xref: /freebsd/sys/cam/cam_xpt.c (revision 076ad2f836d5f49dc1375f1677335a48fe0d4b82)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include "opt_printf.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/time.h>
43 #include <sys/conf.h>
44 #include <sys/fcntl.h>
45 #include <sys/interrupt.h>
46 #include <sys/proc.h>
47 #include <sys/sbuf.h>
48 #include <sys/smp.h>
49 #include <sys/taskqueue.h>
50 
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67 
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71 
72 #include <machine/md_var.h>	/* geometry translation */
73 #include <machine/stdarg.h>	/* for xpt_print below */
74 
75 #include "opt_cam.h"
76 
77 /* Wild guess based on not wanting to grow the stack too much */
78 #define XPT_PRINT_MAXLEN	512
79 #ifdef PRINTF_BUFR_SIZE
80 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
81 #else
82 #define XPT_PRINT_LEN	128
83 #endif
84 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
85 
86 /*
87  * This is the maximum number of high powered commands (e.g. start unit)
88  * that can be outstanding at a particular time.
89  */
90 #ifndef CAM_MAX_HIGHPOWER
91 #define CAM_MAX_HIGHPOWER  4
92 #endif
93 
94 /* Datastructures internal to the xpt layer */
95 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
96 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
97 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
98 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
99 
100 /* Object for defering XPT actions to a taskqueue */
101 struct xpt_task {
102 	struct task	task;
103 	void		*data1;
104 	uintptr_t	data2;
105 };
106 
107 struct xpt_softc {
108 	uint32_t		xpt_generation;
109 
110 	/* number of high powered commands that can go through right now */
111 	struct mtx		xpt_highpower_lock;
112 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
113 	int			num_highpower;
114 
115 	/* queue for handling async rescan requests. */
116 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
117 	int buses_to_config;
118 	int buses_config_done;
119 
120 	/*
121 	 * Registered buses
122 	 *
123 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
124 	 * "buses" is preferred.
125 	 */
126 	TAILQ_HEAD(,cam_eb)	xpt_busses;
127 	u_int			bus_generation;
128 
129 	struct intr_config_hook	*xpt_config_hook;
130 
131 	int			boot_delay;
132 	struct callout 		boot_callout;
133 
134 	struct mtx		xpt_topo_lock;
135 	struct mtx		xpt_lock;
136 	struct taskqueue	*xpt_taskq;
137 };
138 
139 typedef enum {
140 	DM_RET_COPY		= 0x01,
141 	DM_RET_FLAG_MASK	= 0x0f,
142 	DM_RET_NONE		= 0x00,
143 	DM_RET_STOP		= 0x10,
144 	DM_RET_DESCEND		= 0x20,
145 	DM_RET_ERROR		= 0x30,
146 	DM_RET_ACTION_MASK	= 0xf0
147 } dev_match_ret;
148 
149 typedef enum {
150 	XPT_DEPTH_BUS,
151 	XPT_DEPTH_TARGET,
152 	XPT_DEPTH_DEVICE,
153 	XPT_DEPTH_PERIPH
154 } xpt_traverse_depth;
155 
156 struct xpt_traverse_config {
157 	xpt_traverse_depth	depth;
158 	void			*tr_func;
159 	void			*tr_arg;
160 };
161 
162 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
163 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
164 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
165 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
166 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
167 
168 /* Transport layer configuration information */
169 static struct xpt_softc xsoftc;
170 
171 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
172 
173 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
174            &xsoftc.boot_delay, 0, "Bus registration wait time");
175 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
176 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
177 
178 struct cam_doneq {
179 	struct mtx_padalign	cam_doneq_mtx;
180 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
181 	int			cam_doneq_sleep;
182 };
183 
184 static struct cam_doneq cam_doneqs[MAXCPU];
185 static int cam_num_doneqs;
186 static struct proc *cam_proc;
187 
188 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
189            &cam_num_doneqs, 0, "Number of completion queues/threads");
190 
191 struct cam_periph *xpt_periph;
192 
193 static periph_init_t xpt_periph_init;
194 
195 static struct periph_driver xpt_driver =
196 {
197 	xpt_periph_init, "xpt",
198 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
199 	CAM_PERIPH_DRV_EARLY
200 };
201 
202 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
203 
204 static d_open_t xptopen;
205 static d_close_t xptclose;
206 static d_ioctl_t xptioctl;
207 static d_ioctl_t xptdoioctl;
208 
209 static struct cdevsw xpt_cdevsw = {
210 	.d_version =	D_VERSION,
211 	.d_flags =	0,
212 	.d_open =	xptopen,
213 	.d_close =	xptclose,
214 	.d_ioctl =	xptioctl,
215 	.d_name =	"xpt",
216 };
217 
218 /* Storage for debugging datastructures */
219 struct cam_path *cam_dpath;
220 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
221 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
222 	&cam_dflags, 0, "Enabled debug flags");
223 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
224 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
225 	&cam_debug_delay, 0, "Delay in us after each debug message");
226 
227 /* Our boot-time initialization hook */
228 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
229 
230 static moduledata_t cam_moduledata = {
231 	"cam",
232 	cam_module_event_handler,
233 	NULL
234 };
235 
236 static int	xpt_init(void *);
237 
238 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
239 MODULE_VERSION(cam, 1);
240 
241 
242 static void		xpt_async_bcast(struct async_list *async_head,
243 					u_int32_t async_code,
244 					struct cam_path *path,
245 					void *async_arg);
246 static path_id_t xptnextfreepathid(void);
247 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
248 static union ccb *xpt_get_ccb(struct cam_periph *periph);
249 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
250 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
251 static void	 xpt_run_allocq_task(void *context, int pending);
252 static void	 xpt_run_devq(struct cam_devq *devq);
253 static timeout_t xpt_release_devq_timeout;
254 static void	 xpt_release_simq_timeout(void *arg) __unused;
255 static void	 xpt_acquire_bus(struct cam_eb *bus);
256 static void	 xpt_release_bus(struct cam_eb *bus);
257 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
258 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
259 		    int run_queue);
260 static struct cam_et*
261 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
262 static void	 xpt_acquire_target(struct cam_et *target);
263 static void	 xpt_release_target(struct cam_et *target);
264 static struct cam_eb*
265 		 xpt_find_bus(path_id_t path_id);
266 static struct cam_et*
267 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
268 static struct cam_ed*
269 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
270 static void	 xpt_config(void *arg);
271 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
272 				 u_int32_t new_priority);
273 static xpt_devicefunc_t xptpassannouncefunc;
274 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
275 static void	 xptpoll(struct cam_sim *sim);
276 static void	 camisr_runqueue(void);
277 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
278 static void	 xpt_done_td(void *);
279 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
280 				    u_int num_patterns, struct cam_eb *bus);
281 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
282 				       u_int num_patterns,
283 				       struct cam_ed *device);
284 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
285 				       u_int num_patterns,
286 				       struct cam_periph *periph);
287 static xpt_busfunc_t	xptedtbusfunc;
288 static xpt_targetfunc_t	xptedttargetfunc;
289 static xpt_devicefunc_t	xptedtdevicefunc;
290 static xpt_periphfunc_t	xptedtperiphfunc;
291 static xpt_pdrvfunc_t	xptplistpdrvfunc;
292 static xpt_periphfunc_t	xptplistperiphfunc;
293 static int		xptedtmatch(struct ccb_dev_match *cdm);
294 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
295 static int		xptbustraverse(struct cam_eb *start_bus,
296 				       xpt_busfunc_t *tr_func, void *arg);
297 static int		xpttargettraverse(struct cam_eb *bus,
298 					  struct cam_et *start_target,
299 					  xpt_targetfunc_t *tr_func, void *arg);
300 static int		xptdevicetraverse(struct cam_et *target,
301 					  struct cam_ed *start_device,
302 					  xpt_devicefunc_t *tr_func, void *arg);
303 static int		xptperiphtraverse(struct cam_ed *device,
304 					  struct cam_periph *start_periph,
305 					  xpt_periphfunc_t *tr_func, void *arg);
306 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
307 					xpt_pdrvfunc_t *tr_func, void *arg);
308 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
309 					    struct cam_periph *start_periph,
310 					    xpt_periphfunc_t *tr_func,
311 					    void *arg);
312 static xpt_busfunc_t	xptdefbusfunc;
313 static xpt_targetfunc_t	xptdeftargetfunc;
314 static xpt_devicefunc_t	xptdefdevicefunc;
315 static xpt_periphfunc_t	xptdefperiphfunc;
316 static void		xpt_finishconfig_task(void *context, int pending);
317 static void		xpt_dev_async_default(u_int32_t async_code,
318 					      struct cam_eb *bus,
319 					      struct cam_et *target,
320 					      struct cam_ed *device,
321 					      void *async_arg);
322 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
323 						 struct cam_et *target,
324 						 lun_id_t lun_id);
325 static xpt_devicefunc_t	xptsetasyncfunc;
326 static xpt_busfunc_t	xptsetasyncbusfunc;
327 static cam_status	xptregister(struct cam_periph *periph,
328 				    void *arg);
329 static const char *	xpt_action_name(uint32_t action);
330 static __inline int device_is_queued(struct cam_ed *device);
331 
332 static __inline int
333 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
334 {
335 	int	retval;
336 
337 	mtx_assert(&devq->send_mtx, MA_OWNED);
338 	if ((dev->ccbq.queue.entries > 0) &&
339 	    (dev->ccbq.dev_openings > 0) &&
340 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
341 		/*
342 		 * The priority of a device waiting for controller
343 		 * resources is that of the highest priority CCB
344 		 * enqueued.
345 		 */
346 		retval =
347 		    xpt_schedule_dev(&devq->send_queue,
348 				     &dev->devq_entry,
349 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
350 	} else {
351 		retval = 0;
352 	}
353 	return (retval);
354 }
355 
356 static __inline int
357 device_is_queued(struct cam_ed *device)
358 {
359 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
360 }
361 
362 static void
363 xpt_periph_init()
364 {
365 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
366 }
367 
368 static int
369 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
370 {
371 
372 	/*
373 	 * Only allow read-write access.
374 	 */
375 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
376 		return(EPERM);
377 
378 	/*
379 	 * We don't allow nonblocking access.
380 	 */
381 	if ((flags & O_NONBLOCK) != 0) {
382 		printf("%s: can't do nonblocking access\n", devtoname(dev));
383 		return(ENODEV);
384 	}
385 
386 	return(0);
387 }
388 
389 static int
390 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
391 {
392 
393 	return(0);
394 }
395 
396 /*
397  * Don't automatically grab the xpt softc lock here even though this is going
398  * through the xpt device.  The xpt device is really just a back door for
399  * accessing other devices and SIMs, so the right thing to do is to grab
400  * the appropriate SIM lock once the bus/SIM is located.
401  */
402 static int
403 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
404 {
405 	int error;
406 
407 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
408 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
409 	}
410 	return (error);
411 }
412 
413 static int
414 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
415 {
416 	int error;
417 
418 	error = 0;
419 
420 	switch(cmd) {
421 	/*
422 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
423 	 * to accept CCB types that don't quite make sense to send through a
424 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
425 	 * in the CAM spec.
426 	 */
427 	case CAMIOCOMMAND: {
428 		union ccb *ccb;
429 		union ccb *inccb;
430 		struct cam_eb *bus;
431 
432 		inccb = (union ccb *)addr;
433 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
434 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
435 			inccb->csio.bio = NULL;
436 #endif
437 
438 		bus = xpt_find_bus(inccb->ccb_h.path_id);
439 		if (bus == NULL)
440 			return (EINVAL);
441 
442 		switch (inccb->ccb_h.func_code) {
443 		case XPT_SCAN_BUS:
444 		case XPT_RESET_BUS:
445 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
446 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
447 				xpt_release_bus(bus);
448 				return (EINVAL);
449 			}
450 			break;
451 		case XPT_SCAN_TGT:
452 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
453 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
454 				xpt_release_bus(bus);
455 				return (EINVAL);
456 			}
457 			break;
458 		default:
459 			break;
460 		}
461 
462 		switch(inccb->ccb_h.func_code) {
463 		case XPT_SCAN_BUS:
464 		case XPT_RESET_BUS:
465 		case XPT_PATH_INQ:
466 		case XPT_ENG_INQ:
467 		case XPT_SCAN_LUN:
468 		case XPT_SCAN_TGT:
469 
470 			ccb = xpt_alloc_ccb();
471 
472 			/*
473 			 * Create a path using the bus, target, and lun the
474 			 * user passed in.
475 			 */
476 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
477 					    inccb->ccb_h.path_id,
478 					    inccb->ccb_h.target_id,
479 					    inccb->ccb_h.target_lun) !=
480 					    CAM_REQ_CMP){
481 				error = EINVAL;
482 				xpt_free_ccb(ccb);
483 				break;
484 			}
485 			/* Ensure all of our fields are correct */
486 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
487 				      inccb->ccb_h.pinfo.priority);
488 			xpt_merge_ccb(ccb, inccb);
489 			xpt_path_lock(ccb->ccb_h.path);
490 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
491 			xpt_path_unlock(ccb->ccb_h.path);
492 			bcopy(ccb, inccb, sizeof(union ccb));
493 			xpt_free_path(ccb->ccb_h.path);
494 			xpt_free_ccb(ccb);
495 			break;
496 
497 		case XPT_DEBUG: {
498 			union ccb ccb;
499 
500 			/*
501 			 * This is an immediate CCB, so it's okay to
502 			 * allocate it on the stack.
503 			 */
504 
505 			/*
506 			 * Create a path using the bus, target, and lun the
507 			 * user passed in.
508 			 */
509 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
510 					    inccb->ccb_h.path_id,
511 					    inccb->ccb_h.target_id,
512 					    inccb->ccb_h.target_lun) !=
513 					    CAM_REQ_CMP){
514 				error = EINVAL;
515 				break;
516 			}
517 			/* Ensure all of our fields are correct */
518 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
519 				      inccb->ccb_h.pinfo.priority);
520 			xpt_merge_ccb(&ccb, inccb);
521 			xpt_action(&ccb);
522 			bcopy(&ccb, inccb, sizeof(union ccb));
523 			xpt_free_path(ccb.ccb_h.path);
524 			break;
525 
526 		}
527 		case XPT_DEV_MATCH: {
528 			struct cam_periph_map_info mapinfo;
529 			struct cam_path *old_path;
530 
531 			/*
532 			 * We can't deal with physical addresses for this
533 			 * type of transaction.
534 			 */
535 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
536 			    CAM_DATA_VADDR) {
537 				error = EINVAL;
538 				break;
539 			}
540 
541 			/*
542 			 * Save this in case the caller had it set to
543 			 * something in particular.
544 			 */
545 			old_path = inccb->ccb_h.path;
546 
547 			/*
548 			 * We really don't need a path for the matching
549 			 * code.  The path is needed because of the
550 			 * debugging statements in xpt_action().  They
551 			 * assume that the CCB has a valid path.
552 			 */
553 			inccb->ccb_h.path = xpt_periph->path;
554 
555 			bzero(&mapinfo, sizeof(mapinfo));
556 
557 			/*
558 			 * Map the pattern and match buffers into kernel
559 			 * virtual address space.
560 			 */
561 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
562 
563 			if (error) {
564 				inccb->ccb_h.path = old_path;
565 				break;
566 			}
567 
568 			/*
569 			 * This is an immediate CCB, we can send it on directly.
570 			 */
571 			xpt_action(inccb);
572 
573 			/*
574 			 * Map the buffers back into user space.
575 			 */
576 			cam_periph_unmapmem(inccb, &mapinfo);
577 
578 			inccb->ccb_h.path = old_path;
579 
580 			error = 0;
581 			break;
582 		}
583 		default:
584 			error = ENOTSUP;
585 			break;
586 		}
587 		xpt_release_bus(bus);
588 		break;
589 	}
590 	/*
591 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
592 	 * with the periphal driver name and unit name filled in.  The other
593 	 * fields don't really matter as input.  The passthrough driver name
594 	 * ("pass"), and unit number are passed back in the ccb.  The current
595 	 * device generation number, and the index into the device peripheral
596 	 * driver list, and the status are also passed back.  Note that
597 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
598 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
599 	 * (or rather should be) impossible for the device peripheral driver
600 	 * list to change since we look at the whole thing in one pass, and
601 	 * we do it with lock protection.
602 	 *
603 	 */
604 	case CAMGETPASSTHRU: {
605 		union ccb *ccb;
606 		struct cam_periph *periph;
607 		struct periph_driver **p_drv;
608 		char   *name;
609 		u_int unit;
610 		int base_periph_found;
611 
612 		ccb = (union ccb *)addr;
613 		unit = ccb->cgdl.unit_number;
614 		name = ccb->cgdl.periph_name;
615 		base_periph_found = 0;
616 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
617 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
618 			ccb->csio.bio = NULL;
619 #endif
620 
621 		/*
622 		 * Sanity check -- make sure we don't get a null peripheral
623 		 * driver name.
624 		 */
625 		if (*ccb->cgdl.periph_name == '\0') {
626 			error = EINVAL;
627 			break;
628 		}
629 
630 		/* Keep the list from changing while we traverse it */
631 		xpt_lock_buses();
632 
633 		/* first find our driver in the list of drivers */
634 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
635 			if (strcmp((*p_drv)->driver_name, name) == 0)
636 				break;
637 
638 		if (*p_drv == NULL) {
639 			xpt_unlock_buses();
640 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
641 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
642 			*ccb->cgdl.periph_name = '\0';
643 			ccb->cgdl.unit_number = 0;
644 			error = ENOENT;
645 			break;
646 		}
647 
648 		/*
649 		 * Run through every peripheral instance of this driver
650 		 * and check to see whether it matches the unit passed
651 		 * in by the user.  If it does, get out of the loops and
652 		 * find the passthrough driver associated with that
653 		 * peripheral driver.
654 		 */
655 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
656 		     periph = TAILQ_NEXT(periph, unit_links)) {
657 
658 			if (periph->unit_number == unit)
659 				break;
660 		}
661 		/*
662 		 * If we found the peripheral driver that the user passed
663 		 * in, go through all of the peripheral drivers for that
664 		 * particular device and look for a passthrough driver.
665 		 */
666 		if (periph != NULL) {
667 			struct cam_ed *device;
668 			int i;
669 
670 			base_periph_found = 1;
671 			device = periph->path->device;
672 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
673 			     periph != NULL;
674 			     periph = SLIST_NEXT(periph, periph_links), i++) {
675 				/*
676 				 * Check to see whether we have a
677 				 * passthrough device or not.
678 				 */
679 				if (strcmp(periph->periph_name, "pass") == 0) {
680 					/*
681 					 * Fill in the getdevlist fields.
682 					 */
683 					strcpy(ccb->cgdl.periph_name,
684 					       periph->periph_name);
685 					ccb->cgdl.unit_number =
686 						periph->unit_number;
687 					if (SLIST_NEXT(periph, periph_links))
688 						ccb->cgdl.status =
689 							CAM_GDEVLIST_MORE_DEVS;
690 					else
691 						ccb->cgdl.status =
692 						       CAM_GDEVLIST_LAST_DEVICE;
693 					ccb->cgdl.generation =
694 						device->generation;
695 					ccb->cgdl.index = i;
696 					/*
697 					 * Fill in some CCB header fields
698 					 * that the user may want.
699 					 */
700 					ccb->ccb_h.path_id =
701 						periph->path->bus->path_id;
702 					ccb->ccb_h.target_id =
703 						periph->path->target->target_id;
704 					ccb->ccb_h.target_lun =
705 						periph->path->device->lun_id;
706 					ccb->ccb_h.status = CAM_REQ_CMP;
707 					break;
708 				}
709 			}
710 		}
711 
712 		/*
713 		 * If the periph is null here, one of two things has
714 		 * happened.  The first possibility is that we couldn't
715 		 * find the unit number of the particular peripheral driver
716 		 * that the user is asking about.  e.g. the user asks for
717 		 * the passthrough driver for "da11".  We find the list of
718 		 * "da" peripherals all right, but there is no unit 11.
719 		 * The other possibility is that we went through the list
720 		 * of peripheral drivers attached to the device structure,
721 		 * but didn't find one with the name "pass".  Either way,
722 		 * we return ENOENT, since we couldn't find something.
723 		 */
724 		if (periph == NULL) {
725 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
726 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
727 			*ccb->cgdl.periph_name = '\0';
728 			ccb->cgdl.unit_number = 0;
729 			error = ENOENT;
730 			/*
731 			 * It is unfortunate that this is even necessary,
732 			 * but there are many, many clueless users out there.
