xref: /freebsd/sys/cam/cam_xpt.c (revision 09127a36371d5f5ac109ad1063e7fe53ee9bf356)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_queue.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_xpt_internal.h>
60 #include <cam/cam_debug.h>
61 #include <cam/cam_compat.h>
62 
63 #include <cam/scsi/scsi_all.h>
64 #include <cam/scsi/scsi_message.h>
65 #include <cam/scsi/scsi_pass.h>
66 
67 #include <machine/md_var.h>	/* geometry translation */
68 #include <machine/stdarg.h>	/* for xpt_print below */
69 
70 #include "opt_cam.h"
71 
72 /*
73  * This is the maximum number of high powered commands (e.g. start unit)
74  * that can be outstanding at a particular time.
75  */
76 #ifndef CAM_MAX_HIGHPOWER
77 #define CAM_MAX_HIGHPOWER  4
78 #endif
79 
80 /* Datastructures internal to the xpt layer */
81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
83 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
84 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
85 
86 /* Object for defering XPT actions to a taskqueue */
87 struct xpt_task {
88 	struct task	task;
89 	void		*data1;
90 	uintptr_t	data2;
91 };
92 
93 typedef enum {
94 	XPT_FLAG_OPEN		= 0x01
95 } xpt_flags;
96 
97 struct xpt_softc {
98 	xpt_flags		flags;
99 
100 	/* number of high powered commands that can go through right now */
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/* Registered busses */
110 	TAILQ_HEAD(,cam_eb)	xpt_busses;
111 	u_int			bus_generation;
112 
113 	struct intr_config_hook	*xpt_config_hook;
114 
115 	int			boot_delay;
116 	struct callout 		boot_callout;
117 
118 	struct mtx		xpt_topo_lock;
119 	struct mtx		xpt_lock;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156            &xsoftc.boot_delay, 0, "Bus registration wait time");
157 
158 /* Queues for our software interrupt handler */
159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161 static cam_simq_t cam_simq;
162 static struct mtx cam_simq_lock;
163 
164 /* Pointers to software interrupt handlers */
165 static void *cambio_ih;
166 
167 struct cam_periph *xpt_periph;
168 
169 static periph_init_t xpt_periph_init;
170 
171 static struct periph_driver xpt_driver =
172 {
173 	xpt_periph_init, "xpt",
174 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175 	CAM_PERIPH_DRV_EARLY
176 };
177 
178 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179 
180 static d_open_t xptopen;
181 static d_close_t xptclose;
182 static d_ioctl_t xptioctl;
183 static d_ioctl_t xptdoioctl;
184 
185 static struct cdevsw xpt_cdevsw = {
186 	.d_version =	D_VERSION,
187 	.d_flags =	0,
188 	.d_open =	xptopen,
189 	.d_close =	xptclose,
190 	.d_ioctl =	xptioctl,
191 	.d_name =	"xpt",
192 };
193 
194 /* Storage for debugging datastructures */
195 struct cam_path *cam_dpath;
196 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
197 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
199 	&cam_dflags, 0, "Enabled debug flags");
200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
201 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
202 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
203 	&cam_debug_delay, 0, "Delay in us after each debug message");
204 
205 /* Our boot-time initialization hook */
206 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
207 
208 static moduledata_t cam_moduledata = {
209 	"cam",
210 	cam_module_event_handler,
211 	NULL
212 };
213 
214 static int	xpt_init(void *);
215 
216 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
217 MODULE_VERSION(cam, 1);
218 
219 
220 static void		xpt_async_bcast(struct async_list *async_head,
221 					u_int32_t async_code,
222 					struct cam_path *path,
223 					void *async_arg);
224 static path_id_t xptnextfreepathid(void);
225 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
226 static union ccb *xpt_get_ccb(struct cam_ed *device);
227 static void	 xpt_run_dev_allocq(struct cam_ed *device);
228 static void	 xpt_run_devq(struct cam_devq *devq);
229 static timeout_t xpt_release_devq_timeout;
230 static void	 xpt_release_simq_timeout(void *arg) __unused;
231 static void	 xpt_release_bus(struct cam_eb *bus);
232 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
233 		    int run_queue);
234 static struct cam_et*
235 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
236 static void	 xpt_release_target(struct cam_et *target);
237 static struct cam_eb*
238 		 xpt_find_bus(path_id_t path_id);
239 static struct cam_et*
240 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
241 static struct cam_ed*
242 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
243 static void	 xpt_config(void *arg);
244 static xpt_devicefunc_t xptpassannouncefunc;
245 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
246 static void	 xptpoll(struct cam_sim *sim);
247 static void	 camisr(void *);
248 static void	 camisr_runqueue(struct cam_sim *);
249 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
250 				    u_int num_patterns, struct cam_eb *bus);
251 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
252 				       u_int num_patterns,
253 				       struct cam_ed *device);
254 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
255 				       u_int num_patterns,
256 				       struct cam_periph *periph);
257 static xpt_busfunc_t	xptedtbusfunc;
258 static xpt_targetfunc_t	xptedttargetfunc;
259 static xpt_devicefunc_t	xptedtdevicefunc;
260 static xpt_periphfunc_t	xptedtperiphfunc;
261 static xpt_pdrvfunc_t	xptplistpdrvfunc;
262 static xpt_periphfunc_t	xptplistperiphfunc;
263 static int		xptedtmatch(struct ccb_dev_match *cdm);
264 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
265 static int		xptbustraverse(struct cam_eb *start_bus,
266 				       xpt_busfunc_t *tr_func, void *arg);
267 static int		xpttargettraverse(struct cam_eb *bus,
268 					  struct cam_et *start_target,
269 					  xpt_targetfunc_t *tr_func, void *arg);
270 static int		xptdevicetraverse(struct cam_et *target,
271 					  struct cam_ed *start_device,
272 					  xpt_devicefunc_t *tr_func, void *arg);
273 static int		xptperiphtraverse(struct cam_ed *device,
274 					  struct cam_periph *start_periph,
275 					  xpt_periphfunc_t *tr_func, void *arg);
276 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
277 					xpt_pdrvfunc_t *tr_func, void *arg);
278 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
279 					    struct cam_periph *start_periph,
280 					    xpt_periphfunc_t *tr_func,
281 					    void *arg);
282 static xpt_busfunc_t	xptdefbusfunc;
283 static xpt_targetfunc_t	xptdeftargetfunc;
284 static xpt_devicefunc_t	xptdefdevicefunc;
285 static xpt_periphfunc_t	xptdefperiphfunc;
286 static void		xpt_finishconfig_task(void *context, int pending);
287 static void		xpt_dev_async_default(u_int32_t async_code,
288 					      struct cam_eb *bus,
289 					      struct cam_et *target,
290 					      struct cam_ed *device,
291 					      void *async_arg);
292 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
293 						 struct cam_et *target,
294 						 lun_id_t lun_id);
295 static xpt_devicefunc_t	xptsetasyncfunc;
296 static xpt_busfunc_t	xptsetasyncbusfunc;
297 static cam_status	xptregister(struct cam_periph *periph,
298 				    void *arg);
299 static __inline int periph_is_queued(struct cam_periph *periph);
300 static __inline int device_is_queued(struct cam_ed *device);
301 
302 static __inline int
303 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
304 {
305 	int	retval;
306 
307 	if ((dev->ccbq.queue.entries > 0) &&
308 	    (dev->ccbq.dev_openings > 0) &&
309 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
310 		/*
311 		 * The priority of a device waiting for controller
312 		 * resources is that of the highest priority CCB
313 		 * enqueued.
314 		 */
315 		retval =
316 		    xpt_schedule_dev(&devq->send_queue,
317 				     &dev->devq_entry.pinfo,
318 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
319 	} else {
320 		retval = 0;
321 	}
322 	return (retval);
323 }
324 
325 static __inline int
326 periph_is_queued(struct cam_periph *periph)
327 {
328 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
329 }
330 
331 static __inline int
332 device_is_queued(struct cam_ed *device)
333 {
334 	return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
335 }
336 
337 static void
338 xpt_periph_init()
339 {
340 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
341 }
342 
343 static void
344 xptdone(struct cam_periph *periph, union ccb *done_ccb)
345 {
346 	/* Caller will release the CCB */
347 	wakeup(&done_ccb->ccb_h.cbfcnp);
348 }
349 
350 static int
351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
352 {
353 
354 	/*
355 	 * Only allow read-write access.
356 	 */
357 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
358 		return(EPERM);
359 
360 	/*
361 	 * We don't allow nonblocking access.
362 	 */
363 	if ((flags & O_NONBLOCK) != 0) {
364 		printf("%s: can't do nonblocking access\n", devtoname(dev));
365 		return(ENODEV);
366 	}
367 
368 	/* Mark ourselves open */
369 	mtx_lock(&xsoftc.xpt_lock);
370 	xsoftc.flags |= XPT_FLAG_OPEN;
371 	mtx_unlock(&xsoftc.xpt_lock);
372 
373 	return(0);
374 }
375 
376 static int
377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379 
380 	/* Mark ourselves closed */
381 	mtx_lock(&xsoftc.xpt_lock);
382 	xsoftc.flags &= ~XPT_FLAG_OPEN;
383 	mtx_unlock(&xsoftc.xpt_lock);
384 
385 	return(0);
386 }
387 
388 /*
389  * Don't automatically grab the xpt softc lock here even though this is going
390  * through the xpt device.  The xpt device is really just a back door for
391  * accessing other devices and SIMs, so the right thing to do is to grab
392  * the appropriate SIM lock once the bus/SIM is located.
393  */
394 static int
395 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
396 {
397 	int error;
398 
399 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
400 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
401 	}
402 	return (error);
403 }
404 
405 static int
406 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
407 {
408 	int error;
409 
410 	error = 0;
411 
412 	switch(cmd) {
413 	/*
414 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
415 	 * to accept CCB types that don't quite make sense to send through a
416 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
417 	 * in the CAM spec.
418 	 */
419 	case CAMIOCOMMAND: {
420 		union ccb *ccb;
421 		union ccb *inccb;
422 		struct cam_eb *bus;
423 
424 		inccb = (union ccb *)addr;
425 
426 		bus = xpt_find_bus(inccb->ccb_h.path_id);
427 		if (bus == NULL)
428 			return (EINVAL);
429 
430 		switch (inccb->ccb_h.func_code) {
431 		case XPT_SCAN_BUS:
432 		case XPT_RESET_BUS:
433 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
434 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
435 				xpt_release_bus(bus);
436 				return (EINVAL);
437 			}
438 			break;
439 		case XPT_SCAN_TGT:
440 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
441 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
442 				xpt_release_bus(bus);
443 				return (EINVAL);
444 			}
445 			break;
446 		default:
447 			break;
448 		}
449 
450 		switch(inccb->ccb_h.func_code) {
451 		case XPT_SCAN_BUS:
452 		case XPT_RESET_BUS:
453 		case XPT_PATH_INQ:
454 		case XPT_ENG_INQ:
455 		case XPT_SCAN_LUN:
456 		case XPT_SCAN_TGT:
457 
458 			ccb = xpt_alloc_ccb();
459 
460 			CAM_SIM_LOCK(bus->sim);
461 
462 			/*
463 			 * Create a path using the bus, target, and lun the
464 			 * user passed in.
465 			 */
466 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 					    inccb->ccb_h.path_id,
468 					    inccb->ccb_h.target_id,
469 					    inccb->ccb_h.target_lun) !=
470 					    CAM_REQ_CMP){
471 				error = EINVAL;
472 				CAM_SIM_UNLOCK(bus->sim);
473 				xpt_free_ccb(ccb);
474 				break;
475 			}
476 			/* Ensure all of our fields are correct */
477 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
478 				      inccb->ccb_h.pinfo.priority);
479 			xpt_merge_ccb(ccb, inccb);
480 			ccb->ccb_h.cbfcnp = xptdone;
481 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
482 			bcopy(ccb, inccb, sizeof(union ccb));
483 			xpt_free_path(ccb->ccb_h.path);
484 			xpt_free_ccb(ccb);
485 			CAM_SIM_UNLOCK(bus->sim);
486 			break;
487 
488 		case XPT_DEBUG: {
489 			union ccb ccb;
490 
491 			/*
492 			 * This is an immediate CCB, so it's okay to
493 			 * allocate it on the stack.
494 			 */
495 
496 			CAM_SIM_LOCK(bus->sim);
497 
498 			/*
499 			 * Create a path using the bus, target, and lun the
500 			 * user passed in.
501 			 */
502 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
503 					    inccb->ccb_h.path_id,
504 					    inccb->ccb_h.target_id,
505 					    inccb->ccb_h.target_lun) !=
506 					    CAM_REQ_CMP){
507 				error = EINVAL;
508 				CAM_SIM_UNLOCK(bus->sim);
509 				break;
510 			}
511 			/* Ensure all of our fields are correct */
512 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
513 				      inccb->ccb_h.pinfo.priority);
514 			xpt_merge_ccb(&ccb, inccb);
515 			ccb.ccb_h.cbfcnp = xptdone;
516 			xpt_action(&ccb);
517 			bcopy(&ccb, inccb, sizeof(union ccb));
518 			xpt_free_path(ccb.ccb_h.path);
519 			CAM_SIM_UNLOCK(bus->sim);
520 			break;
521 
522 		}
523 		case XPT_DEV_MATCH: {
524 			struct cam_periph_map_info mapinfo;
525 			struct cam_path *old_path;
526 
527 			/*
528 			 * We can't deal with physical addresses for this
529 			 * type of transaction.
530 			 */
531 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
532 			    CAM_DATA_VADDR) {
533 				error = EINVAL;
534 				break;
535 			}
536 
537 			/*
538 			 * Save this in case the caller had it set to
539 			 * something in particular.
540 			 */
541 			old_path = inccb->ccb_h.path;
542 
543 			/*
544 			 * We really don't need a path for the matching
545 			 * code.  The path is needed because of the
546 			 * debugging statements in xpt_action().  They
547 			 * assume that the CCB has a valid path.
548 			 */
549 			inccb->ccb_h.path = xpt_periph->path;
550 
551 			bzero(&mapinfo, sizeof(mapinfo));
552 
553 			/*
554 			 * Map the pattern and match buffers into kernel
555 			 * virtual address space.
556 			 */
557 			error = cam_periph_mapmem(inccb, &mapinfo);
558 
559 			if (error) {
560 				inccb->ccb_h.path = old_path;
561 				break;
562 			}
563 
564 			/*
565 			 * This is an immediate CCB, we can send it on directly.
566 			 */
567 			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
568 			xpt_action(inccb);
569 			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
570 
571 			/*
572 			 * Map the buffers back into user space.
573 			 */
574 			cam_periph_unmapmem(inccb, &mapinfo);
575 
576 			inccb->ccb_h.path = old_path;
577 
578 			error = 0;
579 			break;
580 		}
581 		default:
582 			error = ENOTSUP;
583 			break;
584 		}
585 		xpt_release_bus(bus);
586 		break;
587 	}
588 	/*
589 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
590 	 * with the periphal driver name and unit name filled in.  The other
591 	 * fields don't really matter as input.  The passthrough driver name
592 	 * ("pass"), and unit number are passed back in the ccb.  The current
593 	 * device generation number, and the index into the device peripheral
594 	 * driver list, and the status are also passed back.  Note that
595 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
596 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
597 	 * (or rather should be) impossible for the device peripheral driver
598 	 * list to change since we look at the whole thing in one pass, and
599 	 * we do it with lock protection.
600 	 *
601 	 */
602 	case CAMGETPASSTHRU: {
603 		union ccb *ccb;
604 		struct cam_periph *periph;
605 		struct periph_driver **p_drv;
606 		char   *name;
607 		u_int unit;
608 		int base_periph_found;
609 
610 		ccb = (union ccb *)addr;
611 		unit = ccb->cgdl.unit_number;
612 		name = ccb->cgdl.periph_name;
613 		base_periph_found = 0;
614 
615 		/*
616 		 * Sanity check -- make sure we don't get a null peripheral
617 		 * driver name.
618 		 */
619 		if (*ccb->cgdl.periph_name == '\0') {
620 			error = EINVAL;
621 			break;
622 		}
623 
624 		/* Keep the list from changing while we traverse it */
625 		xpt_lock_buses();
626 
627 		/* first find our driver in the list of drivers */
628 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
629 			if (strcmp((*p_drv)->driver_name, name) == 0)
630 				break;
631 
632 		if (*p_drv == NULL) {
633 			xpt_unlock_buses();
634 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
635 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
636 			*ccb->cgdl.periph_name = '\0';
637 			ccb->cgdl.unit_number = 0;
638 			error = ENOENT;
639 			break;
640 		}
641 
642 		/*
643 		 * Run through every peripheral instance of this driver
644 		 * and check to see whether it matches the unit passed
645 		 * in by the user.  If it does, get out of the loops and
646 		 * find the passthrough driver associated with that
647 		 * peripheral driver.
648 		 */
649 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
650 		     periph = TAILQ_NEXT(periph, unit_links)) {
651 
652 			if (periph->unit_number == unit)
653 				break;
654 		}
655 		/*
656 		 * If we found the peripheral driver that the user passed
657 		 * in, go through all of the peripheral drivers for that
658 		 * particular device and look for a passthrough driver.
659 		 */
660 		if (periph != NULL) {
661 			struct cam_ed *device;
662 			int i;
663 
664 			base_periph_found = 1;
665 			device = periph->path->device;
666 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
667 			     periph != NULL;
668 			     periph = SLIST_NEXT(periph, periph_links), i++) {
669 				/*
670 				 * Check to see whether we have a
671 				 * passthrough device or not.
672 				 */
673 				if (strcmp(periph->periph_name, "pass") == 0) {
674 					/*
675 					 * Fill in the getdevlist fields.
676 					 */
677 					strcpy(ccb->cgdl.periph_name,
678 					       periph->periph_name);
679 					ccb->cgdl.unit_number =
680 						periph->unit_number;
681 					if (SLIST_NEXT(periph, periph_links))
682 						ccb->cgdl.status =
683 							CAM_GDEVLIST_MORE_DEVS;
684 					else
685 						ccb->cgdl.status =
686 						       CAM_GDEVLIST_LAST_DEVICE;
687 					ccb->cgdl.generation =
688 						device->generation;
689 					ccb->cgdl.index = i;
690 					/*
691 					 * Fill in some CCB header fields
692 					 * that the user may want.
