1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_printf.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bio.h> 37 #include <sys/bus.h> 38 #include <sys/systm.h> 39 #include <sys/types.h> 40 #include <sys/malloc.h> 41 #include <sys/kernel.h> 42 #include <sys/time.h> 43 #include <sys/conf.h> 44 #include <sys/fcntl.h> 45 #include <sys/interrupt.h> 46 #include <sys/proc.h> 47 #include <sys/sbuf.h> 48 #include <sys/smp.h> 49 #include <sys/taskqueue.h> 50 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 #include <sys/sysctl.h> 54 #include <sys/kthread.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_sim.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/cam_xpt_sim.h> 63 #include <cam/cam_xpt_periph.h> 64 #include <cam/cam_xpt_internal.h> 65 #include <cam/cam_debug.h> 66 #include <cam/cam_compat.h> 67 68 #include <cam/scsi/scsi_all.h> 69 #include <cam/scsi/scsi_message.h> 70 #include <cam/scsi/scsi_pass.h> 71 72 #include <machine/md_var.h> /* geometry translation */ 73 #include <machine/stdarg.h> /* for xpt_print below */ 74 75 #include "opt_cam.h" 76 77 /* Wild guess based on not wanting to grow the stack too much */ 78 #define XPT_PRINT_MAXLEN 512 79 #ifdef PRINTF_BUFR_SIZE 80 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 81 #else 82 #define XPT_PRINT_LEN 128 83 #endif 84 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 85 86 /* 87 * This is the maximum number of high powered commands (e.g. start unit) 88 * that can be outstanding at a particular time. 89 */ 90 #ifndef CAM_MAX_HIGHPOWER 91 #define CAM_MAX_HIGHPOWER 4 92 #endif 93 94 /* Datastructures internal to the xpt layer */ 95 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 96 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 97 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 98 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 99 100 /* Object for defering XPT actions to a taskqueue */ 101 struct xpt_task { 102 struct task task; 103 void *data1; 104 uintptr_t data2; 105 }; 106 107 struct xpt_softc { 108 uint32_t xpt_generation; 109 110 /* number of high powered commands that can go through right now */ 111 struct mtx xpt_highpower_lock; 112 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 113 int num_highpower; 114 115 /* queue for handling async rescan requests. */ 116 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 117 int buses_to_config; 118 int buses_config_done; 119 120 /* 121 * Registered buses 122 * 123 * N.B., "busses" is an archaic spelling of "buses". In new code 124 * "buses" is preferred. 125 */ 126 TAILQ_HEAD(,cam_eb) xpt_busses; 127 u_int bus_generation; 128 129 struct intr_config_hook *xpt_config_hook; 130 131 int boot_delay; 132 struct callout boot_callout; 133 134 struct mtx xpt_topo_lock; 135 struct mtx xpt_lock; 136 struct taskqueue *xpt_taskq; 137 }; 138 139 typedef enum { 140 DM_RET_COPY = 0x01, 141 DM_RET_FLAG_MASK = 0x0f, 142 DM_RET_NONE = 0x00, 143 DM_RET_STOP = 0x10, 144 DM_RET_DESCEND = 0x20, 145 DM_RET_ERROR = 0x30, 146 DM_RET_ACTION_MASK = 0xf0 147 } dev_match_ret; 148 149 typedef enum { 150 XPT_DEPTH_BUS, 151 XPT_DEPTH_TARGET, 152 XPT_DEPTH_DEVICE, 153 XPT_DEPTH_PERIPH 154 } xpt_traverse_depth; 155 156 struct xpt_traverse_config { 157 xpt_traverse_depth depth; 158 void *tr_func; 159 void *tr_arg; 160 }; 161 162 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 163 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 164 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 165 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 166 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 167 168 /* Transport layer configuration information */ 169 static struct xpt_softc xsoftc; 170 171 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 172 173 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 174 &xsoftc.boot_delay, 0, "Bus registration wait time"); 175 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 176 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 177 178 struct cam_doneq { 179 struct mtx_padalign cam_doneq_mtx; 180 STAILQ_HEAD(, ccb_hdr) cam_doneq; 181 int cam_doneq_sleep; 182 }; 183 184 static struct cam_doneq cam_doneqs[MAXCPU]; 185 static int cam_num_doneqs; 186 static struct proc *cam_proc; 187 188 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 189 &cam_num_doneqs, 0, "Number of completion queues/threads"); 190 191 struct cam_periph *xpt_periph; 192 193 static periph_init_t xpt_periph_init; 194 195 static struct periph_driver xpt_driver = 196 { 197 xpt_periph_init, "xpt", 198 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 199 CAM_PERIPH_DRV_EARLY 200 }; 201 202 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 203 204 static d_open_t xptopen; 205 static d_close_t xptclose; 206 static d_ioctl_t xptioctl; 207 static d_ioctl_t xptdoioctl; 208 209 static struct cdevsw xpt_cdevsw = { 210 .d_version = D_VERSION, 211 .d_flags = 0, 212 .d_open = xptopen, 213 .d_close = xptclose, 214 .d_ioctl = xptioctl, 215 .d_name = "xpt", 216 }; 217 218 /* Storage for debugging datastructures */ 219 struct cam_path *cam_dpath; 220 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 221 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 222 &cam_dflags, 0, "Enabled debug flags"); 223 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 224 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 225 &cam_debug_delay, 0, "Delay in us after each debug message"); 226 227 /* Our boot-time initialization hook */ 228 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 229 230 static moduledata_t cam_moduledata = { 231 "cam", 232 cam_module_event_handler, 233 NULL 234 }; 235 236 static int xpt_init(void *); 237 238 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 239 MODULE_VERSION(cam, 1); 240 241 242 static void xpt_async_bcast(struct async_list *async_head, 243 u_int32_t async_code, 244 struct cam_path *path, 245 void *async_arg); 246 static path_id_t xptnextfreepathid(void); 247 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 248 static union ccb *xpt_get_ccb(struct cam_periph *periph); 249 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 250 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 251 static void xpt_run_allocq_task(void *context, int pending); 252 static void xpt_run_devq(struct cam_devq *devq); 253 static timeout_t xpt_release_devq_timeout; 254 static void xpt_release_simq_timeout(void *arg) __unused; 255 static void xpt_acquire_bus(struct cam_eb *bus); 256 static void xpt_release_bus(struct cam_eb *bus); 257 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 258 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 259 int run_queue); 260 static struct cam_et* 261 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 262 static void xpt_acquire_target(struct cam_et *target); 263 static void xpt_release_target(struct cam_et *target); 264 static struct cam_eb* 265 xpt_find_bus(path_id_t path_id); 266 static struct cam_et* 267 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 268 static struct cam_ed* 269 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 270 static void xpt_config(void *arg); 271 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 272 u_int32_t new_priority); 273 static xpt_devicefunc_t xptpassannouncefunc; 274 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 275 static void xptpoll(struct cam_sim *sim); 276 static void camisr_runqueue(void); 277 static void xpt_done_process(struct ccb_hdr *ccb_h); 278 static void xpt_done_td(void *); 279 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 280 u_int num_patterns, struct cam_eb *bus); 281 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 282 u_int num_patterns, 283 struct cam_ed *device); 284 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 285 u_int num_patterns, 286 struct cam_periph *periph); 287 static xpt_busfunc_t xptedtbusfunc; 288 static xpt_targetfunc_t xptedttargetfunc; 289 static xpt_devicefunc_t xptedtdevicefunc; 290 static xpt_periphfunc_t xptedtperiphfunc; 291 static xpt_pdrvfunc_t xptplistpdrvfunc; 292 static xpt_periphfunc_t xptplistperiphfunc; 293 static int xptedtmatch(struct ccb_dev_match *cdm); 294 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 295 static int xptbustraverse(struct cam_eb *start_bus, 296 xpt_busfunc_t *tr_func, void *arg); 297 static int xpttargettraverse(struct cam_eb *bus, 298 struct cam_et *start_target, 299 xpt_targetfunc_t *tr_func, void *arg); 300 static int xptdevicetraverse(struct cam_et *target, 301 struct cam_ed *start_device, 302 xpt_devicefunc_t *tr_func, void *arg); 303 static int xptperiphtraverse(struct cam_ed *device, 304 struct cam_periph *start_periph, 305 xpt_periphfunc_t *tr_func, void *arg); 306 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 307 xpt_pdrvfunc_t *tr_func, void *arg); 308 static int xptpdperiphtraverse(struct periph_driver **pdrv, 309 struct cam_periph *start_periph, 310 xpt_periphfunc_t *tr_func, 311 void *arg); 312 static xpt_busfunc_t xptdefbusfunc; 313 static xpt_targetfunc_t xptdeftargetfunc; 314 static xpt_devicefunc_t xptdefdevicefunc; 315 static xpt_periphfunc_t xptdefperiphfunc; 316 static void xpt_finishconfig_task(void *context, int pending); 317 static void xpt_dev_async_default(u_int32_t async_code, 318 struct cam_eb *bus, 319 struct cam_et *target, 320 struct cam_ed *device, 321 void *async_arg); 322 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 323 struct cam_et *target, 324 lun_id_t lun_id); 325 static xpt_devicefunc_t xptsetasyncfunc; 326 static xpt_busfunc_t xptsetasyncbusfunc; 327 static cam_status xptregister(struct cam_periph *periph, 328 void *arg); 329 static const char * xpt_action_name(uint32_t action); 330 static __inline int device_is_queued(struct cam_ed *device); 331 332 static __inline int 333 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 334 { 335 int retval; 336 337 mtx_assert(&devq->send_mtx, MA_OWNED); 338 if ((dev->ccbq.queue.entries > 0) && 339 (dev->ccbq.dev_openings > 0) && 340 (dev->ccbq.queue.qfrozen_cnt == 0)) { 341 /* 342 * The priority of a device waiting for controller 343 * resources is that of the highest priority CCB 344 * enqueued. 345 */ 346 retval = 347 xpt_schedule_dev(&devq->send_queue, 348 &dev->devq_entry, 349 CAMQ_GET_PRIO(&dev->ccbq.queue)); 350 } else { 351 retval = 0; 352 } 353 return (retval); 354 } 355 356 static __inline int 357 device_is_queued(struct cam_ed *device) 358 { 359 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 360 } 361 362 static void 363 xpt_periph_init() 364 { 365 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 366 } 367 368 static int 369 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 370 { 371 372 /* 373 * Only allow read-write access. 374 */ 375 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 376 return(EPERM); 377 378 /* 379 * We don't allow nonblocking access. 380 */ 381 if ((flags & O_NONBLOCK) != 0) { 382 printf("%s: can't do nonblocking access\n", devtoname(dev)); 383 return(ENODEV); 384 } 385 386 return(0); 387 } 388 389 static int 390 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 391 { 392 393 return(0); 394 } 395 396 /* 397 * Don't automatically grab the xpt softc lock here even though this is going 398 * through the xpt device. The xpt device is really just a back door for 399 * accessing other devices and SIMs, so the right thing to do is to grab 400 * the appropriate SIM lock once the bus/SIM is located. 401 */ 402 static int 403 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 404 { 405 int error; 406 407 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 408 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 409 } 410 return (error); 411 } 412 413 static int 414 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 415 { 416 int error; 417 418 error = 0; 419 420 switch(cmd) { 421 /* 422 * For the transport layer CAMIOCOMMAND ioctl, we really only want 423 * to accept CCB types that don't quite make sense to send through a 424 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 425 * in the CAM spec. 426 */ 427 case CAMIOCOMMAND: { 428 union ccb *ccb; 429 union ccb *inccb; 430 struct cam_eb *bus; 431 432 inccb = (union ccb *)addr; 433 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 434 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 435 inccb->csio.bio = NULL; 436 #endif 437 438 bus = xpt_find_bus(inccb->ccb_h.path_id); 439 if (bus == NULL) 440 return (EINVAL); 441 442 switch (inccb->ccb_h.func_code) { 443 case XPT_SCAN_BUS: 444 case XPT_RESET_BUS: 445 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 446 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 447 xpt_release_bus(bus); 448 return (EINVAL); 449 } 450 break; 451 case XPT_SCAN_TGT: 452 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 453 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 454 xpt_release_bus(bus); 455 return (EINVAL); 456 } 457 break; 458 default: 459 break; 460 } 461 462 switch(inccb->ccb_h.func_code) { 463 case XPT_SCAN_BUS: 464 case XPT_RESET_BUS: 465 case XPT_PATH_INQ: 466 case XPT_ENG_INQ: 467 case XPT_SCAN_LUN: 468 case XPT_SCAN_TGT: 469 470 ccb = xpt_alloc_ccb(); 471 472 /* 473 * Create a path using the bus, target, and lun the 474 * user passed in. 475 */ 476 if (xpt_create_path(&ccb->ccb_h.path, NULL, 477 inccb->ccb_h.path_id, 478 inccb->ccb_h.target_id, 479 inccb->ccb_h.target_lun) != 480 CAM_REQ_CMP){ 481 error = EINVAL; 482 xpt_free_ccb(ccb); 483 break; 484 } 485 /* Ensure all of our fields are correct */ 486 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 487 inccb->ccb_h.pinfo.priority); 488 xpt_merge_ccb(ccb, inccb); 489 xpt_path_lock(ccb->ccb_h.path); 490 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 491 xpt_path_unlock(ccb->ccb_h.path); 492 bcopy(ccb, inccb, sizeof(union ccb)); 493 xpt_free_path(ccb->ccb_h.path); 494 xpt_free_ccb(ccb); 495 break; 496 497 case XPT_DEBUG: { 498 union ccb ccb; 499 500 /* 501 * This is an immediate CCB, so it's okay to 502 * allocate it on the stack. 503 */ 504 505 /* 506 * Create a path using the bus, target, and lun the 507 * user passed in. 508 */ 509 if (xpt_create_path(&ccb.ccb_h.path, NULL, 510 inccb->ccb_h.path_id, 511 inccb->ccb_h.target_id, 512 inccb->ccb_h.target_lun) != 513 CAM_REQ_CMP){ 514 error = EINVAL; 515 break; 516 } 517 /* Ensure all of our fields are correct */ 518 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 519 inccb->ccb_h.pinfo.priority); 520 xpt_merge_ccb(&ccb, inccb); 521 xpt_action(&ccb); 522 bcopy(&ccb, inccb, sizeof(union ccb)); 523 xpt_free_path(ccb.ccb_h.path); 524 break; 525 526 } 527 case XPT_DEV_MATCH: { 528 struct cam_periph_map_info mapinfo; 529 struct cam_path *old_path; 530 531 /* 532 * We can't deal with physical addresses for this 533 * type of transaction. 534 */ 535 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 536 CAM_DATA_VADDR) { 537 error = EINVAL; 538 break; 539 } 540 541 /* 542 * Save this in case the caller had it set to 543 * something in particular. 544 */ 545 old_path = inccb->ccb_h.path; 546 547 /* 548 * We really don't need a path for the matching 549 * code. The path is needed because of the 550 * debugging statements in xpt_action(). They 551 * assume that the CCB has a valid path. 552 */ 553 inccb->ccb_h.path = xpt_periph->path; 554 555 bzero(&mapinfo, sizeof(mapinfo)); 556 557 /* 558 * Map the pattern and match buffers into kernel 559 * virtual address space. 560 */ 561 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 562 563 if (error) { 564 inccb->ccb_h.path = old_path; 565 break; 566 } 567 568 /* 569 * This is an immediate CCB, we can send it on directly. 570 */ 571 xpt_action(inccb); 572 573 /* 574 * Map the buffers back into user space. 575 */ 576 cam_periph_unmapmem(inccb, &mapinfo); 577 578 inccb->ccb_h.path = old_path; 579 580 error = 0; 581 break; 582 } 583 default: 584 error = ENOTSUP; 585 break; 586 } 587 xpt_release_bus(bus); 588 break; 589 } 590 /* 591 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 592 * with the periphal driver name and unit name filled in. The other 593 * fields don't really matter as input. The passthrough driver name 594 * ("pass"), and unit number are passed back in the ccb. The current 595 * device generation number, and the index into the device peripheral 596 * driver list, and the status are also passed back. Note that 597 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 598 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 599 * (or rather should be) impossible for the device peripheral driver 600 * list to change since we look at the whole thing in one pass, and 601 * we do it with lock protection. 