1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 52 #ifdef PC98 53 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_sim.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_sim.h> 62 #include <cam/cam_xpt_periph.h> 63 #include <cam/cam_debug.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 #include <machine/stdarg.h> /* for xpt_print below */ 69 #include "opt_cam.h" 70 71 /* Datastructures internal to the xpt layer */ 72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 73 74 /* Object for defering XPT actions to a taskqueue */ 75 struct xpt_task { 76 struct task task; 77 void *data1; 78 uintptr_t data2; 79 }; 80 81 /* 82 * Definition of an async handler callback block. These are used to add 83 * SIMs and peripherals to the async callback lists. 84 */ 85 struct async_node { 86 SLIST_ENTRY(async_node) links; 87 u_int32_t event_enable; /* Async Event enables */ 88 void (*callback)(void *arg, u_int32_t code, 89 struct cam_path *path, void *args); 90 void *callback_arg; 91 }; 92 93 SLIST_HEAD(async_list, async_node); 94 SLIST_HEAD(periph_list, cam_periph); 95 96 /* 97 * This is the maximum number of high powered commands (e.g. start unit) 98 * that can be outstanding at a particular time. 99 */ 100 #ifndef CAM_MAX_HIGHPOWER 101 #define CAM_MAX_HIGHPOWER 4 102 #endif 103 104 /* 105 * Structure for queueing a device in a run queue. 106 * There is one run queue for allocating new ccbs, 107 * and another for sending ccbs to the controller. 108 */ 109 struct cam_ed_qinfo { 110 cam_pinfo pinfo; 111 struct cam_ed *device; 112 }; 113 114 /* 115 * The CAM EDT (Existing Device Table) contains the device information for 116 * all devices for all busses in the system. The table contains a 117 * cam_ed structure for each device on the bus. 118 */ 119 struct cam_ed { 120 TAILQ_ENTRY(cam_ed) links; 121 struct cam_ed_qinfo alloc_ccb_entry; 122 struct cam_ed_qinfo send_ccb_entry; 123 struct cam_et *target; 124 struct cam_sim *sim; 125 lun_id_t lun_id; 126 struct camq drvq; /* 127 * Queue of type drivers wanting to do 128 * work on this device. 129 */ 130 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 131 struct async_list asyncs; /* Async callback info for this B/T/L */ 132 struct periph_list periphs; /* All attached devices */ 133 u_int generation; /* Generation number */ 134 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 135 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 136 /* Storage for the inquiry data */ 137 cam_proto protocol; 138 u_int protocol_version; 139 cam_xport transport; 140 u_int transport_version; 141 struct scsi_inquiry_data inq_data; 142 u_int8_t inq_flags; /* 143 * Current settings for inquiry flags. 144 * This allows us to override settings 145 * like disconnection and tagged 146 * queuing for a device. 147 */ 148 u_int8_t queue_flags; /* Queue flags from the control page */ 149 u_int8_t serial_num_len; 150 u_int8_t *serial_num; 151 u_int32_t qfrozen_cnt; 152 u_int32_t flags; 153 #define CAM_DEV_UNCONFIGURED 0x01 154 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 155 #define CAM_DEV_REL_ON_COMPLETE 0x04 156 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 157 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 158 #define CAM_DEV_TAG_AFTER_COUNT 0x20 159 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 160 #define CAM_DEV_IN_DV 0x80 161 #define CAM_DEV_DV_HIT_BOTTOM 0x100 162 u_int32_t tag_delay_count; 163 #define CAM_TAG_DELAY_COUNT 5 164 u_int32_t tag_saved_openings; 165 u_int32_t refcount; 166 struct callout callout; 167 }; 168 169 /* 170 * Each target is represented by an ET (Existing Target). These 171 * entries are created when a target is successfully probed with an 172 * identify, and removed when a device fails to respond after a number 173 * of retries, or a bus rescan finds the device missing. 174 */ 175 struct cam_et { 176 TAILQ_HEAD(, cam_ed) ed_entries; 177 TAILQ_ENTRY(cam_et) links; 178 struct cam_eb *bus; 179 target_id_t target_id; 180 u_int32_t refcount; 181 u_int generation; 182 struct timeval last_reset; 183 }; 184 185 /* 186 * Each bus is represented by an EB (Existing Bus). These entries 187 * are created by calls to xpt_bus_register and deleted by calls to 188 * xpt_bus_deregister. 189 */ 190 struct cam_eb { 191 TAILQ_HEAD(, cam_et) et_entries; 192 TAILQ_ENTRY(cam_eb) links; 193 path_id_t path_id; 194 struct cam_sim *sim; 195 struct timeval last_reset; 196 u_int32_t flags; 197 #define CAM_EB_RUNQ_SCHEDULED 0x01 198 u_int32_t refcount; 199 u_int generation; 200 }; 201 202 struct cam_path { 203 struct cam_periph *periph; 204 struct cam_eb *bus; 205 struct cam_et *target; 206 struct cam_ed *device; 207 }; 208 209 struct xpt_quirk_entry { 210 struct scsi_inquiry_pattern inq_pat; 211 u_int8_t quirks; 212 #define CAM_QUIRK_NOLUNS 0x01 213 #define CAM_QUIRK_NOSERIAL 0x02 214 #define CAM_QUIRK_HILUNS 0x04 215 #define CAM_QUIRK_NOHILUNS 0x08 216 u_int mintags; 217 u_int maxtags; 218 }; 219 220 static int cam_srch_hi = 0; 221 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 222 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 223 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 224 sysctl_cam_search_luns, "I", 225 "allow search above LUN 7 for SCSI3 and greater devices"); 226 227 #define CAM_SCSI2_MAXLUN 8 228 /* 229 * If we're not quirked to search <= the first 8 luns 230 * and we are either quirked to search above lun 8, 231 * or we're > SCSI-2 and we've enabled hilun searching, 232 * or we're > SCSI-2 and the last lun was a success, 233 * we can look for luns above lun 8. 234 */ 235 #define CAN_SRCH_HI_SPARSE(dv) \ 236 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 237 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 238 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 239 240 #define CAN_SRCH_HI_DENSE(dv) \ 241 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 242 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 243 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 244 245 typedef enum { 246 XPT_FLAG_OPEN = 0x01 247 } xpt_flags; 248 249 struct xpt_softc { 250 xpt_flags flags; 251 u_int32_t xpt_generation; 252 253 /* number of high powered commands that can go through right now */ 254 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 255 int num_highpower; 256 257 /* queue for handling async rescan requests. */ 258 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 259 260 /* Registered busses */ 261 TAILQ_HEAD(,cam_eb) xpt_busses; 262 u_int bus_generation; 263 264 struct intr_config_hook *xpt_config_hook; 265 266 struct mtx xpt_topo_lock; 267 struct mtx xpt_lock; 268 }; 269 270 static const char quantum[] = "QUANTUM"; 271 static const char sony[] = "SONY"; 272 static const char west_digital[] = "WDIGTL"; 273 static const char samsung[] = "SAMSUNG"; 274 static const char seagate[] = "SEAGATE"; 275 static const char microp[] = "MICROP"; 276 277 static struct xpt_quirk_entry xpt_quirk_table[] = 278 { 279 { 280 /* Reports QUEUE FULL for temporary resource shortages */ 281 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 282 /*quirks*/0, /*mintags*/24, /*maxtags*/32 283 }, 284 { 285 /* Reports QUEUE FULL for temporary resource shortages */ 286 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 287 /*quirks*/0, /*mintags*/24, /*maxtags*/32 288 }, 289 { 290 /* Reports QUEUE FULL for temporary resource shortages */ 291 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 292 /*quirks*/0, /*mintags*/24, /*maxtags*/32 293 }, 294 { 295 /* Broken tagged queuing drive */ 296 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 297 /*quirks*/0, /*mintags*/0, /*maxtags*/0 298 }, 299 { 300 /* Broken tagged queuing drive */ 301 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 302 /*quirks*/0, /*mintags*/0, /*maxtags*/0 303 }, 304 { 305 /* Broken tagged queuing drive */ 306 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 307 /*quirks*/0, /*mintags*/0, /*maxtags*/0 308 }, 309 { 310 /* 311 * Unfortunately, the Quantum Atlas III has the same 312 * problem as the Atlas II drives above. 313 * Reported by: "Johan Granlund" <johan@granlund.nu> 314 * 315 * For future reference, the drive with the problem was: 316 * QUANTUM QM39100TD-SW N1B0 317 * 318 * It's possible that Quantum will fix the problem in later 319 * firmware revisions. If that happens, the quirk entry 320 * will need to be made specific to the firmware revisions 321 * with the problem. 322 * 323 */ 324 /* Reports QUEUE FULL for temporary resource shortages */ 325 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 326 /*quirks*/0, /*mintags*/24, /*maxtags*/32 327 }, 328 { 329 /* 330 * 18 Gig Atlas III, same problem as the 9G version. 331 * Reported by: Andre Albsmeier 332 * <andre.albsmeier@mchp.siemens.de> 333 * 334 * For future reference, the drive with the problem was: 335 * QUANTUM QM318000TD-S N491 336 */ 337 /* Reports QUEUE FULL for temporary resource shortages */ 338 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 339 /*quirks*/0, /*mintags*/24, /*maxtags*/32 340 }, 341 { 342 /* 343 * Broken tagged queuing drive 344 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 345 * and: Martin Renters <martin@tdc.on.ca> 346 */ 347 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 348 /*quirks*/0, /*mintags*/0, /*maxtags*/0 349 }, 350 /* 351 * The Seagate Medalist Pro drives have very poor write 352 * performance with anything more than 2 tags. 353 * 354 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 355 * Drive: <SEAGATE ST36530N 1444> 356 * 357 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 358 * Drive: <SEAGATE ST34520W 1281> 359 * 360 * No one has actually reported that the 9G version 361 * (ST39140*) of the Medalist Pro has the same problem, but 362 * we're assuming that it does because the 4G and 6.5G 363 * versions of the drive are broken. 364 */ 365 { 366 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 367 /*quirks*/0, /*mintags*/2, /*maxtags*/2 368 }, 369 { 370 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 371 /*quirks*/0, /*mintags*/2, /*maxtags*/2 372 }, 373 { 374 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 375 /*quirks*/0, /*mintags*/2, /*maxtags*/2 376 }, 377 { 378 /* 379 * Slow when tagged queueing is enabled. Write performance 380 * steadily drops off with more and more concurrent 381 * transactions. Best sequential write performance with 382 * tagged queueing turned off and write caching turned on. 383 * 384 * PR: kern/10398 385 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 386 * Drive: DCAS-34330 w/ "S65A" firmware. 387 * 388 * The drive with the problem had the "S65A" firmware 389 * revision, and has also been reported (by Stephen J. 390 * Roznowski <sjr@home.net>) for a drive with the "S61A" 391 * firmware revision. 392 * 393 * Although no one has reported problems with the 2 gig 394 * version of the DCAS drive, the assumption is that it 395 * has the same problems as the 4 gig version. Therefore 396 * this quirk entries disables tagged queueing for all 397 * DCAS drives. 398 */ 399 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 400 /*quirks*/0, /*mintags*/0, /*maxtags*/0 401 }, 402 { 403 /* Broken tagged queuing drive */ 404 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 405 /*quirks*/0, /*mintags*/0, /*maxtags*/0 406 }, 407 { 408 /* Broken tagged queuing drive */ 409 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 410 /*quirks*/0, /*mintags*/0, /*maxtags*/0 411 }, 412 { 413 /* This does not support other than LUN 0 */ 414 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" }, 415 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 416 }, 417 { 418 /* 419 * Broken tagged queuing drive. 420 * Submitted by: 421 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 422 * in PR kern/9535 423 */ 424 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 425 /*quirks*/0, /*mintags*/0, /*maxtags*/0 426 }, 427 { 428 /* 429 * Slow when tagged queueing is enabled. (1.5MB/sec versus 430 * 8MB/sec.) 431 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 432 * Best performance with these drives is achieved with 433 * tagged queueing turned off, and write caching turned on. 434 */ 435 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 436 /*quirks*/0, /*mintags*/0, /*maxtags*/0 437 }, 438 { 439 /* 440 * Slow when tagged queueing is enabled. (1.5MB/sec versus 441 * 8MB/sec.) 442 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 443 * Best performance with these drives is achieved with 444 * tagged queueing turned off, and write caching turned on. 445 */ 446 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 447 /*quirks*/0, /*mintags*/0, /*maxtags*/0 448 }, 449 { 450 /* 451 * Doesn't handle queue full condition correctly, 452 * so we need to limit maxtags to what the device 453 * can handle instead of determining this automatically. 454 */ 455 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 456 /*quirks*/0, /*mintags*/2, /*maxtags*/32 457 }, 458 { 459 /* Really only one LUN */ 460 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 461 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 462 }, 463 { 464 /* I can't believe we need a quirk for DPT volumes. */ 465 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 466 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 467 /*mintags*/0, /*maxtags*/255 468 }, 469 { 470 /* 471 * Many Sony CDROM drives don't like multi-LUN probing. 472 */ 473 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 474 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 475 }, 476 { 477 /* 478 * This drive doesn't like multiple LUN probing. 479 * Submitted by: Parag Patel <parag@cgt.com> 480 */ 481 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 482 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 483 }, 484 { 485 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 486 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 487 }, 488 { 489 /* 490 * The 8200 doesn't like multi-lun probing, and probably 491 * don't like serial number requests either. 492 */ 493 { 494 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 495 "EXB-8200*", "*" 496 }, 497 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 498 }, 499 { 500 /* 501 * Let's try the same as above, but for a drive that says 502 * it's an IPL-6860 but is actually an EXB 8200. 503 */ 504 { 505 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 506 "IPL-6860*", "*" 507 }, 508 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 509 }, 510 { 511 /* 512 * These Hitachi drives don't like multi-lun probing. 513 * The PR submitter has a DK319H, but says that the Linux 514 * kernel has a similar work-around for the DK312 and DK314, 515 * so all DK31* drives are quirked here. 516 * PR: misc/18793 517 * Submitted by: Paul Haddad <paul@pth.com> 518 */ 519 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 520 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 521 }, 522 { 523 /* 524 * The Hitachi CJ series with J8A8 firmware apparantly has 525 * problems with tagged commands. 526 * PR: 23536 527 * Reported by: amagai@nue.org 528 */ 529 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 530 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 531 }, 532 { 533 /* 534 * These are the large storage arrays. 535 * Submitted by: William Carrel <william.carrel@infospace.com> 536 */ 537 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 538 CAM_QUIRK_HILUNS, 2, 1024 539 }, 540 { 541 /* 542 * This old revision of the TDC3600 is also SCSI-1, and 543 * hangs upon serial number probing. 544 */ 545 { 546 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 547 " TDC 3600", "U07:" 548 }, 549 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 550 }, 551 { 552 /* 553 * Maxtor Personal Storage 3000XT (Firewire) 554 * hangs upon serial number probing. 555 */ 556 { 557 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 558 "1394 storage", "*" 559 }, 560 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 561 }, 562 { 563 /* 564 * Would repond to all LUNs if asked for. 565 */ 566 { 567 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 568 "CP150", "*" 569 }, 570 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 571 }, 572 { 573 /* 574 * Would repond to all LUNs if asked for. 575 */ 576 { 577 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 578 "96X2*", "*" 579 }, 580 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 581 }, 582 { 583 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 584 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 585 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 586 }, 587 { 588 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 589 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 590 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 591 }, 592 { 593 /* TeraSolutions special settings for TRC-22 RAID */ 594 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 595 /*quirks*/0, /*mintags*/55, /*maxtags*/255 596 }, 597 { 598 /* Veritas Storage Appliance */ 599 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 600 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 601 }, 602 { 603 /* 604 * Would respond to all LUNs. Device type and removable 605 * flag are jumper-selectable. 606 */ 607 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 608 "Tahiti 1", "*" 609 }, 610 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 611 }, 612 { 613 /* EasyRAID E5A aka. areca ARC-6010 */ 614 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 615 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 616 }, 617 { 618 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" }, 619 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 620 }, 621 { 622 /* Default tagged queuing parameters for all devices */ 623 { 624 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 625 /*vendor*/"*", /*product*/"*", /*revision*/"*" 626 }, 627 /*quirks*/0, /*mintags*/2, /*maxtags*/255 628 }, 629 }; 630 631 static const int xpt_quirk_table_size = 632 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 633 634 typedef enum { 635 DM_RET_COPY = 0x01, 636 DM_RET_FLAG_MASK = 0x0f, 637 DM_RET_NONE = 0x00, 638 DM_RET_STOP = 0x10, 639 DM_RET_DESCEND = 0x20, 640 DM_RET_ERROR = 0x30, 641 DM_RET_ACTION_MASK = 0xf0 642 } dev_match_ret; 643 644 typedef enum { 645 XPT_DEPTH_BUS, 646 XPT_DEPTH_TARGET, 647 XPT_DEPTH_DEVICE, 648 XPT_DEPTH_PERIPH 649 } xpt_traverse_depth; 650 651 struct xpt_traverse_config { 652 xpt_traverse_depth depth; 653 void *tr_func; 654 void *tr_arg; 655 }; 656 657 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 658 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 659 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 660 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 661 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 662 663 /* Transport layer configuration information */ 664 static struct xpt_softc xsoftc; 665 666 /* Queues for our software interrupt handler */ 667 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 668 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 669 static cam_simq_t cam_simq; 670 static struct mtx cam_simq_lock; 671 672 /* Pointers to software interrupt handlers */ 673 static void *cambio_ih; 674 675 struct cam_periph *xpt_periph; 676 677 static periph_init_t xpt_periph_init; 678 679 static periph_init_t probe_periph_init; 680 681 static struct periph_driver xpt_driver = 682 { 683 xpt_periph_init, "xpt", 684 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 685 }; 686 687 static struct periph_driver probe_driver = 688 { 689 probe_periph_init, "probe", 690 TAILQ_HEAD_INITIALIZER(probe_driver.units) 691 }; 692 693 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 694 PERIPHDRIVER_DECLARE(probe, probe_driver); 695 696 697 static d_open_t xptopen; 698 static d_close_t xptclose; 699 static d_ioctl_t xptioctl; 700 701 static struct cdevsw xpt_cdevsw = { 702 .d_version = D_VERSION, 703 .d_flags = 0, 704 .d_open = xptopen, 705 .d_close = xptclose, 706 .d_ioctl = xptioctl, 707 .d_name = "xpt", 708 }; 709 710 711 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb); 712 static void dead_sim_poll(struct cam_sim *sim); 713 714 /* Dummy SIM that is used when the real one has gone. */ 715 static struct cam_sim cam_dead_sim = { 716 .sim_action = dead_sim_action, 717 .sim_poll = dead_sim_poll, 718 .sim_name = "dead_sim", 719 }; 720 721 #define SIM_DEAD(sim) ((sim) == &cam_dead_sim) 722 723 724 /* Storage for debugging datastructures */ 725 #ifdef CAMDEBUG 726 struct cam_path *cam_dpath; 727 u_int32_t cam_dflags; 728 u_int32_t cam_debug_delay; 729 #endif 730 731 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 732 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 733 #endif 734 735 /* 736 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 737 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 738 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 739 */ 740 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 741 || defined(CAM_DEBUG_LUN) 742 #ifdef CAMDEBUG 743 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 744 || !defined(CAM_DEBUG_LUN) 745 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 746 and CAM_DEBUG_LUN" 747 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 748 #else /* !CAMDEBUG */ 749 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 750 #endif /* CAMDEBUG */ 751 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 752 753 /* Our boot-time initialization hook */ 754 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 755 756 static moduledata_t cam_moduledata = { 757 "cam", 758 cam_module_event_handler, 759 NULL 760 }; 761 762 static int xpt_init(void *); 763 764 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 765 MODULE_VERSION(cam, 1); 766 767 768 static cam_status xpt_compile_path(struct cam_path *new_path, 769 struct cam_periph *perph, 770 path_id_t path_id, 771 target_id_t target_id, 772 lun_id_t lun_id); 773 774 static void xpt_release_path(struct cam_path *path); 775 776 static void xpt_async_bcast(struct async_list *async_head, 777 u_int32_t async_code, 778 struct cam_path *path, 779 void *async_arg); 780 static void xpt_dev_async(u_int32_t async_code, 781 struct cam_eb *bus, 782 struct cam_et *target, 783 struct cam_ed *device, 784 void *async_arg); 785 static path_id_t xptnextfreepathid(void); 786 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 787 static union ccb *xpt_get_ccb(struct cam_ed *device); 788 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 789 u_int32_t new_priority); 790 static void xpt_run_dev_allocq(struct cam_eb *bus); 791 static void xpt_run_dev_sendq(struct cam_eb *bus); 792 static timeout_t xpt_release_devq_timeout; 793 static void xpt_release_simq_timeout(void *arg) __unused; 794 static void xpt_release_bus(struct cam_eb *bus); 795 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 796 int run_queue); 797 static struct cam_et* 798 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 799 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 800 static struct cam_ed* 801 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 802 lun_id_t lun_id); 803 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 804 struct cam_ed *device); 805 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 806 static struct cam_eb* 807 xpt_find_bus(path_id_t path_id); 808 static struct cam_et* 809 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 810 static struct cam_ed* 811 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 812 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 813 static void xpt_scan_lun(struct cam_periph *periph, 814 struct cam_path *path, cam_flags flags, 815 union ccb *ccb); 816 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 817 static xpt_busfunc_t xptconfigbuscountfunc; 818 static xpt_busfunc_t xptconfigfunc; 819 static void xpt_config(void *arg); 820 static xpt_devicefunc_t xptpassannouncefunc; 821 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 822 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 823 static void xptpoll(struct cam_sim *sim); 824 static void camisr(void *); 825 static void camisr_runqueue(void *); 826 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 827 u_int num_patterns, struct cam_eb *bus); 828 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 829 u_int num_patterns, 830 struct cam_ed *device); 831 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 832 u_int num_patterns, 833 struct cam_periph *periph); 834 static xpt_busfunc_t xptedtbusfunc; 835 static xpt_targetfunc_t xptedttargetfunc; 836 static xpt_devicefunc_t xptedtdevicefunc; 837 static xpt_periphfunc_t xptedtperiphfunc; 838 static xpt_pdrvfunc_t xptplistpdrvfunc; 839 static xpt_periphfunc_t xptplistperiphfunc; 840 static int xptedtmatch(struct ccb_dev_match *cdm); 841 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 842 static int xptbustraverse(struct cam_eb *start_bus, 843 xpt_busfunc_t *tr_func, void *arg); 844 static int xpttargettraverse(struct cam_eb *bus, 845 struct cam_et *start_target, 846 xpt_targetfunc_t *tr_func, void *arg); 847 static int xptdevicetraverse(struct cam_et *target, 848 struct cam_ed *start_device, 849 xpt_devicefunc_t *tr_func, void *arg); 850 static int xptperiphtraverse(struct cam_ed *device, 851 struct cam_periph *start_periph, 852 xpt_periphfunc_t *tr_func, void *arg); 853 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 854 xpt_pdrvfunc_t *tr_func, void *arg); 855 static int xptpdperiphtraverse(struct periph_driver **pdrv, 856 struct cam_periph *start_periph, 857 xpt_periphfunc_t *tr_func, 858 void *arg); 859 static xpt_busfunc_t xptdefbusfunc; 860 static xpt_targetfunc_t xptdeftargetfunc; 861 static xpt_devicefunc_t xptdefdevicefunc; 862 static xpt_periphfunc_t xptdefperiphfunc; 863 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 864 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 865 void *arg); 866 static xpt_devicefunc_t xptsetasyncfunc; 867 static xpt_busfunc_t xptsetasyncbusfunc; 868 static cam_status xptregister(struct cam_periph *periph, 869 void *arg); 870 static cam_status proberegister(struct cam_periph *periph, 871 void *arg); 872 static void probeschedule(struct cam_periph *probe_periph); 873 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 874 static void proberequestdefaultnegotiation(struct cam_periph *periph); 875 static int proberequestbackoff(struct cam_periph *periph, 876 struct cam_ed *device); 877 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 878 static void probecleanup(struct cam_periph *periph); 879 static void xpt_find_quirk(struct cam_ed *device); 880 static void xpt_devise_transport(struct cam_path *path); 881 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 882 struct cam_ed *device, 883 int async_update); 884 static void xpt_toggle_tags(struct cam_path *path); 885 static void xpt_start_tags(struct cam_path *path); 886 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 887 struct cam_ed *dev); 888 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 889 struct cam_ed *dev); 890 static __inline int periph_is_queued(struct cam_periph *periph); 891 static __inline int device_is_alloc_queued(struct cam_ed *device); 892 static __inline int device_is_send_queued(struct cam_ed *device); 893 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 894 895 static __inline int 896 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 897 { 898 int retval; 899 900 if (dev->ccbq.devq_openings > 0) { 901 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 902 cam_ccbq_resize(&dev->ccbq, 903 dev->ccbq.dev_openings 904 + dev->ccbq.dev_active); 905 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 906 } 907 /* 908 * The priority of a device waiting for CCB resources 909 * is that of the the highest priority peripheral driver 910 * enqueued. 