xref: /freebsd/sys/cam/cam_xpt.c (revision 10b59a9b4add0320d52c15ce057dd697261e7dfc)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #ifdef PC98
52 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
53 #endif
54 
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_sim.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_sim.h>
62 #include <cam/cam_xpt_periph.h>
63 #include <cam/cam_xpt_internal.h>
64 #include <cam/cam_debug.h>
65 
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_message.h>
68 #include <cam/scsi/scsi_pass.h>
69 #include <machine/stdarg.h>	/* for xpt_print below */
70 #include "opt_cam.h"
71 
72 /*
73  * This is the maximum number of high powered commands (e.g. start unit)
74  * that can be outstanding at a particular time.
75  */
76 #ifndef CAM_MAX_HIGHPOWER
77 #define CAM_MAX_HIGHPOWER  4
78 #endif
79 
80 /* Datastructures internal to the xpt layer */
81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82 
83 /* Object for defering XPT actions to a taskqueue */
84 struct xpt_task {
85 	struct task	task;
86 	void		*data1;
87 	uintptr_t	data2;
88 };
89 
90 typedef enum {
91 	XPT_FLAG_OPEN		= 0x01
92 } xpt_flags;
93 
94 struct xpt_softc {
95 	xpt_flags		flags;
96 	u_int32_t		xpt_generation;
97 
98 	/* number of high powered commands that can go through right now */
99 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
100 	int			num_highpower;
101 
102 	/* queue for handling async rescan requests. */
103 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
104 	int buses_to_config;
105 	int buses_config_done;
106 
107 	/* Registered busses */
108 	TAILQ_HEAD(,cam_eb)	xpt_busses;
109 	u_int			bus_generation;
110 
111 	struct intr_config_hook	*xpt_config_hook;
112 
113 	int			boot_delay;
114 	struct callout 		boot_callout;
115 
116 	struct mtx		xpt_topo_lock;
117 	struct mtx		xpt_lock;
118 };
119 
120 typedef enum {
121 	DM_RET_COPY		= 0x01,
122 	DM_RET_FLAG_MASK	= 0x0f,
123 	DM_RET_NONE		= 0x00,
124 	DM_RET_STOP		= 0x10,
125 	DM_RET_DESCEND		= 0x20,
126 	DM_RET_ERROR		= 0x30,
127 	DM_RET_ACTION_MASK	= 0xf0
128 } dev_match_ret;
129 
130 typedef enum {
131 	XPT_DEPTH_BUS,
132 	XPT_DEPTH_TARGET,
133 	XPT_DEPTH_DEVICE,
134 	XPT_DEPTH_PERIPH
135 } xpt_traverse_depth;
136 
137 struct xpt_traverse_config {
138 	xpt_traverse_depth	depth;
139 	void			*tr_func;
140 	void			*tr_arg;
141 };
142 
143 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
144 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
145 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
146 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
147 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
148 
149 /* Transport layer configuration information */
150 static struct xpt_softc xsoftc;
151 
152 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
153 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
154            &xsoftc.boot_delay, 0, "Bus registration wait time");
155 
156 /* Queues for our software interrupt handler */
157 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
158 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
159 static cam_simq_t cam_simq;
160 static struct mtx cam_simq_lock;
161 
162 /* Pointers to software interrupt handlers */
163 static void *cambio_ih;
164 
165 struct cam_periph *xpt_periph;
166 
167 static periph_init_t xpt_periph_init;
168 
169 static struct periph_driver xpt_driver =
170 {
171 	xpt_periph_init, "xpt",
172 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
173 	CAM_PERIPH_DRV_EARLY
174 };
175 
176 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
177 
178 static d_open_t xptopen;
179 static d_close_t xptclose;
180 static d_ioctl_t xptioctl;
181 
182 static struct cdevsw xpt_cdevsw = {
183 	.d_version =	D_VERSION,
184 	.d_flags =	0,
185 	.d_open =	xptopen,
186 	.d_close =	xptclose,
187 	.d_ioctl =	xptioctl,
188 	.d_name =	"xpt",
189 };
190 
191 /* Storage for debugging datastructures */
192 #ifdef	CAMDEBUG
193 struct cam_path *cam_dpath;
194 #ifdef	CAM_DEBUG_FLAGS
195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196 #else
197 u_int32_t cam_dflags = CAM_DEBUG_NONE;
198 #endif
199 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
200 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
201 	&cam_dflags, 0, "Cam Debug Flags");
202 u_int32_t cam_debug_delay;
203 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
204 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
205 	&cam_debug_delay, 0, "Cam Debug Flags");
206 #endif
207 
208 /* Our boot-time initialization hook */
209 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
210 
211 static moduledata_t cam_moduledata = {
212 	"cam",
213 	cam_module_event_handler,
214 	NULL
215 };
216 
217 static int	xpt_init(void *);
218 
219 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
220 MODULE_VERSION(cam, 1);
221 
222 
223 static void		xpt_async_bcast(struct async_list *async_head,
224 					u_int32_t async_code,
225 					struct cam_path *path,
226 					void *async_arg);
227 static path_id_t xptnextfreepathid(void);
228 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
229 static union ccb *xpt_get_ccb(struct cam_ed *device);
230 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
231 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
232 static timeout_t xpt_release_devq_timeout;
233 static void	 xpt_release_simq_timeout(void *arg) __unused;
234 static void	 xpt_release_bus(struct cam_eb *bus);
235 static void	 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
236 		    u_int count, int run_queue);
237 static struct cam_et*
238 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
239 static void	 xpt_release_target(struct cam_et *target);
240 static struct cam_eb*
241 		 xpt_find_bus(path_id_t path_id);
242 static struct cam_et*
243 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
244 static struct cam_ed*
245 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
246 static void	 xpt_config(void *arg);
247 static xpt_devicefunc_t xptpassannouncefunc;
248 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
249 static void	 xptpoll(struct cam_sim *sim);
250 static void	 camisr(void *);
251 static void	 camisr_runqueue(void *);
252 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
253 				    u_int num_patterns, struct cam_eb *bus);
254 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
255 				       u_int num_patterns,
256 				       struct cam_ed *device);
257 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
258 				       u_int num_patterns,
259 				       struct cam_periph *periph);
260 static xpt_busfunc_t	xptedtbusfunc;
261 static xpt_targetfunc_t	xptedttargetfunc;
262 static xpt_devicefunc_t	xptedtdevicefunc;
263 static xpt_periphfunc_t	xptedtperiphfunc;
264 static xpt_pdrvfunc_t	xptplistpdrvfunc;
265 static xpt_periphfunc_t	xptplistperiphfunc;
266 static int		xptedtmatch(struct ccb_dev_match *cdm);
267 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
268 static int		xptbustraverse(struct cam_eb *start_bus,
269 				       xpt_busfunc_t *tr_func, void *arg);
270 static int		xpttargettraverse(struct cam_eb *bus,
271 					  struct cam_et *start_target,
272 					  xpt_targetfunc_t *tr_func, void *arg);
273 static int		xptdevicetraverse(struct cam_et *target,
274 					  struct cam_ed *start_device,
275 					  xpt_devicefunc_t *tr_func, void *arg);
276 static int		xptperiphtraverse(struct cam_ed *device,
277 					  struct cam_periph *start_periph,
278 					  xpt_periphfunc_t *tr_func, void *arg);
279 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
280 					xpt_pdrvfunc_t *tr_func, void *arg);
281 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
282 					    struct cam_periph *start_periph,
283 					    xpt_periphfunc_t *tr_func,
284 					    void *arg);
285 static xpt_busfunc_t	xptdefbusfunc;
286 static xpt_targetfunc_t	xptdeftargetfunc;
287 static xpt_devicefunc_t	xptdefdevicefunc;
288 static xpt_periphfunc_t	xptdefperiphfunc;
289 static void		xpt_finishconfig_task(void *context, int pending);
290 static void		xpt_dev_async_default(u_int32_t async_code,
291 					      struct cam_eb *bus,
292 					      struct cam_et *target,
293 					      struct cam_ed *device,
294 					      void *async_arg);
295 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
296 						 struct cam_et *target,
297 						 lun_id_t lun_id);
298 static xpt_devicefunc_t	xptsetasyncfunc;
299 static xpt_busfunc_t	xptsetasyncbusfunc;
300 static cam_status	xptregister(struct cam_periph *periph,
301 				    void *arg);
302 static __inline int periph_is_queued(struct cam_periph *periph);
303 static __inline int device_is_alloc_queued(struct cam_ed *device);
304 static __inline int device_is_send_queued(struct cam_ed *device);
305 
306 static __inline int
307 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
308 {
309 	int retval;
310 
311 	if ((dev->drvq.entries > 0) &&
312 	    (dev->ccbq.devq_openings > 0) &&
313 	    (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
314 		CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
315 		/*
316 		 * The priority of a device waiting for CCB resources
317 		 * is that of the highest priority peripheral driver
318 		 * enqueued.
319 		 */
320 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
321 					  &dev->alloc_ccb_entry.pinfo,
322 					  CAMQ_GET_PRIO(&dev->drvq));
323 	} else {
324 		retval = 0;
325 	}
326 
327 	return (retval);
328 }
329 
330 static __inline int
331 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
332 {
333 	int	retval;
334 
335 	if ((dev->ccbq.queue.entries > 0) &&
336 	    (dev->ccbq.dev_openings > 0) &&
337 	    (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
338 		/*
339 		 * The priority of a device waiting for controller
340 		 * resources is that of the highest priority CCB
341 		 * enqueued.
342 		 */
343 		retval =
344 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
345 				     &dev->send_ccb_entry.pinfo,
346 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
347 	} else {
348 		retval = 0;
349 	}
350 	return (retval);
351 }
352 
353 static __inline int
354 periph_is_queued(struct cam_periph *periph)
355 {
356 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
357 }
358 
359 static __inline int
360 device_is_alloc_queued(struct cam_ed *device)
361 {
362 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
363 }
364 
365 static __inline int
366 device_is_send_queued(struct cam_ed *device)
367 {
368 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
369 }
370 
371 static void
372 xpt_periph_init()
373 {
374 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
375 }
376 
377 static void
378 xptdone(struct cam_periph *periph, union ccb *done_ccb)
379 {
380 	/* Caller will release the CCB */
381 	wakeup(&done_ccb->ccb_h.cbfcnp);
382 }
383 
384 static int
385 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
386 {
387 
388 	/*
389 	 * Only allow read-write access.
390 	 */
391 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
392 		return(EPERM);
393 
394 	/*
395 	 * We don't allow nonblocking access.
396 	 */
397 	if ((flags & O_NONBLOCK) != 0) {
398 		printf("%s: can't do nonblocking access\n", devtoname(dev));
399 		return(ENODEV);
400 	}
401 
402 	/* Mark ourselves open */
403 	mtx_lock(&xsoftc.xpt_lock);
404 	xsoftc.flags |= XPT_FLAG_OPEN;
405 	mtx_unlock(&xsoftc.xpt_lock);
406 
407 	return(0);
408 }
409 
410 static int
411 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
412 {
413 
414 	/* Mark ourselves closed */
415 	mtx_lock(&xsoftc.xpt_lock);
416 	xsoftc.flags &= ~XPT_FLAG_OPEN;
417 	mtx_unlock(&xsoftc.xpt_lock);
418 
419 	return(0);
420 }
421 
422 /*
423  * Don't automatically grab the xpt softc lock here even though this is going
424  * through the xpt device.  The xpt device is really just a back door for
425  * accessing other devices and SIMs, so the right thing to do is to grab
426  * the appropriate SIM lock once the bus/SIM is located.
427  */
428 static int
429 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
430 {
431 	int error;
432 
433 	error = 0;
434 
435 	switch(cmd) {
436 	/*
437 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
438 	 * to accept CCB types that don't quite make sense to send through a
439 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
440 	 * in the CAM spec.
441 	 */
442 	case CAMIOCOMMAND: {
443 		union ccb *ccb;
444 		union ccb *inccb;
445 		struct cam_eb *bus;
446 
447 		inccb = (union ccb *)addr;
448 
449 		bus = xpt_find_bus(inccb->ccb_h.path_id);
450 		if (bus == NULL)
451 			return (EINVAL);
452 
453 		switch (inccb->ccb_h.func_code) {
454 		case XPT_SCAN_BUS:
455 		case XPT_RESET_BUS:
456 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
457 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
458 				xpt_release_bus(bus);
459 				return (EINVAL);
460 			}
461 			break;
462 		case XPT_SCAN_TGT:
463 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
464 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
465 				xpt_release_bus(bus);
466 				return (EINVAL);
467 			}
468 			break;
469 		default:
470 			break;
471 		}
472 
473 		switch(inccb->ccb_h.func_code) {
474 		case XPT_SCAN_BUS:
475 		case XPT_RESET_BUS:
476 		case XPT_PATH_INQ:
477 		case XPT_ENG_INQ:
478 		case XPT_SCAN_LUN:
479 		case XPT_SCAN_TGT:
480 
481 			ccb = xpt_alloc_ccb();
482 
483 			CAM_SIM_LOCK(bus->sim);
484 
485 			/*
486 			 * Create a path using the bus, target, and lun the
487 			 * user passed in.
488 			 */
489 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
490 					    inccb->ccb_h.path_id,
491 					    inccb->ccb_h.target_id,
492 					    inccb->ccb_h.target_lun) !=
493 					    CAM_REQ_CMP){
494 				error = EINVAL;
495 				CAM_SIM_UNLOCK(bus->sim);
496 				xpt_free_ccb(ccb);
497 				break;
498 			}
499 			/* Ensure all of our fields are correct */
500 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
501 				      inccb->ccb_h.pinfo.priority);
502 			xpt_merge_ccb(ccb, inccb);
503 			ccb->ccb_h.cbfcnp = xptdone;
504 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
505 			bcopy(ccb, inccb, sizeof(union ccb));
506 			xpt_free_path(ccb->ccb_h.path);
507 			xpt_free_ccb(ccb);
508 			CAM_SIM_UNLOCK(bus->sim);
509 			break;
510 
511 		case XPT_DEBUG: {
512 			union ccb ccb;
513 
514 			/*
515 			 * This is an immediate CCB, so it's okay to
516 			 * allocate it on the stack.
517 			 */
518 
519 			CAM_SIM_LOCK(bus->sim);
520 
521 			/*
522 			 * Create a path using the bus, target, and lun the
523 			 * user passed in.
524 			 */
525 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
526 					    inccb->ccb_h.path_id,
527 					    inccb->ccb_h.target_id,
528 					    inccb->ccb_h.target_lun) !=
529 					    CAM_REQ_CMP){
530 				error = EINVAL;
531 				CAM_SIM_UNLOCK(bus->sim);
532 				break;
533 			}
534 			/* Ensure all of our fields are correct */
535 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
536 				      inccb->ccb_h.pinfo.priority);
537 			xpt_merge_ccb(&ccb, inccb);
538 			ccb.ccb_h.cbfcnp = xptdone;
539 			xpt_action(&ccb);
540 			CAM_SIM_UNLOCK(bus->sim);
541 			bcopy(&ccb, inccb, sizeof(union ccb));
542 			xpt_free_path(ccb.ccb_h.path);
543 			break;
544 
545 		}
546 		case XPT_DEV_MATCH: {
547 			struct cam_periph_map_info mapinfo;
548 			struct cam_path *old_path;
549 
550 			/*
551 			 * We can't deal with physical addresses for this
552 			 * type of transaction.
553 			 */
554 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
555 				error = EINVAL;
556 				break;
557 			}
558 
559 			/*
560 			 * Save this in case the caller had it set to
561 			 * something in particular.
562 			 */
563 			old_path = inccb->ccb_h.path;
564 
565 			/*
566 			 * We really don't need a path for the matching
567 			 * code.  The path is needed because of the
568 			 * debugging statements in xpt_action().  They
569 			 * assume that the CCB has a valid path.
570 			 */
571 			inccb->ccb_h.path = xpt_periph->path;
572 
573 			bzero(&mapinfo, sizeof(mapinfo));
574 
575 			/*
576 			 * Map the pattern and match buffers into kernel
577 			 * virtual address space.
578 			 */
579 			error = cam_periph_mapmem(inccb, &mapinfo);
580 
581 			if (error) {
582 				inccb->ccb_h.path = old_path;
583 				break;
584 			}
585 
586 			/*
587 			 * This is an immediate CCB, we can send it on directly.
588 			 */
589 			xpt_action(inccb);
590 
591 			/*
592 			 * Map the buffers back into user space.
593 			 */
594 			cam_periph_unmapmem(inccb, &mapinfo);
595 
596 			inccb->ccb_h.path = old_path;
597 
598 			error = 0;
599 			break;
600 		}
601 		default:
602 			error = ENOTSUP;
603 			break;
604 		}
605 		xpt_release_bus(bus);
606 		break;
607 	}
608 	/*
609 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
610 	 * with the periphal driver name and unit name filled in.  The other
611 	 * fields don't really matter as input.  The passthrough driver name
612 	 * ("pass"), and unit number are passed back in the ccb.  The current
613 	 * device generation number, and the index into the device peripheral
614 	 * driver list, and the status are also passed back.  Note that
615 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
616 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
617 	 * (or rather should be) impossible for the device peripheral driver
618 	 * list to change since we look at the whole thing in one pass, and
619 	 * we do it with lock protection.
620 	 *
621 	 */
622 	case CAMGETPASSTHRU: {
623 		union ccb *ccb;
624 		struct cam_periph *periph;
625 		struct periph_driver **p_drv;
626 		char   *name;
627 		u_int unit;
628 		u_int cur_generation;
629 		int base_periph_found;
630 		int splbreaknum;
631 
632 		ccb = (union ccb *)addr;
633 		unit = ccb->cgdl.unit_number;
634 		name = ccb->cgdl.periph_name;
635 		/*
636 		 * Every 100 devices, we want to drop our lock protection to
637 		 * give the software interrupt handler a chance to run.
638 		 * Most systems won't run into this check, but this should
639 		 * avoid starvation in the software interrupt handler in
640 		 * large systems.
641 		 */
642 		splbreaknum = 100;
643 
644 		ccb = (union ccb *)addr;
645 
646 		base_periph_found = 0;
647 
648 		/*
649 		 * Sanity check -- make sure we don't get a null peripheral
650 		 * driver name.