602 * 603 */ 604 case CAMGETPASSTHRU: { 605 union ccb *ccb; 606 struct cam_periph *periph; 607 struct periph_driver **p_drv; 608 char *name; 609 u_int unit; 610 int base_periph_found; 611 612 ccb = (union ccb *)addr; 613 unit = ccb->cgdl.unit_number; 614 name = ccb->cgdl.periph_name; 615 base_periph_found = 0; 616 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 617 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 618 ccb->csio.bio = NULL; 619 #endif 620 621 /* 622 * Sanity check -- make sure we don't get a null peripheral 623 * driver name. 624 */ 625 if (*ccb->cgdl.periph_name == '\0') { 626 error = EINVAL; 627 break; 628 } 629 630 /* Keep the list from changing while we traverse it */ 631 xpt_lock_buses(); 632 633 /* first find our driver in the list of drivers */ 634 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 635 if (strcmp((*p_drv)->driver_name, name) == 0) 636 break; 637 638 if (*p_drv == NULL) { 639 xpt_unlock_buses(); 640 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 641 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 642 *ccb->cgdl.periph_name = '\0'; 643 ccb->cgdl.unit_number = 0; 644 error = ENOENT; 645 break; 646 } 647 648 /* 649 * Run through every peripheral instance of this driver 650 * and check to see whether it matches the unit passed 651 * in by the user. If it does, get out of the loops and 652 * find the passthrough driver associated with that 653 * peripheral driver. 654 */ 655 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 656 periph = TAILQ_NEXT(periph, unit_links)) { 657 658 if (periph->unit_number == unit) 659 break; 660 } 661 /* 662 * If we found the peripheral driver that the user passed 663 * in, go through all of the peripheral drivers for that 664 * particular device and look for a passthrough driver. 665 */ 666 if (periph != NULL) { 667 struct cam_ed *device; 668 int i; 669 670 base_periph_found = 1; 671 device = periph->path->device; 672 for (i = 0, periph = SLIST_FIRST(&device->periphs); 673 periph != NULL; 674 periph = SLIST_NEXT(periph, periph_links), i++) { 675 /* 676 * Check to see whether we have a 677 * passthrough device or not. 678 */ 679 if (strcmp(periph->periph_name, "pass") == 0) { 680 /* 681 * Fill in the getdevlist fields. 682 */ 683 strcpy(ccb->cgdl.periph_name, 684 periph->periph_name); 685 ccb->cgdl.unit_number = 686 periph->unit_number; 687 if (SLIST_NEXT(periph, periph_links)) 688 ccb->cgdl.status = 689 CAM_GDEVLIST_MORE_DEVS; 690 else 691 ccb->cgdl.status = 692 CAM_GDEVLIST_LAST_DEVICE; 693 ccb->cgdl.generation = 694 device->generation; 695 ccb->cgdl.index = i; 696 /* 697 * Fill in some CCB header fields 698 * that the user may want. 699 */ 700 ccb->ccb_h.path_id = 701 periph->path->bus->path_id; 702 ccb->ccb_h.target_id = 703 periph->path->target->target_id; 704 ccb->ccb_h.target_lun = 705 periph->path->device->lun_id; 706 ccb->ccb_h.status = CAM_REQ_CMP; 707 break; 708 } 709 } 710 } 711 712 /* 713 * If the periph is null here, one of two things has 714 * happened. The first possibility is that we couldn't 715 * find the unit number of the particular peripheral driver 716 * that the user is asking about. e.g. the user asks for 717 * the passthrough driver for "da11". We find the list of 718 * "da" peripherals all right, but there is no unit 11. 719 * The other possibility is that we went through the list 720 * of peripheral drivers attached to the device structure, 721 * but didn't find one with the name "pass". Either way, 722 * we return ENOENT, since we couldn't find something. 723 */ 724 if (periph == NULL) { 725 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 726 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 727 *ccb->cgdl.periph_name = '\0'; 728 ccb->cgdl.unit_number = 0; 729 error = ENOENT; 730 /* 731 * It is unfortunate that this is even necessary, 732 * but there are many, many clueless users out there. 733 * If this is true, the user is looking for the 734 * passthrough driver, but doesn't have one in his 735 * kernel. 736 */ 737 if (base_periph_found == 1) { 738 printf("xptioctl: pass driver is not in the " 739 "kernel\n"); 740 printf("xptioctl: put \"device pass\" in " 741 "your kernel config file\n"); 742 } 743 } 744 xpt_unlock_buses(); 745 break; 746 } 747 default: 748 error = ENOTTY; 749 break; 750 } 751 752 return(error); 753 } 754 755 static int 756 cam_module_event_handler(module_t mod, int what, void *arg) 757 { 758 int error; 759 760 switch (what) { 761 case MOD_LOAD: 762 if ((error = xpt_init(NULL)) != 0) 763 return (error); 764 break; 765 case MOD_UNLOAD: 766 return EBUSY; 767 default: 768 return EOPNOTSUPP; 769 } 770 771 return 0; 772 } 773 774 static struct xpt_proto * 775 xpt_proto_find(cam_proto proto) 776 { 777 struct xpt_proto **pp; 778 779 SET_FOREACH(pp, cam_xpt_proto_set) { 780 if ((*pp)->proto == proto) 781 return *pp; 782 } 783 784 return NULL; 785 } 786 787 static void 788 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 789 { 790 791 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 792 xpt_free_path(done_ccb->ccb_h.path); 793 xpt_free_ccb(done_ccb); 794 } else { 795 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 796 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 797 } 798 xpt_release_boot(); 799 } 800 801 /* thread to handle bus rescans */ 802 static void 803 xpt_scanner_thread(void *dummy) 804 { 805 union ccb *ccb; 806 struct cam_path path; 807 808 xpt_lock_buses(); 809 for (;;) { 810 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 811 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 812 "-", 0); 813 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 814 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 815 xpt_unlock_buses(); 816 817 /* 818 * Since lock can be dropped inside and path freed 819 * by completion callback even before return here, 820 * take our own path copy for reference. 821 */ 822 xpt_copy_path(&path, ccb->ccb_h.path); 823 xpt_path_lock(&path); 824 xpt_action(ccb); 825 xpt_path_unlock(&path); 826 xpt_release_path(&path); 827 828 xpt_lock_buses(); 829 } 830 } 831 } 832 833 void 834 xpt_rescan(union ccb *ccb) 835 { 836 struct ccb_hdr *hdr; 837 838 /* Prepare request */ 839 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 840 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 841 ccb->ccb_h.func_code = XPT_SCAN_BUS; 842 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 843 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 844 ccb->ccb_h.func_code = XPT_SCAN_TGT; 845 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 846 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 847 ccb->ccb_h.func_code = XPT_SCAN_LUN; 848 else { 849 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 850 xpt_free_path(ccb->ccb_h.path); 851 xpt_free_ccb(ccb); 852 return; 853 } 854 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 855 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 856 xpt_action_name(ccb->ccb_h.func_code))); 857 858 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 859 ccb->ccb_h.cbfcnp = xpt_rescan_done; 860 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 861 /* Don't make duplicate entries for the same paths. */ 862 xpt_lock_buses(); 863 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 864 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 865 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 866 wakeup(&xsoftc.ccb_scanq); 867 xpt_unlock_buses(); 868 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 869 xpt_free_path(ccb->ccb_h.path); 870 xpt_free_ccb(ccb); 871 return; 872 } 873 } 874 } 875 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 876 xsoftc.buses_to_config++; 877 wakeup(&xsoftc.ccb_scanq); 878 xpt_unlock_buses(); 879 } 880 881 /* Functions accessed by the peripheral drivers */ 882 static int 883 xpt_init(void *dummy) 884 { 885 struct cam_sim *xpt_sim; 886 struct cam_path *path; 887 struct cam_devq *devq; 888 cam_status status; 889 int error, i; 890 891 TAILQ_INIT(&xsoftc.xpt_busses); 892 TAILQ_INIT(&xsoftc.ccb_scanq); 893 STAILQ_INIT(&xsoftc.highpowerq); 894 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 895 896 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 897 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 898 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 899 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 900 901 #ifdef CAM_BOOT_DELAY 902 /* 903 * Override this value at compile time to assist our users 904 * who don't use loader to boot a kernel. 905 */ 906 xsoftc.boot_delay = CAM_BOOT_DELAY; 907 #endif 908 /* 909 * The xpt layer is, itself, the equivalent of a SIM. 910 * Allow 16 ccbs in the ccb pool for it. This should 911 * give decent parallelism when we probe buses and 912 * perform other XPT functions. 913 */ 914 devq = cam_simq_alloc(16); 915 xpt_sim = cam_sim_alloc(xptaction, 916 xptpoll, 917 "xpt", 918 /*softc*/NULL, 919 /*unit*/0, 920 /*mtx*/&xsoftc.xpt_lock, 921 /*max_dev_transactions*/0, 922 /*max_tagged_dev_transactions*/0, 923 devq); 924 if (xpt_sim == NULL) 925 return (ENOMEM); 926 927 mtx_lock(&xsoftc.xpt_lock); 928 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 929 mtx_unlock(&xsoftc.xpt_lock); 930 printf("xpt_init: xpt_bus_register failed with status %#x," 931 " failing attach\n", status); 932 return (EINVAL); 933 } 934 mtx_unlock(&xsoftc.xpt_lock); 935 936 /* 937 * Looking at the XPT from the SIM layer, the XPT is 938 * the equivalent of a peripheral driver. Allocate 939 * a peripheral driver entry for us. 940 */ 941 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 942 CAM_TARGET_WILDCARD, 943 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 944 printf("xpt_init: xpt_create_path failed with status %#x," 945 " failing attach\n", status); 946 return (EINVAL); 947 } 948 xpt_path_lock(path); 949 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 950 path, NULL, 0, xpt_sim); 951 xpt_path_unlock(path); 952 xpt_free_path(path); 953 954 if (cam_num_doneqs < 1) 955 cam_num_doneqs = 1 + mp_ncpus / 6; 956 else if (cam_num_doneqs > MAXCPU) 957 cam_num_doneqs = MAXCPU; 958 for (i = 0; i < cam_num_doneqs; i++) { 959 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 960 MTX_DEF); 961 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 962 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 963 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 964 if (error != 0) { 965 cam_num_doneqs = i; 966 break; 967 } 968 } 969 if (cam_num_doneqs < 1) { 970 printf("xpt_init: Cannot init completion queues " 971 "- failing attach\n"); 972 return (ENOMEM); 973 } 974 /* 975 * Register a callback for when interrupts are enabled. 976 */ 977 xsoftc.xpt_config_hook = 978 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 979 M_CAMXPT, M_NOWAIT | M_ZERO); 980 if (xsoftc.xpt_config_hook == NULL) { 981 printf("xpt_init: Cannot malloc config hook " 982 "- failing attach\n"); 983 return (ENOMEM); 984 } 985 xsoftc.xpt_config_hook->ich_func = xpt_config; 986 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 987 free (xsoftc.xpt_config_hook, M_CAMXPT); 988 printf("xpt_init: config_intrhook_establish failed " 989 "- failing attach\n"); 990 } 991 992 return (0); 993 } 994 995 static cam_status 996 xptregister(struct cam_periph *periph, void *arg) 997 { 998 struct cam_sim *xpt_sim; 999 1000 if (periph == NULL) { 1001 printf("xptregister: periph was NULL!!\n"); 1002 return(CAM_REQ_CMP_ERR); 1003 } 1004 1005 xpt_sim = (struct cam_sim *)arg; 1006 xpt_sim->softc = periph; 1007 xpt_periph = periph; 1008 periph->softc = NULL; 1009 1010 return(CAM_REQ_CMP); 1011 } 1012 1013 int32_t 1014 xpt_add_periph(struct cam_periph *periph) 1015 { 1016 struct cam_ed *device; 1017 int32_t status; 1018 1019 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1020 device = periph->path->device; 1021 status = CAM_REQ_CMP; 1022 if (device != NULL) { 1023 mtx_lock(&device->target->bus->eb_mtx); 1024 device->generation++; 1025 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1026 mtx_unlock(&device->target->bus->eb_mtx); 1027 atomic_add_32(&xsoftc.xpt_generation, 1); 1028 } 1029 1030 return (status); 1031 } 1032 1033 void 1034 xpt_remove_periph(struct cam_periph *periph) 1035 { 1036 struct cam_ed *device; 1037 1038 device = periph->path->device; 1039 if (device != NULL) { 1040 mtx_lock(&device->target->bus->eb_mtx); 1041 device->generation++; 1042 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1043 mtx_unlock(&device->target->bus->eb_mtx); 1044 atomic_add_32(&xsoftc.xpt_generation, 1); 1045 } 1046 } 1047 1048 1049 void 1050 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1051 { 1052 struct cam_path *path = periph->path; 1053 struct xpt_proto *proto; 1054 1055 cam_periph_assert(periph, MA_OWNED); 1056 periph->flags |= CAM_PERIPH_ANNOUNCED; 1057 1058 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1059 periph->periph_name, periph->unit_number, 1060 path->bus->sim->sim_name, 1061 path->bus->sim->unit_number, 1062 path->bus->sim->bus_id, 1063 path->bus->path_id, 1064 path->target->target_id, 1065 (uintmax_t)path->device->lun_id); 1066 printf("%s%d: ", periph->periph_name, periph->unit_number); 1067 proto = xpt_proto_find(path->device->protocol); 1068 if (proto) 1069 proto->ops->announce(path->device); 1070 else 1071 printf("%s%d: Unknown protocol device %d\n", 1072 periph->periph_name, periph->unit_number, 1073 path->device->protocol); 1074 if (path->device->serial_num_len > 0) { 1075 /* Don't wrap the screen - print only the first 60 chars */ 1076 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1077 periph->unit_number, path->device->serial_num); 1078 } 1079 /* Announce transport details. */ 1080 path->bus->xport->ops->announce(periph); 1081 /* Announce command queueing. */ 1082 if (path->device->inq_flags & SID_CmdQue 1083 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1084 printf("%s%d: Command Queueing enabled\n", 1085 periph->periph_name, periph->unit_number); 1086 } 1087 /* Announce caller's details if they've passed in. */ 1088 if (announce_string != NULL) 1089 printf("%s%d: %s\n", periph->periph_name, 1090 periph->unit_number, announce_string); 1091 } 1092 1093 void 1094 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1095 { 1096 if (quirks != 0) { 1097 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1098 periph->unit_number, quirks, bit_string); 1099 } 1100 } 1101 1102 void 1103 xpt_denounce_periph(struct cam_periph *periph) 1104 { 1105 struct cam_path *path = periph->path; 1106 struct xpt_proto *proto; 1107 1108 cam_periph_assert(periph, MA_OWNED); 1109 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1110 periph->periph_name, periph->unit_number, 1111 path->bus->sim->sim_name, 1112 path->bus->sim->unit_number, 1113 path->bus->sim->bus_id, 1114 path->bus->path_id, 1115 path->target->target_id, 1116 (uintmax_t)path->device->lun_id); 1117 printf("%s%d: ", periph->periph_name, periph->unit_number); 1118 proto = xpt_proto_find(path->device->protocol); 1119 if (proto) 1120 proto->ops->denounce(path->device); 1121 else 1122 printf("%s%d: Unknown protocol device %d\n", 1123 periph->periph_name, periph->unit_number, 1124 path->device->protocol); 1125 if (path->device->serial_num_len > 0) 1126 printf(" s/n %.60s", path->device->serial_num); 1127 printf(" detached\n"); 1128 } 1129 1130 1131 int 1132 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1133 { 1134 int ret = -1, l, o; 1135 struct ccb_dev_advinfo cdai; 1136 struct scsi_vpd_id_descriptor *idd; 1137 1138 xpt_path_assert(path, MA_OWNED); 1139 1140 memset(&cdai, 0, sizeof(cdai)); 1141 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1142 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1143 cdai.flags = CDAI_FLAG_NONE; 1144 cdai.bufsiz = len; 1145 1146 if (!strcmp(attr, "GEOM::ident")) 1147 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1148 else if (!strcmp(attr, "GEOM::physpath")) 1149 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1150 else if (strcmp(attr, "GEOM::lunid") == 0 || 1151 strcmp(attr, "GEOM::lunname") == 0) { 1152 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1153 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1154 } else 1155 goto out; 1156 1157 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1158 if (cdai.buf == NULL) { 1159 ret = ENOMEM; 1160 goto out; 1161 } 1162 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1163 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1164 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1165 if (cdai.provsiz == 0) 1166 goto out; 1167 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1168 if (strcmp(attr, "GEOM::lunid") == 0) { 1169 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1170 cdai.provsiz, scsi_devid_is_lun_naa); 1171 if (idd == NULL) 1172 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1173 cdai.provsiz, scsi_devid_is_lun_eui64); 1174 if (idd == NULL) 1175 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1176 cdai.provsiz, scsi_devid_is_lun_uuid); 1177 if (idd == NULL) 1178 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1179 cdai.provsiz, scsi_devid_is_lun_md5); 1180 } else 1181 idd = NULL; 1182 if (idd == NULL) 1183 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1184 cdai.provsiz, scsi_devid_is_lun_t10); 1185 if (idd == NULL) 1186 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1187 cdai.provsiz, scsi_devid_is_lun_name); 1188 if (idd == NULL) 1189 goto out; 1190 ret = 0; 1191 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1192 if (idd->length < len) { 1193 for (l = 0; l < idd->length; l++) 1194 buf[l] = idd->identifier[l] ? 