733 			 * If this is true, the user is looking for the
734 			 * passthrough driver, but doesn't have one in his
735 			 * kernel.
736 			 */
737 			if (base_periph_found == 1) {
738 				printf("xptioctl: pass driver is not in the "
739 				       "kernel\n");
740 				printf("xptioctl: put \"device pass\" in "
741 				       "your kernel config file\n");
742 			}
743 		}
744 		xpt_unlock_buses();
745 		break;
746 		}
747 	default:
748 		error = ENOTTY;
749 		break;
750 	}
751 
752 	return(error);
753 }
754 
755 static int
756 cam_module_event_handler(module_t mod, int what, void *arg)
757 {
758 	int error;
759 
760 	switch (what) {
761 	case MOD_LOAD:
762 		if ((error = xpt_init(NULL)) != 0)
763 			return (error);
764 		break;
765 	case MOD_UNLOAD:
766 		return EBUSY;
767 	default:
768 		return EOPNOTSUPP;
769 	}
770 
771 	return 0;
772 }
773 
774 static struct xpt_proto *
775 xpt_proto_find(cam_proto proto)
776 {
777 	struct xpt_proto **pp;
778 
779 	SET_FOREACH(pp, cam_xpt_proto_set) {
780 		if ((*pp)->proto == proto)
781 			return *pp;
782 	}
783 
784 	return NULL;
785 }
786 
787 static void
788 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
789 {
790 
791 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
792 		xpt_free_path(done_ccb->ccb_h.path);
793 		xpt_free_ccb(done_ccb);
794 	} else {
795 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
796 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
797 	}
798 	xpt_release_boot();
799 }
800 
801 /* thread to handle bus rescans */
802 static void
803 xpt_scanner_thread(void *dummy)
804 {
805 	union ccb	*ccb;
806 	struct cam_path	 path;
807 
808 	xpt_lock_buses();
809 	for (;;) {
810 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
811 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
812 			       "-", 0);
813 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
814 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
815 			xpt_unlock_buses();
816 
817 			/*
818 			 * Since lock can be dropped inside and path freed
819 			 * by completion callback even before return here,
820 			 * take our own path copy for reference.
821 			 */
822 			xpt_copy_path(&path, ccb->ccb_h.path);
823 			xpt_path_lock(&path);
824 			xpt_action(ccb);
825 			xpt_path_unlock(&path);
826 			xpt_release_path(&path);
827 
828 			xpt_lock_buses();
829 		}
830 	}
831 }
832 
833 void
834 xpt_rescan(union ccb *ccb)
835 {
836 	struct ccb_hdr *hdr;
837 
838 	/* Prepare request */
839 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
840 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
841 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
842 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
843 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
844 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
845 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
846 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
847 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
848 	else {
849 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
850 		xpt_free_path(ccb->ccb_h.path);
851 		xpt_free_ccb(ccb);
852 		return;
853 	}
854 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
855 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
856  		xpt_action_name(ccb->ccb_h.func_code)));
857 
858 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
859 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
860 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
861 	/* Don't make duplicate entries for the same paths. */
862 	xpt_lock_buses();
863 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
864 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
865 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
866 				wakeup(&xsoftc.ccb_scanq);
867 				xpt_unlock_buses();
868 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
869 				xpt_free_path(ccb->ccb_h.path);
870 				xpt_free_ccb(ccb);
871 				return;
872 			}
873 		}
874 	}
875 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
876 	xsoftc.buses_to_config++;
877 	wakeup(&xsoftc.ccb_scanq);
878 	xpt_unlock_buses();
879 }
880 
881 /* Functions accessed by the peripheral drivers */
882 static int
883 xpt_init(void *dummy)
884 {
885 	struct cam_sim *xpt_sim;
886 	struct cam_path *path;
887 	struct cam_devq *devq;
888 	cam_status status;
889 	int error, i;
890 
891 	TAILQ_INIT(&xsoftc.xpt_busses);
892 	TAILQ_INIT(&xsoftc.ccb_scanq);
893 	STAILQ_INIT(&xsoftc.highpowerq);
894 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
895 
896 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
897 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
898 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
899 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
900 
901 #ifdef CAM_BOOT_DELAY
902 	/*
903 	 * Override this value at compile time to assist our users
904 	 * who don't use loader to boot a kernel.
905 	 */
906 	xsoftc.boot_delay = CAM_BOOT_DELAY;
907 #endif
908 	/*
909 	 * The xpt layer is, itself, the equivalent of a SIM.
910 	 * Allow 16 ccbs in the ccb pool for it.  This should
911 	 * give decent parallelism when we probe buses and
912 	 * perform other XPT functions.
913 	 */
914 	devq = cam_simq_alloc(16);
915 	xpt_sim = cam_sim_alloc(xptaction,
916 				xptpoll,
917 				"xpt",
918 				/*softc*/NULL,
919 				/*unit*/0,
920 				/*mtx*/&xsoftc.xpt_lock,
921 				/*max_dev_transactions*/0,
922 				/*max_tagged_dev_transactions*/0,
923 				devq);
924 	if (xpt_sim == NULL)
925 		return (ENOMEM);
926 
927 	mtx_lock(&xsoftc.xpt_lock);
928 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
929 		mtx_unlock(&xsoftc.xpt_lock);
930 		printf("xpt_init: xpt_bus_register failed with status %#x,"
931 		       " failing attach\n", status);
932 		return (EINVAL);
933 	}
934 	mtx_unlock(&xsoftc.xpt_lock);
935 
936 	/*
937 	 * Looking at the XPT from the SIM layer, the XPT is
938 	 * the equivalent of a peripheral driver.  Allocate
939 	 * a peripheral driver entry for us.
940 	 */
941 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
942 				      CAM_TARGET_WILDCARD,
943 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
944 		printf("xpt_init: xpt_create_path failed with status %#x,"
945 		       " failing attach\n", status);
946 		return (EINVAL);
947 	}
948 	xpt_path_lock(path);
949 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
950 			 path, NULL, 0, xpt_sim);
951 	xpt_path_unlock(path);
952 	xpt_free_path(path);
953 
954 	if (cam_num_doneqs < 1)
955 		cam_num_doneqs = 1 + mp_ncpus / 6;
956 	else if (cam_num_doneqs > MAXCPU)
957 		cam_num_doneqs = MAXCPU;
958 	for (i = 0; i < cam_num_doneqs; i++) {
959 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
960 		    MTX_DEF);
961 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
962 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
963 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
964 		if (error != 0) {
965 			cam_num_doneqs = i;
966 			break;
967 		}
968 	}
969 	if (cam_num_doneqs < 1) {
970 		printf("xpt_init: Cannot init completion queues "
971 		       "- failing attach\n");
972 		return (ENOMEM);
973 	}
974 	/*
975 	 * Register a callback for when interrupts are enabled.
976 	 */
977 	xsoftc.xpt_config_hook =
978 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
979 					      M_CAMXPT, M_NOWAIT | M_ZERO);
980 	if (xsoftc.xpt_config_hook == NULL) {
981 		printf("xpt_init: Cannot malloc config hook "
982 		       "- failing attach\n");
983 		return (ENOMEM);
984 	}
985 	xsoftc.xpt_config_hook->ich_func = xpt_config;
986 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
987 		free (xsoftc.xpt_config_hook, M_CAMXPT);
988 		printf("xpt_init: config_intrhook_establish failed "
989 		       "- failing attach\n");
990 	}
991 
992 	return (0);
993 }
994 
995 static cam_status
996 xptregister(struct cam_periph *periph, void *arg)
997 {
998 	struct cam_sim *xpt_sim;
999 
1000 	if (periph == NULL) {
1001 		printf("xptregister: periph was NULL!!\n");
1002 		return(CAM_REQ_CMP_ERR);
1003 	}
1004 
1005 	xpt_sim = (struct cam_sim *)arg;
1006 	xpt_sim->softc = periph;
1007 	xpt_periph = periph;
1008 	periph->softc = NULL;
1009 
1010 	return(CAM_REQ_CMP);
1011 }
1012 
1013 int32_t
1014 xpt_add_periph(struct cam_periph *periph)
1015 {
1016 	struct cam_ed *device;
1017 	int32_t	 status;
1018 
1019 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1020 	device = periph->path->device;
1021 	status = CAM_REQ_CMP;
1022 	if (device != NULL) {
1023 		mtx_lock(&device->target->bus->eb_mtx);
1024 		device->generation++;
1025 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1026 		mtx_unlock(&device->target->bus->eb_mtx);
1027 		atomic_add_32(&xsoftc.xpt_generation, 1);
1028 	}
1029 
1030 	return (status);
1031 }
1032 
1033 void
1034 xpt_remove_periph(struct cam_periph *periph)
1035 {
1036 	struct cam_ed *device;
1037 
1038 	device = periph->path->device;
1039 	if (device != NULL) {
1040 		mtx_lock(&device->target->bus->eb_mtx);
1041 		device->generation++;
1042 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1043 		mtx_unlock(&device->target->bus->eb_mtx);
1044 		atomic_add_32(&xsoftc.xpt_generation, 1);
1045 	}
1046 }
1047 
1048 
1049 void
1050 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1051 {
1052 	struct	cam_path *path = periph->path;
1053 	struct  xpt_proto *proto;
1054 
1055 	cam_periph_assert(periph, MA_OWNED);
1056 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1057 
1058 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1059 	       periph->periph_name, periph->unit_number,
1060 	       path->bus->sim->sim_name,
1061 	       path->bus->sim->unit_number,
1062 	       path->bus->sim->bus_id,
1063 	       path->bus->path_id,
1064 	       path->target->target_id,
1065 	       (uintmax_t)path->device->lun_id);
1066 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1067 	proto = xpt_proto_find(path->device->protocol);
1068 	if (proto)
1069 		proto->ops->announce(path->device);
1070 	else
1071 		printf("%s%d: Unknown protocol device %d\n",
1072 		    periph->periph_name, periph->unit_number,
1073 		    path->device->protocol);
1074 	if (path->device->serial_num_len > 0) {
1075 		/* Don't wrap the screen  - print only the first 60 chars */
1076 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1077 		       periph->unit_number, path->device->serial_num);
1078 	}
1079 	/* Announce transport details. */
1080 	path->bus->xport->ops->announce(periph);
1081 	/* Announce command queueing. */
1082 	if (path->device->inq_flags & SID_CmdQue
1083 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1084 		printf("%s%d: Command Queueing enabled\n",
1085 		       periph->periph_name, periph->unit_number);
1086 	}
1087 	/* Announce caller's details if they've passed in. */
1088 	if (announce_string != NULL)
1089 		printf("%s%d: %s\n", periph->periph_name,
1090 		       periph->unit_number, announce_string);
1091 }
1092 
1093 void
1094 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1095 {
1096 	if (quirks != 0) {
1097 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1098 		    periph->unit_number, quirks, bit_string);
1099 	}
1100 }
1101 
1102 void
1103 xpt_denounce_periph(struct cam_periph *periph)
1104 {
1105 	struct	cam_path *path = periph->path;
1106 	struct  xpt_proto *proto;
1107 
1108 	cam_periph_assert(periph, MA_OWNED);
1109 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1110 	       periph->periph_name, periph->unit_number,
1111 	       path->bus->sim->sim_name,
1112 	       path->bus->sim->unit_number,
1113 	       path->bus->sim->bus_id,
1114 	       path->bus->path_id,
1115 	       path->target->target_id,
1116 	       (uintmax_t)path->device->lun_id);
1117 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1118 	proto = xpt_proto_find(path->device->protocol);
1119 	if (proto)
1120 		proto->ops->denounce(path->device);
1121 	else
1122 		printf("%s%d: Unknown protocol device %d\n",
1123 		    periph->periph_name, periph->unit_number,
1124 		    path->device->protocol);
1125 	if (path->device->serial_num_len > 0)
1126 		printf(" s/n %.60s", path->device->serial_num);
1127 	printf(" detached\n");
1128 }
1129 
1130 
1131 int
1132 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1133 {
1134 	int ret = -1, l, o;
1135 	struct ccb_dev_advinfo cdai;
1136 	struct scsi_vpd_id_descriptor *idd;
1137 
1138 	xpt_path_assert(path, MA_OWNED);
1139 
1140 	memset(&cdai, 0, sizeof(cdai));
1141 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1142 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1143 	cdai.flags = CDAI_FLAG_NONE;
1144 	cdai.bufsiz = len;
1145 
1146 	if (!strcmp(attr, "GEOM::ident"))
1147 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1148 	else if (!strcmp(attr, "GEOM::physpath"))
1149 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1150 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1151 		 strcmp(attr, "GEOM::lunname") == 0) {
1152 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1153 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1154 	} else
1155 		goto out;
1156 
1157 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1158 	if (cdai.buf == NULL) {
1159 		ret = ENOMEM;
1160 		goto out;
1161 	}
1162 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1163 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1164 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1165 	if (cdai.provsiz == 0)
1166 		goto out;
1167 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1168 		if (strcmp(attr, "GEOM::lunid") == 0) {
1169 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1170 			    cdai.provsiz, scsi_devid_is_lun_naa);
1171 			if (idd == NULL)
1172 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1173 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1174 			if (idd == NULL)
1175 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1176 				    cdai.provsiz, scsi_devid_is_lun_uuid);
1177 			if (idd == NULL)
1178 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1179 				    cdai.provsiz, scsi_devid_is_lun_md5);
1180 		} else
1181 			idd = NULL;
1182 		if (idd == NULL)
1183 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1184 			    cdai.provsiz, scsi_devid_is_lun_t10);
1185 		if (idd == NULL)
1186 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1187 			    cdai.provsiz, scsi_devid_is_lun_name);
1188 		if (idd == NULL)
1189 			goto out;
1190 		ret = 0;
1191 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1192 			if (idd->length < len) {
1193 				for (l = 0; l < idd->length; l++)
1194 					buf[l] = idd->identifier[l] ?
1195 					    idd->identifier[l] : ' ';
1196 				buf[l] = 0;
1197 			} else
1198 				ret = EFAULT;
1199 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1200 			l = strnlen(idd->identifier, idd->length);
1201 			if (l < len) {
1202 				bcopy(idd->identifier, buf, l);
1203 				buf[l] = 0;
1204 			} else
1205 				ret = EFAULT;
1206 		} else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
1207 		    && idd->identifier[0] == 0x10) {
1208 			if ((idd->length - 2) * 2 + 4 < len) {
1209 				for (l = 2, o = 0; l < idd->length; l++) {
1210 					if (l == 6 || l == 8 || l == 10 || l == 12)
1211 					    o += sprintf(buf + o, "-");
1212 					o += sprintf(buf + o, "%02x",
1213 					    idd->identifier[l]);
1214 				}
1215 			} else
1216 				ret = EFAULT;
1217 		} else {
1218 			if (idd->length * 2 < len) {
1219 				for (l = 0; l < idd->length; l++)
1220 					sprintf(buf + l * 2, "%02x",
1221 					    idd->identifier[l]);
1222 			} else
1223 				ret = EFAULT;
1224 		}
1225 	} else {
1226 		ret = 0;
1227 		if (strlcpy(buf, cdai.buf, len) >= len)
1228 			ret = EFAULT;
1229 	}
1230 
1231 out:
1232 	if (cdai.buf != NULL)
1233 		free(cdai.buf, M_CAMXPT);
1234 	return ret;
1235 }
1236 
1237 static dev_match_ret
1238 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1239 	    struct cam_eb *bus)
1240 {
1241 	dev_match_ret retval;
1242 	u_int i;
1243 
1244 	retval = DM_RET_NONE;
1245 
1246 	/*
1247 	 * If we aren't given something to match against, that's an error.
1248 	 */
1249 	if (bus == NULL)
1250 		return(DM_RET_ERROR);
1251 
1252 	/*
1253 	 * If there are no match entries, then this bus matches no
1254 	 * matter what.
1255 	 */
1256 	if ((patterns == NULL) || (num_patterns == 0))
1257 		return(DM_RET_DESCEND | DM_RET_COPY);
1258 
1259 	for (i = 0; i < num_patterns; i++) {
1260 		struct bus_match_pattern *cur_pattern;
1261 
1262 		/*
1263 		 * If the pattern in question isn't for a bus node, we
1264 		 * aren't interested.  However, we do indicate to the
1265 		 * calling routine that we should continue descending the
1266 		 * tree, since the user wants to match against lower-level
1267 		 * EDT elements.
1268 		 */
1269 		if (patterns[i].type != DEV_MATCH_BUS) {
1270 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1271 				retval |= DM_RET_DESCEND;
1272 			continue;
1273 		}
1274 
1275 		cur_pattern = &patterns[i].pattern.bus_pattern;
1276 
1277 		/*
1278 		 * If they want to match any bus node, we give them any
1279 		 * device node.
1280 		 */
1281 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1282 			/* set the copy flag */
1283 			retval |= DM_RET_COPY;
1284 
1285 			/*
1286 			 * If we've already decided on an action, go ahead
1287 			 * and return.
1288 			 */
1289 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1290 				return(retval);
1291 		}
1292 
1293 		/*
1294 		 * Not sure why someone would do this...
1295 		 */
1296 		if (cur_pattern->flags == BUS_MATCH_NONE)
1297 			continue;
1298 
1299 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1300 		 && (cur_pattern->path_id != bus->path_id))
1301 			continue;
1302 
1303 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1304 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1305 			continue;
1306 
1307 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1308 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1309 			continue;
1310 
1311 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1312 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1313 			     DEV_IDLEN) != 0))
1314 			continue;
1315 
1316 		/*
1317 		 * If we get to this point, the user definitely wants
1318 		 * information on this bus.  So tell the caller to copy the
1319 		 * data out.
1320 		 */
1321 		retval |= DM_RET_COPY;
1322 
1323 		/*
1324 		 * If the return action has been set to descend, then we
1325 		 * know that we've already seen a non-bus matching
1326 		 * expression, therefore we need to further descend the tree.
1327 		 * This won't change by continuing around the loop, so we
1328 		 * go ahead and return.  If we haven't seen a non-bus
1329 		 * matching expression, we keep going around the loop until
1330 		 * we exhaust the matching expressions.  We'll set the stop
1331 		 * flag once we fall out of the loop.
1332 		 */
1333 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1334 			return(retval);
1335 	}
1336 
1337 	/*
1338 	 * If the return action hasn't been set to descend yet, that means
1339 	 * we haven't seen anything other than bus matching patterns.  So
1340 	 * tell the caller to stop descending the tree -- the user doesn't
1341 	 * want to match against lower level tree elements.
1342 	 */
1343 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1344 		retval |= DM_RET_STOP;
1345 
1346 	return(retval);
1347 }
1348 
1349 static dev_match_ret
1350 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1351 	       struct cam_ed *device)
1352 {
1353 	dev_match_ret retval;
1354 	u_int i;
1355 
1356 	retval = DM_RET_NONE;
1357 
1358 	/*
1359 	 * If we aren't given something to match against, that's an error.
1360 	 */
1361 	if (device == NULL)
1362 		return(DM_RET_ERROR);
1363 
1364 	/*
1365 	 * If there are no match entries, then this device matches no
1366 	 * matter what.
1367 	 */
1368 	if ((patterns == NULL) || (num_patterns == 0))
1369 		return(DM_RET_DESCEND | DM_RET_COPY);
1370 
1371 	for (i = 0; i < num_patterns; i++) {
1372 		struct device_match_pattern *cur_pattern;
1373 		struct scsi_vpd_device_id *device_id_page;
1374 
1375 		/*
1376 		 * If the pattern in question isn't for a device node, we
1377 		 * aren't interested.
1378 		 */
1379 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1380 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1381 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1382 				retval |= DM_RET_DESCEND;
1383 			continue;
1384 		}
1385 
1386 		cur_pattern = &patterns[i].pattern.device_pattern;
1387 
1388 		/* Error out if mutually exclusive options are specified. */
1389 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1390 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1391 			return(DM_RET_ERROR);
1392 
1393 		/*
1394 		 * If they want to match any device node, we give them any
1395 		 * device node.
1396 		 */
1397 		if (cur_pattern->flags == DEV_MATCH_ANY)
1398 			goto copy_dev_node;
1399 
1400 		/*
1401 		 * Not sure why someone would do this...
