &= ~cur_entry->event_enable;
3368 			if (csa->event_enable == 0) {
3369 				SLIST_REMOVE(async_head, cur_entry,
3370 					     async_node, links);
3371 				csa->ccb_h.path->device->refcount--;
3372 				free(cur_entry, M_CAMXPT);
3373 			} else {
3374 				cur_entry->event_enable = csa->event_enable;
3375 			}
3376 		} else {
3377 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3378 					   M_NOWAIT);
3379 			if (cur_entry == NULL) {
3380 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3381 				break;
3382 			}
3383 			cur_entry->event_enable = csa->event_enable;
3384 			cur_entry->callback_arg = csa->callback_arg;
3385 			cur_entry->callback = csa->callback;
3386 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3387 			csa->ccb_h.path->device->refcount++;
3388 		}
3389 
3390 		/*
3391 		 * Need to decouple this operation via a taqskqueue so that
3392 		 * the locking doesn't become a mess.
3393 		 */
3394 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3395 			struct xpt_task *task;
3396 
3397 			task = malloc(sizeof(struct xpt_task), M_CAMXPT,
3398 				      M_NOWAIT);
3399 			if (task == NULL) {
3400 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3401 				break;
3402 			}
3403 
3404 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3405 			task->data1 = cur_entry;
3406 			task->data2 = added;
3407 			taskqueue_enqueue(taskqueue_thread, &task->task);
3408 		}
3409 
3410 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3411 		break;
3412 	}
3413 	case XPT_REL_SIMQ:
3414 	{
3415 		struct ccb_relsim *crs;
3416 		struct cam_ed *dev;
3417 
3418 		crs = &start_ccb->crs;
3419 		dev = crs->ccb_h.path->device;
3420 		if (dev == NULL) {
3421 
3422 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3423 			break;
3424 		}
3425 
3426 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3427 
3428  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3429 				/* Don't ever go below one opening */
3430 				if (crs->openings > 0) {
3431 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3432 							    crs->openings);
3433 
3434 					if (bootverbose) {
3435 						xpt_print(crs->ccb_h.path,
3436 						    "tagged openings now %d\n",
3437 						    crs->openings);
3438 					}
3439 				}
3440 			}
3441 		}
3442 
3443 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3444 
3445 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3446 
3447 				/*
3448 				 * Just extend the old timeout and decrement
3449 				 * the freeze count so that a single timeout
3450 				 * is sufficient for releasing the queue.
3451 				 */
3452 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3453 				callout_stop(&dev->callout);
3454 			} else {
3455 
3456 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3457 			}
3458 
3459 			callout_reset(&dev->callout,
3460 			    (crs->release_timeout * hz) / 1000,
3461 			    xpt_release_devq_timeout, dev);
3462 
3463 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3464 
3465 		}
3466 
3467 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3468 
3469 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3470 				/*
3471 				 * Decrement the freeze count so that a single
3472 				 * completion is still sufficient to unfreeze
3473 				 * the queue.
3474 				 */
3475 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3476 			} else {
3477 
3478 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3479 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3480 			}
3481 		}
3482 
3483 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3484 
3485 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3486 			 || (dev->ccbq.dev_active == 0)) {
3487 
3488 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3489 			} else {
3490 
3491 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3492 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3493 			}
3494 		}
3495 
3496 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3497 
3498 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3499 					 /*run_queue*/TRUE);
3500 		}
3501 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3502 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3503 		break;
3504 	}
3505 	case XPT_SCAN_BUS:
3506 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3507 		break;
3508 	case XPT_SCAN_LUN:
3509 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3510 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3511 			     start_ccb);
3512 		break;
3513 	case XPT_DEBUG: {
3514 #ifdef CAMDEBUG
3515 #ifdef CAM_DEBUG_DELAY
3516 		cam_debug_delay = CAM_DEBUG_DELAY;
3517 #endif
3518 		cam_dflags = start_ccb->cdbg.flags;
3519 		if (cam_dpath != NULL) {
3520 			xpt_free_path(cam_dpath);
3521 			cam_dpath = NULL;
3522 		}
3523 
3524 		if (cam_dflags != CAM_DEBUG_NONE) {
3525 			if (xpt_create_path(&cam_dpath, xpt_periph,
3526 					    start_ccb->ccb_h.path_id,
3527 					    start_ccb->ccb_h.target_id,
3528 					    start_ccb->ccb_h.target_lun) !=
3529 					    CAM_REQ_CMP) {
3530 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3531 				cam_dflags = CAM_DEBUG_NONE;
3532 			} else {
3533 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3534 				xpt_print(cam_dpath, "debugging flags now %x\n",
3535 				    cam_dflags);
3536 			}
3537 		} else {
3538 			cam_dpath = NULL;
3539 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3540 		}
3541 #else /* !CAMDEBUG */
3542 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3543 #endif /* CAMDEBUG */
3544 		break;
3545 	}
3546 	case XPT_NOOP:
3547 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3548 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3549 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3550 		break;
3551 	default:
3552 	case XPT_SDEV_TYPE:
3553 	case XPT_TERM_IO:
3554 	case XPT_ENG_INQ:
3555 		/* XXX Implement */
3556 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3557 		break;
3558 	}
3559 }
3560 
3561 void
3562 xpt_polled_action(union ccb *start_ccb)
3563 {
3564 	u_int32_t timeout;
3565 	struct	  cam_sim *sim;
3566 	struct	  cam_devq *devq;
3567 	struct	  cam_ed *dev;
3568 
3569 
3570 	timeout = start_ccb->ccb_h.timeout;
3571 	sim = start_ccb->ccb_h.path->bus->sim;
3572 	devq = sim->devq;
3573 	dev = start_ccb->ccb_h.path->device;
3574 
3575 	mtx_assert(sim->mtx, MA_OWNED);
3576 
3577 	/*
3578 	 * Steal an opening so that no other queued requests
3579 	 * can get it before us while we simulate interrupts.
3580 	 */
3581 	dev->ccbq.devq_openings--;
3582 	dev->ccbq.dev_openings--;
3583 
3584 	while(((devq != NULL && devq->send_openings <= 0) ||
3585 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3586 		DELAY(1000);
3587 		(*(sim->sim_poll))(sim);
3588 		camisr_runqueue(&sim->sim_doneq);
3589 	}
3590 
3591 	dev->ccbq.devq_openings++;
3592 	dev->ccbq.dev_openings++;
3593 
3594 	if (timeout != 0) {
3595 		xpt_action(start_ccb);
3596 		while(--timeout > 0) {
3597 			(*(sim->sim_poll))(sim);
3598 			camisr_runqueue(&sim->sim_doneq);
3599 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3600 			    != CAM_REQ_INPROG)
3601 				break;
3602 			DELAY(1000);
3603 		}
3604 		if (timeout == 0) {
3605 			/*
3606 			 * XXX Is it worth adding a sim_timeout entry
3607 			 * point so we can attempt recovery?  If
3608 			 * this is only used for dumps, I don't think
3609 			 * it is.
3610 			 */
3611 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3612 		}
3613 	} else {
3614 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3615 	}
3616 }
3617 
3618 /*
3619  * Schedule a peripheral driver to receive a ccb when it's
3620  * target device has space for more transactions.
3621  */
3622 void
3623 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3624 {
3625 	struct cam_ed *device;
3626 	union ccb *work_ccb;
3627 	int runq;
3628 
3629 	mtx_assert(perph->sim->mtx, MA_OWNED);
3630 
3631 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3632 	device = perph->path->device;
3633 	if (periph_is_queued(perph)) {
3634 		/* Simply reorder based on new priority */
3635 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3636 			  ("   change priority to %d\n", new_priority));
3637 		if (new_priority < perph->pinfo.priority) {
3638 			camq_change_priority(&device->drvq,
3639 					     perph->pinfo.index,
3640 					     new_priority);
3641 		}
3642 		runq = 0;
3643 	} else if (SIM_DEAD(perph->path->bus->sim)) {
3644 		/* The SIM is gone so just call periph_start directly. */
3645 		work_ccb = xpt_get_ccb(perph->path->device);
3646 		if (work_ccb == NULL)
3647 			return; /* XXX */
3648 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3649 		perph->pinfo.priority = new_priority;
3650 		perph->periph_start(perph, work_ccb);
3651 		return;
3652 	} else {
3653 		/* New entry on the queue */
3654 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3655 			  ("   added periph to queue\n"));
3656 		perph->pinfo.priority = new_priority;
3657 		perph->pinfo.generation = ++device->drvq.generation;
3658 		camq_insert(&device->drvq, &perph->pinfo);
3659 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3660 	}
3661 	if (runq != 0) {
3662 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3663 			  ("   calling xpt_run_devq\n"));
3664 		xpt_run_dev_allocq(perph->path->bus);
3665 	}
3666 }
3667 
3668 
3669 /*
3670  * Schedule a device to run on a given queue.
3671  * If the device was inserted as a new entry on the queue,
3672  * return 1 meaning the device queue should be run. If we
3673  * were already queued, implying someone else has already
3674  * started the queue, return 0 so the caller doesn't attempt
3675  * to run the queue.
3676  */
3677 static int
3678 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3679 		 u_int32_t new_priority)
3680 {
3681 	int retval;
3682 	u_int32_t old_priority;
3683 
3684 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3685 
3686 	old_priority = pinfo->priority;
3687 
3688 	/*
3689 	 * Are we already queued?
3690 	 */
3691 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3692 		/* Simply reorder based on new priority */
3693 		if (new_priority < old_priority) {
3694 			camq_change_priority(queue, pinfo->index,
3695 					     new_priority);
3696 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3697 					("changed priority to %d\n",
3698 					 new_priority));
3699 		}
3700 		retval = 0;
3701 	} else {
3702 		/* New entry on the queue */
3703 		if (new_priority < old_priority)
3704 			pinfo->priority = new_priority;
3705 
3706 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3707 				("Inserting onto queue\n"));
3708 		pinfo->generation = ++queue->generation;
3709 		camq_insert(queue, pinfo);
3710 		retval = 1;
3711 	}
3712 	return (retval);
3713 }
3714 
3715 static void
3716 xpt_run_dev_allocq(struct cam_eb *bus)
3717 {
3718 	struct	cam_devq *devq;
3719 
3720 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3721 	devq = bus->sim->devq;
3722 
3723 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3724 			("   qfrozen_cnt == 0x%x, entries == %d, "
3725 			 "openings == %d, active == %d\n",
3726 			 devq->alloc_queue.qfrozen_cnt,
3727 			 devq->alloc_queue.entries,
3728 			 devq->alloc_openings,
3729 			 devq->alloc_active));
3730 
3731 	devq->alloc_queue.qfrozen_cnt++;
3732 	while ((devq->alloc_queue.entries > 0)
3733 	    && (devq->alloc_openings > 0)
3734 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3735 		struct	cam_ed_qinfo *qinfo;
3736 		struct	cam_ed *device;
3737 		union	ccb *work_ccb;
3738 		struct	cam_periph *drv;
3739 		struct	camq *drvq;
3740 
3741 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3742 							   CAMQ_HEAD);
3743 		device = qinfo->device;
3744 
3745 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3746 				("running device %p\n", device));
3747 
3748 		drvq = &device->drvq;
3749 
3750 #ifdef CAMDEBUG
3751 		if (drvq->entries <= 0) {
3752 			panic("xpt_run_dev_allocq: "
3753 			      "Device on queue without any work to do");
3754 		}
3755 #endif
3756 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3757 			devq->alloc_openings--;
3758 			devq->alloc_active++;
3759 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3760 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3761 				      drv->pinfo.priority);
3762 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3763 					("calling periph start\n"));
3764 			drv->periph_start(drv, work_ccb);
3765 		} else {
3766 			/*
3767 			 * Malloc failure in alloc_ccb
3768 			 */
3769 			/*
3770 			 * XXX add us to a list to be run from free_ccb
3771 			 * if we don't have any ccbs active on this
3772 			 * device queue otherwise we may never get run
3773 			 * again.
3774 			 */
3775 			break;
3776 		}
3777 
3778 		if (drvq->entries > 0) {
3779 			/* We have more work.  Attempt to reschedule */
3780 			xpt_schedule_dev_allocq(bus, device);
3781 		}
3782 	}
3783 	devq->alloc_queue.qfrozen_cnt--;
3784 }
3785 
3786 static void
3787 xpt_run_dev_sendq(struct cam_eb *bus)
3788 {
3789 	struct	cam_devq *devq;
3790 
3791 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3792 
3793 	devq = bus->sim->devq;
3794 
3795 	devq->send_queue.qfrozen_cnt++;
3796 	while ((devq->send_queue.entries > 0)
3797 	    && (devq->send_openings > 0)) {
3798 		struct	cam_ed_qinfo *qinfo;
3799 		struct	cam_ed *device;
3800 		union ccb *work_ccb;
3801 		struct	cam_sim *sim;
3802 
3803 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3804 			break;
3805 		}
3806 
3807 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3808 							   CAMQ_HEAD);
3809 		device = qinfo->device;
3810 
3811 		/*
3812 		 * If the device has been "frozen", don't attempt
3813 		 * to run it.
3814 		 */
3815 		if (device->qfrozen_cnt > 0) {
3816 			continue;
3817 		}
3818 
3819 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3820 				("running device %p\n", device));
3821 
3822 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3823 		if (work_ccb == NULL) {
3824 			printf("device on run queue with no ccbs???\n");
3825 			continue;
3826 		}
3827 
3828 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3829 
3830 			mtx_lock(&xsoftc.xpt_lock);
3831 		 	if (xsoftc.num_highpower <= 0) {
3832 				/*
3833 				 * We got a high power command, but we
3834 				 * don't have any available slots.  Freeze
3835 				 * the device queue until we have a slot
3836 				 * available.
3837 				 */
3838 				device->qfrozen_cnt++;
3839 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3840 						   &work_ccb->ccb_h,
3841 						   xpt_links.stqe);
3842 
3843 				mtx_unlock(&xsoftc.xpt_lock);
3844 				continue;
3845 			} else {
3846 				/*
3847 				 * Consume a high power slot while
3848 				 * this ccb runs.
3849 				 */
3850 				xsoftc.num_highpower--;
3851 			}
3852 			mtx_unlock(&xsoftc.xpt_lock);
3853 		}
3854 		devq->active_dev = device;
3855 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3856 
3857 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3858 
3859 		devq->send_openings--;
3860 		devq->send_active++;
3861 
3862 		if (device->ccbq.queue.entries > 0)
3863 			xpt_schedule_dev_sendq(bus, device);
3864 
3865 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3866 			/*
3867 			 * The client wants to freeze the queue
3868 			 * after this CCB is sent.
3869 			 */
3870 			device->qfrozen_cnt++;
3871 		}
3872 
3873 		/* In Target mode, the peripheral driver knows best... */
3874 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3875 			if ((device->inq_flags & SID_CmdQue) != 0
3876 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3877 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3878 			else
3879 				/*
3880 				 * Clear this in case of a retried CCB that
3881 				 * failed due to a rejected tag.
3882 				 */
3883 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3884 		}
3885 
3886 		/*
3887 		 * Device queues can be shared among multiple sim instances
3888 		 * that reside on different busses.  Use the SIM in the queue
3889 		 * CCB's path, rather than the one in the bus that was passed
3890 		 * into this function.