1195 idd->identifier[l] : ' '; 1196 buf[l] = 0; 1197 } else 1198 ret = EFAULT; 1199 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1200 l = strnlen(idd->identifier, idd->length); 1201 if (l < len) { 1202 bcopy(idd->identifier, buf, l); 1203 buf[l] = 0; 1204 } else 1205 ret = EFAULT; 1206 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1207 && idd->identifier[0] == 0x10) { 1208 if ((idd->length - 2) * 2 + 4 < len) { 1209 for (l = 2, o = 0; l < idd->length; l++) { 1210 if (l == 6 || l == 8 || l == 10 || l == 12) 1211 o += sprintf(buf + o, "-"); 1212 o += sprintf(buf + o, "%02x", 1213 idd->identifier[l]); 1214 } 1215 } else 1216 ret = EFAULT; 1217 } else { 1218 if (idd->length * 2 < len) { 1219 for (l = 0; l < idd->length; l++) 1220 sprintf(buf + l * 2, "%02x", 1221 idd->identifier[l]); 1222 } else 1223 ret = EFAULT; 1224 } 1225 } else { 1226 ret = 0; 1227 if (strlcpy(buf, cdai.buf, len) >= len) 1228 ret = EFAULT; 1229 } 1230 1231 out: 1232 if (cdai.buf != NULL) 1233 free(cdai.buf, M_CAMXPT); 1234 return ret; 1235 } 1236 1237 static dev_match_ret 1238 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1239 struct cam_eb *bus) 1240 { 1241 dev_match_ret retval; 1242 u_int i; 1243 1244 retval = DM_RET_NONE; 1245 1246 /* 1247 * If we aren't given something to match against, that's an error. 1248 */ 1249 if (bus == NULL) 1250 return(DM_RET_ERROR); 1251 1252 /* 1253 * If there are no match entries, then this bus matches no 1254 * matter what. 1255 */ 1256 if ((patterns == NULL) || (num_patterns == 0)) 1257 return(DM_RET_DESCEND | DM_RET_COPY); 1258 1259 for (i = 0; i < num_patterns; i++) { 1260 struct bus_match_pattern *cur_pattern; 1261 1262 /* 1263 * If the pattern in question isn't for a bus node, we 1264 * aren't interested. However, we do indicate to the 1265 * calling routine that we should continue descending the 1266 * tree, since the user wants to match against lower-level 1267 * EDT elements. 1268 */ 1269 if (patterns[i].type != DEV_MATCH_BUS) { 1270 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1271 retval |= DM_RET_DESCEND; 1272 continue; 1273 } 1274 1275 cur_pattern = &patterns[i].pattern.bus_pattern; 1276 1277 /* 1278 * If they want to match any bus node, we give them any 1279 * device node. 1280 */ 1281 if (cur_pattern->flags == BUS_MATCH_ANY) { 1282 /* set the copy flag */ 1283 retval |= DM_RET_COPY; 1284 1285 /* 1286 * If we've already decided on an action, go ahead 1287 * and return. 1288 */ 1289 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1290 return(retval); 1291 } 1292 1293 /* 1294 * Not sure why someone would do this... 1295 */ 1296 if (cur_pattern->flags == BUS_MATCH_NONE) 1297 continue; 1298 1299 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1300 && (cur_pattern->path_id != bus->path_id)) 1301 continue; 1302 1303 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1304 && (cur_pattern->bus_id != bus->sim->bus_id)) 1305 continue; 1306 1307 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1308 && (cur_pattern->unit_number != bus->sim->unit_number)) 1309 continue; 1310 1311 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1312 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1313 DEV_IDLEN) != 0)) 1314 continue; 1315 1316 /* 1317 * If we get to this point, the user definitely wants 1318 * information on this bus. So tell the caller to copy the 1319 * data out. 1320 */ 1321 retval |= DM_RET_COPY; 1322 1323 /* 1324 * If the return action has been set to descend, then we 1325 * know that we've already seen a non-bus matching 1326 * expression, therefore we need to further descend the tree. 1327 * This won't change by continuing around the loop, so we 1328 * go ahead and return. If we haven't seen a non-bus 1329 * matching expression, we keep going around the loop until 1330 * we exhaust the matching expressions. We'll set the stop 1331 * flag once we fall out of the loop. 1332 */ 1333 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1334 return(retval); 1335 } 1336 1337 /* 1338 * If the return action hasn't been set to descend yet, that means 1339 * we haven't seen anything other than bus matching patterns. So 1340 * tell the caller to stop descending the tree -- the user doesn't 1341 * want to match against lower level tree elements. 1342 */ 1343 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1344 retval |= DM_RET_STOP; 1345 1346 return(retval); 1347 } 1348 1349 static dev_match_ret 1350 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1351 struct cam_ed *device) 1352 { 1353 dev_match_ret retval; 1354 u_int i; 1355 1356 retval = DM_RET_NONE; 1357 1358 /* 1359 * If we aren't given something to match against, that's an error. 1360 */ 1361 if (device == NULL) 1362 return(DM_RET_ERROR); 1363 1364 /* 1365 * If there are no match entries, then this device matches no 1366 * matter what. 1367 */ 1368 if ((patterns == NULL) || (num_patterns == 0)) 1369 return(DM_RET_DESCEND | DM_RET_COPY); 1370 1371 for (i = 0; i < num_patterns; i++) { 1372 struct device_match_pattern *cur_pattern; 1373 struct scsi_vpd_device_id *device_id_page; 1374 1375 /* 1376 * If the pattern in question isn't for a device node, we 1377 * aren't interested. 1378 */ 1379 if (patterns[i].type != DEV_MATCH_DEVICE) { 1380 if ((patterns[i].type == DEV_MATCH_PERIPH) 1381 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1382 retval |= DM_RET_DESCEND; 1383 continue; 1384 } 1385 1386 cur_pattern = &patterns[i].pattern.device_pattern; 1387 1388 /* Error out if mutually exclusive options are specified. */ 1389 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1390 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1391 return(DM_RET_ERROR); 1392 1393 /* 1394 * If they want to match any device node, we give them any 1395 * device node. 1396 */ 1397 if (cur_pattern->flags == DEV_MATCH_ANY) 1398 goto copy_dev_node; 1399 1400 /* 1401 * Not sure why someone would do this... 1402 */ 1403 if (cur_pattern->flags == DEV_MATCH_NONE) 1404 continue; 1405 1406 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1407 && (cur_pattern->path_id != device->target->bus->path_id)) 1408 continue; 1409 1410 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1411 && (cur_pattern->target_id != device->target->target_id)) 1412 continue; 1413 1414 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1415 && (cur_pattern->target_lun != device->lun_id)) 1416 continue; 1417 1418 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1419 && (cam_quirkmatch((caddr_t)&device->inq_data, 1420 (caddr_t)&cur_pattern->data.inq_pat, 1421 1, sizeof(cur_pattern->data.inq_pat), 1422 scsi_static_inquiry_match) == NULL)) 1423 continue; 1424 1425 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1426 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1427 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1428 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1429 device->device_id_len 1430 - SVPD_DEVICE_ID_HDR_LEN, 1431 cur_pattern->data.devid_pat.id, 1432 cur_pattern->data.devid_pat.id_len) != 0)) 1433 continue; 1434 1435 copy_dev_node: 1436 /* 1437 * If we get to this point, the user definitely wants 1438 * information on this device. So tell the caller to copy 1439 * the data out. 1440 */ 1441 retval |= DM_RET_COPY; 1442 1443 /* 1444 * If the return action has been set to descend, then we 1445 * know that we've already seen a peripheral matching 1446 * expression, therefore we need to further descend the tree. 1447 * This won't change by continuing around the loop, so we 1448 * go ahead and return. If we haven't seen a peripheral 1449 * matching expression, we keep going around the loop until 1450 * we exhaust the matching expressions. We'll set the stop 1451 * flag once we fall out of the loop. 1452 */ 1453 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1454 return(retval); 1455 } 1456 1457 /* 1458 * If the return action hasn't been set to descend yet, that means 1459 * we haven't seen any peripheral matching patterns. So tell the 1460 * caller to stop descending the tree -- the user doesn't want to 1461 * match against lower level tree elements. 1462 */ 1463 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1464 retval |= DM_RET_STOP; 1465 1466 return(retval); 1467 } 1468 1469 /* 1470 * Match a single peripheral against any number of match patterns. 1471 */ 1472 static dev_match_ret 1473 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1474 struct cam_periph *periph) 1475 { 1476 dev_match_ret retval; 1477 u_int i; 1478 1479 /* 1480 * If we aren't given something to match against, that's an error. 1481 */ 1482 if (periph == NULL) 1483 return(DM_RET_ERROR); 1484 1485 /* 1486 * If there are no match entries, then this peripheral matches no 1487 * matter what. 1488 */ 1489 if ((patterns == NULL) || (num_patterns == 0)) 1490 return(DM_RET_STOP | DM_RET_COPY); 1491 1492 /* 1493 * There aren't any nodes below a peripheral node, so there's no 1494 * reason to descend the tree any further. 1495 */ 1496 retval = DM_RET_STOP; 1497 1498 for (i = 0; i < num_patterns; i++) { 1499 struct periph_match_pattern *cur_pattern; 1500 1501 /* 1502 * If the pattern in question isn't for a peripheral, we 1503 * aren't interested. 1504 */ 1505 if (patterns[i].type != DEV_MATCH_PERIPH) 1506 continue; 1507 1508 cur_pattern = &patterns[i].pattern.periph_pattern; 1509 1510 /* 1511 * If they want to match on anything, then we will do so. 1512 */ 1513 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1514 /* set the copy flag */ 1515 retval |= DM_RET_COPY; 1516 1517 /* 1518 * We've already set the return action to stop, 1519 * since there are no nodes below peripherals in 1520 * the tree. 1521 */ 1522 return(retval); 1523 } 1524 1525 /* 1526 * Not sure why someone would do this... 1527 */ 1528 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1529 continue; 1530 1531 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1532 && (cur_pattern->path_id != periph->path->bus->path_id)) 1533 continue; 1534 1535 /* 1536 * For the target and lun id's, we have to make sure the 1537 * target and lun pointers aren't NULL. The xpt peripheral 1538 * has a wildcard target and device. 1539 */ 1540 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1541 && ((periph->path->target == NULL) 1542 ||(cur_pattern->target_id != periph->path->target->target_id))) 1543 continue; 1544 1545 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1546 && ((periph->path->device == NULL) 1547 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1548 continue; 1549 1550 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1551 && (cur_pattern->unit_number != periph->unit_number)) 1552 continue; 1553 1554 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1555 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1556 DEV_IDLEN) != 0)) 1557 continue; 1558 1559 /* 1560 * If we get to this point, the user definitely wants 1561 * information on this peripheral. So tell the caller to 1562 * copy the data out. 1563 */ 1564 retval |= DM_RET_COPY; 1565 1566 /* 1567 * The return action has already been set to stop, since 1568 * peripherals don't have any nodes below them in the EDT. 1569 */ 1570 return(retval); 1571 } 1572 1573 /* 1574 * If we get to this point, the peripheral that was passed in 1575 * doesn't match any of the patterns. 1576 */ 1577 return(retval); 1578 } 1579 1580 static int 1581 xptedtbusfunc(struct cam_eb *bus, void *arg) 1582 { 1583 struct ccb_dev_match *cdm; 1584 struct cam_et *target; 1585 dev_match_ret retval; 1586 1587 cdm = (struct ccb_dev_match *)arg; 1588 1589 /* 1590 * If our position is for something deeper in the tree, that means 1591 * that we've already seen this node. So, we keep going down. 1592 */ 1593 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1594 && (cdm->pos.cookie.bus == bus) 1595 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1596 && (cdm->pos.cookie.target != NULL)) 1597 retval = DM_RET_DESCEND; 1598 else 1599 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1600 1601 /* 1602 * If we got an error, bail out of the search. 1603 */ 1604 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1605 cdm->status = CAM_DEV_MATCH_ERROR; 1606 return(0); 1607 } 1608 1609 /* 1610 * If the copy flag is set, copy this bus out. 1611 */ 1612 if (retval & DM_RET_COPY) { 1613 int spaceleft, j; 1614 1615 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1616 sizeof(struct dev_match_result)); 1617 1618 /* 1619 * If we don't have enough space to put in another 1620 * match result, save our position and tell the 1621 * user there are more devices to check. 1622 */ 1623 if (spaceleft < sizeof(struct dev_match_result)) { 1624 bzero(&cdm->pos, sizeof(cdm->pos)); 1625 cdm->pos.position_type = 1626 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1627 1628 cdm->pos.cookie.bus = bus; 1629 cdm->pos.generations[CAM_BUS_GENERATION]= 1630 xsoftc.bus_generation; 1631 cdm->status = CAM_DEV_MATCH_MORE; 1632 return(0); 1633 } 1634 j = cdm->num_matches; 1635 cdm->num_matches++; 1636 cdm->matches[j].type = DEV_MATCH_BUS; 1637 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1638 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1639 cdm->matches[j].result.bus_result.unit_number = 1640 bus->sim->unit_number; 1641 strncpy(cdm->matches[j].result.bus_result.dev_name, 1642 bus->sim->sim_name, DEV_IDLEN); 1643 } 1644 1645 /* 1646 * If the user is only interested in buses, there's no 1647 * reason to descend to the next level in the tree. 1648 */ 1649 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1650 return(1); 1651 1652 /* 1653 * If there is a target generation recorded, check it to 1654 * make sure the target list hasn't changed. 1655 */ 1656 mtx_lock(&bus->eb_mtx); 1657 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1658 && (cdm->pos.cookie.bus == bus) 1659 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1660 && (cdm->pos.cookie.target != NULL)) { 1661 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1662 bus->generation)) { 1663 mtx_unlock(&bus->eb_mtx); 1664 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1665 return (0); 1666 } 1667 target = (struct cam_et *)cdm->pos.cookie.target; 1668 target->refcount++; 1669 } else 1670 target = NULL; 1671 mtx_unlock(&bus->eb_mtx); 1672 1673 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1674 } 1675 1676 static int 1677 xptedttargetfunc(struct cam_et *target, void *arg) 1678 { 1679 struct ccb_dev_match *cdm; 1680 struct cam_eb *bus; 1681 struct cam_ed *device; 1682 1683 cdm = (struct ccb_dev_match *)arg; 1684 bus = target->bus; 1685 1686 /* 1687 * If there is a device list generation recorded, check it to 1688 * make sure the device list hasn't changed. 1689 */ 1690 mtx_lock(&bus->eb_mtx); 1691 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1692 && (cdm->pos.cookie.bus == bus) 1693 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1694 && (cdm->pos.cookie.target == target) 1695 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1696 && (cdm->pos.cookie.device != NULL)) { 1697 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1698 target->generation) { 1699 mtx_unlock(&bus->eb_mtx); 1700 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1701 return(0); 1702 } 1703 device = (struct cam_ed *)cdm->pos.cookie.device; 1704 device->refcount++; 1705 } else 1706 device = NULL; 1707 mtx_unlock(&bus->eb_mtx); 1708 1709 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1710 } 1711 1712 static int 1713 xptedtdevicefunc(struct cam_ed *device, void *arg) 1714 { 1715 struct cam_eb *bus; 1716 struct cam_periph *periph; 1717 struct ccb_dev_match *cdm; 1718 dev_match_ret retval; 1719 1720 cdm = (struct ccb_dev_match *)arg; 1721 bus = device->target->bus; 1722 1723 /* 1724 * If our position is for something deeper in the tree, that means 1725 * that we've already seen this node. So, we keep going down. 1726 */ 1727 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1728 && (cdm->pos.cookie.device == device) 1729 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1730 && (cdm->pos.cookie.periph != NULL)) 1731 retval = DM_RET_DESCEND; 1732 else 1733 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1734 device); 1735 1736 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1737 cdm->status = CAM_DEV_MATCH_ERROR; 1738 return(0); 1739 } 1740 1741 /* 1742 * If the copy flag is set, copy this device out. 1743 */ 1744 if (retval & DM_RET_COPY) { 1745 int spaceleft, j; 1746 1747 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1748 sizeof(struct dev_match_result)); 1749 1750 /* 1751 * If we don't have enough space to put in another 1752 * match result, save our position and tell the 1753 * user there are more devices to check. 1754 */ 1755 if (spaceleft < sizeof(struct dev_match_result)) { 1756 bzero(&cdm->pos, sizeof(cdm->pos)); 1757 cdm->pos.position_type = 1758 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1759 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1760 1761 cdm->pos.cookie.bus = device->target->bus; 1762 cdm->pos.generations[CAM_BUS_GENERATION]= 1763 xsoftc.bus_generation; 1764 cdm->pos.cookie.target = device->target; 1765 cdm->pos.generations[CAM_TARGET_GENERATION] = 1766 device->target->bus->generation; 1767 cdm->pos.cookie.device = device; 1768 cdm->pos.generations[CAM_DEV_GENERATION] = 1769 device->target->generation; 1770 cdm->status = CAM_DEV_MATCH_MORE; 1771 return(0); 1772 } 1773 j = cdm->num_matches; 1774 cdm->num_matches++; 1775 cdm->matches[j].type = DEV_MATCH_DEVICE; 1776 cdm->matches[j].result.device_result.path_id = 1777 device->target->bus->path_id; 1778 cdm->matches[j].result.device_result.target_id = 1779 device->target->target_id; 1780 cdm->matches[j].result.device_result.target_lun = 1781 device->lun_id; 1782 cdm->matches[j].result.device_result.protocol = 1783 device->protocol; 1784 bcopy(&device->inq_data, 1785 &cdm->matches[j].result.device_result.inq_data, 1786 sizeof(struct scsi_inquiry_data)); 1787 bcopy(&device->ident_data, 1788 &cdm->matches[j].result.device_result.ident_data, 1789 sizeof(struct ata_params)); 1790 1791 /* Let the user know whether this device is unconfigured */ 1792 if (device->flags & CAM_DEV_UNCONFIGURED) 1793 cdm->matches[j].result.device_result.flags = 1794 DEV_RESULT_UNCONFIGURED; 1795 else 1796 cdm->matches[j].result.device_result.flags = 1797 DEV_RESULT_NOFLAG; 1798 } 1799 1800 /* 1801 * If the user isn't interested in peripherals, don't descend 1802 * the tree any further. 