1402 		 */
1403 		if (cur_pattern->flags == DEV_MATCH_NONE)
1404 			continue;
1405 
1406 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1407 		 && (cur_pattern->path_id != device->target->bus->path_id))
1408 			continue;
1409 
1410 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1411 		 && (cur_pattern->target_id != device->target->target_id))
1412 			continue;
1413 
1414 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1415 		 && (cur_pattern->target_lun != device->lun_id))
1416 			continue;
1417 
1418 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1419 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1420 				    (caddr_t)&cur_pattern->data.inq_pat,
1421 				    1, sizeof(cur_pattern->data.inq_pat),
1422 				    scsi_static_inquiry_match) == NULL))
1423 			continue;
1424 
1425 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1426 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1427 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1428 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1429 				      device->device_id_len
1430 				    - SVPD_DEVICE_ID_HDR_LEN,
1431 				      cur_pattern->data.devid_pat.id,
1432 				      cur_pattern->data.devid_pat.id_len) != 0))
1433 			continue;
1434 
1435 copy_dev_node:
1436 		/*
1437 		 * If we get to this point, the user definitely wants
1438 		 * information on this device.  So tell the caller to copy
1439 		 * the data out.
1440 		 */
1441 		retval |= DM_RET_COPY;
1442 
1443 		/*
1444 		 * If the return action has been set to descend, then we
1445 		 * know that we've already seen a peripheral matching
1446 		 * expression, therefore we need to further descend the tree.
1447 		 * This won't change by continuing around the loop, so we
1448 		 * go ahead and return.  If we haven't seen a peripheral
1449 		 * matching expression, we keep going around the loop until
1450 		 * we exhaust the matching expressions.  We'll set the stop
1451 		 * flag once we fall out of the loop.
1452 		 */
1453 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1454 			return(retval);
1455 	}
1456 
1457 	/*
1458 	 * If the return action hasn't been set to descend yet, that means
1459 	 * we haven't seen any peripheral matching patterns.  So tell the
1460 	 * caller to stop descending the tree -- the user doesn't want to
1461 	 * match against lower level tree elements.
1462 	 */
1463 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1464 		retval |= DM_RET_STOP;
1465 
1466 	return(retval);
1467 }
1468 
1469 /*
1470  * Match a single peripheral against any number of match patterns.
1471  */
1472 static dev_match_ret
1473 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1474 	       struct cam_periph *periph)
1475 {
1476 	dev_match_ret retval;
1477 	u_int i;
1478 
1479 	/*
1480 	 * If we aren't given something to match against, that's an error.
1481 	 */
1482 	if (periph == NULL)
1483 		return(DM_RET_ERROR);
1484 
1485 	/*
1486 	 * If there are no match entries, then this peripheral matches no
1487 	 * matter what.
1488 	 */
1489 	if ((patterns == NULL) || (num_patterns == 0))
1490 		return(DM_RET_STOP | DM_RET_COPY);
1491 
1492 	/*
1493 	 * There aren't any nodes below a peripheral node, so there's no
1494 	 * reason to descend the tree any further.
1495 	 */
1496 	retval = DM_RET_STOP;
1497 
1498 	for (i = 0; i < num_patterns; i++) {
1499 		struct periph_match_pattern *cur_pattern;
1500 
1501 		/*
1502 		 * If the pattern in question isn't for a peripheral, we
1503 		 * aren't interested.
1504 		 */
1505 		if (patterns[i].type != DEV_MATCH_PERIPH)
1506 			continue;
1507 
1508 		cur_pattern = &patterns[i].pattern.periph_pattern;
1509 
1510 		/*
1511 		 * If they want to match on anything, then we will do so.
1512 		 */
1513 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1514 			/* set the copy flag */
1515 			retval |= DM_RET_COPY;
1516 
1517 			/*
1518 			 * We've already set the return action to stop,
1519 			 * since there are no nodes below peripherals in
1520 			 * the tree.
1521 			 */
1522 			return(retval);
1523 		}
1524 
1525 		/*
1526 		 * Not sure why someone would do this...
1527 		 */
1528 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1529 			continue;
1530 
1531 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1532 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1533 			continue;
1534 
1535 		/*
1536 		 * For the target and lun id's, we have to make sure the
1537 		 * target and lun pointers aren't NULL.  The xpt peripheral
1538 		 * has a wildcard target and device.
1539 		 */
1540 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1541 		 && ((periph->path->target == NULL)
1542 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1543 			continue;
1544 
1545 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1546 		 && ((periph->path->device == NULL)
1547 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1548 			continue;
1549 
1550 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1551 		 && (cur_pattern->unit_number != periph->unit_number))
1552 			continue;
1553 
1554 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1555 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1556 			     DEV_IDLEN) != 0))
1557 			continue;
1558 
1559 		/*
1560 		 * If we get to this point, the user definitely wants
1561 		 * information on this peripheral.  So tell the caller to
1562 		 * copy the data out.
1563 		 */
1564 		retval |= DM_RET_COPY;
1565 
1566 		/*
1567 		 * The return action has already been set to stop, since
1568 		 * peripherals don't have any nodes below them in the EDT.
1569 		 */
1570 		return(retval);
1571 	}
1572 
1573 	/*
1574 	 * If we get to this point, the peripheral that was passed in
1575 	 * doesn't match any of the patterns.
1576 	 */
1577 	return(retval);
1578 }
1579 
1580 static int
1581 xptedtbusfunc(struct cam_eb *bus, void *arg)
1582 {
1583 	struct ccb_dev_match *cdm;
1584 	struct cam_et *target;
1585 	dev_match_ret retval;
1586 
1587 	cdm = (struct ccb_dev_match *)arg;
1588 
1589 	/*
1590 	 * If our position is for something deeper in the tree, that means
1591 	 * that we've already seen this node.  So, we keep going down.
1592 	 */
1593 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1594 	 && (cdm->pos.cookie.bus == bus)
1595 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1596 	 && (cdm->pos.cookie.target != NULL))
1597 		retval = DM_RET_DESCEND;
1598 	else
1599 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1600 
1601 	/*
1602 	 * If we got an error, bail out of the search.
1603 	 */
1604 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1605 		cdm->status = CAM_DEV_MATCH_ERROR;
1606 		return(0);
1607 	}
1608 
1609 	/*
1610 	 * If the copy flag is set, copy this bus out.
1611 	 */
1612 	if (retval & DM_RET_COPY) {
1613 		int spaceleft, j;
1614 
1615 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1616 			sizeof(struct dev_match_result));
1617 
1618 		/*
1619 		 * If we don't have enough space to put in another
1620 		 * match result, save our position and tell the
1621 		 * user there are more devices to check.
1622 		 */
1623 		if (spaceleft < sizeof(struct dev_match_result)) {
1624 			bzero(&cdm->pos, sizeof(cdm->pos));
1625 			cdm->pos.position_type =
1626 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1627 
1628 			cdm->pos.cookie.bus = bus;
1629 			cdm->pos.generations[CAM_BUS_GENERATION]=
1630 				xsoftc.bus_generation;
1631 			cdm->status = CAM_DEV_MATCH_MORE;
1632 			return(0);
1633 		}
1634 		j = cdm->num_matches;
1635 		cdm->num_matches++;
1636 		cdm->matches[j].type = DEV_MATCH_BUS;
1637 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1638 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1639 		cdm->matches[j].result.bus_result.unit_number =
1640 			bus->sim->unit_number;
1641 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1642 			bus->sim->sim_name, DEV_IDLEN);
1643 	}
1644 
1645 	/*
1646 	 * If the user is only interested in buses, there's no
1647 	 * reason to descend to the next level in the tree.
1648 	 */
1649 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1650 		return(1);
1651 
1652 	/*
1653 	 * If there is a target generation recorded, check it to
1654 	 * make sure the target list hasn't changed.
1655 	 */
1656 	mtx_lock(&bus->eb_mtx);
1657 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1658 	 && (cdm->pos.cookie.bus == bus)
1659 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1660 	 && (cdm->pos.cookie.target != NULL)) {
1661 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1662 		    bus->generation)) {
1663 			mtx_unlock(&bus->eb_mtx);
1664 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1665 			return (0);
1666 		}
1667 		target = (struct cam_et *)cdm->pos.cookie.target;
1668 		target->refcount++;
1669 	} else
1670 		target = NULL;
1671 	mtx_unlock(&bus->eb_mtx);
1672 
1673 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1674 }
1675 
1676 static int
1677 xptedttargetfunc(struct cam_et *target, void *arg)
1678 {
1679 	struct ccb_dev_match *cdm;
1680 	struct cam_eb *bus;
1681 	struct cam_ed *device;
1682 
1683 	cdm = (struct ccb_dev_match *)arg;
1684 	bus = target->bus;
1685 
1686 	/*
1687 	 * If there is a device list generation recorded, check it to
1688 	 * make sure the device list hasn't changed.
1689 	 */
1690 	mtx_lock(&bus->eb_mtx);
1691 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1692 	 && (cdm->pos.cookie.bus == bus)
1693 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1694 	 && (cdm->pos.cookie.target == target)
1695 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1696 	 && (cdm->pos.cookie.device != NULL)) {
1697 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1698 		    target->generation) {
1699 			mtx_unlock(&bus->eb_mtx);
1700 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1701 			return(0);
1702 		}
1703 		device = (struct cam_ed *)cdm->pos.cookie.device;
1704 		device->refcount++;
1705 	} else
1706 		device = NULL;
1707 	mtx_unlock(&bus->eb_mtx);
1708 
1709 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1710 }
1711 
1712 static int
1713 xptedtdevicefunc(struct cam_ed *device, void *arg)
1714 {
1715 	struct cam_eb *bus;
1716 	struct cam_periph *periph;
1717 	struct ccb_dev_match *cdm;
1718 	dev_match_ret retval;
1719 
1720 	cdm = (struct ccb_dev_match *)arg;
1721 	bus = device->target->bus;
1722 
1723 	/*
1724 	 * If our position is for something deeper in the tree, that means
1725 	 * that we've already seen this node.  So, we keep going down.
1726 	 */
1727 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1728 	 && (cdm->pos.cookie.device == device)
1729 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1730 	 && (cdm->pos.cookie.periph != NULL))
1731 		retval = DM_RET_DESCEND;
1732 	else
1733 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1734 					device);
1735 
1736 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1737 		cdm->status = CAM_DEV_MATCH_ERROR;
1738 		return(0);
1739 	}
1740 
1741 	/*
1742 	 * If the copy flag is set, copy this device out.
1743 	 */
1744 	if (retval & DM_RET_COPY) {
1745 		int spaceleft, j;
1746 
1747 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1748 			sizeof(struct dev_match_result));
1749 
1750 		/*
1751 		 * If we don't have enough space to put in another
1752 		 * match result, save our position and tell the
1753 		 * user there are more devices to check.
1754 		 */
1755 		if (spaceleft < sizeof(struct dev_match_result)) {
1756 			bzero(&cdm->pos, sizeof(cdm->pos));
1757 			cdm->pos.position_type =
1758 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1759 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1760 
1761 			cdm->pos.cookie.bus = device->target->bus;
1762 			cdm->pos.generations[CAM_BUS_GENERATION]=
1763 				xsoftc.bus_generation;
1764 			cdm->pos.cookie.target = device->target;
1765 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1766 				device->target->bus->generation;
1767 			cdm->pos.cookie.device = device;
1768 			cdm->pos.generations[CAM_DEV_GENERATION] =
1769 				device->target->generation;
1770 			cdm->status = CAM_DEV_MATCH_MORE;
1771 			return(0);
1772 		}
1773 		j = cdm->num_matches;
1774 		cdm->num_matches++;
1775 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1776 		cdm->matches[j].result.device_result.path_id =
1777 			device->target->bus->path_id;
1778 		cdm->matches[j].result.device_result.target_id =
1779 			device->target->target_id;
1780 		cdm->matches[j].result.device_result.target_lun =
1781 			device->lun_id;
1782 		cdm->matches[j].result.device_result.protocol =
1783 			device->protocol;
1784 		bcopy(&device->inq_data,
1785 		      &cdm->matches[j].result.device_result.inq_data,
1786 		      sizeof(struct scsi_inquiry_data));
1787 		bcopy(&device->ident_data,
1788 		      &cdm->matches[j].result.device_result.ident_data,
1789 		      sizeof(struct ata_params));
1790 
1791 		/* Let the user know whether this device is unconfigured */
1792 		if (device->flags & CAM_DEV_UNCONFIGURED)
1793 			cdm->matches[j].result.device_result.flags =
1794 				DEV_RESULT_UNCONFIGURED;
1795 		else
1796 			cdm->matches[j].result.device_result.flags =
1797 				DEV_RESULT_NOFLAG;
1798 	}
1799 
1800 	/*
1801 	 * If the user isn't interested in peripherals, don't descend
1802 	 * the tree any further.
1803 	 */
1804 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1805 		return(1);
1806 
1807 	/*
1808 	 * If there is a peripheral list generation recorded, make sure
1809 	 * it hasn't changed.
1810 	 */
1811 	xpt_lock_buses();
1812 	mtx_lock(&bus->eb_mtx);
1813 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1814 	 && (cdm->pos.cookie.bus == bus)
1815 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1816 	 && (cdm->pos.cookie.target == device->target)
1817 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1818 	 && (cdm->pos.cookie.device == device)
1819 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1820 	 && (cdm->pos.cookie.periph != NULL)) {
1821 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1822 		    device->generation) {
1823 			mtx_unlock(&bus->eb_mtx);
1824 			xpt_unlock_buses();
1825 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1826 			return(0);
1827 		}
1828 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1829 		periph->refcount++;
1830 	} else
1831 		periph = NULL;
1832 	mtx_unlock(&bus->eb_mtx);
1833 	xpt_unlock_buses();
1834 
1835 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1836 }
1837 
1838 static int
1839 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1840 {
1841 	struct ccb_dev_match *cdm;
1842 	dev_match_ret retval;
1843 
1844 	cdm = (struct ccb_dev_match *)arg;
1845 
1846 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1847 
1848 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1849 		cdm->status = CAM_DEV_MATCH_ERROR;
1850 		return(0);
1851 	}
1852 
1853 	/*
1854 	 * If the copy flag is set, copy this peripheral out.
1855 	 */
1856 	if (retval & DM_RET_COPY) {
1857 		int spaceleft, j;
1858 
1859 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1860 			sizeof(struct dev_match_result));
1861 
1862 		/*
1863 		 * If we don't have enough space to put in another
1864 		 * match result, save our position and tell the
1865 		 * user there are more devices to check.
1866 		 */
1867 		if (spaceleft < sizeof(struct dev_match_result)) {
1868 			bzero(&cdm->pos, sizeof(cdm->pos));
1869 			cdm->pos.position_type =
1870 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1871 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1872 				CAM_DEV_POS_PERIPH;
1873 
1874 			cdm->pos.cookie.bus = periph->path->bus;
1875 			cdm->pos.generations[CAM_BUS_GENERATION]=
1876 				xsoftc.bus_generation;
1877 			cdm->pos.cookie.target = periph->path->target;
1878 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1879 				periph->path->bus->generation;
1880 			cdm->pos.cookie.device = periph->path->device;
1881 			cdm->pos.generations[CAM_DEV_GENERATION] =
1882 				periph->path->target->generation;
1883 			cdm->pos.cookie.periph = periph;
1884 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1885 				periph->path->device->generation;
1886 			cdm->status = CAM_DEV_MATCH_MORE;
1887 			return(0);
1888 		}
1889 
1890 		j = cdm->num_matches;
1891 		cdm->num_matches++;
1892 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1893 		cdm->matches[j].result.periph_result.path_id =
1894 			periph->path->bus->path_id;
1895 		cdm->matches[j].result.periph_result.target_id =
1896 			periph->path->target->target_id;
1897 		cdm->matches[j].result.periph_result.target_lun =
1898 			periph->path->device->lun_id;
1899 		cdm->matches[j].result.periph_result.unit_number =
1900 			periph->unit_number;
1901 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1902 			periph->periph_name, DEV_IDLEN);
1903 	}
1904 
1905 	return(1);
1906 }
1907 
1908 static int
1909 xptedtmatch(struct ccb_dev_match *cdm)
1910 {
1911 	struct cam_eb *bus;
1912 	int ret;
1913 
1914 	cdm->num_matches = 0;
1915 
1916 	/*
1917 	 * Check the bus list generation.  If it has changed, the user
1918 	 * needs to reset everything and start over.
1919 	 */
1920 	xpt_lock_buses();
1921 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1922 	 && (cdm->pos.cookie.bus != NULL)) {
1923 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1924 		    xsoftc.bus_generation) {
1925 			xpt_unlock_buses();
1926 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1927 			return(0);
1928 		}
1929 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1930 		bus->refcount++;
1931 	} else
1932 		bus = NULL;
1933 	xpt_unlock_buses();
1934 
1935 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1936 
1937 	/*
1938 	 * If we get back 0, that means that we had to stop before fully
1939 	 * traversing the EDT.  It also means that one of the subroutines
1940 	 * has set the status field to the proper value.  If we get back 1,
1941 	 * we've fully traversed the EDT and copied out any matching entries.
1942 	 */
1943 	if (ret == 1)
1944 		cdm->status = CAM_DEV_MATCH_LAST;
1945 
1946 	return(ret);
1947 }
1948 
1949 static int
1950 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1951 {
1952 	struct cam_periph *periph;
1953 	struct ccb_dev_match *cdm;
1954 
1955 	cdm = (struct ccb_dev_match *)arg;
1956 
1957 	xpt_lock_buses();
1958 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1959 	 && (cdm->pos.cookie.pdrv == pdrv)
1960 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1961 	 && (cdm->pos.cookie.periph != NULL)) {
1962 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1963 		    (*pdrv)->generation) {
1964 			xpt_unlock_buses();
1965 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1966 			return(0);
1967 		}
1968 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1969 		periph->refcount++;
1970 	} else
1971 		periph = NULL;
1972 	xpt_unlock_buses();
1973 
1974 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1975 }
1976 
1977 static int
1978 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1979 {
1980 	struct ccb_dev_match *cdm;
1981 	dev_match_ret retval;
1982 
1983 	cdm = (struct ccb_dev_match *)arg;
1984 
1985 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1986 
1987 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1988 		cdm->status = CAM_DEV_MATCH_ERROR;
1989 		return(0);
1990 	}
1991 
1992 	/*
1993 	 * If the copy flag is set, copy this peripheral out.
1994 	 */
1995 	if (retval & DM_RET_COPY) {
1996 		int spaceleft, j;
1997 
1998 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1999 			sizeof(struct dev_match_result));
2000 
2001 		/*
2002 		 * If we don't have enough space to put in another
2003 		 * match result, save our position and tell the
2004 		 * user there are more devices to check.
2005 		 */
2006 		if (spaceleft < sizeof(struct dev_match_result)) {
2007 			struct periph_driver **pdrv;
2008 
2009 			pdrv = NULL;
2010 			bzero(&cdm->pos, sizeof(cdm->pos));
2011 			cdm->pos.position_type =
2012 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2013 				CAM_DEV_POS_PERIPH;
2014 
2015 			/*
2016 			 * This may look a bit non-sensical, but it is
2017 			 * actually quite logical.  There are very few
2018 			 * peripheral drivers, and bloating every peripheral
2019 			 * structure with a pointer back to its parent
2020 			 * peripheral driver linker set entry would cost
2021 			 * more in the long run than doing this quick lookup.
2022 			 */
2023 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2024 				if (strcmp((*pdrv)->driver_name,
2025 				    periph->periph_name) == 0)
2026 					break;
2027 			}
2028 
2029 			if (*pdrv == NULL) {
2030 				cdm->status = CAM_DEV_MATCH_ERROR;
2031 				return(0);
2032 			}
2033 
2034 			cdm->pos.cookie.pdrv = pdrv;
2035 			/*
2036 			 * The periph generation slot does double duty, as
2037 			 * does the periph pointer slot.  They are used for
2038 			 * both edt and pdrv lookups and positioning.
2039 			 */
2040 			cdm->pos.cookie.periph = periph;
2041 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2042 				(*pdrv)->generation;
2043 			cdm->status = CAM_DEV_MATCH_MORE;
2044 			return(0);
2045 		}
2046 
2047 		j = cdm->num_matches;
2048 		cdm->num_matches++;
2049 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2050 		cdm->matches[j].result.periph_result.path_id =
2051 			periph->path->bus->path_id;
2052 
2053 		/*
2054 		 * The transport layer peripheral doesn't have a target or
2055 		 * lun.