693 					 */
694 					ccb->ccb_h.path_id =
695 						periph->path->bus->path_id;
696 					ccb->ccb_h.target_id =
697 						periph->path->target->target_id;
698 					ccb->ccb_h.target_lun =
699 						periph->path->device->lun_id;
700 					ccb->ccb_h.status = CAM_REQ_CMP;
701 					break;
702 				}
703 			}
704 		}
705 
706 		/*
707 		 * If the periph is null here, one of two things has
708 		 * happened.  The first possibility is that we couldn't
709 		 * find the unit number of the particular peripheral driver
710 		 * that the user is asking about.  e.g. the user asks for
711 		 * the passthrough driver for "da11".  We find the list of
712 		 * "da" peripherals all right, but there is no unit 11.
713 		 * The other possibility is that we went through the list
714 		 * of peripheral drivers attached to the device structure,
715 		 * but didn't find one with the name "pass".  Either way,
716 		 * we return ENOENT, since we couldn't find something.
717 		 */
718 		if (periph == NULL) {
719 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
720 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
721 			*ccb->cgdl.periph_name = '\0';
722 			ccb->cgdl.unit_number = 0;
723 			error = ENOENT;
724 			/*
725 			 * It is unfortunate that this is even necessary,
726 			 * but there are many, many clueless users out there.
727 			 * If this is true, the user is looking for the
728 			 * passthrough driver, but doesn't have one in his
729 			 * kernel.
730 			 */
731 			if (base_periph_found == 1) {
732 				printf("xptioctl: pass driver is not in the "
733 				       "kernel\n");
734 				printf("xptioctl: put \"device pass\" in "
735 				       "your kernel config file\n");
736 			}
737 		}
738 		xpt_unlock_buses();
739 		break;
740 		}
741 	default:
742 		error = ENOTTY;
743 		break;
744 	}
745 
746 	return(error);
747 }
748 
749 static int
750 cam_module_event_handler(module_t mod, int what, void *arg)
751 {
752 	int error;
753 
754 	switch (what) {
755 	case MOD_LOAD:
756 		if ((error = xpt_init(NULL)) != 0)
757 			return (error);
758 		break;
759 	case MOD_UNLOAD:
760 		return EBUSY;
761 	default:
762 		return EOPNOTSUPP;
763 	}
764 
765 	return 0;
766 }
767 
768 static void
769 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
770 {
771 
772 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
773 		xpt_free_path(done_ccb->ccb_h.path);
774 		xpt_free_ccb(done_ccb);
775 	} else {
776 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
777 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
778 	}
779 	xpt_release_boot();
780 }
781 
782 /* thread to handle bus rescans */
783 static void
784 xpt_scanner_thread(void *dummy)
785 {
786 	union ccb	*ccb;
787 	struct cam_sim	*sim;
788 
789 	xpt_lock_buses();
790 	for (;;) {
791 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
792 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
793 			       "ccb_scanq", 0);
794 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
795 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
796 			xpt_unlock_buses();
797 
798 			sim = ccb->ccb_h.path->bus->sim;
799 			CAM_SIM_LOCK(sim);
800 			xpt_action(ccb);
801 			CAM_SIM_UNLOCK(sim);
802 
803 			xpt_lock_buses();
804 		}
805 	}
806 }
807 
808 void
809 xpt_rescan(union ccb *ccb)
810 {
811 	struct ccb_hdr *hdr;
812 
813 	/* Prepare request */
814 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
815 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
816 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
817 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
818 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
819 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
820 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
821 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
822 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
823 	else {
824 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
825 		xpt_free_path(ccb->ccb_h.path);
826 		xpt_free_ccb(ccb);
827 		return;
828 	}
829 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
830 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
831 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
832 	/* Don't make duplicate entries for the same paths. */
833 	xpt_lock_buses();
834 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
835 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
836 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
837 				wakeup(&xsoftc.ccb_scanq);
838 				xpt_unlock_buses();
839 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
840 				xpt_free_path(ccb->ccb_h.path);
841 				xpt_free_ccb(ccb);
842 				return;
843 			}
844 		}
845 	}
846 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
847 	xsoftc.buses_to_config++;
848 	wakeup(&xsoftc.ccb_scanq);
849 	xpt_unlock_buses();
850 }
851 
852 /* Functions accessed by the peripheral drivers */
853 static int
854 xpt_init(void *dummy)
855 {
856 	struct cam_sim *xpt_sim;
857 	struct cam_path *path;
858 	struct cam_devq *devq;
859 	cam_status status;
860 
861 	TAILQ_INIT(&xsoftc.xpt_busses);
862 	TAILQ_INIT(&cam_simq);
863 	TAILQ_INIT(&xsoftc.ccb_scanq);
864 	STAILQ_INIT(&xsoftc.highpowerq);
865 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
866 
867 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
868 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
869 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
870 
871 #ifdef CAM_BOOT_DELAY
872 	/*
873 	 * Override this value at compile time to assist our users
874 	 * who don't use loader to boot a kernel.
875 	 */
876 	xsoftc.boot_delay = CAM_BOOT_DELAY;
877 #endif
878 	/*
879 	 * The xpt layer is, itself, the equivelent of a SIM.
880 	 * Allow 16 ccbs in the ccb pool for it.  This should
881 	 * give decent parallelism when we probe busses and
882 	 * perform other XPT functions.
883 	 */
884 	devq = cam_simq_alloc(16);
885 	xpt_sim = cam_sim_alloc(xptaction,
886 				xptpoll,
887 				"xpt",
888 				/*softc*/NULL,
889 				/*unit*/0,
890 				/*mtx*/&xsoftc.xpt_lock,
891 				/*max_dev_transactions*/0,
892 				/*max_tagged_dev_transactions*/0,
893 				devq);
894 	if (xpt_sim == NULL)
895 		return (ENOMEM);
896 
897 	mtx_lock(&xsoftc.xpt_lock);
898 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
899 		mtx_unlock(&xsoftc.xpt_lock);
900 		printf("xpt_init: xpt_bus_register failed with status %#x,"
901 		       " failing attach\n", status);
902 		return (EINVAL);
903 	}
904 
905 	/*
906 	 * Looking at the XPT from the SIM layer, the XPT is
907 	 * the equivelent of a peripheral driver.  Allocate
908 	 * a peripheral driver entry for us.
909 	 */
910 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
911 				      CAM_TARGET_WILDCARD,
912 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
913 		mtx_unlock(&xsoftc.xpt_lock);
914 		printf("xpt_init: xpt_create_path failed with status %#x,"
915 		       " failing attach\n", status);
916 		return (EINVAL);
917 	}
918 
919 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
920 			 path, NULL, 0, xpt_sim);
921 	xpt_free_path(path);
922 	mtx_unlock(&xsoftc.xpt_lock);
923 	/* Install our software interrupt handlers */
924 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
925 	/*
926 	 * Register a callback for when interrupts are enabled.
927 	 */
928 	xsoftc.xpt_config_hook =
929 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
930 					      M_CAMXPT, M_NOWAIT | M_ZERO);
931 	if (xsoftc.xpt_config_hook == NULL) {
932 		printf("xpt_init: Cannot malloc config hook "
933 		       "- failing attach\n");
934 		return (ENOMEM);
935 	}
936 	xsoftc.xpt_config_hook->ich_func = xpt_config;
937 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
938 		free (xsoftc.xpt_config_hook, M_CAMXPT);
939 		printf("xpt_init: config_intrhook_establish failed "
940 		       "- failing attach\n");
941 	}
942 
943 	return (0);
944 }
945 
946 static cam_status
947 xptregister(struct cam_periph *periph, void *arg)
948 {
949 	struct cam_sim *xpt_sim;
950 
951 	if (periph == NULL) {
952 		printf("xptregister: periph was NULL!!\n");
953 		return(CAM_REQ_CMP_ERR);
954 	}
955 
956 	xpt_sim = (struct cam_sim *)arg;
957 	xpt_sim->softc = periph;
958 	xpt_periph = periph;
959 	periph->softc = NULL;
960 
961 	return(CAM_REQ_CMP);
962 }
963 
964 int32_t
965 xpt_add_periph(struct cam_periph *periph)
966 {
967 	struct cam_ed *device;
968 	int32_t	 status;
969 	struct periph_list *periph_head;
970 
971 	mtx_assert(periph->sim->mtx, MA_OWNED);
972 
973 	device = periph->path->device;
974 
975 	periph_head = &device->periphs;
976 
977 	status = CAM_REQ_CMP;
978 
979 	if (device != NULL) {
980 		/*
981 		 * Make room for this peripheral
982 		 * so it will fit in the queue
983 		 * when it's scheduled to run
984 		 */
985 		status = camq_resize(&device->drvq,
986 				     device->drvq.array_size + 1);
987 
988 		device->generation++;
989 
990 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
991 	}
992 
993 	return (status);
994 }
995 
996 void
997 xpt_remove_periph(struct cam_periph *periph)
998 {
999 	struct cam_ed *device;
1000 
1001 	mtx_assert(periph->sim->mtx, MA_OWNED);
1002 
1003 	device = periph->path->device;
1004 
1005 	if (device != NULL) {
1006 		struct periph_list *periph_head;
1007 
1008 		periph_head = &device->periphs;
1009 
1010 		/* Release the slot for this peripheral */
1011 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1012 
1013 		device->generation++;
1014 
1015 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1016 	}
1017 }
1018 
1019 
1020 void
1021 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1022 {
1023 	struct	cam_path *path = periph->path;
1024 
1025 	mtx_assert(periph->sim->mtx, MA_OWNED);
1026 
1027 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1028 	       periph->periph_name, periph->unit_number,
1029 	       path->bus->sim->sim_name,
1030 	       path->bus->sim->unit_number,
1031 	       path->bus->sim->bus_id,
1032 	       path->bus->path_id,
1033 	       path->target->target_id,
1034 	       path->device->lun_id);
1035 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1036 	if (path->device->protocol == PROTO_SCSI)
1037 		scsi_print_inquiry(&path->device->inq_data);
1038 	else if (path->device->protocol == PROTO_ATA ||
1039 	    path->device->protocol == PROTO_SATAPM)
1040 		ata_print_ident(&path->device->ident_data);
1041 	else if (path->device->protocol == PROTO_SEMB)
1042 		semb_print_ident(
1043 		    (struct sep_identify_data *)&path->device->ident_data);
1044 	else
1045 		printf("Unknown protocol device\n");
1046 	if (bootverbose && path->device->serial_num_len > 0) {
1047 		/* Don't wrap the screen  - print only the first 60 chars */
1048 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1049 		       periph->unit_number, path->device->serial_num);
1050 	}
1051 	/* Announce transport details. */
1052 	(*(path->bus->xport->announce))(periph);
1053 	/* Announce command queueing. */
1054 	if (path->device->inq_flags & SID_CmdQue
1055 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1056 		printf("%s%d: Command Queueing enabled\n",
1057 		       periph->periph_name, periph->unit_number);
1058 	}
1059 	/* Announce caller's details if they've passed in. */
1060 	if (announce_string != NULL)
1061 		printf("%s%d: %s\n", periph->periph_name,
1062 		       periph->unit_number, announce_string);
1063 }
1064 
1065 void
1066 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1067 {
1068 	if (quirks != 0) {
1069 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1070 		    periph->unit_number, quirks, bit_string);
1071 	}
1072 }
1073 
1074 int
1075 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1076 {
1077 	int ret = -1, l;
1078 	struct ccb_dev_advinfo cdai;
1079 	struct scsi_vpd_id_descriptor *idd;
1080 
1081 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1082 
1083 	memset(&cdai, 0, sizeof(cdai));
1084 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1085 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1086 	cdai.bufsiz = len;
1087 
1088 	if (!strcmp(attr, "GEOM::ident"))
1089 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1090 	else if (!strcmp(attr, "GEOM::physpath"))
1091 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1092 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1093 		 strcmp(attr, "GEOM::lunname") == 0) {
1094 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1095 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1096 	} else
1097 		goto out;
1098 
1099 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1100 	if (cdai.buf == NULL) {
1101 		ret = ENOMEM;
1102 		goto out;
1103 	}
1104 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1105 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1106 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1107 	if (cdai.provsiz == 0)
1108 		goto out;
1109 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1110 		if (strcmp(attr, "GEOM::lunid") == 0) {
1111 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1112 			    cdai.provsiz, scsi_devid_is_lun_naa);
1113 			if (idd == NULL)
1114 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1115 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1116 		} else
1117 			idd = NULL;
1118 		if (idd == NULL)
1119 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1120 			    cdai.provsiz, scsi_devid_is_lun_t10);
1121 		if (idd == NULL)
1122 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1123 			    cdai.provsiz, scsi_devid_is_lun_name);
1124 		if (idd == NULL)
1125 			goto out;
1126 		ret = 0;
1127 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII ||
1128 		    (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1129 			l = strnlen(idd->identifier, idd->length);
1130 			if (l < len) {
1131 				bcopy(idd->identifier, buf, l);
1132 				buf[l] = 0;
1133 			} else
1134 				ret = EFAULT;
1135 		} else {
1136 			if (idd->length * 2 < len) {
1137 				for (l = 0; l < idd->length; l++)
1138 					sprintf(buf + l * 2, "%02x",
1139 					    idd->identifier[l]);
1140 			} else
1141 				ret = EFAULT;
1142 		}
1143 	} else {
1144 		ret = 0;
1145 		if (strlcpy(buf, cdai.buf, len) >= len)
1146 			ret = EFAULT;
1147 	}
1148 
1149 out:
1150 	if (cdai.buf != NULL)
1151 		free(cdai.buf, M_CAMXPT);
1152 	return ret;
1153 }
1154 
1155 static dev_match_ret
1156 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1157 	    struct cam_eb *bus)
1158 {
1159 	dev_match_ret retval;
1160 	int i;
1161 
1162 	retval = DM_RET_NONE;
1163 
1164 	/*
1165 	 * If we aren't given something to match against, that's an error.
1166 	 */
1167 	if (bus == NULL)
1168 		return(DM_RET_ERROR);
1169 
1170 	/*
1171 	 * If there are no match entries, then this bus matches no
1172 	 * matter what.
1173 	 */
1174 	if ((patterns == NULL) || (num_patterns == 0))
1175 		return(DM_RET_DESCEND | DM_RET_COPY);
1176 
1177 	for (i = 0; i < num_patterns; i++) {
1178 		struct bus_match_pattern *cur_pattern;
1179 
1180 		/*
1181 		 * If the pattern in question isn't for a bus node, we
1182 		 * aren't interested.  However, we do indicate to the
1183 		 * calling routine that we should continue descending the
1184 		 * tree, since the user wants to match against lower-level
1185 		 * EDT elements.
1186 		 */
1187 		if (patterns[i].type != DEV_MATCH_BUS) {
1188 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1189 				retval |= DM_RET_DESCEND;
1190 			continue;
1191 		}
1192 
1193 		cur_pattern = &patterns[i].pattern.bus_pattern;
1194 
1195 		/*
1196 		 * If they want to match any bus node, we give them any
1197 		 * device node.
1198 		 */
1199 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1200 			/* set the copy flag */
1201 			retval |= DM_RET_COPY;
1202 
1203 			/*
1204 			 * If we've already decided on an action, go ahead
1205 			 * and return.
1206 			 */
1207 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1208 				return(retval);
1209 		}
1210 
1211 		/*
1212 		 * Not sure why someone would do this...
1213 		 */
1214 		if (cur_pattern->flags == BUS_MATCH_NONE)
1215 			continue;
1216 
1217 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1218 		 && (cur_pattern->path_id != bus->path_id))
1219 			continue;
1220 
1221 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1222 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1223 			continue;
1224 
1225 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1226 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1227 			continue;
1228 
1229 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1230 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1231 			     DEV_IDLEN) != 0))
1232 			continue;
1233 
1234 		/*
1235 		 * If we get to this point, the user definitely wants
1236 		 * information on this bus.  So tell the caller to copy the
1237 		 * data out.
1238 		 */
1239 		retval |= DM_RET_COPY;
1240 
1241 		/*
1242 		 * If the return action has been set to descend, then we
1243 		 * know that we've already seen a non-bus matching
1244 		 * expression, therefore we need to further descend the tree.
1245 		 * This won't change by continuing around the loop, so we
1246 		 * go ahead and return.  If we haven't seen a non-bus
1247 		 * matching expression, we keep going around the loop until
1248 		 * we exhaust the matching expressions.  We'll set the stop
1249 		 * flag once we fall out of the loop.
1250 		 */
1251 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1252 			return(retval);
1253 	}
1254 
1255 	/*
1256 	 * If the return action hasn't been set to descend yet, that means
1257 	 * we haven't seen anything other than bus matching patterns.  So
1258 	 * tell the caller to stop descending the tree -- the user doesn't
1259 	 * want to match against lower level tree elements.
1260 	 */
1261 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1262 		retval |= DM_RET_STOP;
1263 
1264 	return(retval);
1265 }
1266 
1267 static dev_match_ret
1268 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1269 	       struct cam_ed *device)
1270 {
1271 	dev_match_ret retval;
1272 	int i;
1273 
1274 	retval = DM_RET_NONE;
1275 
1276 	/*
1277 	 * If we aren't given something to match against, that's an error.
1278 	 */
1279 	if (device == NULL)
1280 		return(DM_RET_ERROR);
1281 
1282 	/*
1283 	 * If there are no match entries, then this device matches no
1284 	 * matter what.
1285 	 */
1286 	if ((patterns == NULL) || (num_patterns == 0))
1287 		return(DM_RET_DESCEND | DM_RET_COPY);
1288 
1289 	for (i = 0; i < num_patterns; i++) {
1290 		struct device_match_pattern *cur_pattern;
1291 		struct scsi_vpd_device_id *device_id_page;
1292 
1293 		/*
1294 		 * If the pattern in question isn't for a device node, we
1295 		 * aren't interested.
1296 		 */
1297 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1298 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1299 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1300 				retval |= DM_RET_DESCEND;
1301 			continue;
1302 		}
1303 
1304 		cur_pattern = &patterns[i].pattern.device_pattern;
1305 
1306 		/* Error out if mutually exclusive options are specified. */
1307 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1308 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1309 			return(DM_RET_ERROR);
1310 
1311 		/*
1312 		 * If they want to match any device node, we give them any
1313 		 * device node.
1314 		 */
1315 		if (cur_pattern->flags == DEV_MATCH_ANY)
1316 			goto copy_dev_node;
1317 
1318 		/*
1319 		 * Not sure why someone would do this...