1803 */ 1804 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1805 return(1); 1806 1807 /* 1808 * If there is a peripheral list generation recorded, make sure 1809 * it hasn't changed. 1810 */ 1811 xpt_lock_buses(); 1812 mtx_lock(&bus->eb_mtx); 1813 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1814 && (cdm->pos.cookie.bus == bus) 1815 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1816 && (cdm->pos.cookie.target == device->target) 1817 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1818 && (cdm->pos.cookie.device == device) 1819 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1820 && (cdm->pos.cookie.periph != NULL)) { 1821 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1822 device->generation) { 1823 mtx_unlock(&bus->eb_mtx); 1824 xpt_unlock_buses(); 1825 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1826 return(0); 1827 } 1828 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1829 periph->refcount++; 1830 } else 1831 periph = NULL; 1832 mtx_unlock(&bus->eb_mtx); 1833 xpt_unlock_buses(); 1834 1835 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1836 } 1837 1838 static int 1839 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1840 { 1841 struct ccb_dev_match *cdm; 1842 dev_match_ret retval; 1843 1844 cdm = (struct ccb_dev_match *)arg; 1845 1846 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1847 1848 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1849 cdm->status = CAM_DEV_MATCH_ERROR; 1850 return(0); 1851 } 1852 1853 /* 1854 * If the copy flag is set, copy this peripheral out. 1855 */ 1856 if (retval & DM_RET_COPY) { 1857 int spaceleft, j; 1858 1859 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1860 sizeof(struct dev_match_result)); 1861 1862 /* 1863 * If we don't have enough space to put in another 1864 * match result, save our position and tell the 1865 * user there are more devices to check. 1866 */ 1867 if (spaceleft < sizeof(struct dev_match_result)) { 1868 bzero(&cdm->pos, sizeof(cdm->pos)); 1869 cdm->pos.position_type = 1870 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1871 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1872 CAM_DEV_POS_PERIPH; 1873 1874 cdm->pos.cookie.bus = periph->path->bus; 1875 cdm->pos.generations[CAM_BUS_GENERATION]= 1876 xsoftc.bus_generation; 1877 cdm->pos.cookie.target = periph->path->target; 1878 cdm->pos.generations[CAM_TARGET_GENERATION] = 1879 periph->path->bus->generation; 1880 cdm->pos.cookie.device = periph->path->device; 1881 cdm->pos.generations[CAM_DEV_GENERATION] = 1882 periph->path->target->generation; 1883 cdm->pos.cookie.periph = periph; 1884 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1885 periph->path->device->generation; 1886 cdm->status = CAM_DEV_MATCH_MORE; 1887 return(0); 1888 } 1889 1890 j = cdm->num_matches; 1891 cdm->num_matches++; 1892 cdm->matches[j].type = DEV_MATCH_PERIPH; 1893 cdm->matches[j].result.periph_result.path_id = 1894 periph->path->bus->path_id; 1895 cdm->matches[j].result.periph_result.target_id = 1896 periph->path->target->target_id; 1897 cdm->matches[j].result.periph_result.target_lun = 1898 periph->path->device->lun_id; 1899 cdm->matches[j].result.periph_result.unit_number = 1900 periph->unit_number; 1901 strncpy(cdm->matches[j].result.periph_result.periph_name, 1902 periph->periph_name, DEV_IDLEN); 1903 } 1904 1905 return(1); 1906 } 1907 1908 static int 1909 xptedtmatch(struct ccb_dev_match *cdm) 1910 { 1911 struct cam_eb *bus; 1912 int ret; 1913 1914 cdm->num_matches = 0; 1915 1916 /* 1917 * Check the bus list generation. If it has changed, the user 1918 * needs to reset everything and start over. 1919 */ 1920 xpt_lock_buses(); 1921 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1922 && (cdm->pos.cookie.bus != NULL)) { 1923 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1924 xsoftc.bus_generation) { 1925 xpt_unlock_buses(); 1926 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1927 return(0); 1928 } 1929 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1930 bus->refcount++; 1931 } else 1932 bus = NULL; 1933 xpt_unlock_buses(); 1934 1935 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1936 1937 /* 1938 * If we get back 0, that means that we had to stop before fully 1939 * traversing the EDT. It also means that one of the subroutines 1940 * has set the status field to the proper value. If we get back 1, 1941 * we've fully traversed the EDT and copied out any matching entries. 1942 */ 1943 if (ret == 1) 1944 cdm->status = CAM_DEV_MATCH_LAST; 1945 1946 return(ret); 1947 } 1948 1949 static int 1950 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1951 { 1952 struct cam_periph *periph; 1953 struct ccb_dev_match *cdm; 1954 1955 cdm = (struct ccb_dev_match *)arg; 1956 1957 xpt_lock_buses(); 1958 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1959 && (cdm->pos.cookie.pdrv == pdrv) 1960 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1961 && (cdm->pos.cookie.periph != NULL)) { 1962 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1963 (*pdrv)->generation) { 1964 xpt_unlock_buses(); 1965 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1966 return(0); 1967 } 1968 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1969 periph->refcount++; 1970 } else 1971 periph = NULL; 1972 xpt_unlock_buses(); 1973 1974 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1975 } 1976 1977 static int 1978 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1979 { 1980 struct ccb_dev_match *cdm; 1981 dev_match_ret retval; 1982 1983 cdm = (struct ccb_dev_match *)arg; 1984 1985 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1986 1987 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1988 cdm->status = CAM_DEV_MATCH_ERROR; 1989 return(0); 1990 } 1991 1992 /* 1993 * If the copy flag is set, copy this peripheral out. 1994 */ 1995 if (retval & DM_RET_COPY) { 1996 int spaceleft, j; 1997 1998 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1999 sizeof(struct dev_match_result)); 2000 2001 /* 2002 * If we don't have enough space to put in another 2003 * match result, save our position and tell the 2004 * user there are more devices to check. 2005 */ 2006 if (spaceleft < sizeof(struct dev_match_result)) { 2007 struct periph_driver **pdrv; 2008 2009 pdrv = NULL; 2010 bzero(&cdm->pos, sizeof(cdm->pos)); 2011 cdm->pos.position_type = 2012 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2013 CAM_DEV_POS_PERIPH; 2014 2015 /* 2016 * This may look a bit non-sensical, but it is 2017 * actually quite logical. There are very few 2018 * peripheral drivers, and bloating every peripheral 2019 * structure with a pointer back to its parent 2020 * peripheral driver linker set entry would cost 2021 * more in the long run than doing this quick lookup. 2022 */ 2023 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2024 if (strcmp((*pdrv)->driver_name, 2025 periph->periph_name) == 0) 2026 break; 2027 } 2028 2029 if (*pdrv == NULL) { 2030 cdm->status = CAM_DEV_MATCH_ERROR; 2031 return(0); 2032 } 2033 2034 cdm->pos.cookie.pdrv = pdrv; 2035 /* 2036 * The periph generation slot does double duty, as 2037 * does the periph pointer slot. They are used for 2038 * both edt and pdrv lookups and positioning. 2039 */ 2040 cdm->pos.cookie.periph = periph; 2041 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2042 (*pdrv)->generation; 2043 cdm->status = CAM_DEV_MATCH_MORE; 2044 return(0); 2045 } 2046 2047 j = cdm->num_matches; 2048 cdm->num_matches++; 2049 cdm->matches[j].type = DEV_MATCH_PERIPH; 2050 cdm->matches[j].result.periph_result.path_id = 2051 periph->path->bus->path_id; 2052 2053 /* 2054 * The transport layer peripheral doesn't have a target or 2055 * lun. 2056 */ 2057 if (periph->path->target) 2058 cdm->matches[j].result.periph_result.target_id = 2059 periph->path->target->target_id; 2060 else 2061 cdm->matches[j].result.periph_result.target_id = 2062 CAM_TARGET_WILDCARD; 2063 2064 if (periph->path->device) 2065 cdm->matches[j].result.periph_result.target_lun = 2066 periph->path->device->lun_id; 2067 else 2068 cdm->matches[j].result.periph_result.target_lun = 2069 CAM_LUN_WILDCARD; 2070 2071 cdm->matches[j].result.periph_result.unit_number = 2072 periph->unit_number; 2073 strncpy(cdm->matches[j].result.periph_result.periph_name, 2074 periph->periph_name, DEV_IDLEN); 2075 } 2076 2077 return(1); 2078 } 2079 2080 static int 2081 xptperiphlistmatch(struct ccb_dev_match *cdm) 2082 { 2083 int ret; 2084 2085 cdm->num_matches = 0; 2086 2087 /* 2088 * At this point in the edt traversal function, we check the bus 2089 * list generation to make sure that no buses have been added or 2090 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2091 * For the peripheral driver list traversal function, however, we 2092 * don't have to worry about new peripheral driver types coming or 2093 * going; they're in a linker set, and therefore can't change 2094 * without a recompile. 2095 */ 2096 2097 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2098 && (cdm->pos.cookie.pdrv != NULL)) 2099 ret = xptpdrvtraverse( 2100 (struct periph_driver **)cdm->pos.cookie.pdrv, 2101 xptplistpdrvfunc, cdm); 2102 else 2103 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2104 2105 /* 2106 * If we get back 0, that means that we had to stop before fully 2107 * traversing the peripheral driver tree. It also means that one of 2108 * the subroutines has set the status field to the proper value. If 2109 * we get back 1, we've fully traversed the EDT and copied out any 2110 * matching entries. 2111 */ 2112 if (ret == 1) 2113 cdm->status = CAM_DEV_MATCH_LAST; 2114 2115 return(ret); 2116 } 2117 2118 static int 2119 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2120 { 2121 struct cam_eb *bus, *next_bus; 2122 int retval; 2123 2124 retval = 1; 2125 if (start_bus) 2126 bus = start_bus; 2127 else { 2128 xpt_lock_buses(); 2129 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2130 if (bus == NULL) { 2131 xpt_unlock_buses(); 2132 return (retval); 2133 } 2134 bus->refcount++; 2135 xpt_unlock_buses(); 2136 } 2137 for (; bus != NULL; bus = next_bus) { 2138 retval = tr_func(bus, arg); 2139 if (retval == 0) { 2140 xpt_release_bus(bus); 2141 break; 2142 } 2143 xpt_lock_buses(); 2144 next_bus = TAILQ_NEXT(bus, links); 2145 if (next_bus) 2146 next_bus->refcount++; 2147 xpt_unlock_buses(); 2148 xpt_release_bus(bus); 2149 } 2150 return(retval); 2151 } 2152 2153 static int 2154 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2155 xpt_targetfunc_t *tr_func, void *arg) 2156 { 2157 struct cam_et *target, *next_target; 2158 int retval; 2159 2160 retval = 1; 2161 if (start_target) 2162 target = start_target; 2163 else { 2164 mtx_lock(&bus->eb_mtx); 2165 target = TAILQ_FIRST(&bus->et_entries); 2166 if (target == NULL) { 2167 mtx_unlock(&bus->eb_mtx); 2168 return (retval); 2169 } 2170 target->refcount++; 2171 mtx_unlock(&bus->eb_mtx); 2172 } 2173 for (; target != NULL; target = next_target) { 2174 retval = tr_func(target, arg); 2175 if (retval == 0) { 2176 xpt_release_target(target); 2177 break; 2178 } 2179 mtx_lock(&bus->eb_mtx); 2180 next_target = TAILQ_NEXT(target, links); 2181 if (next_target) 2182 next_target->refcount++; 2183 mtx_unlock(&bus->eb_mtx); 2184 xpt_release_target(target); 2185 } 2186 return(retval); 2187 } 2188 2189 static int 2190 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2191 xpt_devicefunc_t *tr_func, void *arg) 2192 { 2193 struct cam_eb *bus; 2194 struct cam_ed *device, *next_device; 2195 int retval; 2196 2197 retval = 1; 2198 bus = target->bus; 2199 if (start_device) 2200 device = start_device; 2201 else { 2202 mtx_lock(&bus->eb_mtx); 2203 device = TAILQ_FIRST(&target->ed_entries); 2204 if (device == NULL) { 2205 mtx_unlock(&bus->eb_mtx); 2206 return (retval); 2207 } 2208 device->refcount++; 2209 mtx_unlock(&bus->eb_mtx); 2210 } 2211 for (; device != NULL; device = next_device) { 2212 mtx_lock(&device->device_mtx); 2213 retval = tr_func(device, arg); 2214 mtx_unlock(&device->device_mtx); 2215 if (retval == 0) { 2216 xpt_release_device(device); 2217 break; 2218 } 2219 mtx_lock(&bus->eb_mtx); 2220 next_device = TAILQ_NEXT(device, links); 2221 if (next_device) 2222 next_device->refcount++; 2223 mtx_unlock(&bus->eb_mtx); 2224 xpt_release_device(device); 2225 } 2226 return(retval); 2227 } 2228 2229 static int 2230 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2231 xpt_periphfunc_t *tr_func, void *arg) 2232 { 2233 struct cam_eb *bus; 2234 struct cam_periph *periph, *next_periph; 2235 int retval; 2236 2237 retval = 1; 2238 2239 bus = device->target->bus; 2240 if (start_periph) 2241 periph = start_periph; 2242 else { 2243 xpt_lock_buses(); 2244 mtx_lock(&bus->eb_mtx); 2245 periph = SLIST_FIRST(&device->periphs); 2246 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2247 periph = SLIST_NEXT(periph, periph_links); 2248 if (periph == NULL) { 2249 mtx_unlock(&bus->eb_mtx); 2250 xpt_unlock_buses(); 2251 return (retval); 2252 } 2253 periph->refcount++; 2254 mtx_unlock(&bus->eb_mtx); 2255 xpt_unlock_buses(); 2256 } 2257 for (; periph != NULL; periph = next_periph) { 2258 retval = tr_func(periph, arg); 2259 if (retval == 0) { 2260 cam_periph_release_locked(periph); 2261 break; 2262 } 2263 xpt_lock_buses(); 2264 mtx_lock(&bus->eb_mtx); 2265 next_periph = SLIST_NEXT(periph, periph_links); 2266 while (next_periph != NULL && 2267 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2268 next_periph = SLIST_NEXT(next_periph, periph_links); 2269 if (next_periph) 2270 next_periph->refcount++; 2271 mtx_unlock(&bus->eb_mtx); 2272 xpt_unlock_buses(); 2273 cam_periph_release_locked(periph); 2274 } 2275 return(retval); 2276 } 2277 2278 static int 2279 xptpdrvtraverse(struct periph_driver **start_pdrv, 2280 xpt_pdrvfunc_t *tr_func, void *arg) 2281 { 2282 struct periph_driver **pdrv; 2283 int retval; 2284 2285 retval = 1; 2286 2287 /* 2288 * We don't traverse the peripheral driver list like we do the 2289 * other lists, because it is a linker set, and therefore cannot be 2290 * changed during runtime. If the peripheral driver list is ever 2291 * re-done to be something other than a linker set (i.e. it can 2292 * change while the system is running), the list traversal should 2293 * be modified to work like the other traversal functions. 2294 */ 2295 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2296 *pdrv != NULL; pdrv++) { 2297 retval = tr_func(pdrv, arg); 2298 2299 if (retval == 0) 2300 return(retval); 2301 } 2302 2303 return(retval); 2304 } 2305 2306 static int 2307 xptpdperiphtraverse(struct periph_driver **pdrv, 2308 struct cam_periph *start_periph, 2309 xpt_periphfunc_t *tr_func, void *arg) 2310 { 2311 struct cam_periph *periph, *next_periph; 2312 int retval; 2313 2314 retval = 1; 2315 2316 if (start_periph) 2317 periph = start_periph; 2318 else { 2319 xpt_lock_buses(); 2320 periph = TAILQ_FIRST(&(*pdrv)->units); 2321 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2322 periph = TAILQ_NEXT(periph, unit_links); 2323 if (periph == NULL) { 2324 xpt_unlock_buses(); 2325 return (retval); 2326 } 2327 periph->refcount++; 2328 xpt_unlock_buses(); 2329 } 2330 for (; periph != NULL; periph = next_periph) { 2331 cam_periph_lock(periph); 2332 retval = tr_func(periph, arg); 2333 cam_periph_unlock(periph); 2334 if (retval == 0) { 2335 cam_periph_release(periph); 2336 break; 2337 } 2338 xpt_lock_buses(); 2339 next_periph = TAILQ_NEXT(periph, unit_links); 2340 while (next_periph != NULL && 2341 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2342 next_periph = TAILQ_NEXT(next_periph, unit_links); 2343 if (next_periph) 2344 next_periph->refcount++; 2345 xpt_unlock_buses(); 2346 cam_periph_release(periph); 2347 } 2348 return(retval); 2349 } 2350 2351 static int 2352 xptdefbusfunc(struct cam_eb *bus, void *arg) 2353 { 2354 struct xpt_traverse_config *tr_config; 2355 2356 tr_config = (struct xpt_traverse_config *)arg; 2357 2358 if (tr_config->depth == XPT_DEPTH_BUS) { 2359 xpt_busfunc_t *tr_func; 2360 2361 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2362 2363 return(tr_func(bus, tr_config->tr_arg)); 2364 } else 2365 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2366 } 2367 2368 static int 2369 xptdeftargetfunc(struct cam_et *target, void *arg) 2370 { 2371 struct xpt_traverse_config *tr_config; 2372 2373 tr_config = (struct xpt_traverse_config *)arg; 2374 2375 if (tr_config->depth == XPT_DEPTH_TARGET) { 2376 xpt_targetfunc_t *tr_func; 2377 2378 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2379 2380 return(tr_func(target, tr_config->tr_arg)); 2381 } else 2382 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2383 } 2384 2385 static int 2386 xptdefdevicefunc(struct cam_ed *device, void *arg) 2387 { 2388 struct xpt_traverse_config *tr_config; 2389 2390 tr_config = (struct xpt_traverse_config *)arg; 2391 2392 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2393 xpt_devicefunc_t *tr_func; 2394 2395 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2396 2397 return(tr_func(device, tr_config->tr_arg)); 2398 } else 2399 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2400 } 2401 2402 static int 2403 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2404 { 2405 struct xpt_traverse_config *tr_config; 2406 xpt_periphfunc_t *tr_func; 2407 2408 tr_config = (struct xpt_traverse_config *)arg; 2409 2410 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2411 2412 /* 2413 * Unlike the other default functions, we don't check for depth 2414 * here. The peripheral driver level is the last level in the EDT, 2415 * so if we're here, we should execute the function in question. 