2056 		 */
2057 		if (periph->path->target)
2058 			cdm->matches[j].result.periph_result.target_id =
2059 				periph->path->target->target_id;
2060 		else
2061 			cdm->matches[j].result.periph_result.target_id =
2062 				CAM_TARGET_WILDCARD;
2063 
2064 		if (periph->path->device)
2065 			cdm->matches[j].result.periph_result.target_lun =
2066 				periph->path->device->lun_id;
2067 		else
2068 			cdm->matches[j].result.periph_result.target_lun =
2069 				CAM_LUN_WILDCARD;
2070 
2071 		cdm->matches[j].result.periph_result.unit_number =
2072 			periph->unit_number;
2073 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2074 			periph->periph_name, DEV_IDLEN);
2075 	}
2076 
2077 	return(1);
2078 }
2079 
2080 static int
2081 xptperiphlistmatch(struct ccb_dev_match *cdm)
2082 {
2083 	int ret;
2084 
2085 	cdm->num_matches = 0;
2086 
2087 	/*
2088 	 * At this point in the edt traversal function, we check the bus
2089 	 * list generation to make sure that no buses have been added or
2090 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2091 	 * For the peripheral driver list traversal function, however, we
2092 	 * don't have to worry about new peripheral driver types coming or
2093 	 * going; they're in a linker set, and therefore can't change
2094 	 * without a recompile.
2095 	 */
2096 
2097 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2098 	 && (cdm->pos.cookie.pdrv != NULL))
2099 		ret = xptpdrvtraverse(
2100 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2101 				xptplistpdrvfunc, cdm);
2102 	else
2103 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2104 
2105 	/*
2106 	 * If we get back 0, that means that we had to stop before fully
2107 	 * traversing the peripheral driver tree.  It also means that one of
2108 	 * the subroutines has set the status field to the proper value.  If
2109 	 * we get back 1, we've fully traversed the EDT and copied out any
2110 	 * matching entries.
2111 	 */
2112 	if (ret == 1)
2113 		cdm->status = CAM_DEV_MATCH_LAST;
2114 
2115 	return(ret);
2116 }
2117 
2118 static int
2119 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2120 {
2121 	struct cam_eb *bus, *next_bus;
2122 	int retval;
2123 
2124 	retval = 1;
2125 	if (start_bus)
2126 		bus = start_bus;
2127 	else {
2128 		xpt_lock_buses();
2129 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2130 		if (bus == NULL) {
2131 			xpt_unlock_buses();
2132 			return (retval);
2133 		}
2134 		bus->refcount++;
2135 		xpt_unlock_buses();
2136 	}
2137 	for (; bus != NULL; bus = next_bus) {
2138 		retval = tr_func(bus, arg);
2139 		if (retval == 0) {
2140 			xpt_release_bus(bus);
2141 			break;
2142 		}
2143 		xpt_lock_buses();
2144 		next_bus = TAILQ_NEXT(bus, links);
2145 		if (next_bus)
2146 			next_bus->refcount++;
2147 		xpt_unlock_buses();
2148 		xpt_release_bus(bus);
2149 	}
2150 	return(retval);
2151 }
2152 
2153 static int
2154 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2155 		  xpt_targetfunc_t *tr_func, void *arg)
2156 {
2157 	struct cam_et *target, *next_target;
2158 	int retval;
2159 
2160 	retval = 1;
2161 	if (start_target)
2162 		target = start_target;
2163 	else {
2164 		mtx_lock(&bus->eb_mtx);
2165 		target = TAILQ_FIRST(&bus->et_entries);
2166 		if (target == NULL) {
2167 			mtx_unlock(&bus->eb_mtx);
2168 			return (retval);
2169 		}
2170 		target->refcount++;
2171 		mtx_unlock(&bus->eb_mtx);
2172 	}
2173 	for (; target != NULL; target = next_target) {
2174 		retval = tr_func(target, arg);
2175 		if (retval == 0) {
2176 			xpt_release_target(target);
2177 			break;
2178 		}
2179 		mtx_lock(&bus->eb_mtx);
2180 		next_target = TAILQ_NEXT(target, links);
2181 		if (next_target)
2182 			next_target->refcount++;
2183 		mtx_unlock(&bus->eb_mtx);
2184 		xpt_release_target(target);
2185 	}
2186 	return(retval);
2187 }
2188 
2189 static int
2190 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2191 		  xpt_devicefunc_t *tr_func, void *arg)
2192 {
2193 	struct cam_eb *bus;
2194 	struct cam_ed *device, *next_device;
2195 	int retval;
2196 
2197 	retval = 1;
2198 	bus = target->bus;
2199 	if (start_device)
2200 		device = start_device;
2201 	else {
2202 		mtx_lock(&bus->eb_mtx);
2203 		device = TAILQ_FIRST(&target->ed_entries);
2204 		if (device == NULL) {
2205 			mtx_unlock(&bus->eb_mtx);
2206 			return (retval);
2207 		}
2208 		device->refcount++;
2209 		mtx_unlock(&bus->eb_mtx);
2210 	}
2211 	for (; device != NULL; device = next_device) {
2212 		mtx_lock(&device->device_mtx);
2213 		retval = tr_func(device, arg);
2214 		mtx_unlock(&device->device_mtx);
2215 		if (retval == 0) {
2216 			xpt_release_device(device);
2217 			break;
2218 		}
2219 		mtx_lock(&bus->eb_mtx);
2220 		next_device = TAILQ_NEXT(device, links);
2221 		if (next_device)
2222 			next_device->refcount++;
2223 		mtx_unlock(&bus->eb_mtx);
2224 		xpt_release_device(device);
2225 	}
2226 	return(retval);
2227 }
2228 
2229 static int
2230 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2231 		  xpt_periphfunc_t *tr_func, void *arg)
2232 {
2233 	struct cam_eb *bus;
2234 	struct cam_periph *periph, *next_periph;
2235 	int retval;
2236 
2237 	retval = 1;
2238 
2239 	bus = device->target->bus;
2240 	if (start_periph)
2241 		periph = start_periph;
2242 	else {
2243 		xpt_lock_buses();
2244 		mtx_lock(&bus->eb_mtx);
2245 		periph = SLIST_FIRST(&device->periphs);
2246 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2247 			periph = SLIST_NEXT(periph, periph_links);
2248 		if (periph == NULL) {
2249 			mtx_unlock(&bus->eb_mtx);
2250 			xpt_unlock_buses();
2251 			return (retval);
2252 		}
2253 		periph->refcount++;
2254 		mtx_unlock(&bus->eb_mtx);
2255 		xpt_unlock_buses();
2256 	}
2257 	for (; periph != NULL; periph = next_periph) {
2258 		retval = tr_func(periph, arg);
2259 		if (retval == 0) {
2260 			cam_periph_release_locked(periph);
2261 			break;
2262 		}
2263 		xpt_lock_buses();
2264 		mtx_lock(&bus->eb_mtx);
2265 		next_periph = SLIST_NEXT(periph, periph_links);
2266 		while (next_periph != NULL &&
2267 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2268 			next_periph = SLIST_NEXT(next_periph, periph_links);
2269 		if (next_periph)
2270 			next_periph->refcount++;
2271 		mtx_unlock(&bus->eb_mtx);
2272 		xpt_unlock_buses();
2273 		cam_periph_release_locked(periph);
2274 	}
2275 	return(retval);
2276 }
2277 
2278 static int
2279 xptpdrvtraverse(struct periph_driver **start_pdrv,
2280 		xpt_pdrvfunc_t *tr_func, void *arg)
2281 {
2282 	struct periph_driver **pdrv;
2283 	int retval;
2284 
2285 	retval = 1;
2286 
2287 	/*
2288 	 * We don't traverse the peripheral driver list like we do the
2289 	 * other lists, because it is a linker set, and therefore cannot be
2290 	 * changed during runtime.  If the peripheral driver list is ever
2291 	 * re-done to be something other than a linker set (i.e. it can
2292 	 * change while the system is running), the list traversal should
2293 	 * be modified to work like the other traversal functions.
2294 	 */
2295 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2296 	     *pdrv != NULL; pdrv++) {
2297 		retval = tr_func(pdrv, arg);
2298 
2299 		if (retval == 0)
2300 			return(retval);
2301 	}
2302 
2303 	return(retval);
2304 }
2305 
2306 static int
2307 xptpdperiphtraverse(struct periph_driver **pdrv,
2308 		    struct cam_periph *start_periph,
2309 		    xpt_periphfunc_t *tr_func, void *arg)
2310 {
2311 	struct cam_periph *periph, *next_periph;
2312 	int retval;
2313 
2314 	retval = 1;
2315 
2316 	if (start_periph)
2317 		periph = start_periph;
2318 	else {
2319 		xpt_lock_buses();
2320 		periph = TAILQ_FIRST(&(*pdrv)->units);
2321 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2322 			periph = TAILQ_NEXT(periph, unit_links);
2323 		if (periph == NULL) {
2324 			xpt_unlock_buses();
2325 			return (retval);
2326 		}
2327 		periph->refcount++;
2328 		xpt_unlock_buses();
2329 	}
2330 	for (; periph != NULL; periph = next_periph) {
2331 		cam_periph_lock(periph);
2332 		retval = tr_func(periph, arg);
2333 		cam_periph_unlock(periph);
2334 		if (retval == 0) {
2335 			cam_periph_release(periph);
2336 			break;
2337 		}
2338 		xpt_lock_buses();
2339 		next_periph = TAILQ_NEXT(periph, unit_links);
2340 		while (next_periph != NULL &&
2341 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2342 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2343 		if (next_periph)
2344 			next_periph->refcount++;
2345 		xpt_unlock_buses();
2346 		cam_periph_release(periph);
2347 	}
2348 	return(retval);
2349 }
2350 
2351 static int
2352 xptdefbusfunc(struct cam_eb *bus, void *arg)
2353 {
2354 	struct xpt_traverse_config *tr_config;
2355 
2356 	tr_config = (struct xpt_traverse_config *)arg;
2357 
2358 	if (tr_config->depth == XPT_DEPTH_BUS) {
2359 		xpt_busfunc_t *tr_func;
2360 
2361 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2362 
2363 		return(tr_func(bus, tr_config->tr_arg));
2364 	} else
2365 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2366 }
2367 
2368 static int
2369 xptdeftargetfunc(struct cam_et *target, void *arg)
2370 {
2371 	struct xpt_traverse_config *tr_config;
2372 
2373 	tr_config = (struct xpt_traverse_config *)arg;
2374 
2375 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2376 		xpt_targetfunc_t *tr_func;
2377 
2378 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2379 
2380 		return(tr_func(target, tr_config->tr_arg));
2381 	} else
2382 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2383 }
2384 
2385 static int
2386 xptdefdevicefunc(struct cam_ed *device, void *arg)
2387 {
2388 	struct xpt_traverse_config *tr_config;
2389 
2390 	tr_config = (struct xpt_traverse_config *)arg;
2391 
2392 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2393 		xpt_devicefunc_t *tr_func;
2394 
2395 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2396 
2397 		return(tr_func(device, tr_config->tr_arg));
2398 	} else
2399 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2400 }
2401 
2402 static int
2403 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2404 {
2405 	struct xpt_traverse_config *tr_config;
2406 	xpt_periphfunc_t *tr_func;
2407 
2408 	tr_config = (struct xpt_traverse_config *)arg;
2409 
2410 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2411 
2412 	/*
2413 	 * Unlike the other default functions, we don't check for depth
2414 	 * here.  The peripheral driver level is the last level in the EDT,
2415 	 * so if we're here, we should execute the function in question.
2416 	 */
2417 	return(tr_func(periph, tr_config->tr_arg));
2418 }
2419 
2420 /*
2421  * Execute the given function for every bus in the EDT.
2422  */
2423 static int
2424 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2425 {
2426 	struct xpt_traverse_config tr_config;
2427 
2428 	tr_config.depth = XPT_DEPTH_BUS;
2429 	tr_config.tr_func = tr_func;
2430 	tr_config.tr_arg = arg;
2431 
2432 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2433 }
2434 
2435 /*
2436  * Execute the given function for every device in the EDT.
2437  */
2438 static int
2439 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2440 {
2441 	struct xpt_traverse_config tr_config;
2442 
2443 	tr_config.depth = XPT_DEPTH_DEVICE;
2444 	tr_config.tr_func = tr_func;
2445 	tr_config.tr_arg = arg;
2446 
2447 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2448 }
2449 
2450 static int
2451 xptsetasyncfunc(struct cam_ed *device, void *arg)
2452 {
2453 	struct cam_path path;
2454 	struct ccb_getdev cgd;
2455 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2456 
2457 	/*
2458 	 * Don't report unconfigured devices (Wildcard devs,
2459 	 * devices only for target mode, device instances
2460 	 * that have been invalidated but are waiting for
2461 	 * their last reference count to be released).
2462 	 */
2463 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2464 		return (1);
2465 
2466 	xpt_compile_path(&path,
2467 			 NULL,
2468 			 device->target->bus->path_id,
2469 			 device->target->target_id,
2470 			 device->lun_id);
2471 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2472 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2473 	xpt_action((union ccb *)&cgd);
2474 	csa->callback(csa->callback_arg,
2475 			    AC_FOUND_DEVICE,
2476 			    &path, &cgd);
2477 	xpt_release_path(&path);
2478 
2479 	return(1);
2480 }
2481 
2482 static int
2483 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2484 {
2485 	struct cam_path path;
2486 	struct ccb_pathinq cpi;
2487 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2488 
2489 	xpt_compile_path(&path, /*periph*/NULL,
2490 			 bus->path_id,
2491 			 CAM_TARGET_WILDCARD,
2492 			 CAM_LUN_WILDCARD);
2493 	xpt_path_lock(&path);
2494 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2495 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2496 	xpt_action((union ccb *)&cpi);
2497 	csa->callback(csa->callback_arg,
2498 			    AC_PATH_REGISTERED,
2499 			    &path, &cpi);
2500 	xpt_path_unlock(&path);
2501 	xpt_release_path(&path);
2502 
2503 	return(1);
2504 }
2505 
2506 void
2507 xpt_action(union ccb *start_ccb)
2508 {
2509 
2510 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2511 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2512 		xpt_action_name(start_ccb->ccb_h.func_code)));
2513 
2514 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2515 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2516 }
2517 
2518 void
2519 xpt_action_default(union ccb *start_ccb)
2520 {
2521 	struct cam_path *path;
2522 	struct cam_sim *sim;
2523 	int lock;
2524 
2525 	path = start_ccb->ccb_h.path;
2526 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2527 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2528 		xpt_action_name(start_ccb->ccb_h.func_code)));
2529 
2530 	switch (start_ccb->ccb_h.func_code) {
2531 	case XPT_SCSI_IO:
2532 	{
2533 		struct cam_ed *device;
2534 
2535 		/*
2536 		 * For the sake of compatibility with SCSI-1
2537 		 * devices that may not understand the identify
2538 		 * message, we include lun information in the
2539 		 * second byte of all commands.  SCSI-1 specifies
2540 		 * that luns are a 3 bit value and reserves only 3
2541 		 * bits for lun information in the CDB.  Later
2542 		 * revisions of the SCSI spec allow for more than 8
2543 		 * luns, but have deprecated lun information in the
2544 		 * CDB.  So, if the lun won't fit, we must omit.
2545 		 *
2546 		 * Also be aware that during initial probing for devices,
2547 		 * the inquiry information is unknown but initialized to 0.
2548 		 * This means that this code will be exercised while probing
2549 		 * devices with an ANSI revision greater than 2.
2550 		 */
2551 		device = path->device;
2552 		if (device->protocol_version <= SCSI_REV_2
2553 		 && start_ccb->ccb_h.target_lun < 8
2554 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2555 
2556 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2557 			    start_ccb->ccb_h.target_lun << 5;
2558 		}
2559 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2560 	}
2561 	/* FALLTHROUGH */
2562 	case XPT_TARGET_IO:
2563 	case XPT_CONT_TARGET_IO:
2564 		start_ccb->csio.sense_resid = 0;
2565 		start_ccb->csio.resid = 0;
2566 		/* FALLTHROUGH */
2567 	case XPT_ATA_IO:
2568 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2569 			start_ccb->ataio.resid = 0;
2570 		/* FALLTHROUGH */
2571 	case XPT_NVME_IO:
2572 		if (start_ccb->ccb_h.func_code == XPT_NVME_IO)
2573 			start_ccb->nvmeio.resid = 0;
2574 		/* FALLTHROUGH */
2575 	case XPT_RESET_DEV:
2576 	case XPT_ENG_EXEC:
2577 	case XPT_SMP_IO:
2578 	{
2579 		struct cam_devq *devq;
2580 
2581 		devq = path->bus->sim->devq;
2582 		mtx_lock(&devq->send_mtx);
2583 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2584 		if (xpt_schedule_devq(devq, path->device) != 0)
2585 			xpt_run_devq(devq);
2586 		mtx_unlock(&devq->send_mtx);
2587 		break;
2588 	}
2589 	case XPT_CALC_GEOMETRY:
2590 		/* Filter out garbage */
2591 		if (start_ccb->ccg.block_size == 0
2592 		 || start_ccb->ccg.volume_size == 0) {
2593 			start_ccb->ccg.cylinders = 0;
2594 			start_ccb->ccg.heads = 0;
2595 			start_ccb->ccg.secs_per_track = 0;
2596 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2597 			break;
2598 		}
2599 #if defined(__sparc64__)
2600 		/*
2601 		 * For sparc64, we may need adjust the geometry of large
2602 		 * disks in order to fit the limitations of the 16-bit
2603 		 * fields of the VTOC8 disk label.
2604 		 */
2605 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2606 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2607 			break;
2608 		}
2609 #endif
2610 		goto call_sim;
2611 	case XPT_ABORT:
2612 	{
2613 		union ccb* abort_ccb;
2614 
2615 		abort_ccb = start_ccb->cab.abort_ccb;
2616 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2617 			struct cam_ed *device;
2618 			struct cam_devq *devq;
2619 
2620 			device = abort_ccb->ccb_h.path->device;
2621 			devq = device->sim->devq;
2622 
2623 			mtx_lock(&devq->send_mtx);
2624 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2625 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2626 				abort_ccb->ccb_h.status =
2627 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2628 				xpt_freeze_devq_device(device, 1);
2629 				mtx_unlock(&devq->send_mtx);
2630 				xpt_done(abort_ccb);
2631 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2632 				break;
2633 			}
2634 			mtx_unlock(&devq->send_mtx);
2635 
2636 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2637 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2638 				/*
2639 				 * We've caught this ccb en route to
2640 				 * the SIM.  Flag it for abort and the
2641 				 * SIM will do so just before starting
2642 				 * real work on the CCB.
2643 				 */
2644 				abort_ccb->ccb_h.status =
2645 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2646 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2647 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2648 				break;
2649 			}
2650 		}
2651 		if (XPT_FC_IS_QUEUED(abort_ccb)
2652 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2653 			/*
2654 			 * It's already completed but waiting
2655 			 * for our SWI to get to it.
2656 			 */
2657 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2658 			break;
2659 		}
2660 		/*
2661 		 * If we weren't able to take care of the abort request
2662 		 * in the XPT, pass the request down to the SIM for processing.