3891 		 */
3892 		sim = work_ccb->ccb_h.path->bus->sim;
3893 		(*(sim->sim_action))(sim, work_ccb);
3894 
3895 		devq->active_dev = NULL;
3896 	}
3897 	devq->send_queue.qfrozen_cnt--;
3898 }
3899 
3900 /*
3901  * This function merges stuff from the slave ccb into the master ccb, while
3902  * keeping important fields in the master ccb constant.
3903  */
3904 void
3905 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3906 {
3907 
3908 	/*
3909 	 * Pull fields that are valid for peripheral drivers to set
3910 	 * into the master CCB along with the CCB "payload".
3911 	 */
3912 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3913 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3914 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3915 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3916 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3917 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3918 }
3919 
3920 void
3921 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3922 {
3923 
3924 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3925 	ccb_h->pinfo.priority = priority;
3926 	ccb_h->path = path;
3927 	ccb_h->path_id = path->bus->path_id;
3928 	if (path->target)
3929 		ccb_h->target_id = path->target->target_id;
3930 	else
3931 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3932 	if (path->device) {
3933 		ccb_h->target_lun = path->device->lun_id;
3934 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3935 	} else {
3936 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3937 	}
3938 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3939 	ccb_h->flags = 0;
3940 }
3941 
3942 /* Path manipulation functions */
3943 cam_status
3944 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3945 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3946 {
3947 	struct	   cam_path *path;
3948 	cam_status status;
3949 
3950 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3951 
3952 	if (path == NULL) {
3953 		status = CAM_RESRC_UNAVAIL;
3954 		return(status);
3955 	}
3956 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3957 	if (status != CAM_REQ_CMP) {
3958 		free(path, M_CAMXPT);
3959 		path = NULL;
3960 	}
3961 	*new_path_ptr = path;
3962 	return (status);
3963 }
3964 
3965 cam_status
3966 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3967 			 struct cam_periph *periph, path_id_t path_id,
3968 			 target_id_t target_id, lun_id_t lun_id)
3969 {
3970 	struct	   cam_path *path;
3971 	struct	   cam_eb *bus = NULL;
3972 	cam_status status;
3973 	int	   need_unlock = 0;
3974 
3975 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3976 
3977 	if (path_id != CAM_BUS_WILDCARD) {
3978 		bus = xpt_find_bus(path_id);
3979 		if (bus != NULL) {
3980 			need_unlock = 1;
3981 			CAM_SIM_LOCK(bus->sim);
3982 		}
3983 	}
3984 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3985 	if (need_unlock)
3986 		CAM_SIM_UNLOCK(bus->sim);
3987 	if (status != CAM_REQ_CMP) {
3988 		free(path, M_CAMXPT);
3989 		path = NULL;
3990 	}
3991 	*new_path_ptr = path;
3992 	return (status);
3993 }
3994 
3995 static cam_status
3996 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3997 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3998 {
3999 	struct	     cam_eb *bus;
4000 	struct	     cam_et *target;
4001 	struct	     cam_ed *device;
4002 	cam_status   status;
4003 
4004 	status = CAM_REQ_CMP;	/* Completed without error */
4005 	target = NULL;		/* Wildcarded */
4006 	device = NULL;		/* Wildcarded */
4007 
4008 	/*
4009 	 * We will potentially modify the EDT, so block interrupts
4010 	 * that may attempt to create cam paths.
4011 	 */
4012 	bus = xpt_find_bus(path_id);
4013 	if (bus == NULL) {
4014 		status = CAM_PATH_INVALID;
4015 	} else {
4016 		target = xpt_find_target(bus, target_id);
4017 		if (target == NULL) {
4018 			/* Create one */
4019 			struct cam_et *new_target;
4020 
4021 			new_target = xpt_alloc_target(bus, target_id);
4022 			if (new_target == NULL) {
4023 				status = CAM_RESRC_UNAVAIL;
4024 			} else {
4025 				target = new_target;
4026 			}
4027 		}
4028 		if (target != NULL) {
4029 			device = xpt_find_device(target, lun_id);
4030 			if (device == NULL) {
4031 				/* Create one */
4032 				struct cam_ed *new_device;
4033 
4034 				new_device = xpt_alloc_device(bus,
4035 							      target,
4036 							      lun_id);
4037 				if (new_device == NULL) {
4038 					status = CAM_RESRC_UNAVAIL;
4039 				} else {
4040 					device = new_device;
4041 				}
4042 			}
4043 		}
4044 	}
4045 
4046 	/*
4047 	 * Only touch the user's data if we are successful.
4048 	 */
4049 	if (status == CAM_REQ_CMP) {
4050 		new_path->periph = perph;
4051 		new_path->bus = bus;
4052 		new_path->target = target;
4053 		new_path->device = device;
4054 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4055 	} else {
4056 		if (device != NULL)
4057 			xpt_release_device(bus, target, device);
4058 		if (target != NULL)
4059 			xpt_release_target(bus, target);
4060 		if (bus != NULL)
4061 			xpt_release_bus(bus);
4062 	}
4063 	return (status);
4064 }
4065 
4066 static void
4067 xpt_release_path(struct cam_path *path)
4068 {
4069 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4070 	if (path->device != NULL) {
4071 		xpt_release_device(path->bus, path->target, path->device);
4072 		path->device = NULL;
4073 	}
4074 	if (path->target != NULL) {
4075 		xpt_release_target(path->bus, path->target);
4076 		path->target = NULL;
4077 	}
4078 	if (path->bus != NULL) {
4079 		xpt_release_bus(path->bus);
4080 		path->bus = NULL;
4081 	}
4082 }
4083 
4084 void
4085 xpt_free_path(struct cam_path *path)
4086 {
4087 
4088 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4089 	xpt_release_path(path);
4090 	free(path, M_CAMXPT);
4091 }
4092 
4093 
4094 /*
4095  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4096  * in path1, 2 for match with wildcards in path2.
4097  */
4098 int
4099 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4100 {
4101 	int retval = 0;
4102 
4103 	if (path1->bus != path2->bus) {
4104 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4105 			retval = 1;
4106 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4107 			retval = 2;
4108 		else
4109 			return (-1);
4110 	}
4111 	if (path1->target != path2->target) {
4112 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4113 			if (retval == 0)
4114 				retval = 1;
4115 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4116 			retval = 2;
4117 		else
4118 			return (-1);
4119 	}
4120 	if (path1->device != path2->device) {
4121 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4122 			if (retval == 0)
4123 				retval = 1;
4124 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4125 			retval = 2;
4126 		else
4127 			return (-1);
4128 	}
4129 	return (retval);
4130 }
4131 
4132 void
4133 xpt_print_path(struct cam_path *path)
4134 {
4135 
4136 	if (path == NULL)
4137 		printf("(nopath): ");
4138 	else {
4139 		if (path->periph != NULL)
4140 			printf("(%s%d:", path->periph->periph_name,
4141 			       path->periph->unit_number);
4142 		else
4143 			printf("(noperiph:");
4144 
4145 		if (path->bus != NULL)
4146 			printf("%s%d:%d:", path->bus->sim->sim_name,
4147 			       path->bus->sim->unit_number,
4148 			       path->bus->sim->bus_id);
4149 		else
4150 			printf("nobus:");
4151 
4152 		if (path->target != NULL)
4153 			printf("%d:", path->target->target_id);
4154 		else
4155 			printf("X:");
4156 
4157 		if (path->device != NULL)
4158 			printf("%d): ", path->device->lun_id);
4159 		else
4160 			printf("X): ");
4161 	}
4162 }
4163 
4164 void
4165 xpt_print(struct cam_path *path, const char *fmt, ...)
4166 {
4167 	va_list ap;
4168 	xpt_print_path(path);
4169 	va_start(ap, fmt);
4170 	vprintf(fmt, ap);
4171 	va_end(ap);
4172 }
4173 
4174 int
4175 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4176 {
4177 	struct sbuf sb;
4178 
4179 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4180 
4181 	sbuf_new(&sb, str, str_len, 0);
4182 
4183 	if (path == NULL)
4184 		sbuf_printf(&sb, "(nopath): ");
4185 	else {
4186 		if (path->periph != NULL)
4187 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4188 				    path->periph->unit_number);
4189 		else
4190 			sbuf_printf(&sb, "(noperiph:");
4191 
4192 		if (path->bus != NULL)
4193 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4194 				    path->bus->sim->unit_number,
4195 				    path->bus->sim->bus_id);
4196 		else
4197 			sbuf_printf(&sb, "nobus:");
4198 
4199 		if (path->target != NULL)
4200 			sbuf_printf(&sb, "%d:", path->target->target_id);
4201 		else
4202 			sbuf_printf(&sb, "X:");
4203 
4204 		if (path->device != NULL)
4205 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4206 		else
4207 			sbuf_printf(&sb, "X): ");
4208 	}
4209 	sbuf_finish(&sb);
4210 
4211 	return(sbuf_len(&sb));
4212 }
4213 
4214 path_id_t
4215 xpt_path_path_id(struct cam_path *path)
4216 {
4217 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4218 
4219 	return(path->bus->path_id);
4220 }
4221 
4222 target_id_t
4223 xpt_path_target_id(struct cam_path *path)
4224 {
4225 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4226 
4227 	if (path->target != NULL)
4228 		return (path->target->target_id);
4229 	else
4230 		return (CAM_TARGET_WILDCARD);
4231 }
4232 
4233 lun_id_t
4234 xpt_path_lun_id(struct cam_path *path)
4235 {
4236 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4237 
4238 	if (path->device != NULL)
4239 		return (path->device->lun_id);
4240 	else
4241 		return (CAM_LUN_WILDCARD);
4242 }
4243 
4244 struct cam_sim *
4245 xpt_path_sim(struct cam_path *path)
4246 {
4247 
4248 	return (path->bus->sim);
4249 }
4250 
4251 struct cam_periph*
4252 xpt_path_periph(struct cam_path *path)
4253 {
4254 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4255 
4256 	return (path->periph);
4257 }
4258 
4259 /*
4260  * Release a CAM control block for the caller.  Remit the cost of the structure
4261  * to the device referenced by the path.  If the this device had no 'credits'
4262  * and peripheral drivers have registered async callbacks for this notification
4263  * call them now.
4264  */
4265 void
4266 xpt_release_ccb(union ccb *free_ccb)
4267 {
4268 	struct	 cam_path *path;
4269 	struct	 cam_ed *device;
4270 	struct	 cam_eb *bus;
4271 	struct   cam_sim *sim;
4272 
4273 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4274 	path = free_ccb->ccb_h.path;
4275 	device = path->device;
4276 	bus = path->bus;
4277 	sim = bus->sim;
4278 
4279 	mtx_assert(sim->mtx, MA_OWNED);
4280 
4281 	cam_ccbq_release_opening(&device->ccbq);
4282 	if (sim->ccb_count > sim->max_ccbs) {
4283 		xpt_free_ccb(free_ccb);
4284 		sim->ccb_count--;
4285 	} else {
4286 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4287 		    xpt_links.sle);
4288 	}
4289 	if (sim->devq == NULL) {
4290 		return;
4291 	}
4292 	sim->devq->alloc_openings++;
4293 	sim->devq->alloc_active--;
4294 	/* XXX Turn this into an inline function - xpt_run_device?? */
4295 	if ((device_is_alloc_queued(device) == 0)
4296 	 && (device->drvq.entries > 0)) {
4297 		xpt_schedule_dev_allocq(bus, device);
4298 	}
4299 	if (dev_allocq_is_runnable(sim->devq))
4300 		xpt_run_dev_allocq(bus);
4301 }
4302 
4303 /* Functions accessed by SIM drivers */
4304 
4305 /*
4306  * A sim structure, listing the SIM entry points and instance
4307  * identification info is passed to xpt_bus_register to hook the SIM
4308  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4309  * for this new bus and places it in the array of busses and assigns
4310  * it a path_id.  The path_id may be influenced by "hard wiring"
4311  * information specified by the user.  Once interrupt services are
4312  * availible, the bus will be probed.
4313  */
4314 int32_t
4315 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4316 {
4317 	struct cam_eb *new_bus;
4318 	struct cam_eb *old_bus;
4319 	struct ccb_pathinq cpi;
4320 
4321 	mtx_assert(sim->mtx, MA_OWNED);
4322 
4323 	sim->bus_id = bus;
4324 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4325 					  M_CAMXPT, M_NOWAIT);
4326 	if (new_bus == NULL) {
4327 		/* Couldn't satisfy request */
4328 		return (CAM_RESRC_UNAVAIL);
4329 	}
4330 
4331 	if (strcmp(sim->sim_name, "xpt") != 0) {
4332 
4333 		sim->path_id =
4334 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4335 	}
4336 
4337 	TAILQ_INIT(&new_bus->et_entries);
4338 	new_bus->path_id = sim->path_id;
4339 	new_bus->sim = sim;
4340 	timevalclear(&new_bus->last_reset);
4341 	new_bus->flags = 0;
4342 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4343 	new_bus->generation = 0;
4344 	mtx_lock(&xsoftc.xpt_topo_lock);
4345 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4346 	while (old_bus != NULL
4347 	    && old_bus->path_id < new_bus->path_id)
4348 		old_bus = TAILQ_NEXT(old_bus, links);
4349 	if (old_bus != NULL)
4350 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4351 	else
4352 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4353 	xsoftc.bus_generation++;
4354 	mtx_unlock(&xsoftc.xpt_topo_lock);
4355 
4356 	/* Notify interested parties */
4357 	if (sim->path_id != CAM_XPT_PATH_ID) {
4358 		struct cam_path path;
4359 
4360 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4361 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4362 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4363 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4364 		xpt_action((union ccb *)&cpi);
4365 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4366 		xpt_release_path(&path);
4367 	}
4368 	return (CAM_SUCCESS);
4369 }
4370 
4371 int32_t
4372 xpt_bus_deregister(path_id_t pathid)
4373 {
4374 	struct cam_path bus_path;
4375 	struct cam_ed *device;
4376 	struct cam_ed_qinfo *qinfo;
4377 	struct cam_devq *devq;
4378 	struct cam_periph *periph;
4379 	struct cam_sim *ccbsim;
4380 	union ccb *work_ccb;
4381 	cam_status status;
4382 
4383 
4384 	status = xpt_compile_path(&bus_path, NULL, pathid,
4385 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4386 	if (status != CAM_REQ_CMP)
4387 		return (status);
4388 
4389 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4390 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4391 
4392 	/* The SIM may be gone, so use a dummy SIM for any stray operations. */
4393 	devq = bus_path.bus->sim->devq;
4394 	ccbsim = bus_path.bus->sim;
4395 	bus_path.bus->sim = &cam_dead_sim;
4396 
4397 	/* Execute any pending operations now. */
4398 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4399 	    CAMQ_HEAD)) != NULL ||
4400 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4401 	    CAMQ_HEAD)) != NULL) {
4402 		do {
4403 			device = qinfo->device;
4404 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4405 			if (work_ccb != NULL) {
4406 				devq->active_dev = device;
4407 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4408 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4409 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4410 			}
4411 
4412 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4413 			    CAMQ_HEAD);
4414 			if (periph != NULL)
4415 				xpt_schedule(periph, periph->pinfo.priority);
4416 		} while (work_ccb != NULL || periph != NULL);
4417 	}
4418 
4419 	/* Make sure all completed CCBs are processed. */
4420 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4421 		camisr_runqueue(&ccbsim->sim_doneq);
4422 
4423 		/* Repeat the async's for the benefit of any new devices. */
4424 		xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4425 		xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4426 	}
4427 
4428 	/* Release the reference count held while registered. */
4429 	xpt_release_bus(bus_path.bus);
4430 	xpt_release_path(&bus_path);
4431 
4432 	return (CAM_REQ_CMP);
4433 }
4434 
4435 static path_id_t
4436 xptnextfreepathid(void)
4437 {
4438 	struct cam_eb *bus;
4439 	path_id_t pathid;
4440 	const char *strval;
4441 
4442 	pathid = 0;
4443 	mtx_lock(&xsoftc.xpt_topo_lock);
4444 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4445 retry:
4446 	/* Find an unoccupied pathid */
4447 	while (bus != NULL && bus->path_id <= pathid) {
4448 		if (bus->path_id == pathid)
4449 			pathid++;
4450 		bus = TAILQ_NEXT(bus, links);
4451 	}
4452 	mtx_unlock(&xsoftc.xpt_topo_lock);
4453 
4454 	/*
4455 	 * Ensure that this pathid is not reserved for
4456 	 * a bus that may be registered in the future.