1320 		 */
1321 		if (cur_pattern->flags == DEV_MATCH_NONE)
1322 			continue;
1323 
1324 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1325 		 && (cur_pattern->path_id != device->target->bus->path_id))
1326 			continue;
1327 
1328 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1329 		 && (cur_pattern->target_id != device->target->target_id))
1330 			continue;
1331 
1332 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1333 		 && (cur_pattern->target_lun != device->lun_id))
1334 			continue;
1335 
1336 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1337 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1338 				    (caddr_t)&cur_pattern->data.inq_pat,
1339 				    1, sizeof(cur_pattern->data.inq_pat),
1340 				    scsi_static_inquiry_match) == NULL))
1341 			continue;
1342 
1343 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1344 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1345 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1346 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1347 				      device->device_id_len
1348 				    - SVPD_DEVICE_ID_HDR_LEN,
1349 				      cur_pattern->data.devid_pat.id,
1350 				      cur_pattern->data.devid_pat.id_len) != 0))
1351 			continue;
1352 
1353 copy_dev_node:
1354 		/*
1355 		 * If we get to this point, the user definitely wants
1356 		 * information on this device.  So tell the caller to copy
1357 		 * the data out.
1358 		 */
1359 		retval |= DM_RET_COPY;
1360 
1361 		/*
1362 		 * If the return action has been set to descend, then we
1363 		 * know that we've already seen a peripheral matching
1364 		 * expression, therefore we need to further descend the tree.
1365 		 * This won't change by continuing around the loop, so we
1366 		 * go ahead and return.  If we haven't seen a peripheral
1367 		 * matching expression, we keep going around the loop until
1368 		 * we exhaust the matching expressions.  We'll set the stop
1369 		 * flag once we fall out of the loop.
1370 		 */
1371 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1372 			return(retval);
1373 	}
1374 
1375 	/*
1376 	 * If the return action hasn't been set to descend yet, that means
1377 	 * we haven't seen any peripheral matching patterns.  So tell the
1378 	 * caller to stop descending the tree -- the user doesn't want to
1379 	 * match against lower level tree elements.
1380 	 */
1381 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1382 		retval |= DM_RET_STOP;
1383 
1384 	return(retval);
1385 }
1386 
1387 /*
1388  * Match a single peripheral against any number of match patterns.
1389  */
1390 static dev_match_ret
1391 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1392 	       struct cam_periph *periph)
1393 {
1394 	dev_match_ret retval;
1395 	int i;
1396 
1397 	/*
1398 	 * If we aren't given something to match against, that's an error.
1399 	 */
1400 	if (periph == NULL)
1401 		return(DM_RET_ERROR);
1402 
1403 	/*
1404 	 * If there are no match entries, then this peripheral matches no
1405 	 * matter what.
1406 	 */
1407 	if ((patterns == NULL) || (num_patterns == 0))
1408 		return(DM_RET_STOP | DM_RET_COPY);
1409 
1410 	/*
1411 	 * There aren't any nodes below a peripheral node, so there's no
1412 	 * reason to descend the tree any further.
1413 	 */
1414 	retval = DM_RET_STOP;
1415 
1416 	for (i = 0; i < num_patterns; i++) {
1417 		struct periph_match_pattern *cur_pattern;
1418 
1419 		/*
1420 		 * If the pattern in question isn't for a peripheral, we
1421 		 * aren't interested.
1422 		 */
1423 		if (patterns[i].type != DEV_MATCH_PERIPH)
1424 			continue;
1425 
1426 		cur_pattern = &patterns[i].pattern.periph_pattern;
1427 
1428 		/*
1429 		 * If they want to match on anything, then we will do so.
1430 		 */
1431 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1432 			/* set the copy flag */
1433 			retval |= DM_RET_COPY;
1434 
1435 			/*
1436 			 * We've already set the return action to stop,
1437 			 * since there are no nodes below peripherals in
1438 			 * the tree.
1439 			 */
1440 			return(retval);
1441 		}
1442 
1443 		/*
1444 		 * Not sure why someone would do this...
1445 		 */
1446 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1447 			continue;
1448 
1449 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1450 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1451 			continue;
1452 
1453 		/*
1454 		 * For the target and lun id's, we have to make sure the
1455 		 * target and lun pointers aren't NULL.  The xpt peripheral
1456 		 * has a wildcard target and device.
1457 		 */
1458 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1459 		 && ((periph->path->target == NULL)
1460 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1461 			continue;
1462 
1463 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1464 		 && ((periph->path->device == NULL)
1465 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1466 			continue;
1467 
1468 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1469 		 && (cur_pattern->unit_number != periph->unit_number))
1470 			continue;
1471 
1472 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1473 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1474 			     DEV_IDLEN) != 0))
1475 			continue;
1476 
1477 		/*
1478 		 * If we get to this point, the user definitely wants
1479 		 * information on this peripheral.  So tell the caller to
1480 		 * copy the data out.
1481 		 */
1482 		retval |= DM_RET_COPY;
1483 
1484 		/*
1485 		 * The return action has already been set to stop, since
1486 		 * peripherals don't have any nodes below them in the EDT.
1487 		 */
1488 		return(retval);
1489 	}
1490 
1491 	/*
1492 	 * If we get to this point, the peripheral that was passed in
1493 	 * doesn't match any of the patterns.
1494 	 */
1495 	return(retval);
1496 }
1497 
1498 static int
1499 xptedtbusfunc(struct cam_eb *bus, void *arg)
1500 {
1501 	struct ccb_dev_match *cdm;
1502 	dev_match_ret retval;
1503 
1504 	cdm = (struct ccb_dev_match *)arg;
1505 
1506 	/*
1507 	 * If our position is for something deeper in the tree, that means
1508 	 * that we've already seen this node.  So, we keep going down.
1509 	 */
1510 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1511 	 && (cdm->pos.cookie.bus == bus)
1512 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1513 	 && (cdm->pos.cookie.target != NULL))
1514 		retval = DM_RET_DESCEND;
1515 	else
1516 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1517 
1518 	/*
1519 	 * If we got an error, bail out of the search.
1520 	 */
1521 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1522 		cdm->status = CAM_DEV_MATCH_ERROR;
1523 		return(0);
1524 	}
1525 
1526 	/*
1527 	 * If the copy flag is set, copy this bus out.
1528 	 */
1529 	if (retval & DM_RET_COPY) {
1530 		int spaceleft, j;
1531 
1532 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1533 			sizeof(struct dev_match_result));
1534 
1535 		/*
1536 		 * If we don't have enough space to put in another
1537 		 * match result, save our position and tell the
1538 		 * user there are more devices to check.
1539 		 */
1540 		if (spaceleft < sizeof(struct dev_match_result)) {
1541 			bzero(&cdm->pos, sizeof(cdm->pos));
1542 			cdm->pos.position_type =
1543 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1544 
1545 			cdm->pos.cookie.bus = bus;
1546 			cdm->pos.generations[CAM_BUS_GENERATION]=
1547 				xsoftc.bus_generation;
1548 			cdm->status = CAM_DEV_MATCH_MORE;
1549 			return(0);
1550 		}
1551 		j = cdm->num_matches;
1552 		cdm->num_matches++;
1553 		cdm->matches[j].type = DEV_MATCH_BUS;
1554 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1555 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1556 		cdm->matches[j].result.bus_result.unit_number =
1557 			bus->sim->unit_number;
1558 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1559 			bus->sim->sim_name, DEV_IDLEN);
1560 	}
1561 
1562 	/*
1563 	 * If the user is only interested in busses, there's no
1564 	 * reason to descend to the next level in the tree.
1565 	 */
1566 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1567 		return(1);
1568 
1569 	/*
1570 	 * If there is a target generation recorded, check it to
1571 	 * make sure the target list hasn't changed.
1572 	 */
1573 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1574 	 && (bus == cdm->pos.cookie.bus)
1575 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1576 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1577 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1578 	     bus->generation)) {
1579 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1580 		return(0);
1581 	}
1582 
1583 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1584 	 && (cdm->pos.cookie.bus == bus)
1585 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1586 	 && (cdm->pos.cookie.target != NULL))
1587 		return(xpttargettraverse(bus,
1588 					(struct cam_et *)cdm->pos.cookie.target,
1589 					 xptedttargetfunc, arg));
1590 	else
1591 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1592 }
1593 
1594 static int
1595 xptedttargetfunc(struct cam_et *target, void *arg)
1596 {
1597 	struct ccb_dev_match *cdm;
1598 
1599 	cdm = (struct ccb_dev_match *)arg;
1600 
1601 	/*
1602 	 * If there is a device list generation recorded, check it to
1603 	 * make sure the device list hasn't changed.
1604 	 */
1605 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1606 	 && (cdm->pos.cookie.bus == target->bus)
1607 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1608 	 && (cdm->pos.cookie.target == target)
1609 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1610 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1611 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1612 	     target->generation)) {
1613 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1614 		return(0);
1615 	}
1616 
1617 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1618 	 && (cdm->pos.cookie.bus == target->bus)
1619 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1620 	 && (cdm->pos.cookie.target == target)
1621 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1622 	 && (cdm->pos.cookie.device != NULL))
1623 		return(xptdevicetraverse(target,
1624 					(struct cam_ed *)cdm->pos.cookie.device,
1625 					 xptedtdevicefunc, arg));
1626 	else
1627 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1628 }
1629 
1630 static int
1631 xptedtdevicefunc(struct cam_ed *device, void *arg)
1632 {
1633 
1634 	struct ccb_dev_match *cdm;
1635 	dev_match_ret retval;
1636 
1637 	cdm = (struct ccb_dev_match *)arg;
1638 
1639 	/*
1640 	 * If our position is for something deeper in the tree, that means
1641 	 * that we've already seen this node.  So, we keep going down.
1642 	 */
1643 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1644 	 && (cdm->pos.cookie.device == device)
1645 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1646 	 && (cdm->pos.cookie.periph != NULL))
1647 		retval = DM_RET_DESCEND;
1648 	else
1649 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1650 					device);
1651 
1652 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1653 		cdm->status = CAM_DEV_MATCH_ERROR;
1654 		return(0);
1655 	}
1656 
1657 	/*
1658 	 * If the copy flag is set, copy this device out.
1659 	 */
1660 	if (retval & DM_RET_COPY) {
1661 		int spaceleft, j;
1662 
1663 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1664 			sizeof(struct dev_match_result));
1665 
1666 		/*
1667 		 * If we don't have enough space to put in another
1668 		 * match result, save our position and tell the
1669 		 * user there are more devices to check.
1670 		 */
1671 		if (spaceleft < sizeof(struct dev_match_result)) {
1672 			bzero(&cdm->pos, sizeof(cdm->pos));
1673 			cdm->pos.position_type =
1674 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1675 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1676 
1677 			cdm->pos.cookie.bus = device->target->bus;
1678 			cdm->pos.generations[CAM_BUS_GENERATION]=
1679 				xsoftc.bus_generation;
1680 			cdm->pos.cookie.target = device->target;
1681 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1682 				device->target->bus->generation;
1683 			cdm->pos.cookie.device = device;
1684 			cdm->pos.generations[CAM_DEV_GENERATION] =
1685 				device->target->generation;
1686 			cdm->status = CAM_DEV_MATCH_MORE;
1687 			return(0);
1688 		}
1689 		j = cdm->num_matches;
1690 		cdm->num_matches++;
1691 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1692 		cdm->matches[j].result.device_result.path_id =
1693 			device->target->bus->path_id;
1694 		cdm->matches[j].result.device_result.target_id =
1695 			device->target->target_id;
1696 		cdm->matches[j].result.device_result.target_lun =
1697 			device->lun_id;
1698 		cdm->matches[j].result.device_result.protocol =
1699 			device->protocol;
1700 		bcopy(&device->inq_data,
1701 		      &cdm->matches[j].result.device_result.inq_data,
1702 		      sizeof(struct scsi_inquiry_data));
1703 		bcopy(&device->ident_data,
1704 		      &cdm->matches[j].result.device_result.ident_data,
1705 		      sizeof(struct ata_params));
1706 
1707 		/* Let the user know whether this device is unconfigured */
1708 		if (device->flags & CAM_DEV_UNCONFIGURED)
1709 			cdm->matches[j].result.device_result.flags =
1710 				DEV_RESULT_UNCONFIGURED;
1711 		else
1712 			cdm->matches[j].result.device_result.flags =
1713 				DEV_RESULT_NOFLAG;
1714 	}
1715 
1716 	/*
1717 	 * If the user isn't interested in peripherals, don't descend
1718 	 * the tree any further.
1719 	 */
1720 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1721 		return(1);
1722 
1723 	/*
1724 	 * If there is a peripheral list generation recorded, make sure
1725 	 * it hasn't changed.
1726 	 */
1727 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1728 	 && (device->target->bus == cdm->pos.cookie.bus)
1729 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1730 	 && (device->target == cdm->pos.cookie.target)
1731 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1732 	 && (device == cdm->pos.cookie.device)
1733 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1734 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1735 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1736 	     device->generation)){
1737 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1738 		return(0);
1739 	}
1740 
1741 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1742 	 && (cdm->pos.cookie.bus == device->target->bus)
1743 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1744 	 && (cdm->pos.cookie.target == device->target)
1745 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1746 	 && (cdm->pos.cookie.device == device)
1747 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1748 	 && (cdm->pos.cookie.periph != NULL))
1749 		return(xptperiphtraverse(device,
1750 				(struct cam_periph *)cdm->pos.cookie.periph,
1751 				xptedtperiphfunc, arg));
1752 	else
1753 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1754 }
1755 
1756 static int
1757 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1758 {
1759 	struct ccb_dev_match *cdm;
1760 	dev_match_ret retval;
1761 
1762 	cdm = (struct ccb_dev_match *)arg;
1763 
1764 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1765 
1766 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1767 		cdm->status = CAM_DEV_MATCH_ERROR;
1768 		return(0);
1769 	}
1770 
1771 	/*
1772 	 * If the copy flag is set, copy this peripheral out.
1773 	 */
1774 	if (retval & DM_RET_COPY) {
1775 		int spaceleft, j;
1776 
1777 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1778 			sizeof(struct dev_match_result));
1779 
1780 		/*
1781 		 * If we don't have enough space to put in another
1782 		 * match result, save our position and tell the
1783 		 * user there are more devices to check.
1784 		 */
1785 		if (spaceleft < sizeof(struct dev_match_result)) {
1786 			bzero(&cdm->pos, sizeof(cdm->pos));
1787 			cdm->pos.position_type =
1788 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1789 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1790 				CAM_DEV_POS_PERIPH;
1791 
1792 			cdm->pos.cookie.bus = periph->path->bus;
1793 			cdm->pos.generations[CAM_BUS_GENERATION]=
1794 				xsoftc.bus_generation;
1795 			cdm->pos.cookie.target = periph->path->target;
1796 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1797 				periph->path->bus->generation;
1798 			cdm->pos.cookie.device = periph->path->device;
1799 			cdm->pos.generations[CAM_DEV_GENERATION] =
1800 				periph->path->target->generation;
1801 			cdm->pos.cookie.periph = periph;
1802 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1803 				periph->path->device->generation;
1804 			cdm->status = CAM_DEV_MATCH_MORE;
1805 			return(0);
1806 		}
1807 
1808 		j = cdm->num_matches;
1809 		cdm->num_matches++;
1810 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1811 		cdm->matches[j].result.periph_result.path_id =
1812 			periph->path->bus->path_id;
1813 		cdm->matches[j].result.periph_result.target_id =
1814 			periph->path->target->target_id;
1815 		cdm->matches[j].result.periph_result.target_lun =
1816 			periph->path->device->lun_id;
1817 		cdm->matches[j].result.periph_result.unit_number =
1818 			periph->unit_number;
1819 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1820 			periph->periph_name, DEV_IDLEN);
1821 	}
1822 
1823 	return(1);
1824 }
1825 
1826 static int
1827 xptedtmatch(struct ccb_dev_match *cdm)
1828 {
1829 	int ret;
1830 
1831 	cdm->num_matches = 0;
1832 
1833 	/*
1834 	 * Check the bus list generation.  If it has changed, the user
1835 	 * needs to reset everything and start over.
1836 	 */
1837 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1838 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1839 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1840 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1841 		return(0);
1842 	}
1843 
1844 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1845 	 && (cdm->pos.cookie.bus != NULL))
1846 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1847 				     xptedtbusfunc, cdm);
1848 	else
1849 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1850 
1851 	/*
1852 	 * If we get back 0, that means that we had to stop before fully
1853 	 * traversing the EDT.  It also means that one of the subroutines
1854 	 * has set the status field to the proper value.  If we get back 1,
1855 	 * we've fully traversed the EDT and copied out any matching entries.
1856 	 */
1857 	if (ret == 1)
1858 		cdm->status = CAM_DEV_MATCH_LAST;
1859 
1860 	return(ret);
1861 }
1862 
1863 static int
1864 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1865 {
1866 	struct ccb_dev_match *cdm;
1867 
1868 	cdm = (struct ccb_dev_match *)arg;
1869 
1870 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1871 	 && (cdm->pos.cookie.pdrv == pdrv)
1872 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1873 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1874 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1875 	     (*pdrv)->generation)) {
1876 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1877 		return(0);
1878 	}
1879 
1880 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1881 	 && (cdm->pos.cookie.pdrv == pdrv)
1882 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1883 	 && (cdm->pos.cookie.periph != NULL))
1884 		return(xptpdperiphtraverse(pdrv,
1885 				(struct cam_periph *)cdm->pos.cookie.periph,
1886 				xptplistperiphfunc, arg));
1887 	else
1888 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1889 }
1890 
1891 static int
1892 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1893 {
1894 	struct ccb_dev_match *cdm;
1895 	dev_match_ret retval;
1896 
1897 	cdm = (struct ccb_dev_match *)arg;
1898 
1899 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1900 
1901 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1902 		cdm->status = CAM_DEV_MATCH_ERROR;
1903 		return(0);
1904 	}
1905 
1906 	/*
1907 	 * If the copy flag is set, copy this peripheral out.
1908 	 */
1909 	if (retval & DM_RET_COPY) {
1910 		int spaceleft, j;
1911 
1912 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1913 			sizeof(struct dev_match_result));
1914 
1915 		/*
1916 		 * If we don't have enough space to put in another
1917 		 * match result, save our position and tell the
1918 		 * user there are more devices to check.
1919 		 */
1920 		if (spaceleft < sizeof(struct dev_match_result)) {
1921 			struct periph_driver **pdrv;
1922 
1923 			pdrv = NULL;
1924 			bzero(&cdm->pos, sizeof(cdm->pos));
1925 			cdm->pos.position_type =
1926 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1927 				CAM_DEV_POS_PERIPH;
1928 
1929 			/*
1930 			 * This may look a bit non-sensical, but it is
1931 			 * actually quite logical.  There are very few
1932 			 * peripheral drivers, and bloating every peripheral
1933 			 * structure with a pointer back to its parent
1934 			 * peripheral driver linker set entry would cost
1935 			 * more in the long run than doing this quick lookup.