2663 		 */
2664 	}
2665 	/* FALLTHROUGH */
2666 	case XPT_ACCEPT_TARGET_IO:
2667 	case XPT_EN_LUN:
2668 	case XPT_IMMED_NOTIFY:
2669 	case XPT_NOTIFY_ACK:
2670 	case XPT_RESET_BUS:
2671 	case XPT_IMMEDIATE_NOTIFY:
2672 	case XPT_NOTIFY_ACKNOWLEDGE:
2673 	case XPT_GET_SIM_KNOB_OLD:
2674 	case XPT_GET_SIM_KNOB:
2675 	case XPT_SET_SIM_KNOB:
2676 	case XPT_GET_TRAN_SETTINGS:
2677 	case XPT_SET_TRAN_SETTINGS:
2678 	case XPT_PATH_INQ:
2679 call_sim:
2680 		sim = path->bus->sim;
2681 		lock = (mtx_owned(sim->mtx) == 0);
2682 		if (lock)
2683 			CAM_SIM_LOCK(sim);
2684 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2685 		    ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code));
2686 		(*(sim->sim_action))(sim, start_ccb);
2687 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2688 		    ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status));
2689 		if (lock)
2690 			CAM_SIM_UNLOCK(sim);
2691 		break;
2692 	case XPT_PATH_STATS:
2693 		start_ccb->cpis.last_reset = path->bus->last_reset;
2694 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2695 		break;
2696 	case XPT_GDEV_TYPE:
2697 	{
2698 		struct cam_ed *dev;
2699 
2700 		dev = path->device;
2701 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2702 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2703 		} else {
2704 			struct ccb_getdev *cgd;
2705 
2706 			cgd = &start_ccb->cgd;
2707 			cgd->protocol = dev->protocol;
2708 			cgd->inq_data = dev->inq_data;
2709 			cgd->ident_data = dev->ident_data;
2710 			cgd->inq_flags = dev->inq_flags;
2711 			cgd->nvme_data = dev->nvme_data;
2712 			cgd->nvme_cdata = dev->nvme_cdata;
2713 			cgd->ccb_h.status = CAM_REQ_CMP;
2714 			cgd->serial_num_len = dev->serial_num_len;
2715 			if ((dev->serial_num_len > 0)
2716 			 && (dev->serial_num != NULL))
2717 				bcopy(dev->serial_num, cgd->serial_num,
2718 				      dev->serial_num_len);
2719 		}
2720 		break;
2721 	}
2722 	case XPT_GDEV_STATS:
2723 	{
2724 		struct cam_ed *dev;
2725 
2726 		dev = path->device;
2727 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2728 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2729 		} else {
2730 			struct ccb_getdevstats *cgds;
2731 			struct cam_eb *bus;
2732 			struct cam_et *tar;
2733 			struct cam_devq *devq;
2734 
2735 			cgds = &start_ccb->cgds;
2736 			bus = path->bus;
2737 			tar = path->target;
2738 			devq = bus->sim->devq;
2739 			mtx_lock(&devq->send_mtx);
2740 			cgds->dev_openings = dev->ccbq.dev_openings;
2741 			cgds->dev_active = dev->ccbq.dev_active;
2742 			cgds->allocated = dev->ccbq.allocated;
2743 			cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2744 			cgds->held = cgds->allocated - cgds->dev_active -
2745 			    cgds->queued;
2746 			cgds->last_reset = tar->last_reset;
2747 			cgds->maxtags = dev->maxtags;
2748 			cgds->mintags = dev->mintags;
2749 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2750 				cgds->last_reset = bus->last_reset;
2751 			mtx_unlock(&devq->send_mtx);
2752 			cgds->ccb_h.status = CAM_REQ_CMP;
2753 		}
2754 		break;
2755 	}
2756 	case XPT_GDEVLIST:
2757 	{
2758 		struct cam_periph	*nperiph;
2759 		struct periph_list	*periph_head;
2760 		struct ccb_getdevlist	*cgdl;
2761 		u_int			i;
2762 		struct cam_ed		*device;
2763 		int			found;
2764 
2765 
2766 		found = 0;
2767 
2768 		/*
2769 		 * Don't want anyone mucking with our data.
2770 		 */
2771 		device = path->device;
2772 		periph_head = &device->periphs;
2773 		cgdl = &start_ccb->cgdl;
2774 
2775 		/*
2776 		 * Check and see if the list has changed since the user
2777 		 * last requested a list member.  If so, tell them that the
2778 		 * list has changed, and therefore they need to start over
2779 		 * from the beginning.
2780 		 */
2781 		if ((cgdl->index != 0) &&
2782 		    (cgdl->generation != device->generation)) {
2783 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2784 			break;
2785 		}
2786 
2787 		/*
2788 		 * Traverse the list of peripherals and attempt to find
2789 		 * the requested peripheral.
2790 		 */
2791 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2792 		     (nperiph != NULL) && (i <= cgdl->index);
2793 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2794 			if (i == cgdl->index) {
2795 				strncpy(cgdl->periph_name,
2796 					nperiph->periph_name,
2797 					DEV_IDLEN);
2798 				cgdl->unit_number = nperiph->unit_number;
2799 				found = 1;
2800 			}
2801 		}
2802 		if (found == 0) {
2803 			cgdl->status = CAM_GDEVLIST_ERROR;
2804 			break;
2805 		}
2806 
2807 		if (nperiph == NULL)
2808 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2809 		else
2810 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2811 
2812 		cgdl->index++;
2813 		cgdl->generation = device->generation;
2814 
2815 		cgdl->ccb_h.status = CAM_REQ_CMP;
2816 		break;
2817 	}
2818 	case XPT_DEV_MATCH:
2819 	{
2820 		dev_pos_type position_type;
2821 		struct ccb_dev_match *cdm;
2822 
2823 		cdm = &start_ccb->cdm;
2824 
2825 		/*
2826 		 * There are two ways of getting at information in the EDT.
2827 		 * The first way is via the primary EDT tree.  It starts
2828 		 * with a list of buses, then a list of targets on a bus,
2829 		 * then devices/luns on a target, and then peripherals on a
2830 		 * device/lun.  The "other" way is by the peripheral driver
2831 		 * lists.  The peripheral driver lists are organized by
2832 		 * peripheral driver.  (obviously)  So it makes sense to
2833 		 * use the peripheral driver list if the user is looking
2834 		 * for something like "da1", or all "da" devices.  If the
2835 		 * user is looking for something on a particular bus/target
2836 		 * or lun, it's generally better to go through the EDT tree.
2837 		 */
2838 
2839 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2840 			position_type = cdm->pos.position_type;
2841 		else {
2842 			u_int i;
2843 
2844 			position_type = CAM_DEV_POS_NONE;
2845 
2846 			for (i = 0; i < cdm->num_patterns; i++) {
2847 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2848 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2849 					position_type = CAM_DEV_POS_EDT;
2850 					break;
2851 				}
2852 			}
2853 
2854 			if (cdm->num_patterns == 0)
2855 				position_type = CAM_DEV_POS_EDT;
2856 			else if (position_type == CAM_DEV_POS_NONE)
2857 				position_type = CAM_DEV_POS_PDRV;
2858 		}
2859 
2860 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2861 		case CAM_DEV_POS_EDT:
2862 			xptedtmatch(cdm);
2863 			break;
2864 		case CAM_DEV_POS_PDRV:
2865 			xptperiphlistmatch(cdm);
2866 			break;
2867 		default:
2868 			cdm->status = CAM_DEV_MATCH_ERROR;
2869 			break;
2870 		}
2871 
2872 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2873 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2874 		else
2875 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2876 
2877 		break;
2878 	}
2879 	case XPT_SASYNC_CB:
2880 	{
2881 		struct ccb_setasync *csa;
2882 		struct async_node *cur_entry;
2883 		struct async_list *async_head;
2884 		u_int32_t added;
2885 
2886 		csa = &start_ccb->csa;
2887 		added = csa->event_enable;
2888 		async_head = &path->device->asyncs;
2889 
2890 		/*
2891 		 * If there is already an entry for us, simply
2892 		 * update it.
2893 		 */
2894 		cur_entry = SLIST_FIRST(async_head);
2895 		while (cur_entry != NULL) {
2896 			if ((cur_entry->callback_arg == csa->callback_arg)
2897 			 && (cur_entry->callback == csa->callback))
2898 				break;
2899 			cur_entry = SLIST_NEXT(cur_entry, links);
2900 		}
2901 
2902 		if (cur_entry != NULL) {
2903 		 	/*
2904 			 * If the request has no flags set,
2905 			 * remove the entry.
2906 			 */
2907 			added &= ~cur_entry->event_enable;
2908 			if (csa->event_enable == 0) {
2909 				SLIST_REMOVE(async_head, cur_entry,
2910 					     async_node, links);
2911 				xpt_release_device(path->device);
2912 				free(cur_entry, M_CAMXPT);
2913 			} else {
2914 				cur_entry->event_enable = csa->event_enable;
2915 			}
2916 			csa->event_enable = added;
2917 		} else {
2918 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2919 					   M_NOWAIT);
2920 			if (cur_entry == NULL) {
2921 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2922 				break;
2923 			}
2924 			cur_entry->event_enable = csa->event_enable;
2925 			cur_entry->event_lock =
2926 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2927 			cur_entry->callback_arg = csa->callback_arg;
2928 			cur_entry->callback = csa->callback;
2929 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2930 			xpt_acquire_device(path->device);
2931 		}
2932 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2933 		break;
2934 	}
2935 	case XPT_REL_SIMQ:
2936 	{
2937 		struct ccb_relsim *crs;
2938 		struct cam_ed *dev;
2939 
2940 		crs = &start_ccb->crs;
2941 		dev = path->device;
2942 		if (dev == NULL) {
2943 
2944 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2945 			break;
2946 		}
2947 
2948 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2949 
2950 			/* Don't ever go below one opening */
2951 			if (crs->openings > 0) {
2952 				xpt_dev_ccbq_resize(path, crs->openings);
2953 				if (bootverbose) {
2954 					xpt_print(path,
2955 					    "number of openings is now %d\n",
2956 					    crs->openings);
2957 				}
2958 			}
2959 		}
2960 
2961 		mtx_lock(&dev->sim->devq->send_mtx);
2962 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2963 
2964 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2965 
2966 				/*
2967 				 * Just extend the old timeout and decrement
2968 				 * the freeze count so that a single timeout
2969 				 * is sufficient for releasing the queue.
2970 				 */
2971 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2972 				callout_stop(&dev->callout);
2973 			} else {
2974 
2975 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2976 			}
2977 
2978 			callout_reset_sbt(&dev->callout,
2979 			    SBT_1MS * crs->release_timeout, 0,
2980 			    xpt_release_devq_timeout, dev, 0);
2981 
2982 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2983 
2984 		}
2985 
2986 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2987 
2988 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2989 				/*
2990 				 * Decrement the freeze count so that a single
2991 				 * completion is still sufficient to unfreeze
2992 				 * the queue.
2993 				 */
2994 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2995 			} else {
2996 
2997 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2998 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2999 			}
3000 		}
3001 
3002 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3003 
3004 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3005 			 || (dev->ccbq.dev_active == 0)) {
3006 
3007 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3008 			} else {
3009 
3010 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3011 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3012 			}
3013 		}
3014 		mtx_unlock(&dev->sim->devq->send_mtx);
3015 
3016 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3017 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3018 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3019 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3020 		break;
3021 	}
3022 	case XPT_DEBUG: {
3023 		struct cam_path *oldpath;
3024 
3025 		/* Check that all request bits are supported. */
3026 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3027 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3028 			break;
3029 		}
3030 
3031 		cam_dflags = CAM_DEBUG_NONE;
3032 		if (cam_dpath != NULL) {
3033 			oldpath = cam_dpath;
3034 			cam_dpath = NULL;
3035 			xpt_free_path(oldpath);
3036 		}
3037 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3038 			if (xpt_create_path(&cam_dpath, NULL,
3039 					    start_ccb->ccb_h.path_id,
3040 					    start_ccb->ccb_h.target_id,
3041 					    start_ccb->ccb_h.target_lun) !=
3042 					    CAM_REQ_CMP) {
3043 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3044 			} else {
3045 				cam_dflags = start_ccb->cdbg.flags;
3046 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3047 				xpt_print(cam_dpath, "debugging flags now %x\n",
3048 				    cam_dflags);
3049 			}
3050 		} else
3051 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3052 		break;
3053 	}
3054 	case XPT_NOOP:
3055 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3056 			xpt_freeze_devq(path, 1);
3057 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3058 		break;
3059 	case XPT_REPROBE_LUN:
3060 		xpt_async(AC_INQ_CHANGED, path, NULL);
3061 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3062 		xpt_done(start_ccb);
3063 		break;
3064 	default:
3065 	case XPT_SDEV_TYPE:
3066 	case XPT_TERM_IO:
3067 	case XPT_ENG_INQ:
3068 		/* XXX Implement */
3069 		xpt_print(start_ccb->ccb_h.path,
3070 		    "%s: CCB type %#x %s not supported\n", __func__,
3071 		    start_ccb->ccb_h.func_code,
3072 		    xpt_action_name(start_ccb->ccb_h.func_code));
3073 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3074 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3075 			xpt_done(start_ccb);
3076 		}
3077 		break;
3078 	}
3079 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3080 	    ("xpt_action_default: func= %#x %s status %#x\n",
3081 		start_ccb->ccb_h.func_code,
3082  		xpt_action_name(start_ccb->ccb_h.func_code),
3083 		start_ccb->ccb_h.status));
3084 }
3085 
3086 void
3087 xpt_polled_action(union ccb *start_ccb)
3088 {
3089 	u_int32_t timeout;
3090 	struct	  cam_sim *sim;
3091 	struct	  cam_devq *devq;
3092 	struct	  cam_ed *dev;
3093 
3094 	timeout = start_ccb->ccb_h.timeout * 10;
3095 	sim = start_ccb->ccb_h.path->bus->sim;
3096 	devq = sim->devq;
3097 	dev = start_ccb->ccb_h.path->device;
3098 
3099 	mtx_unlock(&dev->device_mtx);
3100 
3101 	/*
3102 	 * Steal an opening so that no other queued requests
3103 	 * can get it before us while we simulate interrupts.
3104 	 */
3105 	mtx_lock(&devq->send_mtx);
3106 	dev->ccbq.dev_openings--;
3107 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3108 	    (--timeout > 0)) {
3109 		mtx_unlock(&devq->send_mtx);
3110 		DELAY(100);
3111 		CAM_SIM_LOCK(sim);
3112 		(*(sim->sim_poll))(sim);
3113 		CAM_SIM_UNLOCK(sim);
3114 		camisr_runqueue();
3115 		mtx_lock(&devq->send_mtx);
3116 	}
3117 	dev->ccbq.dev_openings++;
3118 	mtx_unlock(&devq->send_mtx);
3119 
3120 	if (timeout != 0) {
3121 		xpt_action(start_ccb);
3122 		while(--timeout > 0) {
3123 			CAM_SIM_LOCK(sim);
3124 			(*(sim->sim_poll))(sim);
3125 			CAM_SIM_UNLOCK(sim);
3126 			camisr_runqueue();
3127 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3128 			    != CAM_REQ_INPROG)
3129 				break;
3130 			DELAY(100);
3131 		}
3132 		if (timeout == 0) {
3133 			/*
3134 			 * XXX Is it worth adding a sim_timeout entry
3135 			 * point so we can attempt recovery?  If
3136 			 * this is only used for dumps, I don't think
3137 			 * it is.
3138 			 */
3139 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3140 		}
3141 	} else {
3142 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3143 	}
3144 
3145 	mtx_lock(&dev->device_mtx);
3146 }
3147 
3148 /*
3149  * Schedule a peripheral driver to receive a ccb when its
3150  * target device has space for more transactions.
3151  */
3152 void
3153 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3154 {
3155 
3156 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3157 	cam_periph_assert(periph, MA_OWNED);
3158 	if (new_priority < periph->scheduled_priority) {
3159 		periph->scheduled_priority = new_priority;
3160 		xpt_run_allocq(periph, 0);
3161 	}
3162 }
3163 
3164 
3165 /*
3166  * Schedule a device to run on a given queue.
3167  * If the device was inserted as a new entry on the queue,
3168  * return 1 meaning the device queue should be run. If we
3169  * were already queued, implying someone else has already
3170  * started the queue, return 0 so the caller doesn't attempt
3171  * to run the queue.
3172  */
3173 static int
3174 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3175 		 u_int32_t new_priority)
3176 {
3177 	int retval;
3178 	u_int32_t old_priority;
3179 
3180 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3181 
3182 	old_priority = pinfo->priority;
3183 
3184 	/*
3185 	 * Are we already queued?
3186 	 */
3187 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3188 		/* Simply reorder based on new priority */
3189 		if (new_priority < old_priority) {
3190 			camq_change_priority(queue, pinfo->index,
3191 					     new_priority);
3192 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3193 					("changed priority to %d\n",
3194 					 new_priority));
3195 			retval = 1;
3196 		} else
3197 			retval = 0;
3198 	} else {
3199 		/* New entry on the queue */
3200 		if (new_priority < old_priority)
3201 			pinfo->priority = new_priority;
3202 
3203 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3204 				("Inserting onto queue\n"));
3205 		pinfo->generation = ++queue->generation;
3206 		camq_insert(queue, pinfo);
3207 		retval = 1;
3208 	}
3209 	return (retval);
3210 }
3211 
3212 static void
3213 xpt_run_allocq_task(void *context, int pending)
3214 {
3215 	struct cam_periph *periph = context;
3216 
3217 	cam_periph_lock(periph);
3218 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3219 	xpt_run_allocq(periph, 1);
3220 	cam_periph_unlock(periph);
3221 	cam_periph_release(periph);
3222 }
3223 
3224 static void
3225 xpt_run_allocq(struct cam_periph *periph, int sleep)
3226 {
3227 	struct cam_ed	*device;
3228 	union ccb	*ccb;
3229 	uint32_t	 prio;
3230 
3231 	cam_periph_assert(periph, MA_OWNED);
3232 	if (periph->periph_allocating)
3233 		return;
3234 	periph->periph_allocating = 1;
3235 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3236 	device = periph->path->device;
3237 	ccb = NULL;
3238 restart:
3239 	while ((prio = min(periph->scheduled_priority,
3240 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3241 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3242 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3243 
3244 		if (ccb == NULL &&
3245 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3246 			if (sleep) {
3247 				ccb = xpt_get_ccb(periph);
3248 				goto restart;
3249 			}
3250 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3251 				break;
3252 			cam_periph_doacquire(periph);
3253 			periph->flags |= CAM_PERIPH_RUN_TASK;
3254 			taskqueue_enqueue(xsoftc.xpt_taskq,
3255 			    &periph->periph_run_task);
3256 			break;
3257 		}
3258 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3259 		if (prio == periph->immediate_priority) {
3260 			periph->immediate_priority = CAM_PRIORITY_NONE;
3261 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3262 					("waking cam_periph_getccb()\n"));
3263 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3264 					  periph_links.sle);
3265 			wakeup(&periph->ccb_list);
3266 		} else {
3267 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3268 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3269 					("calling periph_start()\n"));
3270 			periph->periph_start(periph, ccb);
3271 		}
3272 		ccb = NULL;
3273 	}
3274 	if (ccb != NULL)
3275 		xpt_release_ccb(ccb);
3276 	periph->periph_allocating = 0;
3277 }
3278 
3279 static void
3280 xpt_run_devq(struct cam_devq *devq)
3281 {
3282 	int lock;
3283 
3284 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3285 
3286 	devq->send_queue.qfrozen_cnt++;
3287 	while ((devq->send_queue.entries > 0)
3288 	    && (devq->send_openings > 0)
3289 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3290 		struct	cam_ed *device;
3291 		union ccb *work_ccb;
3292 		struct	cam_sim *sim;
3293 		struct xpt_proto *proto;
3294 
3295 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3296 							   CAMQ_HEAD);
3297 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3298 				("running device %p\n", device));
3299 
3300 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3301 		if (work_ccb == NULL) {
3302 			printf("device on run queue with no ccbs???\n");
3303 			continue;
3304 		}
3305 
3306 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3307 
3308 			mtx_lock(&xsoftc.xpt_highpower_lock);
3309 		 	if (xsoftc.num_highpower <= 0) {
3310 				/*
3311 				 * We got a high power command, but we
3312 				 * don't have any available slots.  Freeze
3313 				 * the device queue until we have a slot
3314 				 * available.
3315 				 */
3316 				xpt_freeze_devq_device(device, 1);
3317 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3318 						   highpowerq_entry);
3319 
3320 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3321 				continue;
3322 			} else {
3323 				/*
3324 				 * Consume a high power slot while
3325 				 * this ccb runs.
3326 				 */
3327 				xsoftc.num_highpower--;
3328 			}
3329 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3330 		}
3331 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3332 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3333 		devq->send_openings--;
3334 		devq->send_active++;
3335 		xpt_schedule_devq(devq, device);
3336 		mtx_unlock(&devq->send_mtx);
3337 
3338 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3339 			/*
3340 			 * The client wants to freeze the queue
3341 			 * after this CCB is sent.
3342 			 */
3343 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3344 		}
3345 
3346 		/* In Target mode, the peripheral driver knows best... */
3347 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3348 			if ((device->inq_flags & SID_CmdQue) != 0
3349 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3350 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3351 			else
3352 				/*
3353 				 * Clear this in case of a retried CCB that
3354 				 * failed due to a rejected tag.