651 		 */
652 		if (*ccb->cgdl.periph_name == '\0') {
653 			error = EINVAL;
654 			break;
655 		}
656 
657 		/* Keep the list from changing while we traverse it */
658 		mtx_lock(&xsoftc.xpt_topo_lock);
659 ptstartover:
660 		cur_generation = xsoftc.xpt_generation;
661 
662 		/* first find our driver in the list of drivers */
663 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
664 			if (strcmp((*p_drv)->driver_name, name) == 0)
665 				break;
666 
667 		if (*p_drv == NULL) {
668 			mtx_unlock(&xsoftc.xpt_topo_lock);
669 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
670 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
671 			*ccb->cgdl.periph_name = '\0';
672 			ccb->cgdl.unit_number = 0;
673 			error = ENOENT;
674 			break;
675 		}
676 
677 		/*
678 		 * Run through every peripheral instance of this driver
679 		 * and check to see whether it matches the unit passed
680 		 * in by the user.  If it does, get out of the loops and
681 		 * find the passthrough driver associated with that
682 		 * peripheral driver.
683 		 */
684 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
685 		     periph = TAILQ_NEXT(periph, unit_links)) {
686 
687 			if (periph->unit_number == unit) {
688 				break;
689 			} else if (--splbreaknum == 0) {
690 				mtx_unlock(&xsoftc.xpt_topo_lock);
691 				mtx_lock(&xsoftc.xpt_topo_lock);
692 				splbreaknum = 100;
693 				if (cur_generation != xsoftc.xpt_generation)
694 				       goto ptstartover;
695 			}
696 		}
697 		/*
698 		 * If we found the peripheral driver that the user passed
699 		 * in, go through all of the peripheral drivers for that
700 		 * particular device and look for a passthrough driver.
701 		 */
702 		if (periph != NULL) {
703 			struct cam_ed *device;
704 			int i;
705 
706 			base_periph_found = 1;
707 			device = periph->path->device;
708 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
709 			     periph != NULL;
710 			     periph = SLIST_NEXT(periph, periph_links), i++) {
711 				/*
712 				 * Check to see whether we have a
713 				 * passthrough device or not.
714 				 */
715 				if (strcmp(periph->periph_name, "pass") == 0) {
716 					/*
717 					 * Fill in the getdevlist fields.
718 					 */
719 					strcpy(ccb->cgdl.periph_name,
720 					       periph->periph_name);
721 					ccb->cgdl.unit_number =
722 						periph->unit_number;
723 					if (SLIST_NEXT(periph, periph_links))
724 						ccb->cgdl.status =
725 							CAM_GDEVLIST_MORE_DEVS;
726 					else
727 						ccb->cgdl.status =
728 						       CAM_GDEVLIST_LAST_DEVICE;
729 					ccb->cgdl.generation =
730 						device->generation;
731 					ccb->cgdl.index = i;
732 					/*
733 					 * Fill in some CCB header fields
734 					 * that the user may want.
735 					 */
736 					ccb->ccb_h.path_id =
737 						periph->path->bus->path_id;
738 					ccb->ccb_h.target_id =
739 						periph->path->target->target_id;
740 					ccb->ccb_h.target_lun =
741 						periph->path->device->lun_id;
742 					ccb->ccb_h.status = CAM_REQ_CMP;
743 					break;
744 				}
745 			}
746 		}
747 
748 		/*
749 		 * If the periph is null here, one of two things has
750 		 * happened.  The first possibility is that we couldn't
751 		 * find the unit number of the particular peripheral driver
752 		 * that the user is asking about.  e.g. the user asks for
753 		 * the passthrough driver for "da11".  We find the list of
754 		 * "da" peripherals all right, but there is no unit 11.
755 		 * The other possibility is that we went through the list
756 		 * of peripheral drivers attached to the device structure,
757 		 * but didn't find one with the name "pass".  Either way,
758 		 * we return ENOENT, since we couldn't find something.
759 		 */
760 		if (periph == NULL) {
761 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
762 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
763 			*ccb->cgdl.periph_name = '\0';
764 			ccb->cgdl.unit_number = 0;
765 			error = ENOENT;
766 			/*
767 			 * It is unfortunate that this is even necessary,
768 			 * but there are many, many clueless users out there.
769 			 * If this is true, the user is looking for the
770 			 * passthrough driver, but doesn't have one in his
771 			 * kernel.
772 			 */
773 			if (base_periph_found == 1) {
774 				printf("xptioctl: pass driver is not in the "
775 				       "kernel\n");
776 				printf("xptioctl: put \"device pass\" in "
777 				       "your kernel config file\n");
778 			}
779 		}
780 		mtx_unlock(&xsoftc.xpt_topo_lock);
781 		break;
782 		}
783 	default:
784 		error = ENOTTY;
785 		break;
786 	}
787 
788 	return(error);
789 }
790 
791 static int
792 cam_module_event_handler(module_t mod, int what, void *arg)
793 {
794 	int error;
795 
796 	switch (what) {
797 	case MOD_LOAD:
798 		if ((error = xpt_init(NULL)) != 0)
799 			return (error);
800 		break;
801 	case MOD_UNLOAD:
802 		return EBUSY;
803 	default:
804 		return EOPNOTSUPP;
805 	}
806 
807 	return 0;
808 }
809 
810 static void
811 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
812 {
813 
814 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
815 		xpt_free_path(done_ccb->ccb_h.path);
816 		xpt_free_ccb(done_ccb);
817 	} else {
818 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
819 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
820 	}
821 	xpt_release_boot();
822 }
823 
824 /* thread to handle bus rescans */
825 static void
826 xpt_scanner_thread(void *dummy)
827 {
828 	union ccb	*ccb;
829 	struct cam_sim	*sim;
830 
831 	xpt_lock_buses();
832 	for (;;) {
833 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
834 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
835 			       "ccb_scanq", 0);
836 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
837 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
838 			xpt_unlock_buses();
839 
840 			sim = ccb->ccb_h.path->bus->sim;
841 			CAM_SIM_LOCK(sim);
842 			xpt_action(ccb);
843 			CAM_SIM_UNLOCK(sim);
844 
845 			xpt_lock_buses();
846 		}
847 	}
848 }
849 
850 void
851 xpt_rescan(union ccb *ccb)
852 {
853 	struct ccb_hdr *hdr;
854 
855 	/* Prepare request */
856 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
857 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
858 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
859 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
860 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
861 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
862 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
863 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
864 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
865 	else {
866 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
867 		xpt_free_path(ccb->ccb_h.path);
868 		xpt_free_ccb(ccb);
869 		return;
870 	}
871 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
872 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
873 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
874 	/* Don't make duplicate entries for the same paths. */
875 	xpt_lock_buses();
876 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
877 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
878 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
879 				wakeup(&xsoftc.ccb_scanq);
880 				xpt_unlock_buses();
881 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
882 				xpt_free_path(ccb->ccb_h.path);
883 				xpt_free_ccb(ccb);
884 				return;
885 			}
886 		}
887 	}
888 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
889 	xsoftc.buses_to_config++;
890 	wakeup(&xsoftc.ccb_scanq);
891 	xpt_unlock_buses();
892 }
893 
894 /* Functions accessed by the peripheral drivers */
895 static int
896 xpt_init(void *dummy)
897 {
898 	struct cam_sim *xpt_sim;
899 	struct cam_path *path;
900 	struct cam_devq *devq;
901 	cam_status status;
902 
903 	TAILQ_INIT(&xsoftc.xpt_busses);
904 	TAILQ_INIT(&cam_simq);
905 	TAILQ_INIT(&xsoftc.ccb_scanq);
906 	STAILQ_INIT(&xsoftc.highpowerq);
907 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
908 
909 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
910 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
911 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
912 
913 	/*
914 	 * The xpt layer is, itself, the equivelent of a SIM.
915 	 * Allow 16 ccbs in the ccb pool for it.  This should
916 	 * give decent parallelism when we probe busses and
917 	 * perform other XPT functions.
918 	 */
919 	devq = cam_simq_alloc(16);
920 	xpt_sim = cam_sim_alloc(xptaction,
921 				xptpoll,
922 				"xpt",
923 				/*softc*/NULL,
924 				/*unit*/0,
925 				/*mtx*/&xsoftc.xpt_lock,
926 				/*max_dev_transactions*/0,
927 				/*max_tagged_dev_transactions*/0,
928 				devq);
929 	if (xpt_sim == NULL)
930 		return (ENOMEM);
931 
932 	mtx_lock(&xsoftc.xpt_lock);
933 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
934 		mtx_unlock(&xsoftc.xpt_lock);
935 		printf("xpt_init: xpt_bus_register failed with status %#x,"
936 		       " failing attach\n", status);
937 		return (EINVAL);
938 	}
939 
940 	/*
941 	 * Looking at the XPT from the SIM layer, the XPT is
942 	 * the equivelent of a peripheral driver.  Allocate
943 	 * a peripheral driver entry for us.
944 	 */
945 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
946 				      CAM_TARGET_WILDCARD,
947 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
948 		mtx_unlock(&xsoftc.xpt_lock);
949 		printf("xpt_init: xpt_create_path failed with status %#x,"
950 		       " failing attach\n", status);
951 		return (EINVAL);
952 	}
953 
954 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
955 			 path, NULL, 0, xpt_sim);
956 	xpt_free_path(path);
957 	mtx_unlock(&xsoftc.xpt_lock);
958 	/* Install our software interrupt handlers */
959 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
960 	/*
961 	 * Register a callback for when interrupts are enabled.
962 	 */
963 	xsoftc.xpt_config_hook =
964 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
965 					      M_CAMXPT, M_NOWAIT | M_ZERO);
966 	if (xsoftc.xpt_config_hook == NULL) {
967 		printf("xpt_init: Cannot malloc config hook "
968 		       "- failing attach\n");
969 		return (ENOMEM);
970 	}
971 	xsoftc.xpt_config_hook->ich_func = xpt_config;
972 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
973 		free (xsoftc.xpt_config_hook, M_CAMXPT);
974 		printf("xpt_init: config_intrhook_establish failed "
975 		       "- failing attach\n");
976 	}
977 
978 	return (0);
979 }
980 
981 static cam_status
982 xptregister(struct cam_periph *periph, void *arg)
983 {
984 	struct cam_sim *xpt_sim;
985 
986 	if (periph == NULL) {
987 		printf("xptregister: periph was NULL!!\n");
988 		return(CAM_REQ_CMP_ERR);
989 	}
990 
991 	xpt_sim = (struct cam_sim *)arg;
992 	xpt_sim->softc = periph;
993 	xpt_periph = periph;
994 	periph->softc = NULL;
995 
996 	return(CAM_REQ_CMP);
997 }
998 
999 int32_t
1000 xpt_add_periph(struct cam_periph *periph)
1001 {
1002 	struct cam_ed *device;
1003 	int32_t	 status;
1004 	struct periph_list *periph_head;
1005 
1006 	mtx_assert(periph->sim->mtx, MA_OWNED);
1007 
1008 	device = periph->path->device;
1009 
1010 	periph_head = &device->periphs;
1011 
1012 	status = CAM_REQ_CMP;
1013 
1014 	if (device != NULL) {
1015 		/*
1016 		 * Make room for this peripheral
1017 		 * so it will fit in the queue
1018 		 * when it's scheduled to run
1019 		 */
1020 		status = camq_resize(&device->drvq,
1021 				     device->drvq.array_size + 1);
1022 
1023 		device->generation++;
1024 
1025 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1026 	}
1027 
1028 	mtx_lock(&xsoftc.xpt_topo_lock);
1029 	xsoftc.xpt_generation++;
1030 	mtx_unlock(&xsoftc.xpt_topo_lock);
1031 
1032 	return (status);
1033 }
1034 
1035 void
1036 xpt_remove_periph(struct cam_periph *periph)
1037 {
1038 	struct cam_ed *device;
1039 
1040 	mtx_assert(periph->sim->mtx, MA_OWNED);
1041 
1042 	device = periph->path->device;
1043 
1044 	if (device != NULL) {
1045 		struct periph_list *periph_head;
1046 
1047 		periph_head = &device->periphs;
1048 
1049 		/* Release the slot for this peripheral */
1050 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1051 
1052 		device->generation++;
1053 
1054 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1055 	}
1056 
1057 	mtx_lock(&xsoftc.xpt_topo_lock);
1058 	xsoftc.xpt_generation++;
1059 	mtx_unlock(&xsoftc.xpt_topo_lock);
1060 }
1061 
1062 
1063 void
1064 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1065 {
1066 	struct	cam_path *path = periph->path;
1067 
1068 	mtx_assert(periph->sim->mtx, MA_OWNED);
1069 
1070 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1071 	       periph->periph_name, periph->unit_number,
1072 	       path->bus->sim->sim_name,
1073 	       path->bus->sim->unit_number,
1074 	       path->bus->sim->bus_id,
1075 	       path->bus->path_id,
1076 	       path->target->target_id,
1077 	       path->device->lun_id);
1078 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1079 	if (path->device->protocol == PROTO_SCSI)
1080 		scsi_print_inquiry(&path->device->inq_data);
1081 	else if (path->device->protocol == PROTO_ATA ||
1082 	    path->device->protocol == PROTO_SATAPM)
1083 		ata_print_ident(&path->device->ident_data);
1084 	else
1085 		printf("Unknown protocol device\n");
1086 	if (bootverbose && path->device->serial_num_len > 0) {
1087 		/* Don't wrap the screen  - print only the first 60 chars */
1088 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1089 		       periph->unit_number, path->device->serial_num);
1090 	}
1091 	/* Announce transport details. */
1092 	(*(path->bus->xport->announce))(periph);
1093 	/* Announce command queueing. */
1094 	if (path->device->inq_flags & SID_CmdQue
1095 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1096 		printf("%s%d: Command Queueing enabled\n",
1097 		       periph->periph_name, periph->unit_number);
1098 	}
1099 	/* Announce caller's details if they've passed in. */
1100 	if (announce_string != NULL)
1101 		printf("%s%d: %s\n", periph->periph_name,
1102 		       periph->unit_number, announce_string);
1103 }
1104 
1105 int
1106 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1107 {
1108 	int ret = -1;
1109 	struct ccb_dev_advinfo cdai;
1110 
1111 	memset(&cdai, 0, sizeof(cdai));
1112 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1113 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1114 	cdai.bufsiz = len;
1115 
1116 	if (!strcmp(attr, "GEOM::ident"))
1117 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1118 	else if (!strcmp(attr, "GEOM::physpath"))
1119 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1120 	else
1121 		goto out;
1122 
1123 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1124 	if (cdai.buf == NULL) {
1125 		ret = ENOMEM;
1126 		goto out;
1127 	}
1128 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1129 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1130 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1131 	if (cdai.provsiz == 0)
1132 		goto out;
1133 	ret = 0;
1134 	if (strlcpy(buf, cdai.buf, len) >= len)
1135 		ret = EFAULT;
1136 
1137 out:
1138 	if (cdai.buf != NULL)
1139 		free(cdai.buf, M_CAMXPT);
1140 	return ret;
1141 }
1142 
1143 static dev_match_ret
1144 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1145 	    struct cam_eb *bus)
1146 {
1147 	dev_match_ret retval;
1148 	int i;
1149 
1150 	retval = DM_RET_NONE;
1151 
1152 	/*
1153 	 * If we aren't given something to match against, that's an error.
1154 	 */
1155 	if (bus == NULL)
1156 		return(DM_RET_ERROR);
1157 
1158 	/*
1159 	 * If there are no match entries, then this bus matches no
1160 	 * matter what.
1161 	 */
1162 	if ((patterns == NULL) || (num_patterns == 0))
1163 		return(DM_RET_DESCEND | DM_RET_COPY);
1164 
1165 	for (i = 0; i < num_patterns; i++) {
1166 		struct bus_match_pattern *cur_pattern;
1167 
1168 		/*
1169 		 * If the pattern in question isn't for a bus node, we
1170 		 * aren't interested.  However, we do indicate to the
1171 		 * calling routine that we should continue descending the
1172 		 * tree, since the user wants to match against lower-level
1173 		 * EDT elements.
1174 		 */
1175 		if (patterns[i].type != DEV_MATCH_BUS) {
1176 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1177 				retval |= DM_RET_DESCEND;
1178 			continue;
1179 		}
1180 
1181 		cur_pattern = &patterns[i].pattern.bus_pattern;
1182 
1183 		/*
1184 		 * If they want to match any bus node, we give them any
1185 		 * device node.
1186 		 */
1187 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1188 			/* set the copy flag */
1189 			retval |= DM_RET_COPY;
1190 
1191 			/*
1192 			 * If we've already decided on an action, go ahead
1193 			 * and return.
1194 			 */
1195 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1196 				return(retval);
1197 		}
1198 
1199 		/*
1200 		 * Not sure why someone would do this...
1201 		 */
1202 		if (cur_pattern->flags == BUS_MATCH_NONE)
1203 			continue;
1204 
1205 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1206 		 && (cur_pattern->path_id != bus->path_id))
1207 			continue;
1208 
1209 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1210 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1211 			continue;
1212 
1213 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1214 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1215 			continue;
1216 
1217 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1218 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1219 			     DEV_IDLEN) != 0))
1220 			continue;
1221 
1222 		/*
1223 		 * If we get to this point, the user definitely wants
1224 		 * information on this bus.  So tell the caller to copy the
1225 		 * data out.
1226 		 */
1227 		retval |= DM_RET_COPY;
1228 
1229 		/*
1230 		 * If the return action has been set to descend, then we
1231 		 * know that we've already seen a non-bus matching
1232 		 * expression, therefore we need to further descend the tree.
1233 		 * This won't change by continuing around the loop, so we
1234 		 * go ahead and return.  If we haven't seen a non-bus
1235 		 * matching expression, we keep going around the loop until
1236 		 * we exhaust the matching expressions.  We'll set the stop
1237 		 * flag once we fall out of the loop.
1238 		 */
1239 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1240 			return(retval);
1241 	}
1242 
1243 	/*
1244 	 * If the return action hasn't been set to descend yet, that means
1245 	 * we haven't seen anything other than bus matching patterns.  So
1246 	 * tell the caller to stop descending the tree -- the user doesn't
1247 	 * want to match against lower level tree elements.
1248 	 */
1249 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1250 		retval |= DM_RET_STOP;
1251 
1252 	return(retval);
1253 }
1254 
1255 static dev_match_ret
1256 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1257 	       struct cam_ed *device)
1258 {
1259 	dev_match_ret retval;
1260 	int i;
1261 
1262 	retval = DM_RET_NONE;
1263 
1264 	/*
1265 	 * If we aren't given something to match against, that's an error.
1266 	 */
1267 	if (device == NULL)
1268 		return(DM_RET_ERROR);
1269 
1270 	/*
1271 	 * If there are no match entries, then this device matches no
1272 	 * matter what.
1273 	 */
1274 	if ((patterns == NULL) || (num_patterns == 0))
1275 		return(DM_RET_DESCEND | DM_RET_COPY);
1276 
1277 	for (i = 0; i < num_patterns; i++) {
1278 		struct device_match_pattern *cur_pattern;
1279 		struct scsi_vpd_device_id *device_id_page;
1280 
1281 		/*
1282 		 * If the pattern in question isn't for a device node, we
1283 		 * aren't interested.