1936 			 */
1937 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1938 				if (strcmp((*pdrv)->driver_name,
1939 				    periph->periph_name) == 0)
1940 					break;
1941 			}
1942 
1943 			if (*pdrv == NULL) {
1944 				cdm->status = CAM_DEV_MATCH_ERROR;
1945 				return(0);
1946 			}
1947 
1948 			cdm->pos.cookie.pdrv = pdrv;
1949 			/*
1950 			 * The periph generation slot does double duty, as
1951 			 * does the periph pointer slot.  They are used for
1952 			 * both edt and pdrv lookups and positioning.
1953 			 */
1954 			cdm->pos.cookie.periph = periph;
1955 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1956 				(*pdrv)->generation;
1957 			cdm->status = CAM_DEV_MATCH_MORE;
1958 			return(0);
1959 		}
1960 
1961 		j = cdm->num_matches;
1962 		cdm->num_matches++;
1963 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1964 		cdm->matches[j].result.periph_result.path_id =
1965 			periph->path->bus->path_id;
1966 
1967 		/*
1968 		 * The transport layer peripheral doesn't have a target or
1969 		 * lun.
1970 		 */
1971 		if (periph->path->target)
1972 			cdm->matches[j].result.periph_result.target_id =
1973 				periph->path->target->target_id;
1974 		else
1975 			cdm->matches[j].result.periph_result.target_id = -1;
1976 
1977 		if (periph->path->device)
1978 			cdm->matches[j].result.periph_result.target_lun =
1979 				periph->path->device->lun_id;
1980 		else
1981 			cdm->matches[j].result.periph_result.target_lun = -1;
1982 
1983 		cdm->matches[j].result.periph_result.unit_number =
1984 			periph->unit_number;
1985 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1986 			periph->periph_name, DEV_IDLEN);
1987 	}
1988 
1989 	return(1);
1990 }
1991 
1992 static int
1993 xptperiphlistmatch(struct ccb_dev_match *cdm)
1994 {
1995 	int ret;
1996 
1997 	cdm->num_matches = 0;
1998 
1999 	/*
2000 	 * At this point in the edt traversal function, we check the bus
2001 	 * list generation to make sure that no busses have been added or
2002 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2003 	 * For the peripheral driver list traversal function, however, we
2004 	 * don't have to worry about new peripheral driver types coming or
2005 	 * going; they're in a linker set, and therefore can't change
2006 	 * without a recompile.
2007 	 */
2008 
2009 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2010 	 && (cdm->pos.cookie.pdrv != NULL))
2011 		ret = xptpdrvtraverse(
2012 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2013 				xptplistpdrvfunc, cdm);
2014 	else
2015 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2016 
2017 	/*
2018 	 * If we get back 0, that means that we had to stop before fully
2019 	 * traversing the peripheral driver tree.  It also means that one of
2020 	 * the subroutines has set the status field to the proper value.  If
2021 	 * we get back 1, we've fully traversed the EDT and copied out any
2022 	 * matching entries.
2023 	 */
2024 	if (ret == 1)
2025 		cdm->status = CAM_DEV_MATCH_LAST;
2026 
2027 	return(ret);
2028 }
2029 
2030 static int
2031 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2032 {
2033 	struct cam_eb *bus, *next_bus;
2034 	int retval;
2035 
2036 	retval = 1;
2037 
2038 	xpt_lock_buses();
2039 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2040 	     bus != NULL;
2041 	     bus = next_bus) {
2042 
2043 		bus->refcount++;
2044 
2045 		/*
2046 		 * XXX The locking here is obviously very complex.  We
2047 		 * should work to simplify it.
2048 		 */
2049 		xpt_unlock_buses();
2050 		CAM_SIM_LOCK(bus->sim);
2051 		retval = tr_func(bus, arg);
2052 		CAM_SIM_UNLOCK(bus->sim);
2053 
2054 		xpt_lock_buses();
2055 		next_bus = TAILQ_NEXT(bus, links);
2056 		xpt_unlock_buses();
2057 
2058 		xpt_release_bus(bus);
2059 
2060 		if (retval == 0)
2061 			return(retval);
2062 		xpt_lock_buses();
2063 	}
2064 	xpt_unlock_buses();
2065 
2066 	return(retval);
2067 }
2068 
2069 static int
2070 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2071 		  xpt_targetfunc_t *tr_func, void *arg)
2072 {
2073 	struct cam_et *target, *next_target;
2074 	int retval;
2075 
2076 	mtx_assert(bus->sim->mtx, MA_OWNED);
2077 	retval = 1;
2078 	for (target = (start_target ? start_target :
2079 		       TAILQ_FIRST(&bus->et_entries));
2080 	     target != NULL; target = next_target) {
2081 
2082 		target->refcount++;
2083 
2084 		retval = tr_func(target, arg);
2085 
2086 		next_target = TAILQ_NEXT(target, links);
2087 
2088 		xpt_release_target(target);
2089 
2090 		if (retval == 0)
2091 			return(retval);
2092 	}
2093 
2094 	return(retval);
2095 }
2096 
2097 static int
2098 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2099 		  xpt_devicefunc_t *tr_func, void *arg)
2100 {
2101 	struct cam_ed *device, *next_device;
2102 	int retval;
2103 
2104 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
2105 	retval = 1;
2106 	for (device = (start_device ? start_device :
2107 		       TAILQ_FIRST(&target->ed_entries));
2108 	     device != NULL;
2109 	     device = next_device) {
2110 
2111 		/*
2112 		 * Hold a reference so the current device does not go away
2113 		 * on us.
2114 		 */
2115 		device->refcount++;
2116 
2117 		retval = tr_func(device, arg);
2118 
2119 		/*
2120 		 * Grab our next pointer before we release the current
2121 		 * device.
2122 		 */
2123 		next_device = TAILQ_NEXT(device, links);
2124 
2125 		xpt_release_device(device);
2126 
2127 		if (retval == 0)
2128 			return(retval);
2129 	}
2130 
2131 	return(retval);
2132 }
2133 
2134 static int
2135 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2136 		  xpt_periphfunc_t *tr_func, void *arg)
2137 {
2138 	struct cam_periph *periph, *next_periph;
2139 	int retval;
2140 
2141 	retval = 1;
2142 
2143 	mtx_assert(device->sim->mtx, MA_OWNED);
2144 	xpt_lock_buses();
2145 	for (periph = (start_periph ? start_periph :
2146 		       SLIST_FIRST(&device->periphs));
2147 	     periph != NULL;
2148 	     periph = next_periph) {
2149 
2150 
2151 		/*
2152 		 * In this case, we want to show peripherals that have been
2153 		 * invalidated, but not peripherals that are scheduled to
2154 		 * be freed.  So instead of calling cam_periph_acquire(),
2155 		 * which will fail if the periph has been invalidated, we
2156 		 * just check for the free flag here.  If it is in the
2157 		 * process of being freed, we skip to the next periph.
2158 		 */
2159 		if (periph->flags & CAM_PERIPH_FREE) {
2160 			next_periph = SLIST_NEXT(periph, periph_links);
2161 			continue;
2162 		}
2163 
2164 		/*
2165 		 * Acquire a reference to this periph while we call the
2166 		 * traversal function, so it can't go away.
2167 		 */
2168 		periph->refcount++;
2169 
2170 		retval = tr_func(periph, arg);
2171 
2172 		/*
2173 		 * Grab the next peripheral before we release this one, so
2174 		 * our next pointer is still valid.
2175 		 */
2176 		next_periph = SLIST_NEXT(periph, periph_links);
2177 
2178 		cam_periph_release_locked_buses(periph);
2179 
2180 		if (retval == 0)
2181 			goto bailout_done;
2182 	}
2183 
2184 bailout_done:
2185 
2186 	xpt_unlock_buses();
2187 
2188 	return(retval);
2189 }
2190 
2191 static int
2192 xptpdrvtraverse(struct periph_driver **start_pdrv,
2193 		xpt_pdrvfunc_t *tr_func, void *arg)
2194 {
2195 	struct periph_driver **pdrv;
2196 	int retval;
2197 
2198 	retval = 1;
2199 
2200 	/*
2201 	 * We don't traverse the peripheral driver list like we do the
2202 	 * other lists, because it is a linker set, and therefore cannot be
2203 	 * changed during runtime.  If the peripheral driver list is ever
2204 	 * re-done to be something other than a linker set (i.e. it can
2205 	 * change while the system is running), the list traversal should
2206 	 * be modified to work like the other traversal functions.
2207 	 */
2208 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2209 	     *pdrv != NULL; pdrv++) {
2210 		retval = tr_func(pdrv, arg);
2211 
2212 		if (retval == 0)
2213 			return(retval);
2214 	}
2215 
2216 	return(retval);
2217 }
2218 
2219 static int
2220 xptpdperiphtraverse(struct periph_driver **pdrv,
2221 		    struct cam_periph *start_periph,
2222 		    xpt_periphfunc_t *tr_func, void *arg)
2223 {
2224 	struct cam_periph *periph, *next_periph;
2225 	struct cam_sim *sim;
2226 	int retval;
2227 
2228 	retval = 1;
2229 
2230 	xpt_lock_buses();
2231 	for (periph = (start_periph ? start_periph :
2232 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2233 	     periph = next_periph) {
2234 
2235 
2236 		/*
2237 		 * In this case, we want to show peripherals that have been
2238 		 * invalidated, but not peripherals that are scheduled to
2239 		 * be freed.  So instead of calling cam_periph_acquire(),
2240 		 * which will fail if the periph has been invalidated, we
2241 		 * just check for the free flag here.  If it is free, we
2242 		 * skip to the next periph.
2243 		 */
2244 		if (periph->flags & CAM_PERIPH_FREE) {
2245 			next_periph = TAILQ_NEXT(periph, unit_links);
2246 			continue;
2247 		}
2248 
2249 		/*
2250 		 * Acquire a reference to this periph while we call the
2251 		 * traversal function, so it can't go away.
2252 		 */
2253 		periph->refcount++;
2254 		sim = periph->sim;
2255 		xpt_unlock_buses();
2256 		CAM_SIM_LOCK(sim);
2257 		xpt_lock_buses();
2258 		retval = tr_func(periph, arg);
2259 
2260 		/*
2261 		 * Grab the next peripheral before we release this one, so
2262 		 * our next pointer is still valid.
2263 		 */
2264 		next_periph = TAILQ_NEXT(periph, unit_links);
2265 
2266 		cam_periph_release_locked_buses(periph);
2267 		CAM_SIM_UNLOCK(sim);
2268 
2269 		if (retval == 0)
2270 			goto bailout_done;
2271 	}
2272 bailout_done:
2273 
2274 	xpt_unlock_buses();
2275 
2276 	return(retval);
2277 }
2278 
2279 static int
2280 xptdefbusfunc(struct cam_eb *bus, void *arg)
2281 {
2282 	struct xpt_traverse_config *tr_config;
2283 
2284 	tr_config = (struct xpt_traverse_config *)arg;
2285 
2286 	if (tr_config->depth == XPT_DEPTH_BUS) {
2287 		xpt_busfunc_t *tr_func;
2288 
2289 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2290 
2291 		return(tr_func(bus, tr_config->tr_arg));
2292 	} else
2293 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2294 }
2295 
2296 static int
2297 xptdeftargetfunc(struct cam_et *target, void *arg)
2298 {
2299 	struct xpt_traverse_config *tr_config;
2300 
2301 	tr_config = (struct xpt_traverse_config *)arg;
2302 
2303 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2304 		xpt_targetfunc_t *tr_func;
2305 
2306 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2307 
2308 		return(tr_func(target, tr_config->tr_arg));
2309 	} else
2310 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2311 }
2312 
2313 static int
2314 xptdefdevicefunc(struct cam_ed *device, void *arg)
2315 {
2316 	struct xpt_traverse_config *tr_config;
2317 
2318 	tr_config = (struct xpt_traverse_config *)arg;
2319 
2320 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2321 		xpt_devicefunc_t *tr_func;
2322 
2323 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2324 
2325 		return(tr_func(device, tr_config->tr_arg));
2326 	} else
2327 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2328 }
2329 
2330 static int
2331 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2332 {
2333 	struct xpt_traverse_config *tr_config;
2334 	xpt_periphfunc_t *tr_func;
2335 
2336 	tr_config = (struct xpt_traverse_config *)arg;
2337 
2338 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2339 
2340 	/*
2341 	 * Unlike the other default functions, we don't check for depth
2342 	 * here.  The peripheral driver level is the last level in the EDT,
2343 	 * so if we're here, we should execute the function in question.
2344 	 */
2345 	return(tr_func(periph, tr_config->tr_arg));
2346 }
2347 
2348 /*
2349  * Execute the given function for every bus in the EDT.
2350  */
2351 static int
2352 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2353 {
2354 	struct xpt_traverse_config tr_config;
2355 
2356 	tr_config.depth = XPT_DEPTH_BUS;
2357 	tr_config.tr_func = tr_func;
2358 	tr_config.tr_arg = arg;
2359 
2360 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2361 }
2362 
2363 /*
2364  * Execute the given function for every device in the EDT.
2365  */
2366 static int
2367 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2368 {
2369 	struct xpt_traverse_config tr_config;
2370 
2371 	tr_config.depth = XPT_DEPTH_DEVICE;
2372 	tr_config.tr_func = tr_func;
2373 	tr_config.tr_arg = arg;
2374 
2375 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2376 }
2377 
2378 static int
2379 xptsetasyncfunc(struct cam_ed *device, void *arg)
2380 {
2381 	struct cam_path path;
2382 	struct ccb_getdev cgd;
2383 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2384 
2385 	/*
2386 	 * Don't report unconfigured devices (Wildcard devs,
2387 	 * devices only for target mode, device instances
2388 	 * that have been invalidated but are waiting for
2389 	 * their last reference count to be released).
2390 	 */
2391 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2392 		return (1);
2393 
2394 	xpt_compile_path(&path,
2395 			 NULL,
2396 			 device->target->bus->path_id,
2397 			 device->target->target_id,
2398 			 device->lun_id);
2399 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2400 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2401 	xpt_action((union ccb *)&cgd);
2402 	csa->callback(csa->callback_arg,
2403 			    AC_FOUND_DEVICE,
2404 			    &path, &cgd);
2405 	xpt_release_path(&path);
2406 
2407 	return(1);
2408 }
2409 
2410 static int
2411 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2412 {
2413 	struct cam_path path;
2414 	struct ccb_pathinq cpi;
2415 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2416 
2417 	xpt_compile_path(&path, /*periph*/NULL,
2418 			 bus->path_id,
2419 			 CAM_TARGET_WILDCARD,
2420 			 CAM_LUN_WILDCARD);
2421 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2422 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2423 	xpt_action((union ccb *)&cpi);
2424 	csa->callback(csa->callback_arg,
2425 			    AC_PATH_REGISTERED,
2426 			    &path, &cpi);
2427 	xpt_release_path(&path);
2428 
2429 	return(1);
2430 }
2431 
2432 void
2433 xpt_action(union ccb *start_ccb)
2434 {
2435 
2436 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2437 
2438 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2439 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2440 }
2441 
2442 void
2443 xpt_action_default(union ccb *start_ccb)
2444 {
2445 	struct cam_path *path;
2446 
2447 	path = start_ccb->ccb_h.path;
2448 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2449 
2450 	switch (start_ccb->ccb_h.func_code) {
2451 	case XPT_SCSI_IO:
2452 	{
2453 		struct cam_ed *device;
2454 
2455 		/*
2456 		 * For the sake of compatibility with SCSI-1
2457 		 * devices that may not understand the identify
2458 		 * message, we include lun information in the
2459 		 * second byte of all commands.  SCSI-1 specifies
2460 		 * that luns are a 3 bit value and reserves only 3
2461 		 * bits for lun information in the CDB.  Later
2462 		 * revisions of the SCSI spec allow for more than 8
2463 		 * luns, but have deprecated lun information in the
2464 		 * CDB.  So, if the lun won't fit, we must omit.
2465 		 *
2466 		 * Also be aware that during initial probing for devices,
2467 		 * the inquiry information is unknown but initialized to 0.
2468 		 * This means that this code will be exercised while probing
2469 		 * devices with an ANSI revision greater than 2.
2470 		 */
2471 		device = path->device;
2472 		if (device->protocol_version <= SCSI_REV_2
2473 		 && start_ccb->ccb_h.target_lun < 8
2474 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2475 
2476 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2477 			    start_ccb->ccb_h.target_lun << 5;
2478 		}
2479 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2480 	}
2481 	/* FALLTHROUGH */
2482 	case XPT_TARGET_IO:
2483 	case XPT_CONT_TARGET_IO:
2484 		start_ccb->csio.sense_resid = 0;
2485 		start_ccb->csio.resid = 0;
2486 		/* FALLTHROUGH */
2487 	case XPT_ATA_IO:
2488 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2489 			start_ccb->ataio.resid = 0;
2490 		/* FALLTHROUGH */
2491 	case XPT_RESET_DEV:
2492 	case XPT_ENG_EXEC:
2493 	case XPT_SMP_IO:
2494 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2495 		if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2496 			xpt_run_devq(path->bus->sim->devq);
2497 		break;
2498 	case XPT_CALC_GEOMETRY:
2499 	{
2500 		struct cam_sim *sim;
2501 
2502 		/* Filter out garbage */
2503 		if (start_ccb->ccg.block_size == 0
2504 		 || start_ccb->ccg.volume_size == 0) {
2505 			start_ccb->ccg.cylinders = 0;
2506 			start_ccb->ccg.heads = 0;
2507 			start_ccb->ccg.secs_per_track = 0;
2508 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2509 			break;
2510 		}
2511 #if defined(PC98) || defined(__sparc64__)
2512 		/*
2513 		 * In a PC-98 system, geometry translation depens on
2514 		 * the "real" device geometry obtained from mode page 4.
2515 		 * SCSI geometry translation is performed in the
2516 		 * initialization routine of the SCSI BIOS and the result
2517 		 * stored in host memory.  If the translation is available
2518 		 * in host memory, use it.  If not, rely on the default
2519 		 * translation the device driver performs.
2520 		 * For sparc64, we may need adjust the geometry of large
2521 		 * disks in order to fit the limitations of the 16-bit
2522 		 * fields of the VTOC8 disk label.