4457 	 */
4458 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4459 		++pathid;
4460 		/* Start the search over */
4461 		mtx_lock(&xsoftc.xpt_topo_lock);
4462 		goto retry;
4463 	}
4464 	return (pathid);
4465 }
4466 
4467 static path_id_t
4468 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4469 {
4470 	path_id_t pathid;
4471 	int i, dunit, val;
4472 	char buf[32];
4473 	const char *dname;
4474 
4475 	pathid = CAM_XPT_PATH_ID;
4476 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4477 	i = 0;
4478 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4479 		if (strcmp(dname, "scbus")) {
4480 			/* Avoid a bit of foot shooting. */
4481 			continue;
4482 		}
4483 		if (dunit < 0)		/* unwired?! */
4484 			continue;
4485 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4486 			if (sim_bus == val) {
4487 				pathid = dunit;
4488 				break;
4489 			}
4490 		} else if (sim_bus == 0) {
4491 			/* Unspecified matches bus 0 */
4492 			pathid = dunit;
4493 			break;
4494 		} else {
4495 			printf("Ambiguous scbus configuration for %s%d "
4496 			       "bus %d, cannot wire down.  The kernel "
4497 			       "config entry for scbus%d should "
4498 			       "specify a controller bus.\n"
4499 			       "Scbus will be assigned dynamically.\n",
4500 			       sim_name, sim_unit, sim_bus, dunit);
4501 			break;
4502 		}
4503 	}
4504 
4505 	if (pathid == CAM_XPT_PATH_ID)
4506 		pathid = xptnextfreepathid();
4507 	return (pathid);
4508 }
4509 
4510 void
4511 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4512 {
4513 	struct cam_eb *bus;
4514 	struct cam_et *target, *next_target;
4515 	struct cam_ed *device, *next_device;
4516 
4517 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4518 
4519 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4520 
4521 	/*
4522 	 * Most async events come from a CAM interrupt context.  In
4523 	 * a few cases, the error recovery code at the peripheral layer,
4524 	 * which may run from our SWI or a process context, may signal
4525 	 * deferred events with a call to xpt_async.
4526 	 */
4527 
4528 	bus = path->bus;
4529 
4530 	if (async_code == AC_BUS_RESET) {
4531 		/* Update our notion of when the last reset occurred */
4532 		microtime(&bus->last_reset);
4533 	}
4534 
4535 	for (target = TAILQ_FIRST(&bus->et_entries);
4536 	     target != NULL;
4537 	     target = next_target) {
4538 
4539 		next_target = TAILQ_NEXT(target, links);
4540 
4541 		if (path->target != target
4542 		 && path->target->target_id != CAM_TARGET_WILDCARD
4543 		 && target->target_id != CAM_TARGET_WILDCARD)
4544 			continue;
4545 
4546 		if (async_code == AC_SENT_BDR) {
4547 			/* Update our notion of when the last reset occurred */
4548 			microtime(&path->target->last_reset);
4549 		}
4550 
4551 		for (device = TAILQ_FIRST(&target->ed_entries);
4552 		     device != NULL;
4553 		     device = next_device) {
4554 
4555 			next_device = TAILQ_NEXT(device, links);
4556 
4557 			if (path->device != device
4558 			 && path->device->lun_id != CAM_LUN_WILDCARD
4559 			 && device->lun_id != CAM_LUN_WILDCARD)
4560 				continue;
4561 
4562 			xpt_dev_async(async_code, bus, target,
4563 				      device, async_arg);
4564 
4565 			xpt_async_bcast(&device->asyncs, async_code,
4566 					path, async_arg);
4567 		}
4568 	}
4569 
4570 	/*
4571 	 * If this wasn't a fully wildcarded async, tell all
4572 	 * clients that want all async events.
4573 	 */
4574 	if (bus != xpt_periph->path->bus)
4575 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4576 				path, async_arg);
4577 }
4578 
4579 static void
4580 xpt_async_bcast(struct async_list *async_head,
4581 		u_int32_t async_code,
4582 		struct cam_path *path, void *async_arg)
4583 {
4584 	struct async_node *cur_entry;
4585 
4586 	cur_entry = SLIST_FIRST(async_head);
4587 	while (cur_entry != NULL) {
4588 		struct async_node *next_entry;
4589 		/*
4590 		 * Grab the next list entry before we call the current
4591 		 * entry's callback.  This is because the callback function
4592 		 * can delete its async callback entry.
4593 		 */
4594 		next_entry = SLIST_NEXT(cur_entry, links);
4595 		if ((cur_entry->event_enable & async_code) != 0)
4596 			cur_entry->callback(cur_entry->callback_arg,
4597 					    async_code, path,
4598 					    async_arg);
4599 		cur_entry = next_entry;
4600 	}
4601 }
4602 
4603 /*
4604  * Handle any per-device event notifications that require action by the XPT.
4605  */
4606 static void
4607 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4608 	      struct cam_ed *device, void *async_arg)
4609 {
4610 	cam_status status;
4611 	struct cam_path newpath;
4612 
4613 	/*
4614 	 * We only need to handle events for real devices.
4615 	 */
4616 	if (target->target_id == CAM_TARGET_WILDCARD
4617 	 || device->lun_id == CAM_LUN_WILDCARD)
4618 		return;
4619 
4620 	/*
4621 	 * We need our own path with wildcards expanded to
4622 	 * handle certain types of events.
4623 	 */
4624 	if ((async_code == AC_SENT_BDR)
4625 	 || (async_code == AC_BUS_RESET)
4626 	 || (async_code == AC_INQ_CHANGED))
4627 		status = xpt_compile_path(&newpath, NULL,
4628 					  bus->path_id,
4629 					  target->target_id,
4630 					  device->lun_id);
4631 	else
4632 		status = CAM_REQ_CMP_ERR;
4633 
4634 	if (status == CAM_REQ_CMP) {
4635 
4636 		/*
4637 		 * Allow transfer negotiation to occur in a
4638 		 * tag free environment.
4639 		 */
4640 		if (async_code == AC_SENT_BDR
4641 		 || async_code == AC_BUS_RESET)
4642 			xpt_toggle_tags(&newpath);
4643 
4644 		if (async_code == AC_INQ_CHANGED) {
4645 			/*
4646 			 * We've sent a start unit command, or
4647 			 * something similar to a device that
4648 			 * may have caused its inquiry data to
4649 			 * change. So we re-scan the device to
4650 			 * refresh the inquiry data for it.
4651 			 */
4652 			xpt_scan_lun(newpath.periph, &newpath,
4653 				     CAM_EXPECT_INQ_CHANGE, NULL);
4654 		}
4655 		xpt_release_path(&newpath);
4656 	} else if (async_code == AC_LOST_DEVICE) {
4657 		device->flags |= CAM_DEV_UNCONFIGURED;
4658 	} else if (async_code == AC_TRANSFER_NEG) {
4659 		struct ccb_trans_settings *settings;
4660 
4661 		settings = (struct ccb_trans_settings *)async_arg;
4662 		xpt_set_transfer_settings(settings, device,
4663 					  /*async_update*/TRUE);
4664 	}
4665 }
4666 
4667 u_int32_t
4668 xpt_freeze_devq(struct cam_path *path, u_int count)
4669 {
4670 	struct ccb_hdr *ccbh;
4671 
4672 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4673 
4674 	path->device->qfrozen_cnt += count;
4675 
4676 	/*
4677 	 * Mark the last CCB in the queue as needing
4678 	 * to be requeued if the driver hasn't
4679 	 * changed it's state yet.  This fixes a race
4680 	 * where a ccb is just about to be queued to
4681 	 * a controller driver when it's interrupt routine
4682 	 * freezes the queue.  To completly close the
4683 	 * hole, controller drives must check to see
4684 	 * if a ccb's status is still CAM_REQ_INPROG
4685 	 * just before they queue
4686 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4687 	 * an example.
4688 	 */
4689 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4690 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4691 		ccbh->status = CAM_REQUEUE_REQ;
4692 	return (path->device->qfrozen_cnt);
4693 }
4694 
4695 u_int32_t
4696 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4697 {
4698 	mtx_assert(sim->mtx, MA_OWNED);
4699 
4700 	sim->devq->send_queue.qfrozen_cnt += count;
4701 	if (sim->devq->active_dev != NULL) {
4702 		struct ccb_hdr *ccbh;
4703 
4704 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4705 				  ccb_hdr_tailq);
4706 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4707 			ccbh->status = CAM_REQUEUE_REQ;
4708 	}
4709 	return (sim->devq->send_queue.qfrozen_cnt);
4710 }
4711 
4712 static void
4713 xpt_release_devq_timeout(void *arg)
4714 {
4715 	struct cam_ed *device;
4716 
4717 	device = (struct cam_ed *)arg;
4718 
4719 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4720 }
4721 
4722 void
4723 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4724 {
4725 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4726 
4727 	xpt_release_devq_device(path->device, count, run_queue);
4728 }
4729 
4730 static void
4731 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4732 {
4733 	int	rundevq;
4734 
4735 	rundevq = 0;
4736 	if (dev->qfrozen_cnt > 0) {
4737 
4738 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4739 		dev->qfrozen_cnt -= count;
4740 		if (dev->qfrozen_cnt == 0) {
4741 
4742 			/*
4743 			 * No longer need to wait for a successful
4744 			 * command completion.
4745 			 */
4746 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4747 
4748 			/*
4749 			 * Remove any timeouts that might be scheduled
4750 			 * to release this queue.
4751 			 */
4752 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4753 				callout_stop(&dev->callout);
4754 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4755 			}
4756 
4757 			/*
4758 			 * Now that we are unfrozen schedule the
4759 			 * device so any pending transactions are
4760 			 * run.
4761 			 */
4762 			if ((dev->ccbq.queue.entries > 0)
4763 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4764 			 && (run_queue != 0)) {
4765 				rundevq = 1;
4766 			}
4767 		}
4768 	}
4769 	if (rundevq != 0)
4770 		xpt_run_dev_sendq(dev->target->bus);
4771 }
4772 
4773 void
4774 xpt_release_simq(struct cam_sim *sim, int run_queue)
4775 {
4776 	struct	camq *sendq;
4777 
4778 	mtx_assert(sim->mtx, MA_OWNED);
4779 
4780 	sendq = &(sim->devq->send_queue);
4781 	if (sendq->qfrozen_cnt > 0) {
4782 
4783 		sendq->qfrozen_cnt--;
4784 		if (sendq->qfrozen_cnt == 0) {
4785 			struct cam_eb *bus;
4786 
4787 			/*
4788 			 * If there is a timeout scheduled to release this
4789 			 * sim queue, remove it.  The queue frozen count is
4790 			 * already at 0.
4791 			 */
4792 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4793 				callout_stop(&sim->callout);
4794 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4795 			}
4796 			bus = xpt_find_bus(sim->path_id);
4797 
4798 			if (run_queue) {
4799 				/*
4800 				 * Now that we are unfrozen run the send queue.
4801 				 */
4802 				xpt_run_dev_sendq(bus);
4803 			}
4804 			xpt_release_bus(bus);
4805 		}
4806 	}
4807 }
4808 
4809 /*
4810  * XXX Appears to be unused.
4811  */
4812 static void
4813 xpt_release_simq_timeout(void *arg)
4814 {
4815 	struct cam_sim *sim;
4816 
4817 	sim = (struct cam_sim *)arg;
4818 	xpt_release_simq(sim, /* run_queue */ TRUE);
4819 }
4820 
4821 void
4822 xpt_done(union ccb *done_ccb)
4823 {
4824 	struct cam_sim *sim;
4825 
4826 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4827 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4828 		/*
4829 		 * Queue up the request for handling by our SWI handler
4830 		 * any of the "non-immediate" type of ccbs.
4831 		 */
4832 		sim = done_ccb->ccb_h.path->bus->sim;
4833 		switch (done_ccb->ccb_h.path->periph->type) {
4834 		case CAM_PERIPH_BIO:
4835 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4836 					  sim_links.tqe);
4837 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4838 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4839 				mtx_lock(&cam_simq_lock);
4840 				TAILQ_INSERT_TAIL(&cam_simq, sim,
4841 						  links);
4842 				sim->flags |= CAM_SIM_ON_DONEQ;
4843 				mtx_unlock(&cam_simq_lock);
4844 			}
4845 			if ((done_ccb->ccb_h.path->periph->flags &
4846 			    CAM_PERIPH_POLLED) == 0)
4847 				swi_sched(cambio_ih, 0);
4848 			break;
4849 		default:
4850 			panic("unknown periph type %d",
4851 			    done_ccb->ccb_h.path->periph->type);
4852 		}
4853 	}
4854 }
4855 
4856 union ccb *
4857 xpt_alloc_ccb()
4858 {
4859 	union ccb *new_ccb;
4860 
4861 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4862 	return (new_ccb);
4863 }
4864 
4865 union ccb *
4866 xpt_alloc_ccb_nowait()
4867 {
4868 	union ccb *new_ccb;
4869 
4870 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4871 	return (new_ccb);
4872 }
4873 
4874 void
4875 xpt_free_ccb(union ccb *free_ccb)
4876 {
4877 	free(free_ccb, M_CAMXPT);
4878 }
4879 
4880 
4881 
4882 /* Private XPT functions */
4883 
4884 /*
4885  * Get a CAM control block for the caller. Charge the structure to the device
4886  * referenced by the path.  If the this device has no 'credits' then the
4887  * device already has the maximum number of outstanding operations under way
4888  * and we return NULL. If we don't have sufficient resources to allocate more
4889  * ccbs, we also return NULL.
4890  */
4891 static union ccb *
4892 xpt_get_ccb(struct cam_ed *device)
4893 {
4894 	union ccb *new_ccb;
4895 	struct cam_sim *sim;
4896 
4897 	sim = device->sim;
4898 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4899 		new_ccb = xpt_alloc_ccb_nowait();
4900                 if (new_ccb == NULL) {
4901 			return (NULL);
4902 		}
4903 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4904 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4905 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4906 				  xpt_links.sle);
4907 		sim->ccb_count++;
4908 	}
4909 	cam_ccbq_take_opening(&device->ccbq);
4910 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4911 	return (new_ccb);
4912 }
4913 
4914 static void
4915 xpt_release_bus(struct cam_eb *bus)
4916 {
4917 
4918 	if ((--bus->refcount == 0)
4919 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4920 		mtx_lock(&xsoftc.xpt_topo_lock);
4921 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4922 		xsoftc.bus_generation++;
4923 		mtx_unlock(&xsoftc.xpt_topo_lock);
4924 		free(bus, M_CAMXPT);
4925 	}
4926 }
4927 
4928 static struct cam_et *
4929 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4930 {
4931 	struct cam_et *target;
4932 
4933 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4934 	if (target != NULL) {
4935 		struct cam_et *cur_target;
4936 
4937 		TAILQ_INIT(&target->ed_entries);
4938 		target->bus = bus;
4939 		target->target_id = target_id;
4940 		target->refcount = 1;
4941 		target->generation = 0;
4942 		timevalclear(&target->last_reset);
4943 		/*
4944 		 * Hold a reference to our parent bus so it
4945 		 * will not go away before we do.