1284 		 */
1285 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1286 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1287 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1288 				retval |= DM_RET_DESCEND;
1289 			continue;
1290 		}
1291 
1292 		cur_pattern = &patterns[i].pattern.device_pattern;
1293 
1294 		/* Error out if mutually exclusive options are specified. */
1295 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1296 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1297 			return(DM_RET_ERROR);
1298 
1299 		/*
1300 		 * If they want to match any device node, we give them any
1301 		 * device node.
1302 		 */
1303 		if (cur_pattern->flags == DEV_MATCH_ANY)
1304 			goto copy_dev_node;
1305 
1306 		/*
1307 		 * Not sure why someone would do this...
1308 		 */
1309 		if (cur_pattern->flags == DEV_MATCH_NONE)
1310 			continue;
1311 
1312 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1313 		 && (cur_pattern->path_id != device->target->bus->path_id))
1314 			continue;
1315 
1316 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1317 		 && (cur_pattern->target_id != device->target->target_id))
1318 			continue;
1319 
1320 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1321 		 && (cur_pattern->target_lun != device->lun_id))
1322 			continue;
1323 
1324 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1325 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1326 				    (caddr_t)&cur_pattern->data.inq_pat,
1327 				    1, sizeof(cur_pattern->data.inq_pat),
1328 				    scsi_static_inquiry_match) == NULL))
1329 			continue;
1330 
1331 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1332 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1333 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1334 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1335 				      device->device_id_len
1336 				    - SVPD_DEVICE_ID_HDR_LEN,
1337 				      cur_pattern->data.devid_pat.id,
1338 				      cur_pattern->data.devid_pat.id_len) != 0))
1339 			continue;
1340 
1341 copy_dev_node:
1342 		/*
1343 		 * If we get to this point, the user definitely wants
1344 		 * information on this device.  So tell the caller to copy
1345 		 * the data out.
1346 		 */
1347 		retval |= DM_RET_COPY;
1348 
1349 		/*
1350 		 * If the return action has been set to descend, then we
1351 		 * know that we've already seen a peripheral matching
1352 		 * expression, therefore we need to further descend the tree.
1353 		 * This won't change by continuing around the loop, so we
1354 		 * go ahead and return.  If we haven't seen a peripheral
1355 		 * matching expression, we keep going around the loop until
1356 		 * we exhaust the matching expressions.  We'll set the stop
1357 		 * flag once we fall out of the loop.
1358 		 */
1359 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1360 			return(retval);
1361 	}
1362 
1363 	/*
1364 	 * If the return action hasn't been set to descend yet, that means
1365 	 * we haven't seen any peripheral matching patterns.  So tell the
1366 	 * caller to stop descending the tree -- the user doesn't want to
1367 	 * match against lower level tree elements.
1368 	 */
1369 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1370 		retval |= DM_RET_STOP;
1371 
1372 	return(retval);
1373 }
1374 
1375 /*
1376  * Match a single peripheral against any number of match patterns.
1377  */
1378 static dev_match_ret
1379 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1380 	       struct cam_periph *periph)
1381 {
1382 	dev_match_ret retval;
1383 	int i;
1384 
1385 	/*
1386 	 * If we aren't given something to match against, that's an error.
1387 	 */
1388 	if (periph == NULL)
1389 		return(DM_RET_ERROR);
1390 
1391 	/*
1392 	 * If there are no match entries, then this peripheral matches no
1393 	 * matter what.
1394 	 */
1395 	if ((patterns == NULL) || (num_patterns == 0))
1396 		return(DM_RET_STOP | DM_RET_COPY);
1397 
1398 	/*
1399 	 * There aren't any nodes below a peripheral node, so there's no
1400 	 * reason to descend the tree any further.
1401 	 */
1402 	retval = DM_RET_STOP;
1403 
1404 	for (i = 0; i < num_patterns; i++) {
1405 		struct periph_match_pattern *cur_pattern;
1406 
1407 		/*
1408 		 * If the pattern in question isn't for a peripheral, we
1409 		 * aren't interested.
1410 		 */
1411 		if (patterns[i].type != DEV_MATCH_PERIPH)
1412 			continue;
1413 
1414 		cur_pattern = &patterns[i].pattern.periph_pattern;
1415 
1416 		/*
1417 		 * If they want to match on anything, then we will do so.
1418 		 */
1419 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1420 			/* set the copy flag */
1421 			retval |= DM_RET_COPY;
1422 
1423 			/*
1424 			 * We've already set the return action to stop,
1425 			 * since there are no nodes below peripherals in
1426 			 * the tree.
1427 			 */
1428 			return(retval);
1429 		}
1430 
1431 		/*
1432 		 * Not sure why someone would do this...
1433 		 */
1434 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1435 			continue;
1436 
1437 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1438 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1439 			continue;
1440 
1441 		/*
1442 		 * For the target and lun id's, we have to make sure the
1443 		 * target and lun pointers aren't NULL.  The xpt peripheral
1444 		 * has a wildcard target and device.
1445 		 */
1446 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1447 		 && ((periph->path->target == NULL)
1448 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1449 			continue;
1450 
1451 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1452 		 && ((periph->path->device == NULL)
1453 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1454 			continue;
1455 
1456 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1457 		 && (cur_pattern->unit_number != periph->unit_number))
1458 			continue;
1459 
1460 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1461 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1462 			     DEV_IDLEN) != 0))
1463 			continue;
1464 
1465 		/*
1466 		 * If we get to this point, the user definitely wants
1467 		 * information on this peripheral.  So tell the caller to
1468 		 * copy the data out.
1469 		 */
1470 		retval |= DM_RET_COPY;
1471 
1472 		/*
1473 		 * The return action has already been set to stop, since
1474 		 * peripherals don't have any nodes below them in the EDT.
1475 		 */
1476 		return(retval);
1477 	}
1478 
1479 	/*
1480 	 * If we get to this point, the peripheral that was passed in
1481 	 * doesn't match any of the patterns.
1482 	 */
1483 	return(retval);
1484 }
1485 
1486 static int
1487 xptedtbusfunc(struct cam_eb *bus, void *arg)
1488 {
1489 	struct ccb_dev_match *cdm;
1490 	dev_match_ret retval;
1491 
1492 	cdm = (struct ccb_dev_match *)arg;
1493 
1494 	/*
1495 	 * If our position is for something deeper in the tree, that means
1496 	 * that we've already seen this node.  So, we keep going down.
1497 	 */
1498 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1499 	 && (cdm->pos.cookie.bus == bus)
1500 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1501 	 && (cdm->pos.cookie.target != NULL))
1502 		retval = DM_RET_DESCEND;
1503 	else
1504 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1505 
1506 	/*
1507 	 * If we got an error, bail out of the search.
1508 	 */
1509 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1510 		cdm->status = CAM_DEV_MATCH_ERROR;
1511 		return(0);
1512 	}
1513 
1514 	/*
1515 	 * If the copy flag is set, copy this bus out.
1516 	 */
1517 	if (retval & DM_RET_COPY) {
1518 		int spaceleft, j;
1519 
1520 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1521 			sizeof(struct dev_match_result));
1522 
1523 		/*
1524 		 * If we don't have enough space to put in another
1525 		 * match result, save our position and tell the
1526 		 * user there are more devices to check.
1527 		 */
1528 		if (spaceleft < sizeof(struct dev_match_result)) {
1529 			bzero(&cdm->pos, sizeof(cdm->pos));
1530 			cdm->pos.position_type =
1531 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1532 
1533 			cdm->pos.cookie.bus = bus;
1534 			cdm->pos.generations[CAM_BUS_GENERATION]=
1535 				xsoftc.bus_generation;
1536 			cdm->status = CAM_DEV_MATCH_MORE;
1537 			return(0);
1538 		}
1539 		j = cdm->num_matches;
1540 		cdm->num_matches++;
1541 		cdm->matches[j].type = DEV_MATCH_BUS;
1542 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1543 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1544 		cdm->matches[j].result.bus_result.unit_number =
1545 			bus->sim->unit_number;
1546 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1547 			bus->sim->sim_name, DEV_IDLEN);
1548 	}
1549 
1550 	/*
1551 	 * If the user is only interested in busses, there's no
1552 	 * reason to descend to the next level in the tree.
1553 	 */
1554 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1555 		return(1);
1556 
1557 	/*
1558 	 * If there is a target generation recorded, check it to
1559 	 * make sure the target list hasn't changed.
1560 	 */
1561 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1562 	 && (bus == cdm->pos.cookie.bus)
1563 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1564 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1565 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1566 	     bus->generation)) {
1567 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1568 		return(0);
1569 	}
1570 
1571 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1572 	 && (cdm->pos.cookie.bus == bus)
1573 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1574 	 && (cdm->pos.cookie.target != NULL))
1575 		return(xpttargettraverse(bus,
1576 					(struct cam_et *)cdm->pos.cookie.target,
1577 					 xptedttargetfunc, arg));
1578 	else
1579 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1580 }
1581 
1582 static int
1583 xptedttargetfunc(struct cam_et *target, void *arg)
1584 {
1585 	struct ccb_dev_match *cdm;
1586 
1587 	cdm = (struct ccb_dev_match *)arg;
1588 
1589 	/*
1590 	 * If there is a device list generation recorded, check it to
1591 	 * make sure the device list hasn't changed.
1592 	 */
1593 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1594 	 && (cdm->pos.cookie.bus == target->bus)
1595 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1596 	 && (cdm->pos.cookie.target == target)
1597 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1598 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1599 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1600 	     target->generation)) {
1601 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1602 		return(0);
1603 	}
1604 
1605 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1606 	 && (cdm->pos.cookie.bus == target->bus)
1607 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1608 	 && (cdm->pos.cookie.target == target)
1609 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1610 	 && (cdm->pos.cookie.device != NULL))
1611 		return(xptdevicetraverse(target,
1612 					(struct cam_ed *)cdm->pos.cookie.device,
1613 					 xptedtdevicefunc, arg));
1614 	else
1615 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1616 }
1617 
1618 static int
1619 xptedtdevicefunc(struct cam_ed *device, void *arg)
1620 {
1621 
1622 	struct ccb_dev_match *cdm;
1623 	dev_match_ret retval;
1624 
1625 	cdm = (struct ccb_dev_match *)arg;
1626 
1627 	/*
1628 	 * If our position is for something deeper in the tree, that means
1629 	 * that we've already seen this node.  So, we keep going down.
1630 	 */
1631 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1632 	 && (cdm->pos.cookie.device == device)
1633 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1634 	 && (cdm->pos.cookie.periph != NULL))
1635 		retval = DM_RET_DESCEND;
1636 	else
1637 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1638 					device);
1639 
1640 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1641 		cdm->status = CAM_DEV_MATCH_ERROR;
1642 		return(0);
1643 	}
1644 
1645 	/*
1646 	 * If the copy flag is set, copy this device out.
1647 	 */
1648 	if (retval & DM_RET_COPY) {
1649 		int spaceleft, j;
1650 
1651 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1652 			sizeof(struct dev_match_result));
1653 
1654 		/*
1655 		 * If we don't have enough space to put in another
1656 		 * match result, save our position and tell the
1657 		 * user there are more devices to check.
1658 		 */
1659 		if (spaceleft < sizeof(struct dev_match_result)) {
1660 			bzero(&cdm->pos, sizeof(cdm->pos));
1661 			cdm->pos.position_type =
1662 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1663 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1664 
1665 			cdm->pos.cookie.bus = device->target->bus;
1666 			cdm->pos.generations[CAM_BUS_GENERATION]=
1667 				xsoftc.bus_generation;
1668 			cdm->pos.cookie.target = device->target;
1669 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1670 				device->target->bus->generation;
1671 			cdm->pos.cookie.device = device;
1672 			cdm->pos.generations[CAM_DEV_GENERATION] =
1673 				device->target->generation;
1674 			cdm->status = CAM_DEV_MATCH_MORE;
1675 			return(0);
1676 		}
1677 		j = cdm->num_matches;
1678 		cdm->num_matches++;
1679 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1680 		cdm->matches[j].result.device_result.path_id =
1681 			device->target->bus->path_id;
1682 		cdm->matches[j].result.device_result.target_id =
1683 			device->target->target_id;
1684 		cdm->matches[j].result.device_result.target_lun =
1685 			device->lun_id;
1686 		cdm->matches[j].result.device_result.protocol =
1687 			device->protocol;
1688 		bcopy(&device->inq_data,
1689 		      &cdm->matches[j].result.device_result.inq_data,
1690 		      sizeof(struct scsi_inquiry_data));
1691 		bcopy(&device->ident_data,
1692 		      &cdm->matches[j].result.device_result.ident_data,
1693 		      sizeof(struct ata_params));
1694 
1695 		/* Let the user know whether this device is unconfigured */
1696 		if (device->flags & CAM_DEV_UNCONFIGURED)
1697 			cdm->matches[j].result.device_result.flags =
1698 				DEV_RESULT_UNCONFIGURED;
1699 		else
1700 			cdm->matches[j].result.device_result.flags =
1701 				DEV_RESULT_NOFLAG;
1702 	}
1703 
1704 	/*
1705 	 * If the user isn't interested in peripherals, don't descend
1706 	 * the tree any further.
1707 	 */
1708 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1709 		return(1);
1710 
1711 	/*
1712 	 * If there is a peripheral list generation recorded, make sure
1713 	 * it hasn't changed.
1714 	 */
1715 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1716 	 && (device->target->bus == cdm->pos.cookie.bus)
1717 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1718 	 && (device->target == cdm->pos.cookie.target)
1719 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1720 	 && (device == cdm->pos.cookie.device)
1721 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1722 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1723 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1724 	     device->generation)){
1725 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1726 		return(0);
1727 	}
1728 
1729 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1730 	 && (cdm->pos.cookie.bus == device->target->bus)
1731 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1732 	 && (cdm->pos.cookie.target == device->target)
1733 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1734 	 && (cdm->pos.cookie.device == device)
1735 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1736 	 && (cdm->pos.cookie.periph != NULL))
1737 		return(xptperiphtraverse(device,
1738 				(struct cam_periph *)cdm->pos.cookie.periph,
1739 				xptedtperiphfunc, arg));
1740 	else
1741 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1742 }
1743 
1744 static int
1745 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1746 {
1747 	struct ccb_dev_match *cdm;
1748 	dev_match_ret retval;
1749 
1750 	cdm = (struct ccb_dev_match *)arg;
1751 
1752 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1753 
1754 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1755 		cdm->status = CAM_DEV_MATCH_ERROR;
1756 		return(0);
1757 	}
1758 
1759 	/*
1760 	 * If the copy flag is set, copy this peripheral out.
1761 	 */
1762 	if (retval & DM_RET_COPY) {
1763 		int spaceleft, j;
1764 
1765 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1766 			sizeof(struct dev_match_result));
1767 
1768 		/*
1769 		 * If we don't have enough space to put in another
1770 		 * match result, save our position and tell the
1771 		 * user there are more devices to check.
1772 		 */
1773 		if (spaceleft < sizeof(struct dev_match_result)) {
1774 			bzero(&cdm->pos, sizeof(cdm->pos));
1775 			cdm->pos.position_type =
1776 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1777 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1778 				CAM_DEV_POS_PERIPH;
1779 
1780 			cdm->pos.cookie.bus = periph->path->bus;
1781 			cdm->pos.generations[CAM_BUS_GENERATION]=
1782 				xsoftc.bus_generation;
1783 			cdm->pos.cookie.target = periph->path->target;
1784 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1785 				periph->path->bus->generation;
1786 			cdm->pos.cookie.device = periph->path->device;
1787 			cdm->pos.generations[CAM_DEV_GENERATION] =
1788 				periph->path->target->generation;
1789 			cdm->pos.cookie.periph = periph;
1790 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1791 				periph->path->device->generation;
1792 			cdm->status = CAM_DEV_MATCH_MORE;
1793 			return(0);
1794 		}
1795 
1796 		j = cdm->num_matches;
1797 		cdm->num_matches++;
1798 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1799 		cdm->matches[j].result.periph_result.path_id =
1800 			periph->path->bus->path_id;
1801 		cdm->matches[j].result.periph_result.target_id =
1802 			periph->path->target->target_id;
1803 		cdm->matches[j].result.periph_result.target_lun =
1804 			periph->path->device->lun_id;
1805 		cdm->matches[j].result.periph_result.unit_number =
1806 			periph->unit_number;
1807 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1808 			periph->periph_name, DEV_IDLEN);
1809 	}
1810 
1811 	return(1);
1812 }
1813 
1814 static int
1815 xptedtmatch(struct ccb_dev_match *cdm)
1816 {
1817 	int ret;
1818 
1819 	cdm->num_matches = 0;
1820 
1821 	/*
1822 	 * Check the bus list generation.  If it has changed, the user
1823 	 * needs to reset everything and start over.
1824 	 */
1825 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1826 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1827 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1828 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1829 		return(0);
1830 	}
1831 
1832 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1833 	 && (cdm->pos.cookie.bus != NULL))
1834 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1835 				     xptedtbusfunc, cdm);
1836 	else
1837 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1838 
1839 	/*
1840 	 * If we get back 0, that means that we had to stop before fully
1841 	 * traversing the EDT.  It also means that one of the subroutines
1842 	 * has set the status field to the proper value.  If we get back 1,
1843 	 * we've fully traversed the EDT and copied out any matching entries.
1844 	 */
1845 	if (ret == 1)
1846 		cdm->status = CAM_DEV_MATCH_LAST;
1847 
1848 	return(ret);
1849 }
1850 
1851 static int
1852 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1853 {
1854 	struct ccb_dev_match *cdm;
1855 
1856 	cdm = (struct ccb_dev_match *)arg;
1857 
1858 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1859 	 && (cdm->pos.cookie.pdrv == pdrv)
1860 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1861 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1862 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1863 	     (*pdrv)->generation)) {
1864 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1865 		return(0);
1866 	}
1867 
1868 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1869 	 && (cdm->pos.cookie.pdrv == pdrv)
1870 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1871 	 && (cdm->pos.cookie.periph != NULL))
1872 		return(xptpdperiphtraverse(pdrv,
1873 				(struct cam_periph *)cdm->pos.cookie.periph,
1874 				xptplistperiphfunc, arg));
1875 	else
1876 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1877 }
1878 
1879 static int
1880 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1881 {
1882 	struct ccb_dev_match *cdm;
1883 	dev_match_ret retval;
1884 
1885 	cdm = (struct ccb_dev_match *)arg;
1886 
1887 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1888 
1889 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1890 		cdm->status = CAM_DEV_MATCH_ERROR;
1891 		return(0);
1892 	}
1893 
1894 	/*
1895 	 * If the copy flag is set, copy this peripheral out.