2523 		 */
2524 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2525 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2526 			break;
2527 		}
2528 #endif
2529 		sim = path->bus->sim;
2530 		(*(sim->sim_action))(sim, start_ccb);
2531 		break;
2532 	}
2533 	case XPT_ABORT:
2534 	{
2535 		union ccb* abort_ccb;
2536 
2537 		abort_ccb = start_ccb->cab.abort_ccb;
2538 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2539 
2540 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2541 				struct cam_ccbq *ccbq;
2542 				struct cam_ed *device;
2543 
2544 				device = abort_ccb->ccb_h.path->device;
2545 				ccbq = &device->ccbq;
2546 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2547 				abort_ccb->ccb_h.status =
2548 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2549 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2550 				xpt_done(abort_ccb);
2551 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2552 				break;
2553 			}
2554 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2555 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2556 				/*
2557 				 * We've caught this ccb en route to
2558 				 * the SIM.  Flag it for abort and the
2559 				 * SIM will do so just before starting
2560 				 * real work on the CCB.
2561 				 */
2562 				abort_ccb->ccb_h.status =
2563 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2564 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2565 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2566 				break;
2567 			}
2568 		}
2569 		if (XPT_FC_IS_QUEUED(abort_ccb)
2570 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2571 			/*
2572 			 * It's already completed but waiting
2573 			 * for our SWI to get to it.
2574 			 */
2575 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2576 			break;
2577 		}
2578 		/*
2579 		 * If we weren't able to take care of the abort request
2580 		 * in the XPT, pass the request down to the SIM for processing.
2581 		 */
2582 	}
2583 	/* FALLTHROUGH */
2584 	case XPT_ACCEPT_TARGET_IO:
2585 	case XPT_EN_LUN:
2586 	case XPT_IMMED_NOTIFY:
2587 	case XPT_NOTIFY_ACK:
2588 	case XPT_RESET_BUS:
2589 	case XPT_IMMEDIATE_NOTIFY:
2590 	case XPT_NOTIFY_ACKNOWLEDGE:
2591 	case XPT_GET_SIM_KNOB:
2592 	case XPT_SET_SIM_KNOB:
2593 	{
2594 		struct cam_sim *sim;
2595 
2596 		sim = path->bus->sim;
2597 		(*(sim->sim_action))(sim, start_ccb);
2598 		break;
2599 	}
2600 	case XPT_PATH_INQ:
2601 	{
2602 		struct cam_sim *sim;
2603 
2604 		sim = path->bus->sim;
2605 		(*(sim->sim_action))(sim, start_ccb);
2606 		break;
2607 	}
2608 	case XPT_PATH_STATS:
2609 		start_ccb->cpis.last_reset = path->bus->last_reset;
2610 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2611 		break;
2612 	case XPT_GDEV_TYPE:
2613 	{
2614 		struct cam_ed *dev;
2615 
2616 		dev = path->device;
2617 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2618 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2619 		} else {
2620 			struct ccb_getdev *cgd;
2621 
2622 			cgd = &start_ccb->cgd;
2623 			cgd->protocol = dev->protocol;
2624 			cgd->inq_data = dev->inq_data;
2625 			cgd->ident_data = dev->ident_data;
2626 			cgd->inq_flags = dev->inq_flags;
2627 			cgd->ccb_h.status = CAM_REQ_CMP;
2628 			cgd->serial_num_len = dev->serial_num_len;
2629 			if ((dev->serial_num_len > 0)
2630 			 && (dev->serial_num != NULL))
2631 				bcopy(dev->serial_num, cgd->serial_num,
2632 				      dev->serial_num_len);
2633 		}
2634 		break;
2635 	}
2636 	case XPT_GDEV_STATS:
2637 	{
2638 		struct cam_ed *dev;
2639 
2640 		dev = path->device;
2641 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2642 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2643 		} else {
2644 			struct ccb_getdevstats *cgds;
2645 			struct cam_eb *bus;
2646 			struct cam_et *tar;
2647 
2648 			cgds = &start_ccb->cgds;
2649 			bus = path->bus;
2650 			tar = path->target;
2651 			cgds->dev_openings = dev->ccbq.dev_openings;
2652 			cgds->dev_active = dev->ccbq.dev_active;
2653 			cgds->devq_openings = dev->ccbq.devq_openings;
2654 			cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2655 			cgds->held = dev->ccbq.held;
2656 			cgds->last_reset = tar->last_reset;
2657 			cgds->maxtags = dev->maxtags;
2658 			cgds->mintags = dev->mintags;
2659 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2660 				cgds->last_reset = bus->last_reset;
2661 			cgds->ccb_h.status = CAM_REQ_CMP;
2662 		}
2663 		break;
2664 	}
2665 	case XPT_GDEVLIST:
2666 	{
2667 		struct cam_periph	*nperiph;
2668 		struct periph_list	*periph_head;
2669 		struct ccb_getdevlist	*cgdl;
2670 		u_int			i;
2671 		struct cam_ed		*device;
2672 		int			found;
2673 
2674 
2675 		found = 0;
2676 
2677 		/*
2678 		 * Don't want anyone mucking with our data.
2679 		 */
2680 		device = path->device;
2681 		periph_head = &device->periphs;
2682 		cgdl = &start_ccb->cgdl;
2683 
2684 		/*
2685 		 * Check and see if the list has changed since the user
2686 		 * last requested a list member.  If so, tell them that the
2687 		 * list has changed, and therefore they need to start over
2688 		 * from the beginning.
2689 		 */
2690 		if ((cgdl->index != 0) &&
2691 		    (cgdl->generation != device->generation)) {
2692 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2693 			break;
2694 		}
2695 
2696 		/*
2697 		 * Traverse the list of peripherals and attempt to find
2698 		 * the requested peripheral.
2699 		 */
2700 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2701 		     (nperiph != NULL) && (i <= cgdl->index);
2702 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2703 			if (i == cgdl->index) {
2704 				strncpy(cgdl->periph_name,
2705 					nperiph->periph_name,
2706 					DEV_IDLEN);
2707 				cgdl->unit_number = nperiph->unit_number;
2708 				found = 1;
2709 			}
2710 		}
2711 		if (found == 0) {
2712 			cgdl->status = CAM_GDEVLIST_ERROR;
2713 			break;
2714 		}
2715 
2716 		if (nperiph == NULL)
2717 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2718 		else
2719 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2720 
2721 		cgdl->index++;
2722 		cgdl->generation = device->generation;
2723 
2724 		cgdl->ccb_h.status = CAM_REQ_CMP;
2725 		break;
2726 	}
2727 	case XPT_DEV_MATCH:
2728 	{
2729 		dev_pos_type position_type;
2730 		struct ccb_dev_match *cdm;
2731 
2732 		cdm = &start_ccb->cdm;
2733 
2734 		/*
2735 		 * There are two ways of getting at information in the EDT.
2736 		 * The first way is via the primary EDT tree.  It starts
2737 		 * with a list of busses, then a list of targets on a bus,
2738 		 * then devices/luns on a target, and then peripherals on a
2739 		 * device/lun.  The "other" way is by the peripheral driver
2740 		 * lists.  The peripheral driver lists are organized by
2741 		 * peripheral driver.  (obviously)  So it makes sense to
2742 		 * use the peripheral driver list if the user is looking
2743 		 * for something like "da1", or all "da" devices.  If the
2744 		 * user is looking for something on a particular bus/target
2745 		 * or lun, it's generally better to go through the EDT tree.
2746 		 */
2747 
2748 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2749 			position_type = cdm->pos.position_type;
2750 		else {
2751 			u_int i;
2752 
2753 			position_type = CAM_DEV_POS_NONE;
2754 
2755 			for (i = 0; i < cdm->num_patterns; i++) {
2756 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2757 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2758 					position_type = CAM_DEV_POS_EDT;
2759 					break;
2760 				}
2761 			}
2762 
2763 			if (cdm->num_patterns == 0)
2764 				position_type = CAM_DEV_POS_EDT;
2765 			else if (position_type == CAM_DEV_POS_NONE)
2766 				position_type = CAM_DEV_POS_PDRV;
2767 		}
2768 
2769 		/*
2770 		 * Note that we drop the SIM lock here, because the EDT
2771 		 * traversal code needs to do its own locking.
2772 		 */
2773 		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2774 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2775 		case CAM_DEV_POS_EDT:
2776 			xptedtmatch(cdm);
2777 			break;
2778 		case CAM_DEV_POS_PDRV:
2779 			xptperiphlistmatch(cdm);
2780 			break;
2781 		default:
2782 			cdm->status = CAM_DEV_MATCH_ERROR;
2783 			break;
2784 		}
2785 		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2786 
2787 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2788 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2789 		else
2790 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2791 
2792 		break;
2793 	}
2794 	case XPT_SASYNC_CB:
2795 	{
2796 		struct ccb_setasync *csa;
2797 		struct async_node *cur_entry;
2798 		struct async_list *async_head;
2799 		u_int32_t added;
2800 
2801 		csa = &start_ccb->csa;
2802 		added = csa->event_enable;
2803 		async_head = &path->device->asyncs;
2804 
2805 		/*
2806 		 * If there is already an entry for us, simply
2807 		 * update it.
2808 		 */
2809 		cur_entry = SLIST_FIRST(async_head);
2810 		while (cur_entry != NULL) {
2811 			if ((cur_entry->callback_arg == csa->callback_arg)
2812 			 && (cur_entry->callback == csa->callback))
2813 				break;
2814 			cur_entry = SLIST_NEXT(cur_entry, links);
2815 		}
2816 
2817 		if (cur_entry != NULL) {
2818 		 	/*
2819 			 * If the request has no flags set,
2820 			 * remove the entry.
2821 			 */
2822 			added &= ~cur_entry->event_enable;
2823 			if (csa->event_enable == 0) {
2824 				SLIST_REMOVE(async_head, cur_entry,
2825 					     async_node, links);
2826 				xpt_release_device(path->device);
2827 				free(cur_entry, M_CAMXPT);
2828 			} else {
2829 				cur_entry->event_enable = csa->event_enable;
2830 			}
2831 			csa->event_enable = added;
2832 		} else {
2833 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2834 					   M_NOWAIT);
2835 			if (cur_entry == NULL) {
2836 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2837 				break;
2838 			}
2839 			cur_entry->event_enable = csa->event_enable;
2840 			cur_entry->callback_arg = csa->callback_arg;
2841 			cur_entry->callback = csa->callback;
2842 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2843 			xpt_acquire_device(path->device);
2844 		}
2845 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2846 		break;
2847 	}
2848 	case XPT_REL_SIMQ:
2849 	{
2850 		struct ccb_relsim *crs;
2851 		struct cam_ed *dev;
2852 
2853 		crs = &start_ccb->crs;
2854 		dev = path->device;
2855 		if (dev == NULL) {
2856 
2857 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2858 			break;
2859 		}
2860 
2861 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2862 
2863 			/* Don't ever go below one opening */
2864 			if (crs->openings > 0) {
2865 				xpt_dev_ccbq_resize(path, crs->openings);
2866 				if (bootverbose) {
2867 					xpt_print(path,
2868 					    "number of openings is now %d\n",
2869 					    crs->openings);
2870 				}
2871 			}
2872 		}
2873 
2874 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2875 
2876 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2877 
2878 				/*
2879 				 * Just extend the old timeout and decrement
2880 				 * the freeze count so that a single timeout
2881 				 * is sufficient for releasing the queue.
2882 				 */
2883 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2884 				callout_stop(&dev->callout);
2885 			} else {
2886 
2887 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2888 			}
2889 
2890 			callout_reset(&dev->callout,
2891 			    (crs->release_timeout * hz) / 1000,
2892 			    xpt_release_devq_timeout, dev);
2893 
2894 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2895 
2896 		}
2897 
2898 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2899 
2900 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2901 				/*
2902 				 * Decrement the freeze count so that a single
2903 				 * completion is still sufficient to unfreeze
2904 				 * the queue.
2905 				 */
2906 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2907 			} else {
2908 
2909 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2910 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2911 			}
2912 		}
2913 
2914 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2915 
2916 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2917 			 || (dev->ccbq.dev_active == 0)) {
2918 
2919 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2920 			} else {
2921 
2922 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2923 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2924 			}
2925 		}
2926 
2927 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2928 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2929 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2930 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2931 		break;
2932 	}
2933 	case XPT_DEBUG: {
2934 		struct cam_path *oldpath;
2935 		struct cam_sim *oldsim;
2936 
2937 		/* Check that all request bits are supported. */
2938 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2939 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2940 			break;
2941 		}
2942 
2943 		cam_dflags = CAM_DEBUG_NONE;
2944 		if (cam_dpath != NULL) {
2945 			/* To release the old path we must hold proper lock. */
2946 			oldpath = cam_dpath;
2947 			cam_dpath = NULL;
2948 			oldsim = xpt_path_sim(oldpath);
2949 			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2950 			CAM_SIM_LOCK(oldsim);
2951 			xpt_free_path(oldpath);
2952 			CAM_SIM_UNLOCK(oldsim);
2953 			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2954 		}
2955 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2956 			if (xpt_create_path(&cam_dpath, NULL,
2957 					    start_ccb->ccb_h.path_id,
2958 					    start_ccb->ccb_h.target_id,
2959 					    start_ccb->ccb_h.target_lun) !=
2960 					    CAM_REQ_CMP) {
2961 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2962 			} else {
2963 				cam_dflags = start_ccb->cdbg.flags;
2964 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2965 				xpt_print(cam_dpath, "debugging flags now %x\n",
2966 				    cam_dflags);
2967 			}
2968 		} else
2969 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2970 		break;
2971 	}
2972 	case XPT_NOOP:
2973 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2974 			xpt_freeze_devq(path, 1);
2975 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2976 		break;
2977 	default:
2978 	case XPT_SDEV_TYPE:
2979 	case XPT_TERM_IO:
2980 	case XPT_ENG_INQ:
2981 		/* XXX Implement */
2982 		printf("%s: CCB type %#x not supported\n", __func__,
2983 		       start_ccb->ccb_h.func_code);
2984 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2985 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2986 			xpt_done(start_ccb);
2987 		}
2988 		break;
2989 	}
2990 }
2991 
2992 void
2993 xpt_polled_action(union ccb *start_ccb)
2994 {
2995 	u_int32_t timeout;
2996 	struct	  cam_sim *sim;
2997 	struct	  cam_devq *devq;
2998 	struct	  cam_ed *dev;
2999 
3000 
3001 	timeout = start_ccb->ccb_h.timeout * 10;
3002 	sim = start_ccb->ccb_h.path->bus->sim;
3003 	devq = sim->devq;
3004 	dev = start_ccb->ccb_h.path->device;
3005 
3006 	mtx_assert(sim->mtx, MA_OWNED);
3007 
3008 	/* Don't use ISR for this SIM while polling. */
3009 	sim->flags |= CAM_SIM_POLLED;
3010 
3011 	/*
3012 	 * Steal an opening so that no other queued requests
3013 	 * can get it before us while we simulate interrupts.
3014 	 */
3015 	dev->ccbq.devq_openings--;
3016 	dev->ccbq.dev_openings--;
3017 
3018 	while(((devq != NULL && devq->send_openings <= 0) ||
3019 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3020 		DELAY(100);
3021 		(*(sim->sim_poll))(sim);
3022 		camisr_runqueue(sim);
3023 	}
3024 
3025 	dev->ccbq.devq_openings++;
3026 	dev->ccbq.dev_openings++;
3027 
3028 	if (timeout != 0) {
3029 		xpt_action(start_ccb);
3030 		while(--timeout > 0) {
3031 			(*(sim->sim_poll))(sim);
3032 			camisr_runqueue(sim);
3033 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3034 			    != CAM_REQ_INPROG)
3035 				break;
3036 			DELAY(100);
3037 		}
3038 		if (timeout == 0) {
3039 			/*
3040 			 * XXX Is it worth adding a sim_timeout entry
3041 			 * point so we can attempt recovery?  If
3042 			 * this is only used for dumps, I don't think
3043 			 * it is.
3044 			 */
3045 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3046 		}
3047 	} else {
3048 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3049 	}
3050 
3051 	/* We will use CAM ISR for this SIM again. */
3052 	sim->flags &= ~CAM_SIM_POLLED;
3053 }
3054 
3055 /*
3056  * Schedule a peripheral driver to receive a ccb when it's
3057  * target device has space for more transactions.
3058  */
3059 void
3060 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3061 {
3062 	struct cam_ed *device;
3063 	int runq = 0;
3064 
3065 	mtx_assert(perph->sim->mtx, MA_OWNED);
3066 
3067 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3068 	device = perph->path->device;
3069 	if (periph_is_queued(perph)) {
3070 		/* Simply reorder based on new priority */
3071 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3072 			  ("   change priority to %d\n", new_priority));
3073 		if (new_priority < perph->pinfo.priority) {
3074 			camq_change_priority(&device->drvq,
3075 					     perph->pinfo.index,
3076 					     new_priority);
3077 			runq = 1;
3078 		}
3079 	} else {
3080 		/* New entry on the queue */
3081 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3082 			  ("   added periph to queue\n"));
3083 		perph->pinfo.priority = new_priority;
3084 		perph->pinfo.generation = ++device->drvq.generation;
3085 		camq_insert(&device->drvq, &perph->pinfo);
3086 		runq = 1;
3087 	}
3088 	if (runq != 0) {
3089 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3090 			  ("   calling xpt_run_dev_allocq\n"));
3091 		xpt_run_dev_allocq(device);
3092 	}
3093 }
3094 
3095 
3096 /*
3097  * Schedule a device to run on a given queue.
3098  * If the device was inserted as a new entry on the queue,
3099  * return 1 meaning the device queue should be run. If we
3100  * were already queued, implying someone else has already
3101  * started the queue, return 0 so the caller doesn't attempt
3102  * to run the queue.
3103  */
3104 int
3105 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3106 		 u_int32_t new_priority)
3107 {
3108 	int retval;
3109 	u_int32_t old_priority;
3110 
3111 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3112 
3113 	old_priority = pinfo->priority;
3114 
3115 	/*
3116 	 * Are we already queued?