911 */ 912 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 913 &dev->alloc_ccb_entry.pinfo, 914 CAMQ_GET_HEAD(&dev->drvq)->priority); 915 } else { 916 retval = 0; 917 } 918 919 return (retval); 920 } 921 922 static __inline int 923 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 924 { 925 int retval; 926 927 if (dev->ccbq.dev_openings > 0) { 928 /* 929 * The priority of a device waiting for controller 930 * resources is that of the the highest priority CCB 931 * enqueued. 932 */ 933 retval = 934 xpt_schedule_dev(&bus->sim->devq->send_queue, 935 &dev->send_ccb_entry.pinfo, 936 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 937 } else { 938 retval = 0; 939 } 940 return (retval); 941 } 942 943 static __inline int 944 periph_is_queued(struct cam_periph *periph) 945 { 946 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 947 } 948 949 static __inline int 950 device_is_alloc_queued(struct cam_ed *device) 951 { 952 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 953 } 954 955 static __inline int 956 device_is_send_queued(struct cam_ed *device) 957 { 958 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 959 } 960 961 static __inline int 962 dev_allocq_is_runnable(struct cam_devq *devq) 963 { 964 /* 965 * Have work to do. 966 * Have space to do more work. 967 * Allowed to do work. 968 */ 969 return ((devq->alloc_queue.qfrozen_cnt == 0) 970 && (devq->alloc_queue.entries > 0) 971 && (devq->alloc_openings > 0)); 972 } 973 974 static void 975 xpt_periph_init() 976 { 977 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 978 } 979 980 static void 981 probe_periph_init() 982 { 983 } 984 985 986 static void 987 xptdone(struct cam_periph *periph, union ccb *done_ccb) 988 { 989 /* Caller will release the CCB */ 990 wakeup(&done_ccb->ccb_h.cbfcnp); 991 } 992 993 static int 994 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 995 { 996 997 /* 998 * Only allow read-write access. 999 */ 1000 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 1001 return(EPERM); 1002 1003 /* 1004 * We don't allow nonblocking access. 1005 */ 1006 if ((flags & O_NONBLOCK) != 0) { 1007 printf("%s: can't do nonblocking access\n", devtoname(dev)); 1008 return(ENODEV); 1009 } 1010 1011 /* Mark ourselves open */ 1012 mtx_lock(&xsoftc.xpt_lock); 1013 xsoftc.flags |= XPT_FLAG_OPEN; 1014 mtx_unlock(&xsoftc.xpt_lock); 1015 1016 return(0); 1017 } 1018 1019 static int 1020 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 1021 { 1022 1023 /* Mark ourselves closed */ 1024 mtx_lock(&xsoftc.xpt_lock); 1025 xsoftc.flags &= ~XPT_FLAG_OPEN; 1026 mtx_unlock(&xsoftc.xpt_lock); 1027 1028 return(0); 1029 } 1030 1031 /* 1032 * Don't automatically grab the xpt softc lock here even though this is going 1033 * through the xpt device. The xpt device is really just a back door for 1034 * accessing other devices and SIMs, so the right thing to do is to grab 1035 * the appropriate SIM lock once the bus/SIM is located. 1036 */ 1037 static int 1038 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1039 { 1040 int error; 1041 1042 error = 0; 1043 1044 switch(cmd) { 1045 /* 1046 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1047 * to accept CCB types that don't quite make sense to send through a 1048 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1049 * in the CAM spec. 1050 */ 1051 case CAMIOCOMMAND: { 1052 union ccb *ccb; 1053 union ccb *inccb; 1054 struct cam_eb *bus; 1055 1056 inccb = (union ccb *)addr; 1057 1058 bus = xpt_find_bus(inccb->ccb_h.path_id); 1059 if (bus == NULL) { 1060 error = EINVAL; 1061 break; 1062 } 1063 1064 switch(inccb->ccb_h.func_code) { 1065 case XPT_SCAN_BUS: 1066 case XPT_RESET_BUS: 1067 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1068 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1069 error = EINVAL; 1070 break; 1071 } 1072 /* FALLTHROUGH */ 1073 case XPT_PATH_INQ: 1074 case XPT_ENG_INQ: 1075 case XPT_SCAN_LUN: 1076 1077 ccb = xpt_alloc_ccb(); 1078 1079 CAM_SIM_LOCK(bus->sim); 1080 1081 /* 1082 * Create a path using the bus, target, and lun the 1083 * user passed in. 1084 */ 1085 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1086 inccb->ccb_h.path_id, 1087 inccb->ccb_h.target_id, 1088 inccb->ccb_h.target_lun) != 1089 CAM_REQ_CMP){ 1090 error = EINVAL; 1091 CAM_SIM_UNLOCK(bus->sim); 1092 xpt_free_ccb(ccb); 1093 break; 1094 } 1095 /* Ensure all of our fields are correct */ 1096 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1097 inccb->ccb_h.pinfo.priority); 1098 xpt_merge_ccb(ccb, inccb); 1099 ccb->ccb_h.cbfcnp = xptdone; 1100 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1101 bcopy(ccb, inccb, sizeof(union ccb)); 1102 xpt_free_path(ccb->ccb_h.path); 1103 xpt_free_ccb(ccb); 1104 CAM_SIM_UNLOCK(bus->sim); 1105 break; 1106 1107 case XPT_DEBUG: { 1108 union ccb ccb; 1109 1110 /* 1111 * This is an immediate CCB, so it's okay to 1112 * allocate it on the stack. 1113 */ 1114 1115 CAM_SIM_LOCK(bus->sim); 1116 1117 /* 1118 * Create a path using the bus, target, and lun the 1119 * user passed in. 1120 */ 1121 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1122 inccb->ccb_h.path_id, 1123 inccb->ccb_h.target_id, 1124 inccb->ccb_h.target_lun) != 1125 CAM_REQ_CMP){ 1126 error = EINVAL; 1127 break; 1128 } 1129 /* Ensure all of our fields are correct */ 1130 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1131 inccb->ccb_h.pinfo.priority); 1132 xpt_merge_ccb(&ccb, inccb); 1133 ccb.ccb_h.cbfcnp = xptdone; 1134 xpt_action(&ccb); 1135 CAM_SIM_UNLOCK(bus->sim); 1136 bcopy(&ccb, inccb, sizeof(union ccb)); 1137 xpt_free_path(ccb.ccb_h.path); 1138 break; 1139 1140 } 1141 case XPT_DEV_MATCH: { 1142 struct cam_periph_map_info mapinfo; 1143 struct cam_path *old_path; 1144 1145 /* 1146 * We can't deal with physical addresses for this 1147 * type of transaction. 1148 */ 1149 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1150 error = EINVAL; 1151 break; 1152 } 1153 1154 /* 1155 * Save this in case the caller had it set to 1156 * something in particular. 1157 */ 1158 old_path = inccb->ccb_h.path; 1159 1160 /* 1161 * We really don't need a path for the matching 1162 * code. The path is needed because of the 1163 * debugging statements in xpt_action(). They 1164 * assume that the CCB has a valid path. 1165 */ 1166 inccb->ccb_h.path = xpt_periph->path; 1167 1168 bzero(&mapinfo, sizeof(mapinfo)); 1169 1170 /* 1171 * Map the pattern and match buffers into kernel 1172 * virtual address space. 1173 */ 1174 error = cam_periph_mapmem(inccb, &mapinfo); 1175 1176 if (error) { 1177 inccb->ccb_h.path = old_path; 1178 break; 1179 } 1180 1181 /* 1182 * This is an immediate CCB, we can send it on directly. 1183 */ 1184 xpt_action(inccb); 1185 1186 /* 1187 * Map the buffers back into user space. 1188 */ 1189 cam_periph_unmapmem(inccb, &mapinfo); 1190 1191 inccb->ccb_h.path = old_path; 1192 1193 error = 0; 1194 break; 1195 } 1196 default: 1197 error = ENOTSUP; 1198 break; 1199 } 1200 xpt_release_bus(bus); 1201 break; 1202 } 1203 /* 1204 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1205 * with the periphal driver name and unit name filled in. The other 1206 * fields don't really matter as input. The passthrough driver name 1207 * ("pass"), and unit number are passed back in the ccb. The current 1208 * device generation number, and the index into the device peripheral 1209 * driver list, and the status are also passed back. Note that 1210 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1211 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1212 * (or rather should be) impossible for the device peripheral driver 1213 * list to change since we look at the whole thing in one pass, and 1214 * we do it with lock protection. 1215 * 1216 */ 1217 case CAMGETPASSTHRU: { 1218 union ccb *ccb; 1219 struct cam_periph *periph; 1220 struct periph_driver **p_drv; 1221 char *name; 1222 u_int unit; 1223 u_int cur_generation; 1224 int base_periph_found; 1225 int splbreaknum; 1226 1227 ccb = (union ccb *)addr; 1228 unit = ccb->cgdl.unit_number; 1229 name = ccb->cgdl.periph_name; 1230 /* 1231 * Every 100 devices, we want to drop our lock protection to 1232 * give the software interrupt handler a chance to run. 1233 * Most systems won't run into this check, but this should 1234 * avoid starvation in the software interrupt handler in 1235 * large systems. 1236 */ 1237 splbreaknum = 100; 1238 1239 ccb = (union ccb *)addr; 1240 1241 base_periph_found = 0; 1242 1243 /* 1244 * Sanity check -- make sure we don't get a null peripheral 1245 * driver name. 1246 */ 1247 if (*ccb->cgdl.periph_name == '\0') { 1248 error = EINVAL; 1249 break; 1250 } 1251 1252 /* Keep the list from changing while we traverse it */ 1253 mtx_lock(&xsoftc.xpt_topo_lock); 1254 ptstartover: 1255 cur_generation = xsoftc.xpt_generation; 1256 1257 /* first find our driver in the list of drivers */ 1258 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1259 if (strcmp((*p_drv)->driver_name, name) == 0) 1260 break; 1261 1262 if (*p_drv == NULL) { 1263 mtx_unlock(&xsoftc.xpt_topo_lock); 1264 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1265 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1266 *ccb->cgdl.periph_name = '\0'; 1267 ccb->cgdl.unit_number = 0; 1268 error = ENOENT; 1269 break; 1270 } 1271 1272 /* 1273 * Run through every peripheral instance of this driver 1274 * and check to see whether it matches the unit passed 1275 * in by the user. If it does, get out of the loops and 1276 * find the passthrough driver associated with that 1277 * peripheral driver. 1278 */ 1279 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1280 periph = TAILQ_NEXT(periph, unit_links)) { 1281 1282 if (periph->unit_number == unit) { 1283 break; 1284 } else if (--splbreaknum == 0) { 1285 mtx_unlock(&xsoftc.xpt_topo_lock); 1286 mtx_lock(&xsoftc.xpt_topo_lock); 1287 splbreaknum = 100; 1288 if (cur_generation != xsoftc.xpt_generation) 1289 goto ptstartover; 1290 } 1291 } 1292 /* 1293 * If we found the peripheral driver that the user passed 1294 * in, go through all of the peripheral drivers for that 1295 * particular device and look for a passthrough driver. 1296 */ 1297 if (periph != NULL) { 1298 struct cam_ed *device; 1299 int i; 1300 1301 base_periph_found = 1; 1302 device = periph->path->device; 1303 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1304 periph != NULL; 1305 periph = SLIST_NEXT(periph, periph_links), i++) { 1306 /* 1307 * Check to see whether we have a 1308 * passthrough device or not. 1309 */ 1310 if (strcmp(periph->periph_name, "pass") == 0) { 1311 /* 1312 * Fill in the getdevlist fields. 1313 */ 1314 strcpy(ccb->cgdl.periph_name, 1315 periph->periph_name); 1316 ccb->cgdl.unit_number = 1317 periph->unit_number; 1318 if (SLIST_NEXT(periph, periph_links)) 1319 ccb->cgdl.status = 1320 CAM_GDEVLIST_MORE_DEVS; 1321 else 1322 ccb->cgdl.status = 1323 CAM_GDEVLIST_LAST_DEVICE; 1324 ccb->cgdl.generation = 1325 device->generation; 1326 ccb->cgdl.index = i; 1327 /* 1328 * Fill in some CCB header fields 1329 * that the user may want. 1330 */ 1331 ccb->ccb_h.path_id = 1332 periph->path->bus->path_id; 1333 ccb->ccb_h.target_id = 1334 periph->path->target->target_id; 1335 ccb->ccb_h.target_lun = 1336 periph->path->device->lun_id; 1337 ccb->ccb_h.status = CAM_REQ_CMP; 1338 break; 1339 } 1340 } 1341 } 1342 1343 /* 1344 * If the periph is null here, one of two things has 1345 * happened. The first possibility is that we couldn't 1346 * find the unit number of the particular peripheral driver 1347 * that the user is asking about. e.g. the user asks for 1348 * the passthrough driver for "da11". We find the list of 1349 * "da" peripherals all right, but there is no unit 11. 1350 * The other possibility is that we went through the list 1351 * of peripheral drivers attached to the device structure, 1352 * but didn't find one with the name "pass". Either way, 1353 * we return ENOENT, since we couldn't find something. 1354 */ 1355 if (periph == NULL) { 1356 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1357 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1358 *ccb->cgdl.periph_name = '\0'; 1359 ccb->cgdl.unit_number = 0; 1360 error = ENOENT; 1361 /* 1362 * It is unfortunate that this is even necessary, 1363 * but there are many, many clueless users out there. 1364 * If this is true, the user is looking for the 1365 * passthrough driver, but doesn't have one in his 1366 * kernel. 1367 */ 1368 if (base_periph_found == 1) { 1369 printf("xptioctl: pass driver is not in the " 1370 "kernel\n"); 1371 printf("xptioctl: put \"device pass0\" in " 1372 "your kernel config file\n"); 1373 } 1374 } 1375 mtx_unlock(&xsoftc.xpt_topo_lock); 1376 break; 1377 } 1378 default: 1379 error = ENOTTY; 1380 break; 1381 } 1382 1383 return(error); 1384 } 1385 1386 static int 1387 cam_module_event_handler(module_t mod, int what, void *arg) 1388 { 1389 int error; 1390 1391 switch (what) { 1392 case MOD_LOAD: 1393 if ((error = xpt_init(NULL)) != 0) 1394 return (error); 1395 break; 1396 case MOD_UNLOAD: 1397 return EBUSY; 1398 default: 1399 return EOPNOTSUPP; 1400 } 1401 1402 return 0; 1403 } 1404 1405 /* thread to handle bus rescans */ 1406 static void 1407 xpt_scanner_thread(void *dummy) 1408 { 1409 cam_isrq_t queue; 1410 union ccb *ccb; 1411 struct cam_sim *sim; 1412 1413 for (;;) { 1414 /* 1415 * Wait for a rescan request to come in. When it does, splice 1416 * it onto a queue from local storage so that the xpt lock 1417 * doesn't need to be held while the requests are being 1418 * processed. 1419 */ 1420 xpt_lock_buses(); 1421 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 1422 "ccb_scanq", 0); 1423 TAILQ_INIT(&queue); 1424 TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe); 1425 xpt_unlock_buses(); 1426 1427 while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) { 1428 TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe); 1429 1430 sim = ccb->ccb_h.path->bus->sim; 1431 CAM_SIM_LOCK(sim); 1432 1433 ccb->ccb_h.func_code = XPT_SCAN_BUS; 1434 ccb->ccb_h.cbfcnp = xptdone; 1435 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5); 1436 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1437 xpt_free_path(ccb->ccb_h.path); 1438 xpt_free_ccb(ccb); 1439 CAM_SIM_UNLOCK(sim); 1440 } 1441 } 1442 } 1443 1444 void 1445 xpt_rescan(union ccb *ccb) 1446 { 1447 struct ccb_hdr *hdr; 1448 1449 /* 1450 * Don't make duplicate entries for the same paths. 1451 */ 1452 xpt_lock_buses(); 1453 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 1454 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 1455 xpt_unlock_buses(); 1456 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 1457 xpt_free_path(ccb->ccb_h.path); 1458 xpt_free_ccb(ccb); 1459 return; 1460 } 1461 } 1462 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 1463 wakeup(&xsoftc.ccb_scanq); 1464 xpt_unlock_buses(); 1465 } 1466 1467 /* Functions accessed by the peripheral drivers */ 1468 static int 1469 xpt_init(void *dummy) 1470 { 1471 struct cam_sim *xpt_sim; 1472 struct cam_path *path; 1473 struct cam_devq *devq; 1474 cam_status status; 1475 1476 TAILQ_INIT(&xsoftc.xpt_busses); 1477 TAILQ_INIT(&cam_simq); 1478 TAILQ_INIT(&xsoftc.ccb_scanq); 1479 STAILQ_INIT(&xsoftc.highpowerq); 1480 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 1481 1482 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 1483 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 1484 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 1485 1486 /* 1487 * The xpt layer is, itself, the equivelent of a SIM. 1488 * Allow 16 ccbs in the ccb pool for it. This should 1489 * give decent parallelism when we probe busses and 1490 * perform other XPT functions. 1491 */ 1492 devq = cam_simq_alloc(16); 1493 xpt_sim = cam_sim_alloc(xptaction, 1494 xptpoll, 1495 "xpt", 1496 /*softc*/NULL, 1497 /*unit*/0, 1498 /*mtx*/&xsoftc.xpt_lock, 1499 /*max_dev_transactions*/0, 1500 /*max_tagged_dev_transactions*/0, 1501 devq); 1502 if (xpt_sim == NULL) 1503 return (ENOMEM); 1504 1505 xpt_sim->max_ccbs = 16; 1506 1507 mtx_lock(&xsoftc.xpt_lock); 1508 if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) { 1509 printf("xpt_init: xpt_bus_register failed with status %#x," 1510 " failing attach\n", status); 1511 return (EINVAL); 1512 } 1513 1514 /* 1515 * Looking at the XPT from the SIM layer, the XPT is 1516 * the equivelent of a peripheral driver. Allocate 1517 * a peripheral driver entry for us. 1518 */ 1519 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1520 CAM_TARGET_WILDCARD, 1521 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1522 printf("xpt_init: xpt_create_path failed with status %#x," 1523 " failing attach\n", status); 1524 return (EINVAL); 1525 } 1526 1527 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1528 path, NULL, 0, xpt_sim); 1529 xpt_free_path(path); 1530 mtx_unlock(&xsoftc.xpt_lock); 1531 1532 /* 1533 * Register a callback for when interrupts are enabled. 1534 */ 1535 xsoftc.xpt_config_hook = 1536 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1537 M_CAMXPT, M_NOWAIT | M_ZERO); 1538 if (xsoftc.xpt_config_hook == NULL) { 1539 printf("xpt_init: Cannot malloc config hook " 1540 "- failing attach\n"); 1541 return (ENOMEM); 1542 } 1543 1544 xsoftc.xpt_config_hook->ich_func = xpt_config; 1545 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 1546 free (xsoftc.xpt_config_hook, M_CAMXPT); 1547 printf("xpt_init: config_intrhook_establish failed " 1548 "- failing attach\n"); 1549 } 1550 1551 /* fire up rescan thread */ 1552 if (kthread_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 1553 printf("xpt_init: failed to create rescan thread\n"); 1554 } 1555 /* Install our software interrupt handlers */ 1556 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 1557 1558 return (0); 1559 } 1560 1561 static cam_status 1562 xptregister(struct cam_periph *periph, void *arg) 1563 { 1564 struct cam_sim *xpt_sim; 1565 1566 if (periph == NULL) { 1567 printf("xptregister: periph was NULL!!\n"); 1568 return(CAM_REQ_CMP_ERR); 1569 } 1570 1571 xpt_sim = (struct cam_sim *)arg; 1572 xpt_sim->softc = periph; 1573 xpt_periph = periph; 1574 periph->softc = NULL; 1575 1576 return(CAM_REQ_CMP); 1577 } 1578 1579 int32_t 1580 xpt_add_periph(struct cam_periph *periph) 1581 { 1582 struct cam_ed *device; 1583 int32_t status; 1584 struct periph_list *periph_head; 1585 1586 mtx_assert(periph->sim->mtx, MA_OWNED); 1587 1588 device = periph->path->device; 1589 1590 periph_head = &device->periphs; 1591 1592 status = CAM_REQ_CMP; 1593 1594 if (device != NULL) { 1595 /* 1596 * Make room for this peripheral 1597 * so it will fit in the queue 1598 * when it's scheduled to run 1599 */ 1600 status = camq_resize(&device->drvq, 1601 device->drvq.array_size + 1); 1602 1603 device->generation++; 1604 1605 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1606 } 1607 1608 mtx_lock(&xsoftc.xpt_topo_lock); 1609 xsoftc.xpt_generation++; 1610 mtx_unlock(&xsoftc.xpt_topo_lock); 1611 1612 return (status); 1613 } 1614 1615 void 1616 xpt_remove_periph(struct cam_periph *periph) 1617 { 1618 struct cam_ed *device; 1619 1620 mtx_assert(periph->sim->mtx, MA_OWNED); 1621 1622 device = periph->path->device; 1623 1624 if (device != NULL) { 1625 struct periph_list *periph_head; 1626 1627 periph_head = &device->periphs; 1628 1629 /* Release the slot for this peripheral */ 1630 camq_resize(&device->drvq, device->drvq.array_size - 1); 1631 1632 device->generation++; 1633 1634 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1635 } 1636 1637 mtx_lock(&xsoftc.xpt_topo_lock); 1638 xsoftc.xpt_generation++; 1639 mtx_unlock(&xsoftc.xpt_topo_lock); 1640 } 1641 1642 1643 void 1644 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1645 { 1646 struct ccb_pathinq cpi; 1647 struct ccb_trans_settings cts; 1648 struct cam_path *path; 1649 u_int speed; 1650 u_int freq; 1651 u_int mb; 1652 1653 mtx_assert(periph->sim->mtx, MA_OWNED); 1654 1655 path = periph->path; 1656 /* 1657 * To ensure that this is printed in one piece, 1658 * mask out CAM interrupts. 1659 */ 1660 printf("%s%d at %s%d bus %d target %d lun %d\n", 1661 periph->periph_name, periph->unit_number, 1662 path->bus->sim->sim_name, 1663 path->bus->sim->unit_number, 1664 path->bus->sim->bus_id, 1665 path->target->target_id, 1666 path->device->lun_id); 1667 printf("%s%d: ", periph->periph_name, periph->unit_number); 1668 scsi_print_inquiry(&path->device->inq_data); 1669 if (bootverbose && path->device->serial_num_len > 0) { 1670 /* Don't wrap the screen - print only the first 60 chars */ 1671 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1672 periph->unit_number, path->device->serial_num); 1673 } 1674 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1675 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1676 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1677 xpt_action((union ccb*)&cts); 1678 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1679 return; 1680 } 1681 1682 /* Ask the SIM for its base transfer speed */ 1683 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1684 cpi.ccb_h.func_code = XPT_PATH_INQ; 1685 xpt_action((union ccb *)&cpi); 1686 1687 speed = cpi.base_transfer_speed; 1688 freq = 0; 1689 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1690 struct ccb_trans_settings_spi *spi; 1691 1692 spi = &cts.xport_specific.spi; 1693 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1694 && spi->sync_offset != 0) { 1695 freq = scsi_calc_syncsrate(spi->sync_period); 1696 speed = freq; 1697 } 1698 1699 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1700 speed *= (0x01 << spi->bus_width); 1701 } 1702 1703 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1704 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1705 if (fc->valid & CTS_FC_VALID_SPEED) { 1706 speed = fc->bitrate; 1707 } 1708 } 1709 1710 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1711 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; 1712 if (sas->valid & CTS_SAS_VALID_SPEED) { 1713 speed = sas->bitrate; 1714 } 1715 } 1716 1717 mb = speed / 1000; 1718 if (mb > 0) 1719 printf("%s%d: %d.%03dMB/s transfers", 1720 periph->periph_name, periph->unit_number, 1721 mb, speed % 1000); 1722 else 1723 printf("%s%d: %dKB/s transfers", periph->periph_name, 1724 periph->unit_number, speed); 1725 /* Report additional information about SPI connections */ 1726 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1727 struct ccb_trans_settings_spi *spi; 1728 1729 spi = &cts.xport_specific.spi; 1730 if (freq != 0) { 1731 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1732 freq % 1000, 1733 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1734 ? " DT" : "", 1735 spi->sync_offset); 1736 } 1737 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1738 && spi->bus_width > 0) { 1739 if (freq != 0) { 1740 printf(", "); 1741 } else { 1742 printf(" ("); 1743 } 1744 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1745 } else if (freq != 0) { 1746 printf(")"); 1747 } 1748 } 1749 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1750 struct ccb_trans_settings_fc *fc; 1751 1752 fc = &cts.xport_specific.fc; 1753 if (fc->valid & CTS_FC_VALID_WWNN) 1754 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1755 if (fc->valid & CTS_FC_VALID_WWPN) 1756 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1757 if (fc->valid & CTS_FC_VALID_PORT) 1758 printf(" PortID 0x%x", fc->port); 1759 } 1760 1761 if (path->device->inq_flags & SID_CmdQue 1762 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1763 printf("\n%s%d: Command Queueing Enabled", 1764 periph->periph_name, periph->unit_number); 1765 } 1766 printf("\n"); 1767 1768 /* 1769 * We only want to print the caller's announce string if they've 1770 * passed one in.. 1771 */ 1772 if (announce_string != NULL) 1773 printf("%s%d: %s\n", periph->periph_name, 1774 periph->unit_number, announce_string); 1775 } 1776 1777 static dev_match_ret 1778 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1779 struct cam_eb *bus) 1780 { 1781 dev_match_ret retval; 1782 int i; 1783 1784 retval = DM_RET_NONE; 1785 1786 /* 1787 * If we aren't given something to match against, that's an error. 1788 */ 1789 if (bus == NULL) 1790 return(DM_RET_ERROR); 1791 1792 /* 1793 * If there are no match entries, then this bus matches no 1794 * matter what. 1795 */ 1796 if ((patterns == NULL) || (num_patterns == 0)) 1797 return(DM_RET_DESCEND | DM_RET_COPY); 1798 1799 for (i = 0; i < num_patterns; i++) { 1800 struct bus_match_pattern *cur_pattern; 1801 1802 /* 1803 * If the pattern in question isn't for a bus node, we 1804 * aren't interested. However, we do indicate to the 1805 * calling routine that we should continue descending the 1806 * tree, since the user wants to match against lower-level 1807 * EDT elements. 1808 */ 1809 if (patterns[i].type != DEV_MATCH_BUS) { 1810 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1811 retval |= DM_RET_DESCEND; 1812 continue; 1813 } 1814 1815 cur_pattern = &patterns[i].pattern.bus_pattern; 1816 1817 /* 1818 * If they want to match any bus node, we give them any 1819 * device node. 1820 */ 1821 if (cur_pattern->flags == BUS_MATCH_ANY) { 1822 /* set the copy flag */ 1823 retval |= DM_RET_COPY; 1824 1825 /* 1826 * If we've already decided on an action, go ahead 1827 * and return. 