4946 		 */
4947 		bus->refcount++;
4948 
4949 		/* Insertion sort into our bus's target list */
4950 		cur_target = TAILQ_FIRST(&bus->et_entries);
4951 		while (cur_target != NULL && cur_target->target_id < target_id)
4952 			cur_target = TAILQ_NEXT(cur_target, links);
4953 
4954 		if (cur_target != NULL) {
4955 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4956 		} else {
4957 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4958 		}
4959 		bus->generation++;
4960 	}
4961 	return (target);
4962 }
4963 
4964 static void
4965 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4966 {
4967 
4968 	if ((--target->refcount == 0)
4969 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4970 		TAILQ_REMOVE(&bus->et_entries, target, links);
4971 		bus->generation++;
4972 		free(target, M_CAMXPT);
4973 		xpt_release_bus(bus);
4974 	}
4975 }
4976 
4977 static struct cam_ed *
4978 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4979 {
4980 	struct	   cam_path path;
4981 	struct	   cam_ed *device;
4982 	struct	   cam_devq *devq;
4983 	cam_status status;
4984 
4985 	if (SIM_DEAD(bus->sim))
4986 		return (NULL);
4987 
4988 	/* Make space for us in the device queue on our bus */
4989 	devq = bus->sim->devq;
4990 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4991 
4992 	if (status != CAM_REQ_CMP) {
4993 		device = NULL;
4994 	} else {
4995 		device = (struct cam_ed *)malloc(sizeof(*device),
4996 						 M_CAMXPT, M_NOWAIT);
4997 	}
4998 
4999 	if (device != NULL) {
5000 		struct cam_ed *cur_device;
5001 
5002 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5003 		device->alloc_ccb_entry.device = device;
5004 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5005 		device->send_ccb_entry.device = device;
5006 		device->target = target;
5007 		device->lun_id = lun_id;
5008 		device->sim = bus->sim;
5009 		/* Initialize our queues */
5010 		if (camq_init(&device->drvq, 0) != 0) {
5011 			free(device, M_CAMXPT);
5012 			return (NULL);
5013 		}
5014 		if (cam_ccbq_init(&device->ccbq,
5015 				  bus->sim->max_dev_openings) != 0) {
5016 			camq_fini(&device->drvq);
5017 			free(device, M_CAMXPT);
5018 			return (NULL);
5019 		}
5020 		SLIST_INIT(&device->asyncs);
5021 		SLIST_INIT(&device->periphs);
5022 		device->generation = 0;
5023 		device->owner = NULL;
5024 		/*
5025 		 * Take the default quirk entry until we have inquiry
5026 		 * data and can determine a better quirk to use.
5027 		 */
5028 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5029 		bzero(&device->inq_data, sizeof(device->inq_data));
5030 		device->inq_flags = 0;
5031 		device->queue_flags = 0;
5032 		device->serial_num = NULL;
5033 		device->serial_num_len = 0;
5034 		device->qfrozen_cnt = 0;
5035 		device->flags = CAM_DEV_UNCONFIGURED;
5036 		device->tag_delay_count = 0;
5037 		device->tag_saved_openings = 0;
5038 		device->refcount = 1;
5039 		if (bus->sim->flags & CAM_SIM_MPSAFE)
5040 			callout_init_mtx(&device->callout, bus->sim->mtx, 0);
5041 		else
5042 			callout_init_mtx(&device->callout, &Giant, 0);
5043 
5044 		/*
5045 		 * Hold a reference to our parent target so it
5046 		 * will not go away before we do.
5047 		 */
5048 		target->refcount++;
5049 
5050 		/*
5051 		 * XXX should be limited by number of CCBs this bus can
5052 		 * do.
5053 		 */
5054 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5055 		/* Insertion sort into our target's device list */
5056 		cur_device = TAILQ_FIRST(&target->ed_entries);
5057 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5058 			cur_device = TAILQ_NEXT(cur_device, links);
5059 		if (cur_device != NULL) {
5060 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5061 		} else {
5062 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5063 		}
5064 		target->generation++;
5065 		if (lun_id != CAM_LUN_WILDCARD) {
5066 			xpt_compile_path(&path,
5067 					 NULL,
5068 					 bus->path_id,
5069 					 target->target_id,
5070 					 lun_id);
5071 			xpt_devise_transport(&path);
5072 			xpt_release_path(&path);
5073 		}
5074 	}
5075 	return (device);
5076 }
5077 
5078 static void
5079 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5080 		   struct cam_ed *device)
5081 {
5082 
5083 	if ((--device->refcount == 0)
5084 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
5085 		struct cam_devq *devq;
5086 
5087 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5088 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5089 			panic("Removing device while still queued for ccbs");
5090 
5091 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
5092 				callout_stop(&device->callout);
5093 
5094 		TAILQ_REMOVE(&target->ed_entries, device,links);
5095 		target->generation++;
5096 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5097 		if (!SIM_DEAD(bus->sim)) {
5098 			/* Release our slot in the devq */
5099 			devq = bus->sim->devq;
5100 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5101 		}
5102 		camq_fini(&device->drvq);
5103 		camq_fini(&device->ccbq.queue);
5104 		free(device, M_CAMXPT);
5105 		xpt_release_target(bus, target);
5106 	}
5107 }
5108 
5109 static u_int32_t
5110 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5111 {
5112 	int	diff;
5113 	int	result;
5114 	struct	cam_ed *dev;
5115 
5116 	dev = path->device;
5117 
5118 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5119 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5120 	if (result == CAM_REQ_CMP && (diff < 0)) {
5121 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5122 	}
5123 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5124 	 || (dev->inq_flags & SID_CmdQue) != 0)
5125 		dev->tag_saved_openings = newopenings;
5126 	/* Adjust the global limit */
5127 	dev->sim->max_ccbs += diff;
5128 	return (result);
5129 }
5130 
5131 static struct cam_eb *
5132 xpt_find_bus(path_id_t path_id)
5133 {
5134 	struct cam_eb *bus;
5135 
5136 	mtx_lock(&xsoftc.xpt_topo_lock);
5137 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5138 	     bus != NULL;
5139 	     bus = TAILQ_NEXT(bus, links)) {
5140 		if (bus->path_id == path_id) {
5141 			bus->refcount++;
5142 			break;
5143 		}
5144 	}
5145 	mtx_unlock(&xsoftc.xpt_topo_lock);
5146 	return (bus);
5147 }
5148 
5149 static struct cam_et *
5150 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5151 {
5152 	struct cam_et *target;
5153 
5154 	for (target = TAILQ_FIRST(&bus->et_entries);
5155 	     target != NULL;
5156 	     target = TAILQ_NEXT(target, links)) {
5157 		if (target->target_id == target_id) {
5158 			target->refcount++;
5159 			break;
5160 		}
5161 	}
5162 	return (target);
5163 }
5164 
5165 static struct cam_ed *
5166 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5167 {
5168 	struct cam_ed *device;
5169 
5170 	for (device = TAILQ_FIRST(&target->ed_entries);
5171 	     device != NULL;
5172 	     device = TAILQ_NEXT(device, links)) {
5173 		if (device->lun_id == lun_id) {
5174 			device->refcount++;
5175 			break;
5176 		}
5177 	}
5178 	return (device);
5179 }
5180 
5181 typedef struct {
5182 	union	ccb *request_ccb;
5183 	struct 	ccb_pathinq *cpi;
5184 	int	counter;
5185 } xpt_scan_bus_info;
5186 
5187 /*
5188  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5189  * As the scan progresses, xpt_scan_bus is used as the
5190  * callback on completion function.
5191  */
5192 static void
5193 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5194 {
5195 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5196 		  ("xpt_scan_bus\n"));
5197 	switch (request_ccb->ccb_h.func_code) {
5198 	case XPT_SCAN_BUS:
5199 	{
5200 		xpt_scan_bus_info *scan_info;
5201 		union	ccb *work_ccb;
5202 		struct	cam_path *path;
5203 		u_int	i;
5204 		u_int	max_target;
5205 		u_int	initiator_id;
5206 
5207 		/* Find out the characteristics of the bus */
5208 		work_ccb = xpt_alloc_ccb_nowait();
5209 		if (work_ccb == NULL) {
5210 			request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
5211 			xpt_done(request_ccb);
5212 			return;
5213 		}
5214 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5215 			      request_ccb->ccb_h.pinfo.priority);
5216 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5217 		xpt_action(work_ccb);
5218 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5219 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5220 			xpt_free_ccb(work_ccb);
5221 			xpt_done(request_ccb);
5222 			return;
5223 		}
5224 
5225 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5226 			/*
5227 			 * Can't scan the bus on an adapter that
5228 			 * cannot perform the initiator role.
5229 			 */
5230 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5231 			xpt_free_ccb(work_ccb);
5232 			xpt_done(request_ccb);
5233 			return;
5234 		}
5235 
5236 		/* Save some state for use while we probe for devices */
5237 		scan_info = (xpt_scan_bus_info *)
5238 		    malloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_NOWAIT);
5239 		scan_info->request_ccb = request_ccb;
5240 		scan_info->cpi = &work_ccb->cpi;
5241 
5242 		/* Cache on our stack so we can work asynchronously */
5243 		max_target = scan_info->cpi->max_target;
5244 		initiator_id = scan_info->cpi->initiator_id;
5245 
5246 
5247 		/*
5248 		 * We can scan all targets in parallel, or do it sequentially.
5249 		 */
5250 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5251 			max_target = 0;
5252 			scan_info->counter = 0;
5253 		} else {
5254 			scan_info->counter = scan_info->cpi->max_target + 1;
5255 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5256 				scan_info->counter--;
5257 			}
5258 		}
5259 
5260 		for (i = 0; i <= max_target; i++) {
5261 			cam_status status;
5262 			if (i == initiator_id)
5263 				continue;
5264 
5265 			status = xpt_create_path(&path, xpt_periph,
5266 						 request_ccb->ccb_h.path_id,
5267 						 i, 0);
5268 			if (status != CAM_REQ_CMP) {
5269 				printf("xpt_scan_bus: xpt_create_path failed"
5270 				       " with status %#x, bus scan halted\n",
5271 				       status);
5272 				free(scan_info, M_CAMXPT);
5273 				request_ccb->ccb_h.status = status;
5274 				xpt_free_ccb(work_ccb);
5275 				xpt_done(request_ccb);
5276 				break;
5277 			}
5278 			work_ccb = xpt_alloc_ccb_nowait();
5279 			if (work_ccb == NULL) {
5280 				free(scan_info, M_CAMXPT);
5281 				xpt_free_path(path);
5282 				request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
5283 				xpt_done(request_ccb);
5284 				break;
5285 			}
5286 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5287 				      request_ccb->ccb_h.pinfo.priority);
5288 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5289 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5290 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5291 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5292 			xpt_action(work_ccb);
5293 		}
5294 		break;
5295 	}
5296 	case XPT_SCAN_LUN:
5297 	{
5298 		cam_status status;
5299 		struct cam_path *path;
5300 		xpt_scan_bus_info *scan_info;
5301 		path_id_t path_id;
5302 		target_id_t target_id;
5303 		lun_id_t lun_id;
5304 
5305 		/* Reuse the same CCB to query if a device was really found */
5306 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5307 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5308 			      request_ccb->ccb_h.pinfo.priority);
5309 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5310 
5311 		path_id = request_ccb->ccb_h.path_id;
5312 		target_id = request_ccb->ccb_h.target_id;
5313 		lun_id = request_ccb->ccb_h.target_lun;
5314 		xpt_action(request_ccb);
5315 
5316 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5317 			struct cam_ed *device;
5318 			struct cam_et *target;
5319 			int phl;
5320 
5321 			/*
5322 			 * If we already probed lun 0 successfully, or
5323 			 * we have additional configured luns on this
5324 			 * target that might have "gone away", go onto
5325 			 * the next lun.
5326 			 */
5327 			target = request_ccb->ccb_h.path->target;
5328 			/*
5329 			 * We may touch devices that we don't
5330 			 * hold references too, so ensure they
5331 			 * don't disappear out from under us.
5332 			 * The target above is referenced by the
5333 			 * path in the request ccb.
5334 			 */
5335 			phl = 0;
5336 			device = TAILQ_FIRST(&target->ed_entries);
5337 			if (device != NULL) {
5338 				phl = CAN_SRCH_HI_SPARSE(device);
5339 				if (device->lun_id == 0)
5340 					device = TAILQ_NEXT(device, links);
5341 			}
5342 			if ((lun_id != 0) || (device != NULL)) {
5343 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5344 					lun_id++;
5345 			}
5346 		} else {
5347 			struct cam_ed *device;
5348 
5349 			device = request_ccb->ccb_h.path->device;
5350 
5351 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5352 				/* Try the next lun */
5353 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5354 				  || CAN_SRCH_HI_DENSE(device))
5355 					lun_id++;
5356 			}
5357 		}
5358 
5359 		/*
5360 		 * Free the current request path- we're done with it.
5361 		 */
5362 		xpt_free_path(request_ccb->ccb_h.path);
5363 
5364 		/*
5365 		 * Check to see if we scan any further luns.