3117 	 */
3118 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3119 		/* Simply reorder based on new priority */
3120 		if (new_priority < old_priority) {
3121 			camq_change_priority(queue, pinfo->index,
3122 					     new_priority);
3123 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3124 					("changed priority to %d\n",
3125 					 new_priority));
3126 			retval = 1;
3127 		} else
3128 			retval = 0;
3129 	} else {
3130 		/* New entry on the queue */
3131 		if (new_priority < old_priority)
3132 			pinfo->priority = new_priority;
3133 
3134 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3135 				("Inserting onto queue\n"));
3136 		pinfo->generation = ++queue->generation;
3137 		camq_insert(queue, pinfo);
3138 		retval = 1;
3139 	}
3140 	return (retval);
3141 }
3142 
3143 static void
3144 xpt_run_dev_allocq(struct cam_ed *device)
3145 {
3146 	struct camq	*drvq;
3147 
3148 	if (device->ccbq.devq_allocating)
3149 		return;
3150 	device->ccbq.devq_allocating = 1;
3151 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3152 	drvq = &device->drvq;
3153 	while ((drvq->entries > 0) &&
3154 	    (device->ccbq.devq_openings > 0 ||
3155 	     CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3156 	    (device->ccbq.queue.qfrozen_cnt == 0)) {
3157 		union	ccb *work_ccb;
3158 		struct	cam_periph *drv;
3159 
3160 		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3161 		    "Device on queue without any work to do"));
3162 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3163 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3164 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3165 				      drv->pinfo.priority);
3166 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3167 					("calling periph start\n"));
3168 			drv->periph_start(drv, work_ccb);
3169 		} else {
3170 			/*
3171 			 * Malloc failure in alloc_ccb
3172 			 */
3173 			/*
3174 			 * XXX add us to a list to be run from free_ccb
3175 			 * if we don't have any ccbs active on this
3176 			 * device queue otherwise we may never get run
3177 			 * again.
3178 			 */
3179 			break;
3180 		}
3181 	}
3182 	device->ccbq.devq_allocating = 0;
3183 }
3184 
3185 static void
3186 xpt_run_devq(struct cam_devq *devq)
3187 {
3188 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3189 
3190 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3191 
3192 	devq->send_queue.qfrozen_cnt++;
3193 	while ((devq->send_queue.entries > 0)
3194 	    && (devq->send_openings > 0)
3195 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3196 		struct	cam_ed_qinfo *qinfo;
3197 		struct	cam_ed *device;
3198 		union ccb *work_ccb;
3199 		struct	cam_sim *sim;
3200 
3201 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3202 							   CAMQ_HEAD);
3203 		device = qinfo->device;
3204 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3205 				("running device %p\n", device));
3206 
3207 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3208 		if (work_ccb == NULL) {
3209 			printf("device on run queue with no ccbs???\n");
3210 			continue;
3211 		}
3212 
3213 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3214 
3215 			mtx_lock(&xsoftc.xpt_lock);
3216 		 	if (xsoftc.num_highpower <= 0) {
3217 				/*
3218 				 * We got a high power command, but we
3219 				 * don't have any available slots.  Freeze
3220 				 * the device queue until we have a slot
3221 				 * available.
3222 				 */
3223 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3224 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3225 						   work_ccb->ccb_h.path->device,
3226 						   highpowerq_entry);
3227 
3228 				mtx_unlock(&xsoftc.xpt_lock);
3229 				continue;
3230 			} else {
3231 				/*
3232 				 * Consume a high power slot while
3233 				 * this ccb runs.
3234 				 */
3235 				xsoftc.num_highpower--;
3236 			}
3237 			mtx_unlock(&xsoftc.xpt_lock);
3238 		}
3239 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3240 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3241 
3242 		devq->send_openings--;
3243 		devq->send_active++;
3244 
3245 		xpt_schedule_devq(devq, device);
3246 
3247 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3248 			/*
3249 			 * The client wants to freeze the queue
3250 			 * after this CCB is sent.
3251 			 */
3252 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3253 		}
3254 
3255 		/* In Target mode, the peripheral driver knows best... */
3256 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3257 			if ((device->inq_flags & SID_CmdQue) != 0
3258 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3259 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3260 			else
3261 				/*
3262 				 * Clear this in case of a retried CCB that
3263 				 * failed due to a rejected tag.
3264 				 */
3265 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3266 		}
3267 
3268 		switch (work_ccb->ccb_h.func_code) {
3269 		case XPT_SCSI_IO:
3270 			CAM_DEBUG(work_ccb->ccb_h.path,
3271 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3272 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3273 					  &device->inq_data),
3274 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3275 					     cdb_str, sizeof(cdb_str))));
3276 			break;
3277 		case XPT_ATA_IO:
3278 			CAM_DEBUG(work_ccb->ccb_h.path,
3279 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3280 			     ata_op_string(&work_ccb->ataio.cmd),
3281 			     ata_cmd_string(&work_ccb->ataio.cmd,
3282 					    cdb_str, sizeof(cdb_str))));
3283 			break;
3284 		default:
3285 			break;
3286 		}
3287 
3288 		/*
3289 		 * Device queues can be shared among multiple sim instances
3290 		 * that reside on different busses.  Use the SIM in the queue
3291 		 * CCB's path, rather than the one in the bus that was passed
3292 		 * into this function.
3293 		 */
3294 		sim = work_ccb->ccb_h.path->bus->sim;
3295 		(*(sim->sim_action))(sim, work_ccb);
3296 	}
3297 	devq->send_queue.qfrozen_cnt--;
3298 }
3299 
3300 /*
3301  * This function merges stuff from the slave ccb into the master ccb, while
3302  * keeping important fields in the master ccb constant.
3303  */
3304 void
3305 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3306 {
3307 
3308 	/*
3309 	 * Pull fields that are valid for peripheral drivers to set
3310 	 * into the master CCB along with the CCB "payload".
3311 	 */
3312 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3313 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3314 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3315 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3316 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3317 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3318 }
3319 
3320 void
3321 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3322 {
3323 
3324 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3325 	ccb_h->pinfo.priority = priority;
3326 	ccb_h->path = path;
3327 	ccb_h->path_id = path->bus->path_id;
3328 	if (path->target)
3329 		ccb_h->target_id = path->target->target_id;
3330 	else
3331 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3332 	if (path->device) {
3333 		ccb_h->target_lun = path->device->lun_id;
3334 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3335 	} else {
3336 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3337 	}
3338 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3339 	ccb_h->flags = 0;
3340 	ccb_h->xflags = 0;
3341 }
3342 
3343 /* Path manipulation functions */
3344 cam_status
3345 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3346 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3347 {
3348 	struct	   cam_path *path;
3349 	cam_status status;
3350 
3351 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3352 
3353 	if (path == NULL) {
3354 		status = CAM_RESRC_UNAVAIL;
3355 		return(status);
3356 	}
3357 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3358 	if (status != CAM_REQ_CMP) {
3359 		free(path, M_CAMPATH);
3360 		path = NULL;
3361 	}
3362 	*new_path_ptr = path;
3363 	return (status);
3364 }
3365 
3366 cam_status
3367 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3368 			 struct cam_periph *periph, path_id_t path_id,
3369 			 target_id_t target_id, lun_id_t lun_id)
3370 {
3371 	struct	   cam_path *path;
3372 	struct	   cam_eb *bus = NULL;
3373 	cam_status status;
3374 
3375 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3376 
3377 	bus = xpt_find_bus(path_id);
3378 	if (bus != NULL)
3379 		CAM_SIM_LOCK(bus->sim);
3380 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3381 	if (bus != NULL) {
3382 		CAM_SIM_UNLOCK(bus->sim);
3383 		xpt_release_bus(bus);
3384 	}
3385 	if (status != CAM_REQ_CMP) {
3386 		free(path, M_CAMPATH);
3387 		path = NULL;
3388 	}
3389 	*new_path_ptr = path;
3390 	return (status);
3391 }
3392 
3393 cam_status
3394 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3395 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3396 {
3397 	struct	     cam_eb *bus;
3398 	struct	     cam_et *target;
3399 	struct	     cam_ed *device;
3400 	cam_status   status;
3401 
3402 	status = CAM_REQ_CMP;	/* Completed without error */
3403 	target = NULL;		/* Wildcarded */
3404 	device = NULL;		/* Wildcarded */
3405 
3406 	/*
3407 	 * We will potentially modify the EDT, so block interrupts
3408 	 * that may attempt to create cam paths.
3409 	 */
3410 	bus = xpt_find_bus(path_id);
3411 	if (bus == NULL) {
3412 		status = CAM_PATH_INVALID;
3413 	} else {
3414 		target = xpt_find_target(bus, target_id);
3415 		if (target == NULL) {
3416 			/* Create one */
3417 			struct cam_et *new_target;
3418 
3419 			new_target = xpt_alloc_target(bus, target_id);
3420 			if (new_target == NULL) {
3421 				status = CAM_RESRC_UNAVAIL;
3422 			} else {
3423 				target = new_target;
3424 			}
3425 		}
3426 		if (target != NULL) {
3427 			device = xpt_find_device(target, lun_id);
3428 			if (device == NULL) {
3429 				/* Create one */
3430 				struct cam_ed *new_device;
3431 
3432 				new_device =
3433 				    (*(bus->xport->alloc_device))(bus,
3434 								      target,
3435 								      lun_id);
3436 				if (new_device == NULL) {
3437 					status = CAM_RESRC_UNAVAIL;
3438 				} else {
3439 					device = new_device;
3440 				}
3441 			}
3442 		}
3443 	}
3444 
3445 	/*
3446 	 * Only touch the user's data if we are successful.
3447 	 */
3448 	if (status == CAM_REQ_CMP) {
3449 		new_path->periph = perph;
3450 		new_path->bus = bus;
3451 		new_path->target = target;
3452 		new_path->device = device;
3453 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3454 	} else {
3455 		if (device != NULL)
3456 			xpt_release_device(device);
3457 		if (target != NULL)
3458 			xpt_release_target(target);
3459 		if (bus != NULL)
3460 			xpt_release_bus(bus);
3461 	}
3462 	return (status);
3463 }
3464 
3465 void
3466 xpt_release_path(struct cam_path *path)
3467 {
3468 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3469 	if (path->device != NULL) {
3470 		xpt_release_device(path->device);
3471 		path->device = NULL;
3472 	}
3473 	if (path->target != NULL) {
3474 		xpt_release_target(path->target);
3475 		path->target = NULL;
3476 	}
3477 	if (path->bus != NULL) {
3478 		xpt_release_bus(path->bus);
3479 		path->bus = NULL;
3480 	}
3481 }
3482 
3483 void
3484 xpt_free_path(struct cam_path *path)
3485 {
3486 
3487 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3488 	xpt_release_path(path);
3489 	free(path, M_CAMPATH);
3490 }
3491 
3492 void
3493 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3494     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3495 {
3496 
3497 	xpt_lock_buses();
3498 	if (bus_ref) {
3499 		if (path->bus)
3500 			*bus_ref = path->bus->refcount;
3501 		else
3502 			*bus_ref = 0;
3503 	}
3504 	if (periph_ref) {
3505 		if (path->periph)
3506 			*periph_ref = path->periph->refcount;
3507 		else
3508 			*periph_ref = 0;
3509 	}
3510 	xpt_unlock_buses();
3511 	if (target_ref) {
3512 		if (path->target)
3513 			*target_ref = path->target->refcount;
3514 		else
3515 			*target_ref = 0;
3516 	}
3517 	if (device_ref) {
3518 		if (path->device)
3519 			*device_ref = path->device->refcount;
3520 		else
3521 			*device_ref = 0;
3522 	}
3523 }
3524 
3525 /*
3526  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3527  * in path1, 2 for match with wildcards in path2.
3528  */
3529 int
3530 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3531 {
3532 	int retval = 0;
3533 
3534 	if (path1->bus != path2->bus) {
3535 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3536 			retval = 1;
3537 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3538 			retval = 2;
3539 		else
3540 			return (-1);
3541 	}
3542 	if (path1->target != path2->target) {
3543 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3544 			if (retval == 0)
3545 				retval = 1;
3546 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3547 			retval = 2;
3548 		else
3549 			return (-1);
3550 	}
3551 	if (path1->device != path2->device) {
3552 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3553 			if (retval == 0)
3554 				retval = 1;
3555 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3556 			retval = 2;
3557 		else
3558 			return (-1);
3559 	}
3560 	return (retval);
3561 }
3562 
3563 int
3564 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3565 {
3566 	int retval = 0;
3567 
3568 	if (path->bus != dev->target->bus) {
3569 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3570 			retval = 1;
3571 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3572 			retval = 2;
3573 		else
3574 			return (-1);
3575 	}
3576 	if (path->target != dev->target) {
3577 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3578 			if (retval == 0)
3579 				retval = 1;
3580 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3581 			retval = 2;
3582 		else
3583 			return (-1);
3584 	}
3585 	if (path->device != dev) {
3586 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3587 			if (retval == 0)
3588 				retval = 1;
3589 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3590 			retval = 2;
3591 		else
3592 			return (-1);
3593 	}
3594 	return (retval);
3595 }
3596 
3597 void
3598 xpt_print_path(struct cam_path *path)
3599 {
3600 
3601 	if (path == NULL)
3602 		printf("(nopath): ");
3603 	else {
3604 		if (path->periph != NULL)
3605 			printf("(%s%d:", path->periph->periph_name,
3606 			       path->periph->unit_number);
3607 		else
3608 			printf("(noperiph:");
3609 
3610 		if (path->bus != NULL)
3611 			printf("%s%d:%d:", path->bus->sim->sim_name,
3612 			       path->bus->sim->unit_number,
3613 			       path->bus->sim->bus_id);
3614 		else
3615 			printf("nobus:");
3616 
3617 		if (path->target != NULL)
3618 			printf("%d:", path->target->target_id);
3619 		else
3620 			printf("X:");
3621 
3622 		if (path->device != NULL)
3623 			printf("%d): ", path->device->lun_id);
3624 		else
3625 			printf("X): ");
3626 	}
3627 }
3628 
3629 void
3630 xpt_print_device(struct cam_ed *device)
3631 {
3632 
3633 	if (device == NULL)
3634 		printf("(nopath): ");
3635 	else {
3636 		printf("(noperiph:%s%d:%d:%d:%d): ", device->sim->sim_name,
3637 		       device->sim->unit_number,
3638 		       device->sim->bus_id,
3639 		       device->target->target_id,
3640 		       device->lun_id);
3641 	}
3642 }
3643 
3644 void
3645 xpt_print(struct cam_path *path, const char *fmt, ...)
3646 {
3647 	va_list ap;
3648 	xpt_print_path(path);
3649 	va_start(ap, fmt);
3650 	vprintf(fmt, ap);
3651 	va_end(ap);
3652 }
3653 
3654 int
3655 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3656 {
3657 	struct sbuf sb;
3658 
3659 #ifdef INVARIANTS
3660 	if (path != NULL && path->bus != NULL)
3661 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3662 #endif
3663 
3664 	sbuf_new(&sb, str, str_len, 0);
3665 
3666 	if (path == NULL)
3667 		sbuf_printf(&sb, "(nopath): ");
3668 	else {
3669 		if (path->periph != NULL)
3670 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3671 				    path->periph->unit_number);
3672 		else
3673 			sbuf_printf(&sb, "(noperiph:");
3674 
3675 		if (path->bus != NULL)
3676 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3677 				    path->bus->sim->unit_number,
3678 				    path->bus->sim->bus_id);
3679 		else
3680 			sbuf_printf(&sb, "nobus:");
3681 
3682 		if (path->target != NULL)
3683 			sbuf_printf(&sb, "%d:", path->target->target_id);
3684 		else
3685 			sbuf_printf(&sb, "X:");
3686 
3687 		if (path->device != NULL)
3688 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3689 		else
3690 			sbuf_printf(&sb, "X): ");
3691 	}
3692 	sbuf_finish(&sb);
3693 
3694 	return(sbuf_len(&sb));
3695 }
3696 
3697 path_id_t
3698 xpt_path_path_id(struct cam_path *path)
3699 {
3700 	return(path->bus->path_id);
3701 }
3702 
3703 target_id_t
3704 xpt_path_target_id(struct cam_path *path)
3705 {
3706 	if (path->target != NULL)
3707 		return (path->target->target_id);
3708 	else
3709 		return (CAM_TARGET_WILDCARD);
3710 }
3711 
3712 lun_id_t
3713 xpt_path_lun_id(struct cam_path *path)
3714 {
3715 	if (path->device != NULL)
3716 		return (path->device->lun_id);
3717 	else
3718 		return (CAM_LUN_WILDCARD);
3719 }
3720 
3721 struct cam_sim *
3722 xpt_path_sim(struct cam_path *path)
3723 {
3724 
3725 	return (path->bus->sim);
3726 }
3727 
3728 struct cam_periph*
3729 xpt_path_periph(struct cam_path *path)
3730 {
3731 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3732 
3733 	return (path->periph);
3734 }
3735 
3736 int
3737 xpt_path_legacy_ata_id(struct cam_path *path)
3738 {
3739 	struct cam_eb *bus;
3740 	int bus_id;
3741 
3742 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3743 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3744 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3745 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3746 		return (-1);
3747 
3748 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3749 	    path->bus->sim->unit_number < 2) {
3750 		bus_id = path->bus->sim->unit_number;
3751 	} else {
3752 		bus_id = 2;
3753 		xpt_lock_buses();
3754 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3755 			if (bus == path->bus)
3756 				break;
3757 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3758 			     bus->sim->unit_number >= 2) ||
3759 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3760 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3761 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3762 				bus_id++;
3763 		}
3764 		xpt_unlock_buses();
3765 	}
3766 	if (path->target != NULL) {
3767 		if (path->target->target_id < 2)
3768 			return (bus_id * 2 + path->target->target_id);
3769 		else
3770 			return (-1);
3771 	} else
3772 		return (bus_id * 2);
3773 }
3774 
3775 /*
3776  * Release a CAM control block for the caller.  Remit the cost of the structure
3777  * to the device referenced by the path.  If the this device had no 'credits'
3778  * and peripheral drivers have registered async callbacks for this notification
3779  * call them now.
3780  */
3781 void
3782 xpt_release_ccb(union ccb *free_ccb)
3783 {
3784 	struct	 cam_path *path;
3785 	struct	 cam_ed *device;
3786 	struct	 cam_eb *bus;
3787 	struct   cam_sim *sim;
3788 
3789 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3790 	path = free_ccb->ccb_h.path;
3791 	device = path->device;
3792 	bus = path->bus;
3793 	sim = bus->sim;
3794 
3795 	mtx_assert(sim->mtx, MA_OWNED);
3796 
3797 	cam_ccbq_release_opening(&device->ccbq);
3798 	if (sim->ccb_count > sim->max_ccbs) {
3799 		xpt_free_ccb(free_ccb);
3800 		sim->ccb_count--;
3801 	} else {
3802 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3803 		    xpt_links.sle);
3804 	}
3805 	xpt_run_dev_allocq(device);
3806 }
3807 
3808 /* Functions accessed by SIM drivers */
3809 
3810 static struct xpt_xport xport_default = {
3811 	.alloc_device = xpt_alloc_device_default,
3812 	.action = xpt_action_default,
3813 	.async = xpt_dev_async_default,
3814 };
3815 
3816 /*
3817  * A sim structure, listing the SIM entry points and instance
3818  * identification info is passed to xpt_bus_register to hook the SIM
3819  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3820  * for this new bus and places it in the array of busses and assigns
3821  * it a path_id.  The path_id may be influenced by "hard wiring"
3822  * information specified by the user.  Once interrupt services are
3823  * available, the bus will be probed.