1896 	 */
1897 	if (retval & DM_RET_COPY) {
1898 		int spaceleft, j;
1899 
1900 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1901 			sizeof(struct dev_match_result));
1902 
1903 		/*
1904 		 * If we don't have enough space to put in another
1905 		 * match result, save our position and tell the
1906 		 * user there are more devices to check.
1907 		 */
1908 		if (spaceleft < sizeof(struct dev_match_result)) {
1909 			struct periph_driver **pdrv;
1910 
1911 			pdrv = NULL;
1912 			bzero(&cdm->pos, sizeof(cdm->pos));
1913 			cdm->pos.position_type =
1914 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1915 				CAM_DEV_POS_PERIPH;
1916 
1917 			/*
1918 			 * This may look a bit non-sensical, but it is
1919 			 * actually quite logical.  There are very few
1920 			 * peripheral drivers, and bloating every peripheral
1921 			 * structure with a pointer back to its parent
1922 			 * peripheral driver linker set entry would cost
1923 			 * more in the long run than doing this quick lookup.
1924 			 */
1925 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1926 				if (strcmp((*pdrv)->driver_name,
1927 				    periph->periph_name) == 0)
1928 					break;
1929 			}
1930 
1931 			if (*pdrv == NULL) {
1932 				cdm->status = CAM_DEV_MATCH_ERROR;
1933 				return(0);
1934 			}
1935 
1936 			cdm->pos.cookie.pdrv = pdrv;
1937 			/*
1938 			 * The periph generation slot does double duty, as
1939 			 * does the periph pointer slot.  They are used for
1940 			 * both edt and pdrv lookups and positioning.
1941 			 */
1942 			cdm->pos.cookie.periph = periph;
1943 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1944 				(*pdrv)->generation;
1945 			cdm->status = CAM_DEV_MATCH_MORE;
1946 			return(0);
1947 		}
1948 
1949 		j = cdm->num_matches;
1950 		cdm->num_matches++;
1951 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1952 		cdm->matches[j].result.periph_result.path_id =
1953 			periph->path->bus->path_id;
1954 
1955 		/*
1956 		 * The transport layer peripheral doesn't have a target or
1957 		 * lun.
1958 		 */
1959 		if (periph->path->target)
1960 			cdm->matches[j].result.periph_result.target_id =
1961 				periph->path->target->target_id;
1962 		else
1963 			cdm->matches[j].result.periph_result.target_id = -1;
1964 
1965 		if (periph->path->device)
1966 			cdm->matches[j].result.periph_result.target_lun =
1967 				periph->path->device->lun_id;
1968 		else
1969 			cdm->matches[j].result.periph_result.target_lun = -1;
1970 
1971 		cdm->matches[j].result.periph_result.unit_number =
1972 			periph->unit_number;
1973 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1974 			periph->periph_name, DEV_IDLEN);
1975 	}
1976 
1977 	return(1);
1978 }
1979 
1980 static int
1981 xptperiphlistmatch(struct ccb_dev_match *cdm)
1982 {
1983 	int ret;
1984 
1985 	cdm->num_matches = 0;
1986 
1987 	/*
1988 	 * At this point in the edt traversal function, we check the bus
1989 	 * list generation to make sure that no busses have been added or
1990 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1991 	 * For the peripheral driver list traversal function, however, we
1992 	 * don't have to worry about new peripheral driver types coming or
1993 	 * going; they're in a linker set, and therefore can't change
1994 	 * without a recompile.
1995 	 */
1996 
1997 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1998 	 && (cdm->pos.cookie.pdrv != NULL))
1999 		ret = xptpdrvtraverse(
2000 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2001 				xptplistpdrvfunc, cdm);
2002 	else
2003 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2004 
2005 	/*
2006 	 * If we get back 0, that means that we had to stop before fully
2007 	 * traversing the peripheral driver tree.  It also means that one of
2008 	 * the subroutines has set the status field to the proper value.  If
2009 	 * we get back 1, we've fully traversed the EDT and copied out any
2010 	 * matching entries.
2011 	 */
2012 	if (ret == 1)
2013 		cdm->status = CAM_DEV_MATCH_LAST;
2014 
2015 	return(ret);
2016 }
2017 
2018 static int
2019 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2020 {
2021 	struct cam_eb *bus, *next_bus;
2022 	int retval;
2023 
2024 	retval = 1;
2025 
2026 	mtx_lock(&xsoftc.xpt_topo_lock);
2027 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2028 	     bus != NULL;
2029 	     bus = next_bus) {
2030 		next_bus = TAILQ_NEXT(bus, links);
2031 
2032 		mtx_unlock(&xsoftc.xpt_topo_lock);
2033 		CAM_SIM_LOCK(bus->sim);
2034 		retval = tr_func(bus, arg);
2035 		CAM_SIM_UNLOCK(bus->sim);
2036 		if (retval == 0)
2037 			return(retval);
2038 		mtx_lock(&xsoftc.xpt_topo_lock);
2039 	}
2040 	mtx_unlock(&xsoftc.xpt_topo_lock);
2041 
2042 	return(retval);
2043 }
2044 
2045 int
2046 xpt_sim_opened(struct cam_sim *sim)
2047 {
2048 	struct cam_eb *bus;
2049 	struct cam_et *target;
2050 	struct cam_ed *device;
2051 	struct cam_periph *periph;
2052 
2053 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2054 	mtx_assert(sim->mtx, MA_OWNED);
2055 
2056 	mtx_lock(&xsoftc.xpt_topo_lock);
2057 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2058 		if (bus->sim != sim)
2059 			continue;
2060 
2061 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2062 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2063 				SLIST_FOREACH(periph, &device->periphs,
2064 				    periph_links) {
2065 					if (periph->refcount > 0) {
2066 						mtx_unlock(&xsoftc.xpt_topo_lock);
2067 						return (1);
2068 					}
2069 				}
2070 			}
2071 		}
2072 	}
2073 
2074 	mtx_unlock(&xsoftc.xpt_topo_lock);
2075 	return (0);
2076 }
2077 
2078 static int
2079 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2080 		  xpt_targetfunc_t *tr_func, void *arg)
2081 {
2082 	struct cam_et *target, *next_target;
2083 	int retval;
2084 
2085 	retval = 1;
2086 	for (target = (start_target ? start_target :
2087 		       TAILQ_FIRST(&bus->et_entries));
2088 	     target != NULL; target = next_target) {
2089 
2090 		next_target = TAILQ_NEXT(target, links);
2091 
2092 		retval = tr_func(target, arg);
2093 
2094 		if (retval == 0)
2095 			return(retval);
2096 	}
2097 
2098 	return(retval);
2099 }
2100 
2101 static int
2102 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2103 		  xpt_devicefunc_t *tr_func, void *arg)
2104 {
2105 	struct cam_ed *device, *next_device;
2106 	int retval;
2107 
2108 	retval = 1;
2109 	for (device = (start_device ? start_device :
2110 		       TAILQ_FIRST(&target->ed_entries));
2111 	     device != NULL;
2112 	     device = next_device) {
2113 
2114 		next_device = TAILQ_NEXT(device, links);
2115 
2116 		retval = tr_func(device, arg);
2117 
2118 		if (retval == 0)
2119 			return(retval);
2120 	}
2121 
2122 	return(retval);
2123 }
2124 
2125 static int
2126 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2127 		  xpt_periphfunc_t *tr_func, void *arg)
2128 {
2129 	struct cam_periph *periph, *next_periph;
2130 	int retval;
2131 
2132 	retval = 1;
2133 
2134 	for (periph = (start_periph ? start_periph :
2135 		       SLIST_FIRST(&device->periphs));
2136 	     periph != NULL;
2137 	     periph = next_periph) {
2138 
2139 		next_periph = SLIST_NEXT(periph, periph_links);
2140 
2141 		retval = tr_func(periph, arg);
2142 		if (retval == 0)
2143 			return(retval);
2144 	}
2145 
2146 	return(retval);
2147 }
2148 
2149 static int
2150 xptpdrvtraverse(struct periph_driver **start_pdrv,
2151 		xpt_pdrvfunc_t *tr_func, void *arg)
2152 {
2153 	struct periph_driver **pdrv;
2154 	int retval;
2155 
2156 	retval = 1;
2157 
2158 	/*
2159 	 * We don't traverse the peripheral driver list like we do the
2160 	 * other lists, because it is a linker set, and therefore cannot be
2161 	 * changed during runtime.  If the peripheral driver list is ever
2162 	 * re-done to be something other than a linker set (i.e. it can
2163 	 * change while the system is running), the list traversal should
2164 	 * be modified to work like the other traversal functions.
2165 	 */
2166 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2167 	     *pdrv != NULL; pdrv++) {
2168 		retval = tr_func(pdrv, arg);
2169 
2170 		if (retval == 0)
2171 			return(retval);
2172 	}
2173 
2174 	return(retval);
2175 }
2176 
2177 static int
2178 xptpdperiphtraverse(struct periph_driver **pdrv,
2179 		    struct cam_periph *start_periph,
2180 		    xpt_periphfunc_t *tr_func, void *arg)
2181 {
2182 	struct cam_periph *periph, *next_periph;
2183 	int retval;
2184 
2185 	retval = 1;
2186 
2187 	xpt_lock_buses();
2188 	for (periph = (start_periph ? start_periph :
2189 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2190 	     periph = next_periph) {
2191 
2192 		next_periph = TAILQ_NEXT(periph, unit_links);
2193 
2194 		retval = tr_func(periph, arg);
2195 		if (retval == 0) {
2196 			xpt_unlock_buses();
2197 			return(retval);
2198 		}
2199 	}
2200 	xpt_unlock_buses();
2201 	return(retval);
2202 }
2203 
2204 static int
2205 xptdefbusfunc(struct cam_eb *bus, void *arg)
2206 {
2207 	struct xpt_traverse_config *tr_config;
2208 
2209 	tr_config = (struct xpt_traverse_config *)arg;
2210 
2211 	if (tr_config->depth == XPT_DEPTH_BUS) {
2212 		xpt_busfunc_t *tr_func;
2213 
2214 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2215 
2216 		return(tr_func(bus, tr_config->tr_arg));
2217 	} else
2218 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2219 }
2220 
2221 static int
2222 xptdeftargetfunc(struct cam_et *target, void *arg)
2223 {
2224 	struct xpt_traverse_config *tr_config;
2225 
2226 	tr_config = (struct xpt_traverse_config *)arg;
2227 
2228 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2229 		xpt_targetfunc_t *tr_func;
2230 
2231 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2232 
2233 		return(tr_func(target, tr_config->tr_arg));
2234 	} else
2235 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2236 }
2237 
2238 static int
2239 xptdefdevicefunc(struct cam_ed *device, void *arg)
2240 {
2241 	struct xpt_traverse_config *tr_config;
2242 
2243 	tr_config = (struct xpt_traverse_config *)arg;
2244 
2245 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2246 		xpt_devicefunc_t *tr_func;
2247 
2248 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2249 
2250 		return(tr_func(device, tr_config->tr_arg));
2251 	} else
2252 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2253 }
2254 
2255 static int
2256 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2257 {
2258 	struct xpt_traverse_config *tr_config;
2259 	xpt_periphfunc_t *tr_func;
2260 
2261 	tr_config = (struct xpt_traverse_config *)arg;
2262 
2263 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2264 
2265 	/*
2266 	 * Unlike the other default functions, we don't check for depth
2267 	 * here.  The peripheral driver level is the last level in the EDT,
2268 	 * so if we're here, we should execute the function in question.
2269 	 */
2270 	return(tr_func(periph, tr_config->tr_arg));
2271 }
2272 
2273 /*
2274  * Execute the given function for every bus in the EDT.
2275  */
2276 static int
2277 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2278 {
2279 	struct xpt_traverse_config tr_config;
2280 
2281 	tr_config.depth = XPT_DEPTH_BUS;
2282 	tr_config.tr_func = tr_func;
2283 	tr_config.tr_arg = arg;
2284 
2285 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2286 }
2287 
2288 /*
2289  * Execute the given function for every device in the EDT.
2290  */
2291 static int
2292 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2293 {
2294 	struct xpt_traverse_config tr_config;
2295 
2296 	tr_config.depth = XPT_DEPTH_DEVICE;
2297 	tr_config.tr_func = tr_func;
2298 	tr_config.tr_arg = arg;
2299 
2300 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2301 }
2302 
2303 static int
2304 xptsetasyncfunc(struct cam_ed *device, void *arg)
2305 {
2306 	struct cam_path path;
2307 	struct ccb_getdev cgd;
2308 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2309 
2310 	/*
2311 	 * Don't report unconfigured devices (Wildcard devs,
2312 	 * devices only for target mode, device instances
2313 	 * that have been invalidated but are waiting for
2314 	 * their last reference count to be released).
2315 	 */
2316 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2317 		return (1);
2318 
2319 	xpt_compile_path(&path,
2320 			 NULL,
2321 			 device->target->bus->path_id,
2322 			 device->target->target_id,
2323 			 device->lun_id);
2324 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2325 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2326 	xpt_action((union ccb *)&cgd);
2327 	csa->callback(csa->callback_arg,
2328 			    AC_FOUND_DEVICE,
2329 			    &path, &cgd);
2330 	xpt_release_path(&path);
2331 
2332 	return(1);
2333 }
2334 
2335 static int
2336 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2337 {
2338 	struct cam_path path;
2339 	struct ccb_pathinq cpi;
2340 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2341 
2342 	xpt_compile_path(&path, /*periph*/NULL,
2343 			 bus->sim->path_id,
2344 			 CAM_TARGET_WILDCARD,
2345 			 CAM_LUN_WILDCARD);
2346 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2347 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2348 	xpt_action((union ccb *)&cpi);
2349 	csa->callback(csa->callback_arg,
2350 			    AC_PATH_REGISTERED,
2351 			    &path, &cpi);
2352 	xpt_release_path(&path);
2353 
2354 	return(1);
2355 }
2356 
2357 void
2358 xpt_action(union ccb *start_ccb)
2359 {
2360 
2361 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2362 
2363 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2364 	/* Compatibility for RL-unaware code. */
2365 	if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2366 	    start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2367 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2368 }
2369 
2370 void
2371 xpt_action_default(union ccb *start_ccb)
2372 {
2373 #ifdef CAMDEBUG
2374 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2375 #endif
2376 	struct cam_path *path;
2377 
2378 	path = start_ccb->ccb_h.path;
2379 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2380 
2381 	switch (start_ccb->ccb_h.func_code) {
2382 	case XPT_SCSI_IO:
2383 	{
2384 		struct cam_ed *device;
2385 
2386 		/*
2387 		 * For the sake of compatibility with SCSI-1
2388 		 * devices that may not understand the identify
2389 		 * message, we include lun information in the
2390 		 * second byte of all commands.  SCSI-1 specifies
2391 		 * that luns are a 3 bit value and reserves only 3
2392 		 * bits for lun information in the CDB.  Later
2393 		 * revisions of the SCSI spec allow for more than 8
2394 		 * luns, but have deprecated lun information in the
2395 		 * CDB.  So, if the lun won't fit, we must omit.
2396 		 *
2397 		 * Also be aware that during initial probing for devices,
2398 		 * the inquiry information is unknown but initialized to 0.
2399 		 * This means that this code will be exercised while probing
2400 		 * devices with an ANSI revision greater than 2.
2401 		 */
2402 		device = path->device;
2403 		if (device->protocol_version <= SCSI_REV_2
2404 		 && start_ccb->ccb_h.target_lun < 8
2405 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2406 
2407 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2408 			    start_ccb->ccb_h.target_lun << 5;
2409 		}
2410 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2411 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2412 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2413 			  	       &path->device->inq_data),
2414 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2415 					  cdb_str, sizeof(cdb_str))));
2416 	}
2417 	/* FALLTHROUGH */
2418 	case XPT_TARGET_IO:
2419 	case XPT_CONT_TARGET_IO:
2420 		start_ccb->csio.sense_resid = 0;
2421 		start_ccb->csio.resid = 0;
2422 		/* FALLTHROUGH */
2423 	case XPT_ATA_IO:
2424 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2425 			start_ccb->ataio.resid = 0;
2426 			CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n",
2427 			    ata_op_string(&start_ccb->ataio.cmd),
2428 			    ata_cmd_string(&start_ccb->ataio.cmd,
2429 					  cdb_str, sizeof(cdb_str))));
2430 		}
2431 		/* FALLTHROUGH */
2432 	case XPT_RESET_DEV:
2433 	case XPT_ENG_EXEC:
2434 	case XPT_SMP_IO:
2435 	{
2436 		int frozen;
2437 
2438 		frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2439 		path->device->sim->devq->alloc_openings += frozen;
2440 		if (frozen > 0)
2441 			xpt_run_dev_allocq(path->bus);
2442 		if (xpt_schedule_dev_sendq(path->bus, path->device))
2443 			xpt_run_dev_sendq(path->bus);
2444 		break;
2445 	}
2446 	case XPT_CALC_GEOMETRY:
2447 	{
2448 		struct cam_sim *sim;
2449 
2450 		/* Filter out garbage */
2451 		if (start_ccb->ccg.block_size == 0
2452 		 || start_ccb->ccg.volume_size == 0) {
2453 			start_ccb->ccg.cylinders = 0;
2454 			start_ccb->ccg.heads = 0;
2455 			start_ccb->ccg.secs_per_track = 0;
2456 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2457 			break;
2458 		}
2459 #ifdef PC98
2460 		/*
2461 		 * In a PC-98 system, geometry translation depens on
2462 		 * the "real" device geometry obtained from mode page 4.
2463 		 * SCSI geometry translation is performed in the
2464 		 * initialization routine of the SCSI BIOS and the result
2465 		 * stored in host memory.  If the translation is available
2466 		 * in host memory, use it.  If not, rely on the default
2467 		 * translation the device driver performs.
2468 		 */
2469 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2470 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2471 			break;
2472 		}
2473 #endif
2474 		sim = path->bus->sim;
2475 		(*(sim->sim_action))(sim, start_ccb);
2476 		break;
2477 	}
2478 	case XPT_ABORT:
2479 	{
2480 		union ccb* abort_ccb;
2481 
2482 		abort_ccb = start_ccb->cab.abort_ccb;
2483 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2484 
2485 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2486 				struct cam_ccbq *ccbq;
2487 				struct cam_ed *device;
2488 
2489 				device = abort_ccb->ccb_h.path->device;
2490 				ccbq = &device->ccbq;
2491 				device->sim->devq->alloc_openings -=
2492 				    cam_ccbq_remove_ccb(ccbq, abort_ccb);
2493 				abort_ccb->ccb_h.status =
2494 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2495 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2496 				xpt_done(abort_ccb);
2497 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2498 				break;
2499 			}
2500 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2501 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2502 				/*
2503 				 * We've caught this ccb en route to
2504 				 * the SIM.  Flag it for abort and the
2505 				 * SIM will do so just before starting
2506 				 * real work on the CCB.