5366 		 */
5367 		if (lun_id == request_ccb->ccb_h.target_lun
5368                  || lun_id > scan_info->cpi->max_lun) {
5369 			int done;
5370 
5371  hop_again:
5372 			done = 0;
5373 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5374 				scan_info->counter++;
5375 				if (scan_info->counter ==
5376 				    scan_info->cpi->initiator_id) {
5377 					scan_info->counter++;
5378 				}
5379 				if (scan_info->counter >=
5380 				    scan_info->cpi->max_target+1) {
5381 					done = 1;
5382 				}
5383 			} else {
5384 				scan_info->counter--;
5385 				if (scan_info->counter == 0) {
5386 					done = 1;
5387 				}
5388 			}
5389 			if (done) {
5390 				xpt_free_ccb(request_ccb);
5391 				xpt_free_ccb((union ccb *)scan_info->cpi);
5392 				request_ccb = scan_info->request_ccb;
5393 				free(scan_info, M_CAMXPT);
5394 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5395 				xpt_done(request_ccb);
5396 				break;
5397 			}
5398 
5399 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5400 				break;
5401 			}
5402 			status = xpt_create_path(&path, xpt_periph,
5403 			    scan_info->request_ccb->ccb_h.path_id,
5404 			    scan_info->counter, 0);
5405 			if (status != CAM_REQ_CMP) {
5406 				printf("xpt_scan_bus: xpt_create_path failed"
5407 				    " with status %#x, bus scan halted\n",
5408 			       	    status);
5409 				xpt_free_ccb(request_ccb);
5410 				xpt_free_ccb((union ccb *)scan_info->cpi);
5411 				request_ccb = scan_info->request_ccb;
5412 				free(scan_info, M_CAMXPT);
5413 				request_ccb->ccb_h.status = status;
5414 				xpt_done(request_ccb);
5415 				break;
5416 			}
5417 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5418 			    request_ccb->ccb_h.pinfo.priority);
5419 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5420 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5421 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5422 			request_ccb->crcn.flags =
5423 			    scan_info->request_ccb->crcn.flags;
5424 		} else {
5425 			status = xpt_create_path(&path, xpt_periph,
5426 						 path_id, target_id, lun_id);
5427 			if (status != CAM_REQ_CMP) {
5428 				printf("xpt_scan_bus: xpt_create_path failed "
5429 				       "with status %#x, halting LUN scan\n",
5430 			 	       status);
5431 				goto hop_again;
5432 			}
5433 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5434 				      request_ccb->ccb_h.pinfo.priority);
5435 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5436 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5437 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5438 			request_ccb->crcn.flags =
5439 				scan_info->request_ccb->crcn.flags;
5440 		}
5441 		xpt_action(request_ccb);
5442 		break;
5443 	}
5444 	default:
5445 		break;
5446 	}
5447 }
5448 
5449 typedef enum {
5450 	PROBE_TUR,
5451 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5452 	PROBE_FULL_INQUIRY,
5453 	PROBE_MODE_SENSE,
5454 	PROBE_SERIAL_NUM_0,
5455 	PROBE_SERIAL_NUM_1,
5456 	PROBE_TUR_FOR_NEGOTIATION,
5457 	PROBE_INQUIRY_BASIC_DV1,
5458 	PROBE_INQUIRY_BASIC_DV2,
5459 	PROBE_DV_EXIT
5460 } probe_action;
5461 
5462 typedef enum {
5463 	PROBE_INQUIRY_CKSUM	= 0x01,
5464 	PROBE_SERIAL_CKSUM	= 0x02,
5465 	PROBE_NO_ANNOUNCE	= 0x04
5466 } probe_flags;
5467 
5468 typedef struct {
5469 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5470 	probe_action	action;
5471 	union ccb	saved_ccb;
5472 	probe_flags	flags;
5473 	MD5_CTX		context;
5474 	u_int8_t	digest[16];
5475 } probe_softc;
5476 
5477 static void
5478 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5479 	     cam_flags flags, union ccb *request_ccb)
5480 {
5481 	struct ccb_pathinq cpi;
5482 	cam_status status;
5483 	struct cam_path *new_path;
5484 	struct cam_periph *old_periph;
5485 
5486 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5487 		  ("xpt_scan_lun\n"));
5488 
5489 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5490 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5491 	xpt_action((union ccb *)&cpi);
5492 
5493 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5494 		if (request_ccb != NULL) {
5495 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5496 			xpt_done(request_ccb);
5497 		}
5498 		return;
5499 	}
5500 
5501 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5502 		/*
5503 		 * Can't scan the bus on an adapter that
5504 		 * cannot perform the initiator role.
5505 		 */
5506 		if (request_ccb != NULL) {
5507 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5508 			xpt_done(request_ccb);
5509 		}
5510 		return;
5511 	}
5512 
5513 	if (request_ccb == NULL) {
5514 		request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT);
5515 		if (request_ccb == NULL) {
5516 			xpt_print(path, "xpt_scan_lun: can't allocate CCB, "
5517 			    "can't continue\n");
5518 			return;
5519 		}
5520 		new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT);
5521 		if (new_path == NULL) {
5522 			xpt_print(path, "xpt_scan_lun: can't allocate path, "
5523 			    "can't continue\n");
5524 			free(request_ccb, M_CAMXPT);
5525 			return;
5526 		}
5527 		status = xpt_compile_path(new_path, xpt_periph,
5528 					  path->bus->path_id,
5529 					  path->target->target_id,
5530 					  path->device->lun_id);
5531 
5532 		if (status != CAM_REQ_CMP) {
5533 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5534 			    "can't continue\n");
5535 			free(request_ccb, M_CAMXPT);
5536 			free(new_path, M_CAMXPT);
5537 			return;
5538 		}
5539 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5540 		request_ccb->ccb_h.cbfcnp = xptscandone;
5541 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5542 		request_ccb->crcn.flags = flags;
5543 	}
5544 
5545 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5546 		probe_softc *softc;
5547 
5548 		softc = (probe_softc *)old_periph->softc;
5549 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5550 				  periph_links.tqe);
5551 	} else {
5552 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5553 					  probestart, "probe",
5554 					  CAM_PERIPH_BIO,
5555 					  request_ccb->ccb_h.path, NULL, 0,
5556 					  request_ccb);
5557 
5558 		if (status != CAM_REQ_CMP) {
5559 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5560 			    "returned an error, can't continue probe\n");
5561 			request_ccb->ccb_h.status = status;
5562 			xpt_done(request_ccb);
5563 		}
5564 	}
5565 }
5566 
5567 static void
5568 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5569 {
5570 	xpt_release_path(done_ccb->ccb_h.path);
5571 	free(done_ccb->ccb_h.path, M_CAMXPT);
5572 	free(done_ccb, M_CAMXPT);
5573 }
5574 
5575 static cam_status
5576 proberegister(struct cam_periph *periph, void *arg)
5577 {
5578 	union ccb *request_ccb;	/* CCB representing the probe request */
5579 	cam_status status;
5580 	probe_softc *softc;
5581 
5582 	request_ccb = (union ccb *)arg;
5583 	if (periph == NULL) {
5584 		printf("proberegister: periph was NULL!!\n");
5585 		return(CAM_REQ_CMP_ERR);
5586 	}
5587 
5588 	if (request_ccb == NULL) {
5589 		printf("proberegister: no probe CCB, "
5590 		       "can't register device\n");
5591 		return(CAM_REQ_CMP_ERR);
5592 	}
5593 
5594 	softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT);
5595 
5596 	if (softc == NULL) {
5597 		printf("proberegister: Unable to probe new device. "
5598 		       "Unable to allocate softc\n");
5599 		return(CAM_REQ_CMP_ERR);
5600 	}
5601 	TAILQ_INIT(&softc->request_ccbs);
5602 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5603 			  periph_links.tqe);
5604 	softc->flags = 0;
5605 	periph->softc = softc;
5606 	status = cam_periph_acquire(periph);
5607 	if (status != CAM_REQ_CMP) {
5608 		return (status);
5609 	}
5610 
5611 
5612 	/*
5613 	 * Ensure we've waited at least a bus settle
5614 	 * delay before attempting to probe the device.
5615 	 * For HBAs that don't do bus resets, this won't make a difference.
5616 	 */
5617 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5618 				      scsi_delay);
5619 	probeschedule(periph);
5620 	return(CAM_REQ_CMP);
5621 }
5622 
5623 static void
5624 probeschedule(struct cam_periph *periph)
5625 {
5626 	struct ccb_pathinq cpi;
5627 	union ccb *ccb;
5628 	probe_softc *softc;
5629 
5630 	softc = (probe_softc *)periph->softc;
5631 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5632 
5633 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5634 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5635 	xpt_action((union ccb *)&cpi);
5636 
5637 	/*
5638 	 * If a device has gone away and another device, or the same one,
5639 	 * is back in the same place, it should have a unit attention
5640 	 * condition pending.  It will not report the unit attention in
5641 	 * response to an inquiry, which may leave invalid transfer
5642 	 * negotiations in effect.  The TUR will reveal the unit attention
5643 	 * condition.  Only send the TUR for lun 0, since some devices
5644 	 * will get confused by commands other than inquiry to non-existent
5645 	 * luns.  If you think a device has gone away start your scan from
5646 	 * lun 0.  This will insure that any bogus transfer settings are
5647 	 * invalidated.
5648 	 *
5649 	 * If we haven't seen the device before and the controller supports
5650 	 * some kind of transfer negotiation, negotiate with the first
5651 	 * sent command if no bus reset was performed at startup.  This
5652 	 * ensures that the device is not confused by transfer negotiation
5653 	 * settings left over by loader or BIOS action.
5654 	 */
5655 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5656 	 && (ccb->ccb_h.target_lun == 0)) {
5657 		softc->action = PROBE_TUR;
5658 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5659 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5660 		proberequestdefaultnegotiation(periph);
5661 		softc->action = PROBE_INQUIRY;
5662 	} else {
5663 		softc->action = PROBE_INQUIRY;
5664 	}
5665 
5666 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5667 		softc->flags |= PROBE_NO_ANNOUNCE;
5668 	else
5669 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5670 
5671 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5672 }
5673 
5674 static void
5675 probestart(struct cam_periph *periph, union ccb *start_ccb)
5676 {
5677 	/* Probe the device that our peripheral driver points to */
5678 	struct ccb_scsiio *csio;
5679 	probe_softc *softc;
5680 
5681 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5682 
5683 	softc = (probe_softc *)periph->softc;
5684 	csio = &start_ccb->csio;
5685 
5686 	switch (softc->action) {
5687 	case PROBE_TUR:
5688 	case PROBE_TUR_FOR_NEGOTIATION:
5689 	case PROBE_DV_EXIT:
5690 	{
5691 		scsi_test_unit_ready(csio,
5692 				     /*retries*/4,
5693 				     probedone,
5694 				     MSG_SIMPLE_Q_TAG,
5695 				     SSD_FULL_SIZE,
5696 				     /*timeout*/60000);
5697 		break;
5698 	}
5699 	case PROBE_INQUIRY:
5700 	case PROBE_FULL_INQUIRY:
5701 	case PROBE_INQUIRY_BASIC_DV1:
5702 	case PROBE_INQUIRY_BASIC_DV2:
5703 	{
5704 		u_int inquiry_len;
5705 		struct scsi_inquiry_data *inq_buf;
5706 
5707 		inq_buf = &periph->path->device->inq_data;
5708 
5709 		/*
5710 		 * If the device is currently configured, we calculate an
5711 		 * MD5 checksum of the inquiry data, and if the serial number
5712 		 * length is greater than 0, add the serial number data
5713 		 * into the checksum as well.  Once the inquiry and the
5714 		 * serial number check finish, we attempt to figure out
5715 		 * whether we still have the same device.
5716 		 */
5717 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5718 
5719 			MD5Init(&softc->context);
5720 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5721 				  sizeof(struct scsi_inquiry_data));
5722 			softc->flags |= PROBE_INQUIRY_CKSUM;
5723 			if (periph->path->device->serial_num_len > 0) {
5724 				MD5Update(&softc->context,
5725 					  periph->path->device->serial_num,
5726 					  periph->path->device->serial_num_len);
5727 				softc->flags |= PROBE_SERIAL_CKSUM;
5728 			}
5729 			MD5Final(softc->digest, &softc->context);
5730 		}
5731 
5732 		if (softc->action == PROBE_INQUIRY)
5733 			inquiry_len = SHORT_INQUIRY_LENGTH;
5734 		else
5735 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5736 
5737 		/*
5738 		 * Some parallel SCSI devices fail to send an
5739 		 * ignore wide residue message when dealing with
5740 		 * odd length inquiry requests.  Round up to be
5741 		 * safe.
5742 		 */
5743 		inquiry_len = roundup2(inquiry_len, 2);
5744 
5745 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5746 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5747 			inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT);
5748 		}
5749 		if (inq_buf == NULL) {
5750 			xpt_print(periph->path, "malloc failure- skipping Basic"
5751 			    "Domain Validation\n");
5752 			softc->action = PROBE_DV_EXIT;
5753 			scsi_test_unit_ready(csio,
5754 					     /*retries*/4,
5755 					     probedone,
5756 					     MSG_SIMPLE_Q_TAG,
5757 					     SSD_FULL_SIZE,
5758 					     /*timeout*/60000);
5759 			break;
5760 		}
5761 		scsi_inquiry(csio,
5762 			     /*retries*/4,
5763 			     probedone,
5764 			     MSG_SIMPLE_Q_TAG,
5765 			     (u_int8_t *)inq_buf,
5766 			     inquiry_len,
5767 			     /*evpd*/FALSE,
5768 			     /*page_code*/0,
5769 			     SSD_MIN_SIZE,
5770 			     /*timeout*/60 * 1000);
5771 		break;
5772 	}
5773 	case PROBE_MODE_SENSE:
5774 	{
5775 		void  *mode_buf;
5776 		int    mode_buf_len;
5777 
5778 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5779 			     + sizeof(struct scsi_mode_blk_desc)
5780 			     + sizeof(struct scsi_control_page);
5781 		mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT);
5782 		if (mode_buf != NULL) {
5783 	                scsi_mode_sense(csio,
5784 					/*retries*/4,
5785 					probedone,
5786 					MSG_SIMPLE_Q_TAG,
5787 					/*dbd*/FALSE,
5788 					SMS_PAGE_CTRL_CURRENT,
5789 					SMS_CONTROL_MODE_PAGE,
5790 					mode_buf,
5791 					mode_buf_len,
5792 					SSD_FULL_SIZE,
5793 					/*timeout*/60000);
5794 			break;
5795 		}
5796 		xpt_print(periph->path, "Unable to mode sense control page - "
5797 		    "malloc failure\n");
5798 		softc->action = PROBE_SERIAL_NUM_0;
5799 	}
5800 	/* FALLTHROUGH */
5801 	case PROBE_SERIAL_NUM_0:
5802 	{
5803 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5804 		struct cam_ed *device;
5805 
5806 		device = periph->path->device;
5807 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5808 			vpd_list = malloc(sizeof(*vpd_list), M_CAMXPT,
5809 			    M_NOWAIT | M_ZERO);
5810 		}
5811 
5812 		if (vpd_list != NULL) {
5813 			scsi_inquiry(csio,
5814 				     /*retries*/4,
5815 				     probedone,
5816 				     MSG_SIMPLE_Q_TAG,
5817 				     (u_int8_t *)vpd_list,
5818 				     sizeof(*vpd_list),
5819 				     /*evpd*/TRUE,
5820 				     SVPD_SUPPORTED_PAGE_LIST,
5821 				     SSD_MIN_SIZE,
5822 				     /*timeout*/60 * 1000);
5823 			break;
5824 		}
5825 		/*
5826 		 * We'll have to do without, let our probedone
5827 		 * routine finish up for us.
5828 		 */
5829 		start_ccb->csio.data_ptr = NULL;
5830 		probedone(periph, start_ccb);
5831 		return;
5832 	}
5833 	case PROBE_SERIAL_NUM_1:
5834 	{
5835 		struct scsi_vpd_unit_serial_number *serial_buf;
5836 		struct cam_ed* device;
5837 
5838 		serial_buf = NULL;
5839 		device = periph->path->device;
5840 		device->serial_num = NULL;
5841 		device->serial_num_len = 0;
5842 
5843 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5844 			malloc(sizeof(*serial_buf), M_CAMXPT, M_NOWAIT|M_ZERO);
5845 
5846 		if (serial_buf != NULL) {
5847 			scsi_inquiry(csio,
5848 				     /*retries*/4,
5849 				     probedone,
5850 				     MSG_SIMPLE_Q_TAG,
5851 				     (u_int8_t *)serial_buf,
5852 				     sizeof(*serial_buf),
5853 				     /*evpd*/TRUE,
5854 				     SVPD_UNIT_SERIAL_NUMBER,
5855 				     SSD_MIN_SIZE,
5856 				     /*timeout*/60 * 1000);
5857 			break;
5858 		}
5859 		/*
5860 		 * We'll have to do without, let our probedone
5861 		 * routine finish up for us.