2416 */ 2417 return(tr_func(periph, tr_config->tr_arg)); 2418 } 2419 2420 /* 2421 * Execute the given function for every bus in the EDT. 2422 */ 2423 static int 2424 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2425 { 2426 struct xpt_traverse_config tr_config; 2427 2428 tr_config.depth = XPT_DEPTH_BUS; 2429 tr_config.tr_func = tr_func; 2430 tr_config.tr_arg = arg; 2431 2432 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2433 } 2434 2435 /* 2436 * Execute the given function for every device in the EDT. 2437 */ 2438 static int 2439 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2440 { 2441 struct xpt_traverse_config tr_config; 2442 2443 tr_config.depth = XPT_DEPTH_DEVICE; 2444 tr_config.tr_func = tr_func; 2445 tr_config.tr_arg = arg; 2446 2447 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2448 } 2449 2450 static int 2451 xptsetasyncfunc(struct cam_ed *device, void *arg) 2452 { 2453 struct cam_path path; 2454 struct ccb_getdev cgd; 2455 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2456 2457 /* 2458 * Don't report unconfigured devices (Wildcard devs, 2459 * devices only for target mode, device instances 2460 * that have been invalidated but are waiting for 2461 * their last reference count to be released). 2462 */ 2463 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2464 return (1); 2465 2466 xpt_compile_path(&path, 2467 NULL, 2468 device->target->bus->path_id, 2469 device->target->target_id, 2470 device->lun_id); 2471 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2472 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2473 xpt_action((union ccb *)&cgd); 2474 csa->callback(csa->callback_arg, 2475 AC_FOUND_DEVICE, 2476 &path, &cgd); 2477 xpt_release_path(&path); 2478 2479 return(1); 2480 } 2481 2482 static int 2483 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2484 { 2485 struct cam_path path; 2486 struct ccb_pathinq cpi; 2487 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2488 2489 xpt_compile_path(&path, /*periph*/NULL, 2490 bus->path_id, 2491 CAM_TARGET_WILDCARD, 2492 CAM_LUN_WILDCARD); 2493 xpt_path_lock(&path); 2494 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2495 cpi.ccb_h.func_code = XPT_PATH_INQ; 2496 xpt_action((union ccb *)&cpi); 2497 csa->callback(csa->callback_arg, 2498 AC_PATH_REGISTERED, 2499 &path, &cpi); 2500 xpt_path_unlock(&path); 2501 xpt_release_path(&path); 2502 2503 return(1); 2504 } 2505 2506 void 2507 xpt_action(union ccb *start_ccb) 2508 { 2509 2510 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2511 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2512 xpt_action_name(start_ccb->ccb_h.func_code))); 2513 2514 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2515 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2516 } 2517 2518 void 2519 xpt_action_default(union ccb *start_ccb) 2520 { 2521 struct cam_path *path; 2522 struct cam_sim *sim; 2523 int lock; 2524 2525 path = start_ccb->ccb_h.path; 2526 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2527 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2528 xpt_action_name(start_ccb->ccb_h.func_code))); 2529 2530 switch (start_ccb->ccb_h.func_code) { 2531 case XPT_SCSI_IO: 2532 { 2533 struct cam_ed *device; 2534 2535 /* 2536 * For the sake of compatibility with SCSI-1 2537 * devices that may not understand the identify 2538 * message, we include lun information in the 2539 * second byte of all commands. SCSI-1 specifies 2540 * that luns are a 3 bit value and reserves only 3 2541 * bits for lun information in the CDB. Later 2542 * revisions of the SCSI spec allow for more than 8 2543 * luns, but have deprecated lun information in the 2544 * CDB. So, if the lun won't fit, we must omit. 2545 * 2546 * Also be aware that during initial probing for devices, 2547 * the inquiry information is unknown but initialized to 0. 2548 * This means that this code will be exercised while probing 2549 * devices with an ANSI revision greater than 2. 2550 */ 2551 device = path->device; 2552 if (device->protocol_version <= SCSI_REV_2 2553 && start_ccb->ccb_h.target_lun < 8 2554 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2555 2556 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2557 start_ccb->ccb_h.target_lun << 5; 2558 } 2559 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2560 } 2561 /* FALLTHROUGH */ 2562 case XPT_TARGET_IO: 2563 case XPT_CONT_TARGET_IO: 2564 start_ccb->csio.sense_resid = 0; 2565 start_ccb->csio.resid = 0; 2566 /* FALLTHROUGH */ 2567 case XPT_ATA_IO: 2568 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2569 start_ccb->ataio.resid = 0; 2570 /* FALLTHROUGH */ 2571 case XPT_NVME_IO: 2572 if (start_ccb->ccb_h.func_code == XPT_NVME_IO) 2573 start_ccb->nvmeio.resid = 0; 2574 /* FALLTHROUGH */ 2575 case XPT_RESET_DEV: 2576 case XPT_ENG_EXEC: 2577 case XPT_SMP_IO: 2578 { 2579 struct cam_devq *devq; 2580 2581 devq = path->bus->sim->devq; 2582 mtx_lock(&devq->send_mtx); 2583 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2584 if (xpt_schedule_devq(devq, path->device) != 0) 2585 xpt_run_devq(devq); 2586 mtx_unlock(&devq->send_mtx); 2587 break; 2588 } 2589 case XPT_CALC_GEOMETRY: 2590 /* Filter out garbage */ 2591 if (start_ccb->ccg.block_size == 0 2592 || start_ccb->ccg.volume_size == 0) { 2593 start_ccb->ccg.cylinders = 0; 2594 start_ccb->ccg.heads = 0; 2595 start_ccb->ccg.secs_per_track = 0; 2596 start_ccb->ccb_h.status = CAM_REQ_CMP; 2597 break; 2598 } 2599 #if defined(__sparc64__) 2600 /* 2601 * For sparc64, we may need adjust the geometry of large 2602 * disks in order to fit the limitations of the 16-bit 2603 * fields of the VTOC8 disk label. 2604 */ 2605 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2606 start_ccb->ccb_h.status = CAM_REQ_CMP; 2607 break; 2608 } 2609 #endif 2610 goto call_sim; 2611 case XPT_ABORT: 2612 { 2613 union ccb* abort_ccb; 2614 2615 abort_ccb = start_ccb->cab.abort_ccb; 2616 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2617 struct cam_ed *device; 2618 struct cam_devq *devq; 2619 2620 device = abort_ccb->ccb_h.path->device; 2621 devq = device->sim->devq; 2622 2623 mtx_lock(&devq->send_mtx); 2624 if (abort_ccb->ccb_h.pinfo.index > 0) { 2625 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2626 abort_ccb->ccb_h.status = 2627 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2628 xpt_freeze_devq_device(device, 1); 2629 mtx_unlock(&devq->send_mtx); 2630 xpt_done(abort_ccb); 2631 start_ccb->ccb_h.status = CAM_REQ_CMP; 2632 break; 2633 } 2634 mtx_unlock(&devq->send_mtx); 2635 2636 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2637 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2638 /* 2639 * We've caught this ccb en route to 2640 * the SIM. Flag it for abort and the 2641 * SIM will do so just before starting 2642 * real work on the CCB. 2643 */ 2644 abort_ccb->ccb_h.status = 2645 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2646 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2647 start_ccb->ccb_h.status = CAM_REQ_CMP; 2648 break; 2649 } 2650 } 2651 if (XPT_FC_IS_QUEUED(abort_ccb) 2652 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2653 /* 2654 * It's already completed but waiting 2655 * for our SWI to get to it. 2656 */ 2657 start_ccb->ccb_h.status = CAM_UA_ABORT; 2658 break; 2659 } 2660 /* 2661 * If we weren't able to take care of the abort request 2662 * in the XPT, pass the request down to the SIM for processing. 2663 */ 2664 } 2665 /* FALLTHROUGH */ 2666 case XPT_ACCEPT_TARGET_IO: 2667 case XPT_EN_LUN: 2668 case XPT_IMMED_NOTIFY: 2669 case XPT_NOTIFY_ACK: 2670 case XPT_RESET_BUS: 2671 case XPT_IMMEDIATE_NOTIFY: 2672 case XPT_NOTIFY_ACKNOWLEDGE: 2673 case XPT_GET_SIM_KNOB_OLD: 2674 case XPT_GET_SIM_KNOB: 2675 case XPT_SET_SIM_KNOB: 2676 case XPT_GET_TRAN_SETTINGS: 2677 case XPT_SET_TRAN_SETTINGS: 2678 case XPT_PATH_INQ: 2679 call_sim: 2680 sim = path->bus->sim; 2681 lock = (mtx_owned(sim->mtx) == 0); 2682 if (lock) 2683 CAM_SIM_LOCK(sim); 2684 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2685 ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code)); 2686 (*(sim->sim_action))(sim, start_ccb); 2687 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2688 ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status)); 2689 if (lock) 2690 CAM_SIM_UNLOCK(sim); 2691 break; 2692 case XPT_PATH_STATS: 2693 start_ccb->cpis.last_reset = path->bus->last_reset; 2694 start_ccb->ccb_h.status = CAM_REQ_CMP; 2695 break; 2696 case XPT_GDEV_TYPE: 2697 { 2698 struct cam_ed *dev; 2699 2700 dev = path->device; 2701 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2702 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2703 } else { 2704 struct ccb_getdev *cgd; 2705 2706 cgd = &start_ccb->cgd; 2707 cgd->protocol = dev->protocol; 2708 cgd->inq_data = dev->inq_data; 2709 cgd->ident_data = dev->ident_data; 2710 cgd->inq_flags = dev->inq_flags; 2711 cgd->nvme_data = dev->nvme_data; 2712 cgd->nvme_cdata = dev->nvme_cdata; 2713 cgd->ccb_h.status = CAM_REQ_CMP; 2714 cgd->serial_num_len = dev->serial_num_len; 2715 if ((dev->serial_num_len > 0) 2716 && (dev->serial_num != NULL)) 2717 bcopy(dev->serial_num, cgd->serial_num, 2718 dev->serial_num_len); 2719 } 2720 break; 2721 } 2722 case XPT_GDEV_STATS: 2723 { 2724 struct cam_ed *dev; 2725 2726 dev = path->device; 2727 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2728 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2729 } else { 2730 struct ccb_getdevstats *cgds; 2731 struct cam_eb *bus; 2732 struct cam_et *tar; 2733 struct cam_devq *devq; 2734 2735 cgds = &start_ccb->cgds; 2736 bus = path->bus; 2737 tar = path->target; 2738 devq = bus->sim->devq; 2739 mtx_lock(&devq->send_mtx); 2740 cgds->dev_openings = dev->ccbq.dev_openings; 2741 cgds->dev_active = dev->ccbq.dev_active; 2742 cgds->allocated = dev->ccbq.allocated; 2743 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2744 cgds->held = cgds->allocated - cgds->dev_active - 2745 cgds->queued; 2746 cgds->last_reset = tar->last_reset; 2747 cgds->maxtags = dev->maxtags; 2748 cgds->mintags = dev->mintags; 2749 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2750 cgds->last_reset = bus->last_reset; 2751 mtx_unlock(&devq->send_mtx); 2752 cgds->ccb_h.status = CAM_REQ_CMP; 2753 } 2754 break; 2755 } 2756 case XPT_GDEVLIST: 2757 { 2758 struct cam_periph *nperiph; 2759 struct periph_list *periph_head; 2760 struct ccb_getdevlist *cgdl; 2761 u_int i; 2762 struct cam_ed *device; 2763 int found; 2764 2765 2766 found = 0; 2767 2768 /* 2769 * Don't want anyone mucking with our data. 2770 */ 2771 device = path->device; 2772 periph_head = &device->periphs; 2773 cgdl = &start_ccb->cgdl; 2774 2775 /* 2776 * Check and see if the list has changed since the user 2777 * last requested a list member. If so, tell them that the 2778 * list has changed, and therefore they need to start over 2779 * from the beginning. 2780 */ 2781 if ((cgdl->index != 0) && 2782 (cgdl->generation != device->generation)) { 2783 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2784 break; 2785 } 2786 2787 /* 2788 * Traverse the list of peripherals and attempt to find 2789 * the requested peripheral. 2790 */ 2791 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2792 (nperiph != NULL) && (i <= cgdl->index); 2793 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2794 if (i == cgdl->index) { 2795 strncpy(cgdl->periph_name, 2796 nperiph->periph_name, 2797 DEV_IDLEN); 2798 cgdl->unit_number = nperiph->unit_number; 2799 found = 1; 2800 } 2801 } 2802 if (found == 0) { 2803 cgdl->status = CAM_GDEVLIST_ERROR; 2804 break; 2805 } 2806 2807 if (nperiph == NULL) 2808 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2809 else 2810 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2811 2812 cgdl->index++; 2813 cgdl->generation = device->generation; 2814 2815 cgdl->ccb_h.status = CAM_REQ_CMP; 2816 break; 2817 } 2818 case XPT_DEV_MATCH: 2819 { 2820 dev_pos_type position_type; 2821 struct ccb_dev_match *cdm; 2822 2823 cdm = &start_ccb->cdm; 2824 2825 /* 2826 * There are two ways of getting at information in the EDT. 2827 * The first way is via the primary EDT tree. It starts 2828 * with a list of buses, then a list of targets on a bus, 2829 * then devices/luns on a target, and then peripherals on a 2830 * device/lun. The "other" way is by the peripheral driver 2831 * lists. The peripheral driver lists are organized by 2832 * peripheral driver. (obviously) So it makes sense to 2833 * use the peripheral driver list if the user is looking 2834 * for something like "da1", or all "da" devices. If the 2835 * user is looking for something on a particular bus/target 2836 * or lun, it's generally better to go through the EDT tree. 2837 */ 2838 2839 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2840 position_type = cdm->pos.position_type; 2841 else { 2842 u_int i; 2843 2844 position_type = CAM_DEV_POS_NONE; 2845 2846 for (i = 0; i < cdm->num_patterns; i++) { 2847 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2848 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2849 position_type = CAM_DEV_POS_EDT; 2850 break; 2851 } 2852 } 2853 2854 if (cdm->num_patterns == 0) 2855 position_type = CAM_DEV_POS_EDT; 2856 else if (position_type == CAM_DEV_POS_NONE) 2857 position_type = CAM_DEV_POS_PDRV; 2858 } 2859 2860 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2861 case CAM_DEV_POS_EDT: 2862 xptedtmatch(cdm); 2863 break; 2864 case CAM_DEV_POS_PDRV: 2865 xptperiphlistmatch(cdm); 2866 break; 2867 default: 2868 cdm->status = CAM_DEV_MATCH_ERROR; 2869 break; 2870 } 2871 2872 if (cdm->status == CAM_DEV_MATCH_ERROR) 2873 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2874 else 2875 start_ccb->ccb_h.status = CAM_REQ_CMP; 2876 2877 break; 2878 } 2879 case XPT_SASYNC_CB: 2880 { 2881 struct ccb_setasync *csa; 2882 struct async_node *cur_entry; 2883 struct async_list *async_head; 2884 u_int32_t added; 2885 2886 csa = &start_ccb->csa; 2887 added = csa->event_enable; 2888 async_head = &path->device->asyncs; 2889 2890 /* 2891 * If there is already an entry for us, simply 2892 * update it. 2893 */ 2894 cur_entry = SLIST_FIRST(async_head); 2895 while (cur_entry != NULL) { 2896 if ((cur_entry->callback_arg == csa->callback_arg) 2897 && (cur_entry->callback == csa->callback)) 2898 break; 2899 cur_entry = SLIST_NEXT(cur_entry, links); 2900 } 2901 2902 if (cur_entry != NULL) { 2903 /* 2904 * If the request has no flags set, 2905 * remove the entry. 2906 */ 2907 added &= ~cur_entry->event_enable; 2908 if (csa->event_enable == 0) { 2909 SLIST_REMOVE(async_head, cur_entry, 2910 async_node, links); 2911 xpt_release_device(path->device); 2912 free(cur_entry, M_CAMXPT); 2913 } else { 2914 cur_entry->event_enable = csa->event_enable; 2915 } 2916 csa->event_enable = added; 2917 } else { 2918 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2919 M_NOWAIT); 2920 if (cur_entry == NULL) { 2921 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2922 break; 2923 } 2924 cur_entry->event_enable = csa->event_enable; 2925 cur_entry->event_lock = 2926 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2927 cur_entry->callback_arg = csa->callback_arg; 2928 cur_entry->callback = csa->callback; 2929 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2930 xpt_acquire_device(path->device); 2931 } 2932 start_ccb->ccb_h.status = CAM_REQ_CMP; 2933 break; 2934 } 2935 case XPT_REL_SIMQ: 2936 { 2937 struct ccb_relsim *crs; 2938 struct cam_ed *dev; 2939 2940 crs = &start_ccb->crs; 2941 dev = path->device; 2942 if (dev == NULL) { 2943 2944 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2945 break; 2946 } 2947 2948 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2949 2950 /* Don't ever go below one opening */ 2951 if (crs->openings > 0) { 2952 xpt_dev_ccbq_resize(path, crs->openings); 2953 if (bootverbose) { 2954 xpt_print(path, 2955 "number of openings is now %d\n", 2956 crs->openings); 2957 } 2958 } 2959 } 2960 2961 mtx_lock(&dev->sim->devq->send_mtx); 2962 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2963 2964 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2965 2966 /* 2967 * Just extend the old timeout and decrement 2968 * the freeze count so that a single timeout 2969 * is sufficient for releasing the queue. 