1828 */ 1829 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1830 return(retval); 1831 } 1832 1833 /* 1834 * Not sure why someone would do this... 1835 */ 1836 if (cur_pattern->flags == BUS_MATCH_NONE) 1837 continue; 1838 1839 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1840 && (cur_pattern->path_id != bus->path_id)) 1841 continue; 1842 1843 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1844 && (cur_pattern->bus_id != bus->sim->bus_id)) 1845 continue; 1846 1847 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1848 && (cur_pattern->unit_number != bus->sim->unit_number)) 1849 continue; 1850 1851 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1852 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1853 DEV_IDLEN) != 0)) 1854 continue; 1855 1856 /* 1857 * If we get to this point, the user definitely wants 1858 * information on this bus. So tell the caller to copy the 1859 * data out. 1860 */ 1861 retval |= DM_RET_COPY; 1862 1863 /* 1864 * If the return action has been set to descend, then we 1865 * know that we've already seen a non-bus matching 1866 * expression, therefore we need to further descend the tree. 1867 * This won't change by continuing around the loop, so we 1868 * go ahead and return. If we haven't seen a non-bus 1869 * matching expression, we keep going around the loop until 1870 * we exhaust the matching expressions. We'll set the stop 1871 * flag once we fall out of the loop. 1872 */ 1873 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1874 return(retval); 1875 } 1876 1877 /* 1878 * If the return action hasn't been set to descend yet, that means 1879 * we haven't seen anything other than bus matching patterns. So 1880 * tell the caller to stop descending the tree -- the user doesn't 1881 * want to match against lower level tree elements. 1882 */ 1883 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1884 retval |= DM_RET_STOP; 1885 1886 return(retval); 1887 } 1888 1889 static dev_match_ret 1890 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1891 struct cam_ed *device) 1892 { 1893 dev_match_ret retval; 1894 int i; 1895 1896 retval = DM_RET_NONE; 1897 1898 /* 1899 * If we aren't given something to match against, that's an error. 1900 */ 1901 if (device == NULL) 1902 return(DM_RET_ERROR); 1903 1904 /* 1905 * If there are no match entries, then this device matches no 1906 * matter what. 1907 */ 1908 if ((patterns == NULL) || (num_patterns == 0)) 1909 return(DM_RET_DESCEND | DM_RET_COPY); 1910 1911 for (i = 0; i < num_patterns; i++) { 1912 struct device_match_pattern *cur_pattern; 1913 1914 /* 1915 * If the pattern in question isn't for a device node, we 1916 * aren't interested. 1917 */ 1918 if (patterns[i].type != DEV_MATCH_DEVICE) { 1919 if ((patterns[i].type == DEV_MATCH_PERIPH) 1920 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1921 retval |= DM_RET_DESCEND; 1922 continue; 1923 } 1924 1925 cur_pattern = &patterns[i].pattern.device_pattern; 1926 1927 /* 1928 * If they want to match any device node, we give them any 1929 * device node. 1930 */ 1931 if (cur_pattern->flags == DEV_MATCH_ANY) { 1932 /* set the copy flag */ 1933 retval |= DM_RET_COPY; 1934 1935 1936 /* 1937 * If we've already decided on an action, go ahead 1938 * and return. 1939 */ 1940 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1941 return(retval); 1942 } 1943 1944 /* 1945 * Not sure why someone would do this... 1946 */ 1947 if (cur_pattern->flags == DEV_MATCH_NONE) 1948 continue; 1949 1950 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1951 && (cur_pattern->path_id != device->target->bus->path_id)) 1952 continue; 1953 1954 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1955 && (cur_pattern->target_id != device->target->target_id)) 1956 continue; 1957 1958 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1959 && (cur_pattern->target_lun != device->lun_id)) 1960 continue; 1961 1962 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1963 && (cam_quirkmatch((caddr_t)&device->inq_data, 1964 (caddr_t)&cur_pattern->inq_pat, 1965 1, sizeof(cur_pattern->inq_pat), 1966 scsi_static_inquiry_match) == NULL)) 1967 continue; 1968 1969 /* 1970 * If we get to this point, the user definitely wants 1971 * information on this device. So tell the caller to copy 1972 * the data out. 1973 */ 1974 retval |= DM_RET_COPY; 1975 1976 /* 1977 * If the return action has been set to descend, then we 1978 * know that we've already seen a peripheral matching 1979 * expression, therefore we need to further descend the tree. 1980 * This won't change by continuing around the loop, so we 1981 * go ahead and return. If we haven't seen a peripheral 1982 * matching expression, we keep going around the loop until 1983 * we exhaust the matching expressions. We'll set the stop 1984 * flag once we fall out of the loop. 1985 */ 1986 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1987 return(retval); 1988 } 1989 1990 /* 1991 * If the return action hasn't been set to descend yet, that means 1992 * we haven't seen any peripheral matching patterns. So tell the 1993 * caller to stop descending the tree -- the user doesn't want to 1994 * match against lower level tree elements. 1995 */ 1996 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1997 retval |= DM_RET_STOP; 1998 1999 return(retval); 2000 } 2001 2002 /* 2003 * Match a single peripheral against any number of match patterns. 2004 */ 2005 static dev_match_ret 2006 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 2007 struct cam_periph *periph) 2008 { 2009 dev_match_ret retval; 2010 int i; 2011 2012 /* 2013 * If we aren't given something to match against, that's an error. 2014 */ 2015 if (periph == NULL) 2016 return(DM_RET_ERROR); 2017 2018 /* 2019 * If there are no match entries, then this peripheral matches no 2020 * matter what. 2021 */ 2022 if ((patterns == NULL) || (num_patterns == 0)) 2023 return(DM_RET_STOP | DM_RET_COPY); 2024 2025 /* 2026 * There aren't any nodes below a peripheral node, so there's no 2027 * reason to descend the tree any further. 2028 */ 2029 retval = DM_RET_STOP; 2030 2031 for (i = 0; i < num_patterns; i++) { 2032 struct periph_match_pattern *cur_pattern; 2033 2034 /* 2035 * If the pattern in question isn't for a peripheral, we 2036 * aren't interested. 2037 */ 2038 if (patterns[i].type != DEV_MATCH_PERIPH) 2039 continue; 2040 2041 cur_pattern = &patterns[i].pattern.periph_pattern; 2042 2043 /* 2044 * If they want to match on anything, then we will do so. 2045 */ 2046 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2047 /* set the copy flag */ 2048 retval |= DM_RET_COPY; 2049 2050 /* 2051 * We've already set the return action to stop, 2052 * since there are no nodes below peripherals in 2053 * the tree. 2054 */ 2055 return(retval); 2056 } 2057 2058 /* 2059 * Not sure why someone would do this... 2060 */ 2061 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2062 continue; 2063 2064 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2065 && (cur_pattern->path_id != periph->path->bus->path_id)) 2066 continue; 2067 2068 /* 2069 * For the target and lun id's, we have to make sure the 2070 * target and lun pointers aren't NULL. The xpt peripheral 2071 * has a wildcard target and device. 2072 */ 2073 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2074 && ((periph->path->target == NULL) 2075 ||(cur_pattern->target_id != periph->path->target->target_id))) 2076 continue; 2077 2078 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2079 && ((periph->path->device == NULL) 2080 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2081 continue; 2082 2083 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2084 && (cur_pattern->unit_number != periph->unit_number)) 2085 continue; 2086 2087 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2088 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2089 DEV_IDLEN) != 0)) 2090 continue; 2091 2092 /* 2093 * If we get to this point, the user definitely wants 2094 * information on this peripheral. So tell the caller to 2095 * copy the data out. 2096 */ 2097 retval |= DM_RET_COPY; 2098 2099 /* 2100 * The return action has already been set to stop, since 2101 * peripherals don't have any nodes below them in the EDT. 2102 */ 2103 return(retval); 2104 } 2105 2106 /* 2107 * If we get to this point, the peripheral that was passed in 2108 * doesn't match any of the patterns. 2109 */ 2110 return(retval); 2111 } 2112 2113 static int 2114 xptedtbusfunc(struct cam_eb *bus, void *arg) 2115 { 2116 struct ccb_dev_match *cdm; 2117 dev_match_ret retval; 2118 2119 cdm = (struct ccb_dev_match *)arg; 2120 2121 /* 2122 * If our position is for something deeper in the tree, that means 2123 * that we've already seen this node. So, we keep going down. 2124 */ 2125 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2126 && (cdm->pos.cookie.bus == bus) 2127 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2128 && (cdm->pos.cookie.target != NULL)) 2129 retval = DM_RET_DESCEND; 2130 else 2131 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2132 2133 /* 2134 * If we got an error, bail out of the search. 2135 */ 2136 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2137 cdm->status = CAM_DEV_MATCH_ERROR; 2138 return(0); 2139 } 2140 2141 /* 2142 * If the copy flag is set, copy this bus out. 2143 */ 2144 if (retval & DM_RET_COPY) { 2145 int spaceleft, j; 2146 2147 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2148 sizeof(struct dev_match_result)); 2149 2150 /* 2151 * If we don't have enough space to put in another 2152 * match result, save our position and tell the 2153 * user there are more devices to check. 2154 */ 2155 if (spaceleft < sizeof(struct dev_match_result)) { 2156 bzero(&cdm->pos, sizeof(cdm->pos)); 2157 cdm->pos.position_type = 2158 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2159 2160 cdm->pos.cookie.bus = bus; 2161 cdm->pos.generations[CAM_BUS_GENERATION]= 2162 xsoftc.bus_generation; 2163 cdm->status = CAM_DEV_MATCH_MORE; 2164 return(0); 2165 } 2166 j = cdm->num_matches; 2167 cdm->num_matches++; 2168 cdm->matches[j].type = DEV_MATCH_BUS; 2169 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2170 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2171 cdm->matches[j].result.bus_result.unit_number = 2172 bus->sim->unit_number; 2173 strncpy(cdm->matches[j].result.bus_result.dev_name, 2174 bus->sim->sim_name, DEV_IDLEN); 2175 } 2176 2177 /* 2178 * If the user is only interested in busses, there's no 2179 * reason to descend to the next level in the tree. 2180 */ 2181 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2182 return(1); 2183 2184 /* 2185 * If there is a target generation recorded, check it to 2186 * make sure the target list hasn't changed. 2187 */ 2188 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2189 && (bus == cdm->pos.cookie.bus) 2190 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2191 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2192 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2193 bus->generation)) { 2194 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2195 return(0); 2196 } 2197 2198 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2199 && (cdm->pos.cookie.bus == bus) 2200 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2201 && (cdm->pos.cookie.target != NULL)) 2202 return(xpttargettraverse(bus, 2203 (struct cam_et *)cdm->pos.cookie.target, 2204 xptedttargetfunc, arg)); 2205 else 2206 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2207 } 2208 2209 static int 2210 xptedttargetfunc(struct cam_et *target, void *arg) 2211 { 2212 struct ccb_dev_match *cdm; 2213 2214 cdm = (struct ccb_dev_match *)arg; 2215 2216 /* 2217 * If there is a device list generation recorded, check it to 2218 * make sure the device list hasn't changed. 2219 */ 2220 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2221 && (cdm->pos.cookie.bus == target->bus) 2222 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2223 && (cdm->pos.cookie.target == target) 2224 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2225 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2226 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2227 target->generation)) { 2228 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2229 return(0); 2230 } 2231 2232 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2233 && (cdm->pos.cookie.bus == target->bus) 2234 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2235 && (cdm->pos.cookie.target == target) 2236 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2237 && (cdm->pos.cookie.device != NULL)) 2238 return(xptdevicetraverse(target, 2239 (struct cam_ed *)cdm->pos.cookie.device, 2240 xptedtdevicefunc, arg)); 2241 else 2242 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2243 } 2244 2245 static int 2246 xptedtdevicefunc(struct cam_ed *device, void *arg) 2247 { 2248 2249 struct ccb_dev_match *cdm; 2250 dev_match_ret retval; 2251 2252 cdm = (struct ccb_dev_match *)arg; 2253 2254 /* 2255 * If our position is for something deeper in the tree, that means 2256 * that we've already seen this node. So, we keep going down. 2257 */ 2258 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2259 && (cdm->pos.cookie.device == device) 2260 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2261 && (cdm->pos.cookie.periph != NULL)) 2262 retval = DM_RET_DESCEND; 2263 else 2264 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2265 device); 2266 2267 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2268 cdm->status = CAM_DEV_MATCH_ERROR; 2269 return(0); 2270 } 2271 2272 /* 2273 * If the copy flag is set, copy this device out. 2274 */ 2275 if (retval & DM_RET_COPY) { 2276 int spaceleft, j; 2277 2278 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2279 sizeof(struct dev_match_result)); 2280 2281 /* 2282 * If we don't have enough space to put in another 2283 * match result, save our position and tell the 2284 * user there are more devices to check. 2285 */ 2286 if (spaceleft < sizeof(struct dev_match_result)) { 2287 bzero(&cdm->pos, sizeof(cdm->pos)); 2288 cdm->pos.position_type = 2289 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2290 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2291 2292 cdm->pos.cookie.bus = device->target->bus; 2293 cdm->pos.generations[CAM_BUS_GENERATION]= 2294 xsoftc.bus_generation; 2295 cdm->pos.cookie.target = device->target; 2296 cdm->pos.generations[CAM_TARGET_GENERATION] = 2297 device->target->bus->generation; 2298 cdm->pos.cookie.device = device; 2299 cdm->pos.generations[CAM_DEV_GENERATION] = 2300 device->target->generation; 2301 cdm->status = CAM_DEV_MATCH_MORE; 2302 return(0); 2303 } 2304 j = cdm->num_matches; 2305 cdm->num_matches++; 2306 cdm->matches[j].type = DEV_MATCH_DEVICE; 2307 cdm->matches[j].result.device_result.path_id = 2308 device->target->bus->path_id; 2309 cdm->matches[j].result.device_result.target_id = 2310 device->target->target_id; 2311 cdm->matches[j].result.device_result.target_lun = 2312 device->lun_id; 2313 bcopy(&device->inq_data, 2314 &cdm->matches[j].result.device_result.inq_data, 2315 sizeof(struct scsi_inquiry_data)); 2316 2317 /* Let the user know whether this device is unconfigured */ 2318 if (device->flags & CAM_DEV_UNCONFIGURED) 2319 cdm->matches[j].result.device_result.flags = 2320 DEV_RESULT_UNCONFIGURED; 2321 else 2322 cdm->matches[j].result.device_result.flags = 2323 DEV_RESULT_NOFLAG; 2324 } 2325 2326 /* 2327 * If the user isn't interested in peripherals, don't descend 2328 * the tree any further. 2329 */ 2330 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2331 return(1); 2332 2333 /* 2334 * If there is a peripheral list generation recorded, make sure 2335 * it hasn't changed. 2336 */ 2337 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2338 && (device->target->bus == cdm->pos.cookie.bus) 2339 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2340 && (device->target == cdm->pos.cookie.target) 2341 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2342 && (device == cdm->pos.cookie.device) 2343 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2344 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2345 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2346 device->generation)){ 2347 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2348 return(0); 2349 } 2350 2351 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2352 && (cdm->pos.cookie.bus == device->target->bus) 2353 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2354 && (cdm->pos.cookie.target == device->target) 2355 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2356 && (cdm->pos.cookie.device == device) 2357 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2358 && (cdm->pos.cookie.periph != NULL)) 2359 return(xptperiphtraverse(device, 2360 (struct cam_periph *)cdm->pos.cookie.periph, 2361 xptedtperiphfunc, arg)); 2362 else 2363 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2364 } 2365 2366 static int 2367 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2368 { 2369 struct ccb_dev_match *cdm; 2370 dev_match_ret retval; 2371 2372 cdm = (struct ccb_dev_match *)arg; 2373 2374 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2375 2376 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2377 cdm->status = CAM_DEV_MATCH_ERROR; 2378 return(0); 2379 } 2380 2381 /* 2382 * If the copy flag is set, copy this peripheral out. 2383 */ 2384 if (retval & DM_RET_COPY) { 2385 int spaceleft, j; 2386 2387 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2388 sizeof(struct dev_match_result)); 2389 2390 /* 2391 * If we don't have enough space to put in another 2392 * match result, save our position and tell the 2393 * user there are more devices to check. 2394 */ 2395 if (spaceleft < sizeof(struct dev_match_result)) { 2396 bzero(&cdm->pos, sizeof(cdm->pos)); 2397 cdm->pos.position_type = 2398 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2399 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2400 CAM_DEV_POS_PERIPH; 2401 2402 cdm->pos.cookie.bus = periph->path->bus; 2403 cdm->pos.generations[CAM_BUS_GENERATION]= 2404 xsoftc.bus_generation; 2405 cdm->pos.cookie.target = periph->path->target; 2406 cdm->pos.generations[CAM_TARGET_GENERATION] = 2407 periph->path->bus->generation; 2408 cdm->pos.cookie.device = periph->path->device; 2409 cdm->pos.generations[CAM_DEV_GENERATION] = 2410 periph->path->target->generation; 2411 cdm->pos.cookie.periph = periph; 2412 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2413 periph->path->device->generation; 2414 cdm->status = CAM_DEV_MATCH_MORE; 2415 return(0); 2416 } 2417 2418 j = cdm->num_matches; 2419 cdm->num_matches++; 2420 cdm->matches[j].type = DEV_MATCH_PERIPH; 2421 cdm->matches[j].result.periph_result.path_id = 2422 periph->path->bus->path_id; 2423 cdm->matches[j].result.periph_result.target_id = 2424 periph->path->target->target_id; 2425 cdm->matches[j].result.periph_result.target_lun = 2426 periph->path->device->lun_id; 2427 cdm->matches[j].result.periph_result.unit_number = 2428 periph->unit_number; 2429 strncpy(cdm->matches[j].result.periph_result.periph_name, 2430 periph->periph_name, DEV_IDLEN); 2431 } 2432 2433 return(1); 2434 } 2435 2436 static int 2437 xptedtmatch(struct ccb_dev_match *cdm) 2438 { 2439 int ret; 2440 2441 cdm->num_matches = 0; 2442 2443 /* 2444 * Check the bus list generation. If it has changed, the user 2445 * needs to reset everything and start over. 2446 */ 2447 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2448 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2449 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 2450 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2451 return(0); 2452 } 2453 2454 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2455 && (cdm->pos.cookie.bus != NULL)) 2456 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2457 xptedtbusfunc, cdm); 2458 else 2459 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2460 2461 /* 2462 * If we get back 0, that means that we had to stop before fully 2463 * traversing the EDT. It also means that one of the subroutines 2464 * has set the status field to the proper value. If we get back 1, 2465 * we've fully traversed the EDT and copied out any matching entries. 2466 */ 2467 if (ret == 1) 2468 cdm->status = CAM_DEV_MATCH_LAST; 2469 2470 return(ret); 2471 } 2472 2473 static int 2474 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2475 { 2476 struct ccb_dev_match *cdm; 2477 2478 cdm = (struct ccb_dev_match *)arg; 2479 2480 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2481 && (cdm->pos.cookie.pdrv == pdrv) 2482 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2483 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2484 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2485 (*pdrv)->generation)) { 2486 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2487 return(0); 2488 } 2489 2490 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2491 && (cdm->pos.cookie.pdrv == pdrv) 2492 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2493 && (cdm->pos.cookie.periph != NULL)) 2494 return(xptpdperiphtraverse(pdrv, 2495 (struct cam_periph *)cdm->pos.cookie.periph, 2496 xptplistperiphfunc, arg)); 2497 else 2498 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2499 } 2500 2501 static int 2502 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2503 { 2504 struct ccb_dev_match *cdm; 2505 dev_match_ret retval; 2506 2507 cdm = (struct ccb_dev_match *)arg; 2508 2509 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2510 2511 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2512 cdm->status = CAM_DEV_MATCH_ERROR; 2513 return(0); 2514 } 2515 2516 /* 2517 * If the copy flag is set, copy this peripheral out. 2518 */ 2519 if (retval & DM_RET_COPY) { 2520 int spaceleft, j; 2521 2522 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2523 sizeof(struct dev_match_result)); 2524 2525 /* 2526 * If we don't have enough space to put in another 2527 * match result, save our position and tell the 2528 * user there are more devices to check. 2529 */ 2530 if (spaceleft < sizeof(struct dev_match_result)) { 2531 struct periph_driver **pdrv; 2532 2533 pdrv = NULL; 2534 bzero(&cdm->pos, sizeof(cdm->pos)); 2535 cdm->pos.position_type = 2536 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2537 CAM_DEV_POS_PERIPH; 2538 2539 /* 2540 * This may look a bit non-sensical, but it is 2541 * actually quite logical. There are very few 2542 * peripheral drivers, and bloating every peripheral 2543 * structure with a pointer back to its parent 2544 * peripheral driver linker set entry would cost 2545 * more in the long run than doing this quick lookup. 2546 */ 2547 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2548 if (strcmp((*pdrv)->driver_name, 2549 periph->periph_name) == 0) 2550 break; 2551 } 2552 2553 if (*pdrv == NULL) { 2554 cdm->status = CAM_DEV_MATCH_ERROR; 2555 return(0); 2556 } 2557 2558 cdm->pos.cookie.pdrv = pdrv; 2559 /* 2560 * The periph generation slot does double duty, as 2561 * does the periph pointer slot. They are used for 2562 * both edt and pdrv lookups and positioning. 2563 */ 2564 cdm->pos.cookie.periph = periph; 2565 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2566 (*pdrv)->generation; 2567 cdm->status = CAM_DEV_MATCH_MORE; 2568 return(0); 2569 } 2570 2571 j = cdm->num_matches; 2572 cdm->num_matches++; 2573 cdm->matches[j].type = DEV_MATCH_PERIPH; 2574 cdm->matches[j].result.periph_result.path_id = 2575 periph->path->bus->path_id; 2576 2577 /* 2578 * The transport layer peripheral doesn't have a target or 2579 * lun. 2580 */ 2581 if (periph->path->target) 2582 cdm->matches[j].result.periph_result.target_id = 2583 periph->path->target->target_id; 2584 else 2585 cdm->matches[j].result.periph_result.target_id = -1; 2586 2587 if (periph->path->device) 2588 cdm->matches[j].result.periph_result.target_lun = 2589 periph->path->device->lun_id; 2590 else 2591 cdm->matches[j].result.periph_result.target_lun = -1; 2592 2593 cdm->matches[j].result.periph_result.unit_number = 2594 periph->unit_number; 2595 strncpy(cdm->matches[j].result.periph_result.periph_name, 2596 periph->periph_name, DEV_IDLEN); 2597 } 2598 2599 return(1); 2600 } 2601 2602 static int 2603 xptperiphlistmatch(struct ccb_dev_match *cdm) 2604 { 2605 int ret; 2606 2607 cdm->num_matches = 0; 2608 2609 /* 2610 * At this point in the edt traversal function, we check the bus 2611 * list generation to make sure that no busses have been added or 2612 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2613 * For the peripheral driver list traversal function, however, we 2614 * don't have to worry about new peripheral driver types coming or 2615 * going; they're in a linker set, and therefore can't change 2616 * without a recompile. 2617 */ 2618 2619 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2620 && (cdm->pos.cookie.pdrv != NULL)) 2621 ret = xptpdrvtraverse( 2622 (struct periph_driver **)cdm->pos.cookie.pdrv, 2623 xptplistpdrvfunc, cdm); 2624 else 2625 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2626 2627 /* 2628 * If we get back 0, that means that we had to stop before fully 2629 * traversing the peripheral driver tree. It also means that one of 2630 * the subroutines has set the status field to the proper value. If 2631 * we get back 1, we've fully traversed the EDT and copied out any 2632 * matching entries. 