3355 				 */
3356 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3357 		}
3358 
3359 		KASSERT(device == work_ccb->ccb_h.path->device,
3360 		    ("device (%p) / path->device (%p) mismatch",
3361 			device, work_ccb->ccb_h.path->device));
3362 		proto = xpt_proto_find(device->protocol);
3363 		if (proto && proto->ops->debug_out)
3364 			proto->ops->debug_out(work_ccb);
3365 
3366 		/*
3367 		 * Device queues can be shared among multiple SIM instances
3368 		 * that reside on different buses.  Use the SIM from the
3369 		 * queued device, rather than the one from the calling bus.
3370 		 */
3371 		sim = device->sim;
3372 		lock = (mtx_owned(sim->mtx) == 0);
3373 		if (lock)
3374 			CAM_SIM_LOCK(sim);
3375 		work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
3376 		(*(sim->sim_action))(sim, work_ccb);
3377 		if (lock)
3378 			CAM_SIM_UNLOCK(sim);
3379 		mtx_lock(&devq->send_mtx);
3380 	}
3381 	devq->send_queue.qfrozen_cnt--;
3382 }
3383 
3384 /*
3385  * This function merges stuff from the slave ccb into the master ccb, while
3386  * keeping important fields in the master ccb constant.
3387  */
3388 void
3389 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3390 {
3391 
3392 	/*
3393 	 * Pull fields that are valid for peripheral drivers to set
3394 	 * into the master CCB along with the CCB "payload".
3395 	 */
3396 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3397 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3398 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3399 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3400 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3401 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3402 }
3403 
3404 void
3405 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3406 		    u_int32_t priority, u_int32_t flags)
3407 {
3408 
3409 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3410 	ccb_h->pinfo.priority = priority;
3411 	ccb_h->path = path;
3412 	ccb_h->path_id = path->bus->path_id;
3413 	if (path->target)
3414 		ccb_h->target_id = path->target->target_id;
3415 	else
3416 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3417 	if (path->device) {
3418 		ccb_h->target_lun = path->device->lun_id;
3419 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3420 	} else {
3421 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3422 	}
3423 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3424 	ccb_h->flags = flags;
3425 	ccb_h->xflags = 0;
3426 }
3427 
3428 void
3429 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3430 {
3431 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3432 }
3433 
3434 /* Path manipulation functions */
3435 cam_status
3436 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3437 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3438 {
3439 	struct	   cam_path *path;
3440 	cam_status status;
3441 
3442 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3443 
3444 	if (path == NULL) {
3445 		status = CAM_RESRC_UNAVAIL;
3446 		return(status);
3447 	}
3448 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3449 	if (status != CAM_REQ_CMP) {
3450 		free(path, M_CAMPATH);
3451 		path = NULL;
3452 	}
3453 	*new_path_ptr = path;
3454 	return (status);
3455 }
3456 
3457 cam_status
3458 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3459 			 struct cam_periph *periph, path_id_t path_id,
3460 			 target_id_t target_id, lun_id_t lun_id)
3461 {
3462 
3463 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3464 	    lun_id));
3465 }
3466 
3467 cam_status
3468 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3469 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3470 {
3471 	struct	     cam_eb *bus;
3472 	struct	     cam_et *target;
3473 	struct	     cam_ed *device;
3474 	cam_status   status;
3475 
3476 	status = CAM_REQ_CMP;	/* Completed without error */
3477 	target = NULL;		/* Wildcarded */
3478 	device = NULL;		/* Wildcarded */
3479 
3480 	/*
3481 	 * We will potentially modify the EDT, so block interrupts
3482 	 * that may attempt to create cam paths.
3483 	 */
3484 	bus = xpt_find_bus(path_id);
3485 	if (bus == NULL) {
3486 		status = CAM_PATH_INVALID;
3487 	} else {
3488 		xpt_lock_buses();
3489 		mtx_lock(&bus->eb_mtx);
3490 		target = xpt_find_target(bus, target_id);
3491 		if (target == NULL) {
3492 			/* Create one */
3493 			struct cam_et *new_target;
3494 
3495 			new_target = xpt_alloc_target(bus, target_id);
3496 			if (new_target == NULL) {
3497 				status = CAM_RESRC_UNAVAIL;
3498 			} else {
3499 				target = new_target;
3500 			}
3501 		}
3502 		xpt_unlock_buses();
3503 		if (target != NULL) {
3504 			device = xpt_find_device(target, lun_id);
3505 			if (device == NULL) {
3506 				/* Create one */
3507 				struct cam_ed *new_device;
3508 
3509 				new_device =
3510 				    (*(bus->xport->ops->alloc_device))(bus,
3511 								       target,
3512 								       lun_id);
3513 				if (new_device == NULL) {
3514 					status = CAM_RESRC_UNAVAIL;
3515 				} else {
3516 					device = new_device;
3517 				}
3518 			}
3519 		}
3520 		mtx_unlock(&bus->eb_mtx);
3521 	}
3522 
3523 	/*
3524 	 * Only touch the user's data if we are successful.
3525 	 */
3526 	if (status == CAM_REQ_CMP) {
3527 		new_path->periph = perph;
3528 		new_path->bus = bus;
3529 		new_path->target = target;
3530 		new_path->device = device;
3531 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3532 	} else {
3533 		if (device != NULL)
3534 			xpt_release_device(device);
3535 		if (target != NULL)
3536 			xpt_release_target(target);
3537 		if (bus != NULL)
3538 			xpt_release_bus(bus);
3539 	}
3540 	return (status);
3541 }
3542 
3543 cam_status
3544 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3545 {
3546 	struct	   cam_path *new_path;
3547 
3548 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3549 	if (new_path == NULL)
3550 		return(CAM_RESRC_UNAVAIL);
3551 	xpt_copy_path(new_path, path);
3552 	*new_path_ptr = new_path;
3553 	return (CAM_REQ_CMP);
3554 }
3555 
3556 void
3557 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3558 {
3559 
3560 	*new_path = *path;
3561 	if (path->bus != NULL)
3562 		xpt_acquire_bus(path->bus);
3563 	if (path->target != NULL)
3564 		xpt_acquire_target(path->target);
3565 	if (path->device != NULL)
3566 		xpt_acquire_device(path->device);
3567 }
3568 
3569 void
3570 xpt_release_path(struct cam_path *path)
3571 {
3572 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3573 	if (path->device != NULL) {
3574 		xpt_release_device(path->device);
3575 		path->device = NULL;
3576 	}
3577 	if (path->target != NULL) {
3578 		xpt_release_target(path->target);
3579 		path->target = NULL;
3580 	}
3581 	if (path->bus != NULL) {
3582 		xpt_release_bus(path->bus);
3583 		path->bus = NULL;
3584 	}
3585 }
3586 
3587 void
3588 xpt_free_path(struct cam_path *path)
3589 {
3590 
3591 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3592 	xpt_release_path(path);
3593 	free(path, M_CAMPATH);
3594 }
3595 
3596 void
3597 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3598     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3599 {
3600 
3601 	xpt_lock_buses();
3602 	if (bus_ref) {
3603 		if (path->bus)
3604 			*bus_ref = path->bus->refcount;
3605 		else
3606 			*bus_ref = 0;
3607 	}
3608 	if (periph_ref) {
3609 		if (path->periph)
3610 			*periph_ref = path->periph->refcount;
3611 		else
3612 			*periph_ref = 0;
3613 	}
3614 	xpt_unlock_buses();
3615 	if (target_ref) {
3616 		if (path->target)
3617 			*target_ref = path->target->refcount;
3618 		else
3619 			*target_ref = 0;
3620 	}
3621 	if (device_ref) {
3622 		if (path->device)
3623 			*device_ref = path->device->refcount;
3624 		else
3625 			*device_ref = 0;
3626 	}
3627 }
3628 
3629 /*
3630  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3631  * in path1, 2 for match with wildcards in path2.
3632  */
3633 int
3634 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3635 {
3636 	int retval = 0;
3637 
3638 	if (path1->bus != path2->bus) {
3639 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3640 			retval = 1;
3641 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3642 			retval = 2;
3643 		else
3644 			return (-1);
3645 	}
3646 	if (path1->target != path2->target) {
3647 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3648 			if (retval == 0)
3649 				retval = 1;
3650 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3651 			retval = 2;
3652 		else
3653 			return (-1);
3654 	}
3655 	if (path1->device != path2->device) {
3656 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3657 			if (retval == 0)
3658 				retval = 1;
3659 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3660 			retval = 2;
3661 		else
3662 			return (-1);
3663 	}
3664 	return (retval);
3665 }
3666 
3667 int
3668 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3669 {
3670 	int retval = 0;
3671 
3672 	if (path->bus != dev->target->bus) {
3673 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3674 			retval = 1;
3675 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3676 			retval = 2;
3677 		else
3678 			return (-1);
3679 	}
3680 	if (path->target != dev->target) {
3681 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3682 			if (retval == 0)
3683 				retval = 1;
3684 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3685 			retval = 2;
3686 		else
3687 			return (-1);
3688 	}
3689 	if (path->device != dev) {
3690 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3691 			if (retval == 0)
3692 				retval = 1;
3693 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3694 			retval = 2;
3695 		else
3696 			return (-1);
3697 	}
3698 	return (retval);
3699 }
3700 
3701 void
3702 xpt_print_path(struct cam_path *path)
3703 {
3704 	struct sbuf sb;
3705 	char buffer[XPT_PRINT_LEN];
3706 
3707 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3708 	xpt_path_sbuf(path, &sb);
3709 	sbuf_finish(&sb);
3710 	printf("%s", sbuf_data(&sb));
3711 	sbuf_delete(&sb);
3712 }
3713 
3714 void
3715 xpt_print_device(struct cam_ed *device)
3716 {
3717 
3718 	if (device == NULL)
3719 		printf("(nopath): ");
3720 	else {
3721 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3722 		       device->sim->unit_number,
3723 		       device->sim->bus_id,
3724 		       device->target->target_id,
3725 		       (uintmax_t)device->lun_id);
3726 	}
3727 }
3728 
3729 void
3730 xpt_print(struct cam_path *path, const char *fmt, ...)
3731 {
3732 	va_list ap;
3733 	struct sbuf sb;
3734 	char buffer[XPT_PRINT_LEN];
3735 
3736 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3737 
3738 	xpt_path_sbuf(path, &sb);
3739 	va_start(ap, fmt);
3740 	sbuf_vprintf(&sb, fmt, ap);
3741 	va_end(ap);
3742 
3743 	sbuf_finish(&sb);
3744 	printf("%s", sbuf_data(&sb));
3745 	sbuf_delete(&sb);
3746 }
3747 
3748 int
3749 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3750 {
3751 	struct sbuf sb;
3752 	int len;
3753 
3754 	sbuf_new(&sb, str, str_len, 0);
3755 	len = xpt_path_sbuf(path, &sb);
3756 	sbuf_finish(&sb);
3757 	return (len);
3758 }
3759 
3760 int
3761 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3762 {
3763 
3764 	if (path == NULL)
3765 		sbuf_printf(sb, "(nopath): ");
3766 	else {
3767 		if (path->periph != NULL)
3768 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3769 				    path->periph->unit_number);
3770 		else
3771 			sbuf_printf(sb, "(noperiph:");
3772 
3773 		if (path->bus != NULL)
3774 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3775 				    path->bus->sim->unit_number,
3776 				    path->bus->sim->bus_id);
3777 		else
3778 			sbuf_printf(sb, "nobus:");
3779 
3780 		if (path->target != NULL)
3781 			sbuf_printf(sb, "%d:", path->target->target_id);
3782 		else
3783 			sbuf_printf(sb, "X:");
3784 
3785 		if (path->device != NULL)
3786 			sbuf_printf(sb, "%jx): ",
3787 			    (uintmax_t)path->device->lun_id);
3788 		else
3789 			sbuf_printf(sb, "X): ");
3790 	}
3791 
3792 	return(sbuf_len(sb));
3793 }
3794 
3795 path_id_t
3796 xpt_path_path_id(struct cam_path *path)
3797 {
3798 	return(path->bus->path_id);
3799 }
3800 
3801 target_id_t
3802 xpt_path_target_id(struct cam_path *path)
3803 {
3804 	if (path->target != NULL)
3805 		return (path->target->target_id);
3806 	else
3807 		return (CAM_TARGET_WILDCARD);
3808 }
3809 
3810 lun_id_t
3811 xpt_path_lun_id(struct cam_path *path)
3812 {
3813 	if (path->device != NULL)
3814 		return (path->device->lun_id);
3815 	else
3816 		return (CAM_LUN_WILDCARD);
3817 }
3818 
3819 struct cam_sim *
3820 xpt_path_sim(struct cam_path *path)
3821 {
3822 
3823 	return (path->bus->sim);
3824 }
3825 
3826 struct cam_periph*
3827 xpt_path_periph(struct cam_path *path)
3828 {
3829 
3830 	return (path->periph);
3831 }
3832 
3833 /*
3834  * Release a CAM control block for the caller.  Remit the cost of the structure
3835  * to the device referenced by the path.  If the this device had no 'credits'
3836  * and peripheral drivers have registered async callbacks for this notification
3837  * call them now.
3838  */
3839 void
3840 xpt_release_ccb(union ccb *free_ccb)
3841 {
3842 	struct	 cam_ed *device;
3843 	struct	 cam_periph *periph;
3844 
3845 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3846 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3847 	device = free_ccb->ccb_h.path->device;
3848 	periph = free_ccb->ccb_h.path->periph;
3849 
3850 	xpt_free_ccb(free_ccb);
3851 	periph->periph_allocated--;
3852 	cam_ccbq_release_opening(&device->ccbq);
3853 	xpt_run_allocq(periph, 0);
3854 }
3855 
3856 /* Functions accessed by SIM drivers */
3857 
3858 static struct xpt_xport_ops xport_default_ops = {
3859 	.alloc_device = xpt_alloc_device_default,
3860 	.action = xpt_action_default,
3861 	.async = xpt_dev_async_default,
3862 };
3863 static struct xpt_xport xport_default = {
3864 	.xport = XPORT_UNKNOWN,
3865 	.name = "unknown",
3866 	.ops = &xport_default_ops,
3867 };
3868 
3869 CAM_XPT_XPORT(xport_default);
3870 
3871 /*
3872  * A sim structure, listing the SIM entry points and instance
3873  * identification info is passed to xpt_bus_register to hook the SIM
3874  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3875  * for this new bus and places it in the array of buses and assigns
3876  * it a path_id.  The path_id may be influenced by "hard wiring"
3877  * information specified by the user.  Once interrupt services are
3878  * available, the bus will be probed.
3879  */
3880 int32_t
3881 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3882 {
3883 	struct cam_eb *new_bus;
3884 	struct cam_eb *old_bus;
3885 	struct ccb_pathinq cpi;
3886 	struct cam_path *path;
3887 	cam_status status;
3888 
3889 	mtx_assert(sim->mtx, MA_OWNED);
3890 
3891 	sim->bus_id = bus;
3892 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3893 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3894 	if (new_bus == NULL) {
3895 		/* Couldn't satisfy request */
3896 		return (CAM_RESRC_UNAVAIL);
3897 	}
3898 
3899 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3900 	TAILQ_INIT(&new_bus->et_entries);
3901 	cam_sim_hold(sim);
3902 	new_bus->sim = sim;
3903 	timevalclear(&new_bus->last_reset);
3904 	new_bus->flags = 0;
3905 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3906 	new_bus->generation = 0;
3907 
3908 	xpt_lock_buses();
3909 	sim->path_id = new_bus->path_id =
3910 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3911 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3912 	while (old_bus != NULL
3913 	    && old_bus->path_id < new_bus->path_id)
3914 		old_bus = TAILQ_NEXT(old_bus, links);
3915 	if (old_bus != NULL)
3916 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3917 	else
3918 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3919 	xsoftc.bus_generation++;
3920 	xpt_unlock_buses();
3921 
3922 	/*
3923 	 * Set a default transport so that a PATH_INQ can be issued to
3924 	 * the SIM.  This will then allow for probing and attaching of
3925 	 * a more appropriate transport.
3926 	 */
3927 	new_bus->xport = &xport_default;
3928 
3929 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3930 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3931 	if (status != CAM_REQ_CMP) {
3932 		xpt_release_bus(new_bus);
3933 		free(path, M_CAMXPT);
3934 		return (CAM_RESRC_UNAVAIL);
3935 	}
3936 
3937 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3938 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3939 	xpt_action((union ccb *)&cpi);
3940 
3941 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3942 		struct xpt_xport **xpt;
3943 
3944 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3945 			if ((*xpt)->xport == cpi.transport) {
3946 				new_bus->xport = *xpt;
3947 				break;
3948 			}
3949 		}
3950 		if (new_bus->xport == NULL) {
3951 			xpt_print(path,
3952 			    "No transport found for %d\n", cpi.transport);
3953 			xpt_release_bus(new_bus);
3954 			free(path, M_CAMXPT);
3955 			return (CAM_RESRC_UNAVAIL);
3956 		}
3957 	}
3958 
3959 	/* Notify interested parties */
3960 	if (sim->path_id != CAM_XPT_PATH_ID) {
3961 
3962 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3963 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3964 			union	ccb *scan_ccb;
3965 
3966 			/* Initiate bus rescan. */
3967 			scan_ccb = xpt_alloc_ccb_nowait();
3968 			if (scan_ccb != NULL) {
3969 				scan_ccb->ccb_h.path = path;
3970 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3971 				scan_ccb->crcn.flags = 0;
3972 				xpt_rescan(scan_ccb);
3973 			} else {
3974 				xpt_print(path,
3975 					  "Can't allocate CCB to scan bus\n");
3976 				xpt_free_path(path);
3977 			}
3978 		} else
3979 			xpt_free_path(path);
3980 	} else
3981 		xpt_free_path(path);
3982 	return (CAM_SUCCESS);
3983 }
3984 
3985 int32_t
3986 xpt_bus_deregister(path_id_t pathid)
3987 {
3988 	struct cam_path bus_path;
3989 	cam_status status;
3990 
3991 	status = xpt_compile_path(&bus_path, NULL, pathid,
3992 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3993 	if (status != CAM_REQ_CMP)
3994 		return (status);
3995 
3996 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3997 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3998 
3999 	/* Release the reference count held while registered. */
4000 	xpt_release_bus(bus_path.bus);
4001 	xpt_release_path(&bus_path);
4002 
4003 	return (CAM_REQ_CMP);
4004 }
4005 
4006 static path_id_t
4007 xptnextfreepathid(void)
4008 {
4009 	struct cam_eb *bus;
4010 	path_id_t pathid;
4011 	const char *strval;
4012 
4013 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4014 	pathid = 0;
4015 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4016 retry:
4017 	/* Find an unoccupied pathid */
4018 	while (bus != NULL && bus->path_id <= pathid) {
4019 		if (bus->path_id == pathid)
4020 			pathid++;
4021 		bus = TAILQ_NEXT(bus, links);
4022 	}
4023 
4024 	/*
4025 	 * Ensure that this pathid is not reserved for
4026 	 * a bus that may be registered in the future.