5862 		 */
5863 		start_ccb->csio.data_ptr = NULL;
5864 		probedone(periph, start_ccb);
5865 		return;
5866 	}
5867 	}
5868 	xpt_action(start_ccb);
5869 }
5870 
5871 static void
5872 proberequestdefaultnegotiation(struct cam_periph *periph)
5873 {
5874 	struct ccb_trans_settings cts;
5875 
5876 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5877 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5878 	cts.type = CTS_TYPE_USER_SETTINGS;
5879 	xpt_action((union ccb *)&cts);
5880 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5881 		return;
5882 	}
5883 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5884 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5885 	xpt_action((union ccb *)&cts);
5886 }
5887 
5888 /*
5889  * Backoff Negotiation Code- only pertinent for SPI devices.
5890  */
5891 static int
5892 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5893 {
5894 	struct ccb_trans_settings cts;
5895 	struct ccb_trans_settings_spi *spi;
5896 
5897 	memset(&cts, 0, sizeof (cts));
5898 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5899 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5900 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5901 	xpt_action((union ccb *)&cts);
5902 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5903 		if (bootverbose) {
5904 			xpt_print(periph->path,
5905 			    "failed to get current device settings\n");
5906 		}
5907 		return (0);
5908 	}
5909 	if (cts.transport != XPORT_SPI) {
5910 		if (bootverbose) {
5911 			xpt_print(periph->path, "not SPI transport\n");
5912 		}
5913 		return (0);
5914 	}
5915 	spi = &cts.xport_specific.spi;
5916 
5917 	/*
5918 	 * We cannot renegotiate sync rate if we don't have one.
5919 	 */
5920 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5921 		if (bootverbose) {
5922 			xpt_print(periph->path, "no sync rate known\n");
5923 		}
5924 		return (0);
5925 	}
5926 
5927 	/*
5928 	 * We'll assert that we don't have to touch PPR options- the
5929 	 * SIM will see what we do with period and offset and adjust
5930 	 * the PPR options as appropriate.
5931 	 */
5932 
5933 	/*
5934 	 * A sync rate with unknown or zero offset is nonsensical.
5935 	 * A sync period of zero means Async.
5936 	 */
5937 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5938 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5939 		if (bootverbose) {
5940 			xpt_print(periph->path, "no sync rate available\n");
5941 		}
5942 		return (0);
5943 	}
5944 
5945 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5946 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5947 		    ("hit async: giving up on DV\n"));
5948 		return (0);
5949 	}
5950 
5951 
5952 	/*
5953 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5954 	 * We don't try to remember 'last' settings to see if the SIM actually
5955 	 * gets into the speed we want to set. We check on the SIM telling
5956 	 * us that a requested speed is bad, but otherwise don't try and
5957 	 * check the speed due to the asynchronous and handshake nature
5958 	 * of speed setting.
5959 	 */
5960 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5961 	for (;;) {
5962 		spi->sync_period++;
5963 		if (spi->sync_period >= 0xf) {
5964 			spi->sync_period = 0;
5965 			spi->sync_offset = 0;
5966 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5967 			    ("setting to async for DV\n"));
5968 			/*
5969 			 * Once we hit async, we don't want to try
5970 			 * any more settings.
5971 			 */
5972 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5973 		} else if (bootverbose) {
5974 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5975 			    ("DV: period 0x%x\n", spi->sync_period));
5976 			printf("setting period to 0x%x\n", spi->sync_period);
5977 		}
5978 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5979 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5980 		xpt_action((union ccb *)&cts);
5981 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5982 			break;
5983 		}
5984 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5985 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5986 		if (spi->sync_period == 0) {
5987 			return (0);
5988 		}
5989 	}
5990 	return (1);
5991 }
5992 
5993 static void
5994 probedone(struct cam_periph *periph, union ccb *done_ccb)
5995 {
5996 	probe_softc *softc;
5997 	struct cam_path *path;
5998 	u_int32_t  priority;
5999 
6000 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
6001 
6002 	softc = (probe_softc *)periph->softc;
6003 	path = done_ccb->ccb_h.path;
6004 	priority = done_ccb->ccb_h.pinfo.priority;
6005 
6006 	switch (softc->action) {
6007 	case PROBE_TUR:
6008 	{
6009 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6010 
6011 			if (cam_periph_error(done_ccb, 0,
6012 					     SF_NO_PRINT, NULL) == ERESTART)
6013 				return;
6014 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6015 				/* Don't wedge the queue */
6016 				xpt_release_devq(done_ccb->ccb_h.path,
6017 						 /*count*/1,
6018 						 /*run_queue*/TRUE);
6019 		}
6020 		softc->action = PROBE_INQUIRY;
6021 		xpt_release_ccb(done_ccb);
6022 		xpt_schedule(periph, priority);
6023 		return;
6024 	}
6025 	case PROBE_INQUIRY:
6026 	case PROBE_FULL_INQUIRY:
6027 	{
6028 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6029 			struct scsi_inquiry_data *inq_buf;
6030 			u_int8_t periph_qual;
6031 
6032 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6033 			inq_buf = &path->device->inq_data;
6034 
6035 			periph_qual = SID_QUAL(inq_buf);
6036 
6037 			switch(periph_qual) {
6038 			case SID_QUAL_LU_CONNECTED:
6039 			{
6040 				u_int8_t len;
6041 
6042 				/*
6043 				 * We conservatively request only
6044 				 * SHORT_INQUIRY_LEN bytes of inquiry
6045 				 * information during our first try
6046 				 * at sending an INQUIRY. If the device
6047 				 * has more information to give,
6048 				 * perform a second request specifying
6049 				 * the amount of information the device
6050 				 * is willing to give.
6051 				 */
6052 				len = inq_buf->additional_length
6053 				    + offsetof(struct scsi_inquiry_data,
6054                                                additional_length) + 1;
6055 				if (softc->action == PROBE_INQUIRY
6056 				    && len > SHORT_INQUIRY_LENGTH) {
6057 					softc->action = PROBE_FULL_INQUIRY;
6058 					xpt_release_ccb(done_ccb);
6059 					xpt_schedule(periph, priority);
6060 					return;
6061 				}
6062 
6063 				xpt_find_quirk(path->device);
6064 
6065 				xpt_devise_transport(path);
6066 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6067 					softc->action = PROBE_MODE_SENSE;
6068 				else
6069 					softc->action = PROBE_SERIAL_NUM_0;
6070 
6071 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6072 
6073 				xpt_release_ccb(done_ccb);
6074 				xpt_schedule(periph, priority);
6075 				return;
6076 			}
6077 			default:
6078 				break;
6079 			}
6080 		} else if (cam_periph_error(done_ccb, 0,
6081 					    done_ccb->ccb_h.target_lun > 0
6082 					    ? SF_RETRY_UA|SF_QUIET_IR
6083 					    : SF_RETRY_UA,
6084 					    &softc->saved_ccb) == ERESTART) {
6085 			return;
6086 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6087 			/* Don't wedge the queue */
6088 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6089 					 /*run_queue*/TRUE);
6090 		}
6091 		/*
6092 		 * If we get to this point, we got an error status back
6093 		 * from the inquiry and the error status doesn't require
6094 		 * automatically retrying the command.  Therefore, the
6095 		 * inquiry failed.  If we had inquiry information before
6096 		 * for this device, but this latest inquiry command failed,
6097 		 * the device has probably gone away.  If this device isn't
6098 		 * already marked unconfigured, notify the peripheral
6099 		 * drivers that this device is no more.
6100 		 */
6101 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
6102 			/* Send the async notification. */
6103 			xpt_async(AC_LOST_DEVICE, path, NULL);
6104 
6105 		xpt_release_ccb(done_ccb);
6106 		break;
6107 	}
6108 	case PROBE_MODE_SENSE:
6109 	{
6110 		struct ccb_scsiio *csio;
6111 		struct scsi_mode_header_6 *mode_hdr;
6112 
6113 		csio = &done_ccb->csio;
6114 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6115 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6116 			struct scsi_control_page *page;
6117 			u_int8_t *offset;
6118 
6119 			offset = ((u_int8_t *)&mode_hdr[1])
6120 			    + mode_hdr->blk_desc_len;
6121 			page = (struct scsi_control_page *)offset;
6122 			path->device->queue_flags = page->queue_flags;
6123 		} else if (cam_periph_error(done_ccb, 0,
6124 					    SF_RETRY_UA|SF_NO_PRINT,
6125 					    &softc->saved_ccb) == ERESTART) {
6126 			return;
6127 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6128 			/* Don't wedge the queue */
6129 			xpt_release_devq(done_ccb->ccb_h.path,
6130 					 /*count*/1, /*run_queue*/TRUE);
6131 		}
6132 		xpt_release_ccb(done_ccb);
6133 		free(mode_hdr, M_CAMXPT);
6134 		softc->action = PROBE_SERIAL_NUM_0;
6135 		xpt_schedule(periph, priority);
6136 		return;
6137 	}
6138 	case PROBE_SERIAL_NUM_0:
6139 	{
6140 		struct ccb_scsiio *csio;
6141 		struct scsi_vpd_supported_page_list *page_list;
6142 		int length, serialnum_supported, i;
6143 
6144 		serialnum_supported = 0;
6145 		csio = &done_ccb->csio;
6146 		page_list =
6147 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6148 
6149 		if (page_list == NULL) {
6150 			/*
6151 			 * Don't process the command as it was never sent
6152 			 */
6153 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6154 		    && (page_list->length > 0)) {
6155 			length = min(page_list->length,
6156 			    SVPD_SUPPORTED_PAGES_SIZE);
6157 			for (i = 0; i < length; i++) {
6158 				if (page_list->list[i] ==
6159 				    SVPD_UNIT_SERIAL_NUMBER) {
6160 					serialnum_supported = 1;
6161 					break;
6162 				}
6163 			}
6164 		} else if (cam_periph_error(done_ccb, 0,
6165 					    SF_RETRY_UA|SF_NO_PRINT,
6166 					    &softc->saved_ccb) == ERESTART) {
6167 			return;
6168 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6169 			/* Don't wedge the queue */
6170 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6171 					 /*run_queue*/TRUE);
6172 		}
6173 
6174 		if (page_list != NULL)
6175 			free(page_list, M_DEVBUF);
6176 
6177 		if (serialnum_supported) {
6178 			xpt_release_ccb(done_ccb);
6179 			softc->action = PROBE_SERIAL_NUM_1;
6180 			xpt_schedule(periph, priority);
6181 			return;
6182 		}
6183 		xpt_release_ccb(done_ccb);
6184 		softc->action = PROBE_TUR_FOR_NEGOTIATION;
6185 		xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6186 		return;
6187 	}
6188 
6189 	case PROBE_SERIAL_NUM_1:
6190 	{
6191 		struct ccb_scsiio *csio;
6192 		struct scsi_vpd_unit_serial_number *serial_buf;
6193 		u_int32_t  priority;
6194 		int changed;
6195 		int have_serialnum;
6196 
6197 		changed = 1;
6198 		have_serialnum = 0;
6199 		csio = &done_ccb->csio;
6200 		priority = done_ccb->ccb_h.pinfo.priority;
6201 		serial_buf =
6202 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6203 
6204 		/* Clean up from previous instance of this device */
6205 		if (path->device->serial_num != NULL) {
6206 			free(path->device->serial_num, M_CAMXPT);
6207 			path->device->serial_num = NULL;
6208 			path->device->serial_num_len = 0;
6209 		}
6210 
6211 		if (serial_buf == NULL) {
6212 			/*
6213 			 * Don't process the command as it was never sent
6214 			 */
6215 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6216 			&& (serial_buf->length > 0)) {
6217 
6218 			have_serialnum = 1;
6219 			path->device->serial_num =
6220 				(u_int8_t *)malloc((serial_buf->length + 1),
6221 						   M_CAMXPT, M_NOWAIT);
6222 			if (path->device->serial_num != NULL) {
6223 				bcopy(serial_buf->serial_num,
6224 				      path->device->serial_num,
6225 				      serial_buf->length);
6226 				path->device->serial_num_len =
6227 				    serial_buf->length;
6228 				path->device->serial_num[serial_buf->length]
6229 				    = '\0';
6230 			}
6231 		} else if (cam_periph_error(done_ccb, 0,
6232 					    SF_RETRY_UA|SF_NO_PRINT,
6233 					    &softc->saved_ccb) == ERESTART) {
6234 			return;
6235 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6236 			/* Don't wedge the queue */
6237 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6238 					 /*run_queue*/TRUE);
6239 		}
6240 
6241 		/*
6242 		 * Let's see if we have seen this device before.
6243 		 */
6244 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6245 			MD5_CTX context;
6246 			u_int8_t digest[16];
6247 
6248 			MD5Init(&context);
6249 
6250 			MD5Update(&context,
6251 				  (unsigned char *)&path->device->inq_data,
6252 				  sizeof(struct scsi_inquiry_data));
6253 
6254 			if (have_serialnum)
6255 				MD5Update(&context, serial_buf->serial_num,
6256 					  serial_buf->length);
6257 
6258 			MD5Final(digest, &context);
6259 			if (bcmp(softc->digest, digest, 16) == 0)
6260 				changed = 0;
6261 
6262 			/*
6263 			 * XXX Do we need to do a TUR in order to ensure
6264 			 *     that the device really hasn't changed???
6265 			 */
6266 			if ((changed != 0)
6267 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6268 				xpt_async(AC_LOST_DEVICE, path, NULL);
6269 		}
6270 		if (serial_buf != NULL)
6271 			free(serial_buf, M_CAMXPT);
6272 
6273 		if (changed != 0) {
6274 			/*
6275 			 * Now that we have all the necessary
6276 			 * information to safely perform transfer
6277 			 * negotiations... Controllers don't perform
6278 			 * any negotiation or tagged queuing until
6279 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6280 			 * received.  So, on a new device, just retrieve
6281 			 * the user settings, and set them as the current
6282 			 * settings to set the device up.
6283 			 */
6284 			proberequestdefaultnegotiation(periph);
6285 			xpt_release_ccb(done_ccb);
6286 
6287 			/*
6288 			 * Perform a TUR to allow the controller to
6289 			 * perform any necessary transfer negotiation.
6290 			 */
6291 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
6292 			xpt_schedule(periph, priority);
6293 			return;
6294 		}
6295 		xpt_release_ccb(done_ccb);
6296 		break;
6297 	}
6298 	case PROBE_TUR_FOR_NEGOTIATION:
6299 	case PROBE_DV_EXIT:
6300 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6301 			/* Don't wedge the queue */
6302 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6303 					 /*run_queue*/TRUE);
6304 		}
6305 		/*
6306 		 * Do Domain Validation for lun 0 on devices that claim
6307 		 * to support Synchronous Transfer modes.