2633 */ 2634 if (ret == 1) 2635 cdm->status = CAM_DEV_MATCH_LAST; 2636 2637 return(ret); 2638 } 2639 2640 static int 2641 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2642 { 2643 struct cam_eb *bus, *next_bus; 2644 int retval; 2645 2646 retval = 1; 2647 2648 mtx_lock(&xsoftc.xpt_topo_lock); 2649 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2650 bus != NULL; 2651 bus = next_bus) { 2652 next_bus = TAILQ_NEXT(bus, links); 2653 2654 mtx_unlock(&xsoftc.xpt_topo_lock); 2655 CAM_SIM_LOCK(bus->sim); 2656 retval = tr_func(bus, arg); 2657 CAM_SIM_UNLOCK(bus->sim); 2658 if (retval == 0) 2659 return(retval); 2660 mtx_lock(&xsoftc.xpt_topo_lock); 2661 } 2662 mtx_unlock(&xsoftc.xpt_topo_lock); 2663 2664 return(retval); 2665 } 2666 2667 static int 2668 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2669 xpt_targetfunc_t *tr_func, void *arg) 2670 { 2671 struct cam_et *target, *next_target; 2672 int retval; 2673 2674 retval = 1; 2675 for (target = (start_target ? start_target : 2676 TAILQ_FIRST(&bus->et_entries)); 2677 target != NULL; target = next_target) { 2678 2679 next_target = TAILQ_NEXT(target, links); 2680 2681 retval = tr_func(target, arg); 2682 2683 if (retval == 0) 2684 return(retval); 2685 } 2686 2687 return(retval); 2688 } 2689 2690 static int 2691 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2692 xpt_devicefunc_t *tr_func, void *arg) 2693 { 2694 struct cam_ed *device, *next_device; 2695 int retval; 2696 2697 retval = 1; 2698 for (device = (start_device ? start_device : 2699 TAILQ_FIRST(&target->ed_entries)); 2700 device != NULL; 2701 device = next_device) { 2702 2703 next_device = TAILQ_NEXT(device, links); 2704 2705 retval = tr_func(device, arg); 2706 2707 if (retval == 0) 2708 return(retval); 2709 } 2710 2711 return(retval); 2712 } 2713 2714 static int 2715 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2716 xpt_periphfunc_t *tr_func, void *arg) 2717 { 2718 struct cam_periph *periph, *next_periph; 2719 int retval; 2720 2721 retval = 1; 2722 2723 for (periph = (start_periph ? start_periph : 2724 SLIST_FIRST(&device->periphs)); 2725 periph != NULL; 2726 periph = next_periph) { 2727 2728 next_periph = SLIST_NEXT(periph, periph_links); 2729 2730 retval = tr_func(periph, arg); 2731 if (retval == 0) 2732 return(retval); 2733 } 2734 2735 return(retval); 2736 } 2737 2738 static int 2739 xptpdrvtraverse(struct periph_driver **start_pdrv, 2740 xpt_pdrvfunc_t *tr_func, void *arg) 2741 { 2742 struct periph_driver **pdrv; 2743 int retval; 2744 2745 retval = 1; 2746 2747 /* 2748 * We don't traverse the peripheral driver list like we do the 2749 * other lists, because it is a linker set, and therefore cannot be 2750 * changed during runtime. If the peripheral driver list is ever 2751 * re-done to be something other than a linker set (i.e. it can 2752 * change while the system is running), the list traversal should 2753 * be modified to work like the other traversal functions. 2754 */ 2755 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2756 *pdrv != NULL; pdrv++) { 2757 retval = tr_func(pdrv, arg); 2758 2759 if (retval == 0) 2760 return(retval); 2761 } 2762 2763 return(retval); 2764 } 2765 2766 static int 2767 xptpdperiphtraverse(struct periph_driver **pdrv, 2768 struct cam_periph *start_periph, 2769 xpt_periphfunc_t *tr_func, void *arg) 2770 { 2771 struct cam_periph *periph, *next_periph; 2772 int retval; 2773 2774 retval = 1; 2775 2776 for (periph = (start_periph ? start_periph : 2777 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2778 periph = next_periph) { 2779 2780 next_periph = TAILQ_NEXT(periph, unit_links); 2781 2782 retval = tr_func(periph, arg); 2783 if (retval == 0) 2784 return(retval); 2785 } 2786 return(retval); 2787 } 2788 2789 static int 2790 xptdefbusfunc(struct cam_eb *bus, void *arg) 2791 { 2792 struct xpt_traverse_config *tr_config; 2793 2794 tr_config = (struct xpt_traverse_config *)arg; 2795 2796 if (tr_config->depth == XPT_DEPTH_BUS) { 2797 xpt_busfunc_t *tr_func; 2798 2799 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2800 2801 return(tr_func(bus, tr_config->tr_arg)); 2802 } else 2803 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2804 } 2805 2806 static int 2807 xptdeftargetfunc(struct cam_et *target, void *arg) 2808 { 2809 struct xpt_traverse_config *tr_config; 2810 2811 tr_config = (struct xpt_traverse_config *)arg; 2812 2813 if (tr_config->depth == XPT_DEPTH_TARGET) { 2814 xpt_targetfunc_t *tr_func; 2815 2816 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2817 2818 return(tr_func(target, tr_config->tr_arg)); 2819 } else 2820 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2821 } 2822 2823 static int 2824 xptdefdevicefunc(struct cam_ed *device, void *arg) 2825 { 2826 struct xpt_traverse_config *tr_config; 2827 2828 tr_config = (struct xpt_traverse_config *)arg; 2829 2830 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2831 xpt_devicefunc_t *tr_func; 2832 2833 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2834 2835 return(tr_func(device, tr_config->tr_arg)); 2836 } else 2837 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2838 } 2839 2840 static int 2841 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2842 { 2843 struct xpt_traverse_config *tr_config; 2844 xpt_periphfunc_t *tr_func; 2845 2846 tr_config = (struct xpt_traverse_config *)arg; 2847 2848 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2849 2850 /* 2851 * Unlike the other default functions, we don't check for depth 2852 * here. The peripheral driver level is the last level in the EDT, 2853 * so if we're here, we should execute the function in question. 2854 */ 2855 return(tr_func(periph, tr_config->tr_arg)); 2856 } 2857 2858 /* 2859 * Execute the given function for every bus in the EDT. 2860 */ 2861 static int 2862 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2863 { 2864 struct xpt_traverse_config tr_config; 2865 2866 tr_config.depth = XPT_DEPTH_BUS; 2867 tr_config.tr_func = tr_func; 2868 tr_config.tr_arg = arg; 2869 2870 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2871 } 2872 2873 /* 2874 * Execute the given function for every device in the EDT. 2875 */ 2876 static int 2877 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2878 { 2879 struct xpt_traverse_config tr_config; 2880 2881 tr_config.depth = XPT_DEPTH_DEVICE; 2882 tr_config.tr_func = tr_func; 2883 tr_config.tr_arg = arg; 2884 2885 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2886 } 2887 2888 static int 2889 xptsetasyncfunc(struct cam_ed *device, void *arg) 2890 { 2891 struct cam_path path; 2892 struct ccb_getdev cgd; 2893 struct async_node *cur_entry; 2894 2895 cur_entry = (struct async_node *)arg; 2896 2897 /* 2898 * Don't report unconfigured devices (Wildcard devs, 2899 * devices only for target mode, device instances 2900 * that have been invalidated but are waiting for 2901 * their last reference count to be released). 2902 */ 2903 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2904 return (1); 2905 2906 xpt_compile_path(&path, 2907 NULL, 2908 device->target->bus->path_id, 2909 device->target->target_id, 2910 device->lun_id); 2911 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2912 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2913 xpt_action((union ccb *)&cgd); 2914 cur_entry->callback(cur_entry->callback_arg, 2915 AC_FOUND_DEVICE, 2916 &path, &cgd); 2917 xpt_release_path(&path); 2918 2919 return(1); 2920 } 2921 2922 static int 2923 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2924 { 2925 struct cam_path path; 2926 struct ccb_pathinq cpi; 2927 struct async_node *cur_entry; 2928 2929 cur_entry = (struct async_node *)arg; 2930 2931 xpt_compile_path(&path, /*periph*/NULL, 2932 bus->sim->path_id, 2933 CAM_TARGET_WILDCARD, 2934 CAM_LUN_WILDCARD); 2935 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2936 cpi.ccb_h.func_code = XPT_PATH_INQ; 2937 xpt_action((union ccb *)&cpi); 2938 cur_entry->callback(cur_entry->callback_arg, 2939 AC_PATH_REGISTERED, 2940 &path, &cpi); 2941 xpt_release_path(&path); 2942 2943 return(1); 2944 } 2945 2946 static void 2947 xpt_action_sasync_cb(void *context, int pending) 2948 { 2949 struct async_node *cur_entry; 2950 struct xpt_task *task; 2951 uint32_t added; 2952 2953 task = (struct xpt_task *)context; 2954 cur_entry = (struct async_node *)task->data1; 2955 added = task->data2; 2956 2957 if ((added & AC_FOUND_DEVICE) != 0) { 2958 /* 2959 * Get this peripheral up to date with all 2960 * the currently existing devices. 2961 */ 2962 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 2963 } 2964 if ((added & AC_PATH_REGISTERED) != 0) { 2965 /* 2966 * Get this peripheral up to date with all 2967 * the currently existing busses. 2968 */ 2969 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 2970 } 2971 2972 free(task, M_CAMXPT); 2973 } 2974 2975 void 2976 xpt_action(union ccb *start_ccb) 2977 { 2978 2979 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2980 2981 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2982 2983 switch (start_ccb->ccb_h.func_code) { 2984 case XPT_SCSI_IO: 2985 { 2986 struct cam_ed *device; 2987 #ifdef CAMDEBUG 2988 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2989 struct cam_path *path; 2990 2991 path = start_ccb->ccb_h.path; 2992 #endif 2993 2994 /* 2995 * For the sake of compatibility with SCSI-1 2996 * devices that may not understand the identify 2997 * message, we include lun information in the 2998 * second byte of all commands. SCSI-1 specifies 2999 * that luns are a 3 bit value and reserves only 3 3000 * bits for lun information in the CDB. Later 3001 * revisions of the SCSI spec allow for more than 8 3002 * luns, but have deprecated lun information in the 3003 * CDB. So, if the lun won't fit, we must omit. 3004 * 3005 * Also be aware that during initial probing for devices, 3006 * the inquiry information is unknown but initialized to 0. 3007 * This means that this code will be exercised while probing 3008 * devices with an ANSI revision greater than 2. 3009 */ 3010 device = start_ccb->ccb_h.path->device; 3011 if (device->protocol_version <= SCSI_REV_2 3012 && start_ccb->ccb_h.target_lun < 8 3013 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3014 3015 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3016 start_ccb->ccb_h.target_lun << 5; 3017 } 3018 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3019 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3020 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3021 &path->device->inq_data), 3022 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3023 cdb_str, sizeof(cdb_str)))); 3024 } 3025 /* FALLTHROUGH */ 3026 case XPT_TARGET_IO: 3027 case XPT_CONT_TARGET_IO: 3028 start_ccb->csio.sense_resid = 0; 3029 start_ccb->csio.resid = 0; 3030 /* FALLTHROUGH */ 3031 case XPT_RESET_DEV: 3032 case XPT_ENG_EXEC: 3033 { 3034 struct cam_path *path; 3035 struct cam_sim *sim; 3036 int runq; 3037 3038 path = start_ccb->ccb_h.path; 3039 3040 sim = path->bus->sim; 3041 if (SIM_DEAD(sim)) { 3042 /* The SIM has gone; just execute the CCB directly. */ 3043 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb); 3044 (*(sim->sim_action))(sim, start_ccb); 3045 break; 3046 } 3047 3048 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3049 if (path->device->qfrozen_cnt == 0) 3050 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3051 else 3052 runq = 0; 3053 if (runq != 0) 3054 xpt_run_dev_sendq(path->bus); 3055 break; 3056 } 3057 case XPT_SET_TRAN_SETTINGS: 3058 { 3059 xpt_set_transfer_settings(&start_ccb->cts, 3060 start_ccb->ccb_h.path->device, 3061 /*async_update*/FALSE); 3062 break; 3063 } 3064 case XPT_CALC_GEOMETRY: 3065 { 3066 struct cam_sim *sim; 3067 3068 /* Filter out garbage */ 3069 if (start_ccb->ccg.block_size == 0 3070 || start_ccb->ccg.volume_size == 0) { 3071 start_ccb->ccg.cylinders = 0; 3072 start_ccb->ccg.heads = 0; 3073 start_ccb->ccg.secs_per_track = 0; 3074 start_ccb->ccb_h.status = CAM_REQ_CMP; 3075 break; 3076 } 3077 #ifdef PC98 3078 /* 3079 * In a PC-98 system, geometry translation depens on 3080 * the "real" device geometry obtained from mode page 4. 3081 * SCSI geometry translation is performed in the 3082 * initialization routine of the SCSI BIOS and the result 3083 * stored in host memory. If the translation is available 3084 * in host memory, use it. If not, rely on the default 3085 * translation the device driver performs. 3086 */ 3087 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3088 start_ccb->ccb_h.status = CAM_REQ_CMP; 3089 break; 3090 } 3091 #endif 3092 sim = start_ccb->ccb_h.path->bus->sim; 3093 (*(sim->sim_action))(sim, start_ccb); 3094 break; 3095 } 3096 case XPT_ABORT: 3097 { 3098 union ccb* abort_ccb; 3099 3100 abort_ccb = start_ccb->cab.abort_ccb; 3101 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3102 3103 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3104 struct cam_ccbq *ccbq; 3105 3106 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3107 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3108 abort_ccb->ccb_h.status = 3109 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3110 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3111 xpt_done(abort_ccb); 3112 start_ccb->ccb_h.status = CAM_REQ_CMP; 3113 break; 3114 } 3115 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3116 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3117 /* 3118 * We've caught this ccb en route to 3119 * the SIM. Flag it for abort and the 3120 * SIM will do so just before starting 3121 * real work on the CCB. 3122 */ 3123 abort_ccb->ccb_h.status = 3124 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3125 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3126 start_ccb->ccb_h.status = CAM_REQ_CMP; 3127 break; 3128 } 3129 } 3130 if (XPT_FC_IS_QUEUED(abort_ccb) 3131 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3132 /* 3133 * It's already completed but waiting 3134 * for our SWI to get to it. 3135 */ 3136 start_ccb->ccb_h.status = CAM_UA_ABORT; 3137 break; 3138 } 3139 /* 3140 * If we weren't able to take care of the abort request 3141 * in the XPT, pass the request down to the SIM for processing. 3142 */ 3143 } 3144 /* FALLTHROUGH */ 3145 case XPT_ACCEPT_TARGET_IO: 3146 case XPT_EN_LUN: 3147 case XPT_IMMED_NOTIFY: 3148 case XPT_NOTIFY_ACK: 3149 case XPT_GET_TRAN_SETTINGS: 3150 case XPT_RESET_BUS: 3151 { 3152 struct cam_sim *sim; 3153 3154 sim = start_ccb->ccb_h.path->bus->sim; 3155 (*(sim->sim_action))(sim, start_ccb); 3156 break; 3157 } 3158 case XPT_PATH_INQ: 3159 { 3160 struct cam_sim *sim; 3161 3162 sim = start_ccb->ccb_h.path->bus->sim; 3163 (*(sim->sim_action))(sim, start_ccb); 3164 break; 3165 } 3166 case XPT_PATH_STATS: 3167 start_ccb->cpis.last_reset = 3168 start_ccb->ccb_h.path->bus->last_reset; 3169 start_ccb->ccb_h.status = CAM_REQ_CMP; 3170 break; 3171 case XPT_GDEV_TYPE: 3172 { 3173 struct cam_ed *dev; 3174 3175 dev = start_ccb->ccb_h.path->device; 3176 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3177 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3178 } else { 3179 struct ccb_getdev *cgd; 3180 struct cam_eb *bus; 3181 struct cam_et *tar; 3182 3183 cgd = &start_ccb->cgd; 3184 bus = cgd->ccb_h.path->bus; 3185 tar = cgd->ccb_h.path->target; 3186 cgd->inq_data = dev->inq_data; 3187 cgd->ccb_h.status = CAM_REQ_CMP; 3188 cgd->serial_num_len = dev->serial_num_len; 3189 if ((dev->serial_num_len > 0) 3190 && (dev->serial_num != NULL)) 3191 bcopy(dev->serial_num, cgd->serial_num, 3192 dev->serial_num_len); 3193 } 3194 break; 3195 } 3196 case XPT_GDEV_STATS: 3197 { 3198 struct cam_ed *dev; 3199 3200 dev = start_ccb->ccb_h.path->device; 3201 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3202 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3203 } else { 3204 struct ccb_getdevstats *cgds; 3205 struct cam_eb *bus; 3206 struct cam_et *tar; 3207 3208 cgds = &start_ccb->cgds; 3209 bus = cgds->ccb_h.path->bus; 3210 tar = cgds->ccb_h.path->target; 3211 cgds->dev_openings = dev->ccbq.dev_openings; 3212 cgds->dev_active = dev->ccbq.dev_active; 3213 cgds->devq_openings = dev->ccbq.devq_openings; 3214 cgds->devq_queued = dev->ccbq.queue.entries; 3215 cgds->held = dev->ccbq.held; 3216 cgds->last_reset = tar->last_reset; 3217 cgds->maxtags = dev->quirk->maxtags; 3218 cgds->mintags = dev->quirk->mintags; 3219 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3220 cgds->last_reset = bus->last_reset; 3221 cgds->ccb_h.status = CAM_REQ_CMP; 3222 } 3223 break; 3224 } 3225 case XPT_GDEVLIST: 3226 { 3227 struct cam_periph *nperiph; 3228 struct periph_list *periph_head; 3229 struct ccb_getdevlist *cgdl; 3230 u_int i; 3231 struct cam_ed *device; 3232 int found; 3233 3234 3235 found = 0; 3236 3237 /* 3238 * Don't want anyone mucking with our data. 3239 */ 3240 device = start_ccb->ccb_h.path->device; 3241 periph_head = &device->periphs; 3242 cgdl = &start_ccb->cgdl; 3243 3244 /* 3245 * Check and see if the list has changed since the user 3246 * last requested a list member. If so, tell them that the 3247 * list has changed, and therefore they need to start over 3248 * from the beginning. 3249 */ 3250 if ((cgdl->index != 0) && 3251 (cgdl->generation != device->generation)) { 3252 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3253 break; 3254 } 3255 3256 /* 3257 * Traverse the list of peripherals and attempt to find 3258 * the requested peripheral. 3259 */ 3260 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3261 (nperiph != NULL) && (i <= cgdl->index); 3262 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3263 if (i == cgdl->index) { 3264 strncpy(cgdl->periph_name, 3265 nperiph->periph_name, 3266 DEV_IDLEN); 3267 cgdl->unit_number = nperiph->unit_number; 3268 found = 1; 3269 } 3270 } 3271 if (found == 0) { 3272 cgdl->status = CAM_GDEVLIST_ERROR; 3273 break; 3274 } 3275 3276 if (nperiph == NULL) 3277 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3278 else 3279 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3280 3281 cgdl->index++; 3282 cgdl->generation = device->generation; 3283 3284 cgdl->ccb_h.status = CAM_REQ_CMP; 3285 break; 3286 } 3287 case XPT_DEV_MATCH: 3288 { 3289 dev_pos_type position_type; 3290 struct ccb_dev_match *cdm; 3291 3292 cdm = &start_ccb->cdm; 3293 3294 /* 3295 * There are two ways of getting at information in the EDT. 3296 * The first way is via the primary EDT tree. It starts 3297 * with a list of busses, then a list of targets on a bus, 3298 * then devices/luns on a target, and then peripherals on a 3299 * device/lun. The "other" way is by the peripheral driver 3300 * lists. The peripheral driver lists are organized by 3301 * peripheral driver. (obviously) So it makes sense to 3302 * use the peripheral driver list if the user is looking 3303 * for something like "da1", or all "da" devices. If the 3304 * user is looking for something on a particular bus/target 3305 * or lun, it's generally better to go through the EDT tree. 3306 */ 3307 3308 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3309 position_type = cdm->pos.position_type; 3310 else { 3311 u_int i; 3312 3313 position_type = CAM_DEV_POS_NONE; 3314 3315 for (i = 0; i < cdm->num_patterns; i++) { 3316 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3317 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3318 position_type = CAM_DEV_POS_EDT; 3319 break; 3320 } 3321 } 3322 3323 if (cdm->num_patterns == 0) 3324 position_type = CAM_DEV_POS_EDT; 3325 else if (position_type == CAM_DEV_POS_NONE) 3326 position_type = CAM_DEV_POS_PDRV; 3327 } 3328 3329 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3330 case CAM_DEV_POS_EDT: 3331 xptedtmatch(cdm); 3332 break; 3333 case CAM_DEV_POS_PDRV: 3334 xptperiphlistmatch(cdm); 3335 break; 3336 default: 3337 cdm->status = CAM_DEV_MATCH_ERROR; 3338 break; 3339 } 3340 3341 if (cdm->status == CAM_DEV_MATCH_ERROR) 3342 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3343 else 3344 start_ccb->ccb_h.status = CAM_REQ_CMP; 3345 3346 break; 3347 } 3348 case XPT_SASYNC_CB: 3349 { 3350 struct ccb_setasync *csa; 3351 struct async_node *cur_entry; 3352 struct async_list *async_head; 3353 u_int32_t added; 3354 3355 csa = &start_ccb->csa; 3356 added = csa->event_enable; 3357 async_head = &csa->ccb_h.path->device->asyncs; 3358 3359 /* 3360 * If there is already an entry for us, simply 3361 * update it. 3362 */ 3363 cur_entry = SLIST_FIRST(async_head); 3364 while (cur_entry != NULL) { 3365 if ((cur_entry->callback_arg == csa->callback_arg) 3366 && (cur_entry->callback == csa->callback)) 3367 break; 3368 cur_entry = SLIST_NEXT(cur_entry, links); 3369 } 3370 3371 if (cur_entry != NULL) { 3372 /* 3373 * If the request has no flags set, 3374 * remove the entry. 3375 */ 3376 added &= ~cur_entry->event_enable; 3377 if (csa->event_enable == 0) { 3378 SLIST_REMOVE(async_head, cur_entry, 3379 async_node, links); 3380 csa->ccb_h.path->device->refcount--; 3381 free(cur_entry, M_CAMXPT); 3382 } else { 3383 cur_entry->event_enable = csa->event_enable; 3384 } 3385 } else { 3386 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3387 M_NOWAIT); 3388 if (cur_entry == NULL) { 3389 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3390 break; 3391 } 3392 cur_entry->event_enable = csa->event_enable; 3393 cur_entry->callback_arg = csa->callback_arg; 3394 cur_entry->callback = csa->callback; 3395 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3396 csa->ccb_h.path->device->refcount++; 3397 } 3398 3399 /* 3400 * Need to decouple this operation via a taqskqueue so that 3401 * the locking doesn't become a mess. 3402 */ 3403 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) { 3404 struct xpt_task *task; 3405 3406 task = malloc(sizeof(struct xpt_task), M_CAMXPT, 3407 M_NOWAIT); 3408 if (task == NULL) { 3409 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3410 break; 3411 } 3412 3413 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task); 3414 task->data1 = cur_entry; 3415 task->data2 = added; 3416 taskqueue_enqueue(taskqueue_thread, &task->task); 3417 } 3418 3419 start_ccb->ccb_h.status = CAM_REQ_CMP; 3420 break; 3421 } 3422 case XPT_REL_SIMQ: 3423 { 3424 struct ccb_relsim *crs; 3425 struct cam_ed *dev; 3426 3427 crs = &start_ccb->crs; 3428 dev = crs->ccb_h.path->device; 3429 if (dev == NULL) { 3430 3431 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3432 break; 3433 } 3434 3435 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3436 3437 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 3438 /* Don't ever go below one opening */ 3439 if (crs->openings > 0) { 3440 xpt_dev_ccbq_resize(crs->ccb_h.path, 3441 crs->openings); 3442 3443 if (bootverbose) { 3444 xpt_print(crs->ccb_h.path, 3445 "tagged openings now %d\n", 3446 crs->openings); 3447 } 3448 } 3449 } 3450 } 3451 3452 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3453 3454 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3455 3456 /* 3457 * Just extend the old timeout and decrement 3458 * the freeze count so that a single timeout 3459 * is sufficient for releasing the queue. 3460 */ 3461 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3462 callout_stop(&dev->callout); 3463 } else { 3464 3465 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3466 } 3467 3468 callout_reset(&dev->callout, 3469 (crs->release_timeout * hz) / 1000, 3470 xpt_release_devq_timeout, dev); 3471 3472 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3473 3474 } 3475 3476 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3477 3478 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3479 /* 3480 * Decrement the freeze count so that a single 3481 * completion is still sufficient to unfreeze 3482 * the queue. 3483 */ 3484 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3485 } else { 3486 3487 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3488 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3489 } 3490 } 3491 3492 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3493 3494 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3495 || (dev->ccbq.dev_active == 0)) { 3496 3497 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3498 } else { 3499 3500 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3501 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3502 } 3503 } 3504 3505 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3506 3507 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3508 /*run_queue*/TRUE); 3509 } 3510 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3511 start_ccb->ccb_h.status = CAM_REQ_CMP; 3512 break; 3513 } 3514 case XPT_SCAN_BUS: 3515 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3516 break; 3517 case XPT_SCAN_LUN: 3518 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3519 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3520 start_ccb); 3521 break; 3522 case XPT_DEBUG: { 3523 #ifdef CAMDEBUG 3524 #ifdef CAM_DEBUG_DELAY 3525 cam_debug_delay = CAM_DEBUG_DELAY; 3526 #endif 3527 cam_dflags = start_ccb->cdbg.flags; 3528 if (cam_dpath != NULL) { 3529 xpt_free_path(cam_dpath); 3530 cam_dpath = NULL; 3531 } 3532 3533 if (cam_dflags != CAM_DEBUG_NONE) { 3534 if (xpt_create_path(&cam_dpath, xpt_periph, 3535 start_ccb->ccb_h.path_id, 3536 start_ccb->ccb_h.target_id, 3537 start_ccb->ccb_h.target_lun) != 3538 CAM_REQ_CMP) { 3539 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3540 cam_dflags = CAM_DEBUG_NONE; 3541 } else { 3542 start_ccb->ccb_h.status = CAM_REQ_CMP; 3543 xpt_print(cam_dpath, "debugging flags now %x\n", 3544 cam_dflags); 3545 } 3546 } else { 3547 cam_dpath = NULL; 3548 start_ccb->ccb_h.status = CAM_REQ_CMP; 3549 } 3550 #else /* !CAMDEBUG */ 3551 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3552 #endif /* CAMDEBUG */ 3553 break; 3554 } 3555 case XPT_NOOP: 3556 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3557 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3558 start_ccb->ccb_h.status = CAM_REQ_CMP; 3559 break; 3560 default: 3561 case XPT_SDEV_TYPE: 3562 case XPT_TERM_IO: 3563 case XPT_ENG_INQ: 3564 /* XXX Implement */ 3565 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3566 break; 3567 } 3568 } 3569 3570 void 3571 xpt_polled_action(union ccb *start_ccb) 3572 { 3573 u_int32_t timeout; 3574 struct cam_sim *sim; 3575 struct cam_devq *devq; 3576 struct cam_ed *dev; 3577 3578 3579 timeout = start_ccb->ccb_h.timeout; 3580 sim = start_ccb->ccb_h.path->bus->sim; 3581 devq = sim->devq; 3582 dev = start_ccb->ccb_h.path->device; 3583 3584 mtx_assert(sim->mtx, MA_OWNED); 3585 3586 /* 3587 * Steal an opening so that no other queued requests 3588 * can get it before us while we simulate interrupts. 3589 */ 3590 dev->ccbq.devq_openings--; 3591 dev->ccbq.dev_openings--; 3592 3593 while(((devq != NULL && devq->send_openings <= 0) || 3594 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3595 DELAY(1000); 3596 (*(sim->sim_poll))(sim); 3597 camisr_runqueue(&sim->sim_doneq); 3598 } 3599 3600 dev->ccbq.devq_openings++; 3601 dev->ccbq.dev_openings++; 3602 3603 if (timeout != 0) { 3604 xpt_action(start_ccb); 3605 while(--timeout > 0) { 3606 (*(sim->sim_poll))(sim); 3607 camisr_runqueue(&sim->sim_doneq); 3608 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3609 != CAM_REQ_INPROG) 3610 break; 3611 DELAY(1000); 3612 } 3613 if (timeout == 0) { 3614 /* 3615 * XXX Is it worth adding a sim_timeout entry 3616 * point so we can attempt recovery? If 3617 * this is only used for dumps, I don't think 3618 * it is. 3619 */ 3620 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3621 } 3622 } else { 3623 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3624 } 3625 } 3626 3627 /* 3628 * Schedule a peripheral driver to receive a ccb when it's 3629 * target device has space for more transactions. 