2507 				 */
2508 				abort_ccb->ccb_h.status =
2509 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2510 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2511 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2512 				break;
2513 			}
2514 		}
2515 		if (XPT_FC_IS_QUEUED(abort_ccb)
2516 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2517 			/*
2518 			 * It's already completed but waiting
2519 			 * for our SWI to get to it.
2520 			 */
2521 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2522 			break;
2523 		}
2524 		/*
2525 		 * If we weren't able to take care of the abort request
2526 		 * in the XPT, pass the request down to the SIM for processing.
2527 		 */
2528 	}
2529 	/* FALLTHROUGH */
2530 	case XPT_ACCEPT_TARGET_IO:
2531 	case XPT_EN_LUN:
2532 	case XPT_IMMED_NOTIFY:
2533 	case XPT_NOTIFY_ACK:
2534 	case XPT_RESET_BUS:
2535 	case XPT_IMMEDIATE_NOTIFY:
2536 	case XPT_NOTIFY_ACKNOWLEDGE:
2537 	case XPT_GET_SIM_KNOB:
2538 	case XPT_SET_SIM_KNOB:
2539 	{
2540 		struct cam_sim *sim;
2541 
2542 		sim = path->bus->sim;
2543 		(*(sim->sim_action))(sim, start_ccb);
2544 		break;
2545 	}
2546 	case XPT_PATH_INQ:
2547 	{
2548 		struct cam_sim *sim;
2549 
2550 		sim = path->bus->sim;
2551 		(*(sim->sim_action))(sim, start_ccb);
2552 		break;
2553 	}
2554 	case XPT_PATH_STATS:
2555 		start_ccb->cpis.last_reset = path->bus->last_reset;
2556 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2557 		break;
2558 	case XPT_GDEV_TYPE:
2559 	{
2560 		struct cam_ed *dev;
2561 
2562 		dev = path->device;
2563 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2564 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2565 		} else {
2566 			struct ccb_getdev *cgd;
2567 
2568 			cgd = &start_ccb->cgd;
2569 			cgd->protocol = dev->protocol;
2570 			cgd->inq_data = dev->inq_data;
2571 			cgd->ident_data = dev->ident_data;
2572 			cgd->inq_flags = dev->inq_flags;
2573 			cgd->ccb_h.status = CAM_REQ_CMP;
2574 			cgd->serial_num_len = dev->serial_num_len;
2575 			if ((dev->serial_num_len > 0)
2576 			 && (dev->serial_num != NULL))
2577 				bcopy(dev->serial_num, cgd->serial_num,
2578 				      dev->serial_num_len);
2579 		}
2580 		break;
2581 	}
2582 	case XPT_GDEV_STATS:
2583 	{
2584 		struct cam_ed *dev;
2585 
2586 		dev = path->device;
2587 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2588 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2589 		} else {
2590 			struct ccb_getdevstats *cgds;
2591 			struct cam_eb *bus;
2592 			struct cam_et *tar;
2593 
2594 			cgds = &start_ccb->cgds;
2595 			bus = path->bus;
2596 			tar = path->target;
2597 			cgds->dev_openings = dev->ccbq.dev_openings;
2598 			cgds->dev_active = dev->ccbq.dev_active;
2599 			cgds->devq_openings = dev->ccbq.devq_openings;
2600 			cgds->devq_queued = dev->ccbq.queue.entries;
2601 			cgds->held = dev->ccbq.held;
2602 			cgds->last_reset = tar->last_reset;
2603 			cgds->maxtags = dev->maxtags;
2604 			cgds->mintags = dev->mintags;
2605 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2606 				cgds->last_reset = bus->last_reset;
2607 			cgds->ccb_h.status = CAM_REQ_CMP;
2608 		}
2609 		break;
2610 	}
2611 	case XPT_GDEVLIST:
2612 	{
2613 		struct cam_periph	*nperiph;
2614 		struct periph_list	*periph_head;
2615 		struct ccb_getdevlist	*cgdl;
2616 		u_int			i;
2617 		struct cam_ed		*device;
2618 		int			found;
2619 
2620 
2621 		found = 0;
2622 
2623 		/*
2624 		 * Don't want anyone mucking with our data.
2625 		 */
2626 		device = path->device;
2627 		periph_head = &device->periphs;
2628 		cgdl = &start_ccb->cgdl;
2629 
2630 		/*
2631 		 * Check and see if the list has changed since the user
2632 		 * last requested a list member.  If so, tell them that the
2633 		 * list has changed, and therefore they need to start over
2634 		 * from the beginning.
2635 		 */
2636 		if ((cgdl->index != 0) &&
2637 		    (cgdl->generation != device->generation)) {
2638 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2639 			break;
2640 		}
2641 
2642 		/*
2643 		 * Traverse the list of peripherals and attempt to find
2644 		 * the requested peripheral.
2645 		 */
2646 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2647 		     (nperiph != NULL) && (i <= cgdl->index);
2648 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2649 			if (i == cgdl->index) {
2650 				strncpy(cgdl->periph_name,
2651 					nperiph->periph_name,
2652 					DEV_IDLEN);
2653 				cgdl->unit_number = nperiph->unit_number;
2654 				found = 1;
2655 			}
2656 		}
2657 		if (found == 0) {
2658 			cgdl->status = CAM_GDEVLIST_ERROR;
2659 			break;
2660 		}
2661 
2662 		if (nperiph == NULL)
2663 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2664 		else
2665 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2666 
2667 		cgdl->index++;
2668 		cgdl->generation = device->generation;
2669 
2670 		cgdl->ccb_h.status = CAM_REQ_CMP;
2671 		break;
2672 	}
2673 	case XPT_DEV_MATCH:
2674 	{
2675 		dev_pos_type position_type;
2676 		struct ccb_dev_match *cdm;
2677 
2678 		cdm = &start_ccb->cdm;
2679 
2680 		/*
2681 		 * There are two ways of getting at information in the EDT.
2682 		 * The first way is via the primary EDT tree.  It starts
2683 		 * with a list of busses, then a list of targets on a bus,
2684 		 * then devices/luns on a target, and then peripherals on a
2685 		 * device/lun.  The "other" way is by the peripheral driver
2686 		 * lists.  The peripheral driver lists are organized by
2687 		 * peripheral driver.  (obviously)  So it makes sense to
2688 		 * use the peripheral driver list if the user is looking
2689 		 * for something like "da1", or all "da" devices.  If the
2690 		 * user is looking for something on a particular bus/target
2691 		 * or lun, it's generally better to go through the EDT tree.
2692 		 */
2693 
2694 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2695 			position_type = cdm->pos.position_type;
2696 		else {
2697 			u_int i;
2698 
2699 			position_type = CAM_DEV_POS_NONE;
2700 
2701 			for (i = 0; i < cdm->num_patterns; i++) {
2702 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2703 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2704 					position_type = CAM_DEV_POS_EDT;
2705 					break;
2706 				}
2707 			}
2708 
2709 			if (cdm->num_patterns == 0)
2710 				position_type = CAM_DEV_POS_EDT;
2711 			else if (position_type == CAM_DEV_POS_NONE)
2712 				position_type = CAM_DEV_POS_PDRV;
2713 		}
2714 
2715 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2716 		case CAM_DEV_POS_EDT:
2717 			xptedtmatch(cdm);
2718 			break;
2719 		case CAM_DEV_POS_PDRV:
2720 			xptperiphlistmatch(cdm);
2721 			break;
2722 		default:
2723 			cdm->status = CAM_DEV_MATCH_ERROR;
2724 			break;
2725 		}
2726 
2727 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2728 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2729 		else
2730 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2731 
2732 		break;
2733 	}
2734 	case XPT_SASYNC_CB:
2735 	{
2736 		struct ccb_setasync *csa;
2737 		struct async_node *cur_entry;
2738 		struct async_list *async_head;
2739 		u_int32_t added;
2740 
2741 		csa = &start_ccb->csa;
2742 		added = csa->event_enable;
2743 		async_head = &path->device->asyncs;
2744 
2745 		/*
2746 		 * If there is already an entry for us, simply
2747 		 * update it.
2748 		 */
2749 		cur_entry = SLIST_FIRST(async_head);
2750 		while (cur_entry != NULL) {
2751 			if ((cur_entry->callback_arg == csa->callback_arg)
2752 			 && (cur_entry->callback == csa->callback))
2753 				break;
2754 			cur_entry = SLIST_NEXT(cur_entry, links);
2755 		}
2756 
2757 		if (cur_entry != NULL) {
2758 		 	/*
2759 			 * If the request has no flags set,
2760 			 * remove the entry.
2761 			 */
2762 			added &= ~cur_entry->event_enable;
2763 			if (csa->event_enable == 0) {
2764 				SLIST_REMOVE(async_head, cur_entry,
2765 					     async_node, links);
2766 				xpt_release_device(path->device);
2767 				free(cur_entry, M_CAMXPT);
2768 			} else {
2769 				cur_entry->event_enable = csa->event_enable;
2770 			}
2771 			csa->event_enable = added;
2772 		} else {
2773 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2774 					   M_NOWAIT);
2775 			if (cur_entry == NULL) {
2776 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2777 				break;
2778 			}
2779 			cur_entry->event_enable = csa->event_enable;
2780 			cur_entry->callback_arg = csa->callback_arg;
2781 			cur_entry->callback = csa->callback;
2782 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2783 			xpt_acquire_device(path->device);
2784 		}
2785 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2786 		break;
2787 	}
2788 	case XPT_REL_SIMQ:
2789 	{
2790 		struct ccb_relsim *crs;
2791 		struct cam_ed *dev;
2792 
2793 		crs = &start_ccb->crs;
2794 		dev = path->device;
2795 		if (dev == NULL) {
2796 
2797 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2798 			break;
2799 		}
2800 
2801 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2802 
2803  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2804 				/* Don't ever go below one opening */
2805 				if (crs->openings > 0) {
2806 					xpt_dev_ccbq_resize(path,
2807 							    crs->openings);
2808 
2809 					if (bootverbose) {
2810 						xpt_print(path,
2811 						    "tagged openings now %d\n",
2812 						    crs->openings);
2813 					}
2814 				}
2815 			}
2816 		}
2817 
2818 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2819 
2820 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2821 
2822 				/*
2823 				 * Just extend the old timeout and decrement
2824 				 * the freeze count so that a single timeout
2825 				 * is sufficient for releasing the queue.
2826 				 */
2827 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2828 				callout_stop(&dev->callout);
2829 			} else {
2830 
2831 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2832 			}
2833 
2834 			callout_reset(&dev->callout,
2835 			    (crs->release_timeout * hz) / 1000,
2836 			    xpt_release_devq_timeout, dev);
2837 
2838 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2839 
2840 		}
2841 
2842 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2843 
2844 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2845 				/*
2846 				 * Decrement the freeze count so that a single
2847 				 * completion is still sufficient to unfreeze
2848 				 * the queue.
2849 				 */
2850 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2851 			} else {
2852 
2853 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2854 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2855 			}
2856 		}
2857 
2858 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2859 
2860 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2861 			 || (dev->ccbq.dev_active == 0)) {
2862 
2863 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2864 			} else {
2865 
2866 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2867 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2868 			}
2869 		}
2870 
2871 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2872 			xpt_release_devq_rl(path, /*runlevel*/
2873 			    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2874 				crs->release_timeout : 0,
2875 			    /*count*/1, /*run_queue*/TRUE);
2876 		}
2877 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2878 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2879 		break;
2880 	}
2881 	case XPT_DEBUG: {
2882 #ifdef CAMDEBUG
2883 #ifdef CAM_DEBUG_DELAY
2884 		cam_debug_delay = CAM_DEBUG_DELAY;
2885 #endif
2886 		cam_dflags = start_ccb->cdbg.flags;
2887 		if (cam_dpath != NULL) {
2888 			xpt_free_path(cam_dpath);
2889 			cam_dpath = NULL;
2890 		}
2891 
2892 		if (cam_dflags != CAM_DEBUG_NONE) {
2893 			if (xpt_create_path(&cam_dpath, xpt_periph,
2894 					    start_ccb->ccb_h.path_id,
2895 					    start_ccb->ccb_h.target_id,
2896 					    start_ccb->ccb_h.target_lun) !=
2897 					    CAM_REQ_CMP) {
2898 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2899 				cam_dflags = CAM_DEBUG_NONE;
2900 			} else {
2901 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2902 				xpt_print(cam_dpath, "debugging flags now %x\n",
2903 				    cam_dflags);
2904 			}
2905 		} else {
2906 			cam_dpath = NULL;
2907 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2908 		}
2909 #else /* !CAMDEBUG */
2910 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2911 #endif /* CAMDEBUG */
2912 		break;
2913 	}
2914 	case XPT_FREEZE_QUEUE:
2915 	{
2916 		struct ccb_relsim *crs = &start_ccb->crs;
2917 
2918 		xpt_freeze_devq_rl(path, /*runlevel*/
2919 		    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2920 		    crs->release_timeout : 0, /*count*/1);
2921 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2922 		break;
2923 	}
2924 	case XPT_NOOP:
2925 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2926 			xpt_freeze_devq(path, 1);
2927 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2928 		break;
2929 	default:
2930 	case XPT_SDEV_TYPE:
2931 	case XPT_TERM_IO:
2932 	case XPT_ENG_INQ:
2933 		/* XXX Implement */
2934 		printf("%s: CCB type %#x not supported\n", __func__,
2935 		       start_ccb->ccb_h.func_code);
2936 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2937 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2938 			xpt_done(start_ccb);
2939 		}
2940 		break;
2941 	}
2942 }
2943 
2944 void
2945 xpt_polled_action(union ccb *start_ccb)
2946 {
2947 	u_int32_t timeout;
2948 	struct	  cam_sim *sim;
2949 	struct	  cam_devq *devq;
2950 	struct	  cam_ed *dev;
2951 
2952 
2953 	timeout = start_ccb->ccb_h.timeout * 10;
2954 	sim = start_ccb->ccb_h.path->bus->sim;
2955 	devq = sim->devq;
2956 	dev = start_ccb->ccb_h.path->device;
2957 
2958 	mtx_assert(sim->mtx, MA_OWNED);
2959 
2960 	/* Don't use ISR for this SIM while polling. */
2961 	sim->flags |= CAM_SIM_POLLED;
2962 
2963 	/*
2964 	 * Steal an opening so that no other queued requests
2965 	 * can get it before us while we simulate interrupts.
2966 	 */
2967 	dev->ccbq.devq_openings--;
2968 	dev->ccbq.dev_openings--;
2969 
2970 	while(((devq != NULL && devq->send_openings <= 0) ||
2971 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2972 		DELAY(100);
2973 		(*(sim->sim_poll))(sim);
2974 		camisr_runqueue(&sim->sim_doneq);
2975 	}
2976 
2977 	dev->ccbq.devq_openings++;
2978 	dev->ccbq.dev_openings++;
2979 
2980 	if (timeout != 0) {
2981 		xpt_action(start_ccb);
2982 		while(--timeout > 0) {
2983 			(*(sim->sim_poll))(sim);
2984 			camisr_runqueue(&sim->sim_doneq);
2985 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
2986 			    != CAM_REQ_INPROG)
2987 				break;
2988 			DELAY(100);
2989 		}
2990 		if (timeout == 0) {
2991 			/*
2992 			 * XXX Is it worth adding a sim_timeout entry
2993 			 * point so we can attempt recovery?  If
2994 			 * this is only used for dumps, I don't think
2995 			 * it is.
2996 			 */
2997 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2998 		}
2999 	} else {
3000 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3001 	}
3002 
3003 	/* We will use CAM ISR for this SIM again. */
3004 	sim->flags &= ~CAM_SIM_POLLED;
3005 }
3006 
3007 /*
3008  * Schedule a peripheral driver to receive a ccb when it's
3009  * target device has space for more transactions.
3010  */
3011 void
3012 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3013 {
3014 	struct cam_ed *device;
3015 	int runq = 0;
3016 
3017 	mtx_assert(perph->sim->mtx, MA_OWNED);
3018 
3019 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3020 	device = perph->path->device;
3021 	if (periph_is_queued(perph)) {
3022 		/* Simply reorder based on new priority */
3023 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3024 			  ("   change priority to %d\n", new_priority));
3025 		if (new_priority < perph->pinfo.priority) {
3026 			camq_change_priority(&device->drvq,
3027 					     perph->pinfo.index,
3028 					     new_priority);
3029 			runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3030 		}
3031 	} else {
3032 		/* New entry on the queue */
3033 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3034 			  ("   added periph to queue\n"));
3035 		perph->pinfo.priority = new_priority;
3036 		perph->pinfo.generation = ++device->drvq.generation;
3037 		camq_insert(&device->drvq, &perph->pinfo);
3038 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3039 	}
3040 	if (runq != 0) {
3041 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3042 			  ("   calling xpt_run_devq\n"));
3043 		xpt_run_dev_allocq(perph->path->bus);
3044 	}
3045 }
3046 
3047 
3048 /*
3049  * Schedule a device to run on a given queue.
3050  * If the device was inserted as a new entry on the queue,
3051  * return 1 meaning the device queue should be run. If we
3052  * were already queued, implying someone else has already
3053  * started the queue, return 0 so the caller doesn't attempt
3054  * to run the queue.
3055  */
3056 int
3057 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3058 		 u_int32_t new_priority)
3059 {
3060 	int retval;
3061 	u_int32_t old_priority;
3062 
3063 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3064 
3065 	old_priority = pinfo->priority;
3066 
3067 	/*
3068 	 * Are we already queued?