6308 		 */
6309 	 	if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6310 		 && done_ccb->ccb_h.target_lun == 0
6311 		 && (path->device->inq_data.flags & SID_Sync) != 0
6312                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6313 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6314 			    ("Begin Domain Validation\n"));
6315 			path->device->flags |= CAM_DEV_IN_DV;
6316 			xpt_release_ccb(done_ccb);
6317 			softc->action = PROBE_INQUIRY_BASIC_DV1;
6318 			xpt_schedule(periph, priority);
6319 			return;
6320 		}
6321 		if (softc->action == PROBE_DV_EXIT) {
6322 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6323 			    ("Leave Domain Validation\n"));
6324 		}
6325 		path->device->flags &=
6326 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6327 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6328 			/* Inform the XPT that a new device has been found */
6329 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6330 			xpt_action(done_ccb);
6331 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6332 				  done_ccb);
6333 		}
6334 		xpt_release_ccb(done_ccb);
6335 		break;
6336 	case PROBE_INQUIRY_BASIC_DV1:
6337 	case PROBE_INQUIRY_BASIC_DV2:
6338 	{
6339 		struct scsi_inquiry_data *nbuf;
6340 		struct ccb_scsiio *csio;
6341 
6342 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6343 			/* Don't wedge the queue */
6344 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6345 					 /*run_queue*/TRUE);
6346 		}
6347 		csio = &done_ccb->csio;
6348 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6349 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6350 			xpt_print(path,
6351 			    "inquiry data fails comparison at DV%d step\n",
6352 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6353 			if (proberequestbackoff(periph, path->device)) {
6354 				path->device->flags &= ~CAM_DEV_IN_DV;
6355 				softc->action = PROBE_TUR_FOR_NEGOTIATION;
6356 			} else {
6357 				/* give up */
6358 				softc->action = PROBE_DV_EXIT;
6359 			}
6360 			free(nbuf, M_CAMXPT);
6361 			xpt_release_ccb(done_ccb);
6362 			xpt_schedule(periph, priority);
6363 			return;
6364 		}
6365 		free(nbuf, M_CAMXPT);
6366 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6367 			softc->action = PROBE_INQUIRY_BASIC_DV2;
6368 			xpt_release_ccb(done_ccb);
6369 			xpt_schedule(periph, priority);
6370 			return;
6371 		}
6372 		if (softc->action == PROBE_DV_EXIT) {
6373 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6374 			    ("Leave Domain Validation Successfully\n"));
6375 		}
6376 		path->device->flags &=
6377 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6378 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6379 			/* Inform the XPT that a new device has been found */
6380 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6381 			xpt_action(done_ccb);
6382 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6383 				  done_ccb);
6384 		}
6385 		xpt_release_ccb(done_ccb);
6386 		break;
6387 	}
6388 	}
6389 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6390 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6391 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6392 	xpt_done(done_ccb);
6393 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6394 		cam_periph_invalidate(periph);
6395 		cam_periph_release(periph);
6396 	} else {
6397 		probeschedule(periph);
6398 	}
6399 }
6400 
6401 static void
6402 probecleanup(struct cam_periph *periph)
6403 {
6404 	free(periph->softc, M_CAMXPT);
6405 }
6406 
6407 static void
6408 xpt_find_quirk(struct cam_ed *device)
6409 {
6410 	caddr_t	match;
6411 
6412 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6413 			       (caddr_t)xpt_quirk_table,
6414 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6415 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6416 
6417 	if (match == NULL)
6418 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6419 
6420 	device->quirk = (struct xpt_quirk_entry *)match;
6421 }
6422 
6423 static int
6424 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6425 {
6426 	int error, bool;
6427 
6428 	bool = cam_srch_hi;
6429 	error = sysctl_handle_int(oidp, &bool, 0, req);
6430 	if (error != 0 || req->newptr == NULL)
6431 		return (error);
6432 	if (bool == 0 || bool == 1) {
6433 		cam_srch_hi = bool;
6434 		return (0);
6435 	} else {
6436 		return (EINVAL);
6437 	}
6438 }
6439 
6440 
6441 static void
6442 xpt_devise_transport(struct cam_path *path)
6443 {
6444 	struct ccb_pathinq cpi;
6445 	struct ccb_trans_settings cts;
6446 	struct scsi_inquiry_data *inq_buf;
6447 
6448 	/* Get transport information from the SIM */
6449 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6450 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6451 	xpt_action((union ccb *)&cpi);
6452 
6453 	inq_buf = NULL;
6454 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6455 		inq_buf = &path->device->inq_data;
6456 	path->device->protocol = PROTO_SCSI;
6457 	path->device->protocol_version =
6458 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6459 	path->device->transport = cpi.transport;
6460 	path->device->transport_version = cpi.transport_version;
6461 
6462 	/*
6463 	 * Any device not using SPI3 features should
6464 	 * be considered SPI2 or lower.
6465 	 */
6466 	if (inq_buf != NULL) {
6467 		if (path->device->transport == XPORT_SPI
6468 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6469 		 && path->device->transport_version > 2)
6470 			path->device->transport_version = 2;
6471 	} else {
6472 		struct cam_ed* otherdev;
6473 
6474 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6475 		     otherdev != NULL;
6476 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6477 			if (otherdev != path->device)
6478 				break;
6479 		}
6480 
6481 		if (otherdev != NULL) {
6482 			/*
6483 			 * Initially assume the same versioning as
6484 			 * prior luns for this target.
6485 			 */
6486 			path->device->protocol_version =
6487 			    otherdev->protocol_version;
6488 			path->device->transport_version =
6489 			    otherdev->transport_version;
6490 		} else {
6491 			/* Until we know better, opt for safty */
6492 			path->device->protocol_version = 2;
6493 			if (path->device->transport == XPORT_SPI)
6494 				path->device->transport_version = 2;
6495 			else
6496 				path->device->transport_version = 0;
6497 		}
6498 	}
6499 
6500 	/*
6501 	 * XXX
6502 	 * For a device compliant with SPC-2 we should be able
6503 	 * to determine the transport version supported by
6504 	 * scrutinizing the version descriptors in the
6505 	 * inquiry buffer.
6506 	 */
6507 
6508 	/* Tell the controller what we think */
6509 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6510 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6511 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6512 	cts.transport = path->device->transport;
6513 	cts.transport_version = path->device->transport_version;
6514 	cts.protocol = path->device->protocol;
6515 	cts.protocol_version = path->device->protocol_version;
6516 	cts.proto_specific.valid = 0;
6517 	cts.xport_specific.valid = 0;
6518 	xpt_action((union ccb *)&cts);
6519 }
6520 
6521 static void
6522 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6523 			  int async_update)
6524 {
6525 	struct	ccb_pathinq cpi;
6526 	struct	ccb_trans_settings cur_cts;
6527 	struct	ccb_trans_settings_scsi *scsi;
6528 	struct	ccb_trans_settings_scsi *cur_scsi;
6529 	struct	cam_sim *sim;
6530 	struct	scsi_inquiry_data *inq_data;
6531 
6532 	if (device == NULL) {
6533 		cts->ccb_h.status = CAM_PATH_INVALID;
6534 		xpt_done((union ccb *)cts);
6535 		return;
6536 	}
6537 
6538 	if (cts->protocol == PROTO_UNKNOWN
6539 	 || cts->protocol == PROTO_UNSPECIFIED) {
6540 		cts->protocol = device->protocol;
6541 		cts->protocol_version = device->protocol_version;
6542 	}
6543 
6544 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6545 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6546 		cts->protocol_version = device->protocol_version;
6547 
6548 	if (cts->protocol != device->protocol) {
6549 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6550 		       cts->protocol, device->protocol);
6551 		cts->protocol = device->protocol;
6552 	}
6553 
6554 	if (cts->protocol_version > device->protocol_version) {
6555 		if (bootverbose) {
6556 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6557 			    "Version from %d to %d?\n", cts->protocol_version,
6558 			    device->protocol_version);
6559 		}
6560 		cts->protocol_version = device->protocol_version;
6561 	}
6562 
6563 	if (cts->transport == XPORT_UNKNOWN
6564 	 || cts->transport == XPORT_UNSPECIFIED) {
6565 		cts->transport = device->transport;
6566 		cts->transport_version = device->transport_version;
6567 	}
6568 
6569 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6570 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6571 		cts->transport_version = device->transport_version;
6572 
6573 	if (cts->transport != device->transport) {
6574 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6575 		    cts->transport, device->transport);
6576 		cts->transport = device->transport;
6577 	}
6578 
6579 	if (cts->transport_version > device->transport_version) {
6580 		if (bootverbose) {
6581 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6582 			    "Version from %d to %d?\n", cts->transport_version,
6583 			    device->transport_version);
6584 		}
6585 		cts->transport_version = device->transport_version;
6586 	}
6587 
6588 	sim = cts->ccb_h.path->bus->sim;
6589 
6590 	/*
6591 	 * Nothing more of interest to do unless
6592 	 * this is a device connected via the
6593 	 * SCSI protocol.
6594 	 */
6595 	if (cts->protocol != PROTO_SCSI) {
6596 		if (async_update == FALSE)
6597 			(*(sim->sim_action))(sim, (union ccb *)cts);
6598 		return;
6599 	}
6600 
6601 	inq_data = &device->inq_data;
6602 	scsi = &cts->proto_specific.scsi;
6603 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6604 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6605 	xpt_action((union ccb *)&cpi);
6606 
6607 	/* SCSI specific sanity checking */
6608 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6609 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6610 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6611 	 || (device->quirk->mintags == 0)) {
6612 		/*
6613 		 * Can't tag on hardware that doesn't support tags,
6614 		 * doesn't have it enabled, or has broken tag support.
6615 		 */
6616 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6617 	}
6618 
6619 	if (async_update == FALSE) {
6620 		/*
6621 		 * Perform sanity checking against what the
6622 		 * controller and device can do.
6623 		 */
6624 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6625 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6626 		cur_cts.type = cts->type;
6627 		xpt_action((union ccb *)&cur_cts);
6628 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6629 			return;
6630 		}
6631 		cur_scsi = &cur_cts.proto_specific.scsi;
6632 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6633 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6634 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6635 		}
6636 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6637 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6638 	}
6639 
6640 	/* SPI specific sanity checking */
6641 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6642 		u_int spi3caps;
6643 		struct ccb_trans_settings_spi *spi;
6644 		struct ccb_trans_settings_spi *cur_spi;
6645 
6646 		spi = &cts->xport_specific.spi;
6647 
6648 		cur_spi = &cur_cts.xport_specific.spi;
6649 
6650 		/* Fill in any gaps in what the user gave us */
6651 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6652 			spi->sync_period = cur_spi->sync_period;
6653 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6654 			spi->sync_period = 0;
6655 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6656 			spi->sync_offset = cur_spi->sync_offset;
6657 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6658 			spi->sync_offset = 0;
6659 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6660 			spi->ppr_options = cur_spi->ppr_options;
6661 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6662 			spi->ppr_options = 0;
6663 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6664 			spi->bus_width = cur_spi->bus_width;
6665 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6666 			spi->bus_width = 0;
6667 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6668 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6669 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6670 		}
6671 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6672 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6673 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6674 		  && (inq_data->flags & SID_Sync) == 0
6675 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6676 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6677 		 || (spi->sync_offset == 0)
6678 		 || (spi->sync_period == 0)) {
6679 			/* Force async */
6680 			spi->sync_period = 0;
6681 			spi->sync_offset = 0;
6682 		}
6683 
6684 		switch (spi->bus_width) {
6685 		case MSG_EXT_WDTR_BUS_32_BIT:
6686 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6687 			  || (inq_data->flags & SID_WBus32) != 0
6688 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6689 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6690 				break;
6691 			/* Fall Through to 16-bit */
6692 		case MSG_EXT_WDTR_BUS_16_BIT:
6693 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6694 			  || (inq_data->flags & SID_WBus16) != 0
6695 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6696 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6697 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6698 				break;
6699 			}
6700 			/* Fall Through to 8-bit */
6701 		default: /* New bus width?? */
6702 		case MSG_EXT_WDTR_BUS_8_BIT:
6703 			/* All targets can do this */
6704 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6705 			break;
6706 		}
6707 
6708 		spi3caps = cpi.xport_specific.spi.ppr_options;
6709 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6710 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6711 			spi3caps &= inq_data->spi3data;
6712 
6713 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6714 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6715 
6716 		if ((spi3caps & SID_SPI_IUS) == 0)
6717 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6718 
6719 		if ((spi3caps & SID_SPI_QAS) == 0)
6720 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6721 
6722 		/* No SPI Transfer settings are allowed unless we are wide */
6723 		if (spi->bus_width == 0)
6724 			spi->ppr_options = 0;
6725 
6726 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6727 			/*
6728 			 * Can't tag queue without disconnection.
6729 			 */
6730 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6731 			scsi->valid |= CTS_SCSI_VALID_TQ;
6732 		}
6733 
6734 		/*
6735 		 * If we are currently performing tagged transactions to
6736 		 * this device and want to change its negotiation parameters,
6737 		 * go non-tagged for a bit to give the controller a chance to
6738 		 * negotiate unhampered by tag messages.
6739 		 */
6740 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6741 		 && (device->inq_flags & SID_CmdQue) != 0
6742 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6743 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6744 				   CTS_SPI_VALID_SYNC_OFFSET|
6745 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6746 			xpt_toggle_tags(cts->ccb_h.path);
6747 	}
6748 
6749 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6750 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6751 		int device_tagenb;
6752 
6753 		/*
6754 		 * If we are transitioning from tags to no-tags or
6755 		 * vice-versa, we need to carefully freeze and restart
6756 		 * the queue so that we don't overlap tagged and non-tagged
6757 		 * commands.  We also temporarily stop tags if there is
6758 		 * a change in transfer negotiation settings to allow
6759 		 * "tag-less" negotiation.
6760 		 */
6761 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6762 		 || (device->inq_flags & SID_CmdQue) != 0)
6763 			device_tagenb = TRUE;
6764 		else
6765 			device_tagenb = FALSE;
6766 
6767 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6768 		  && device_tagenb == FALSE)
6769 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6770 		  && device_tagenb == TRUE)) {
6771 
6772 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6773 				/*
6774 				 * Delay change to use tags until after a
6775 				 * few commands have gone to this device so
6776 				 * the controller has time to perform transfer
6777 				 * negotiations without tagged messages getting
6778 				 * in the way.
6779 				 */
6780 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6781 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6782 			} else {
6783 				struct ccb_relsim crs;
6784 
6785 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6786 		  		device->inq_flags &= ~SID_CmdQue;
6787 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6788 						    sim->max_dev_openings);
6789 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6790 				device->tag_delay_count = 0;
6791 
6792 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6793 					      /*priority*/1);
6794 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6795 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6796 				crs.openings
6797 				    = crs.release_timeout
6798 				    = crs.qfrozen_cnt
6799 				    = 0;
6800 				xpt_action((union ccb *)&crs);
6801 			}
6802 		}
6803 	}
6804 	if (async_update == FALSE)
6805 		(*(sim->sim_action))(sim, (union ccb *)cts);
6806 }
6807 
6808 
6809 static void
6810 xpt_toggle_tags(struct cam_path *path)
6811 {
6812 	struct cam_ed *dev;
6813 
6814 	/*
6815 	 * Give controllers a chance to renegotiate
6816 	 * before starting tag operations.  We
6817 	 * "toggle" tagged queuing off then on
6818 	 * which causes the tag enable command delay
6819 	 * counter to come into effect.