3630 */ 3631 void 3632 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3633 { 3634 struct cam_ed *device; 3635 union ccb *work_ccb; 3636 int runq; 3637 3638 mtx_assert(perph->sim->mtx, MA_OWNED); 3639 3640 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3641 device = perph->path->device; 3642 if (periph_is_queued(perph)) { 3643 /* Simply reorder based on new priority */ 3644 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3645 (" change priority to %d\n", new_priority)); 3646 if (new_priority < perph->pinfo.priority) { 3647 camq_change_priority(&device->drvq, 3648 perph->pinfo.index, 3649 new_priority); 3650 } 3651 runq = 0; 3652 } else if (SIM_DEAD(perph->path->bus->sim)) { 3653 /* The SIM is gone so just call periph_start directly. */ 3654 work_ccb = xpt_get_ccb(perph->path->device); 3655 if (work_ccb == NULL) 3656 return; /* XXX */ 3657 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority); 3658 perph->pinfo.priority = new_priority; 3659 perph->periph_start(perph, work_ccb); 3660 return; 3661 } else { 3662 /* New entry on the queue */ 3663 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3664 (" added periph to queue\n")); 3665 perph->pinfo.priority = new_priority; 3666 perph->pinfo.generation = ++device->drvq.generation; 3667 camq_insert(&device->drvq, &perph->pinfo); 3668 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3669 } 3670 if (runq != 0) { 3671 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3672 (" calling xpt_run_devq\n")); 3673 xpt_run_dev_allocq(perph->path->bus); 3674 } 3675 } 3676 3677 3678 /* 3679 * Schedule a device to run on a given queue. 3680 * If the device was inserted as a new entry on the queue, 3681 * return 1 meaning the device queue should be run. If we 3682 * were already queued, implying someone else has already 3683 * started the queue, return 0 so the caller doesn't attempt 3684 * to run the queue. 3685 */ 3686 static int 3687 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3688 u_int32_t new_priority) 3689 { 3690 int retval; 3691 u_int32_t old_priority; 3692 3693 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3694 3695 old_priority = pinfo->priority; 3696 3697 /* 3698 * Are we already queued? 3699 */ 3700 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3701 /* Simply reorder based on new priority */ 3702 if (new_priority < old_priority) { 3703 camq_change_priority(queue, pinfo->index, 3704 new_priority); 3705 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3706 ("changed priority to %d\n", 3707 new_priority)); 3708 } 3709 retval = 0; 3710 } else { 3711 /* New entry on the queue */ 3712 if (new_priority < old_priority) 3713 pinfo->priority = new_priority; 3714 3715 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3716 ("Inserting onto queue\n")); 3717 pinfo->generation = ++queue->generation; 3718 camq_insert(queue, pinfo); 3719 retval = 1; 3720 } 3721 return (retval); 3722 } 3723 3724 static void 3725 xpt_run_dev_allocq(struct cam_eb *bus) 3726 { 3727 struct cam_devq *devq; 3728 3729 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3730 devq = bus->sim->devq; 3731 3732 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3733 (" qfrozen_cnt == 0x%x, entries == %d, " 3734 "openings == %d, active == %d\n", 3735 devq->alloc_queue.qfrozen_cnt, 3736 devq->alloc_queue.entries, 3737 devq->alloc_openings, 3738 devq->alloc_active)); 3739 3740 devq->alloc_queue.qfrozen_cnt++; 3741 while ((devq->alloc_queue.entries > 0) 3742 && (devq->alloc_openings > 0) 3743 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3744 struct cam_ed_qinfo *qinfo; 3745 struct cam_ed *device; 3746 union ccb *work_ccb; 3747 struct cam_periph *drv; 3748 struct camq *drvq; 3749 3750 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3751 CAMQ_HEAD); 3752 device = qinfo->device; 3753 3754 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3755 ("running device %p\n", device)); 3756 3757 drvq = &device->drvq; 3758 3759 #ifdef CAMDEBUG 3760 if (drvq->entries <= 0) { 3761 panic("xpt_run_dev_allocq: " 3762 "Device on queue without any work to do"); 3763 } 3764 #endif 3765 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3766 devq->alloc_openings--; 3767 devq->alloc_active++; 3768 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3769 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3770 drv->pinfo.priority); 3771 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3772 ("calling periph start\n")); 3773 drv->periph_start(drv, work_ccb); 3774 } else { 3775 /* 3776 * Malloc failure in alloc_ccb 3777 */ 3778 /* 3779 * XXX add us to a list to be run from free_ccb 3780 * if we don't have any ccbs active on this 3781 * device queue otherwise we may never get run 3782 * again. 3783 */ 3784 break; 3785 } 3786 3787 if (drvq->entries > 0) { 3788 /* We have more work. Attempt to reschedule */ 3789 xpt_schedule_dev_allocq(bus, device); 3790 } 3791 } 3792 devq->alloc_queue.qfrozen_cnt--; 3793 } 3794 3795 static void 3796 xpt_run_dev_sendq(struct cam_eb *bus) 3797 { 3798 struct cam_devq *devq; 3799 3800 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3801 3802 devq = bus->sim->devq; 3803 3804 devq->send_queue.qfrozen_cnt++; 3805 while ((devq->send_queue.entries > 0) 3806 && (devq->send_openings > 0)) { 3807 struct cam_ed_qinfo *qinfo; 3808 struct cam_ed *device; 3809 union ccb *work_ccb; 3810 struct cam_sim *sim; 3811 3812 if (devq->send_queue.qfrozen_cnt > 1) { 3813 break; 3814 } 3815 3816 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3817 CAMQ_HEAD); 3818 device = qinfo->device; 3819 3820 /* 3821 * If the device has been "frozen", don't attempt 3822 * to run it. 3823 */ 3824 if (device->qfrozen_cnt > 0) { 3825 continue; 3826 } 3827 3828 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3829 ("running device %p\n", device)); 3830 3831 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3832 if (work_ccb == NULL) { 3833 printf("device on run queue with no ccbs???\n"); 3834 continue; 3835 } 3836 3837 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3838 3839 mtx_lock(&xsoftc.xpt_lock); 3840 if (xsoftc.num_highpower <= 0) { 3841 /* 3842 * We got a high power command, but we 3843 * don't have any available slots. Freeze 3844 * the device queue until we have a slot 3845 * available. 3846 */ 3847 device->qfrozen_cnt++; 3848 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3849 &work_ccb->ccb_h, 3850 xpt_links.stqe); 3851 3852 continue; 3853 } else { 3854 /* 3855 * Consume a high power slot while 3856 * this ccb runs. 3857 */ 3858 xsoftc.num_highpower--; 3859 } 3860 mtx_unlock(&xsoftc.xpt_lock); 3861 } 3862 devq->active_dev = device; 3863 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3864 3865 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3866 3867 devq->send_openings--; 3868 devq->send_active++; 3869 3870 if (device->ccbq.queue.entries > 0) 3871 xpt_schedule_dev_sendq(bus, device); 3872 3873 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3874 /* 3875 * The client wants to freeze the queue 3876 * after this CCB is sent. 3877 */ 3878 device->qfrozen_cnt++; 3879 } 3880 3881 /* In Target mode, the peripheral driver knows best... */ 3882 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3883 if ((device->inq_flags & SID_CmdQue) != 0 3884 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3885 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3886 else 3887 /* 3888 * Clear this in case of a retried CCB that 3889 * failed due to a rejected tag. 3890 */ 3891 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3892 } 3893 3894 /* 3895 * Device queues can be shared among multiple sim instances 3896 * that reside on different busses. Use the SIM in the queue 3897 * CCB's path, rather than the one in the bus that was passed 3898 * into this function. 3899 */ 3900 sim = work_ccb->ccb_h.path->bus->sim; 3901 (*(sim->sim_action))(sim, work_ccb); 3902 3903 devq->active_dev = NULL; 3904 } 3905 devq->send_queue.qfrozen_cnt--; 3906 } 3907 3908 /* 3909 * This function merges stuff from the slave ccb into the master ccb, while 3910 * keeping important fields in the master ccb constant. 3911 */ 3912 void 3913 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3914 { 3915 3916 /* 3917 * Pull fields that are valid for peripheral drivers to set 3918 * into the master CCB along with the CCB "payload". 3919 */ 3920 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3921 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3922 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3923 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3924 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3925 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3926 } 3927 3928 void 3929 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3930 { 3931 3932 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3933 ccb_h->pinfo.priority = priority; 3934 ccb_h->path = path; 3935 ccb_h->path_id = path->bus->path_id; 3936 if (path->target) 3937 ccb_h->target_id = path->target->target_id; 3938 else 3939 ccb_h->target_id = CAM_TARGET_WILDCARD; 3940 if (path->device) { 3941 ccb_h->target_lun = path->device->lun_id; 3942 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3943 } else { 3944 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3945 } 3946 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3947 ccb_h->flags = 0; 3948 } 3949 3950 /* Path manipulation functions */ 3951 cam_status 3952 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3953 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3954 { 3955 struct cam_path *path; 3956 cam_status status; 3957 3958 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3959 3960 if (path == NULL) { 3961 status = CAM_RESRC_UNAVAIL; 3962 return(status); 3963 } 3964 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3965 if (status != CAM_REQ_CMP) { 3966 free(path, M_CAMXPT); 3967 path = NULL; 3968 } 3969 *new_path_ptr = path; 3970 return (status); 3971 } 3972 3973 cam_status 3974 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3975 struct cam_periph *periph, path_id_t path_id, 3976 target_id_t target_id, lun_id_t lun_id) 3977 { 3978 struct cam_path *path; 3979 struct cam_eb *bus = NULL; 3980 cam_status status; 3981 int need_unlock = 0; 3982 3983 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3984 3985 if (path_id != CAM_BUS_WILDCARD) { 3986 bus = xpt_find_bus(path_id); 3987 if (bus != NULL) { 3988 need_unlock = 1; 3989 CAM_SIM_LOCK(bus->sim); 3990 } 3991 } 3992 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3993 if (need_unlock) 3994 CAM_SIM_UNLOCK(bus->sim); 3995 if (status != CAM_REQ_CMP) { 3996 free(path, M_CAMXPT); 3997 path = NULL; 3998 } 3999 *new_path_ptr = path; 4000 return (status); 4001 } 4002 4003 static cam_status 4004 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 4005 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4006 { 4007 struct cam_eb *bus; 4008 struct cam_et *target; 4009 struct cam_ed *device; 4010 cam_status status; 4011 4012 status = CAM_REQ_CMP; /* Completed without error */ 4013 target = NULL; /* Wildcarded */ 4014 device = NULL; /* Wildcarded */ 4015 4016 /* 4017 * We will potentially modify the EDT, so block interrupts 4018 * that may attempt to create cam paths. 4019 */ 4020 bus = xpt_find_bus(path_id); 4021 if (bus == NULL) { 4022 status = CAM_PATH_INVALID; 4023 } else { 4024 target = xpt_find_target(bus, target_id); 4025 if (target == NULL) { 4026 /* Create one */ 4027 struct cam_et *new_target; 4028 4029 new_target = xpt_alloc_target(bus, target_id); 4030 if (new_target == NULL) { 4031 status = CAM_RESRC_UNAVAIL; 4032 } else { 4033 target = new_target; 4034 } 4035 } 4036 if (target != NULL) { 4037 device = xpt_find_device(target, lun_id); 4038 if (device == NULL) { 4039 /* Create one */ 4040 struct cam_ed *new_device; 4041 4042 new_device = xpt_alloc_device(bus, 4043 target, 4044 lun_id); 4045 if (new_device == NULL) { 4046 status = CAM_RESRC_UNAVAIL; 4047 } else { 4048 device = new_device; 4049 } 4050 } 4051 } 4052 } 4053 4054 /* 4055 * Only touch the user's data if we are successful. 4056 */ 4057 if (status == CAM_REQ_CMP) { 4058 new_path->periph = perph; 4059 new_path->bus = bus; 4060 new_path->target = target; 4061 new_path->device = device; 4062 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4063 } else { 4064 if (device != NULL) 4065 xpt_release_device(bus, target, device); 4066 if (target != NULL) 4067 xpt_release_target(bus, target); 4068 if (bus != NULL) 4069 xpt_release_bus(bus); 4070 } 4071 return (status); 4072 } 4073 4074 static void 4075 xpt_release_path(struct cam_path *path) 4076 { 4077 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4078 if (path->device != NULL) { 4079 xpt_release_device(path->bus, path->target, path->device); 4080 path->device = NULL; 4081 } 4082 if (path->target != NULL) { 4083 xpt_release_target(path->bus, path->target); 4084 path->target = NULL; 4085 } 4086 if (path->bus != NULL) { 4087 xpt_release_bus(path->bus); 4088 path->bus = NULL; 4089 } 4090 } 4091 4092 void 4093 xpt_free_path(struct cam_path *path) 4094 { 4095 4096 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4097 xpt_release_path(path); 4098 free(path, M_CAMXPT); 4099 } 4100 4101 4102 /* 4103 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4104 * in path1, 2 for match with wildcards in path2. 4105 */ 4106 int 4107 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4108 { 4109 int retval = 0; 4110 4111 if (path1->bus != path2->bus) { 4112 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4113 retval = 1; 4114 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4115 retval = 2; 4116 else 4117 return (-1); 4118 } 4119 if (path1->target != path2->target) { 4120 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4121 if (retval == 0) 4122 retval = 1; 4123 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4124 retval = 2; 4125 else 4126 return (-1); 4127 } 4128 if (path1->device != path2->device) { 4129 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4130 if (retval == 0) 4131 retval = 1; 4132 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4133 retval = 2; 4134 else 4135 return (-1); 4136 } 4137 return (retval); 4138 } 4139 4140 void 4141 xpt_print_path(struct cam_path *path) 4142 { 4143 4144 if (path == NULL) 4145 printf("(nopath): "); 4146 else { 4147 if (path->periph != NULL) 4148 printf("(%s%d:", path->periph->periph_name, 4149 path->periph->unit_number); 4150 else 4151 printf("(noperiph:"); 4152 4153 if (path->bus != NULL) 4154 printf("%s%d:%d:", path->bus->sim->sim_name, 4155 path->bus->sim->unit_number, 4156 path->bus->sim->bus_id); 4157 else 4158 printf("nobus:"); 4159 4160 if (path->target != NULL) 4161 printf("%d:", path->target->target_id); 4162 else 4163 printf("X:"); 4164 4165 if (path->device != NULL) 4166 printf("%d): ", path->device->lun_id); 4167 else 4168 printf("X): "); 4169 } 4170 } 4171 4172 void 4173 xpt_print(struct cam_path *path, const char *fmt, ...) 4174 { 4175 va_list ap; 4176 xpt_print_path(path); 4177 va_start(ap, fmt); 4178 vprintf(fmt, ap); 4179 va_end(ap); 4180 } 4181 4182 int 4183 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4184 { 4185 struct sbuf sb; 4186 4187 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4188 4189 sbuf_new(&sb, str, str_len, 0); 4190 4191 if (path == NULL) 4192 sbuf_printf(&sb, "(nopath): "); 4193 else { 4194 if (path->periph != NULL) 4195 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4196 path->periph->unit_number); 4197 else 4198 sbuf_printf(&sb, "(noperiph:"); 4199 4200 if (path->bus != NULL) 4201 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4202 path->bus->sim->unit_number, 4203 path->bus->sim->bus_id); 4204 else 4205 sbuf_printf(&sb, "nobus:"); 4206 4207 if (path->target != NULL) 4208 sbuf_printf(&sb, "%d:", path->target->target_id); 4209 else 4210 sbuf_printf(&sb, "X:"); 4211 4212 if (path->device != NULL) 4213 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4214 else 4215 sbuf_printf(&sb, "X): "); 4216 } 4217 sbuf_finish(&sb); 4218 4219 return(sbuf_len(&sb)); 4220 } 4221 4222 path_id_t 4223 xpt_path_path_id(struct cam_path *path) 4224 { 4225 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4226 4227 return(path->bus->path_id); 4228 } 4229 4230 target_id_t 4231 xpt_path_target_id(struct cam_path *path) 4232 { 4233 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4234 4235 if (path->target != NULL) 4236 return (path->target->target_id); 4237 else 4238 return (CAM_TARGET_WILDCARD); 4239 } 4240 4241 lun_id_t 4242 xpt_path_lun_id(struct cam_path *path) 4243 { 4244 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4245 4246 if (path->device != NULL) 4247 return (path->device->lun_id); 4248 else 4249 return (CAM_LUN_WILDCARD); 4250 } 4251 4252 struct cam_sim * 4253 xpt_path_sim(struct cam_path *path) 4254 { 4255 4256 return (path->bus->sim); 4257 } 4258 4259 struct cam_periph* 4260 xpt_path_periph(struct cam_path *path) 4261 { 4262 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4263 4264 return (path->periph); 4265 } 4266 4267 /* 4268 * Release a CAM control block for the caller. Remit the cost of the structure 4269 * to the device referenced by the path. If the this device had no 'credits' 4270 * and peripheral drivers have registered async callbacks for this notification 4271 * call them now. 4272 */ 4273 void 4274 xpt_release_ccb(union ccb *free_ccb) 4275 { 4276 struct cam_path *path; 4277 struct cam_ed *device; 4278 struct cam_eb *bus; 4279 struct cam_sim *sim; 4280 4281 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4282 path = free_ccb->ccb_h.path; 4283 device = path->device; 4284 bus = path->bus; 4285 sim = bus->sim; 4286 4287 mtx_assert(sim->mtx, MA_OWNED); 4288 4289 cam_ccbq_release_opening(&device->ccbq); 4290 if (sim->ccb_count > sim->max_ccbs) { 4291 xpt_free_ccb(free_ccb); 4292 sim->ccb_count--; 4293 } else { 4294 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 4295 xpt_links.sle); 4296 } 4297 if (sim->devq == NULL) { 4298 return; 4299 } 4300 sim->devq->alloc_openings++; 4301 sim->devq->alloc_active--; 4302 /* XXX Turn this into an inline function - xpt_run_device?? */ 4303 if ((device_is_alloc_queued(device) == 0) 4304 && (device->drvq.entries > 0)) { 4305 xpt_schedule_dev_allocq(bus, device); 4306 } 4307 if (dev_allocq_is_runnable(sim->devq)) 4308 xpt_run_dev_allocq(bus); 4309 } 4310 4311 /* Functions accessed by SIM drivers */ 4312 4313 /* 4314 * A sim structure, listing the SIM entry points and instance 4315 * identification info is passed to xpt_bus_register to hook the SIM 4316 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4317 * for this new bus and places it in the array of busses and assigns 4318 * it a path_id. The path_id may be influenced by "hard wiring" 4319 * information specified by the user. Once interrupt services are 4320 * availible, the bus will be probed. 4321 */ 4322 int32_t 4323 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4324 { 4325 struct cam_eb *new_bus; 4326 struct cam_eb *old_bus; 4327 struct ccb_pathinq cpi; 4328 4329 mtx_assert(sim->mtx, MA_OWNED); 4330 4331 sim->bus_id = bus; 4332 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4333 M_CAMXPT, M_NOWAIT); 4334 if (new_bus == NULL) { 4335 /* Couldn't satisfy request */ 4336 return (CAM_RESRC_UNAVAIL); 4337 } 4338 4339 if (strcmp(sim->sim_name, "xpt") != 0) { 4340 4341 sim->path_id = 4342 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4343 } 4344 4345 TAILQ_INIT(&new_bus->et_entries); 4346 new_bus->path_id = sim->path_id; 4347 new_bus->sim = sim; 4348 timevalclear(&new_bus->last_reset); 4349 new_bus->flags = 0; 4350 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4351 new_bus->generation = 0; 4352 mtx_lock(&xsoftc.xpt_topo_lock); 4353 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4354 while (old_bus != NULL 4355 && old_bus->path_id < new_bus->path_id) 4356 old_bus = TAILQ_NEXT(old_bus, links); 4357 if (old_bus != NULL) 4358 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4359 else 4360 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4361 xsoftc.bus_generation++; 4362 mtx_unlock(&xsoftc.xpt_topo_lock); 4363 4364 /* Notify interested parties */ 4365 if (sim->path_id != CAM_XPT_PATH_ID) { 4366 struct cam_path path; 4367 4368 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4369 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4370 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4371 cpi.ccb_h.func_code = XPT_PATH_INQ; 4372 xpt_action((union ccb *)&cpi); 4373 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4374 xpt_release_path(&path); 4375 } 4376 return (CAM_SUCCESS); 4377 } 4378 4379 int32_t 4380 xpt_bus_deregister(path_id_t pathid) 4381 { 4382 struct cam_path bus_path; 4383 struct cam_ed *device; 4384 struct cam_ed_qinfo *qinfo; 4385 struct cam_devq *devq; 4386 struct cam_periph *periph; 4387 struct cam_sim *ccbsim; 4388 union ccb *work_ccb; 4389 cam_status status; 4390 4391 4392 status = xpt_compile_path(&bus_path, NULL, pathid, 4393 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4394 if (status != CAM_REQ_CMP) 4395 return (status); 4396 4397 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4398 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4399 4400 /* The SIM may be gone, so use a dummy SIM for any stray operations. */ 4401 devq = bus_path.bus->sim->devq; 4402 ccbsim = bus_path.bus->sim; 4403 bus_path.bus->sim = &cam_dead_sim; 4404 4405 /* Execute any pending operations now. */ 4406 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 4407 CAMQ_HEAD)) != NULL || 4408 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 4409 CAMQ_HEAD)) != NULL) { 4410 do { 4411 device = qinfo->device; 4412 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 4413 if (work_ccb != NULL) { 4414 devq->active_dev = device; 4415 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 4416 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 4417 (*(ccbsim->sim_action))(ccbsim, work_ccb); 4418 } 4419 4420 periph = (struct cam_periph *)camq_remove(&device->drvq, 4421 CAMQ_HEAD); 4422 if (periph != NULL) 4423 xpt_schedule(periph, periph->pinfo.priority); 4424 } while (work_ccb != NULL || periph != NULL); 4425 } 4426 4427 /* Make sure all completed CCBs are processed. */ 4428 while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) { 4429 camisr_runqueue(&ccbsim->sim_doneq); 4430 4431 /* Repeat the async's for the benefit of any new devices. */ 4432 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4433 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4434 } 4435 4436 /* Release the reference count held while registered. */ 4437 xpt_release_bus(bus_path.bus); 4438 xpt_release_path(&bus_path); 4439 4440 return (CAM_REQ_CMP); 4441 } 4442 4443 static path_id_t 4444 xptnextfreepathid(void) 4445 { 4446 struct cam_eb *bus; 4447 path_id_t pathid; 4448 const char *strval; 4449 4450 pathid = 0; 4451 mtx_lock(&xsoftc.xpt_topo_lock); 4452 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4453 retry: 4454 /* Find an unoccupied pathid */ 4455 while (bus != NULL && bus->path_id <= pathid) { 4456 if (bus->path_id == pathid) 4457 pathid++; 4458 bus = TAILQ_NEXT(bus, links); 4459 } 4460 mtx_unlock(&xsoftc.xpt_topo_lock); 4461 4462 /* 4463 * Ensure that this pathid is not reserved for 4464 * a bus that may be registered in the future. 4465 */ 4466 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4467 ++pathid; 4468 /* Start the search over */ 4469 mtx_lock(&xsoftc.xpt_topo_lock); 4470 goto retry; 4471 } 4472 return (pathid); 4473 } 4474 4475 static path_id_t 4476 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4477 { 4478 path_id_t pathid; 4479 int i, dunit, val; 4480 char buf[32]; 4481 const char *dname; 4482 4483 pathid = CAM_XPT_PATH_ID; 4484 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4485 i = 0; 4486 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4487 if (strcmp(dname, "scbus")) { 4488 /* Avoid a bit of foot shooting. */ 4489 continue; 4490 } 4491 if (dunit < 0) /* unwired?! */ 4492 continue; 4493 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4494 if (sim_bus == val) { 4495 pathid = dunit; 4496 break; 4497 } 4498 } else if (sim_bus == 0) { 4499 /* Unspecified matches bus 0 */ 4500 pathid = dunit; 4501 break; 4502 } else { 4503 printf("Ambiguous scbus configuration for %s%d " 4504 "bus %d, cannot wire down. The kernel " 4505 "config entry for scbus%d should " 4506 "specify a controller bus.\n" 4507 "Scbus will be assigned dynamically.\n", 4508 sim_name, sim_unit, sim_bus, dunit); 4509 break; 4510 } 4511 } 4512 4513 if (pathid == CAM_XPT_PATH_ID) 4514 pathid = xptnextfreepathid(); 4515 return (pathid); 4516 } 4517 4518 void 4519 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4520 { 4521 struct cam_eb *bus; 4522 struct cam_et *target, *next_target; 4523 struct cam_ed *device, *next_device; 4524 4525 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4526 4527 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4528 4529 /* 4530 * Most async events come from a CAM interrupt context. In 4531 * a few cases, the error recovery code at the peripheral layer, 4532 * which may run from our SWI or a process context, may signal 4533 * deferred events with a call to xpt_async. 4534 */ 4535 4536 bus = path->bus; 4537 4538 if (async_code == AC_BUS_RESET) { 4539 /* Update our notion of when the last reset occurred */ 4540 microtime(&bus->last_reset); 4541 } 4542 4543 for (target = TAILQ_FIRST(&bus->et_entries); 4544 target != NULL; 4545 target = next_target) { 4546 4547 next_target = TAILQ_NEXT(target, links); 4548 4549 if (path->target != target 4550 && path->target->target_id != CAM_TARGET_WILDCARD 4551 && target->target_id != CAM_TARGET_WILDCARD) 4552 continue; 4553 4554 if (async_code == AC_SENT_BDR) { 4555 /* Update our notion of when the last reset occurred */ 4556 microtime(&path->target->last_reset); 4557 } 4558 4559 for (device = TAILQ_FIRST(&target->ed_entries); 4560 device != NULL; 4561 device = next_device) { 4562 4563 next_device = TAILQ_NEXT(device, links); 4564 4565 if (path->device != device 4566 && path->device->lun_id != CAM_LUN_WILDCARD 4567 && device->lun_id != CAM_LUN_WILDCARD) 4568 continue; 4569 4570 xpt_dev_async(async_code, bus, target, 4571 device, async_arg); 4572 4573 xpt_async_bcast(&device->asyncs, async_code, 4574 path, async_arg); 4575 } 4576 } 4577 4578 /* 4579 * If this wasn't a fully wildcarded async, tell all 4580 * clients that want all async events. 