2970 */ 2971 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2972 callout_stop(&dev->callout); 2973 } else { 2974 2975 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2976 } 2977 2978 callout_reset_sbt(&dev->callout, 2979 SBT_1MS * crs->release_timeout, 0, 2980 xpt_release_devq_timeout, dev, 0); 2981 2982 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2983 2984 } 2985 2986 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2987 2988 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2989 /* 2990 * Decrement the freeze count so that a single 2991 * completion is still sufficient to unfreeze 2992 * the queue. 2993 */ 2994 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2995 } else { 2996 2997 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2998 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2999 } 3000 } 3001 3002 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3003 3004 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3005 || (dev->ccbq.dev_active == 0)) { 3006 3007 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3008 } else { 3009 3010 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3011 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3012 } 3013 } 3014 mtx_unlock(&dev->sim->devq->send_mtx); 3015 3016 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3017 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3018 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3019 start_ccb->ccb_h.status = CAM_REQ_CMP; 3020 break; 3021 } 3022 case XPT_DEBUG: { 3023 struct cam_path *oldpath; 3024 3025 /* Check that all request bits are supported. */ 3026 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3027 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3028 break; 3029 } 3030 3031 cam_dflags = CAM_DEBUG_NONE; 3032 if (cam_dpath != NULL) { 3033 oldpath = cam_dpath; 3034 cam_dpath = NULL; 3035 xpt_free_path(oldpath); 3036 } 3037 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3038 if (xpt_create_path(&cam_dpath, NULL, 3039 start_ccb->ccb_h.path_id, 3040 start_ccb->ccb_h.target_id, 3041 start_ccb->ccb_h.target_lun) != 3042 CAM_REQ_CMP) { 3043 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3044 } else { 3045 cam_dflags = start_ccb->cdbg.flags; 3046 start_ccb->ccb_h.status = CAM_REQ_CMP; 3047 xpt_print(cam_dpath, "debugging flags now %x\n", 3048 cam_dflags); 3049 } 3050 } else 3051 start_ccb->ccb_h.status = CAM_REQ_CMP; 3052 break; 3053 } 3054 case XPT_NOOP: 3055 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3056 xpt_freeze_devq(path, 1); 3057 start_ccb->ccb_h.status = CAM_REQ_CMP; 3058 break; 3059 case XPT_REPROBE_LUN: 3060 xpt_async(AC_INQ_CHANGED, path, NULL); 3061 start_ccb->ccb_h.status = CAM_REQ_CMP; 3062 xpt_done(start_ccb); 3063 break; 3064 default: 3065 case XPT_SDEV_TYPE: 3066 case XPT_TERM_IO: 3067 case XPT_ENG_INQ: 3068 /* XXX Implement */ 3069 xpt_print(start_ccb->ccb_h.path, 3070 "%s: CCB type %#x %s not supported\n", __func__, 3071 start_ccb->ccb_h.func_code, 3072 xpt_action_name(start_ccb->ccb_h.func_code)); 3073 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3074 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3075 xpt_done(start_ccb); 3076 } 3077 break; 3078 } 3079 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3080 ("xpt_action_default: func= %#x %s status %#x\n", 3081 start_ccb->ccb_h.func_code, 3082 xpt_action_name(start_ccb->ccb_h.func_code), 3083 start_ccb->ccb_h.status)); 3084 } 3085 3086 void 3087 xpt_polled_action(union ccb *start_ccb) 3088 { 3089 u_int32_t timeout; 3090 struct cam_sim *sim; 3091 struct cam_devq *devq; 3092 struct cam_ed *dev; 3093 3094 timeout = start_ccb->ccb_h.timeout * 10; 3095 sim = start_ccb->ccb_h.path->bus->sim; 3096 devq = sim->devq; 3097 dev = start_ccb->ccb_h.path->device; 3098 3099 mtx_unlock(&dev->device_mtx); 3100 3101 /* 3102 * Steal an opening so that no other queued requests 3103 * can get it before us while we simulate interrupts. 3104 */ 3105 mtx_lock(&devq->send_mtx); 3106 dev->ccbq.dev_openings--; 3107 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3108 (--timeout > 0)) { 3109 mtx_unlock(&devq->send_mtx); 3110 DELAY(100); 3111 CAM_SIM_LOCK(sim); 3112 (*(sim->sim_poll))(sim); 3113 CAM_SIM_UNLOCK(sim); 3114 camisr_runqueue(); 3115 mtx_lock(&devq->send_mtx); 3116 } 3117 dev->ccbq.dev_openings++; 3118 mtx_unlock(&devq->send_mtx); 3119 3120 if (timeout != 0) { 3121 xpt_action(start_ccb); 3122 while(--timeout > 0) { 3123 CAM_SIM_LOCK(sim); 3124 (*(sim->sim_poll))(sim); 3125 CAM_SIM_UNLOCK(sim); 3126 camisr_runqueue(); 3127 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3128 != CAM_REQ_INPROG) 3129 break; 3130 DELAY(100); 3131 } 3132 if (timeout == 0) { 3133 /* 3134 * XXX Is it worth adding a sim_timeout entry 3135 * point so we can attempt recovery? If 3136 * this is only used for dumps, I don't think 3137 * it is. 3138 */ 3139 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3140 } 3141 } else { 3142 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3143 } 3144 3145 mtx_lock(&dev->device_mtx); 3146 } 3147 3148 /* 3149 * Schedule a peripheral driver to receive a ccb when its 3150 * target device has space for more transactions. 3151 */ 3152 void 3153 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3154 { 3155 3156 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3157 cam_periph_assert(periph, MA_OWNED); 3158 if (new_priority < periph->scheduled_priority) { 3159 periph->scheduled_priority = new_priority; 3160 xpt_run_allocq(periph, 0); 3161 } 3162 } 3163 3164 3165 /* 3166 * Schedule a device to run on a given queue. 3167 * If the device was inserted as a new entry on the queue, 3168 * return 1 meaning the device queue should be run. If we 3169 * were already queued, implying someone else has already 3170 * started the queue, return 0 so the caller doesn't attempt 3171 * to run the queue. 3172 */ 3173 static int 3174 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3175 u_int32_t new_priority) 3176 { 3177 int retval; 3178 u_int32_t old_priority; 3179 3180 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3181 3182 old_priority = pinfo->priority; 3183 3184 /* 3185 * Are we already queued? 3186 */ 3187 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3188 /* Simply reorder based on new priority */ 3189 if (new_priority < old_priority) { 3190 camq_change_priority(queue, pinfo->index, 3191 new_priority); 3192 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3193 ("changed priority to %d\n", 3194 new_priority)); 3195 retval = 1; 3196 } else 3197 retval = 0; 3198 } else { 3199 /* New entry on the queue */ 3200 if (new_priority < old_priority) 3201 pinfo->priority = new_priority; 3202 3203 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3204 ("Inserting onto queue\n")); 3205 pinfo->generation = ++queue->generation; 3206 camq_insert(queue, pinfo); 3207 retval = 1; 3208 } 3209 return (retval); 3210 } 3211 3212 static void 3213 xpt_run_allocq_task(void *context, int pending) 3214 { 3215 struct cam_periph *periph = context; 3216 3217 cam_periph_lock(periph); 3218 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3219 xpt_run_allocq(periph, 1); 3220 cam_periph_unlock(periph); 3221 cam_periph_release(periph); 3222 } 3223 3224 static void 3225 xpt_run_allocq(struct cam_periph *periph, int sleep) 3226 { 3227 struct cam_ed *device; 3228 union ccb *ccb; 3229 uint32_t prio; 3230 3231 cam_periph_assert(periph, MA_OWNED); 3232 if (periph->periph_allocating) 3233 return; 3234 periph->periph_allocating = 1; 3235 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3236 device = periph->path->device; 3237 ccb = NULL; 3238 restart: 3239 while ((prio = min(periph->scheduled_priority, 3240 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3241 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3242 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3243 3244 if (ccb == NULL && 3245 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3246 if (sleep) { 3247 ccb = xpt_get_ccb(periph); 3248 goto restart; 3249 } 3250 if (periph->flags & CAM_PERIPH_RUN_TASK) 3251 break; 3252 cam_periph_doacquire(periph); 3253 periph->flags |= CAM_PERIPH_RUN_TASK; 3254 taskqueue_enqueue(xsoftc.xpt_taskq, 3255 &periph->periph_run_task); 3256 break; 3257 } 3258 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3259 if (prio == periph->immediate_priority) { 3260 periph->immediate_priority = CAM_PRIORITY_NONE; 3261 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3262 ("waking cam_periph_getccb()\n")); 3263 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3264 periph_links.sle); 3265 wakeup(&periph->ccb_list); 3266 } else { 3267 periph->scheduled_priority = CAM_PRIORITY_NONE; 3268 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3269 ("calling periph_start()\n")); 3270 periph->periph_start(periph, ccb); 3271 } 3272 ccb = NULL; 3273 } 3274 if (ccb != NULL) 3275 xpt_release_ccb(ccb); 3276 periph->periph_allocating = 0; 3277 } 3278 3279 static void 3280 xpt_run_devq(struct cam_devq *devq) 3281 { 3282 int lock; 3283 3284 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3285 3286 devq->send_queue.qfrozen_cnt++; 3287 while ((devq->send_queue.entries > 0) 3288 && (devq->send_openings > 0) 3289 && (devq->send_queue.qfrozen_cnt <= 1)) { 3290 struct cam_ed *device; 3291 union ccb *work_ccb; 3292 struct cam_sim *sim; 3293 struct xpt_proto *proto; 3294 3295 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3296 CAMQ_HEAD); 3297 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3298 ("running device %p\n", device)); 3299 3300 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3301 if (work_ccb == NULL) { 3302 printf("device on run queue with no ccbs???\n"); 3303 continue; 3304 } 3305 3306 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3307 3308 mtx_lock(&xsoftc.xpt_highpower_lock); 3309 if (xsoftc.num_highpower <= 0) { 3310 /* 3311 * We got a high power command, but we 3312 * don't have any available slots. Freeze 3313 * the device queue until we have a slot 3314 * available. 3315 */ 3316 xpt_freeze_devq_device(device, 1); 3317 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3318 highpowerq_entry); 3319 3320 mtx_unlock(&xsoftc.xpt_highpower_lock); 3321 continue; 3322 } else { 3323 /* 3324 * Consume a high power slot while 3325 * this ccb runs. 3326 */ 3327 xsoftc.num_highpower--; 3328 } 3329 mtx_unlock(&xsoftc.xpt_highpower_lock); 3330 } 3331 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3332 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3333 devq->send_openings--; 3334 devq->send_active++; 3335 xpt_schedule_devq(devq, device); 3336 mtx_unlock(&devq->send_mtx); 3337 3338 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3339 /* 3340 * The client wants to freeze the queue 3341 * after this CCB is sent. 3342 */ 3343 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3344 } 3345 3346 /* In Target mode, the peripheral driver knows best... */ 3347 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3348 if ((device->inq_flags & SID_CmdQue) != 0 3349 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3350 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3351 else 3352 /* 3353 * Clear this in case of a retried CCB that 3354 * failed due to a rejected tag. 3355 */ 3356 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3357 } 3358 3359 KASSERT(device == work_ccb->ccb_h.path->device, 3360 ("device (%p) / path->device (%p) mismatch", 3361 device, work_ccb->ccb_h.path->device)); 3362 proto = xpt_proto_find(device->protocol); 3363 if (proto && proto->ops->debug_out) 3364 proto->ops->debug_out(work_ccb); 3365 3366 /* 3367 * Device queues can be shared among multiple SIM instances 3368 * that reside on different buses. Use the SIM from the 3369 * queued device, rather than the one from the calling bus. 3370 */ 3371 sim = device->sim; 3372 lock = (mtx_owned(sim->mtx) == 0); 3373 if (lock) 3374 CAM_SIM_LOCK(sim); 3375 work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms 3376 (*(sim->sim_action))(sim, work_ccb); 3377 if (lock) 3378 CAM_SIM_UNLOCK(sim); 3379 mtx_lock(&devq->send_mtx); 3380 } 3381 devq->send_queue.qfrozen_cnt--; 3382 } 3383 3384 /* 3385 * This function merges stuff from the slave ccb into the master ccb, while 3386 * keeping important fields in the master ccb constant. 3387 */ 3388 void 3389 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3390 { 3391 3392 /* 3393 * Pull fields that are valid for peripheral drivers to set 3394 * into the master CCB along with the CCB "payload". 3395 */ 3396 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3397 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3398 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3399 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3400 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3401 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3402 } 3403 3404 void 3405 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3406 u_int32_t priority, u_int32_t flags) 3407 { 3408 3409 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3410 ccb_h->pinfo.priority = priority; 3411 ccb_h->path = path; 3412 ccb_h->path_id = path->bus->path_id; 3413 if (path->target) 3414 ccb_h->target_id = path->target->target_id; 3415 else 3416 ccb_h->target_id = CAM_TARGET_WILDCARD; 3417 if (path->device) { 3418 ccb_h->target_lun = path->device->lun_id; 3419 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3420 } else { 3421 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3422 } 3423 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3424 ccb_h->flags = flags; 3425 ccb_h->xflags = 0; 3426 } 3427 3428 void 3429 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3430 { 3431 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3432 } 3433 3434 /* Path manipulation functions */ 3435 cam_status 3436 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3437 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3438 { 3439 struct cam_path *path; 3440 cam_status status; 3441 3442 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3443 3444 if (path == NULL) { 3445 status = CAM_RESRC_UNAVAIL; 3446 return(status); 3447 } 3448 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3449 if (status != CAM_REQ_CMP) { 3450 free(path, M_CAMPATH); 3451 path = NULL; 3452 } 3453 *new_path_ptr = path; 3454 return (status); 3455 } 3456 3457 cam_status 3458 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3459 struct cam_periph *periph, path_id_t path_id, 3460 target_id_t target_id, lun_id_t lun_id) 3461 { 3462 3463 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3464 lun_id)); 3465 } 3466 3467 cam_status 3468 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3469 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3470 { 3471 struct cam_eb *bus; 3472 struct cam_et *target; 3473 struct cam_ed *device; 3474 cam_status status; 3475 3476 status = CAM_REQ_CMP; /* Completed without error */ 3477 target = NULL; /* Wildcarded */ 3478 device = NULL; /* Wildcarded */ 3479 3480 /* 3481 * We will potentially modify the EDT, so block interrupts 3482 * that may attempt to create cam paths. 3483 */ 3484 bus = xpt_find_bus(path_id); 3485 if (bus == NULL) { 3486 status = CAM_PATH_INVALID; 3487 } else { 3488 xpt_lock_buses(); 3489 mtx_lock(&bus->eb_mtx); 3490 target = xpt_find_target(bus, target_id); 3491 if (target == NULL) { 3492 /* Create one */ 3493 struct cam_et *new_target; 3494 3495 new_target = xpt_alloc_target(bus, target_id); 3496 if (new_target == NULL) { 3497 status = CAM_RESRC_UNAVAIL; 3498 } else { 3499 target = new_target; 3500 } 3501 } 3502 xpt_unlock_buses(); 3503 if (target != NULL) { 3504 device = xpt_find_device(target, lun_id); 3505 if (device == NULL) { 3506 /* Create one */ 3507 struct cam_ed *new_device; 3508 3509 new_device = 3510 (*(bus->xport->ops->alloc_device))(bus, 3511 target, 3512 lun_id); 3513 if (new_device == NULL) { 3514 status = CAM_RESRC_UNAVAIL; 3515 } else { 3516 device = new_device; 3517 } 3518 } 3519 } 3520 mtx_unlock(&bus->eb_mtx); 3521 } 3522 3523 /* 3524 * Only touch the user's data if we are successful. 3525 */ 3526 if (status == CAM_REQ_CMP) { 3527 new_path->periph = perph; 3528 new_path->bus = bus; 3529 new_path->target = target; 3530 new_path->device = device; 3531 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3532 } else { 3533 if (device != NULL) 3534 xpt_release_device(device); 3535 if (target != NULL) 3536 xpt_release_target(target); 3537 if (bus != NULL) 3538 xpt_release_bus(bus); 3539 } 3540 return (status); 3541 } 3542 3543 cam_status 3544 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3545 { 3546 struct cam_path *new_path; 3547 3548 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3549 if (new_path == NULL) 3550 return(CAM_RESRC_UNAVAIL); 3551 xpt_copy_path(new_path, path); 3552 *new_path_ptr = new_path; 3553 return (CAM_REQ_CMP); 3554 } 3555 3556 void 3557 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3558 { 3559 3560 *new_path = *path; 3561 if (path->bus != NULL) 3562 xpt_acquire_bus(path->bus); 3563 if (path->target != NULL) 3564 xpt_acquire_target(path->target); 3565 if (path->device != NULL) 3566 xpt_acquire_device(path->device); 3567 } 3568 3569 void 3570 xpt_release_path(struct cam_path *path) 3571 { 3572 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3573 if (path->device != NULL) { 3574 xpt_release_device(path->device); 3575 path->device = NULL; 3576 } 3577 if (path->target != NULL) { 3578 xpt_release_target(path->target); 3579 path->target = NULL; 3580 } 3581 if (path->bus != NULL) { 3582 xpt_release_bus(path->bus); 3583 path->bus = NULL; 3584 } 3585 } 3586 3587 void 3588 xpt_free_path(struct cam_path *path) 3589 { 3590 3591 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3592 xpt_release_path(path); 3593 free(path, M_CAMPATH); 3594 } 3595 3596 void 3597 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3598 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3599 { 3600 3601 xpt_lock_buses(); 3602 if (bus_ref) { 3603 if (path->bus) 3604 *bus_ref = path->bus->refcount; 3605 else 3606 *bus_ref = 0; 3607 } 3608 if (periph_ref) { 3609 if (path->periph) 3610 *periph_ref = path->periph->refcount; 3611 else 3612 *periph_ref = 0; 3613 } 3614 xpt_unlock_buses(); 3615 if (target_ref) { 3616 if (path->target) 3617 *target_ref = path->target->refcount; 3618 else 3619 *target_ref = 0; 3620 } 3621 if (device_ref) { 3622 if (path->device) 3623 *device_ref = path->device->refcount; 3624 else 3625 *device_ref = 0; 3626 } 3627 } 3628 3629 /* 3630 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3631 * in path1, 2 for match with wildcards in path2. 