3069 	 */
3070 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3071 		/* Simply reorder based on new priority */
3072 		if (new_priority < old_priority) {
3073 			camq_change_priority(queue, pinfo->index,
3074 					     new_priority);
3075 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3076 					("changed priority to %d\n",
3077 					 new_priority));
3078 			retval = 1;
3079 		} else
3080 			retval = 0;
3081 	} else {
3082 		/* New entry on the queue */
3083 		if (new_priority < old_priority)
3084 			pinfo->priority = new_priority;
3085 
3086 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3087 				("Inserting onto queue\n"));
3088 		pinfo->generation = ++queue->generation;
3089 		camq_insert(queue, pinfo);
3090 		retval = 1;
3091 	}
3092 	return (retval);
3093 }
3094 
3095 static void
3096 xpt_run_dev_allocq(struct cam_eb *bus)
3097 {
3098 	struct	cam_devq *devq;
3099 
3100 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3101 	devq = bus->sim->devq;
3102 
3103 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3104 			("   qfrozen_cnt == 0x%x, entries == %d, "
3105 			 "openings == %d, active == %d\n",
3106 			 devq->alloc_queue.qfrozen_cnt[0],
3107 			 devq->alloc_queue.entries,
3108 			 devq->alloc_openings,
3109 			 devq->alloc_active));
3110 
3111 	devq->alloc_queue.qfrozen_cnt[0]++;
3112 	while ((devq->alloc_queue.entries > 0)
3113 	    && (devq->alloc_openings > 0)
3114 	    && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3115 		struct	cam_ed_qinfo *qinfo;
3116 		struct	cam_ed *device;
3117 		union	ccb *work_ccb;
3118 		struct	cam_periph *drv;
3119 		struct	camq *drvq;
3120 
3121 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3122 							   CAMQ_HEAD);
3123 		device = qinfo->device;
3124 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3125 				("running device %p\n", device));
3126 
3127 		drvq = &device->drvq;
3128 
3129 #ifdef CAMDEBUG
3130 		if (drvq->entries <= 0) {
3131 			panic("xpt_run_dev_allocq: "
3132 			      "Device on queue without any work to do");
3133 		}
3134 #endif
3135 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3136 			devq->alloc_openings--;
3137 			devq->alloc_active++;
3138 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3139 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3140 				      drv->pinfo.priority);
3141 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3142 					("calling periph start\n"));
3143 			drv->periph_start(drv, work_ccb);
3144 		} else {
3145 			/*
3146 			 * Malloc failure in alloc_ccb
3147 			 */
3148 			/*
3149 			 * XXX add us to a list to be run from free_ccb
3150 			 * if we don't have any ccbs active on this
3151 			 * device queue otherwise we may never get run
3152 			 * again.
3153 			 */
3154 			break;
3155 		}
3156 
3157 		/* We may have more work. Attempt to reschedule. */
3158 		xpt_schedule_dev_allocq(bus, device);
3159 	}
3160 	devq->alloc_queue.qfrozen_cnt[0]--;
3161 }
3162 
3163 static void
3164 xpt_run_dev_sendq(struct cam_eb *bus)
3165 {
3166 	struct	cam_devq *devq;
3167 
3168 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3169 
3170 	devq = bus->sim->devq;
3171 
3172 	devq->send_queue.qfrozen_cnt[0]++;
3173 	while ((devq->send_queue.entries > 0)
3174 	    && (devq->send_openings > 0)
3175 	    && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3176 		struct	cam_ed_qinfo *qinfo;
3177 		struct	cam_ed *device;
3178 		union ccb *work_ccb;
3179 		struct	cam_sim *sim;
3180 
3181 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3182 							   CAMQ_HEAD);
3183 		device = qinfo->device;
3184 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3185 				("running device %p\n", device));
3186 
3187 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3188 		if (work_ccb == NULL) {
3189 			printf("device on run queue with no ccbs???\n");
3190 			continue;
3191 		}
3192 
3193 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3194 
3195 			mtx_lock(&xsoftc.xpt_lock);
3196 		 	if (xsoftc.num_highpower <= 0) {
3197 				/*
3198 				 * We got a high power command, but we
3199 				 * don't have any available slots.  Freeze
3200 				 * the device queue until we have a slot
3201 				 * available.
3202 				 */
3203 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3204 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3205 						   &work_ccb->ccb_h,
3206 						   xpt_links.stqe);
3207 
3208 				mtx_unlock(&xsoftc.xpt_lock);
3209 				continue;
3210 			} else {
3211 				/*
3212 				 * Consume a high power slot while
3213 				 * this ccb runs.
3214 				 */
3215 				xsoftc.num_highpower--;
3216 			}
3217 			mtx_unlock(&xsoftc.xpt_lock);
3218 		}
3219 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3220 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3221 
3222 		devq->send_openings--;
3223 		devq->send_active++;
3224 
3225 		xpt_schedule_dev_sendq(bus, device);
3226 
3227 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3228 			/*
3229 			 * The client wants to freeze the queue
3230 			 * after this CCB is sent.
3231 			 */
3232 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3233 		}
3234 
3235 		/* In Target mode, the peripheral driver knows best... */
3236 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3237 			if ((device->inq_flags & SID_CmdQue) != 0
3238 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3239 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3240 			else
3241 				/*
3242 				 * Clear this in case of a retried CCB that
3243 				 * failed due to a rejected tag.
3244 				 */
3245 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3246 		}
3247 
3248 		/*
3249 		 * Device queues can be shared among multiple sim instances
3250 		 * that reside on different busses.  Use the SIM in the queue
3251 		 * CCB's path, rather than the one in the bus that was passed
3252 		 * into this function.
3253 		 */
3254 		sim = work_ccb->ccb_h.path->bus->sim;
3255 		(*(sim->sim_action))(sim, work_ccb);
3256 	}
3257 	devq->send_queue.qfrozen_cnt[0]--;
3258 }
3259 
3260 /*
3261  * This function merges stuff from the slave ccb into the master ccb, while
3262  * keeping important fields in the master ccb constant.
3263  */
3264 void
3265 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3266 {
3267 
3268 	/*
3269 	 * Pull fields that are valid for peripheral drivers to set
3270 	 * into the master CCB along with the CCB "payload".
3271 	 */
3272 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3273 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3274 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3275 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3276 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3277 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3278 }
3279 
3280 void
3281 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3282 {
3283 
3284 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3285 	ccb_h->pinfo.priority = priority;
3286 	ccb_h->path = path;
3287 	ccb_h->path_id = path->bus->path_id;
3288 	if (path->target)
3289 		ccb_h->target_id = path->target->target_id;
3290 	else
3291 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3292 	if (path->device) {
3293 		ccb_h->target_lun = path->device->lun_id;
3294 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3295 	} else {
3296 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3297 	}
3298 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3299 	ccb_h->flags = 0;
3300 }
3301 
3302 /* Path manipulation functions */
3303 cam_status
3304 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3305 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3306 {
3307 	struct	   cam_path *path;
3308 	cam_status status;
3309 
3310 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3311 
3312 	if (path == NULL) {
3313 		status = CAM_RESRC_UNAVAIL;
3314 		return(status);
3315 	}
3316 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3317 	if (status != CAM_REQ_CMP) {
3318 		free(path, M_CAMXPT);
3319 		path = NULL;
3320 	}
3321 	*new_path_ptr = path;
3322 	return (status);
3323 }
3324 
3325 cam_status
3326 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3327 			 struct cam_periph *periph, path_id_t path_id,
3328 			 target_id_t target_id, lun_id_t lun_id)
3329 {
3330 	struct	   cam_path *path;
3331 	struct	   cam_eb *bus = NULL;
3332 	cam_status status;
3333 	int	   need_unlock = 0;
3334 
3335 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3336 
3337 	if (path_id != CAM_BUS_WILDCARD) {
3338 		bus = xpt_find_bus(path_id);
3339 		if (bus != NULL) {
3340 			need_unlock = 1;
3341 			CAM_SIM_LOCK(bus->sim);
3342 		}
3343 	}
3344 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3345 	if (need_unlock) {
3346 		CAM_SIM_UNLOCK(bus->sim);
3347 		xpt_release_bus(bus);
3348 	}
3349 	if (status != CAM_REQ_CMP) {
3350 		free(path, M_CAMXPT);
3351 		path = NULL;
3352 	}
3353 	*new_path_ptr = path;
3354 	return (status);
3355 }
3356 
3357 cam_status
3358 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3359 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3360 {
3361 	struct	     cam_eb *bus;
3362 	struct	     cam_et *target;
3363 	struct	     cam_ed *device;
3364 	cam_status   status;
3365 
3366 	status = CAM_REQ_CMP;	/* Completed without error */
3367 	target = NULL;		/* Wildcarded */
3368 	device = NULL;		/* Wildcarded */
3369 
3370 	/*
3371 	 * We will potentially modify the EDT, so block interrupts
3372 	 * that may attempt to create cam paths.
3373 	 */
3374 	bus = xpt_find_bus(path_id);
3375 	if (bus == NULL) {
3376 		status = CAM_PATH_INVALID;
3377 	} else {
3378 		target = xpt_find_target(bus, target_id);
3379 		if (target == NULL) {
3380 			/* Create one */
3381 			struct cam_et *new_target;
3382 
3383 			new_target = xpt_alloc_target(bus, target_id);
3384 			if (new_target == NULL) {
3385 				status = CAM_RESRC_UNAVAIL;
3386 			} else {
3387 				target = new_target;
3388 			}
3389 		}
3390 		if (target != NULL) {
3391 			device = xpt_find_device(target, lun_id);
3392 			if (device == NULL) {
3393 				/* Create one */
3394 				struct cam_ed *new_device;
3395 
3396 				new_device =
3397 				    (*(bus->xport->alloc_device))(bus,
3398 								      target,
3399 								      lun_id);
3400 				if (new_device == NULL) {
3401 					status = CAM_RESRC_UNAVAIL;
3402 				} else {
3403 					device = new_device;
3404 				}
3405 			}
3406 		}
3407 	}
3408 
3409 	/*
3410 	 * Only touch the user's data if we are successful.
3411 	 */
3412 	if (status == CAM_REQ_CMP) {
3413 		new_path->periph = perph;
3414 		new_path->bus = bus;
3415 		new_path->target = target;
3416 		new_path->device = device;
3417 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3418 	} else {
3419 		if (device != NULL)
3420 			xpt_release_device(device);
3421 		if (target != NULL)
3422 			xpt_release_target(target);
3423 		if (bus != NULL)
3424 			xpt_release_bus(bus);
3425 	}
3426 	return (status);
3427 }
3428 
3429 void
3430 xpt_release_path(struct cam_path *path)
3431 {
3432 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3433 	if (path->device != NULL) {
3434 		xpt_release_device(path->device);
3435 		path->device = NULL;
3436 	}
3437 	if (path->target != NULL) {
3438 		xpt_release_target(path->target);
3439 		path->target = NULL;
3440 	}
3441 	if (path->bus != NULL) {
3442 		xpt_release_bus(path->bus);
3443 		path->bus = NULL;
3444 	}
3445 }
3446 
3447 void
3448 xpt_free_path(struct cam_path *path)
3449 {
3450 
3451 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3452 	xpt_release_path(path);
3453 	free(path, M_CAMXPT);
3454 }
3455 
3456 void
3457 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3458     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3459 {
3460 
3461 	mtx_lock(&xsoftc.xpt_topo_lock);
3462 	if (bus_ref) {
3463 		if (path->bus)
3464 			*bus_ref = path->bus->refcount;
3465 		else
3466 			*bus_ref = 0;
3467 	}
3468 	mtx_unlock(&xsoftc.xpt_topo_lock);
3469 	if (periph_ref) {
3470 		if (path->periph)
3471 			*periph_ref = path->periph->refcount;
3472 		else
3473 			*periph_ref = 0;
3474 	}
3475 	if (target_ref) {
3476 		if (path->target)
3477 			*target_ref = path->target->refcount;
3478 		else
3479 			*target_ref = 0;
3480 	}
3481 	if (device_ref) {
3482 		if (path->device)
3483 			*device_ref = path->device->refcount;
3484 		else
3485 			*device_ref = 0;
3486 	}
3487 }
3488 
3489 /*
3490  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3491  * in path1, 2 for match with wildcards in path2.
3492  */
3493 int
3494 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3495 {
3496 	int retval = 0;
3497 
3498 	if (path1->bus != path2->bus) {
3499 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3500 			retval = 1;
3501 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3502 			retval = 2;
3503 		else
3504 			return (-1);
3505 	}
3506 	if (path1->target != path2->target) {
3507 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3508 			if (retval == 0)
3509 				retval = 1;
3510 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3511 			retval = 2;
3512 		else
3513 			return (-1);
3514 	}
3515 	if (path1->device != path2->device) {
3516 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3517 			if (retval == 0)
3518 				retval = 1;
3519 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3520 			retval = 2;
3521 		else
3522 			return (-1);
3523 	}
3524 	return (retval);
3525 }
3526 
3527 void
3528 xpt_print_path(struct cam_path *path)
3529 {
3530 
3531 	if (path == NULL)
3532 		printf("(nopath): ");
3533 	else {
3534 		if (path->periph != NULL)
3535 			printf("(%s%d:", path->periph->periph_name,
3536 			       path->periph->unit_number);
3537 		else
3538 			printf("(noperiph:");
3539 
3540 		if (path->bus != NULL)
3541 			printf("%s%d:%d:", path->bus->sim->sim_name,
3542 			       path->bus->sim->unit_number,
3543 			       path->bus->sim->bus_id);
3544 		else
3545 			printf("nobus:");
3546 
3547 		if (path->target != NULL)
3548 			printf("%d:", path->target->target_id);
3549 		else
3550 			printf("X:");
3551 
3552 		if (path->device != NULL)
3553 			printf("%d): ", path->device->lun_id);
3554 		else
3555 			printf("X): ");
3556 	}
3557 }
3558 
3559 void
3560 xpt_print(struct cam_path *path, const char *fmt, ...)
3561 {
3562 	va_list ap;
3563 	xpt_print_path(path);
3564 	va_start(ap, fmt);
3565 	vprintf(fmt, ap);
3566 	va_end(ap);
3567 }
3568 
3569 int
3570 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3571 {
3572 	struct sbuf sb;
3573 
3574 #ifdef INVARIANTS
3575 	if (path != NULL && path->bus != NULL)
3576 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3577 #endif
3578 
3579 	sbuf_new(&sb, str, str_len, 0);
3580 
3581 	if (path == NULL)
3582 		sbuf_printf(&sb, "(nopath): ");
3583 	else {
3584 		if (path->periph != NULL)
3585 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3586 				    path->periph->unit_number);
3587 		else
3588 			sbuf_printf(&sb, "(noperiph:");
3589 
3590 		if (path->bus != NULL)
3591 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3592 				    path->bus->sim->unit_number,
3593 				    path->bus->sim->bus_id);
3594 		else
3595 			sbuf_printf(&sb, "nobus:");
3596 
3597 		if (path->target != NULL)
3598 			sbuf_printf(&sb, "%d:", path->target->target_id);
3599 		else
3600 			sbuf_printf(&sb, "X:");
3601 
3602 		if (path->device != NULL)
3603 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3604 		else
3605 			sbuf_printf(&sb, "X): ");
3606 	}
3607 	sbuf_finish(&sb);
3608 
3609 	return(sbuf_len(&sb));
3610 }
3611 
3612 path_id_t
3613 xpt_path_path_id(struct cam_path *path)
3614 {
3615 	return(path->bus->path_id);
3616 }
3617 
3618 target_id_t
3619 xpt_path_target_id(struct cam_path *path)
3620 {
3621 	if (path->target != NULL)
3622 		return (path->target->target_id);
3623 	else
3624 		return (CAM_TARGET_WILDCARD);
3625 }
3626 
3627 lun_id_t
3628 xpt_path_lun_id(struct cam_path *path)
3629 {
3630 	if (path->device != NULL)
3631 		return (path->device->lun_id);
3632 	else
3633 		return (CAM_LUN_WILDCARD);
3634 }
3635 
3636 struct cam_sim *
3637 xpt_path_sim(struct cam_path *path)
3638 {
3639 
3640 	return (path->bus->sim);
3641 }
3642 
3643 struct cam_periph*
3644 xpt_path_periph(struct cam_path *path)
3645 {
3646 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3647 
3648 	return (path->periph);
3649 }
3650 
3651 int
3652 xpt_path_legacy_ata_id(struct cam_path *path)
3653 {
3654 	struct cam_eb *bus;
3655 	int bus_id;
3656 
3657 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3658 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3659 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3660 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3661 		return (-1);
3662 
3663 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3664 	    path->bus->sim->unit_number < 2) {
3665 		bus_id = path->bus->sim->unit_number;
3666 	} else {
3667 		bus_id = 2;
3668 		xpt_lock_buses();
3669 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3670 			if (bus == path->bus)
3671 				break;
3672 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3673 			     bus->sim->unit_number >= 2) ||
3674 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3675 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3676 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3677 				bus_id++;
3678 		}
3679 		xpt_unlock_buses();
3680 	}
3681 	if (path->target != NULL) {
3682 		if (path->target->target_id < 2)
3683 			return (bus_id * 2 + path->target->target_id);
3684 		else
3685 			return (-1);
3686 	} else
3687 		return (bus_id * 2);
3688 }
3689 
3690 /*
3691  * Release a CAM control block for the caller.  Remit the cost of the structure
3692  * to the device referenced by the path.  If the this device had no 'credits'
3693  * and peripheral drivers have registered async callbacks for this notification
3694  * call them now.
3695  */
3696 void
3697 xpt_release_ccb(union ccb *free_ccb)
3698 {
3699 	struct	 cam_path *path;
3700 	struct	 cam_ed *device;
3701 	struct	 cam_eb *bus;
3702 	struct   cam_sim *sim;
3703 
3704 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3705 	path = free_ccb->ccb_h.path;
3706 	device = path->device;
3707 	bus = path->bus;
3708 	sim = bus->sim;
3709 
3710 	mtx_assert(sim->mtx, MA_OWNED);
3711 
3712 	cam_ccbq_release_opening(&device->ccbq);
3713 	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3714 		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3715 		cam_ccbq_resize(&device->ccbq,
3716 		    device->ccbq.dev_openings + device->ccbq.dev_active);
3717 	}
3718 	if (sim->ccb_count > sim->max_ccbs) {
3719 		xpt_free_ccb(free_ccb);
3720 		sim->ccb_count--;
3721 	} else {
3722 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3723 		    xpt_links.sle);
3724 	}
3725 	if (sim->devq == NULL) {
3726 		return;
3727 	}
3728 	sim->devq->alloc_openings++;
3729 	sim->devq->alloc_active--;
3730 	if (device_is_alloc_queued(device) == 0)
3731 		xpt_schedule_dev_allocq(bus, device);
3732 	xpt_run_dev_allocq(bus);
3733 }
3734 
3735 /* Functions accessed by SIM drivers */
3736 
3737 static struct xpt_xport xport_default = {
3738 	.alloc_device = xpt_alloc_device_default,
3739 	.action = xpt_action_default,
3740 	.async = xpt_dev_async_default,
3741 };
3742 
3743 /*
3744  * A sim structure, listing the SIM entry points and instance
3745  * identification info is passed to xpt_bus_register to hook the SIM
3746  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3747  * for this new bus and places it in the array of busses and assigns
3748  * it a path_id.  The path_id may be influenced by "hard wiring"
3749  * information specified by the user.  Once interrupt services are
3750  * available, the bus will be probed.