4581 */ 4582 if (bus != xpt_periph->path->bus) 4583 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4584 path, async_arg); 4585 } 4586 4587 static void 4588 xpt_async_bcast(struct async_list *async_head, 4589 u_int32_t async_code, 4590 struct cam_path *path, void *async_arg) 4591 { 4592 struct async_node *cur_entry; 4593 4594 cur_entry = SLIST_FIRST(async_head); 4595 while (cur_entry != NULL) { 4596 struct async_node *next_entry; 4597 /* 4598 * Grab the next list entry before we call the current 4599 * entry's callback. This is because the callback function 4600 * can delete its async callback entry. 4601 */ 4602 next_entry = SLIST_NEXT(cur_entry, links); 4603 if ((cur_entry->event_enable & async_code) != 0) 4604 cur_entry->callback(cur_entry->callback_arg, 4605 async_code, path, 4606 async_arg); 4607 cur_entry = next_entry; 4608 } 4609 } 4610 4611 /* 4612 * Handle any per-device event notifications that require action by the XPT. 4613 */ 4614 static void 4615 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4616 struct cam_ed *device, void *async_arg) 4617 { 4618 cam_status status; 4619 struct cam_path newpath; 4620 4621 /* 4622 * We only need to handle events for real devices. 4623 */ 4624 if (target->target_id == CAM_TARGET_WILDCARD 4625 || device->lun_id == CAM_LUN_WILDCARD) 4626 return; 4627 4628 /* 4629 * We need our own path with wildcards expanded to 4630 * handle certain types of events. 4631 */ 4632 if ((async_code == AC_SENT_BDR) 4633 || (async_code == AC_BUS_RESET) 4634 || (async_code == AC_INQ_CHANGED)) 4635 status = xpt_compile_path(&newpath, NULL, 4636 bus->path_id, 4637 target->target_id, 4638 device->lun_id); 4639 else 4640 status = CAM_REQ_CMP_ERR; 4641 4642 if (status == CAM_REQ_CMP) { 4643 4644 /* 4645 * Allow transfer negotiation to occur in a 4646 * tag free environment. 4647 */ 4648 if (async_code == AC_SENT_BDR 4649 || async_code == AC_BUS_RESET) 4650 xpt_toggle_tags(&newpath); 4651 4652 if (async_code == AC_INQ_CHANGED) { 4653 /* 4654 * We've sent a start unit command, or 4655 * something similar to a device that 4656 * may have caused its inquiry data to 4657 * change. So we re-scan the device to 4658 * refresh the inquiry data for it. 4659 */ 4660 xpt_scan_lun(newpath.periph, &newpath, 4661 CAM_EXPECT_INQ_CHANGE, NULL); 4662 } 4663 xpt_release_path(&newpath); 4664 } else if (async_code == AC_LOST_DEVICE) { 4665 device->flags |= CAM_DEV_UNCONFIGURED; 4666 } else if (async_code == AC_TRANSFER_NEG) { 4667 struct ccb_trans_settings *settings; 4668 4669 settings = (struct ccb_trans_settings *)async_arg; 4670 xpt_set_transfer_settings(settings, device, 4671 /*async_update*/TRUE); 4672 } 4673 } 4674 4675 u_int32_t 4676 xpt_freeze_devq(struct cam_path *path, u_int count) 4677 { 4678 struct ccb_hdr *ccbh; 4679 4680 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4681 4682 path->device->qfrozen_cnt += count; 4683 4684 /* 4685 * Mark the last CCB in the queue as needing 4686 * to be requeued if the driver hasn't 4687 * changed it's state yet. This fixes a race 4688 * where a ccb is just about to be queued to 4689 * a controller driver when it's interrupt routine 4690 * freezes the queue. To completly close the 4691 * hole, controller drives must check to see 4692 * if a ccb's status is still CAM_REQ_INPROG 4693 * just before they queue 4694 * the CCB. See ahc_action/ahc_freeze_devq for 4695 * an example. 4696 */ 4697 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4698 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4699 ccbh->status = CAM_REQUEUE_REQ; 4700 return (path->device->qfrozen_cnt); 4701 } 4702 4703 u_int32_t 4704 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4705 { 4706 mtx_assert(sim->mtx, MA_OWNED); 4707 4708 sim->devq->send_queue.qfrozen_cnt += count; 4709 if (sim->devq->active_dev != NULL) { 4710 struct ccb_hdr *ccbh; 4711 4712 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4713 ccb_hdr_tailq); 4714 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4715 ccbh->status = CAM_REQUEUE_REQ; 4716 } 4717 return (sim->devq->send_queue.qfrozen_cnt); 4718 } 4719 4720 static void 4721 xpt_release_devq_timeout(void *arg) 4722 { 4723 struct cam_ed *device; 4724 4725 device = (struct cam_ed *)arg; 4726 4727 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4728 } 4729 4730 void 4731 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4732 { 4733 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4734 4735 xpt_release_devq_device(path->device, count, run_queue); 4736 } 4737 4738 static void 4739 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4740 { 4741 int rundevq; 4742 4743 rundevq = 0; 4744 if (dev->qfrozen_cnt > 0) { 4745 4746 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4747 dev->qfrozen_cnt -= count; 4748 if (dev->qfrozen_cnt == 0) { 4749 4750 /* 4751 * No longer need to wait for a successful 4752 * command completion. 4753 */ 4754 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4755 4756 /* 4757 * Remove any timeouts that might be scheduled 4758 * to release this queue. 4759 */ 4760 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4761 callout_stop(&dev->callout); 4762 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4763 } 4764 4765 /* 4766 * Now that we are unfrozen schedule the 4767 * device so any pending transactions are 4768 * run. 4769 */ 4770 if ((dev->ccbq.queue.entries > 0) 4771 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4772 && (run_queue != 0)) { 4773 rundevq = 1; 4774 } 4775 } 4776 } 4777 if (rundevq != 0) 4778 xpt_run_dev_sendq(dev->target->bus); 4779 } 4780 4781 void 4782 xpt_release_simq(struct cam_sim *sim, int run_queue) 4783 { 4784 struct camq *sendq; 4785 4786 mtx_assert(sim->mtx, MA_OWNED); 4787 4788 sendq = &(sim->devq->send_queue); 4789 if (sendq->qfrozen_cnt > 0) { 4790 4791 sendq->qfrozen_cnt--; 4792 if (sendq->qfrozen_cnt == 0) { 4793 struct cam_eb *bus; 4794 4795 /* 4796 * If there is a timeout scheduled to release this 4797 * sim queue, remove it. The queue frozen count is 4798 * already at 0. 4799 */ 4800 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4801 callout_stop(&sim->callout); 4802 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4803 } 4804 bus = xpt_find_bus(sim->path_id); 4805 4806 if (run_queue) { 4807 /* 4808 * Now that we are unfrozen run the send queue. 4809 */ 4810 xpt_run_dev_sendq(bus); 4811 } 4812 xpt_release_bus(bus); 4813 } 4814 } 4815 } 4816 4817 /* 4818 * XXX Appears to be unused. 4819 */ 4820 static void 4821 xpt_release_simq_timeout(void *arg) 4822 { 4823 struct cam_sim *sim; 4824 4825 sim = (struct cam_sim *)arg; 4826 xpt_release_simq(sim, /* run_queue */ TRUE); 4827 } 4828 4829 void 4830 xpt_done(union ccb *done_ccb) 4831 { 4832 struct cam_sim *sim; 4833 4834 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4835 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4836 /* 4837 * Queue up the request for handling by our SWI handler 4838 * any of the "non-immediate" type of ccbs. 4839 */ 4840 sim = done_ccb->ccb_h.path->bus->sim; 4841 switch (done_ccb->ccb_h.path->periph->type) { 4842 case CAM_PERIPH_BIO: 4843 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4844 sim_links.tqe); 4845 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4846 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4847 mtx_lock(&cam_simq_lock); 4848 TAILQ_INSERT_TAIL(&cam_simq, sim, 4849 links); 4850 sim->flags |= CAM_SIM_ON_DONEQ; 4851 mtx_unlock(&cam_simq_lock); 4852 } 4853 if ((done_ccb->ccb_h.path->periph->flags & 4854 CAM_PERIPH_POLLED) == 0) 4855 swi_sched(cambio_ih, 0); 4856 break; 4857 default: 4858 panic("unknown periph type %d", 4859 done_ccb->ccb_h.path->periph->type); 4860 } 4861 } 4862 } 4863 4864 union ccb * 4865 xpt_alloc_ccb() 4866 { 4867 union ccb *new_ccb; 4868 4869 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4870 return (new_ccb); 4871 } 4872 4873 union ccb * 4874 xpt_alloc_ccb_nowait() 4875 { 4876 union ccb *new_ccb; 4877 4878 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4879 return (new_ccb); 4880 } 4881 4882 void 4883 xpt_free_ccb(union ccb *free_ccb) 4884 { 4885 free(free_ccb, M_CAMXPT); 4886 } 4887 4888 4889 4890 /* Private XPT functions */ 4891 4892 /* 4893 * Get a CAM control block for the caller. Charge the structure to the device 4894 * referenced by the path. If the this device has no 'credits' then the 4895 * device already has the maximum number of outstanding operations under way 4896 * and we return NULL. If we don't have sufficient resources to allocate more 4897 * ccbs, we also return NULL. 4898 */ 4899 static union ccb * 4900 xpt_get_ccb(struct cam_ed *device) 4901 { 4902 union ccb *new_ccb; 4903 struct cam_sim *sim; 4904 4905 sim = device->sim; 4906 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4907 new_ccb = xpt_alloc_ccb_nowait(); 4908 if (new_ccb == NULL) { 4909 return (NULL); 4910 } 4911 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4912 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4913 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4914 xpt_links.sle); 4915 sim->ccb_count++; 4916 } 4917 cam_ccbq_take_opening(&device->ccbq); 4918 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4919 return (new_ccb); 4920 } 4921 4922 static void 4923 xpt_release_bus(struct cam_eb *bus) 4924 { 4925 4926 if ((--bus->refcount == 0) 4927 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4928 mtx_lock(&xsoftc.xpt_topo_lock); 4929 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4930 xsoftc.bus_generation++; 4931 mtx_unlock(&xsoftc.xpt_topo_lock); 4932 free(bus, M_CAMXPT); 4933 } 4934 } 4935 4936 static struct cam_et * 4937 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4938 { 4939 struct cam_et *target; 4940 4941 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4942 if (target != NULL) { 4943 struct cam_et *cur_target; 4944 4945 TAILQ_INIT(&target->ed_entries); 4946 target->bus = bus; 4947 target->target_id = target_id; 4948 target->refcount = 1; 4949 target->generation = 0; 4950 timevalclear(&target->last_reset); 4951 /* 4952 * Hold a reference to our parent bus so it 4953 * will not go away before we do. 4954 */ 4955 bus->refcount++; 4956 4957 /* Insertion sort into our bus's target list */ 4958 cur_target = TAILQ_FIRST(&bus->et_entries); 4959 while (cur_target != NULL && cur_target->target_id < target_id) 4960 cur_target = TAILQ_NEXT(cur_target, links); 4961 4962 if (cur_target != NULL) { 4963 TAILQ_INSERT_BEFORE(cur_target, target, links); 4964 } else { 4965 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4966 } 4967 bus->generation++; 4968 } 4969 return (target); 4970 } 4971 4972 static void 4973 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4974 { 4975 4976 if ((--target->refcount == 0) 4977 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4978 TAILQ_REMOVE(&bus->et_entries, target, links); 4979 bus->generation++; 4980 free(target, M_CAMXPT); 4981 xpt_release_bus(bus); 4982 } 4983 } 4984 4985 static struct cam_ed * 4986 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4987 { 4988 struct cam_path path; 4989 struct cam_ed *device; 4990 struct cam_devq *devq; 4991 cam_status status; 4992 4993 if (SIM_DEAD(bus->sim)) 4994 return (NULL); 4995 4996 /* Make space for us in the device queue on our bus */ 4997 devq = bus->sim->devq; 4998 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4999 5000 if (status != CAM_REQ_CMP) { 5001 device = NULL; 5002 } else { 5003 device = (struct cam_ed *)malloc(sizeof(*device), 5004 M_CAMXPT, M_NOWAIT); 5005 } 5006 5007 if (device != NULL) { 5008 struct cam_ed *cur_device; 5009 5010 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 5011 device->alloc_ccb_entry.device = device; 5012 cam_init_pinfo(&device->send_ccb_entry.pinfo); 5013 device->send_ccb_entry.device = device; 5014 device->target = target; 5015 device->lun_id = lun_id; 5016 device->sim = bus->sim; 5017 /* Initialize our queues */ 5018 if (camq_init(&device->drvq, 0) != 0) { 5019 free(device, M_CAMXPT); 5020 return (NULL); 5021 } 5022 if (cam_ccbq_init(&device->ccbq, 5023 bus->sim->max_dev_openings) != 0) { 5024 camq_fini(&device->drvq); 5025 free(device, M_CAMXPT); 5026 return (NULL); 5027 } 5028 SLIST_INIT(&device->asyncs); 5029 SLIST_INIT(&device->periphs); 5030 device->generation = 0; 5031 device->owner = NULL; 5032 /* 5033 * Take the default quirk entry until we have inquiry 5034 * data and can determine a better quirk to use. 5035 */ 5036 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5037 bzero(&device->inq_data, sizeof(device->inq_data)); 5038 device->inq_flags = 0; 5039 device->queue_flags = 0; 5040 device->serial_num = NULL; 5041 device->serial_num_len = 0; 5042 device->qfrozen_cnt = 0; 5043 device->flags = CAM_DEV_UNCONFIGURED; 5044 device->tag_delay_count = 0; 5045 device->tag_saved_openings = 0; 5046 device->refcount = 1; 5047 if (bus->sim->flags & CAM_SIM_MPSAFE) 5048 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 5049 else 5050 callout_init_mtx(&device->callout, &Giant, 0); 5051 5052 /* 5053 * Hold a reference to our parent target so it 5054 * will not go away before we do. 5055 */ 5056 target->refcount++; 5057 5058 /* 5059 * XXX should be limited by number of CCBs this bus can 5060 * do. 5061 */ 5062 bus->sim->max_ccbs += device->ccbq.devq_openings; 5063 /* Insertion sort into our target's device list */ 5064 cur_device = TAILQ_FIRST(&target->ed_entries); 5065 while (cur_device != NULL && cur_device->lun_id < lun_id) 5066 cur_device = TAILQ_NEXT(cur_device, links); 5067 if (cur_device != NULL) { 5068 TAILQ_INSERT_BEFORE(cur_device, device, links); 5069 } else { 5070 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5071 } 5072 target->generation++; 5073 if (lun_id != CAM_LUN_WILDCARD) { 5074 xpt_compile_path(&path, 5075 NULL, 5076 bus->path_id, 5077 target->target_id, 5078 lun_id); 5079 xpt_devise_transport(&path); 5080 xpt_release_path(&path); 5081 } 5082 } 5083 return (device); 5084 } 5085 5086 static void 5087 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5088 struct cam_ed *device) 5089 { 5090 5091 if ((--device->refcount == 0) 5092 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5093 struct cam_devq *devq; 5094 5095 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5096 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5097 panic("Removing device while still queued for ccbs"); 5098 5099 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5100 callout_stop(&device->callout); 5101 5102 TAILQ_REMOVE(&target->ed_entries, device,links); 5103 target->generation++; 5104 bus->sim->max_ccbs -= device->ccbq.devq_openings; 5105 if (!SIM_DEAD(bus->sim)) { 5106 /* Release our slot in the devq */ 5107 devq = bus->sim->devq; 5108 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5109 } 5110 camq_fini(&device->drvq); 5111 camq_fini(&device->ccbq.queue); 5112 free(device, M_CAMXPT); 5113 xpt_release_target(bus, target); 5114 } 5115 } 5116 5117 static u_int32_t 5118 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5119 { 5120 int diff; 5121 int result; 5122 struct cam_ed *dev; 5123 5124 dev = path->device; 5125 5126 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5127 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5128 if (result == CAM_REQ_CMP && (diff < 0)) { 5129 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5130 } 5131 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5132 || (dev->inq_flags & SID_CmdQue) != 0) 5133 dev->tag_saved_openings = newopenings; 5134 /* Adjust the global limit */ 5135 dev->sim->max_ccbs += diff; 5136 return (result); 5137 } 5138 5139 static struct cam_eb * 5140 xpt_find_bus(path_id_t path_id) 5141 { 5142 struct cam_eb *bus; 5143 5144 mtx_lock(&xsoftc.xpt_topo_lock); 5145 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5146 bus != NULL; 5147 bus = TAILQ_NEXT(bus, links)) { 5148 if (bus->path_id == path_id) { 5149 bus->refcount++; 5150 break; 5151 } 5152 } 5153 mtx_unlock(&xsoftc.xpt_topo_lock); 5154 return (bus); 5155 } 5156 5157 static struct cam_et * 5158 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5159 { 5160 struct cam_et *target; 5161 5162 for (target = TAILQ_FIRST(&bus->et_entries); 5163 target != NULL; 5164 target = TAILQ_NEXT(target, links)) { 5165 if (target->target_id == target_id) { 5166 target->refcount++; 5167 break; 5168 } 5169 } 5170 return (target); 5171 } 5172 5173 static struct cam_ed * 5174 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5175 { 5176 struct cam_ed *device; 5177 5178 for (device = TAILQ_FIRST(&target->ed_entries); 5179 device != NULL; 5180 device = TAILQ_NEXT(device, links)) { 5181 if (device->lun_id == lun_id) { 5182 device->refcount++; 5183 break; 5184 } 5185 } 5186 return (device); 5187 } 5188 5189 typedef struct { 5190 union ccb *request_ccb; 5191 struct ccb_pathinq *cpi; 5192 int counter; 5193 } xpt_scan_bus_info; 5194 5195 /* 5196 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5197 * As the scan progresses, xpt_scan_bus is used as the 5198 * callback on completion function. 5199 */ 5200 static void 5201 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5202 { 5203 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5204 ("xpt_scan_bus\n")); 5205 switch (request_ccb->ccb_h.func_code) { 5206 case XPT_SCAN_BUS: 5207 { 5208 xpt_scan_bus_info *scan_info; 5209 union ccb *work_ccb; 5210 struct cam_path *path; 5211 u_int i; 5212 u_int max_target; 5213 u_int initiator_id; 5214 5215 /* Find out the characteristics of the bus */ 5216 work_ccb = xpt_alloc_ccb_nowait(); 5217 if (work_ccb == NULL) { 5218 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5219 xpt_done(request_ccb); 5220 return; 5221 } 5222 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5223 request_ccb->ccb_h.pinfo.priority); 5224 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5225 xpt_action(work_ccb); 5226 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5227 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5228 xpt_free_ccb(work_ccb); 5229 xpt_done(request_ccb); 5230 return; 5231 } 5232 5233 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5234 /* 5235 * Can't scan the bus on an adapter that 5236 * cannot perform the initiator role. 5237 */ 5238 request_ccb->ccb_h.status = CAM_REQ_CMP; 5239 xpt_free_ccb(work_ccb); 5240 xpt_done(request_ccb); 5241 return; 5242 } 5243 5244 /* Save some state for use while we probe for devices */ 5245 scan_info = (xpt_scan_bus_info *) 5246 malloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_NOWAIT); 5247 scan_info->request_ccb = request_ccb; 5248 scan_info->cpi = &work_ccb->cpi; 5249 5250 /* Cache on our stack so we can work asynchronously */ 5251 max_target = scan_info->cpi->max_target; 5252 initiator_id = scan_info->cpi->initiator_id; 5253 5254 5255 /* 5256 * We can scan all targets in parallel, or do it sequentially. 5257 */ 5258 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5259 max_target = 0; 5260 scan_info->counter = 0; 5261 } else { 5262 scan_info->counter = scan_info->cpi->max_target + 1; 5263 if (scan_info->cpi->initiator_id < scan_info->counter) { 5264 scan_info->counter--; 5265 } 5266 } 5267 5268 for (i = 0; i <= max_target; i++) { 5269 cam_status status; 5270 if (i == initiator_id) 5271 continue; 5272 5273 status = xpt_create_path(&path, xpt_periph, 5274 request_ccb->ccb_h.path_id, 5275 i, 0); 5276 if (status != CAM_REQ_CMP) { 5277 printf("xpt_scan_bus: xpt_create_path failed" 5278 " with status %#x, bus scan halted\n", 5279 status); 5280 free(scan_info, M_CAMXPT); 5281 request_ccb->ccb_h.status = status; 5282 xpt_free_ccb(work_ccb); 5283 xpt_done(request_ccb); 5284 break; 5285 } 5286 work_ccb = xpt_alloc_ccb_nowait(); 5287 if (work_ccb == NULL) { 5288 free(scan_info, M_CAMXPT); 5289 xpt_free_path(path); 5290 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5291 xpt_done(request_ccb); 5292 break; 5293 } 5294 xpt_setup_ccb(&work_ccb->ccb_h, path, 5295 request_ccb->ccb_h.pinfo.priority); 5296 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5297 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5298 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5299 work_ccb->crcn.flags = request_ccb->crcn.flags; 5300 xpt_action(work_ccb); 5301 } 5302 break; 5303 } 5304 case XPT_SCAN_LUN: 5305 { 5306 cam_status status; 5307 struct cam_path *path; 5308 xpt_scan_bus_info *scan_info; 5309 path_id_t path_id; 5310 target_id_t target_id; 5311 lun_id_t lun_id; 5312 5313 /* Reuse the same CCB to query if a device was really found */ 5314 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5315 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5316 request_ccb->ccb_h.pinfo.priority); 5317 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5318 5319 path_id = request_ccb->ccb_h.path_id; 5320 target_id = request_ccb->ccb_h.target_id; 5321 lun_id = request_ccb->ccb_h.target_lun; 5322 xpt_action(request_ccb); 5323 5324 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5325 struct cam_ed *device; 5326 struct cam_et *target; 5327 int phl; 5328 5329 /* 5330 * If we already probed lun 0 successfully, or 5331 * we have additional configured luns on this 5332 * target that might have "gone away", go onto 5333 * the next lun. 5334 */ 5335 target = request_ccb->ccb_h.path->target; 5336 /* 5337 * We may touch devices that we don't 5338 * hold references too, so ensure they 5339 * don't disappear out from under us. 5340 * The target above is referenced by the 5341 * path in the request ccb. 5342 */ 5343 phl = 0; 5344 device = TAILQ_FIRST(&target->ed_entries); 5345 if (device != NULL) { 5346 phl = CAN_SRCH_HI_SPARSE(device); 5347 if (device->lun_id == 0) 5348 device = TAILQ_NEXT(device, links); 5349 } 5350 if ((lun_id != 0) || (device != NULL)) { 5351 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5352 lun_id++; 5353 } 5354 } else { 5355 struct cam_ed *device; 5356 5357 device = request_ccb->ccb_h.path->device; 5358 5359 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5360 /* Try the next lun */ 5361 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5362 || CAN_SRCH_HI_DENSE(device)) 5363 lun_id++; 5364 } 5365 } 5366 5367 /* 5368 * Free the current request path- we're done with it. 5369 */ 5370 xpt_free_path(request_ccb->ccb_h.path); 5371 5372 /* 5373 * Check to see if we scan any further luns. 5374 */ 5375 if (lun_id == request_ccb->ccb_h.target_lun 5376 || lun_id > scan_info->cpi->max_lun) { 5377 int done; 5378 5379 hop_again: 5380 done = 0; 5381 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5382 scan_info->counter++; 5383 if (scan_info->counter == 5384 scan_info->cpi->initiator_id) { 5385 scan_info->counter++; 5386 } 5387 if (scan_info->counter >= 5388 scan_info->cpi->max_target+1) { 5389 done = 1; 5390 } 5391 } else { 5392 scan_info->counter--; 5393 if (scan_info->counter == 0) { 5394 done = 1; 5395 } 5396 } 5397 if (done) { 5398 xpt_free_ccb(request_ccb); 5399 xpt_free_ccb((union ccb *)scan_info->cpi); 5400 request_ccb = scan_info->request_ccb; 5401 free(scan_info, M_CAMXPT); 5402 request_ccb->ccb_h.status = CAM_REQ_CMP; 5403 xpt_done(request_ccb); 5404 break; 5405 } 5406 5407 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) { 5408 break; 5409 } 5410 status = xpt_create_path(&path, xpt_periph, 5411 scan_info->request_ccb->ccb_h.path_id, 5412 scan_info->counter, 0); 5413 if (status != CAM_REQ_CMP) { 5414 printf("xpt_scan_bus: xpt_create_path failed" 5415 " with status %#x, bus scan halted\n", 5416 status); 5417 xpt_free_ccb(request_ccb); 5418 xpt_free_ccb((union ccb *)scan_info->cpi); 5419 request_ccb = scan_info->request_ccb; 5420 free(scan_info, M_CAMXPT); 5421 request_ccb->ccb_h.status = status; 5422 xpt_done(request_ccb); 5423 break; 5424 } 5425 xpt_setup_ccb(&request_ccb->ccb_h, path, 5426 request_ccb->ccb_h.pinfo.priority); 5427 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5428 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5429 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5430 request_ccb->crcn.flags = 5431 scan_info->request_ccb->crcn.flags; 5432 } else { 5433 status = xpt_create_path(&path, xpt_periph, 5434 path_id, target_id, lun_id); 5435 if (status != CAM_REQ_CMP) { 5436 printf("xpt_scan_bus: xpt_create_path failed " 5437 "with status %#x, halting LUN scan\n", 5438 status); 5439 goto hop_again; 5440 } 5441 xpt_setup_ccb(&request_ccb->ccb_h, path, 5442 request_ccb->ccb_h.pinfo.priority); 5443 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5444 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5445 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5446 request_ccb->crcn.flags = 5447 scan_info->request_ccb->crcn.flags; 5448 } 5449 xpt_action(request_ccb); 5450 break; 5451 } 5452 default: 5453 break; 5454 } 5455 } 5456 5457 typedef enum { 5458 PROBE_TUR, 5459 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */ 5460 PROBE_FULL_INQUIRY, 5461 PROBE_MODE_SENSE, 5462 PROBE_SERIAL_NUM, 5463 PROBE_TUR_FOR_NEGOTIATION, 5464 PROBE_INQUIRY_BASIC_DV1, 5465 PROBE_INQUIRY_BASIC_DV2, 5466 PROBE_DV_EXIT 5467 } probe_action; 5468 5469 typedef enum { 5470 PROBE_INQUIRY_CKSUM = 0x01, 5471 PROBE_SERIAL_CKSUM = 0x02, 5472 PROBE_NO_ANNOUNCE = 0x04 5473 } probe_flags; 5474 5475 typedef struct { 5476 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5477 probe_action action; 5478 union ccb saved_ccb; 5479 probe_flags flags; 5480 MD5_CTX context; 5481 u_int8_t digest[16]; 5482 } probe_softc; 5483 5484 static void 5485 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5486 cam_flags flags, union ccb *request_ccb) 5487 { 5488 struct ccb_pathinq cpi; 5489 cam_status status; 5490 struct cam_path *new_path; 5491 struct cam_periph *old_periph; 5492 5493 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5494 ("xpt_scan_lun\n")); 5495 5496 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5497 cpi.ccb_h.func_code = XPT_PATH_INQ; 5498 xpt_action((union ccb *)&cpi); 5499 5500 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5501 if (request_ccb != NULL) { 5502 request_ccb->ccb_h.status = cpi.ccb_h.status; 5503 xpt_done(request_ccb); 5504 } 5505 return; 5506 } 5507 5508 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5509 /* 5510 * Can't scan the bus on an adapter that 5511 * cannot perform the initiator role. 5512 */ 5513 if (request_ccb != NULL) { 5514 request_ccb->ccb_h.status = CAM_REQ_CMP; 5515 xpt_done(request_ccb); 5516 } 5517 return; 5518 } 5519 5520 if (request_ccb == NULL) { 5521 request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT); 5522 if (request_ccb == NULL) { 5523 xpt_print(path, "xpt_scan_lun: can't allocate CCB, " 5524 "can't continue\n"); 5525 return; 5526 } 5527 new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT); 5528 if (new_path == NULL) { 5529 xpt_print(path, "xpt_scan_lun: can't allocate path, " 5530 "can't continue\n"); 5531 free(request_ccb, M_CAMXPT); 5532 return; 5533 } 5534 status = xpt_compile_path(new_path, xpt_periph, 5535 path->bus->path_id, 5536 path->target->target_id, 5537 path->device->lun_id); 5538 5539 if (status != CAM_REQ_CMP) { 5540 xpt_print(path, "xpt_scan_lun: can't compile path, " 5541 "can't continue\n"); 5542 free(request_ccb, M_CAMXPT); 5543 free(new_path, M_CAMXPT); 5544 return; 5545 } 5546 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5547 request_ccb->ccb_h.cbfcnp = xptscandone; 5548 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5549 request_ccb->crcn.flags = flags; 5550 } 5551 5552 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5553 probe_softc *softc; 5554 5555 softc = (probe_softc *)old_periph->softc; 5556 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5557 periph_links.tqe); 5558 } else { 5559 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5560 probestart, "probe", 5561 CAM_PERIPH_BIO, 5562 request_ccb->ccb_h.path, NULL, 0, 5563 request_ccb); 5564 5565 if (status != CAM_REQ_CMP) { 5566 xpt_print(path, "xpt_scan_lun: cam_alloc_periph " 5567 "returned an error, can't continue probe\n"); 5568 request_ccb->ccb_h.status = status; 5569 xpt_done(request_ccb); 5570 } 5571 } 5572 } 5573 5574 static void 5575 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5576 { 5577 xpt_release_path(done_ccb->ccb_h.path); 5578 free(done_ccb->ccb_h.path, M_CAMXPT); 5579 free(done_ccb, M_CAMXPT); 5580 } 5581 5582 static cam_status 5583 proberegister(struct cam_periph *periph, void *arg) 5584 { 5585 union ccb *request_ccb; /* CCB representing the probe request */ 5586 cam_status status; 5587 probe_softc *softc; 5588 5589 request_ccb = (union ccb *)arg; 5590 if (periph == NULL) { 5591 printf("proberegister: periph was NULL!!