3824  */
3825 int32_t
3826 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3827 {
3828 	struct cam_eb *new_bus;
3829 	struct cam_eb *old_bus;
3830 	struct ccb_pathinq cpi;
3831 	struct cam_path *path;
3832 	cam_status status;
3833 
3834 	mtx_assert(sim->mtx, MA_OWNED);
3835 
3836 	sim->bus_id = bus;
3837 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3838 					  M_CAMXPT, M_NOWAIT);
3839 	if (new_bus == NULL) {
3840 		/* Couldn't satisfy request */
3841 		return (CAM_RESRC_UNAVAIL);
3842 	}
3843 
3844 	TAILQ_INIT(&new_bus->et_entries);
3845 	cam_sim_hold(sim);
3846 	new_bus->sim = sim;
3847 	timevalclear(&new_bus->last_reset);
3848 	new_bus->flags = 0;
3849 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3850 	new_bus->generation = 0;
3851 
3852 	xpt_lock_buses();
3853 	sim->path_id = new_bus->path_id =
3854 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3855 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3856 	while (old_bus != NULL
3857 	    && old_bus->path_id < new_bus->path_id)
3858 		old_bus = TAILQ_NEXT(old_bus, links);
3859 	if (old_bus != NULL)
3860 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3861 	else
3862 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3863 	xsoftc.bus_generation++;
3864 	xpt_unlock_buses();
3865 
3866 	/*
3867 	 * Set a default transport so that a PATH_INQ can be issued to
3868 	 * the SIM.  This will then allow for probing and attaching of
3869 	 * a more appropriate transport.
3870 	 */
3871 	new_bus->xport = &xport_default;
3872 
3873 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3874 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3875 	if (status != CAM_REQ_CMP) {
3876 		xpt_release_bus(new_bus);
3877 		free(path, M_CAMXPT);
3878 		return (CAM_RESRC_UNAVAIL);
3879 	}
3880 
3881 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3882 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3883 	xpt_action((union ccb *)&cpi);
3884 
3885 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3886 		switch (cpi.transport) {
3887 		case XPORT_SPI:
3888 		case XPORT_SAS:
3889 		case XPORT_FC:
3890 		case XPORT_USB:
3891 		case XPORT_ISCSI:
3892 		case XPORT_SRP:
3893 		case XPORT_PPB:
3894 			new_bus->xport = scsi_get_xport();
3895 			break;
3896 		case XPORT_ATA:
3897 		case XPORT_SATA:
3898 			new_bus->xport = ata_get_xport();
3899 			break;
3900 		default:
3901 			new_bus->xport = &xport_default;
3902 			break;
3903 		}
3904 	}
3905 
3906 	/* Notify interested parties */
3907 	if (sim->path_id != CAM_XPT_PATH_ID) {
3908 
3909 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3910 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3911 			union	ccb *scan_ccb;
3912 
3913 			/* Initiate bus rescan. */
3914 			scan_ccb = xpt_alloc_ccb_nowait();
3915 			if (scan_ccb != NULL) {
3916 				scan_ccb->ccb_h.path = path;
3917 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3918 				scan_ccb->crcn.flags = 0;
3919 				xpt_rescan(scan_ccb);
3920 			} else
3921 				xpt_print(path,
3922 					  "Can't allocate CCB to scan bus\n");
3923 		} else
3924 			xpt_free_path(path);
3925 	} else
3926 		xpt_free_path(path);
3927 	return (CAM_SUCCESS);
3928 }
3929 
3930 int32_t
3931 xpt_bus_deregister(path_id_t pathid)
3932 {
3933 	struct cam_path bus_path;
3934 	cam_status status;
3935 
3936 	status = xpt_compile_path(&bus_path, NULL, pathid,
3937 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3938 	if (status != CAM_REQ_CMP)
3939 		return (status);
3940 
3941 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3942 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3943 
3944 	/* Release the reference count held while registered. */
3945 	xpt_release_bus(bus_path.bus);
3946 	xpt_release_path(&bus_path);
3947 
3948 	return (CAM_REQ_CMP);
3949 }
3950 
3951 static path_id_t
3952 xptnextfreepathid(void)
3953 {
3954 	struct cam_eb *bus;
3955 	path_id_t pathid;
3956 	const char *strval;
3957 
3958 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3959 	pathid = 0;
3960 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3961 retry:
3962 	/* Find an unoccupied pathid */
3963 	while (bus != NULL && bus->path_id <= pathid) {
3964 		if (bus->path_id == pathid)
3965 			pathid++;
3966 		bus = TAILQ_NEXT(bus, links);
3967 	}
3968 
3969 	/*
3970 	 * Ensure that this pathid is not reserved for
3971 	 * a bus that may be registered in the future.
3972 	 */
3973 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3974 		++pathid;
3975 		/* Start the search over */
3976 		goto retry;
3977 	}
3978 	return (pathid);
3979 }
3980 
3981 static path_id_t
3982 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3983 {
3984 	path_id_t pathid;
3985 	int i, dunit, val;
3986 	char buf[32];
3987 	const char *dname;
3988 
3989 	pathid = CAM_XPT_PATH_ID;
3990 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3991 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
3992 		return (pathid);
3993 	i = 0;
3994 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3995 		if (strcmp(dname, "scbus")) {
3996 			/* Avoid a bit of foot shooting. */
3997 			continue;
3998 		}
3999 		if (dunit < 0)		/* unwired?! */
4000 			continue;
4001 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4002 			if (sim_bus == val) {
4003 				pathid = dunit;
4004 				break;
4005 			}
4006 		} else if (sim_bus == 0) {
4007 			/* Unspecified matches bus 0 */
4008 			pathid = dunit;
4009 			break;
4010 		} else {
4011 			printf("Ambiguous scbus configuration for %s%d "
4012 			       "bus %d, cannot wire down.  The kernel "
4013 			       "config entry for scbus%d should "
4014 			       "specify a controller bus.\n"
4015 			       "Scbus will be assigned dynamically.\n",
4016 			       sim_name, sim_unit, sim_bus, dunit);
4017 			break;
4018 		}
4019 	}
4020 
4021 	if (pathid == CAM_XPT_PATH_ID)
4022 		pathid = xptnextfreepathid();
4023 	return (pathid);
4024 }
4025 
4026 static const char *
4027 xpt_async_string(u_int32_t async_code)
4028 {
4029 
4030 	switch (async_code) {
4031 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4032 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4033 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4034 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4035 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4036 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4037 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4038 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4039 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4040 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4041 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4042 	case AC_CONTRACT: return ("AC_CONTRACT");
4043 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4044 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4045 	}
4046 	return ("AC_UNKNOWN");
4047 }
4048 
4049 void
4050 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4051 {
4052 	struct cam_eb *bus;
4053 	struct cam_et *target, *next_target;
4054 	struct cam_ed *device, *next_device;
4055 
4056 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4057 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4058 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4059 
4060 	/*
4061 	 * Most async events come from a CAM interrupt context.  In
4062 	 * a few cases, the error recovery code at the peripheral layer,
4063 	 * which may run from our SWI or a process context, may signal
4064 	 * deferred events with a call to xpt_async.
4065 	 */
4066 
4067 	bus = path->bus;
4068 
4069 	if (async_code == AC_BUS_RESET) {
4070 		/* Update our notion of when the last reset occurred */
4071 		microtime(&bus->last_reset);
4072 	}
4073 
4074 	for (target = TAILQ_FIRST(&bus->et_entries);
4075 	     target != NULL;
4076 	     target = next_target) {
4077 
4078 		next_target = TAILQ_NEXT(target, links);
4079 
4080 		if (path->target != target
4081 		 && path->target->target_id != CAM_TARGET_WILDCARD
4082 		 && target->target_id != CAM_TARGET_WILDCARD)
4083 			continue;
4084 
4085 		if (async_code == AC_SENT_BDR) {
4086 			/* Update our notion of when the last reset occurred */
4087 			microtime(&path->target->last_reset);
4088 		}
4089 
4090 		for (device = TAILQ_FIRST(&target->ed_entries);
4091 		     device != NULL;
4092 		     device = next_device) {
4093 
4094 			next_device = TAILQ_NEXT(device, links);
4095 
4096 			if (path->device != device
4097 			 && path->device->lun_id != CAM_LUN_WILDCARD
4098 			 && device->lun_id != CAM_LUN_WILDCARD)
4099 				continue;
4100 			/*
4101 			 * The async callback could free the device.
4102 			 * If it is a broadcast async, it doesn't hold
4103 			 * device reference, so take our own reference.
4104 			 */
4105 			xpt_acquire_device(device);
4106 			(*(bus->xport->async))(async_code, bus,
4107 					       target, device,
4108 					       async_arg);
4109 
4110 			xpt_async_bcast(&device->asyncs, async_code,
4111 					path, async_arg);
4112 			xpt_release_device(device);
4113 		}
4114 	}
4115 
4116 	/*
4117 	 * If this wasn't a fully wildcarded async, tell all
4118 	 * clients that want all async events.
4119 	 */
4120 	if (bus != xpt_periph->path->bus)
4121 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4122 				path, async_arg);
4123 }
4124 
4125 static void
4126 xpt_async_bcast(struct async_list *async_head,
4127 		u_int32_t async_code,
4128 		struct cam_path *path, void *async_arg)
4129 {
4130 	struct async_node *cur_entry;
4131 
4132 	cur_entry = SLIST_FIRST(async_head);
4133 	while (cur_entry != NULL) {
4134 		struct async_node *next_entry;
4135 		/*
4136 		 * Grab the next list entry before we call the current
4137 		 * entry's callback.  This is because the callback function
4138 		 * can delete its async callback entry.
4139 		 */
4140 		next_entry = SLIST_NEXT(cur_entry, links);
4141 		if ((cur_entry->event_enable & async_code) != 0)
4142 			cur_entry->callback(cur_entry->callback_arg,
4143 					    async_code, path,
4144 					    async_arg);
4145 		cur_entry = next_entry;
4146 	}
4147 }
4148 
4149 static void
4150 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4151 		      struct cam_et *target, struct cam_ed *device,
4152 		      void *async_arg)
4153 {
4154 	printf("%s called\n", __func__);
4155 }
4156 
4157 u_int32_t
4158 xpt_freeze_devq(struct cam_path *path, u_int count)
4159 {
4160 	struct cam_ed *dev = path->device;
4161 
4162 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4163 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq() %u->%u\n",
4164 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4165 	dev->ccbq.queue.qfrozen_cnt += count;
4166 	/* Remove frozen device from sendq. */
4167 	if (device_is_queued(dev)) {
4168 		camq_remove(&dev->sim->devq->send_queue,
4169 		    dev->devq_entry.pinfo.index);
4170 	}
4171 	return (dev->ccbq.queue.qfrozen_cnt);
4172 }
4173 
4174 u_int32_t
4175 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4176 {
4177 
4178 	mtx_assert(sim->mtx, MA_OWNED);
4179 	sim->devq->send_queue.qfrozen_cnt += count;
4180 	return (sim->devq->send_queue.qfrozen_cnt);
4181 }
4182 
4183 static void
4184 xpt_release_devq_timeout(void *arg)
4185 {
4186 	struct cam_ed *device;
4187 
4188 	device = (struct cam_ed *)arg;
4189 	CAM_DEBUG_DEV(device, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4190 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4191 }
4192 
4193 void
4194 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4195 {
4196 
4197 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4198 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4199 	    count, run_queue));
4200 	xpt_release_devq_device(path->device, count, run_queue);
4201 }
4202 
4203 void
4204 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4205 {
4206 
4207 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4208 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4209 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4210 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4211 #ifdef INVARIANTS
4212 		printf("xpt_release_devq(): requested %u > present %u\n",
4213 		    count, dev->ccbq.queue.qfrozen_cnt);
4214 #endif
4215 		count = dev->ccbq.queue.qfrozen_cnt;
4216 	}
4217 	dev->ccbq.queue.qfrozen_cnt -= count;
4218 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4219 		/*
4220 		 * No longer need to wait for a successful
4221 		 * command completion.
4222 		 */
4223 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4224 		/*
4225 		 * Remove any timeouts that might be scheduled
4226 		 * to release this queue.
4227 		 */
4228 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4229 			callout_stop(&dev->callout);
4230 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4231 		}
4232 		xpt_run_dev_allocq(dev);
4233 		if (run_queue == 0)
4234 			return;
4235 		/*
4236 		 * Now that we are unfrozen schedule the
4237 		 * device so any pending transactions are
4238 		 * run.
4239 		 */
4240 		if (xpt_schedule_devq(dev->sim->devq, dev))
4241 			xpt_run_devq(dev->sim->devq);
4242 	}
4243 }
4244 
4245 void
4246 xpt_release_simq(struct cam_sim *sim, int run_queue)
4247 {
4248 	struct	camq *sendq;
4249 
4250 	mtx_assert(sim->mtx, MA_OWNED);
4251 	sendq = &(sim->devq->send_queue);
4252 	if (sendq->qfrozen_cnt <= 0) {
4253 #ifdef INVARIANTS
4254 		printf("xpt_release_simq: requested 1 > present %u\n",
4255 		    sendq->qfrozen_cnt);
4256 #endif
4257 	} else
4258 		sendq->qfrozen_cnt--;
4259 	if (sendq->qfrozen_cnt == 0) {
4260 		/*
4261 		 * If there is a timeout scheduled to release this
4262 		 * sim queue, remove it.  The queue frozen count is
4263 		 * already at 0.
4264 		 */
4265 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4266 			callout_stop(&sim->callout);
4267 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4268 		}
4269 		if (run_queue) {
4270 			/*
4271 			 * Now that we are unfrozen run the send queue.
4272 			 */
4273 			xpt_run_devq(sim->devq);
4274 		}
4275 	}
4276 }
4277 
4278 /*
4279  * XXX Appears to be unused.
4280  */
4281 static void
4282 xpt_release_simq_timeout(void *arg)
4283 {
4284 	struct cam_sim *sim;
4285 
4286 	sim = (struct cam_sim *)arg;
4287 	xpt_release_simq(sim, /* run_queue */ TRUE);
4288 }
4289 
4290 void
4291 xpt_done(union ccb *done_ccb)
4292 {
4293 	struct cam_sim *sim;
4294 	int	first;
4295 
4296 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4297 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4298 		/*
4299 		 * Queue up the request for handling by our SWI handler
4300 		 * any of the "non-immediate" type of ccbs.
4301 		 */
4302 		sim = done_ccb->ccb_h.path->bus->sim;
4303 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4304 		    sim_links.tqe);
4305 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4306 		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4307 		    CAM_SIM_BATCH)) == 0) {
4308 			mtx_lock(&cam_simq_lock);
4309 			first = TAILQ_EMPTY(&cam_simq);
4310 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4311 			mtx_unlock(&cam_simq_lock);
4312 			sim->flags |= CAM_SIM_ON_DONEQ;
4313 			if (first)
4314 				swi_sched(cambio_ih, 0);
4315 		}
4316 	}
4317 }
4318 
4319 void
4320 xpt_batch_start(struct cam_sim *sim)
4321 {
4322 
4323 	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4324 	sim->flags |= CAM_SIM_BATCH;
4325 }
4326 
4327 void
4328 xpt_batch_done(struct cam_sim *sim)
4329 {
4330 
4331 	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4332 	sim->flags &= ~CAM_SIM_BATCH;
4333 	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4334 	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4335 		camisr_runqueue(sim);
4336 }
4337 
4338 union ccb *
4339 xpt_alloc_ccb()
4340 {
4341 	union ccb *new_ccb;
4342 
4343 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4344 	return (new_ccb);
4345 }
4346 
4347 union ccb *
4348 xpt_alloc_ccb_nowait()
4349 {
4350 	union ccb *new_ccb;
4351 
4352 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4353 	return (new_ccb);
4354 }
4355 
4356 void
4357 xpt_free_ccb(union ccb *free_ccb)
4358 {
4359 	free(free_ccb, M_CAMCCB);
4360 }
4361 
4362 
4363 
4364 /* Private XPT functions */
4365 
4366 /*
4367  * Get a CAM control block for the caller. Charge the structure to the device
4368  * referenced by the path.  If the this device has no 'credits' then the
4369  * device already has the maximum number of outstanding operations under way
4370  * and we return NULL. If we don't have sufficient resources to allocate more
4371  * ccbs, we also return NULL.
4372  */
4373 static union ccb *
4374 xpt_get_ccb(struct cam_ed *device)
4375 {
4376 	union ccb *new_ccb;
4377 	struct cam_sim *sim;
4378 
4379 	sim = device->sim;
4380 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4381 		new_ccb = xpt_alloc_ccb_nowait();
4382                 if (new_ccb == NULL) {
4383 			return (NULL);
4384 		}
4385 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4386 				  xpt_links.sle);
4387 		sim->ccb_count++;
4388 	}
4389 	cam_ccbq_take_opening(&device->ccbq);
4390 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4391 	return (new_ccb);
4392 }
4393 
4394 static void
4395 xpt_release_bus(struct cam_eb *bus)
4396 {
4397 
4398 	xpt_lock_buses();
4399 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4400 	if (--bus->refcount > 0) {
4401 		xpt_unlock_buses();
4402 		return;
4403 	}
4404 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4405 	    ("refcount is zero, but target list is not empty"));
4406 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4407 	xsoftc.bus_generation++;
4408 	xpt_unlock_buses();
4409 	cam_sim_release(bus->sim);
4410 	free(bus, M_CAMXPT);
4411 }
4412 
4413 static struct cam_et *
4414 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4415 {
4416 	struct cam_et *cur_target, *target;
4417 
4418 	mtx_assert(bus->sim->mtx, MA_OWNED);
4419 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4420 					 M_NOWAIT|M_ZERO);
4421 	if (target == NULL)
4422 		return (NULL);
4423 
4424 	TAILQ_INIT(&target->ed_entries);
4425 	target->bus = bus;
4426 	target->target_id = target_id;
4427 	target->refcount = 1;
4428 	target->generation = 0;
4429 	target->luns = NULL;
4430 	timevalclear(&target->last_reset);
4431 	/*
4432 	 * Hold a reference to our parent bus so it
4433 	 * will not go away before we do.