3751  */
3752 int32_t
3753 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3754 {
3755 	struct cam_eb *new_bus;
3756 	struct cam_eb *old_bus;
3757 	struct ccb_pathinq cpi;
3758 	struct cam_path *path;
3759 	cam_status status;
3760 
3761 	mtx_assert(sim->mtx, MA_OWNED);
3762 
3763 	sim->bus_id = bus;
3764 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3765 					  M_CAMXPT, M_NOWAIT);
3766 	if (new_bus == NULL) {
3767 		/* Couldn't satisfy request */
3768 		return (CAM_RESRC_UNAVAIL);
3769 	}
3770 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3771 	if (path == NULL) {
3772 		free(new_bus, M_CAMXPT);
3773 		return (CAM_RESRC_UNAVAIL);
3774 	}
3775 
3776 	if (strcmp(sim->sim_name, "xpt") != 0) {
3777 		sim->path_id =
3778 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3779 	}
3780 
3781 	TAILQ_INIT(&new_bus->et_entries);
3782 	new_bus->path_id = sim->path_id;
3783 	cam_sim_hold(sim);
3784 	new_bus->sim = sim;
3785 	timevalclear(&new_bus->last_reset);
3786 	new_bus->flags = 0;
3787 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3788 	new_bus->generation = 0;
3789 
3790 	mtx_lock(&xsoftc.xpt_topo_lock);
3791 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3792 	while (old_bus != NULL
3793 	    && old_bus->path_id < new_bus->path_id)
3794 		old_bus = TAILQ_NEXT(old_bus, links);
3795 	if (old_bus != NULL)
3796 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3797 	else
3798 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3799 	xsoftc.bus_generation++;
3800 	mtx_unlock(&xsoftc.xpt_topo_lock);
3801 
3802 	/*
3803 	 * Set a default transport so that a PATH_INQ can be issued to
3804 	 * the SIM.  This will then allow for probing and attaching of
3805 	 * a more appropriate transport.
3806 	 */
3807 	new_bus->xport = &xport_default;
3808 
3809 	status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3810 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3811 	if (status != CAM_REQ_CMP)
3812 		printf("xpt_compile_path returned %d\n", status);
3813 
3814 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3815 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3816 	xpt_action((union ccb *)&cpi);
3817 
3818 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3819 		switch (cpi.transport) {
3820 		case XPORT_SPI:
3821 		case XPORT_SAS:
3822 		case XPORT_FC:
3823 		case XPORT_USB:
3824 		case XPORT_ISCSI:
3825 		case XPORT_PPB:
3826 			new_bus->xport = scsi_get_xport();
3827 			break;
3828 		case XPORT_ATA:
3829 		case XPORT_SATA:
3830 			new_bus->xport = ata_get_xport();
3831 			break;
3832 		default:
3833 			new_bus->xport = &xport_default;
3834 			break;
3835 		}
3836 	}
3837 
3838 	/* Notify interested parties */
3839 	if (sim->path_id != CAM_XPT_PATH_ID) {
3840 		union	ccb *scan_ccb;
3841 
3842 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3843 		/* Initiate bus rescan. */
3844 		scan_ccb = xpt_alloc_ccb_nowait();
3845 		scan_ccb->ccb_h.path = path;
3846 		scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3847 		scan_ccb->crcn.flags = 0;
3848 		xpt_rescan(scan_ccb);
3849 	} else
3850 		xpt_free_path(path);
3851 	return (CAM_SUCCESS);
3852 }
3853 
3854 int32_t
3855 xpt_bus_deregister(path_id_t pathid)
3856 {
3857 	struct cam_path bus_path;
3858 	cam_status status;
3859 
3860 	status = xpt_compile_path(&bus_path, NULL, pathid,
3861 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3862 	if (status != CAM_REQ_CMP)
3863 		return (status);
3864 
3865 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3866 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3867 
3868 	/* Release the reference count held while registered. */
3869 	xpt_release_bus(bus_path.bus);
3870 	xpt_release_path(&bus_path);
3871 
3872 	return (CAM_REQ_CMP);
3873 }
3874 
3875 static path_id_t
3876 xptnextfreepathid(void)
3877 {
3878 	struct cam_eb *bus;
3879 	path_id_t pathid;
3880 	const char *strval;
3881 
3882 	pathid = 0;
3883 	mtx_lock(&xsoftc.xpt_topo_lock);
3884 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3885 retry:
3886 	/* Find an unoccupied pathid */
3887 	while (bus != NULL && bus->path_id <= pathid) {
3888 		if (bus->path_id == pathid)
3889 			pathid++;
3890 		bus = TAILQ_NEXT(bus, links);
3891 	}
3892 	mtx_unlock(&xsoftc.xpt_topo_lock);
3893 
3894 	/*
3895 	 * Ensure that this pathid is not reserved for
3896 	 * a bus that may be registered in the future.
3897 	 */
3898 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3899 		++pathid;
3900 		/* Start the search over */
3901 		mtx_lock(&xsoftc.xpt_topo_lock);
3902 		goto retry;
3903 	}
3904 	return (pathid);
3905 }
3906 
3907 static path_id_t
3908 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3909 {
3910 	path_id_t pathid;
3911 	int i, dunit, val;
3912 	char buf[32];
3913 	const char *dname;
3914 
3915 	pathid = CAM_XPT_PATH_ID;
3916 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3917 	i = 0;
3918 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3919 		if (strcmp(dname, "scbus")) {
3920 			/* Avoid a bit of foot shooting. */
3921 			continue;
3922 		}
3923 		if (dunit < 0)		/* unwired?! */
3924 			continue;
3925 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3926 			if (sim_bus == val) {
3927 				pathid = dunit;
3928 				break;
3929 			}
3930 		} else if (sim_bus == 0) {
3931 			/* Unspecified matches bus 0 */
3932 			pathid = dunit;
3933 			break;
3934 		} else {
3935 			printf("Ambiguous scbus configuration for %s%d "
3936 			       "bus %d, cannot wire down.  The kernel "
3937 			       "config entry for scbus%d should "
3938 			       "specify a controller bus.\n"
3939 			       "Scbus will be assigned dynamically.\n",
3940 			       sim_name, sim_unit, sim_bus, dunit);
3941 			break;
3942 		}
3943 	}
3944 
3945 	if (pathid == CAM_XPT_PATH_ID)
3946 		pathid = xptnextfreepathid();
3947 	return (pathid);
3948 }
3949 
3950 void
3951 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3952 {
3953 	struct cam_eb *bus;
3954 	struct cam_et *target, *next_target;
3955 	struct cam_ed *device, *next_device;
3956 
3957 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3958 
3959 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3960 
3961 	/*
3962 	 * Most async events come from a CAM interrupt context.  In
3963 	 * a few cases, the error recovery code at the peripheral layer,
3964 	 * which may run from our SWI or a process context, may signal
3965 	 * deferred events with a call to xpt_async.
3966 	 */
3967 
3968 	bus = path->bus;
3969 
3970 	if (async_code == AC_BUS_RESET) {
3971 		/* Update our notion of when the last reset occurred */
3972 		microtime(&bus->last_reset);
3973 	}
3974 
3975 	for (target = TAILQ_FIRST(&bus->et_entries);
3976 	     target != NULL;
3977 	     target = next_target) {
3978 
3979 		next_target = TAILQ_NEXT(target, links);
3980 
3981 		if (path->target != target
3982 		 && path->target->target_id != CAM_TARGET_WILDCARD
3983 		 && target->target_id != CAM_TARGET_WILDCARD)
3984 			continue;
3985 
3986 		if (async_code == AC_SENT_BDR) {
3987 			/* Update our notion of when the last reset occurred */
3988 			microtime(&path->target->last_reset);
3989 		}
3990 
3991 		for (device = TAILQ_FIRST(&target->ed_entries);
3992 		     device != NULL;
3993 		     device = next_device) {
3994 
3995 			next_device = TAILQ_NEXT(device, links);
3996 
3997 			if (path->device != device
3998 			 && path->device->lun_id != CAM_LUN_WILDCARD
3999 			 && device->lun_id != CAM_LUN_WILDCARD)
4000 				continue;
4001 			/*
4002 			 * The async callback could free the device.
4003 			 * If it is a broadcast async, it doesn't hold
4004 			 * device reference, so take our own reference.
4005 			 */
4006 			xpt_acquire_device(device);
4007 			(*(bus->xport->async))(async_code, bus,
4008 					       target, device,
4009 					       async_arg);
4010 
4011 			xpt_async_bcast(&device->asyncs, async_code,
4012 					path, async_arg);
4013 			xpt_release_device(device);
4014 		}
4015 	}
4016 
4017 	/*
4018 	 * If this wasn't a fully wildcarded async, tell all
4019 	 * clients that want all async events.
4020 	 */
4021 	if (bus != xpt_periph->path->bus)
4022 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4023 				path, async_arg);
4024 }
4025 
4026 static void
4027 xpt_async_bcast(struct async_list *async_head,
4028 		u_int32_t async_code,
4029 		struct cam_path *path, void *async_arg)
4030 {
4031 	struct async_node *cur_entry;
4032 
4033 	cur_entry = SLIST_FIRST(async_head);
4034 	while (cur_entry != NULL) {
4035 		struct async_node *next_entry;
4036 		/*
4037 		 * Grab the next list entry before we call the current
4038 		 * entry's callback.  This is because the callback function
4039 		 * can delete its async callback entry.
4040 		 */
4041 		next_entry = SLIST_NEXT(cur_entry, links);
4042 		if ((cur_entry->event_enable & async_code) != 0)
4043 			cur_entry->callback(cur_entry->callback_arg,
4044 					    async_code, path,
4045 					    async_arg);
4046 		cur_entry = next_entry;
4047 	}
4048 }
4049 
4050 static void
4051 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4052 		      struct cam_et *target, struct cam_ed *device,
4053 		      void *async_arg)
4054 {
4055 	printf("%s called\n", __func__);
4056 }
4057 
4058 u_int32_t
4059 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
4060 {
4061 	struct cam_ed *dev = path->device;
4062 
4063 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4064 	dev->sim->devq->alloc_openings +=
4065 	    cam_ccbq_freeze(&dev->ccbq, rl, count);
4066 	/* Remove frozen device from allocq. */
4067 	if (device_is_alloc_queued(dev) &&
4068 	    cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4069 	     CAMQ_GET_PRIO(&dev->drvq)))) {
4070 		camq_remove(&dev->sim->devq->alloc_queue,
4071 		    dev->alloc_ccb_entry.pinfo.index);
4072 	}
4073 	/* Remove frozen device from sendq. */
4074 	if (device_is_send_queued(dev) &&
4075 	    cam_ccbq_frozen_top(&dev->ccbq)) {
4076 		camq_remove(&dev->sim->devq->send_queue,
4077 		    dev->send_ccb_entry.pinfo.index);
4078 	}
4079 	return (dev->ccbq.queue.qfrozen_cnt[rl]);
4080 }
4081 
4082 u_int32_t
4083 xpt_freeze_devq(struct cam_path *path, u_int count)
4084 {
4085 
4086 	return (xpt_freeze_devq_rl(path, 0, count));
4087 }
4088 
4089 u_int32_t
4090 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4091 {
4092 
4093 	mtx_assert(sim->mtx, MA_OWNED);
4094 	sim->devq->send_queue.qfrozen_cnt[0] += count;
4095 	return (sim->devq->send_queue.qfrozen_cnt[0]);
4096 }
4097 
4098 static void
4099 xpt_release_devq_timeout(void *arg)
4100 {
4101 	struct cam_ed *device;
4102 
4103 	device = (struct cam_ed *)arg;
4104 
4105 	xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
4106 }
4107 
4108 void
4109 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4110 {
4111 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4112 
4113 	xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4114 }
4115 
4116 void
4117 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4118 {
4119 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4120 
4121 	xpt_release_devq_device(path->device, rl, count, run_queue);
4122 }
4123 
4124 static void
4125 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4126 {
4127 
4128 	if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4129 #ifdef INVARIANTS
4130 		printf("xpt_release_devq(%d): requested %u > present %u\n",
4131 		    rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4132 #endif
4133 		count = dev->ccbq.queue.qfrozen_cnt[rl];
4134 	}
4135 	dev->sim->devq->alloc_openings -=
4136 	    cam_ccbq_release(&dev->ccbq, rl, count);
4137 	if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4138 	    CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4139 		if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4140 			xpt_run_dev_allocq(dev->target->bus);
4141 	}
4142 	if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4143 		/*
4144 		 * No longer need to wait for a successful
4145 		 * command completion.
4146 		 */
4147 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4148 		/*
4149 		 * Remove any timeouts that might be scheduled
4150 		 * to release this queue.
4151 		 */
4152 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4153 			callout_stop(&dev->callout);
4154 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4155 		}
4156 		if (run_queue == 0)
4157 			return;
4158 		/*
4159 		 * Now that we are unfrozen schedule the
4160 		 * device so any pending transactions are
4161 		 * run.
4162 		 */
4163 		if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4164 			xpt_run_dev_sendq(dev->target->bus);
4165 	}
4166 }
4167 
4168 void
4169 xpt_release_simq(struct cam_sim *sim, int run_queue)
4170 {
4171 	struct	camq *sendq;
4172 
4173 	mtx_assert(sim->mtx, MA_OWNED);
4174 	sendq = &(sim->devq->send_queue);
4175 	if (sendq->qfrozen_cnt[0] <= 0) {
4176 #ifdef INVARIANTS
4177 		printf("xpt_release_simq: requested 1 > present %u\n",
4178 		    sendq->qfrozen_cnt[0]);
4179 #endif
4180 	} else
4181 		sendq->qfrozen_cnt[0]--;
4182 	if (sendq->qfrozen_cnt[0] == 0) {
4183 		/*
4184 		 * If there is a timeout scheduled to release this
4185 		 * sim queue, remove it.  The queue frozen count is
4186 		 * already at 0.
4187 		 */
4188 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4189 			callout_stop(&sim->callout);
4190 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4191 		}
4192 		if (run_queue) {
4193 			struct cam_eb *bus;
4194 
4195 			/*
4196 			 * Now that we are unfrozen run the send queue.
4197 			 */
4198 			bus = xpt_find_bus(sim->path_id);
4199 			xpt_run_dev_sendq(bus);
4200 			xpt_release_bus(bus);
4201 		}
4202 	}
4203 }
4204 
4205 /*
4206  * XXX Appears to be unused.
4207  */
4208 static void
4209 xpt_release_simq_timeout(void *arg)
4210 {
4211 	struct cam_sim *sim;
4212 
4213 	sim = (struct cam_sim *)arg;
4214 	xpt_release_simq(sim, /* run_queue */ TRUE);
4215 }
4216 
4217 void
4218 xpt_done(union ccb *done_ccb)
4219 {
4220 	struct cam_sim *sim;
4221 	int	first;
4222 
4223 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4224 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4225 		/*
4226 		 * Queue up the request for handling by our SWI handler
4227 		 * any of the "non-immediate" type of ccbs.
4228 		 */
4229 		sim = done_ccb->ccb_h.path->bus->sim;
4230 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4231 		    sim_links.tqe);
4232 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4233 		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED)) == 0) {
4234 			mtx_lock(&cam_simq_lock);
4235 			first = TAILQ_EMPTY(&cam_simq);
4236 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4237 			mtx_unlock(&cam_simq_lock);
4238 			sim->flags |= CAM_SIM_ON_DONEQ;
4239 			if (first)
4240 				swi_sched(cambio_ih, 0);
4241 		}
4242 	}
4243 }
4244 
4245 union ccb *
4246 xpt_alloc_ccb()
4247 {
4248 	union ccb *new_ccb;
4249 
4250 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4251 	return (new_ccb);
4252 }
4253 
4254 union ccb *
4255 xpt_alloc_ccb_nowait()
4256 {
4257 	union ccb *new_ccb;
4258 
4259 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4260 	return (new_ccb);
4261 }
4262 
4263 void
4264 xpt_free_ccb(union ccb *free_ccb)
4265 {
4266 	free(free_ccb, M_CAMXPT);
4267 }
4268 
4269 
4270 
4271 /* Private XPT functions */
4272 
4273 /*
4274  * Get a CAM control block for the caller. Charge the structure to the device
4275  * referenced by the path.  If the this device has no 'credits' then the
4276  * device already has the maximum number of outstanding operations under way
4277  * and we return NULL. If we don't have sufficient resources to allocate more
4278  * ccbs, we also return NULL.
4279  */
4280 static union ccb *
4281 xpt_get_ccb(struct cam_ed *device)
4282 {
4283 	union ccb *new_ccb;
4284 	struct cam_sim *sim;
4285 
4286 	sim = device->sim;
4287 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4288 		new_ccb = xpt_alloc_ccb_nowait();
4289                 if (new_ccb == NULL) {
4290 			return (NULL);
4291 		}
4292 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4293 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4294 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4295 				  xpt_links.sle);
4296 		sim->ccb_count++;
4297 	}
4298 	cam_ccbq_take_opening(&device->ccbq);
4299 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4300 	return (new_ccb);
4301 }
4302 
4303 static void
4304 xpt_release_bus(struct cam_eb *bus)
4305 {
4306 
4307 	mtx_lock(&xsoftc.xpt_topo_lock);
4308 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4309 	if ((--bus->refcount == 0)
4310 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4311 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4312 		xsoftc.bus_generation++;
4313 		mtx_unlock(&xsoftc.xpt_topo_lock);
4314 		cam_sim_release(bus->sim);
4315 		free(bus, M_CAMXPT);
4316 	} else
4317 		mtx_unlock(&xsoftc.xpt_topo_lock);
4318 }
4319 
4320 static struct cam_et *
4321 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4322 {
4323 	struct cam_et *target;
4324 
4325 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4326 					 M_NOWAIT|M_ZERO);
4327 	if (target != NULL) {
4328 		struct cam_et *cur_target;
4329 
4330 		TAILQ_INIT(&target->ed_entries);
4331 		target->bus = bus;
4332 		target->target_id = target_id;
4333 		target->refcount = 1;
4334 		target->generation = 0;
4335 		target->luns = NULL;
4336 		timevalclear(&target->last_reset);
4337 		/*
4338 		 * Hold a reference to our parent bus so it
4339 		 * will not go away before we do.