\n"); 5592 return(CAM_REQ_CMP_ERR); 5593 } 5594 5595 if (request_ccb == NULL) { 5596 printf("proberegister: no probe CCB, " 5597 "can't register device\n"); 5598 return(CAM_REQ_CMP_ERR); 5599 } 5600 5601 softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT); 5602 5603 if (softc == NULL) { 5604 printf("proberegister: Unable to probe new device. " 5605 "Unable to allocate softc\n"); 5606 return(CAM_REQ_CMP_ERR); 5607 } 5608 TAILQ_INIT(&softc->request_ccbs); 5609 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5610 periph_links.tqe); 5611 softc->flags = 0; 5612 periph->softc = softc; 5613 status = cam_periph_acquire(periph); 5614 if (status != CAM_REQ_CMP) { 5615 return (status); 5616 } 5617 5618 5619 /* 5620 * Ensure we've waited at least a bus settle 5621 * delay before attempting to probe the device. 5622 * For HBAs that don't do bus resets, this won't make a difference. 5623 */ 5624 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5625 scsi_delay); 5626 probeschedule(periph); 5627 return(CAM_REQ_CMP); 5628 } 5629 5630 static void 5631 probeschedule(struct cam_periph *periph) 5632 { 5633 struct ccb_pathinq cpi; 5634 union ccb *ccb; 5635 probe_softc *softc; 5636 5637 softc = (probe_softc *)periph->softc; 5638 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5639 5640 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5641 cpi.ccb_h.func_code = XPT_PATH_INQ; 5642 xpt_action((union ccb *)&cpi); 5643 5644 /* 5645 * If a device has gone away and another device, or the same one, 5646 * is back in the same place, it should have a unit attention 5647 * condition pending. It will not report the unit attention in 5648 * response to an inquiry, which may leave invalid transfer 5649 * negotiations in effect. The TUR will reveal the unit attention 5650 * condition. Only send the TUR for lun 0, since some devices 5651 * will get confused by commands other than inquiry to non-existent 5652 * luns. If you think a device has gone away start your scan from 5653 * lun 0. This will insure that any bogus transfer settings are 5654 * invalidated. 5655 * 5656 * If we haven't seen the device before and the controller supports 5657 * some kind of transfer negotiation, negotiate with the first 5658 * sent command if no bus reset was performed at startup. This 5659 * ensures that the device is not confused by transfer negotiation 5660 * settings left over by loader or BIOS action. 5661 */ 5662 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5663 && (ccb->ccb_h.target_lun == 0)) { 5664 softc->action = PROBE_TUR; 5665 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5666 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5667 proberequestdefaultnegotiation(periph); 5668 softc->action = PROBE_INQUIRY; 5669 } else { 5670 softc->action = PROBE_INQUIRY; 5671 } 5672 5673 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5674 softc->flags |= PROBE_NO_ANNOUNCE; 5675 else 5676 softc->flags &= ~PROBE_NO_ANNOUNCE; 5677 5678 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5679 } 5680 5681 static void 5682 probestart(struct cam_periph *periph, union ccb *start_ccb) 5683 { 5684 /* Probe the device that our peripheral driver points to */ 5685 struct ccb_scsiio *csio; 5686 probe_softc *softc; 5687 5688 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5689 5690 softc = (probe_softc *)periph->softc; 5691 csio = &start_ccb->csio; 5692 5693 switch (softc->action) { 5694 case PROBE_TUR: 5695 case PROBE_TUR_FOR_NEGOTIATION: 5696 case PROBE_DV_EXIT: 5697 { 5698 scsi_test_unit_ready(csio, 5699 /*retries*/4, 5700 probedone, 5701 MSG_SIMPLE_Q_TAG, 5702 SSD_FULL_SIZE, 5703 /*timeout*/60000); 5704 break; 5705 } 5706 case PROBE_INQUIRY: 5707 case PROBE_FULL_INQUIRY: 5708 case PROBE_INQUIRY_BASIC_DV1: 5709 case PROBE_INQUIRY_BASIC_DV2: 5710 { 5711 u_int inquiry_len; 5712 struct scsi_inquiry_data *inq_buf; 5713 5714 inq_buf = &periph->path->device->inq_data; 5715 5716 /* 5717 * If the device is currently configured, we calculate an 5718 * MD5 checksum of the inquiry data, and if the serial number 5719 * length is greater than 0, add the serial number data 5720 * into the checksum as well. Once the inquiry and the 5721 * serial number check finish, we attempt to figure out 5722 * whether we still have the same device. 5723 */ 5724 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5725 5726 MD5Init(&softc->context); 5727 MD5Update(&softc->context, (unsigned char *)inq_buf, 5728 sizeof(struct scsi_inquiry_data)); 5729 softc->flags |= PROBE_INQUIRY_CKSUM; 5730 if (periph->path->device->serial_num_len > 0) { 5731 MD5Update(&softc->context, 5732 periph->path->device->serial_num, 5733 periph->path->device->serial_num_len); 5734 softc->flags |= PROBE_SERIAL_CKSUM; 5735 } 5736 MD5Final(softc->digest, &softc->context); 5737 } 5738 5739 if (softc->action == PROBE_INQUIRY) 5740 inquiry_len = SHORT_INQUIRY_LENGTH; 5741 else 5742 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf); 5743 5744 /* 5745 * Some parallel SCSI devices fail to send an 5746 * ignore wide residue message when dealing with 5747 * odd length inquiry requests. Round up to be 5748 * safe. 5749 */ 5750 inquiry_len = roundup2(inquiry_len, 2); 5751 5752 if (softc->action == PROBE_INQUIRY_BASIC_DV1 5753 || softc->action == PROBE_INQUIRY_BASIC_DV2) { 5754 inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT); 5755 } 5756 if (inq_buf == NULL) { 5757 xpt_print(periph->path, "malloc failure- skipping Basic" 5758 "Domain Validation\n"); 5759 softc->action = PROBE_DV_EXIT; 5760 scsi_test_unit_ready(csio, 5761 /*retries*/4, 5762 probedone, 5763 MSG_SIMPLE_Q_TAG, 5764 SSD_FULL_SIZE, 5765 /*timeout*/60000); 5766 break; 5767 } 5768 scsi_inquiry(csio, 5769 /*retries*/4, 5770 probedone, 5771 MSG_SIMPLE_Q_TAG, 5772 (u_int8_t *)inq_buf, 5773 inquiry_len, 5774 /*evpd*/FALSE, 5775 /*page_code*/0, 5776 SSD_MIN_SIZE, 5777 /*timeout*/60 * 1000); 5778 break; 5779 } 5780 case PROBE_MODE_SENSE: 5781 { 5782 void *mode_buf; 5783 int mode_buf_len; 5784 5785 mode_buf_len = sizeof(struct scsi_mode_header_6) 5786 + sizeof(struct scsi_mode_blk_desc) 5787 + sizeof(struct scsi_control_page); 5788 mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT); 5789 if (mode_buf != NULL) { 5790 scsi_mode_sense(csio, 5791 /*retries*/4, 5792 probedone, 5793 MSG_SIMPLE_Q_TAG, 5794 /*dbd*/FALSE, 5795 SMS_PAGE_CTRL_CURRENT, 5796 SMS_CONTROL_MODE_PAGE, 5797 mode_buf, 5798 mode_buf_len, 5799 SSD_FULL_SIZE, 5800 /*timeout*/60000); 5801 break; 5802 } 5803 xpt_print(periph->path, "Unable to mode sense control page - " 5804 "malloc failure\n"); 5805 softc->action = PROBE_SERIAL_NUM; 5806 } 5807 /* FALLTHROUGH */ 5808 case PROBE_SERIAL_NUM: 5809 { 5810 struct scsi_vpd_unit_serial_number *serial_buf; 5811 struct cam_ed* device; 5812 5813 serial_buf = NULL; 5814 device = periph->path->device; 5815 device->serial_num = NULL; 5816 device->serial_num_len = 0; 5817 5818 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5819 serial_buf = (struct scsi_vpd_unit_serial_number *) 5820 malloc(sizeof(*serial_buf), M_CAMXPT, 5821 M_NOWAIT | M_ZERO); 5822 5823 if (serial_buf != NULL) { 5824 scsi_inquiry(csio, 5825 /*retries*/4, 5826 probedone, 5827 MSG_SIMPLE_Q_TAG, 5828 (u_int8_t *)serial_buf, 5829 sizeof(*serial_buf), 5830 /*evpd*/TRUE, 5831 SVPD_UNIT_SERIAL_NUMBER, 5832 SSD_MIN_SIZE, 5833 /*timeout*/60 * 1000); 5834 break; 5835 } 5836 /* 5837 * We'll have to do without, let our probedone 5838 * routine finish up for us. 5839 */ 5840 start_ccb->csio.data_ptr = NULL; 5841 probedone(periph, start_ccb); 5842 return; 5843 } 5844 } 5845 xpt_action(start_ccb); 5846 } 5847 5848 static void 5849 proberequestdefaultnegotiation(struct cam_periph *periph) 5850 { 5851 struct ccb_trans_settings cts; 5852 5853 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5854 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5855 cts.type = CTS_TYPE_USER_SETTINGS; 5856 xpt_action((union ccb *)&cts); 5857 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5858 return; 5859 } 5860 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5861 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5862 xpt_action((union ccb *)&cts); 5863 } 5864 5865 /* 5866 * Backoff Negotiation Code- only pertinent for SPI devices. 5867 */ 5868 static int 5869 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device) 5870 { 5871 struct ccb_trans_settings cts; 5872 struct ccb_trans_settings_spi *spi; 5873 5874 memset(&cts, 0, sizeof (cts)); 5875 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5876 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5877 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5878 xpt_action((union ccb *)&cts); 5879 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5880 if (bootverbose) { 5881 xpt_print(periph->path, 5882 "failed to get current device settings\n"); 5883 } 5884 return (0); 5885 } 5886 if (cts.transport != XPORT_SPI) { 5887 if (bootverbose) { 5888 xpt_print(periph->path, "not SPI transport\n"); 5889 } 5890 return (0); 5891 } 5892 spi = &cts.xport_specific.spi; 5893 5894 /* 5895 * We cannot renegotiate sync rate if we don't have one. 5896 */ 5897 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { 5898 if (bootverbose) { 5899 xpt_print(periph->path, "no sync rate known\n"); 5900 } 5901 return (0); 5902 } 5903 5904 /* 5905 * We'll assert that we don't have to touch PPR options- the 5906 * SIM will see what we do with period and offset and adjust 5907 * the PPR options as appropriate. 5908 */ 5909 5910 /* 5911 * A sync rate with unknown or zero offset is nonsensical. 5912 * A sync period of zero means Async. 5913 */ 5914 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0 5915 || spi->sync_offset == 0 || spi->sync_period == 0) { 5916 if (bootverbose) { 5917 xpt_print(periph->path, "no sync rate available\n"); 5918 } 5919 return (0); 5920 } 5921 5922 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) { 5923 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5924 ("hit async: giving up on DV\n")); 5925 return (0); 5926 } 5927 5928 5929 /* 5930 * Jump sync_period up by one, but stop at 5MHz and fall back to Async. 5931 * We don't try to remember 'last' settings to see if the SIM actually 5932 * gets into the speed we want to set. We check on the SIM telling 5933 * us that a requested speed is bad, but otherwise don't try and 5934 * check the speed due to the asynchronous and handshake nature 5935 * of speed setting. 5936 */ 5937 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET; 5938 for (;;) { 5939 spi->sync_period++; 5940 if (spi->sync_period >= 0xf) { 5941 spi->sync_period = 0; 5942 spi->sync_offset = 0; 5943 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5944 ("setting to async for DV\n")); 5945 /* 5946 * Once we hit async, we don't want to try 5947 * any more settings. 5948 */ 5949 device->flags |= CAM_DEV_DV_HIT_BOTTOM; 5950 } else if (bootverbose) { 5951 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5952 ("DV: period 0x%x\n", spi->sync_period)); 5953 printf("setting period to 0x%x\n", spi->sync_period); 5954 } 5955 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5956 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5957 xpt_action((union ccb *)&cts); 5958 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5959 break; 5960 } 5961 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5962 ("DV: failed to set period 0x%x\n", spi->sync_period)); 5963 if (spi->sync_period == 0) { 5964 return (0); 5965 } 5966 } 5967 return (1); 5968 } 5969 5970 static void 5971 probedone(struct cam_periph *periph, union ccb *done_ccb) 5972 { 5973 probe_softc *softc; 5974 struct cam_path *path; 5975 u_int32_t priority; 5976 5977 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5978 5979 softc = (probe_softc *)periph->softc; 5980 path = done_ccb->ccb_h.path; 5981 priority = done_ccb->ccb_h.pinfo.priority; 5982 5983 switch (softc->action) { 5984 case PROBE_TUR: 5985 { 5986 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5987 5988 if (cam_periph_error(done_ccb, 0, 5989 SF_NO_PRINT, NULL) == ERESTART) 5990 return; 5991 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5992 /* Don't wedge the queue */ 5993 xpt_release_devq(done_ccb->ccb_h.path, 5994 /*count*/1, 5995 /*run_queue*/TRUE); 5996 } 5997 softc->action = PROBE_INQUIRY; 5998 xpt_release_ccb(done_ccb); 5999 xpt_schedule(periph, priority); 6000 return; 6001 } 6002 case PROBE_INQUIRY: 6003 case PROBE_FULL_INQUIRY: 6004 { 6005 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6006 struct scsi_inquiry_data *inq_buf; 6007 u_int8_t periph_qual; 6008 6009 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 6010 inq_buf = &path->device->inq_data; 6011 6012 periph_qual = SID_QUAL(inq_buf); 6013 6014 switch(periph_qual) { 6015 case SID_QUAL_LU_CONNECTED: 6016 { 6017 u_int8_t len; 6018 6019 /* 6020 * We conservatively request only 6021 * SHORT_INQUIRY_LEN bytes of inquiry 6022 * information during our first try 6023 * at sending an INQUIRY. If the device 6024 * has more information to give, 6025 * perform a second request specifying 6026 * the amount of information the device 6027 * is willing to give. 6028 */ 6029 len = inq_buf->additional_length 6030 + offsetof(struct scsi_inquiry_data, 6031 additional_length) + 1; 6032 if (softc->action == PROBE_INQUIRY 6033 && len > SHORT_INQUIRY_LENGTH) { 6034 softc->action = PROBE_FULL_INQUIRY; 6035 xpt_release_ccb(done_ccb); 6036 xpt_schedule(periph, priority); 6037 return; 6038 } 6039 6040 xpt_find_quirk(path->device); 6041 6042 xpt_devise_transport(path); 6043 if (INQ_DATA_TQ_ENABLED(inq_buf)) 6044 softc->action = PROBE_MODE_SENSE; 6045 else 6046 softc->action = PROBE_SERIAL_NUM; 6047 6048 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6049 6050 xpt_release_ccb(done_ccb); 6051 xpt_schedule(periph, priority); 6052 return; 6053 } 6054 default: 6055 break; 6056 } 6057 } else if (cam_periph_error(done_ccb, 0, 6058 done_ccb->ccb_h.target_lun > 0 6059 ? SF_RETRY_UA|SF_QUIET_IR 6060 : SF_RETRY_UA, 6061 &softc->saved_ccb) == ERESTART) { 6062 return; 6063 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6064 /* Don't wedge the queue */ 6065 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6066 /*run_queue*/TRUE); 6067 } 6068 /* 6069 * If we get to this point, we got an error status back 6070 * from the inquiry and the error status doesn't require 6071 * automatically retrying the command. Therefore, the 6072 * inquiry failed. If we had inquiry information before 6073 * for this device, but this latest inquiry command failed, 6074 * the device has probably gone away. If this device isn't 6075 * already marked unconfigured, notify the peripheral 6076 * drivers that this device is no more. 6077 */ 6078 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 6079 /* Send the async notification. */ 6080 xpt_async(AC_LOST_DEVICE, path, NULL); 6081 6082 xpt_release_ccb(done_ccb); 6083 break; 6084 } 6085 case PROBE_MODE_SENSE: 6086 { 6087 struct ccb_scsiio *csio; 6088 struct scsi_mode_header_6 *mode_hdr; 6089 6090 csio = &done_ccb->csio; 6091 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 6092 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6093 struct scsi_control_page *page; 6094 u_int8_t *offset; 6095 6096 offset = ((u_int8_t *)&mode_hdr[1]) 6097 + mode_hdr->blk_desc_len; 6098 page = (struct scsi_control_page *)offset; 6099 path->device->queue_flags = page->queue_flags; 6100 } else if (cam_periph_error(done_ccb, 0, 6101 SF_RETRY_UA|SF_NO_PRINT, 6102 &softc->saved_ccb) == ERESTART) { 6103 return; 6104 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6105 /* Don't wedge the queue */ 6106 xpt_release_devq(done_ccb->ccb_h.path, 6107 /*count*/1, /*run_queue*/TRUE); 6108 } 6109 xpt_release_ccb(done_ccb); 6110 free(mode_hdr, M_CAMXPT); 6111 softc->action = PROBE_SERIAL_NUM; 6112 xpt_schedule(periph, priority); 6113 return; 6114 } 6115 case PROBE_SERIAL_NUM: 6116 { 6117 struct ccb_scsiio *csio; 6118 struct scsi_vpd_unit_serial_number *serial_buf; 6119 u_int32_t priority; 6120 int changed; 6121 int have_serialnum; 6122 6123 changed = 1; 6124 have_serialnum = 0; 6125 csio = &done_ccb->csio; 6126 priority = done_ccb->ccb_h.pinfo.priority; 6127 serial_buf = 6128 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 6129 6130 /* Clean up from previous instance of this device */ 6131 if (path->device->serial_num != NULL) { 6132 free(path->device->serial_num, M_CAMXPT); 6133 path->device->serial_num = NULL; 6134 path->device->serial_num_len = 0; 6135 } 6136 6137 if (serial_buf == NULL) { 6138 /* 6139 * Don't process the command as it was never sent 6140 */ 6141 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6142 && (serial_buf->length > 0)) { 6143 6144 have_serialnum = 1; 6145 path->device->serial_num = 6146 (u_int8_t *)malloc((serial_buf->length + 1), 6147 M_CAMXPT, M_NOWAIT); 6148 if (path->device->serial_num != NULL) { 6149 bcopy(serial_buf->serial_num, 6150 path->device->serial_num, 6151 serial_buf->length); 6152 path->device->serial_num_len = 6153 serial_buf->length; 6154 path->device->serial_num[serial_buf->length] 6155 = '\0'; 6156 } 6157 } else if (cam_periph_error(done_ccb, 0, 6158 SF_RETRY_UA|SF_NO_PRINT, 6159 &softc->saved_ccb) == ERESTART) { 6160 return; 6161 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6162 /* Don't wedge the queue */ 6163 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6164 /*run_queue*/TRUE); 6165 } 6166 6167 /* 6168 * Let's see if we have seen this device before. 6169 */ 6170 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6171 MD5_CTX context; 6172 u_int8_t digest[16]; 6173 6174 MD5Init(&context); 6175 6176 MD5Update(&context, 6177 (unsigned char *)&path->device->inq_data, 6178 sizeof(struct scsi_inquiry_data)); 6179 6180 if (have_serialnum) 6181 MD5Update(&context, serial_buf->serial_num, 6182 serial_buf->length); 6183 6184 MD5Final(digest, &context); 6185 if (bcmp(softc->digest, digest, 16) == 0) 6186 changed = 0; 6187 6188 /* 6189 * XXX Do we need to do a TUR in order to ensure 6190 * that the device really hasn't changed??? 6191 */ 6192 if ((changed != 0) 6193 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6194 xpt_async(AC_LOST_DEVICE, path, NULL); 6195 } 6196 if (serial_buf != NULL) 6197 free(serial_buf, M_CAMXPT); 6198 6199 if (changed != 0) { 6200 /* 6201 * Now that we have all the necessary 6202 * information to safely perform transfer 6203 * negotiations... Controllers don't perform 6204 * any negotiation or tagged queuing until 6205 * after the first XPT_SET_TRAN_SETTINGS ccb is 6206 * received. So, on a new device, just retrieve 6207 * the user settings, and set them as the current 6208 * settings to set the device up. 6209 */ 6210 proberequestdefaultnegotiation(periph); 6211 xpt_release_ccb(done_ccb); 6212 6213 /* 6214 * Perform a TUR to allow the controller to 6215 * perform any necessary transfer negotiation. 6216 */ 6217 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6218 xpt_schedule(periph, priority); 6219 return; 6220 } 6221 xpt_release_ccb(done_ccb); 6222 break; 6223 } 6224 case PROBE_TUR_FOR_NEGOTIATION: 6225 case PROBE_DV_EXIT: 6226 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6227 /* Don't wedge the queue */ 6228 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6229 /*run_queue*/TRUE); 6230 } 6231 /* 6232 * Do Domain Validation for lun 0 on devices that claim 6233 * to support Synchronous Transfer modes. 6234 */ 6235 if (softc->action == PROBE_TUR_FOR_NEGOTIATION 6236 && done_ccb->ccb_h.target_lun == 0 6237 && (path->device->inq_data.flags & SID_Sync) != 0 6238 && (path->device->flags & CAM_DEV_IN_DV) == 0) { 6239 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6240 ("Begin Domain Validation\n")); 6241 path->device->flags |= CAM_DEV_IN_DV; 6242 xpt_release_ccb(done_ccb); 6243 softc->action = PROBE_INQUIRY_BASIC_DV1; 6244 xpt_schedule(periph, priority); 6245 return; 6246 } 6247 if (softc->action == PROBE_DV_EXIT) { 6248 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6249 ("Leave Domain Validation\n")); 6250 } 6251 path->device->flags &= 6252 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6253 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6254 /* Inform the XPT that a new device has been found */ 6255 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6256 xpt_action(done_ccb); 6257 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6258 done_ccb); 6259 } 6260 xpt_release_ccb(done_ccb); 6261 break; 6262 case PROBE_INQUIRY_BASIC_DV1: 6263 case PROBE_INQUIRY_BASIC_DV2: 6264 { 6265 struct scsi_inquiry_data *nbuf; 6266 struct ccb_scsiio *csio; 6267 6268 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6269 /* Don't wedge the queue */ 6270 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6271 /*run_queue*/TRUE); 6272 } 6273 csio = &done_ccb->csio; 6274 nbuf = (struct scsi_inquiry_data *)csio->data_ptr; 6275 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) { 6276 xpt_print(path, 6277 "inquiry data fails comparison at DV%d step\n", 6278 softc->action == PROBE_INQUIRY_BASIC_DV1? 1 : 2); 6279 if (proberequestbackoff(periph, path->device)) { 6280 path->device->flags &= ~CAM_DEV_IN_DV; 6281 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6282 } else { 6283 /* give up */ 6284 softc->action = PROBE_DV_EXIT; 6285 } 6286 free(nbuf, M_CAMXPT); 6287 xpt_release_ccb(done_ccb); 6288 xpt_schedule(periph, priority); 6289 return; 6290 } 6291 free(nbuf, M_CAMXPT); 6292 if (softc->action == PROBE_INQUIRY_BASIC_DV1) { 6293 softc->action = PROBE_INQUIRY_BASIC_DV2; 6294 xpt_release_ccb(done_ccb); 6295 xpt_schedule(periph, priority); 6296 return; 6297 } 6298 if (softc->action == PROBE_DV_EXIT) { 6299 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6300 ("Leave Domain Validation Successfully\n")); 6301 } 6302 path->device->flags &= 6303 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6304 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6305 /* Inform the XPT that a new device has been found */ 6306 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6307 xpt_action(done_ccb); 6308 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6309 done_ccb); 6310 } 6311 xpt_release_ccb(done_ccb); 6312 break; 6313 } 6314 } 6315 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6316 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6317 done_ccb->ccb_h.status = CAM_REQ_CMP; 6318 xpt_done(done_ccb); 6319 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6320 cam_periph_invalidate(periph); 6321 cam_periph_release(periph); 6322 } else { 6323 probeschedule(periph); 6324 } 6325 } 6326 6327 static void 6328 probecleanup(struct cam_periph *periph) 6329 { 6330 free(periph->softc, M_CAMXPT); 6331 } 6332 6333 static void 6334 xpt_find_quirk(struct cam_ed *device) 6335 { 6336 caddr_t match; 6337 6338 match = cam_quirkmatch((caddr_t)&device->inq_data, 6339 (caddr_t)xpt_quirk_table, 6340 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6341 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6342 6343 if (match == NULL) 6344 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6345 6346 device->quirk = (struct xpt_quirk_entry *)match; 6347 } 6348 6349 static int 6350 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6351 { 6352 int error, bool; 6353 6354 bool = cam_srch_hi; 6355 error = sysctl_handle_int(oidp, &bool, 0, req); 6356 if (error != 0 || req->newptr == NULL) 6357 return (error); 6358 if (bool == 0 || bool == 1) { 6359 cam_srch_hi = bool; 6360 return (0); 6361 } else { 6362 return (EINVAL); 6363 } 6364 } 6365 6366 6367 static void 6368 xpt_devise_transport(struct cam_path *path) 6369 { 6370 struct ccb_pathinq cpi; 6371 struct ccb_trans_settings cts; 6372 struct scsi_inquiry_data *inq_buf; 6373 6374 /* Get transport information from the SIM */ 6375 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6376 cpi.ccb_h.func_code = XPT_PATH_INQ; 6377 xpt_action((union ccb *)&cpi); 6378 6379 inq_buf = NULL; 6380 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6381 inq_buf = &path->device->inq_data; 6382 path->device->protocol = PROTO_SCSI; 6383 path->device->protocol_version = 6384 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6385 path->device->transport = cpi.transport; 6386 path->device->transport_version = cpi.transport_version; 6387 6388 /* 6389 * Any device not using SPI3 features should 6390 * be considered SPI2 or lower. 6391 */ 6392 if (inq_buf != NULL) { 6393 if (path->device->transport == XPORT_SPI 6394 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6395 && path->device->transport_version > 2) 6396 path->device->transport_version = 2; 6397 } else { 6398 struct cam_ed* otherdev; 6399 6400 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6401 otherdev != NULL; 6402 otherdev = TAILQ_NEXT(otherdev, links)) { 6403 if (otherdev != path->device) 6404 break; 6405 } 6406 6407 if (otherdev != NULL) { 6408 /* 6409 * Initially assume the same versioning as 6410 * prior luns for this target. 