4434 	 */
4435 	xpt_lock_buses();
4436 	bus->refcount++;
4437 	xpt_unlock_buses();
4438 
4439 	/* Insertion sort into our bus's target list */
4440 	cur_target = TAILQ_FIRST(&bus->et_entries);
4441 	while (cur_target != NULL && cur_target->target_id < target_id)
4442 		cur_target = TAILQ_NEXT(cur_target, links);
4443 	if (cur_target != NULL) {
4444 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4445 	} else {
4446 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4447 	}
4448 	bus->generation++;
4449 	return (target);
4450 }
4451 
4452 static void
4453 xpt_release_target(struct cam_et *target)
4454 {
4455 
4456 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4457 	if (--target->refcount > 0)
4458 		return;
4459 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4460 	    ("refcount is zero, but device list is not empty"));
4461 	TAILQ_REMOVE(&target->bus->et_entries, target, links);
4462 	target->bus->generation++;
4463 	xpt_release_bus(target->bus);
4464 	if (target->luns)
4465 		free(target->luns, M_CAMXPT);
4466 	free(target, M_CAMXPT);
4467 }
4468 
4469 static struct cam_ed *
4470 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4471 			 lun_id_t lun_id)
4472 {
4473 	struct cam_ed *device;
4474 
4475 	device = xpt_alloc_device(bus, target, lun_id);
4476 	if (device == NULL)
4477 		return (NULL);
4478 
4479 	device->mintags = 1;
4480 	device->maxtags = 1;
4481 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4482 	return (device);
4483 }
4484 
4485 struct cam_ed *
4486 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4487 {
4488 	struct cam_ed	*cur_device, *device;
4489 	struct cam_devq	*devq;
4490 	cam_status status;
4491 
4492 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4493 	/* Make space for us in the device queue on our bus */
4494 	devq = bus->sim->devq;
4495 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4496 	if (status != CAM_REQ_CMP)
4497 		return (NULL);
4498 
4499 	device = (struct cam_ed *)malloc(sizeof(*device),
4500 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4501 	if (device == NULL)
4502 		return (NULL);
4503 
4504 	cam_init_pinfo(&device->devq_entry.pinfo);
4505 	device->devq_entry.device = device;
4506 	device->target = target;
4507 	device->lun_id = lun_id;
4508 	device->sim = bus->sim;
4509 	/* Initialize our queues */
4510 	if (camq_init(&device->drvq, 0) != 0) {
4511 		free(device, M_CAMDEV);
4512 		return (NULL);
4513 	}
4514 	if (cam_ccbq_init(&device->ccbq,
4515 			  bus->sim->max_dev_openings) != 0) {
4516 		camq_fini(&device->drvq);
4517 		free(device, M_CAMDEV);
4518 		return (NULL);
4519 	}
4520 	SLIST_INIT(&device->asyncs);
4521 	SLIST_INIT(&device->periphs);
4522 	device->generation = 0;
4523 	device->flags = CAM_DEV_UNCONFIGURED;
4524 	device->tag_delay_count = 0;
4525 	device->tag_saved_openings = 0;
4526 	device->refcount = 1;
4527 	callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4528 
4529 	cur_device = TAILQ_FIRST(&target->ed_entries);
4530 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4531 		cur_device = TAILQ_NEXT(cur_device, links);
4532 	if (cur_device != NULL)
4533 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4534 	else
4535 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4536 	target->refcount++;
4537 	target->generation++;
4538 	return (device);
4539 }
4540 
4541 void
4542 xpt_acquire_device(struct cam_ed *device)
4543 {
4544 
4545 	mtx_assert(device->sim->mtx, MA_OWNED);
4546 	device->refcount++;
4547 }
4548 
4549 void
4550 xpt_release_device(struct cam_ed *device)
4551 {
4552 	struct cam_devq *devq;
4553 
4554 	mtx_assert(device->sim->mtx, MA_OWNED);
4555 	if (--device->refcount > 0)
4556 		return;
4557 
4558 	KASSERT(SLIST_EMPTY(&device->periphs),
4559 	    ("refcount is zero, but periphs list is not empty"));
4560 	if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4561 		panic("Removing device while still queued for ccbs");
4562 
4563 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4564 		callout_stop(&device->callout);
4565 
4566 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4567 	device->target->generation++;
4568 	device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4569 	/* Release our slot in the devq */
4570 	devq = device->target->bus->sim->devq;
4571 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4572 	camq_fini(&device->drvq);
4573 	cam_ccbq_fini(&device->ccbq);
4574 	/*
4575 	 * Free allocated memory.  free(9) does nothing if the
4576 	 * supplied pointer is NULL, so it is safe to call without
4577 	 * checking.
4578 	 */
4579 	free(device->supported_vpds, M_CAMXPT);
4580 	free(device->device_id, M_CAMXPT);
4581 	free(device->physpath, M_CAMXPT);
4582 	free(device->rcap_buf, M_CAMXPT);
4583 	free(device->serial_num, M_CAMXPT);
4584 
4585 	xpt_release_target(device->target);
4586 	free(device, M_CAMDEV);
4587 }
4588 
4589 u_int32_t
4590 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4591 {
4592 	int	diff;
4593 	int	result;
4594 	struct	cam_ed *dev;
4595 
4596 	dev = path->device;
4597 
4598 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4599 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4600 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4601 	 || (dev->inq_flags & SID_CmdQue) != 0)
4602 		dev->tag_saved_openings = newopenings;
4603 	/* Adjust the global limit */
4604 	dev->sim->max_ccbs += diff;
4605 	return (result);
4606 }
4607 
4608 static struct cam_eb *
4609 xpt_find_bus(path_id_t path_id)
4610 {
4611 	struct cam_eb *bus;
4612 
4613 	xpt_lock_buses();
4614 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4615 	     bus != NULL;
4616 	     bus = TAILQ_NEXT(bus, links)) {
4617 		if (bus->path_id == path_id) {
4618 			bus->refcount++;
4619 			break;
4620 		}
4621 	}
4622 	xpt_unlock_buses();
4623 	return (bus);
4624 }
4625 
4626 static struct cam_et *
4627 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4628 {
4629 	struct cam_et *target;
4630 
4631 	mtx_assert(bus->sim->mtx, MA_OWNED);
4632 	for (target = TAILQ_FIRST(&bus->et_entries);
4633 	     target != NULL;
4634 	     target = TAILQ_NEXT(target, links)) {
4635 		if (target->target_id == target_id) {
4636 			target->refcount++;
4637 			break;
4638 		}
4639 	}
4640 	return (target);
4641 }
4642 
4643 static struct cam_ed *
4644 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4645 {
4646 	struct cam_ed *device;
4647 
4648 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4649 	for (device = TAILQ_FIRST(&target->ed_entries);
4650 	     device != NULL;
4651 	     device = TAILQ_NEXT(device, links)) {
4652 		if (device->lun_id == lun_id) {
4653 			device->refcount++;
4654 			break;
4655 		}
4656 	}
4657 	return (device);
4658 }
4659 
4660 void
4661 xpt_start_tags(struct cam_path *path)
4662 {
4663 	struct ccb_relsim crs;
4664 	struct cam_ed *device;
4665 	struct cam_sim *sim;
4666 	int    newopenings;
4667 
4668 	device = path->device;
4669 	sim = path->bus->sim;
4670 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4671 	xpt_freeze_devq(path, /*count*/1);
4672 	device->inq_flags |= SID_CmdQue;
4673 	if (device->tag_saved_openings != 0)
4674 		newopenings = device->tag_saved_openings;
4675 	else
4676 		newopenings = min(device->maxtags,
4677 				  sim->max_tagged_dev_openings);
4678 	xpt_dev_ccbq_resize(path, newopenings);
4679 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4680 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4681 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4682 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4683 	crs.openings
4684 	    = crs.release_timeout
4685 	    = crs.qfrozen_cnt
4686 	    = 0;
4687 	xpt_action((union ccb *)&crs);
4688 }
4689 
4690 void
4691 xpt_stop_tags(struct cam_path *path)
4692 {
4693 	struct ccb_relsim crs;
4694 	struct cam_ed *device;
4695 	struct cam_sim *sim;
4696 
4697 	device = path->device;
4698 	sim = path->bus->sim;
4699 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4700 	device->tag_delay_count = 0;
4701 	xpt_freeze_devq(path, /*count*/1);
4702 	device->inq_flags &= ~SID_CmdQue;
4703 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4704 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4705 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4706 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4707 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4708 	crs.openings
4709 	    = crs.release_timeout
4710 	    = crs.qfrozen_cnt
4711 	    = 0;
4712 	xpt_action((union ccb *)&crs);
4713 }
4714 
4715 static void
4716 xpt_boot_delay(void *arg)
4717 {
4718 
4719 	xpt_release_boot();
4720 }
4721 
4722 static void
4723 xpt_config(void *arg)
4724 {
4725 	/*
4726 	 * Now that interrupts are enabled, go find our devices
4727 	 */
4728 
4729 	/* Setup debugging path */
4730 	if (cam_dflags != CAM_DEBUG_NONE) {
4731 		if (xpt_create_path_unlocked(&cam_dpath, NULL,
4732 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4733 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4734 			printf("xpt_config: xpt_create_path() failed for debug"
4735 			       " target %d:%d:%d, debugging disabled\n",
4736 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4737 			cam_dflags = CAM_DEBUG_NONE;
4738 		}
4739 	} else
4740 		cam_dpath = NULL;
4741 
4742 	periphdriver_init(1);
4743 	xpt_hold_boot();
4744 	callout_init(&xsoftc.boot_callout, 1);
4745 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4746 	    xpt_boot_delay, NULL);
4747 	/* Fire up rescan thread. */
4748 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4749 		printf("xpt_config: failed to create rescan thread.\n");
4750 	}
4751 }
4752 
4753 void
4754 xpt_hold_boot(void)
4755 {
4756 	xpt_lock_buses();
4757 	xsoftc.buses_to_config++;
4758 	xpt_unlock_buses();
4759 }
4760 
4761 void
4762 xpt_release_boot(void)
4763 {
4764 	xpt_lock_buses();
4765 	xsoftc.buses_to_config--;
4766 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4767 		struct	xpt_task *task;
4768 
4769 		xsoftc.buses_config_done = 1;
4770 		xpt_unlock_buses();
4771 		/* Call manually because we don't have any busses */
4772 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4773 		if (task != NULL) {
4774 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4775 			taskqueue_enqueue(taskqueue_thread, &task->task);
4776 		}
4777 	} else
4778 		xpt_unlock_buses();
4779 }
4780 
4781 /*
4782  * If the given device only has one peripheral attached to it, and if that
4783  * peripheral is the passthrough driver, announce it.  This insures that the
4784  * user sees some sort of announcement for every peripheral in their system.
4785  */
4786 static int
4787 xptpassannouncefunc(struct cam_ed *device, void *arg)
4788 {
4789 	struct cam_periph *periph;
4790 	int i;
4791 
4792 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4793 	     periph = SLIST_NEXT(periph, periph_links), i++);
4794 
4795 	periph = SLIST_FIRST(&device->periphs);
4796 	if ((i == 1)
4797 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4798 		xpt_announce_periph(periph, NULL);
4799 
4800 	return(1);
4801 }
4802 
4803 static void
4804 xpt_finishconfig_task(void *context, int pending)
4805 {
4806 
4807 	periphdriver_init(2);
4808 	/*
4809 	 * Check for devices with no "standard" peripheral driver
4810 	 * attached.  For any devices like that, announce the
4811 	 * passthrough driver so the user will see something.
4812 	 */
4813 	if (!bootverbose)
4814 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4815 
4816 	/* Release our hook so that the boot can continue. */
4817 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4818 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4819 	xsoftc.xpt_config_hook = NULL;
4820 
4821 	free(context, M_CAMXPT);
4822 }
4823 
4824 cam_status
4825 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4826 		   struct cam_path *path)
4827 {
4828 	struct ccb_setasync csa;
4829 	cam_status status;
4830 	int xptpath = 0;
4831 
4832 	if (path == NULL) {
4833 		mtx_lock(&xsoftc.xpt_lock);
4834 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4835 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4836 		if (status != CAM_REQ_CMP) {
4837 			mtx_unlock(&xsoftc.xpt_lock);
4838 			return (status);
4839 		}
4840 		xptpath = 1;
4841 	}
4842 
4843 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4844 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4845 	csa.event_enable = event;
4846 	csa.callback = cbfunc;
4847 	csa.callback_arg = cbarg;
4848 	xpt_action((union ccb *)&csa);
4849 	status = csa.ccb_h.status;
4850 
4851 	if (xptpath) {
4852 		xpt_free_path(path);
4853 		mtx_unlock(&xsoftc.xpt_lock);
4854 	}
4855 
4856 	if ((status == CAM_REQ_CMP) &&
4857 	    (csa.event_enable & AC_FOUND_DEVICE)) {
4858 		/*
4859 		 * Get this peripheral up to date with all
4860 		 * the currently existing devices.
4861 		 */
4862 		xpt_for_all_devices(xptsetasyncfunc, &csa);
4863 	}
4864 	if ((status == CAM_REQ_CMP) &&
4865 	    (csa.event_enable & AC_PATH_REGISTERED)) {
4866 		/*
4867 		 * Get this peripheral up to date with all
4868 		 * the currently existing busses.
4869 		 */
4870 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4871 	}
4872 
4873 	return (status);
4874 }
4875 
4876 static void
4877 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4878 {
4879 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4880 
4881 	switch (work_ccb->ccb_h.func_code) {
4882 	/* Common cases first */
4883 	case XPT_PATH_INQ:		/* Path routing inquiry */
4884 	{
4885 		struct ccb_pathinq *cpi;
4886 
4887 		cpi = &work_ccb->cpi;
4888 		cpi->version_num = 1; /* XXX??? */
4889 		cpi->hba_inquiry = 0;
4890 		cpi->target_sprt = 0;
4891 		cpi->hba_misc = 0;
4892 		cpi->hba_eng_cnt = 0;
4893 		cpi->max_target = 0;
4894 		cpi->max_lun = 0;
4895 		cpi->initiator_id = 0;
4896 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4897 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4898 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4899 		cpi->unit_number = sim->unit_number;
4900 		cpi->bus_id = sim->bus_id;
4901 		cpi->base_transfer_speed = 0;
4902 		cpi->protocol = PROTO_UNSPECIFIED;
4903 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4904 		cpi->transport = XPORT_UNSPECIFIED;
4905 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4906 		cpi->ccb_h.status = CAM_REQ_CMP;
4907 		xpt_done(work_ccb);
4908 		break;
4909 	}
4910 	default:
4911 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4912 		xpt_done(work_ccb);
4913 		break;
4914 	}
4915 }
4916 
4917 /*
4918  * The xpt as a "controller" has no interrupt sources, so polling
4919  * is a no-op.
4920  */
4921 static void
4922 xptpoll(struct cam_sim *sim)
4923 {
4924 }
4925 
4926 void
4927 xpt_lock_buses(void)
4928 {
4929 	mtx_lock(&xsoftc.xpt_topo_lock);
4930 }
4931 
4932 void
4933 xpt_unlock_buses(void)
4934 {
4935 	mtx_unlock(&xsoftc.xpt_topo_lock);
4936 }
4937 
4938 static void
4939 camisr(void *dummy)
4940 {
4941 	cam_simq_t queue;
4942 	struct cam_sim *sim;
4943 
4944 	mtx_lock(&cam_simq_lock);
4945 	TAILQ_INIT(&queue);
4946 	while (!TAILQ_EMPTY(&cam_simq)) {
4947 		TAILQ_CONCAT(&queue, &cam_simq, links);
4948 		mtx_unlock(&cam_simq_lock);
4949 
4950 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4951 			TAILQ_REMOVE(&queue, sim, links);
4952 			CAM_SIM_LOCK(sim);
4953 			camisr_runqueue(sim);
4954 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4955 			CAM_SIM_UNLOCK(sim);
4956 		}
4957 		mtx_lock(&cam_simq_lock);
4958 	}
4959 	mtx_unlock(&cam_simq_lock);
4960 }
4961 
4962 static void
4963 camisr_runqueue(struct cam_sim *sim)
4964 {
4965 	struct	ccb_hdr *ccb_h;
4966 
4967 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
4968 		int	runq;
4969 
4970 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
4971 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4972 
4973 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4974 			  ("camisr\n"));
4975 
4976 		runq = FALSE;
4977 
4978 		if (ccb_h->flags & CAM_HIGH_POWER) {
4979 			struct highpowerlist	*hphead;
4980 			struct cam_ed		*device;
4981 
4982 			mtx_lock(&xsoftc.xpt_lock);
4983 			hphead = &xsoftc.highpowerq;
4984 
4985 			device = STAILQ_FIRST(hphead);
4986 
4987 			/*
4988 			 * Increment the count since this command is done.
4989 			 */
4990 			xsoftc.num_highpower++;
4991 
4992 			/*
4993 			 * Any high powered commands queued up?
4994 			 */
4995 			if (device != NULL) {
4996 
4997 				STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
4998 				mtx_unlock(&xsoftc.xpt_lock);
4999 
5000 				xpt_release_devq_device(device,
5001 						 /*count*/1, /*runqueue*/TRUE);
5002 			} else
5003 				mtx_unlock(&xsoftc.xpt_lock);
5004 		}
5005 
5006 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5007 			struct cam_ed *dev;
5008 
5009 			dev = ccb_h->path->device;
5010 
5011 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5012 			sim->devq->send_active--;
5013 			sim->devq->send_openings++;
5014 			runq = TRUE;
5015 
5016 			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5017 			  && (dev->ccbq.dev_active == 0))) {
5018 				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5019 				xpt_release_devq(ccb_h->path, /*count*/1,
5020 						 /*run_queue*/FALSE);
5021 			}
5022 
5023 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5024 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5025 				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5026 				xpt_release_devq(ccb_h->path, /*count*/1,
5027 						 /*run_queue*/FALSE);
5028 			}
5029 
5030 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5031 			 && (--dev->tag_delay_count == 0))
5032 				xpt_start_tags(ccb_h->path);
5033 			if (!device_is_queued(dev)) {
5034 				(void)xpt_schedule_devq(sim->devq, dev);
5035 			}
5036 		}
5037 
5038 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5039 			xpt_release_simq(sim, /*run_queue*/TRUE);
5040 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5041 			runq = FALSE;
5042 		}
5043 
5044 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5045 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5046 			xpt_release_devq(ccb_h->path, /*count*/1,
5047 					 /*run_queue*/TRUE);
5048 			ccb_h->status &= ~CAM_DEV_QFRZN;
5049 		} else if (runq) {
5050 			xpt_run_devq(sim->devq);
5051 		}
5052 
5053 		/* Call the peripheral driver's callback */
5054 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5055 	}
5056 }
5057