4340 		 */
4341 		mtx_lock(&xsoftc.xpt_topo_lock);
4342 		bus->refcount++;
4343 		mtx_unlock(&xsoftc.xpt_topo_lock);
4344 
4345 		/* Insertion sort into our bus's target list */
4346 		cur_target = TAILQ_FIRST(&bus->et_entries);
4347 		while (cur_target != NULL && cur_target->target_id < target_id)
4348 			cur_target = TAILQ_NEXT(cur_target, links);
4349 
4350 		if (cur_target != NULL) {
4351 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4352 		} else {
4353 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4354 		}
4355 		bus->generation++;
4356 	}
4357 	return (target);
4358 }
4359 
4360 static void
4361 xpt_release_target(struct cam_et *target)
4362 {
4363 
4364 	if (target->refcount == 1) {
4365 		if (TAILQ_FIRST(&target->ed_entries) == NULL) {
4366 			TAILQ_REMOVE(&target->bus->et_entries, target, links);
4367 			target->bus->generation++;
4368 			xpt_release_bus(target->bus);
4369 			if (target->luns)
4370 				free(target->luns, M_CAMXPT);
4371 			free(target, M_CAMXPT);
4372 		}
4373 	} else
4374 		target->refcount--;
4375 }
4376 
4377 static struct cam_ed *
4378 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4379 			 lun_id_t lun_id)
4380 {
4381 	struct cam_ed *device, *cur_device;
4382 
4383 	device = xpt_alloc_device(bus, target, lun_id);
4384 	if (device == NULL)
4385 		return (NULL);
4386 
4387 	device->mintags = 1;
4388 	device->maxtags = 1;
4389 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4390 	cur_device = TAILQ_FIRST(&target->ed_entries);
4391 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4392 		cur_device = TAILQ_NEXT(cur_device, links);
4393 	if (cur_device != NULL) {
4394 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4395 	} else {
4396 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4397 	}
4398 	target->generation++;
4399 
4400 	return (device);
4401 }
4402 
4403 struct cam_ed *
4404 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4405 {
4406 	struct	   cam_ed *device;
4407 	struct	   cam_devq *devq;
4408 	cam_status status;
4409 
4410 	/* Make space for us in the device queue on our bus */
4411 	devq = bus->sim->devq;
4412 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4413 
4414 	if (status != CAM_REQ_CMP) {
4415 		device = NULL;
4416 	} else {
4417 		device = (struct cam_ed *)malloc(sizeof(*device),
4418 						 M_CAMXPT, M_NOWAIT|M_ZERO);
4419 	}
4420 
4421 	if (device != NULL) {
4422 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4423 		device->alloc_ccb_entry.device = device;
4424 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4425 		device->send_ccb_entry.device = device;
4426 		device->target = target;
4427 		device->lun_id = lun_id;
4428 		device->sim = bus->sim;
4429 		/* Initialize our queues */
4430 		if (camq_init(&device->drvq, 0) != 0) {
4431 			free(device, M_CAMXPT);
4432 			return (NULL);
4433 		}
4434 		if (cam_ccbq_init(&device->ccbq,
4435 				  bus->sim->max_dev_openings) != 0) {
4436 			camq_fini(&device->drvq);
4437 			free(device, M_CAMXPT);
4438 			return (NULL);
4439 		}
4440 		SLIST_INIT(&device->asyncs);
4441 		SLIST_INIT(&device->periphs);
4442 		device->generation = 0;
4443 		device->owner = NULL;
4444 		device->flags = CAM_DEV_UNCONFIGURED;
4445 		device->tag_delay_count = 0;
4446 		device->tag_saved_openings = 0;
4447 		device->refcount = 1;
4448 		callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4449 
4450 		/*
4451 		 * Hold a reference to our parent target so it
4452 		 * will not go away before we do.
4453 		 */
4454 		target->refcount++;
4455 
4456 	}
4457 	return (device);
4458 }
4459 
4460 void
4461 xpt_acquire_device(struct cam_ed *device)
4462 {
4463 
4464 	device->refcount++;
4465 }
4466 
4467 void
4468 xpt_release_device(struct cam_ed *device)
4469 {
4470 
4471 	if (device->refcount == 1) {
4472 		struct cam_devq *devq;
4473 
4474 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4475 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4476 			panic("Removing device while still queued for ccbs");
4477 
4478 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4479 			callout_stop(&device->callout);
4480 
4481 		TAILQ_REMOVE(&device->target->ed_entries, device,links);
4482 		device->target->generation++;
4483 		device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4484 		/* Release our slot in the devq */
4485 		devq = device->target->bus->sim->devq;
4486 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4487 		camq_fini(&device->drvq);
4488 		cam_ccbq_fini(&device->ccbq);
4489 		xpt_release_target(device->target);
4490 		free(device, M_CAMXPT);
4491 	} else
4492 		device->refcount--;
4493 }
4494 
4495 u_int32_t
4496 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4497 {
4498 	int	diff;
4499 	int	result;
4500 	struct	cam_ed *dev;
4501 
4502 	dev = path->device;
4503 
4504 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4505 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4506 	if (result == CAM_REQ_CMP && (diff < 0)) {
4507 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4508 	}
4509 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4510 	 || (dev->inq_flags & SID_CmdQue) != 0)
4511 		dev->tag_saved_openings = newopenings;
4512 	/* Adjust the global limit */
4513 	dev->sim->max_ccbs += diff;
4514 	return (result);
4515 }
4516 
4517 static struct cam_eb *
4518 xpt_find_bus(path_id_t path_id)
4519 {
4520 	struct cam_eb *bus;
4521 
4522 	mtx_lock(&xsoftc.xpt_topo_lock);
4523 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4524 	     bus != NULL;
4525 	     bus = TAILQ_NEXT(bus, links)) {
4526 		if (bus->path_id == path_id) {
4527 			bus->refcount++;
4528 			break;
4529 		}
4530 	}
4531 	mtx_unlock(&xsoftc.xpt_topo_lock);
4532 	return (bus);
4533 }
4534 
4535 static struct cam_et *
4536 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4537 {
4538 	struct cam_et *target;
4539 
4540 	for (target = TAILQ_FIRST(&bus->et_entries);
4541 	     target != NULL;
4542 	     target = TAILQ_NEXT(target, links)) {
4543 		if (target->target_id == target_id) {
4544 			target->refcount++;
4545 			break;
4546 		}
4547 	}
4548 	return (target);
4549 }
4550 
4551 static struct cam_ed *
4552 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4553 {
4554 	struct cam_ed *device;
4555 
4556 	for (device = TAILQ_FIRST(&target->ed_entries);
4557 	     device != NULL;
4558 	     device = TAILQ_NEXT(device, links)) {
4559 		if (device->lun_id == lun_id) {
4560 			device->refcount++;
4561 			break;
4562 		}
4563 	}
4564 	return (device);
4565 }
4566 
4567 void
4568 xpt_start_tags(struct cam_path *path)
4569 {
4570 	struct ccb_relsim crs;
4571 	struct cam_ed *device;
4572 	struct cam_sim *sim;
4573 	int    newopenings;
4574 
4575 	device = path->device;
4576 	sim = path->bus->sim;
4577 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4578 	xpt_freeze_devq(path, /*count*/1);
4579 	device->inq_flags |= SID_CmdQue;
4580 	if (device->tag_saved_openings != 0)
4581 		newopenings = device->tag_saved_openings;
4582 	else
4583 		newopenings = min(device->maxtags,
4584 				  sim->max_tagged_dev_openings);
4585 	xpt_dev_ccbq_resize(path, newopenings);
4586 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4587 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4588 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4589 	crs.openings
4590 	    = crs.release_timeout
4591 	    = crs.qfrozen_cnt
4592 	    = 0;
4593 	xpt_action((union ccb *)&crs);
4594 }
4595 
4596 void
4597 xpt_stop_tags(struct cam_path *path)
4598 {
4599 	struct ccb_relsim crs;
4600 	struct cam_ed *device;
4601 	struct cam_sim *sim;
4602 
4603 	device = path->device;
4604 	sim = path->bus->sim;
4605 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4606 	device->tag_delay_count = 0;
4607 	xpt_freeze_devq(path, /*count*/1);
4608 	device->inq_flags &= ~SID_CmdQue;
4609 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4610 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4611 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4612 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4613 	crs.openings
4614 	    = crs.release_timeout
4615 	    = crs.qfrozen_cnt
4616 	    = 0;
4617 	xpt_action((union ccb *)&crs);
4618 }
4619 
4620 static void
4621 xpt_boot_delay(void *arg)
4622 {
4623 
4624 	xpt_release_boot();
4625 }
4626 
4627 static void
4628 xpt_config(void *arg)
4629 {
4630 	/*
4631 	 * Now that interrupts are enabled, go find our devices
4632 	 */
4633 
4634 #ifdef CAMDEBUG
4635 	/* Setup debugging flags and path */
4636 #ifdef CAM_DEBUG_BUS
4637 	if (cam_dflags != CAM_DEBUG_NONE) {
4638 		/*
4639 		 * Locking is specifically omitted here.  No SIMs have
4640 		 * registered yet, so xpt_create_path will only be searching
4641 		 * empty lists of targets and devices.
4642 		 */
4643 		if (xpt_create_path(&cam_dpath, xpt_periph,
4644 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4645 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4646 			printf("xpt_config: xpt_create_path() failed for debug"
4647 			       " target %d:%d:%d, debugging disabled\n",
4648 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4649 			cam_dflags = CAM_DEBUG_NONE;
4650 		}
4651 	} else
4652 		cam_dpath = NULL;
4653 #else /* !CAM_DEBUG_BUS */
4654 	cam_dpath = NULL;
4655 #endif /* CAM_DEBUG_BUS */
4656 #endif /* CAMDEBUG */
4657 
4658 	periphdriver_init(1);
4659 	xpt_hold_boot();
4660 	callout_init(&xsoftc.boot_callout, 1);
4661 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4662 	    xpt_boot_delay, NULL);
4663 	/* Fire up rescan thread. */
4664 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4665 		printf("xpt_config: failed to create rescan thread.\n");
4666 	}
4667 }
4668 
4669 void
4670 xpt_hold_boot(void)
4671 {
4672 	xpt_lock_buses();
4673 	xsoftc.buses_to_config++;
4674 	xpt_unlock_buses();
4675 }
4676 
4677 void
4678 xpt_release_boot(void)
4679 {
4680 	xpt_lock_buses();
4681 	xsoftc.buses_to_config--;
4682 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4683 		struct	xpt_task *task;
4684 
4685 		xsoftc.buses_config_done = 1;
4686 		xpt_unlock_buses();
4687 		/* Call manually because we don't have any busses */
4688 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4689 		if (task != NULL) {
4690 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4691 			taskqueue_enqueue(taskqueue_thread, &task->task);
4692 		}
4693 	} else
4694 		xpt_unlock_buses();
4695 }
4696 
4697 /*
4698  * If the given device only has one peripheral attached to it, and if that
4699  * peripheral is the passthrough driver, announce it.  This insures that the
4700  * user sees some sort of announcement for every peripheral in their system.
4701  */
4702 static int
4703 xptpassannouncefunc(struct cam_ed *device, void *arg)
4704 {
4705 	struct cam_periph *periph;
4706 	int i;
4707 
4708 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4709 	     periph = SLIST_NEXT(periph, periph_links), i++);
4710 
4711 	periph = SLIST_FIRST(&device->periphs);
4712 	if ((i == 1)
4713 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4714 		xpt_announce_periph(periph, NULL);
4715 
4716 	return(1);
4717 }
4718 
4719 static void
4720 xpt_finishconfig_task(void *context, int pending)
4721 {
4722 
4723 	periphdriver_init(2);
4724 	/*
4725 	 * Check for devices with no "standard" peripheral driver
4726 	 * attached.  For any devices like that, announce the
4727 	 * passthrough driver so the user will see something.
4728 	 */
4729 	xpt_for_all_devices(xptpassannouncefunc, NULL);
4730 
4731 	/* Release our hook so that the boot can continue. */
4732 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4733 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4734 	xsoftc.xpt_config_hook = NULL;
4735 
4736 	free(context, M_CAMXPT);
4737 }
4738 
4739 cam_status
4740 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4741 		   struct cam_path *path)
4742 {
4743 	struct ccb_setasync csa;
4744 	cam_status status;
4745 	int xptpath = 0;
4746 
4747 	if (path == NULL) {
4748 		mtx_lock(&xsoftc.xpt_lock);
4749 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4750 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4751 		if (status != CAM_REQ_CMP) {
4752 			mtx_unlock(&xsoftc.xpt_lock);
4753 			return (status);
4754 		}
4755 		xptpath = 1;
4756 	}
4757 
4758 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4759 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4760 	csa.event_enable = event;
4761 	csa.callback = cbfunc;
4762 	csa.callback_arg = cbarg;
4763 	xpt_action((union ccb *)&csa);
4764 	status = csa.ccb_h.status;
4765 
4766 	if (xptpath) {
4767 		xpt_free_path(path);
4768 		mtx_unlock(&xsoftc.xpt_lock);
4769 	}
4770 
4771 	if ((status == CAM_REQ_CMP) &&
4772 	    (csa.event_enable & AC_FOUND_DEVICE)) {
4773 		/*
4774 		 * Get this peripheral up to date with all
4775 		 * the currently existing devices.
4776 		 */
4777 		xpt_for_all_devices(xptsetasyncfunc, &csa);
4778 	}
4779 	if ((status == CAM_REQ_CMP) &&
4780 	    (csa.event_enable & AC_PATH_REGISTERED)) {
4781 		/*
4782 		 * Get this peripheral up to date with all
4783 		 * the currently existing busses.
4784 		 */
4785 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4786 	}
4787 
4788 	return (status);
4789 }
4790 
4791 static void
4792 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4793 {
4794 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4795 
4796 	switch (work_ccb->ccb_h.func_code) {
4797 	/* Common cases first */
4798 	case XPT_PATH_INQ:		/* Path routing inquiry */
4799 	{
4800 		struct ccb_pathinq *cpi;
4801 
4802 		cpi = &work_ccb->cpi;
4803 		cpi->version_num = 1; /* XXX??? */
4804 		cpi->hba_inquiry = 0;
4805 		cpi->target_sprt = 0;
4806 		cpi->hba_misc = 0;
4807 		cpi->hba_eng_cnt = 0;
4808 		cpi->max_target = 0;
4809 		cpi->max_lun = 0;
4810 		cpi->initiator_id = 0;
4811 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4812 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4813 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4814 		cpi->unit_number = sim->unit_number;
4815 		cpi->bus_id = sim->bus_id;
4816 		cpi->base_transfer_speed = 0;
4817 		cpi->protocol = PROTO_UNSPECIFIED;
4818 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4819 		cpi->transport = XPORT_UNSPECIFIED;
4820 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4821 		cpi->ccb_h.status = CAM_REQ_CMP;
4822 		xpt_done(work_ccb);
4823 		break;
4824 	}
4825 	default:
4826 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4827 		xpt_done(work_ccb);
4828 		break;
4829 	}
4830 }
4831 
4832 /*
4833  * The xpt as a "controller" has no interrupt sources, so polling
4834  * is a no-op.
4835  */
4836 static void
4837 xptpoll(struct cam_sim *sim)
4838 {
4839 }
4840 
4841 void
4842 xpt_lock_buses(void)
4843 {
4844 	mtx_lock(&xsoftc.xpt_topo_lock);
4845 }
4846 
4847 void
4848 xpt_unlock_buses(void)
4849 {
4850 	mtx_unlock(&xsoftc.xpt_topo_lock);
4851 }
4852 
4853 static void
4854 camisr(void *dummy)
4855 {
4856 	cam_simq_t queue;
4857 	struct cam_sim *sim;
4858 
4859 	mtx_lock(&cam_simq_lock);
4860 	TAILQ_INIT(&queue);
4861 	while (!TAILQ_EMPTY(&cam_simq)) {
4862 		TAILQ_CONCAT(&queue, &cam_simq, links);
4863 		mtx_unlock(&cam_simq_lock);
4864 
4865 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4866 			TAILQ_REMOVE(&queue, sim, links);
4867 			CAM_SIM_LOCK(sim);
4868 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4869 			camisr_runqueue(&sim->sim_doneq);
4870 			CAM_SIM_UNLOCK(sim);
4871 		}
4872 		mtx_lock(&cam_simq_lock);
4873 	}
4874 	mtx_unlock(&cam_simq_lock);
4875 }
4876 
4877 static void
4878 camisr_runqueue(void *V_queue)
4879 {
4880 	cam_isrq_t *queue = V_queue;
4881 	struct	ccb_hdr *ccb_h;
4882 
4883 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4884 		int	runq;
4885 
4886 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4887 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4888 
4889 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4890 			  ("camisr\n"));
4891 
4892 		runq = FALSE;
4893 
4894 		if (ccb_h->flags & CAM_HIGH_POWER) {
4895 			struct highpowerlist	*hphead;
4896 			union ccb		*send_ccb;
4897 
4898 			mtx_lock(&xsoftc.xpt_lock);
4899 			hphead = &xsoftc.highpowerq;
4900 
4901 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4902 
4903 			/*
4904 			 * Increment the count since this command is done.
4905 			 */
4906 			xsoftc.num_highpower++;
4907 
4908 			/*
4909 			 * Any high powered commands queued up?
4910 			 */
4911 			if (send_ccb != NULL) {
4912 
4913 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4914 				mtx_unlock(&xsoftc.xpt_lock);
4915 
4916 				xpt_release_devq(send_ccb->ccb_h.path,
4917 						 /*count*/1, /*runqueue*/TRUE);
4918 			} else
4919 				mtx_unlock(&xsoftc.xpt_lock);
4920 		}
4921 
4922 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4923 			struct cam_ed *dev;
4924 
4925 			dev = ccb_h->path->device;
4926 
4927 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4928 			ccb_h->path->bus->sim->devq->send_active--;
4929 			ccb_h->path->bus->sim->devq->send_openings++;
4930 			runq = TRUE;
4931 
4932 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4933 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4934 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4935 			  && (dev->ccbq.dev_active == 0))) {
4936 				xpt_release_devq(ccb_h->path, /*count*/1,
4937 						 /*run_queue*/FALSE);
4938 			}
4939 
4940 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4941 			 && (--dev->tag_delay_count == 0))
4942 				xpt_start_tags(ccb_h->path);
4943 			if (!device_is_send_queued(dev)) {
4944 				(void)xpt_schedule_dev_sendq(ccb_h->path->bus,
4945 							     dev);
4946 			}
4947 		}
4948 
4949 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
4950 			xpt_release_simq(ccb_h->path->bus->sim,
4951 					 /*run_queue*/TRUE);
4952 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
4953 			runq = FALSE;
4954 		}
4955 
4956 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4957 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
4958 			xpt_release_devq(ccb_h->path, /*count*/1,
4959 					 /*run_queue*/TRUE);
4960 			ccb_h->status &= ~CAM_DEV_QFRZN;
4961 		} else if (runq) {
4962 			xpt_run_dev_sendq(ccb_h->path->bus);
4963 		}
4964 
4965 		/* Call the peripheral driver's callback */
4966 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4967 	}
4968 }
4969