4027 	 */
4028 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4029 		++pathid;
4030 		/* Start the search over */
4031 		goto retry;
4032 	}
4033 	return (pathid);
4034 }
4035 
4036 static path_id_t
4037 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4038 {
4039 	path_id_t pathid;
4040 	int i, dunit, val;
4041 	char buf[32];
4042 	const char *dname;
4043 
4044 	pathid = CAM_XPT_PATH_ID;
4045 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4046 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4047 		return (pathid);
4048 	i = 0;
4049 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4050 		if (strcmp(dname, "scbus")) {
4051 			/* Avoid a bit of foot shooting. */
4052 			continue;
4053 		}
4054 		if (dunit < 0)		/* unwired?! */
4055 			continue;
4056 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4057 			if (sim_bus == val) {
4058 				pathid = dunit;
4059 				break;
4060 			}
4061 		} else if (sim_bus == 0) {
4062 			/* Unspecified matches bus 0 */
4063 			pathid = dunit;
4064 			break;
4065 		} else {
4066 			printf("Ambiguous scbus configuration for %s%d "
4067 			       "bus %d, cannot wire down.  The kernel "
4068 			       "config entry for scbus%d should "
4069 			       "specify a controller bus.\n"
4070 			       "Scbus will be assigned dynamically.\n",
4071 			       sim_name, sim_unit, sim_bus, dunit);
4072 			break;
4073 		}
4074 	}
4075 
4076 	if (pathid == CAM_XPT_PATH_ID)
4077 		pathid = xptnextfreepathid();
4078 	return (pathid);
4079 }
4080 
4081 static const char *
4082 xpt_async_string(u_int32_t async_code)
4083 {
4084 
4085 	switch (async_code) {
4086 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4087 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4088 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4089 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4090 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4091 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4092 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4093 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4094 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4095 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4096 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4097 	case AC_CONTRACT: return ("AC_CONTRACT");
4098 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4099 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4100 	}
4101 	return ("AC_UNKNOWN");
4102 }
4103 
4104 static int
4105 xpt_async_size(u_int32_t async_code)
4106 {
4107 
4108 	switch (async_code) {
4109 	case AC_BUS_RESET: return (0);
4110 	case AC_UNSOL_RESEL: return (0);
4111 	case AC_SCSI_AEN: return (0);
4112 	case AC_SENT_BDR: return (0);
4113 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4114 	case AC_PATH_DEREGISTERED: return (0);
4115 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4116 	case AC_LOST_DEVICE: return (0);
4117 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4118 	case AC_INQ_CHANGED: return (0);
4119 	case AC_GETDEV_CHANGED: return (0);
4120 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4121 	case AC_ADVINFO_CHANGED: return (-1);
4122 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4123 	}
4124 	return (0);
4125 }
4126 
4127 static int
4128 xpt_async_process_dev(struct cam_ed *device, void *arg)
4129 {
4130 	union ccb *ccb = arg;
4131 	struct cam_path *path = ccb->ccb_h.path;
4132 	void *async_arg = ccb->casync.async_arg_ptr;
4133 	u_int32_t async_code = ccb->casync.async_code;
4134 	int relock;
4135 
4136 	if (path->device != device
4137 	 && path->device->lun_id != CAM_LUN_WILDCARD
4138 	 && device->lun_id != CAM_LUN_WILDCARD)
4139 		return (1);
4140 
4141 	/*
4142 	 * The async callback could free the device.
4143 	 * If it is a broadcast async, it doesn't hold
4144 	 * device reference, so take our own reference.
4145 	 */
4146 	xpt_acquire_device(device);
4147 
4148 	/*
4149 	 * If async for specific device is to be delivered to
4150 	 * the wildcard client, take the specific device lock.
4151 	 * XXX: We may need a way for client to specify it.
4152 	 */
4153 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4154 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4155 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4156 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4157 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4158 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4159 		mtx_unlock(&device->device_mtx);
4160 		xpt_path_lock(path);
4161 		relock = 1;
4162 	} else
4163 		relock = 0;
4164 
4165 	(*(device->target->bus->xport->ops->async))(async_code,
4166 	    device->target->bus, device->target, device, async_arg);
4167 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4168 
4169 	if (relock) {
4170 		xpt_path_unlock(path);
4171 		mtx_lock(&device->device_mtx);
4172 	}
4173 	xpt_release_device(device);
4174 	return (1);
4175 }
4176 
4177 static int
4178 xpt_async_process_tgt(struct cam_et *target, void *arg)
4179 {
4180 	union ccb *ccb = arg;
4181 	struct cam_path *path = ccb->ccb_h.path;
4182 
4183 	if (path->target != target
4184 	 && path->target->target_id != CAM_TARGET_WILDCARD
4185 	 && target->target_id != CAM_TARGET_WILDCARD)
4186 		return (1);
4187 
4188 	if (ccb->casync.async_code == AC_SENT_BDR) {
4189 		/* Update our notion of when the last reset occurred */
4190 		microtime(&target->last_reset);
4191 	}
4192 
4193 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4194 }
4195 
4196 static void
4197 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4198 {
4199 	struct cam_eb *bus;
4200 	struct cam_path *path;
4201 	void *async_arg;
4202 	u_int32_t async_code;
4203 
4204 	path = ccb->ccb_h.path;
4205 	async_code = ccb->casync.async_code;
4206 	async_arg = ccb->casync.async_arg_ptr;
4207 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4208 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4209 	bus = path->bus;
4210 
4211 	if (async_code == AC_BUS_RESET) {
4212 		/* Update our notion of when the last reset occurred */
4213 		microtime(&bus->last_reset);
4214 	}
4215 
4216 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4217 
4218 	/*
4219 	 * If this wasn't a fully wildcarded async, tell all
4220 	 * clients that want all async events.
4221 	 */
4222 	if (bus != xpt_periph->path->bus) {
4223 		xpt_path_lock(xpt_periph->path);
4224 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4225 		xpt_path_unlock(xpt_periph->path);
4226 	}
4227 
4228 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4229 		xpt_release_devq(path, 1, TRUE);
4230 	else
4231 		xpt_release_simq(path->bus->sim, TRUE);
4232 	if (ccb->casync.async_arg_size > 0)
4233 		free(async_arg, M_CAMXPT);
4234 	xpt_free_path(path);
4235 	xpt_free_ccb(ccb);
4236 }
4237 
4238 static void
4239 xpt_async_bcast(struct async_list *async_head,
4240 		u_int32_t async_code,
4241 		struct cam_path *path, void *async_arg)
4242 {
4243 	struct async_node *cur_entry;
4244 	int lock;
4245 
4246 	cur_entry = SLIST_FIRST(async_head);
4247 	while (cur_entry != NULL) {
4248 		struct async_node *next_entry;
4249 		/*
4250 		 * Grab the next list entry before we call the current
4251 		 * entry's callback.  This is because the callback function
4252 		 * can delete its async callback entry.
4253 		 */
4254 		next_entry = SLIST_NEXT(cur_entry, links);
4255 		if ((cur_entry->event_enable & async_code) != 0) {
4256 			lock = cur_entry->event_lock;
4257 			if (lock)
4258 				CAM_SIM_LOCK(path->device->sim);
4259 			cur_entry->callback(cur_entry->callback_arg,
4260 					    async_code, path,
4261 					    async_arg);
4262 			if (lock)
4263 				CAM_SIM_UNLOCK(path->device->sim);
4264 		}
4265 		cur_entry = next_entry;
4266 	}
4267 }
4268 
4269 void
4270 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4271 {
4272 	union ccb *ccb;
4273 	int size;
4274 
4275 	ccb = xpt_alloc_ccb_nowait();
4276 	if (ccb == NULL) {
4277 		xpt_print(path, "Can't allocate CCB to send %s\n",
4278 		    xpt_async_string(async_code));
4279 		return;
4280 	}
4281 
4282 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4283 		xpt_print(path, "Can't allocate path to send %s\n",
4284 		    xpt_async_string(async_code));
4285 		xpt_free_ccb(ccb);
4286 		return;
4287 	}
4288 	ccb->ccb_h.path->periph = NULL;
4289 	ccb->ccb_h.func_code = XPT_ASYNC;
4290 	ccb->ccb_h.cbfcnp = xpt_async_process;
4291 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4292 	ccb->casync.async_code = async_code;
4293 	ccb->casync.async_arg_size = 0;
4294 	size = xpt_async_size(async_code);
4295 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4296 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4297 		ccb->ccb_h.func_code,
4298 		xpt_action_name(ccb->ccb_h.func_code),
4299 		async_code,
4300 		xpt_async_string(async_code)));
4301 	if (size > 0 && async_arg != NULL) {
4302 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4303 		if (ccb->casync.async_arg_ptr == NULL) {
4304 			xpt_print(path, "Can't allocate argument to send %s\n",
4305 			    xpt_async_string(async_code));
4306 			xpt_free_path(ccb->ccb_h.path);
4307 			xpt_free_ccb(ccb);
4308 			return;
4309 		}
4310 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4311 		ccb->casync.async_arg_size = size;
4312 	} else if (size < 0) {
4313 		ccb->casync.async_arg_ptr = async_arg;
4314 		ccb->casync.async_arg_size = size;
4315 	}
4316 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4317 		xpt_freeze_devq(path, 1);
4318 	else
4319 		xpt_freeze_simq(path->bus->sim, 1);
4320 	xpt_done(ccb);
4321 }
4322 
4323 static void
4324 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4325 		      struct cam_et *target, struct cam_ed *device,
4326 		      void *async_arg)
4327 {
4328 
4329 	/*
4330 	 * We only need to handle events for real devices.
4331 	 */
4332 	if (target->target_id == CAM_TARGET_WILDCARD
4333 	 || device->lun_id == CAM_LUN_WILDCARD)
4334 		return;
4335 
4336 	printf("%s called\n", __func__);
4337 }
4338 
4339 static uint32_t
4340 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4341 {
4342 	struct cam_devq	*devq;
4343 	uint32_t freeze;
4344 
4345 	devq = dev->sim->devq;
4346 	mtx_assert(&devq->send_mtx, MA_OWNED);
4347 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4348 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4349 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4350 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4351 	/* Remove frozen device from sendq. */
4352 	if (device_is_queued(dev))
4353 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4354 	return (freeze);
4355 }
4356 
4357 u_int32_t
4358 xpt_freeze_devq(struct cam_path *path, u_int count)
4359 {
4360 	struct cam_ed	*dev = path->device;
4361 	struct cam_devq	*devq;
4362 	uint32_t	 freeze;
4363 
4364 	devq = dev->sim->devq;
4365 	mtx_lock(&devq->send_mtx);
4366 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4367 	freeze = xpt_freeze_devq_device(dev, count);
4368 	mtx_unlock(&devq->send_mtx);
4369 	return (freeze);
4370 }
4371 
4372 u_int32_t
4373 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4374 {
4375 	struct cam_devq	*devq;
4376 	uint32_t	 freeze;
4377 
4378 	devq = sim->devq;
4379 	mtx_lock(&devq->send_mtx);
4380 	freeze = (devq->send_queue.qfrozen_cnt += count);
4381 	mtx_unlock(&devq->send_mtx);
4382 	return (freeze);
4383 }
4384 
4385 static void
4386 xpt_release_devq_timeout(void *arg)
4387 {
4388 	struct cam_ed *dev;
4389 	struct cam_devq *devq;
4390 
4391 	dev = (struct cam_ed *)arg;
4392 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4393 	devq = dev->sim->devq;
4394 	mtx_assert(&devq->send_mtx, MA_OWNED);
4395 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4396 		xpt_run_devq(devq);
4397 }
4398 
4399 void
4400 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4401 {
4402 	struct cam_ed *dev;
4403 	struct cam_devq *devq;
4404 
4405 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4406 	    count, run_queue));
4407 	dev = path->device;
4408 	devq = dev->sim->devq;
4409 	mtx_lock(&devq->send_mtx);
4410 	if (xpt_release_devq_device(dev, count, run_queue))
4411 		xpt_run_devq(dev->sim->devq);
4412 	mtx_unlock(&devq->send_mtx);
4413 }
4414 
4415 static int
4416 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4417 {
4418 
4419 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4420 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4421 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4422 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4423 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4424 #ifdef INVARIANTS
4425 		printf("xpt_release_devq(): requested %u > present %u\n",
4426 		    count, dev->ccbq.queue.qfrozen_cnt);
4427 #endif
4428 		count = dev->ccbq.queue.qfrozen_cnt;
4429 	}
4430 	dev->ccbq.queue.qfrozen_cnt -= count;
4431 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4432 		/*
4433 		 * No longer need to wait for a successful
4434 		 * command completion.
4435 		 */
4436 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4437 		/*
4438 		 * Remove any timeouts that might be scheduled
4439 		 * to release this queue.
4440 		 */
4441 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4442 			callout_stop(&dev->callout);
4443 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4444 		}
4445 		/*
4446 		 * Now that we are unfrozen schedule the
4447 		 * device so any pending transactions are
4448 		 * run.
4449 		 */
4450 		xpt_schedule_devq(dev->sim->devq, dev);
4451 	} else
4452 		run_queue = 0;
4453 	return (run_queue);
4454 }
4455 
4456 void
4457 xpt_release_simq(struct cam_sim *sim, int run_queue)
4458 {
4459 	struct cam_devq	*devq;
4460 
4461 	devq = sim->devq;
4462 	mtx_lock(&devq->send_mtx);
4463 	if (devq->send_queue.qfrozen_cnt <= 0) {
4464 #ifdef INVARIANTS
4465 		printf("xpt_release_simq: requested 1 > present %u\n",
4466 		    devq->send_queue.qfrozen_cnt);
4467 #endif
4468 	} else
4469 		devq->send_queue.qfrozen_cnt--;
4470 	if (devq->send_queue.qfrozen_cnt == 0) {
4471 		/*
4472 		 * If there is a timeout scheduled to release this
4473 		 * sim queue, remove it.  The queue frozen count is
4474 		 * already at 0.
4475 		 */
4476 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4477 			callout_stop(&sim->callout);
4478 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4479 		}
4480 		if (run_queue) {
4481 			/*
4482 			 * Now that we are unfrozen run the send queue.
4483 			 */
4484 			xpt_run_devq(sim->devq);
4485 		}
4486 	}
4487 	mtx_unlock(&devq->send_mtx);
4488 }
4489 
4490 /*
4491  * XXX Appears to be unused.
4492  */
4493 static void
4494 xpt_release_simq_timeout(void *arg)
4495 {
4496 	struct cam_sim *sim;
4497 
4498 	sim = (struct cam_sim *)arg;
4499 	xpt_release_simq(sim, /* run_queue */ TRUE);
4500 }
4501 
4502 void
4503 xpt_done(union ccb *done_ccb)
4504 {
4505 	struct cam_doneq *queue;
4506 	int	run, hash;
4507 
4508 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4509 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4510 	    done_ccb->csio.bio != NULL)
4511 		biotrack(done_ccb->csio.bio, __func__);
4512 #endif
4513 
4514 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4515 	    ("xpt_done: func= %#x %s status %#x\n",
4516 		done_ccb->ccb_h.func_code,
4517 		xpt_action_name(done_ccb->ccb_h.func_code),
4518 		done_ccb->ccb_h.status));
4519 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4520 		return;
4521 
4522 	/* Store the time the ccb was in the sim */
4523 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4524 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4525 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4526 	queue = &cam_doneqs[hash];
4527 	mtx_lock(&queue->cam_doneq_mtx);
4528 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4529 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4530 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4531 	mtx_unlock(&queue->cam_doneq_mtx);
4532 	if (run)
4533 		wakeup(&queue->cam_doneq);
4534 }
4535 
4536 void
4537 xpt_done_direct(union ccb *done_ccb)
4538 {
4539 
4540 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4541 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4542 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4543 		return;
4544 
4545 	/* Store the time the ccb was in the sim */
4546 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4547 	xpt_done_process(&done_ccb->ccb_h);
4548 }
4549 
4550 union ccb *
4551 xpt_alloc_ccb()
4552 {
4553 	union ccb *new_ccb;
4554 
4555 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4556 	return (new_ccb);
4557 }
4558 
4559 union ccb *
4560 xpt_alloc_ccb_nowait()
4561 {
4562 	union ccb *new_ccb;
4563 
4564 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4565 	return (new_ccb);
4566 }
4567 
4568 void
4569 xpt_free_ccb(union ccb *free_ccb)
4570 {
4571 	free(free_ccb, M_CAMCCB);
4572 }
4573 
4574 
4575 
4576 /* Private XPT functions */
4577 
4578 /*
4579  * Get a CAM control block for the caller. Charge the structure to the device
4580  * referenced by the path.  If we don't have sufficient resources to allocate
4581  * more ccbs, we return NULL.
4582  */
4583 static union ccb *
4584 xpt_get_ccb_nowait(struct cam_periph *periph)
4585 {
4586 	union ccb *new_ccb;
4587 
4588 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4589 	if (new_ccb == NULL)
4590 		return (NULL);
4591 	periph->periph_allocated++;
4592 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4593 	return (new_ccb);
4594 }
4595 
4596 static union ccb *
4597 xpt_get_ccb(struct cam_periph *periph)
4598 {
4599 	union ccb *new_ccb;
4600 
4601 	cam_periph_unlock(periph);
4602 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4603 	cam_periph_lock(periph);
4604 	periph->periph_allocated++;
4605 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4606 	return (new_ccb);
4607 }
4608 
4609 union ccb *
4610 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4611 {
4612 	struct ccb_hdr *ccb_h;
4613 
4614 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4615 	cam_periph_assert(periph, MA_OWNED);
4616 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4617 	    ccb_h->pinfo.priority != priority) {
4618 		if (priority < periph->immediate_priority) {
4619 			periph->immediate_priority = priority;
4620 			xpt_run_allocq(periph, 0);
4621 		} else
4622 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4623 			    "cgticb", 0);
4624 	}
4625 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4626 	return ((union ccb *)ccb_h);
4627 }
4628 
4629 static void
4630 xpt_acquire_bus(struct cam_eb *bus)
4631 {
4632 
4633 	xpt_lock_buses();
4634 	bus->refcount++;
4635 	xpt_unlock_buses();
4636 }
4637 
4638 static void
4639 xpt_release_bus(struct cam_eb *bus)
4640 {
4641 
4642 	xpt_lock_buses();
4643 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4644 	if (--bus->refcount > 0) {
4645 		xpt_unlock_buses();
4646 		return;
4647 	}
4648 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4649 	xsoftc.bus_generation++;
4650 	xpt_unlock_buses();
4651 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4652 	    ("destroying bus, but target list is not empty"));
4653 	cam_sim_release(bus->sim);
4654 	mtx_destroy(&bus->eb_mtx);
4655 	free(bus, M_CAMXPT);
4656 }
4657 
4658 static struct cam_et *
4659 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4660 {
4661 	struct cam_et *cur_target, *target;
4662 
4663 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4664 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4665 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4666 					 M_NOWAIT|M_ZERO);
4667 	if (target == NULL)
4668 		return (NULL);
4669 
4670 	TAILQ_INIT(&target->ed_entries);
4671 	target->bus = bus;
4672 	target->target_id = target_id;
4673 	target->refcount = 1;
4674 	target->generation = 0;
4675 	target->luns = NULL;
4676 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4677 	timevalclear(&target->last_reset);
4678 	/*
4679 	 * Hold a reference to our parent bus so it
4680 	 * will not go away before we do.
4681 	 */
4682 	bus->refcount++;
4683 
4684 	/* Insertion sort into our bus's target list */
4685 	cur_target = TAILQ_FIRST(&bus->et_entries);
4686 	while (cur_target != NULL && cur_target->target_id < target_id)
4687 		cur_target = TAILQ_NEXT(cur_target, links);
4688 	if (cur_target != NULL) {
4689 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4690 	} else {
4691 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4692 	}
4693 	bus->generation++;
4694 	return (target);
4695 }
4696 
4697 static void
4698 xpt_acquire_target(struct cam_et *target)
4699 {
4700 	struct cam_eb *bus = target->bus;
4701 
4702 	mtx_lock(&bus->eb_mtx);
4703 	target->refcount++;
4704 	mtx_unlock(&bus->eb_mtx);
4705 }
4706 
4707 static void
4708 xpt_release_target(struct cam_et *target)
4709 {
4710 	struct cam_eb *bus = target->bus;
4711 
4712 	mtx_lock(&bus->eb_mtx);
4713 	if (--target->refcount > 0) {
4714 		mtx_unlock(&bus->eb_mtx);
4715 		return;
4716 	}
4717 	TAILQ_REMOVE(&bus->et_entries, target, links);
4718 	bus->generation++;
4719 	mtx_unlock(&bus->eb_mtx);
4720 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4721 	    ("destroying target, but device list is not empty"));
4722 	xpt_release_bus(bus);
4723 	mtx_destroy(&target->luns_mtx);
4724 	if (target->luns)
4725 		free(target->luns, M_CAMXPT);
4726 	free(target, M_CAMXPT);
4727 }
4728 
4729 static struct cam_ed *
4730 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4731 			 lun_id_t lun_id)
4732 {
4733 	struct cam_ed *device;
4734 
4735 	device = xpt_alloc_device(bus, target, lun_id);
4736 	if (device == NULL)
4737 		return (NULL);
4738 
4739 	device->mintags = 1;
4740 	device->maxtags = 1;
4741 	return (device);
4742 }
4743 
4744 static void
4745 xpt_destroy_device(void *context, int pending)
4746 {
4747 	struct cam_ed	*device = context;
4748 
4749 	mtx_lock(&device->device_mtx);
4750 	mtx_destroy(&device->device_mtx);
4751 	free(device, M_CAMDEV);
4752 }
4753 
4754 struct cam_ed *
4755 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4756 {
4757 	struct cam_ed	*cur_device, *device;
4758 	struct cam_devq	*devq;
4759 	cam_status status;
4760 
4761 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4762 	/* Make space for us in the device queue on our bus */
4763 	devq = bus->sim->devq;
4764 	mtx_lock(&devq->send_mtx);
4765 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4766 	mtx_unlock(&devq->send_mtx);
4767 	if (status != CAM_REQ_CMP)
4768 		return (NULL);
4769 
4770 	device = (struct cam_ed *)malloc(sizeof(*device),
4771 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4772 	if (device == NULL)
4773 		return (NULL);
4774 
4775 	cam_init_pinfo(&device->devq_entry);
4776 	device->target = target;
4777 	device->lun_id = lun_id;
4778 	device->sim = bus->sim;
4779 	if (cam_ccbq_init(&device->ccbq,
4780 			  bus->sim->max_dev_openings) != 0) {
4781 		free(device, M_CAMDEV);
4782 		return (NULL);
4783 	}
4784 	SLIST_INIT(&device->asyncs);
4785 	SLIST_INIT(&device->periphs);
4786 	device->generation = 0;
4787 	device->flags = CAM_DEV_UNCONFIGURED;
4788 	device->tag_delay_count = 0;
4789 	device->tag_saved_openings = 0;
4790 	device->refcount = 1;
4791 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4792 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4793 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4794 	/*
4795 	 * Hold a reference to our parent bus so it
4796 	 * will not go away before we do.