6411 */ 6412 path->device->protocol_version = 6413 otherdev->protocol_version; 6414 path->device->transport_version = 6415 otherdev->transport_version; 6416 } else { 6417 /* Until we know better, opt for safty */ 6418 path->device->protocol_version = 2; 6419 if (path->device->transport == XPORT_SPI) 6420 path->device->transport_version = 2; 6421 else 6422 path->device->transport_version = 0; 6423 } 6424 } 6425 6426 /* 6427 * XXX 6428 * For a device compliant with SPC-2 we should be able 6429 * to determine the transport version supported by 6430 * scrutinizing the version descriptors in the 6431 * inquiry buffer. 6432 */ 6433 6434 /* Tell the controller what we think */ 6435 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6436 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6437 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6438 cts.transport = path->device->transport; 6439 cts.transport_version = path->device->transport_version; 6440 cts.protocol = path->device->protocol; 6441 cts.protocol_version = path->device->protocol_version; 6442 cts.proto_specific.valid = 0; 6443 cts.xport_specific.valid = 0; 6444 xpt_action((union ccb *)&cts); 6445 } 6446 6447 static void 6448 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6449 int async_update) 6450 { 6451 struct ccb_pathinq cpi; 6452 struct ccb_trans_settings cur_cts; 6453 struct ccb_trans_settings_scsi *scsi; 6454 struct ccb_trans_settings_scsi *cur_scsi; 6455 struct cam_sim *sim; 6456 struct scsi_inquiry_data *inq_data; 6457 6458 if (device == NULL) { 6459 cts->ccb_h.status = CAM_PATH_INVALID; 6460 xpt_done((union ccb *)cts); 6461 return; 6462 } 6463 6464 if (cts->protocol == PROTO_UNKNOWN 6465 || cts->protocol == PROTO_UNSPECIFIED) { 6466 cts->protocol = device->protocol; 6467 cts->protocol_version = device->protocol_version; 6468 } 6469 6470 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6471 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6472 cts->protocol_version = device->protocol_version; 6473 6474 if (cts->protocol != device->protocol) { 6475 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n", 6476 cts->protocol, device->protocol); 6477 cts->protocol = device->protocol; 6478 } 6479 6480 if (cts->protocol_version > device->protocol_version) { 6481 if (bootverbose) { 6482 xpt_print(cts->ccb_h.path, "Down reving Protocol " 6483 "Version from %d to %d?\n", cts->protocol_version, 6484 device->protocol_version); 6485 } 6486 cts->protocol_version = device->protocol_version; 6487 } 6488 6489 if (cts->transport == XPORT_UNKNOWN 6490 || cts->transport == XPORT_UNSPECIFIED) { 6491 cts->transport = device->transport; 6492 cts->transport_version = device->transport_version; 6493 } 6494 6495 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6496 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6497 cts->transport_version = device->transport_version; 6498 6499 if (cts->transport != device->transport) { 6500 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n", 6501 cts->transport, device->transport); 6502 cts->transport = device->transport; 6503 } 6504 6505 if (cts->transport_version > device->transport_version) { 6506 if (bootverbose) { 6507 xpt_print(cts->ccb_h.path, "Down reving Transport " 6508 "Version from %d to %d?\n", cts->transport_version, 6509 device->transport_version); 6510 } 6511 cts->transport_version = device->transport_version; 6512 } 6513 6514 sim = cts->ccb_h.path->bus->sim; 6515 6516 /* 6517 * Nothing more of interest to do unless 6518 * this is a device connected via the 6519 * SCSI protocol. 6520 */ 6521 if (cts->protocol != PROTO_SCSI) { 6522 if (async_update == FALSE) 6523 (*(sim->sim_action))(sim, (union ccb *)cts); 6524 return; 6525 } 6526 6527 inq_data = &device->inq_data; 6528 scsi = &cts->proto_specific.scsi; 6529 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6530 cpi.ccb_h.func_code = XPT_PATH_INQ; 6531 xpt_action((union ccb *)&cpi); 6532 6533 /* SCSI specific sanity checking */ 6534 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6535 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 6536 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6537 || (device->quirk->mintags == 0)) { 6538 /* 6539 * Can't tag on hardware that doesn't support tags, 6540 * doesn't have it enabled, or has broken tag support. 6541 */ 6542 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6543 } 6544 6545 if (async_update == FALSE) { 6546 /* 6547 * Perform sanity checking against what the 6548 * controller and device can do. 6549 */ 6550 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6551 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6552 cur_cts.type = cts->type; 6553 xpt_action((union ccb *)&cur_cts); 6554 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6555 return; 6556 } 6557 cur_scsi = &cur_cts.proto_specific.scsi; 6558 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6559 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6560 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6561 } 6562 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6563 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6564 } 6565 6566 /* SPI specific sanity checking */ 6567 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6568 u_int spi3caps; 6569 struct ccb_trans_settings_spi *spi; 6570 struct ccb_trans_settings_spi *cur_spi; 6571 6572 spi = &cts->xport_specific.spi; 6573 6574 cur_spi = &cur_cts.xport_specific.spi; 6575 6576 /* Fill in any gaps in what the user gave us */ 6577 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6578 spi->sync_period = cur_spi->sync_period; 6579 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6580 spi->sync_period = 0; 6581 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6582 spi->sync_offset = cur_spi->sync_offset; 6583 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6584 spi->sync_offset = 0; 6585 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6586 spi->ppr_options = cur_spi->ppr_options; 6587 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6588 spi->ppr_options = 0; 6589 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6590 spi->bus_width = cur_spi->bus_width; 6591 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6592 spi->bus_width = 0; 6593 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6594 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6595 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6596 } 6597 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6598 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6599 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6600 && (inq_data->flags & SID_Sync) == 0 6601 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6602 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6603 || (spi->sync_offset == 0) 6604 || (spi->sync_period == 0)) { 6605 /* Force async */ 6606 spi->sync_period = 0; 6607 spi->sync_offset = 0; 6608 } 6609 6610 switch (spi->bus_width) { 6611 case MSG_EXT_WDTR_BUS_32_BIT: 6612 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6613 || (inq_data->flags & SID_WBus32) != 0 6614 || cts->type == CTS_TYPE_USER_SETTINGS) 6615 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6616 break; 6617 /* Fall Through to 16-bit */ 6618 case MSG_EXT_WDTR_BUS_16_BIT: 6619 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6620 || (inq_data->flags & SID_WBus16) != 0 6621 || cts->type == CTS_TYPE_USER_SETTINGS) 6622 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6623 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6624 break; 6625 } 6626 /* Fall Through to 8-bit */ 6627 default: /* New bus width?? */ 6628 case MSG_EXT_WDTR_BUS_8_BIT: 6629 /* All targets can do this */ 6630 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6631 break; 6632 } 6633 6634 spi3caps = cpi.xport_specific.spi.ppr_options; 6635 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6636 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6637 spi3caps &= inq_data->spi3data; 6638 6639 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6640 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6641 6642 if ((spi3caps & SID_SPI_IUS) == 0) 6643 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6644 6645 if ((spi3caps & SID_SPI_QAS) == 0) 6646 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6647 6648 /* No SPI Transfer settings are allowed unless we are wide */ 6649 if (spi->bus_width == 0) 6650 spi->ppr_options = 0; 6651 6652 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6653 /* 6654 * Can't tag queue without disconnection. 6655 */ 6656 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6657 scsi->valid |= CTS_SCSI_VALID_TQ; 6658 } 6659 6660 /* 6661 * If we are currently performing tagged transactions to 6662 * this device and want to change its negotiation parameters, 6663 * go non-tagged for a bit to give the controller a chance to 6664 * negotiate unhampered by tag messages. 6665 */ 6666 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6667 && (device->inq_flags & SID_CmdQue) != 0 6668 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6669 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6670 CTS_SPI_VALID_SYNC_OFFSET| 6671 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6672 xpt_toggle_tags(cts->ccb_h.path); 6673 } 6674 6675 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6676 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6677 int device_tagenb; 6678 6679 /* 6680 * If we are transitioning from tags to no-tags or 6681 * vice-versa, we need to carefully freeze and restart 6682 * the queue so that we don't overlap tagged and non-tagged 6683 * commands. We also temporarily stop tags if there is 6684 * a change in transfer negotiation settings to allow 6685 * "tag-less" negotiation. 6686 */ 6687 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6688 || (device->inq_flags & SID_CmdQue) != 0) 6689 device_tagenb = TRUE; 6690 else 6691 device_tagenb = FALSE; 6692 6693 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6694 && device_tagenb == FALSE) 6695 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6696 && device_tagenb == TRUE)) { 6697 6698 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6699 /* 6700 * Delay change to use tags until after a 6701 * few commands have gone to this device so 6702 * the controller has time to perform transfer 6703 * negotiations without tagged messages getting 6704 * in the way. 6705 */ 6706 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6707 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6708 } else { 6709 struct ccb_relsim crs; 6710 6711 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6712 device->inq_flags &= ~SID_CmdQue; 6713 xpt_dev_ccbq_resize(cts->ccb_h.path, 6714 sim->max_dev_openings); 6715 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6716 device->tag_delay_count = 0; 6717 6718 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6719 /*priority*/1); 6720 crs.ccb_h.func_code = XPT_REL_SIMQ; 6721 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6722 crs.openings 6723 = crs.release_timeout 6724 = crs.qfrozen_cnt 6725 = 0; 6726 xpt_action((union ccb *)&crs); 6727 } 6728 } 6729 } 6730 if (async_update == FALSE) 6731 (*(sim->sim_action))(sim, (union ccb *)cts); 6732 } 6733 6734 6735 static void 6736 xpt_toggle_tags(struct cam_path *path) 6737 { 6738 struct cam_ed *dev; 6739 6740 /* 6741 * Give controllers a chance to renegotiate 6742 * before starting tag operations. We 6743 * "toggle" tagged queuing off then on 6744 * which causes the tag enable command delay 6745 * counter to come into effect. 6746 */ 6747 dev = path->device; 6748 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6749 || ((dev->inq_flags & SID_CmdQue) != 0 6750 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6751 struct ccb_trans_settings cts; 6752 6753 xpt_setup_ccb(&cts.ccb_h, path, 1); 6754 cts.protocol = PROTO_SCSI; 6755 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6756 cts.transport = XPORT_UNSPECIFIED; 6757 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6758 cts.proto_specific.scsi.flags = 0; 6759 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6760 xpt_set_transfer_settings(&cts, path->device, 6761 /*async_update*/TRUE); 6762 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6763 xpt_set_transfer_settings(&cts, path->device, 6764 /*async_update*/TRUE); 6765 } 6766 } 6767 6768 static void 6769 xpt_start_tags(struct cam_path *path) 6770 { 6771 struct ccb_relsim crs; 6772 struct cam_ed *device; 6773 struct cam_sim *sim; 6774 int newopenings; 6775 6776 device = path->device; 6777 sim = path->bus->sim; 6778 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6779 xpt_freeze_devq(path, /*count*/1); 6780 device->inq_flags |= SID_CmdQue; 6781 if (device->tag_saved_openings != 0) 6782 newopenings = device->tag_saved_openings; 6783 else 6784 newopenings = min(device->quirk->maxtags, 6785 sim->max_tagged_dev_openings); 6786 xpt_dev_ccbq_resize(path, newopenings); 6787 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6788 crs.ccb_h.func_code = XPT_REL_SIMQ; 6789 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6790 crs.openings 6791 = crs.release_timeout 6792 = crs.qfrozen_cnt 6793 = 0; 6794 xpt_action((union ccb *)&crs); 6795 } 6796 6797 static int busses_to_config; 6798 static int busses_to_reset; 6799 6800 static int 6801 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6802 { 6803 6804 mtx_assert(bus->sim->mtx, MA_OWNED); 6805 6806 if (bus->path_id != CAM_XPT_PATH_ID) { 6807 struct cam_path path; 6808 struct ccb_pathinq cpi; 6809 int can_negotiate; 6810 6811 busses_to_config++; 6812 xpt_compile_path(&path, NULL, bus->path_id, 6813 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6814 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6815 cpi.ccb_h.func_code = XPT_PATH_INQ; 6816 xpt_action((union ccb *)&cpi); 6817 can_negotiate = cpi.hba_inquiry; 6818 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6819 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6820 && can_negotiate) 6821 busses_to_reset++; 6822 xpt_release_path(&path); 6823 } 6824 6825 return(1); 6826 } 6827 6828 static int 6829 xptconfigfunc(struct cam_eb *bus, void *arg) 6830 { 6831 struct cam_path *path; 6832 union ccb *work_ccb; 6833 6834 mtx_assert(bus->sim->mtx, MA_OWNED); 6835 6836 if (bus->path_id != CAM_XPT_PATH_ID) { 6837 cam_status status; 6838 int can_negotiate; 6839 6840 work_ccb = xpt_alloc_ccb_nowait(); 6841 if (work_ccb == NULL) { 6842 busses_to_config--; 6843 xpt_finishconfig(xpt_periph, NULL); 6844 return(0); 6845 } 6846 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6847 CAM_TARGET_WILDCARD, 6848 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6849 printf("xptconfigfunc: xpt_create_path failed with " 6850 "status %#x for bus %d\n", status, bus->path_id); 6851 printf("xptconfigfunc: halting bus configuration\n"); 6852 xpt_free_ccb(work_ccb); 6853 busses_to_config--; 6854 xpt_finishconfig(xpt_periph, NULL); 6855 return(0); 6856 } 6857 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6858 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6859 xpt_action(work_ccb); 6860 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6861 printf("xptconfigfunc: CPI failed on bus %d " 6862 "with status %d\n", bus->path_id, 6863 work_ccb->ccb_h.status); 6864 xpt_finishconfig(xpt_periph, work_ccb); 6865 return(1); 6866 } 6867 6868 can_negotiate = work_ccb->cpi.hba_inquiry; 6869 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6870 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6871 && (can_negotiate != 0)) { 6872 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6873 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6874 work_ccb->ccb_h.cbfcnp = NULL; 6875 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6876 ("Resetting Bus\n")); 6877 xpt_action(work_ccb); 6878 xpt_finishconfig(xpt_periph, work_ccb); 6879 } else { 6880 /* Act as though we performed a successful BUS RESET */ 6881 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6882 xpt_finishconfig(xpt_periph, work_ccb); 6883 } 6884 } 6885 6886 return(1); 6887 } 6888 6889 static void 6890 xpt_config(void *arg) 6891 { 6892 /* 6893 * Now that interrupts are enabled, go find our devices 6894 */ 6895 6896 #ifdef CAMDEBUG 6897 /* Setup debugging flags and path */ 6898 #ifdef CAM_DEBUG_FLAGS 6899 cam_dflags = CAM_DEBUG_FLAGS; 6900 #else /* !CAM_DEBUG_FLAGS */ 6901 cam_dflags = CAM_DEBUG_NONE; 6902 #endif /* CAM_DEBUG_FLAGS */ 6903 #ifdef CAM_DEBUG_BUS 6904 if (cam_dflags != CAM_DEBUG_NONE) { 6905 /* 6906 * Locking is specifically omitted here. No SIMs have 6907 * registered yet, so xpt_create_path will only be searching 6908 * empty lists of targets and devices. 6909 */ 6910 if (xpt_create_path(&cam_dpath, xpt_periph, 6911 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6912 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6913 printf("xpt_config: xpt_create_path() failed for debug" 6914 " target %d:%d:%d, debugging disabled\n", 6915 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6916 cam_dflags = CAM_DEBUG_NONE; 6917 } 6918 } else 6919 cam_dpath = NULL; 6920 #else /* !CAM_DEBUG_BUS */ 6921 cam_dpath = NULL; 6922 #endif /* CAM_DEBUG_BUS */ 6923 #endif /* CAMDEBUG */ 6924 6925 /* 6926 * Scan all installed busses. 6927 */ 6928 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6929 6930 if (busses_to_config == 0) { 6931 /* Call manually because we don't have any busses */ 6932 xpt_finishconfig(xpt_periph, NULL); 6933 } else { 6934 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6935 printf("Waiting %d seconds for SCSI " 6936 "devices to settle\n", scsi_delay/1000); 6937 } 6938 xpt_for_all_busses(xptconfigfunc, NULL); 6939 } 6940 } 6941 6942 /* 6943 * If the given device only has one peripheral attached to it, and if that 6944 * peripheral is the passthrough driver, announce it. This insures that the 6945 * user sees some sort of announcement for every peripheral in their system. 6946 */ 6947 static int 6948 xptpassannouncefunc(struct cam_ed *device, void *arg) 6949 { 6950 struct cam_periph *periph; 6951 int i; 6952 6953 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6954 periph = SLIST_NEXT(periph, periph_links), i++); 6955 6956 periph = SLIST_FIRST(&device->periphs); 6957 if ((i == 1) 6958 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6959 xpt_announce_periph(periph, NULL); 6960 6961 return(1); 6962 } 6963 6964 static void 6965 xpt_finishconfig_task(void *context, int pending) 6966 { 6967 struct periph_driver **p_drv; 6968 int i; 6969 6970 if (busses_to_config == 0) { 6971 /* Register all the peripheral drivers */ 6972 /* XXX This will have to change when we have loadable modules */ 6973 p_drv = periph_drivers; 6974 for (i = 0; p_drv[i] != NULL; i++) { 6975 (*p_drv[i]->init)(); 6976 } 6977 6978 /* 6979 * Check for devices with no "standard" peripheral driver 6980 * attached. For any devices like that, announce the 6981 * passthrough driver so the user will see something. 6982 */ 6983 xpt_for_all_devices(xptpassannouncefunc, NULL); 6984 6985 /* Release our hook so that the boot can continue. */ 6986 config_intrhook_disestablish(xsoftc.xpt_config_hook); 6987 free(xsoftc.xpt_config_hook, M_CAMXPT); 6988 xsoftc.xpt_config_hook = NULL; 6989 } 6990 6991 free(context, M_CAMXPT); 6992 } 6993 6994 static void 6995 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6996 { 6997 struct xpt_task *task; 6998 6999 if (done_ccb != NULL) { 7000 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 7001 ("xpt_finishconfig\n")); 7002 switch(done_ccb->ccb_h.func_code) { 7003 case XPT_RESET_BUS: 7004 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 7005 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 7006 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 7007 done_ccb->crcn.flags = 0; 7008 xpt_action(done_ccb); 7009 return; 7010 } 7011 /* FALLTHROUGH */ 7012 case XPT_SCAN_BUS: 7013 default: 7014 xpt_free_path(done_ccb->ccb_h.path); 7015 busses_to_config--; 7016 break; 7017 } 7018 } 7019 7020 if (busses_to_config == 0) { 7021 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 7022 if (task != NULL) { 7023 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 7024 taskqueue_enqueue(taskqueue_thread, &task->task); 7025 } 7026 } 7027 7028 if (done_ccb != NULL) 7029 xpt_free_ccb(done_ccb); 7030 } 7031 7032 cam_status 7033 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 7034 struct cam_path *path) 7035 { 7036 struct ccb_setasync csa; 7037 cam_status status; 7038 int xptpath = 0; 7039 7040 if (path == NULL) { 7041 mtx_lock(&xsoftc.xpt_lock); 7042 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 7043 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 7044 if (status != CAM_REQ_CMP) { 7045 mtx_unlock(&xsoftc.xpt_lock); 7046 return (status); 7047 } 7048 xptpath = 1; 7049 } 7050 7051 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5); 7052 csa.ccb_h.func_code = XPT_SASYNC_CB; 7053 csa.event_enable = event; 7054 csa.callback = cbfunc; 7055 csa.callback_arg = cbarg; 7056 xpt_action((union ccb *)&csa); 7057 status = csa.ccb_h.status; 7058 if (xptpath) { 7059 xpt_free_path(path); 7060 mtx_unlock(&xsoftc.xpt_lock); 7061 } 7062 return (status); 7063 } 7064 7065 static void 7066 xptaction(struct cam_sim *sim, union ccb *work_ccb) 7067 { 7068 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 7069 7070 switch (work_ccb->ccb_h.func_code) { 7071 /* Common cases first */ 7072 case XPT_PATH_INQ: /* Path routing inquiry */ 7073 { 7074 struct ccb_pathinq *cpi; 7075 7076 cpi = &work_ccb->cpi; 7077 cpi->version_num = 1; /* XXX??? */ 7078 cpi->hba_inquiry = 0; 7079 cpi->target_sprt = 0; 7080 cpi->hba_misc = 0; 7081 cpi->hba_eng_cnt = 0; 7082 cpi->max_target = 0; 7083 cpi->max_lun = 0; 7084 cpi->initiator_id = 0; 7085 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7086 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7087 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7088 cpi->unit_number = sim->unit_number; 7089 cpi->bus_id = sim->bus_id; 7090 cpi->base_transfer_speed = 0; 7091 cpi->protocol = PROTO_UNSPECIFIED; 7092 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7093 cpi->transport = XPORT_UNSPECIFIED; 7094 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7095 cpi->ccb_h.status = CAM_REQ_CMP; 7096 xpt_done(work_ccb); 7097 break; 7098 } 7099 default: 7100 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7101 xpt_done(work_ccb); 7102 break; 7103 } 7104 } 7105 7106 /* 7107 * The xpt as a "controller" has no interrupt sources, so polling 7108 * is a no-op. 7109 */ 7110 static void 7111 xptpoll(struct cam_sim *sim) 7112 { 7113 } 7114 7115 void 7116 xpt_lock_buses(void) 7117 { 7118 mtx_lock(&xsoftc.xpt_topo_lock); 7119 } 7120 7121 void 7122 xpt_unlock_buses(void) 7123 { 7124 mtx_unlock(&xsoftc.xpt_topo_lock); 7125 } 7126 7127 static void 7128 camisr(void *dummy) 7129 { 7130 cam_simq_t queue; 7131 struct cam_sim *sim; 7132 7133 mtx_lock(&cam_simq_lock); 7134 TAILQ_INIT(&queue); 7135 TAILQ_CONCAT(&queue, &cam_simq, links); 7136 mtx_unlock(&cam_simq_lock); 7137 7138 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 7139 TAILQ_REMOVE(&queue, sim, links); 7140 CAM_SIM_LOCK(sim); 7141 sim->flags &= ~CAM_SIM_ON_DONEQ; 7142 camisr_runqueue(&sim->sim_doneq); 7143 CAM_SIM_UNLOCK(sim); 7144 } 7145 } 7146 7147 static void 7148 camisr_runqueue(void *V_queue) 7149 { 7150 cam_isrq_t *queue = V_queue; 7151 struct ccb_hdr *ccb_h; 7152 7153 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 7154 int runq; 7155 7156 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 7157 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7158 7159 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7160 ("camisr\n")); 7161 7162 runq = FALSE; 7163 7164 if (ccb_h->flags & CAM_HIGH_POWER) { 7165 struct highpowerlist *hphead; 7166 union ccb *send_ccb; 7167 7168 mtx_lock(&xsoftc.xpt_lock); 7169 hphead = &xsoftc.highpowerq; 7170 7171 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7172 7173 /* 7174 * Increment the count since this command is done. 7175 */ 7176 xsoftc.num_highpower++; 7177 7178 /* 7179 * Any high powered commands queued up? 7180 */ 7181 if (send_ccb != NULL) { 7182 7183 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7184 mtx_unlock(&xsoftc.xpt_lock); 7185 7186 xpt_release_devq(send_ccb->ccb_h.path, 7187 /*count*/1, /*runqueue*/TRUE); 7188 } else 7189 mtx_unlock(&xsoftc.xpt_lock); 7190 } 7191 7192 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7193 struct cam_ed *dev; 7194 7195 dev = ccb_h->path->device; 7196 7197 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7198 7199 if (!SIM_DEAD(ccb_h->path->bus->sim)) { 7200 ccb_h->path->bus->sim->devq->send_active--; 7201 ccb_h->path->bus->sim->devq->send_openings++; 7202 } 7203 7204 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7205 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7206 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7207 && (dev->ccbq.dev_active == 0))) { 7208 7209 xpt_release_devq(ccb_h->path, /*count*/1, 7210 /*run_queue*/TRUE); 7211 } 7212 7213 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7214 && (--dev->tag_delay_count == 0)) 7215 xpt_start_tags(ccb_h->path); 7216 7217 if ((dev->ccbq.queue.entries > 0) 7218 && (dev->qfrozen_cnt == 0) 7219 && (device_is_send_queued(dev) == 0)) { 7220 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7221 dev); 7222 } 7223 } 7224 7225 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7226 xpt_release_simq(ccb_h->path->bus->sim, 7227 /*run_queue*/TRUE); 7228 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7229 runq = FALSE; 7230 } 7231 7232 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7233 && (ccb_h->status & CAM_DEV_QFRZN)) { 7234 xpt_release_devq(ccb_h->path, /*count*/1, 7235 /*run_queue*/TRUE); 7236 ccb_h->status &= ~CAM_DEV_QFRZN; 7237 } else if (runq) { 7238 xpt_run_dev_sendq(ccb_h->path->bus); 7239 } 7240 7241 /* Call the peripheral driver's callback */ 7242 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7243 } 7244 } 7245 7246 static void 7247 dead_sim_action(struct cam_sim *sim, union ccb *ccb) 7248 { 7249 7250 ccb->ccb_h.status = CAM_DEV_NOT_THERE; 7251 xpt_done(ccb); 7252 } 7253 7254 static void 7255 dead_sim_poll(struct cam_sim *sim) 7256 { 7257 } 7258