3632 */ 3633 int 3634 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3635 { 3636 int retval = 0; 3637 3638 if (path1->bus != path2->bus) { 3639 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3640 retval = 1; 3641 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3642 retval = 2; 3643 else 3644 return (-1); 3645 } 3646 if (path1->target != path2->target) { 3647 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3648 if (retval == 0) 3649 retval = 1; 3650 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3651 retval = 2; 3652 else 3653 return (-1); 3654 } 3655 if (path1->device != path2->device) { 3656 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3657 if (retval == 0) 3658 retval = 1; 3659 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3660 retval = 2; 3661 else 3662 return (-1); 3663 } 3664 return (retval); 3665 } 3666 3667 int 3668 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3669 { 3670 int retval = 0; 3671 3672 if (path->bus != dev->target->bus) { 3673 if (path->bus->path_id == CAM_BUS_WILDCARD) 3674 retval = 1; 3675 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3676 retval = 2; 3677 else 3678 return (-1); 3679 } 3680 if (path->target != dev->target) { 3681 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3682 if (retval == 0) 3683 retval = 1; 3684 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3685 retval = 2; 3686 else 3687 return (-1); 3688 } 3689 if (path->device != dev) { 3690 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3691 if (retval == 0) 3692 retval = 1; 3693 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3694 retval = 2; 3695 else 3696 return (-1); 3697 } 3698 return (retval); 3699 } 3700 3701 void 3702 xpt_print_path(struct cam_path *path) 3703 { 3704 struct sbuf sb; 3705 char buffer[XPT_PRINT_LEN]; 3706 3707 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3708 xpt_path_sbuf(path, &sb); 3709 sbuf_finish(&sb); 3710 printf("%s", sbuf_data(&sb)); 3711 sbuf_delete(&sb); 3712 } 3713 3714 void 3715 xpt_print_device(struct cam_ed *device) 3716 { 3717 3718 if (device == NULL) 3719 printf("(nopath): "); 3720 else { 3721 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3722 device->sim->unit_number, 3723 device->sim->bus_id, 3724 device->target->target_id, 3725 (uintmax_t)device->lun_id); 3726 } 3727 } 3728 3729 void 3730 xpt_print(struct cam_path *path, const char *fmt, ...) 3731 { 3732 va_list ap; 3733 struct sbuf sb; 3734 char buffer[XPT_PRINT_LEN]; 3735 3736 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3737 3738 xpt_path_sbuf(path, &sb); 3739 va_start(ap, fmt); 3740 sbuf_vprintf(&sb, fmt, ap); 3741 va_end(ap); 3742 3743 sbuf_finish(&sb); 3744 printf("%s", sbuf_data(&sb)); 3745 sbuf_delete(&sb); 3746 } 3747 3748 int 3749 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3750 { 3751 struct sbuf sb; 3752 int len; 3753 3754 sbuf_new(&sb, str, str_len, 0); 3755 len = xpt_path_sbuf(path, &sb); 3756 sbuf_finish(&sb); 3757 return (len); 3758 } 3759 3760 int 3761 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3762 { 3763 3764 if (path == NULL) 3765 sbuf_printf(sb, "(nopath): "); 3766 else { 3767 if (path->periph != NULL) 3768 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3769 path->periph->unit_number); 3770 else 3771 sbuf_printf(sb, "(noperiph:"); 3772 3773 if (path->bus != NULL) 3774 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3775 path->bus->sim->unit_number, 3776 path->bus->sim->bus_id); 3777 else 3778 sbuf_printf(sb, "nobus:"); 3779 3780 if (path->target != NULL) 3781 sbuf_printf(sb, "%d:", path->target->target_id); 3782 else 3783 sbuf_printf(sb, "X:"); 3784 3785 if (path->device != NULL) 3786 sbuf_printf(sb, "%jx): ", 3787 (uintmax_t)path->device->lun_id); 3788 else 3789 sbuf_printf(sb, "X): "); 3790 } 3791 3792 return(sbuf_len(sb)); 3793 } 3794 3795 path_id_t 3796 xpt_path_path_id(struct cam_path *path) 3797 { 3798 return(path->bus->path_id); 3799 } 3800 3801 target_id_t 3802 xpt_path_target_id(struct cam_path *path) 3803 { 3804 if (path->target != NULL) 3805 return (path->target->target_id); 3806 else 3807 return (CAM_TARGET_WILDCARD); 3808 } 3809 3810 lun_id_t 3811 xpt_path_lun_id(struct cam_path *path) 3812 { 3813 if (path->device != NULL) 3814 return (path->device->lun_id); 3815 else 3816 return (CAM_LUN_WILDCARD); 3817 } 3818 3819 struct cam_sim * 3820 xpt_path_sim(struct cam_path *path) 3821 { 3822 3823 return (path->bus->sim); 3824 } 3825 3826 struct cam_periph* 3827 xpt_path_periph(struct cam_path *path) 3828 { 3829 3830 return (path->periph); 3831 } 3832 3833 /* 3834 * Release a CAM control block for the caller. Remit the cost of the structure 3835 * to the device referenced by the path. If the this device had no 'credits' 3836 * and peripheral drivers have registered async callbacks for this notification 3837 * call them now. 3838 */ 3839 void 3840 xpt_release_ccb(union ccb *free_ccb) 3841 { 3842 struct cam_ed *device; 3843 struct cam_periph *periph; 3844 3845 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3846 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3847 device = free_ccb->ccb_h.path->device; 3848 periph = free_ccb->ccb_h.path->periph; 3849 3850 xpt_free_ccb(free_ccb); 3851 periph->periph_allocated--; 3852 cam_ccbq_release_opening(&device->ccbq); 3853 xpt_run_allocq(periph, 0); 3854 } 3855 3856 /* Functions accessed by SIM drivers */ 3857 3858 static struct xpt_xport_ops xport_default_ops = { 3859 .alloc_device = xpt_alloc_device_default, 3860 .action = xpt_action_default, 3861 .async = xpt_dev_async_default, 3862 }; 3863 static struct xpt_xport xport_default = { 3864 .xport = XPORT_UNKNOWN, 3865 .name = "unknown", 3866 .ops = &xport_default_ops, 3867 }; 3868 3869 CAM_XPT_XPORT(xport_default); 3870 3871 /* 3872 * A sim structure, listing the SIM entry points and instance 3873 * identification info is passed to xpt_bus_register to hook the SIM 3874 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3875 * for this new bus and places it in the array of buses and assigns 3876 * it a path_id. The path_id may be influenced by "hard wiring" 3877 * information specified by the user. Once interrupt services are 3878 * available, the bus will be probed. 3879 */ 3880 int32_t 3881 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3882 { 3883 struct cam_eb *new_bus; 3884 struct cam_eb *old_bus; 3885 struct ccb_pathinq cpi; 3886 struct cam_path *path; 3887 cam_status status; 3888 3889 mtx_assert(sim->mtx, MA_OWNED); 3890 3891 sim->bus_id = bus; 3892 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3893 M_CAMXPT, M_NOWAIT|M_ZERO); 3894 if (new_bus == NULL) { 3895 /* Couldn't satisfy request */ 3896 return (CAM_RESRC_UNAVAIL); 3897 } 3898 3899 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3900 TAILQ_INIT(&new_bus->et_entries); 3901 cam_sim_hold(sim); 3902 new_bus->sim = sim; 3903 timevalclear(&new_bus->last_reset); 3904 new_bus->flags = 0; 3905 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3906 new_bus->generation = 0; 3907 3908 xpt_lock_buses(); 3909 sim->path_id = new_bus->path_id = 3910 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3911 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3912 while (old_bus != NULL 3913 && old_bus->path_id < new_bus->path_id) 3914 old_bus = TAILQ_NEXT(old_bus, links); 3915 if (old_bus != NULL) 3916 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3917 else 3918 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3919 xsoftc.bus_generation++; 3920 xpt_unlock_buses(); 3921 3922 /* 3923 * Set a default transport so that a PATH_INQ can be issued to 3924 * the SIM. This will then allow for probing and attaching of 3925 * a more appropriate transport. 3926 */ 3927 new_bus->xport = &xport_default; 3928 3929 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3930 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3931 if (status != CAM_REQ_CMP) { 3932 xpt_release_bus(new_bus); 3933 free(path, M_CAMXPT); 3934 return (CAM_RESRC_UNAVAIL); 3935 } 3936 3937 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3938 cpi.ccb_h.func_code = XPT_PATH_INQ; 3939 xpt_action((union ccb *)&cpi); 3940 3941 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3942 struct xpt_xport **xpt; 3943 3944 SET_FOREACH(xpt, cam_xpt_xport_set) { 3945 if ((*xpt)->xport == cpi.transport) { 3946 new_bus->xport = *xpt; 3947 break; 3948 } 3949 } 3950 if (new_bus->xport == NULL) { 3951 xpt_print(path, 3952 "No transport found for %d\n", cpi.transport); 3953 xpt_release_bus(new_bus); 3954 free(path, M_CAMXPT); 3955 return (CAM_RESRC_UNAVAIL); 3956 } 3957 } 3958 3959 /* Notify interested parties */ 3960 if (sim->path_id != CAM_XPT_PATH_ID) { 3961 3962 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3963 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3964 union ccb *scan_ccb; 3965 3966 /* Initiate bus rescan. */ 3967 scan_ccb = xpt_alloc_ccb_nowait(); 3968 if (scan_ccb != NULL) { 3969 scan_ccb->ccb_h.path = path; 3970 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3971 scan_ccb->crcn.flags = 0; 3972 xpt_rescan(scan_ccb); 3973 } else { 3974 xpt_print(path, 3975 "Can't allocate CCB to scan bus\n"); 3976 xpt_free_path(path); 3977 } 3978 } else 3979 xpt_free_path(path); 3980 } else 3981 xpt_free_path(path); 3982 return (CAM_SUCCESS); 3983 } 3984 3985 int32_t 3986 xpt_bus_deregister(path_id_t pathid) 3987 { 3988 struct cam_path bus_path; 3989 cam_status status; 3990 3991 status = xpt_compile_path(&bus_path, NULL, pathid, 3992 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3993 if (status != CAM_REQ_CMP) 3994 return (status); 3995 3996 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3997 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3998 3999 /* Release the reference count held while registered. */ 4000 xpt_release_bus(bus_path.bus); 4001 xpt_release_path(&bus_path); 4002 4003 return (CAM_REQ_CMP); 4004 } 4005 4006 static path_id_t 4007 xptnextfreepathid(void) 4008 { 4009 struct cam_eb *bus; 4010 path_id_t pathid; 4011 const char *strval; 4012 4013 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4014 pathid = 0; 4015 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4016 retry: 4017 /* Find an unoccupied pathid */ 4018 while (bus != NULL && bus->path_id <= pathid) { 4019 if (bus->path_id == pathid) 4020 pathid++; 4021 bus = TAILQ_NEXT(bus, links); 4022 } 4023 4024 /* 4025 * Ensure that this pathid is not reserved for 4026 * a bus that may be registered in the future. 4027 */ 4028 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4029 ++pathid; 4030 /* Start the search over */ 4031 goto retry; 4032 } 4033 return (pathid); 4034 } 4035 4036 static path_id_t 4037 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4038 { 4039 path_id_t pathid; 4040 int i, dunit, val; 4041 char buf[32]; 4042 const char *dname; 4043 4044 pathid = CAM_XPT_PATH_ID; 4045 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4046 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4047 return (pathid); 4048 i = 0; 4049 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4050 if (strcmp(dname, "scbus")) { 4051 /* Avoid a bit of foot shooting. */ 4052 continue; 4053 } 4054 if (dunit < 0) /* unwired?! */ 4055 continue; 4056 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4057 if (sim_bus == val) { 4058 pathid = dunit; 4059 break; 4060 } 4061 } else if (sim_bus == 0) { 4062 /* Unspecified matches bus 0 */ 4063 pathid = dunit; 4064 break; 4065 } else { 4066 printf("Ambiguous scbus configuration for %s%d " 4067 "bus %d, cannot wire down. The kernel " 4068 "config entry for scbus%d should " 4069 "specify a controller bus.\n" 4070 "Scbus will be assigned dynamically.\n", 4071 sim_name, sim_unit, sim_bus, dunit); 4072 break; 4073 } 4074 } 4075 4076 if (pathid == CAM_XPT_PATH_ID) 4077 pathid = xptnextfreepathid(); 4078 return (pathid); 4079 } 4080 4081 static const char * 4082 xpt_async_string(u_int32_t async_code) 4083 { 4084 4085 switch (async_code) { 4086 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4087 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4088 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4089 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4090 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4091 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4092 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4093 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4094 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4095 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4096 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4097 case AC_CONTRACT: return ("AC_CONTRACT"); 4098 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4099 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4100 } 4101 return ("AC_UNKNOWN"); 4102 } 4103 4104 static int 4105 xpt_async_size(u_int32_t async_code) 4106 { 4107 4108 switch (async_code) { 4109 case AC_BUS_RESET: return (0); 4110 case AC_UNSOL_RESEL: return (0); 4111 case AC_SCSI_AEN: return (0); 4112 case AC_SENT_BDR: return (0); 4113 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4114 case AC_PATH_DEREGISTERED: return (0); 4115 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4116 case AC_LOST_DEVICE: return (0); 4117 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4118 case AC_INQ_CHANGED: return (0); 4119 case AC_GETDEV_CHANGED: return (0); 4120 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4121 case AC_ADVINFO_CHANGED: return (-1); 4122 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4123 } 4124 return (0); 4125 } 4126 4127 static int 4128 xpt_async_process_dev(struct cam_ed *device, void *arg) 4129 { 4130 union ccb *ccb = arg; 4131 struct cam_path *path = ccb->ccb_h.path; 4132 void *async_arg = ccb->casync.async_arg_ptr; 4133 u_int32_t async_code = ccb->casync.async_code; 4134 int relock; 4135 4136 if (path->device != device 4137 && path->device->lun_id != CAM_LUN_WILDCARD 4138 && device->lun_id != CAM_LUN_WILDCARD) 4139 return (1); 4140 4141 /* 4142 * The async callback could free the device. 4143 * If it is a broadcast async, it doesn't hold 4144 * device reference, so take our own reference. 4145 */ 4146 xpt_acquire_device(device); 4147 4148 /* 4149 * If async for specific device is to be delivered to 4150 * the wildcard client, take the specific device lock. 4151 * XXX: We may need a way for client to specify it. 4152 */ 4153 if ((device->lun_id == CAM_LUN_WILDCARD && 4154 path->device->lun_id != CAM_LUN_WILDCARD) || 4155 (device->target->target_id == CAM_TARGET_WILDCARD && 4156 path->target->target_id != CAM_TARGET_WILDCARD) || 4157 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4158 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4159 mtx_unlock(&device->device_mtx); 4160 xpt_path_lock(path); 4161 relock = 1; 4162 } else 4163 relock = 0; 4164 4165 (*(device->target->bus->xport->ops->async))(async_code, 4166 device->target->bus, device->target, device, async_arg); 4167 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4168 4169 if (relock) { 4170 xpt_path_unlock(path); 4171 mtx_lock(&device->device_mtx); 4172 } 4173 xpt_release_device(device); 4174 return (1); 4175 } 4176 4177 static int 4178 xpt_async_process_tgt(struct cam_et *target, void *arg) 4179 { 4180 union ccb *ccb = arg; 4181 struct cam_path *path = ccb->ccb_h.path; 4182 4183 if (path->target != target 4184 && path->target->target_id != CAM_TARGET_WILDCARD 4185 && target->target_id != CAM_TARGET_WILDCARD) 4186 return (1); 4187 4188 if (ccb->casync.async_code == AC_SENT_BDR) { 4189 /* Update our notion of when the last reset occurred */ 4190 microtime(&target->last_reset); 4191 } 4192 4193 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4194 } 4195 4196 static void 4197 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4198 { 4199 struct cam_eb *bus; 4200 struct cam_path *path; 4201 void *async_arg; 4202 u_int32_t async_code; 4203 4204 path = ccb->ccb_h.path; 4205 async_code = ccb->casync.async_code; 4206 async_arg = ccb->casync.async_arg_ptr; 4207 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4208 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4209 bus = path->bus; 4210 4211 if (async_code == AC_BUS_RESET) { 4212 /* Update our notion of when the last reset occurred */ 4213 microtime(&bus->last_reset); 4214 } 4215 4216 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4217 4218 /* 4219 * If this wasn't a fully wildcarded async, tell all 4220 * clients that want all async events. 