4797 	 */
4798 	target->refcount++;
4799 
4800 	cur_device = TAILQ_FIRST(&target->ed_entries);
4801 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4802 		cur_device = TAILQ_NEXT(cur_device, links);
4803 	if (cur_device != NULL)
4804 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4805 	else
4806 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4807 	target->generation++;
4808 	return (device);
4809 }
4810 
4811 void
4812 xpt_acquire_device(struct cam_ed *device)
4813 {
4814 	struct cam_eb *bus = device->target->bus;
4815 
4816 	mtx_lock(&bus->eb_mtx);
4817 	device->refcount++;
4818 	mtx_unlock(&bus->eb_mtx);
4819 }
4820 
4821 void
4822 xpt_release_device(struct cam_ed *device)
4823 {
4824 	struct cam_eb *bus = device->target->bus;
4825 	struct cam_devq *devq;
4826 
4827 	mtx_lock(&bus->eb_mtx);
4828 	if (--device->refcount > 0) {
4829 		mtx_unlock(&bus->eb_mtx);
4830 		return;
4831 	}
4832 
4833 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4834 	device->target->generation++;
4835 	mtx_unlock(&bus->eb_mtx);
4836 
4837 	/* Release our slot in the devq */
4838 	devq = bus->sim->devq;
4839 	mtx_lock(&devq->send_mtx);
4840 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4841 	mtx_unlock(&devq->send_mtx);
4842 
4843 	KASSERT(SLIST_EMPTY(&device->periphs),
4844 	    ("destroying device, but periphs list is not empty"));
4845 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4846 	    ("destroying device while still queued for ccbs"));
4847 
4848 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4849 		callout_stop(&device->callout);
4850 
4851 	xpt_release_target(device->target);
4852 
4853 	cam_ccbq_fini(&device->ccbq);
4854 	/*
4855 	 * Free allocated memory.  free(9) does nothing if the
4856 	 * supplied pointer is NULL, so it is safe to call without
4857 	 * checking.
4858 	 */
4859 	free(device->supported_vpds, M_CAMXPT);
4860 	free(device->device_id, M_CAMXPT);
4861 	free(device->ext_inq, M_CAMXPT);
4862 	free(device->physpath, M_CAMXPT);
4863 	free(device->rcap_buf, M_CAMXPT);
4864 	free(device->serial_num, M_CAMXPT);
4865 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4866 }
4867 
4868 u_int32_t
4869 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4870 {
4871 	int	result;
4872 	struct	cam_ed *dev;
4873 
4874 	dev = path->device;
4875 	mtx_lock(&dev->sim->devq->send_mtx);
4876 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4877 	mtx_unlock(&dev->sim->devq->send_mtx);
4878 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4879 	 || (dev->inq_flags & SID_CmdQue) != 0)
4880 		dev->tag_saved_openings = newopenings;
4881 	return (result);
4882 }
4883 
4884 static struct cam_eb *
4885 xpt_find_bus(path_id_t path_id)
4886 {
4887 	struct cam_eb *bus;
4888 
4889 	xpt_lock_buses();
4890 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4891 	     bus != NULL;
4892 	     bus = TAILQ_NEXT(bus, links)) {
4893 		if (bus->path_id == path_id) {
4894 			bus->refcount++;
4895 			break;
4896 		}
4897 	}
4898 	xpt_unlock_buses();
4899 	return (bus);
4900 }
4901 
4902 static struct cam_et *
4903 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4904 {
4905 	struct cam_et *target;
4906 
4907 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4908 	for (target = TAILQ_FIRST(&bus->et_entries);
4909 	     target != NULL;
4910 	     target = TAILQ_NEXT(target, links)) {
4911 		if (target->target_id == target_id) {
4912 			target->refcount++;
4913 			break;
4914 		}
4915 	}
4916 	return (target);
4917 }
4918 
4919 static struct cam_ed *
4920 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4921 {
4922 	struct cam_ed *device;
4923 
4924 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4925 	for (device = TAILQ_FIRST(&target->ed_entries);
4926 	     device != NULL;
4927 	     device = TAILQ_NEXT(device, links)) {
4928 		if (device->lun_id == lun_id) {
4929 			device->refcount++;
4930 			break;
4931 		}
4932 	}
4933 	return (device);
4934 }
4935 
4936 void
4937 xpt_start_tags(struct cam_path *path)
4938 {
4939 	struct ccb_relsim crs;
4940 	struct cam_ed *device;
4941 	struct cam_sim *sim;
4942 	int    newopenings;
4943 
4944 	device = path->device;
4945 	sim = path->bus->sim;
4946 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4947 	xpt_freeze_devq(path, /*count*/1);
4948 	device->inq_flags |= SID_CmdQue;
4949 	if (device->tag_saved_openings != 0)
4950 		newopenings = device->tag_saved_openings;
4951 	else
4952 		newopenings = min(device->maxtags,
4953 				  sim->max_tagged_dev_openings);
4954 	xpt_dev_ccbq_resize(path, newopenings);
4955 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4956 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4957 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4958 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4959 	crs.openings
4960 	    = crs.release_timeout
4961 	    = crs.qfrozen_cnt
4962 	    = 0;
4963 	xpt_action((union ccb *)&crs);
4964 }
4965 
4966 void
4967 xpt_stop_tags(struct cam_path *path)
4968 {
4969 	struct ccb_relsim crs;
4970 	struct cam_ed *device;
4971 	struct cam_sim *sim;
4972 
4973 	device = path->device;
4974 	sim = path->bus->sim;
4975 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4976 	device->tag_delay_count = 0;
4977 	xpt_freeze_devq(path, /*count*/1);
4978 	device->inq_flags &= ~SID_CmdQue;
4979 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4980 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4981 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4982 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4983 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4984 	crs.openings
4985 	    = crs.release_timeout
4986 	    = crs.qfrozen_cnt
4987 	    = 0;
4988 	xpt_action((union ccb *)&crs);
4989 }
4990 
4991 static void
4992 xpt_boot_delay(void *arg)
4993 {
4994 
4995 	xpt_release_boot();
4996 }
4997 
4998 static void
4999 xpt_config(void *arg)
5000 {
5001 	/*
5002 	 * Now that interrupts are enabled, go find our devices
5003 	 */
5004 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5005 		printf("xpt_config: failed to create taskqueue thread.\n");
5006 
5007 	/* Setup debugging path */
5008 	if (cam_dflags != CAM_DEBUG_NONE) {
5009 		if (xpt_create_path(&cam_dpath, NULL,
5010 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5011 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5012 			printf("xpt_config: xpt_create_path() failed for debug"
5013 			       " target %d:%d:%d, debugging disabled\n",
5014 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5015 			cam_dflags = CAM_DEBUG_NONE;
5016 		}
5017 	} else
5018 		cam_dpath = NULL;
5019 
5020 	periphdriver_init(1);
5021 	xpt_hold_boot();
5022 	callout_init(&xsoftc.boot_callout, 1);
5023 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5024 	    xpt_boot_delay, NULL, 0);
5025 	/* Fire up rescan thread. */
5026 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5027 	    "cam", "scanner")) {
5028 		printf("xpt_config: failed to create rescan thread.\n");
5029 	}
5030 }
5031 
5032 void
5033 xpt_hold_boot(void)
5034 {
5035 	xpt_lock_buses();
5036 	xsoftc.buses_to_config++;
5037 	xpt_unlock_buses();
5038 }
5039 
5040 void
5041 xpt_release_boot(void)
5042 {
5043 	xpt_lock_buses();
5044 	xsoftc.buses_to_config--;
5045 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5046 		struct	xpt_task *task;
5047 
5048 		xsoftc.buses_config_done = 1;
5049 		xpt_unlock_buses();
5050 		/* Call manually because we don't have any buses */
5051 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5052 		if (task != NULL) {
5053 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5054 			taskqueue_enqueue(taskqueue_thread, &task->task);
5055 		}
5056 	} else
5057 		xpt_unlock_buses();
5058 }
5059 
5060 /*
5061  * If the given device only has one peripheral attached to it, and if that
5062  * peripheral is the passthrough driver, announce it.  This insures that the
5063  * user sees some sort of announcement for every peripheral in their system.
5064  */
5065 static int
5066 xptpassannouncefunc(struct cam_ed *device, void *arg)
5067 {
5068 	struct cam_periph *periph;
5069 	int i;
5070 
5071 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5072 	     periph = SLIST_NEXT(periph, periph_links), i++);
5073 
5074 	periph = SLIST_FIRST(&device->periphs);
5075 	if ((i == 1)
5076 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5077 		xpt_announce_periph(periph, NULL);
5078 
5079 	return(1);
5080 }
5081 
5082 static void
5083 xpt_finishconfig_task(void *context, int pending)
5084 {
5085 
5086 	periphdriver_init(2);
5087 	/*
5088 	 * Check for devices with no "standard" peripheral driver
5089 	 * attached.  For any devices like that, announce the
5090 	 * passthrough driver so the user will see something.
5091 	 */
5092 	if (!bootverbose)
5093 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5094 
5095 	/* Release our hook so that the boot can continue. */
5096 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5097 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5098 	xsoftc.xpt_config_hook = NULL;
5099 
5100 	free(context, M_CAMXPT);
5101 }
5102 
5103 cam_status
5104 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5105 		   struct cam_path *path)
5106 {
5107 	struct ccb_setasync csa;
5108 	cam_status status;
5109 	int xptpath = 0;
5110 
5111 	if (path == NULL) {
5112 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5113 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5114 		if (status != CAM_REQ_CMP)
5115 			return (status);
5116 		xpt_path_lock(path);
5117 		xptpath = 1;
5118 	}
5119 
5120 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5121 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5122 	csa.event_enable = event;
5123 	csa.callback = cbfunc;
5124 	csa.callback_arg = cbarg;
5125 	xpt_action((union ccb *)&csa);
5126 	status = csa.ccb_h.status;
5127 
5128 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5129 	    ("xpt_register_async: func %p\n", cbfunc));
5130 
5131 	if (xptpath) {
5132 		xpt_path_unlock(path);
5133 		xpt_free_path(path);
5134 	}
5135 
5136 	if ((status == CAM_REQ_CMP) &&
5137 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5138 		/*
5139 		 * Get this peripheral up to date with all
5140 		 * the currently existing devices.
5141 		 */
5142 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5143 	}
5144 	if ((status == CAM_REQ_CMP) &&
5145 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5146 		/*
5147 		 * Get this peripheral up to date with all
5148 		 * the currently existing buses.
5149 		 */
5150 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5151 	}
5152 
5153 	return (status);
5154 }
5155 
5156 static void
5157 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5158 {
5159 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5160 
5161 	switch (work_ccb->ccb_h.func_code) {
5162 	/* Common cases first */
5163 	case XPT_PATH_INQ:		/* Path routing inquiry */
5164 	{
5165 		struct ccb_pathinq *cpi;
5166 
5167 		cpi = &work_ccb->cpi;
5168 		cpi->version_num = 1; /* XXX??? */
5169 		cpi->hba_inquiry = 0;
5170 		cpi->target_sprt = 0;
5171 		cpi->hba_misc = 0;
5172 		cpi->hba_eng_cnt = 0;
5173 		cpi->max_target = 0;
5174 		cpi->max_lun = 0;
5175 		cpi->initiator_id = 0;
5176 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5177 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5178 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5179 		cpi->unit_number = sim->unit_number;
5180 		cpi->bus_id = sim->bus_id;
5181 		cpi->base_transfer_speed = 0;
5182 		cpi->protocol = PROTO_UNSPECIFIED;
5183 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5184 		cpi->transport = XPORT_UNSPECIFIED;
5185 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5186 		cpi->ccb_h.status = CAM_REQ_CMP;
5187 		xpt_done(work_ccb);
5188 		break;
5189 	}
5190 	default:
5191 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5192 		xpt_done(work_ccb);
5193 		break;
5194 	}
5195 }
5196 
5197 /*
5198  * The xpt as a "controller" has no interrupt sources, so polling
5199  * is a no-op.
5200  */
5201 static void
5202 xptpoll(struct cam_sim *sim)
5203 {
5204 }
5205 
5206 void
5207 xpt_lock_buses(void)
5208 {
5209 	mtx_lock(&xsoftc.xpt_topo_lock);
5210 }
5211 
5212 void
5213 xpt_unlock_buses(void)
5214 {
5215 	mtx_unlock(&xsoftc.xpt_topo_lock);
5216 }
5217 
5218 struct mtx *
5219 xpt_path_mtx(struct cam_path *path)
5220 {
5221 
5222 	return (&path->device->device_mtx);
5223 }
5224 
5225 static void
5226 xpt_done_process(struct ccb_hdr *ccb_h)
5227 {
5228 	struct cam_sim *sim;
5229 	struct cam_devq *devq;
5230 	struct mtx *mtx = NULL;
5231 
5232 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5233 	struct ccb_scsiio *csio;
5234 
5235 	if (ccb_h->func_code == XPT_SCSI_IO) {
5236 		csio = &((union ccb *)ccb_h)->csio;
5237 		if (csio->bio != NULL)
5238 			biotrack(csio->bio, __func__);
5239 	}
5240 #endif
5241 
5242 	if (ccb_h->flags & CAM_HIGH_POWER) {
5243 		struct highpowerlist	*hphead;
5244 		struct cam_ed		*device;
5245 
5246 		mtx_lock(&xsoftc.xpt_highpower_lock);
5247 		hphead = &xsoftc.highpowerq;
5248 
5249 		device = STAILQ_FIRST(hphead);
5250 
5251 		/*
5252 		 * Increment the count since this command is done.
5253 		 */
5254 		xsoftc.num_highpower++;
5255 
5256 		/*
5257 		 * Any high powered commands queued up?
5258 		 */
5259 		if (device != NULL) {
5260 
5261 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5262 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5263 
5264 			mtx_lock(&device->sim->devq->send_mtx);
5265 			xpt_release_devq_device(device,
5266 					 /*count*/1, /*runqueue*/TRUE);
5267 			mtx_unlock(&device->sim->devq->send_mtx);
5268 		} else
5269 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5270 	}
5271 
5272 	sim = ccb_h->path->bus->sim;
5273 
5274 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5275 		xpt_release_simq(sim, /*run_queue*/FALSE);
5276 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5277 	}
5278 
5279 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5280 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5281 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5282 		ccb_h->status &= ~CAM_DEV_QFRZN;
5283 	}
5284 
5285 	devq = sim->devq;
5286 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5287 		struct cam_ed *dev = ccb_h->path->device;
5288 
5289 		mtx_lock(&devq->send_mtx);
5290 		devq->send_active--;
5291 		devq->send_openings++;
5292 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5293 
5294 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5295 		  && (dev->ccbq.dev_active == 0))) {
5296 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5297 			xpt_release_devq_device(dev, /*count*/1,
5298 					 /*run_queue*/FALSE);
5299 		}
5300 
5301 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5302 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5303 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5304 			xpt_release_devq_device(dev, /*count*/1,
5305 					 /*run_queue*/FALSE);
5306 		}
5307 
5308 		if (!device_is_queued(dev))
5309 			(void)xpt_schedule_devq(devq, dev);
5310 		xpt_run_devq(devq);
5311 		mtx_unlock(&devq->send_mtx);
5312 
5313 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5314 			mtx = xpt_path_mtx(ccb_h->path);
5315 			mtx_lock(mtx);
5316 
5317 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5318 			 && (--dev->tag_delay_count == 0))
5319 				xpt_start_tags(ccb_h->path);
5320 		}
5321 	}
5322 
5323 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5324 		if (mtx == NULL) {
5325 			mtx = xpt_path_mtx(ccb_h->path);
5326 			mtx_lock(mtx);
5327 		}
5328 	} else {
5329 		if (mtx != NULL) {
5330 			mtx_unlock(mtx);
5331 			mtx = NULL;
5332 		}
5333 	}
5334 
5335 	/* Call the peripheral driver's callback */
5336 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5337 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5338 	if (mtx != NULL)
5339 		mtx_unlock(mtx);
5340 }
5341 
5342 void
5343 xpt_done_td(void *arg)
5344 {
5345 	struct cam_doneq *queue = arg;
5346 	struct ccb_hdr *ccb_h;
5347 	STAILQ_HEAD(, ccb_hdr)	doneq;
5348 
5349 	STAILQ_INIT(&doneq);
5350 	mtx_lock(&queue->cam_doneq_mtx);
5351 	while (1) {
5352 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5353 			queue->cam_doneq_sleep = 1;
5354 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5355 			    PRIBIO, "-", 0);
5356 			queue->cam_doneq_sleep = 0;
5357 		}
5358 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5359 		mtx_unlock(&queue->cam_doneq_mtx);
5360 
5361 		THREAD_NO_SLEEPING();
5362 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5363 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5364 			xpt_done_process(ccb_h);
5365 		}
5366 		THREAD_SLEEPING_OK();
5367 
5368 		mtx_lock(&queue->cam_doneq_mtx);
5369 	}
5370 }
5371 
5372 static void
5373 camisr_runqueue(void)
5374 {
5375 	struct	ccb_hdr *ccb_h;
5376 	struct cam_doneq *queue;
5377 	int i;
5378 
5379 	/* Process global queues. */
5380 	for (i = 0; i < cam_num_doneqs; i++) {
5381 		queue = &cam_doneqs[i];
5382 		mtx_lock(&queue->cam_doneq_mtx);
5383 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5384 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5385 			mtx_unlock(&queue->cam_doneq_mtx);
5386 			xpt_done_process(ccb_h);
5387 			mtx_lock(&queue->cam_doneq_mtx);
5388 		}
5389 		mtx_unlock(&queue->cam_doneq_mtx);
5390 	}
5391 }
5392 
5393 struct kv
5394 {
5395 	uint32_t v;
5396 	const char *name;
5397 };
5398 
5399 static struct kv map[] = {
5400 	{ XPT_NOOP, "XPT_NOOP" },
5401 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5402 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5403 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5404 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5405 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5406 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5407 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5408 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5409 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5410 	{ XPT_DEBUG, "XPT_DEBUG" },
5411 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5412 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5413 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5414 	{ XPT_ASYNC, "XPT_ASYNC" },
5415 	{ XPT_ABORT, "XPT_ABORT" },
5416 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5417 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5418 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5419 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5420 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5421 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5422 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5423 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5424 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5425 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5426 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5427 	{ XPT_MMCSD_IO, "XPT_MMCSD_IO" },
5428 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5429 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5430 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5431 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5432 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5433 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5434 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5435 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5436 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5437 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5438 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5439 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5440 	{ 0, 0 }
5441 };
5442 
5443 static const char *
5444 xpt_action_name(uint32_t action)
5445 {
5446 	static char buffer[32];	/* Only for unknown messages -- racy */
5447 	struct kv *walker = map;
5448 
5449 	while (walker->name != NULL) {
5450 		if (walker->v == action)
5451 			return (walker->name);
5452 		walker++;
5453 	}
5454 
5455 	snprintf(buffer, sizeof(buffer), "%#x", action);
5456 	return (buffer);
5457 }
5458