6820 	 */
6821 	dev = path->device;
6822 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6823 	 || ((dev->inq_flags & SID_CmdQue) != 0
6824  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6825 		struct ccb_trans_settings cts;
6826 
6827 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6828 		cts.protocol = PROTO_SCSI;
6829 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6830 		cts.transport = XPORT_UNSPECIFIED;
6831 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6832 		cts.proto_specific.scsi.flags = 0;
6833 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6834 		xpt_set_transfer_settings(&cts, path->device,
6835 					  /*async_update*/TRUE);
6836 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6837 		xpt_set_transfer_settings(&cts, path->device,
6838 					  /*async_update*/TRUE);
6839 	}
6840 }
6841 
6842 static void
6843 xpt_start_tags(struct cam_path *path)
6844 {
6845 	struct ccb_relsim crs;
6846 	struct cam_ed *device;
6847 	struct cam_sim *sim;
6848 	int    newopenings;
6849 
6850 	device = path->device;
6851 	sim = path->bus->sim;
6852 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6853 	xpt_freeze_devq(path, /*count*/1);
6854 	device->inq_flags |= SID_CmdQue;
6855 	if (device->tag_saved_openings != 0)
6856 		newopenings = device->tag_saved_openings;
6857 	else
6858 		newopenings = min(device->quirk->maxtags,
6859 				  sim->max_tagged_dev_openings);
6860 	xpt_dev_ccbq_resize(path, newopenings);
6861 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6862 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6863 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6864 	crs.openings
6865 	    = crs.release_timeout
6866 	    = crs.qfrozen_cnt
6867 	    = 0;
6868 	xpt_action((union ccb *)&crs);
6869 }
6870 
6871 static int busses_to_config;
6872 static int busses_to_reset;
6873 
6874 static int
6875 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6876 {
6877 
6878 	mtx_assert(bus->sim->mtx, MA_OWNED);
6879 
6880 	if (bus->path_id != CAM_XPT_PATH_ID) {
6881 		struct cam_path path;
6882 		struct ccb_pathinq cpi;
6883 		int can_negotiate;
6884 
6885 		busses_to_config++;
6886 		xpt_compile_path(&path, NULL, bus->path_id,
6887 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6888 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6889 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6890 		xpt_action((union ccb *)&cpi);
6891 		can_negotiate = cpi.hba_inquiry;
6892 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6893 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6894 		 && can_negotiate)
6895 			busses_to_reset++;
6896 		xpt_release_path(&path);
6897 	}
6898 
6899 	return(1);
6900 }
6901 
6902 static int
6903 xptconfigfunc(struct cam_eb *bus, void *arg)
6904 {
6905 	struct	cam_path *path;
6906 	union	ccb *work_ccb;
6907 
6908 	mtx_assert(bus->sim->mtx, MA_OWNED);
6909 
6910 	if (bus->path_id != CAM_XPT_PATH_ID) {
6911 		cam_status status;
6912 		int can_negotiate;
6913 
6914 		work_ccb = xpt_alloc_ccb_nowait();
6915 		if (work_ccb == NULL) {
6916 			busses_to_config--;
6917 			xpt_finishconfig(xpt_periph, NULL);
6918 			return(0);
6919 		}
6920 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6921 					      CAM_TARGET_WILDCARD,
6922 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6923 			printf("xptconfigfunc: xpt_create_path failed with "
6924 			       "status %#x for bus %d\n", status, bus->path_id);
6925 			printf("xptconfigfunc: halting bus configuration\n");
6926 			xpt_free_ccb(work_ccb);
6927 			busses_to_config--;
6928 			xpt_finishconfig(xpt_periph, NULL);
6929 			return(0);
6930 		}
6931 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6932 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6933 		xpt_action(work_ccb);
6934 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6935 			printf("xptconfigfunc: CPI failed on bus %d "
6936 			       "with status %d\n", bus->path_id,
6937 			       work_ccb->ccb_h.status);
6938 			xpt_finishconfig(xpt_periph, work_ccb);
6939 			return(1);
6940 		}
6941 
6942 		can_negotiate = work_ccb->cpi.hba_inquiry;
6943 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6944 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6945 		 && (can_negotiate != 0)) {
6946 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6947 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6948 			work_ccb->ccb_h.cbfcnp = NULL;
6949 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6950 				  ("Resetting Bus\n"));
6951 			xpt_action(work_ccb);
6952 			xpt_finishconfig(xpt_periph, work_ccb);
6953 		} else {
6954 			/* Act as though we performed a successful BUS RESET */
6955 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6956 			xpt_finishconfig(xpt_periph, work_ccb);
6957 		}
6958 	}
6959 
6960 	return(1);
6961 }
6962 
6963 static void
6964 xpt_config(void *arg)
6965 {
6966 	/*
6967 	 * Now that interrupts are enabled, go find our devices
6968 	 */
6969 
6970 #ifdef CAMDEBUG
6971 	/* Setup debugging flags and path */
6972 #ifdef CAM_DEBUG_FLAGS
6973 	cam_dflags = CAM_DEBUG_FLAGS;
6974 #else /* !CAM_DEBUG_FLAGS */
6975 	cam_dflags = CAM_DEBUG_NONE;
6976 #endif /* CAM_DEBUG_FLAGS */
6977 #ifdef CAM_DEBUG_BUS
6978 	if (cam_dflags != CAM_DEBUG_NONE) {
6979 		/*
6980 		 * Locking is specifically omitted here.  No SIMs have
6981 		 * registered yet, so xpt_create_path will only be searching
6982 		 * empty lists of targets and devices.
6983 		 */
6984 		if (xpt_create_path(&cam_dpath, xpt_periph,
6985 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6986 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6987 			printf("xpt_config: xpt_create_path() failed for debug"
6988 			       " target %d:%d:%d, debugging disabled\n",
6989 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6990 			cam_dflags = CAM_DEBUG_NONE;
6991 		}
6992 	} else
6993 		cam_dpath = NULL;
6994 #else /* !CAM_DEBUG_BUS */
6995 	cam_dpath = NULL;
6996 #endif /* CAM_DEBUG_BUS */
6997 #endif /* CAMDEBUG */
6998 
6999 	/*
7000 	 * Scan all installed busses.
7001 	 */
7002 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7003 
7004 	if (busses_to_config == 0) {
7005 		/* Call manually because we don't have any busses */
7006 		xpt_finishconfig(xpt_periph, NULL);
7007 	} else  {
7008 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
7009 			printf("Waiting %d seconds for SCSI "
7010 			       "devices to settle\n", scsi_delay/1000);
7011 		}
7012 		xpt_for_all_busses(xptconfigfunc, NULL);
7013 	}
7014 }
7015 
7016 /*
7017  * If the given device only has one peripheral attached to it, and if that
7018  * peripheral is the passthrough driver, announce it.  This insures that the
7019  * user sees some sort of announcement for every peripheral in their system.
7020  */
7021 static int
7022 xptpassannouncefunc(struct cam_ed *device, void *arg)
7023 {
7024 	struct cam_periph *periph;
7025 	int i;
7026 
7027 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7028 	     periph = SLIST_NEXT(periph, periph_links), i++);
7029 
7030 	periph = SLIST_FIRST(&device->periphs);
7031 	if ((i == 1)
7032 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7033 		xpt_announce_periph(periph, NULL);
7034 
7035 	return(1);
7036 }
7037 
7038 static void
7039 xpt_finishconfig_task(void *context, int pending)
7040 {
7041 	struct	periph_driver **p_drv;
7042 	int	i;
7043 
7044 	if (busses_to_config == 0) {
7045 		/* Register all the peripheral drivers */
7046 		/* XXX This will have to change when we have loadable modules */
7047 		p_drv = periph_drivers;
7048 		for (i = 0; p_drv[i] != NULL; i++) {
7049 			(*p_drv[i]->init)();
7050 		}
7051 
7052 		/*
7053 		 * Check for devices with no "standard" peripheral driver
7054 		 * attached.  For any devices like that, announce the
7055 		 * passthrough driver so the user will see something.
7056 		 */
7057 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7058 
7059 		/* Release our hook so that the boot can continue. */
7060 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7061 		free(xsoftc.xpt_config_hook, M_CAMXPT);
7062 		xsoftc.xpt_config_hook = NULL;
7063 	}
7064 
7065 	free(context, M_CAMXPT);
7066 }
7067 
7068 static void
7069 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7070 {
7071 	struct	xpt_task *task;
7072 
7073 	if (done_ccb != NULL) {
7074 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
7075 			  ("xpt_finishconfig\n"));
7076 		switch(done_ccb->ccb_h.func_code) {
7077 		case XPT_RESET_BUS:
7078 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7079 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7080 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7081 				done_ccb->crcn.flags = 0;
7082 				xpt_action(done_ccb);
7083 				return;
7084 			}
7085 			/* FALLTHROUGH */
7086 		case XPT_SCAN_BUS:
7087 		default:
7088 			xpt_free_path(done_ccb->ccb_h.path);
7089 			busses_to_config--;
7090 			break;
7091 		}
7092 	}
7093 
7094 	if (busses_to_config == 0) {
7095 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
7096 		if (task != NULL) {
7097 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7098 			taskqueue_enqueue(taskqueue_thread, &task->task);
7099 		}
7100 	}
7101 
7102 	if (done_ccb != NULL)
7103 		xpt_free_ccb(done_ccb);
7104 }
7105 
7106 cam_status
7107 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7108 		   struct cam_path *path)
7109 {
7110 	struct ccb_setasync csa;
7111 	cam_status status;
7112 	int xptpath = 0;
7113 
7114 	if (path == NULL) {
7115 		mtx_lock(&xsoftc.xpt_lock);
7116 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7117 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7118 		if (status != CAM_REQ_CMP) {
7119 			mtx_unlock(&xsoftc.xpt_lock);
7120 			return (status);
7121 		}
7122 		xptpath = 1;
7123 	}
7124 
7125 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7126 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7127 	csa.event_enable = event;
7128 	csa.callback = cbfunc;
7129 	csa.callback_arg = cbarg;
7130 	xpt_action((union ccb *)&csa);
7131 	status = csa.ccb_h.status;
7132 	if (xptpath) {
7133 		xpt_free_path(path);
7134 		mtx_unlock(&xsoftc.xpt_lock);
7135 	}
7136 	return (status);
7137 }
7138 
7139 static void
7140 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7141 {
7142 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7143 
7144 	switch (work_ccb->ccb_h.func_code) {
7145 	/* Common cases first */
7146 	case XPT_PATH_INQ:		/* Path routing inquiry */
7147 	{
7148 		struct ccb_pathinq *cpi;
7149 
7150 		cpi = &work_ccb->cpi;
7151 		cpi->version_num = 1; /* XXX??? */
7152 		cpi->hba_inquiry = 0;
7153 		cpi->target_sprt = 0;
7154 		cpi->hba_misc = 0;
7155 		cpi->hba_eng_cnt = 0;
7156 		cpi->max_target = 0;
7157 		cpi->max_lun = 0;
7158 		cpi->initiator_id = 0;
7159 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7160 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7161 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7162 		cpi->unit_number = sim->unit_number;
7163 		cpi->bus_id = sim->bus_id;
7164 		cpi->base_transfer_speed = 0;
7165 		cpi->protocol = PROTO_UNSPECIFIED;
7166 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7167 		cpi->transport = XPORT_UNSPECIFIED;
7168 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7169 		cpi->ccb_h.status = CAM_REQ_CMP;
7170 		xpt_done(work_ccb);
7171 		break;
7172 	}
7173 	default:
7174 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7175 		xpt_done(work_ccb);
7176 		break;
7177 	}
7178 }
7179 
7180 /*
7181  * The xpt as a "controller" has no interrupt sources, so polling
7182  * is a no-op.
7183  */
7184 static void
7185 xptpoll(struct cam_sim *sim)
7186 {
7187 }
7188 
7189 void
7190 xpt_lock_buses(void)
7191 {
7192 	mtx_lock(&xsoftc.xpt_topo_lock);
7193 }
7194 
7195 void
7196 xpt_unlock_buses(void)
7197 {
7198 	mtx_unlock(&xsoftc.xpt_topo_lock);
7199 }
7200 
7201 static void
7202 camisr(void *dummy)
7203 {
7204 	cam_simq_t queue;
7205 	struct cam_sim *sim;
7206 
7207 	mtx_lock(&cam_simq_lock);
7208 	TAILQ_INIT(&queue);
7209 	TAILQ_CONCAT(&queue, &cam_simq, links);
7210 	mtx_unlock(&cam_simq_lock);
7211 
7212 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7213 		TAILQ_REMOVE(&queue, sim, links);
7214 		CAM_SIM_LOCK(sim);
7215 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7216 		camisr_runqueue(&sim->sim_doneq);
7217 		CAM_SIM_UNLOCK(sim);
7218 	}
7219 }
7220 
7221 static void
7222 camisr_runqueue(void *V_queue)
7223 {
7224 	cam_isrq_t *queue = V_queue;
7225 	struct	ccb_hdr *ccb_h;
7226 
7227 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
7228 		int	runq;
7229 
7230 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
7231 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7232 
7233 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7234 			  ("camisr\n"));
7235 
7236 		runq = FALSE;
7237 
7238 		if (ccb_h->flags & CAM_HIGH_POWER) {
7239 			struct highpowerlist	*hphead;
7240 			union ccb		*send_ccb;
7241 
7242 			mtx_lock(&xsoftc.xpt_lock);
7243 			hphead = &xsoftc.highpowerq;
7244 
7245 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7246 
7247 			/*
7248 			 * Increment the count since this command is done.
7249 			 */
7250 			xsoftc.num_highpower++;
7251 
7252 			/*
7253 			 * Any high powered commands queued up?
7254 			 */
7255 			if (send_ccb != NULL) {
7256 
7257 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7258 				mtx_unlock(&xsoftc.xpt_lock);
7259 
7260 				xpt_release_devq(send_ccb->ccb_h.path,
7261 						 /*count*/1, /*runqueue*/TRUE);
7262 			} else
7263 				mtx_unlock(&xsoftc.xpt_lock);
7264 		}
7265 
7266 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7267 			struct cam_ed *dev;
7268 
7269 			dev = ccb_h->path->device;
7270 
7271 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7272 
7273 			if (!SIM_DEAD(ccb_h->path->bus->sim)) {
7274 				ccb_h->path->bus->sim->devq->send_active--;
7275 				ccb_h->path->bus->sim->devq->send_openings++;
7276 			}
7277 
7278 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7279 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7280 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7281 			  && (dev->ccbq.dev_active == 0))) {
7282 
7283 				xpt_release_devq(ccb_h->path, /*count*/1,
7284 						 /*run_queue*/TRUE);
7285 			}
7286 
7287 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7288 			 && (--dev->tag_delay_count == 0))
7289 				xpt_start_tags(ccb_h->path);
7290 
7291 			if ((dev->ccbq.queue.entries > 0)
7292 			 && (dev->qfrozen_cnt == 0)
7293 			 && (device_is_send_queued(dev) == 0)) {
7294 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7295 							      dev);
7296 			}
7297 		}
7298 
7299 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7300 			xpt_release_simq(ccb_h->path->bus->sim,
7301 					 /*run_queue*/TRUE);
7302 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7303 			runq = FALSE;
7304 		}
7305 
7306 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7307 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7308 			xpt_release_devq(ccb_h->path, /*count*/1,
7309 					 /*run_queue*/TRUE);
7310 			ccb_h->status &= ~CAM_DEV_QFRZN;
7311 		} else if (runq) {
7312 			xpt_run_dev_sendq(ccb_h->path->bus);
7313 		}
7314 
7315 		/* Call the peripheral driver's callback */
7316 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7317 	}
7318 }
7319 
7320 static void
7321 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7322 {
7323 
7324 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7325 	xpt_done(ccb);
7326 }
7327 
7328 static void
7329 dead_sim_poll(struct cam_sim *sim)
7330 {
7331 }
7332