4221 */ 4222 if (bus != xpt_periph->path->bus) { 4223 xpt_path_lock(xpt_periph->path); 4224 xpt_async_process_dev(xpt_periph->path->device, ccb); 4225 xpt_path_unlock(xpt_periph->path); 4226 } 4227 4228 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4229 xpt_release_devq(path, 1, TRUE); 4230 else 4231 xpt_release_simq(path->bus->sim, TRUE); 4232 if (ccb->casync.async_arg_size > 0) 4233 free(async_arg, M_CAMXPT); 4234 xpt_free_path(path); 4235 xpt_free_ccb(ccb); 4236 } 4237 4238 static void 4239 xpt_async_bcast(struct async_list *async_head, 4240 u_int32_t async_code, 4241 struct cam_path *path, void *async_arg) 4242 { 4243 struct async_node *cur_entry; 4244 int lock; 4245 4246 cur_entry = SLIST_FIRST(async_head); 4247 while (cur_entry != NULL) { 4248 struct async_node *next_entry; 4249 /* 4250 * Grab the next list entry before we call the current 4251 * entry's callback. This is because the callback function 4252 * can delete its async callback entry. 4253 */ 4254 next_entry = SLIST_NEXT(cur_entry, links); 4255 if ((cur_entry->event_enable & async_code) != 0) { 4256 lock = cur_entry->event_lock; 4257 if (lock) 4258 CAM_SIM_LOCK(path->device->sim); 4259 cur_entry->callback(cur_entry->callback_arg, 4260 async_code, path, 4261 async_arg); 4262 if (lock) 4263 CAM_SIM_UNLOCK(path->device->sim); 4264 } 4265 cur_entry = next_entry; 4266 } 4267 } 4268 4269 void 4270 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4271 { 4272 union ccb *ccb; 4273 int size; 4274 4275 ccb = xpt_alloc_ccb_nowait(); 4276 if (ccb == NULL) { 4277 xpt_print(path, "Can't allocate CCB to send %s\n", 4278 xpt_async_string(async_code)); 4279 return; 4280 } 4281 4282 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4283 xpt_print(path, "Can't allocate path to send %s\n", 4284 xpt_async_string(async_code)); 4285 xpt_free_ccb(ccb); 4286 return; 4287 } 4288 ccb->ccb_h.path->periph = NULL; 4289 ccb->ccb_h.func_code = XPT_ASYNC; 4290 ccb->ccb_h.cbfcnp = xpt_async_process; 4291 ccb->ccb_h.flags |= CAM_UNLOCKED; 4292 ccb->casync.async_code = async_code; 4293 ccb->casync.async_arg_size = 0; 4294 size = xpt_async_size(async_code); 4295 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4296 ("xpt_async: func %#x %s aync_code %d %s\n", 4297 ccb->ccb_h.func_code, 4298 xpt_action_name(ccb->ccb_h.func_code), 4299 async_code, 4300 xpt_async_string(async_code))); 4301 if (size > 0 && async_arg != NULL) { 4302 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4303 if (ccb->casync.async_arg_ptr == NULL) { 4304 xpt_print(path, "Can't allocate argument to send %s\n", 4305 xpt_async_string(async_code)); 4306 xpt_free_path(ccb->ccb_h.path); 4307 xpt_free_ccb(ccb); 4308 return; 4309 } 4310 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4311 ccb->casync.async_arg_size = size; 4312 } else if (size < 0) { 4313 ccb->casync.async_arg_ptr = async_arg; 4314 ccb->casync.async_arg_size = size; 4315 } 4316 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4317 xpt_freeze_devq(path, 1); 4318 else 4319 xpt_freeze_simq(path->bus->sim, 1); 4320 xpt_done(ccb); 4321 } 4322 4323 static void 4324 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4325 struct cam_et *target, struct cam_ed *device, 4326 void *async_arg) 4327 { 4328 4329 /* 4330 * We only need to handle events for real devices. 4331 */ 4332 if (target->target_id == CAM_TARGET_WILDCARD 4333 || device->lun_id == CAM_LUN_WILDCARD) 4334 return; 4335 4336 printf("%s called\n", __func__); 4337 } 4338 4339 static uint32_t 4340 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4341 { 4342 struct cam_devq *devq; 4343 uint32_t freeze; 4344 4345 devq = dev->sim->devq; 4346 mtx_assert(&devq->send_mtx, MA_OWNED); 4347 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4348 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4349 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4350 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4351 /* Remove frozen device from sendq. */ 4352 if (device_is_queued(dev)) 4353 camq_remove(&devq->send_queue, dev->devq_entry.index); 4354 return (freeze); 4355 } 4356 4357 u_int32_t 4358 xpt_freeze_devq(struct cam_path *path, u_int count) 4359 { 4360 struct cam_ed *dev = path->device; 4361 struct cam_devq *devq; 4362 uint32_t freeze; 4363 4364 devq = dev->sim->devq; 4365 mtx_lock(&devq->send_mtx); 4366 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4367 freeze = xpt_freeze_devq_device(dev, count); 4368 mtx_unlock(&devq->send_mtx); 4369 return (freeze); 4370 } 4371 4372 u_int32_t 4373 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4374 { 4375 struct cam_devq *devq; 4376 uint32_t freeze; 4377 4378 devq = sim->devq; 4379 mtx_lock(&devq->send_mtx); 4380 freeze = (devq->send_queue.qfrozen_cnt += count); 4381 mtx_unlock(&devq->send_mtx); 4382 return (freeze); 4383 } 4384 4385 static void 4386 xpt_release_devq_timeout(void *arg) 4387 { 4388 struct cam_ed *dev; 4389 struct cam_devq *devq; 4390 4391 dev = (struct cam_ed *)arg; 4392 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4393 devq = dev->sim->devq; 4394 mtx_assert(&devq->send_mtx, MA_OWNED); 4395 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4396 xpt_run_devq(devq); 4397 } 4398 4399 void 4400 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4401 { 4402 struct cam_ed *dev; 4403 struct cam_devq *devq; 4404 4405 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4406 count, run_queue)); 4407 dev = path->device; 4408 devq = dev->sim->devq; 4409 mtx_lock(&devq->send_mtx); 4410 if (xpt_release_devq_device(dev, count, run_queue)) 4411 xpt_run_devq(dev->sim->devq); 4412 mtx_unlock(&devq->send_mtx); 4413 } 4414 4415 static int 4416 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4417 { 4418 4419 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4420 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4421 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4422 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4423 if (count > dev->ccbq.queue.qfrozen_cnt) { 4424 #ifdef INVARIANTS 4425 printf("xpt_release_devq(): requested %u > present %u\n", 4426 count, dev->ccbq.queue.qfrozen_cnt); 4427 #endif 4428 count = dev->ccbq.queue.qfrozen_cnt; 4429 } 4430 dev->ccbq.queue.qfrozen_cnt -= count; 4431 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4432 /* 4433 * No longer need to wait for a successful 4434 * command completion. 4435 */ 4436 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4437 /* 4438 * Remove any timeouts that might be scheduled 4439 * to release this queue. 4440 */ 4441 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4442 callout_stop(&dev->callout); 4443 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4444 } 4445 /* 4446 * Now that we are unfrozen schedule the 4447 * device so any pending transactions are 4448 * run. 4449 */ 4450 xpt_schedule_devq(dev->sim->devq, dev); 4451 } else 4452 run_queue = 0; 4453 return (run_queue); 4454 } 4455 4456 void 4457 xpt_release_simq(struct cam_sim *sim, int run_queue) 4458 { 4459 struct cam_devq *devq; 4460 4461 devq = sim->devq; 4462 mtx_lock(&devq->send_mtx); 4463 if (devq->send_queue.qfrozen_cnt <= 0) { 4464 #ifdef INVARIANTS 4465 printf("xpt_release_simq: requested 1 > present %u\n", 4466 devq->send_queue.qfrozen_cnt); 4467 #endif 4468 } else 4469 devq->send_queue.qfrozen_cnt--; 4470 if (devq->send_queue.qfrozen_cnt == 0) { 4471 /* 4472 * If there is a timeout scheduled to release this 4473 * sim queue, remove it. The queue frozen count is 4474 * already at 0. 4475 */ 4476 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4477 callout_stop(&sim->callout); 4478 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4479 } 4480 if (run_queue) { 4481 /* 4482 * Now that we are unfrozen run the send queue. 4483 */ 4484 xpt_run_devq(sim->devq); 4485 } 4486 } 4487 mtx_unlock(&devq->send_mtx); 4488 } 4489 4490 /* 4491 * XXX Appears to be unused. 4492 */ 4493 static void 4494 xpt_release_simq_timeout(void *arg) 4495 { 4496 struct cam_sim *sim; 4497 4498 sim = (struct cam_sim *)arg; 4499 xpt_release_simq(sim, /* run_queue */ TRUE); 4500 } 4501 4502 void 4503 xpt_done(union ccb *done_ccb) 4504 { 4505 struct cam_doneq *queue; 4506 int run, hash; 4507 4508 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4509 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4510 done_ccb->csio.bio != NULL) 4511 biotrack(done_ccb->csio.bio, __func__); 4512 #endif 4513 4514 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4515 ("xpt_done: func= %#x %s status %#x\n", 4516 done_ccb->ccb_h.func_code, 4517 xpt_action_name(done_ccb->ccb_h.func_code), 4518 done_ccb->ccb_h.status)); 4519 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4520 return; 4521 4522 /* Store the time the ccb was in the sim */ 4523 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4524 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4525 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4526 queue = &cam_doneqs[hash]; 4527 mtx_lock(&queue->cam_doneq_mtx); 4528 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4529 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4530 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4531 mtx_unlock(&queue->cam_doneq_mtx); 4532 if (run) 4533 wakeup(&queue->cam_doneq); 4534 } 4535 4536 void 4537 xpt_done_direct(union ccb *done_ccb) 4538 { 4539 4540 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4541 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4542 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4543 return; 4544 4545 /* Store the time the ccb was in the sim */ 4546 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4547 xpt_done_process(&done_ccb->ccb_h); 4548 } 4549 4550 union ccb * 4551 xpt_alloc_ccb() 4552 { 4553 union ccb *new_ccb; 4554 4555 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4556 return (new_ccb); 4557 } 4558 4559 union ccb * 4560 xpt_alloc_ccb_nowait() 4561 { 4562 union ccb *new_ccb; 4563 4564 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4565 return (new_ccb); 4566 } 4567 4568 void 4569 xpt_free_ccb(union ccb *free_ccb) 4570 { 4571 free(free_ccb, M_CAMCCB); 4572 } 4573 4574 4575 4576 /* Private XPT functions */ 4577 4578 /* 4579 * Get a CAM control block for the caller. Charge the structure to the device 4580 * referenced by the path. If we don't have sufficient resources to allocate 4581 * more ccbs, we return NULL. 4582 */ 4583 static union ccb * 4584 xpt_get_ccb_nowait(struct cam_periph *periph) 4585 { 4586 union ccb *new_ccb; 4587 4588 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4589 if (new_ccb == NULL) 4590 return (NULL); 4591 periph->periph_allocated++; 4592 cam_ccbq_take_opening(&periph->path->device->ccbq); 4593 return (new_ccb); 4594 } 4595 4596 static union ccb * 4597 xpt_get_ccb(struct cam_periph *periph) 4598 { 4599 union ccb *new_ccb; 4600 4601 cam_periph_unlock(periph); 4602 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4603 cam_periph_lock(periph); 4604 periph->periph_allocated++; 4605 cam_ccbq_take_opening(&periph->path->device->ccbq); 4606 return (new_ccb); 4607 } 4608 4609 union ccb * 4610 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4611 { 4612 struct ccb_hdr *ccb_h; 4613 4614 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4615 cam_periph_assert(periph, MA_OWNED); 4616 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4617 ccb_h->pinfo.priority != priority) { 4618 if (priority < periph->immediate_priority) { 4619 periph->immediate_priority = priority; 4620 xpt_run_allocq(periph, 0); 4621 } else 4622 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4623 "cgticb", 0); 4624 } 4625 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4626 return ((union ccb *)ccb_h); 4627 } 4628 4629 static void 4630 xpt_acquire_bus(struct cam_eb *bus) 4631 { 4632 4633 xpt_lock_buses(); 4634 bus->refcount++; 4635 xpt_unlock_buses(); 4636 } 4637 4638 static void 4639 xpt_release_bus(struct cam_eb *bus) 4640 { 4641 4642 xpt_lock_buses(); 4643 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4644 if (--bus->refcount > 0) { 4645 xpt_unlock_buses(); 4646 return; 4647 } 4648 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4649 xsoftc.bus_generation++; 4650 xpt_unlock_buses(); 4651 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4652 ("destroying bus, but target list is not empty")); 4653 cam_sim_release(bus->sim); 4654 mtx_destroy(&bus->eb_mtx); 4655 free(bus, M_CAMXPT); 4656 } 4657 4658 static struct cam_et * 4659 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4660 { 4661 struct cam_et *cur_target, *target; 4662 4663 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4664 mtx_assert(&bus->eb_mtx, MA_OWNED); 4665 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4666 M_NOWAIT|M_ZERO); 4667 if (target == NULL) 4668 return (NULL); 4669 4670 TAILQ_INIT(&target->ed_entries); 4671 target->bus = bus; 4672 target->target_id = target_id; 4673 target->refcount = 1; 4674 target->generation = 0; 4675 target->luns = NULL; 4676 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4677 timevalclear(&target->last_reset); 4678 /* 4679 * Hold a reference to our parent bus so it 4680 * will not go away before we do. 4681 */ 4682 bus->refcount++; 4683 4684 /* Insertion sort into our bus's target list */ 4685 cur_target = TAILQ_FIRST(&bus->et_entries); 4686 while (cur_target != NULL && cur_target->target_id < target_id) 4687 cur_target = TAILQ_NEXT(cur_target, links); 4688 if (cur_target != NULL) { 4689 TAILQ_INSERT_BEFORE(cur_target, target, links); 4690 } else { 4691 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4692 } 4693 bus->generation++; 4694 return (target); 4695 } 4696 4697 static void 4698 xpt_acquire_target(struct cam_et *target) 4699 { 4700 struct cam_eb *bus = target->bus; 4701 4702 mtx_lock(&bus->eb_mtx); 4703 target->refcount++; 4704 mtx_unlock(&bus->eb_mtx); 4705 } 4706 4707 static void 4708 xpt_release_target(struct cam_et *target) 4709 { 4710 struct cam_eb *bus = target->bus; 4711 4712 mtx_lock(&bus->eb_mtx); 4713 if (--target->refcount > 0) { 4714 mtx_unlock(&bus->eb_mtx); 4715 return; 4716 } 4717 TAILQ_REMOVE(&bus->et_entries, target, links); 4718 bus->generation++; 4719 mtx_unlock(&bus->eb_mtx); 4720 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4721 ("destroying target, but device list is not empty")); 4722 xpt_release_bus(bus); 4723 mtx_destroy(&target->luns_mtx); 4724 if (target->luns) 4725 free(target->luns, M_CAMXPT); 4726 free(target, M_CAMXPT); 4727 } 4728 4729 static struct cam_ed * 4730 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4731 lun_id_t lun_id) 4732 { 4733 struct cam_ed *device; 4734 4735 device = xpt_alloc_device(bus, target, lun_id); 4736 if (device == NULL) 4737 return (NULL); 4738 4739 device->mintags = 1; 4740 device->maxtags = 1; 4741 return (device); 4742 } 4743 4744 static void 4745 xpt_destroy_device(void *context, int pending) 4746 { 4747 struct cam_ed *device = context; 4748 4749 mtx_lock(&device->device_mtx); 4750 mtx_destroy(&device->device_mtx); 4751 free(device, M_CAMDEV); 4752 } 4753 4754 struct cam_ed * 4755 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4756 { 4757 struct cam_ed *cur_device, *device; 4758 struct cam_devq *devq; 4759 cam_status status; 4760 4761 mtx_assert(&bus->eb_mtx, MA_OWNED); 4762 /* Make space for us in the device queue on our bus */ 4763 devq = bus->sim->devq; 4764 mtx_lock(&devq->send_mtx); 4765 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4766 mtx_unlock(&devq->send_mtx); 4767 if (status != CAM_REQ_CMP) 4768 return (NULL); 4769 4770 device = (struct cam_ed *)malloc(sizeof(*device), 4771 M_CAMDEV, M_NOWAIT|M_ZERO); 4772 if (device == NULL) 4773 return (NULL); 4774 4775 cam_init_pinfo(&device->devq_entry); 4776 device->target = target; 4777 device->lun_id = lun_id; 4778 device->sim = bus->sim; 4779 if (cam_ccbq_init(&device->ccbq, 4780 bus->sim->max_dev_openings) != 0) { 4781 free(device, M_CAMDEV); 4782 return (NULL); 4783 } 4784 SLIST_INIT(&device->asyncs); 4785 SLIST_INIT(&device->periphs); 4786 device->generation = 0; 4787 device->flags = CAM_DEV_UNCONFIGURED; 4788 device->tag_delay_count = 0; 4789 device->tag_saved_openings = 0; 4790 device->refcount = 1; 4791 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4792 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4793 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4794 /* 4795 * Hold a reference to our parent bus so it 4796 * will not go away before we do. 4797 */ 4798 target->refcount++; 4799 4800 cur_device = TAILQ_FIRST(&target->ed_entries); 4801 while (cur_device != NULL && cur_device->lun_id < lun_id) 4802 cur_device = TAILQ_NEXT(cur_device, links); 4803 if (cur_device != NULL) 4804 TAILQ_INSERT_BEFORE(cur_device, device, links); 4805 else 4806 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4807 target->generation++; 4808 return (device); 4809 } 4810 4811 void 4812 xpt_acquire_device(struct cam_ed *device) 4813 { 4814 struct cam_eb *bus = device->target->bus; 4815 4816 mtx_lock(&bus->eb_mtx); 4817 device->refcount++; 4818 mtx_unlock(&bus->eb_mtx); 4819 } 4820 4821 void 4822 xpt_release_device(struct cam_ed *device) 4823 { 4824 struct cam_eb *bus = device->target->bus; 4825 struct cam_devq *devq; 4826 4827 mtx_lock(&bus->eb_mtx); 4828 if (--device->refcount > 0) { 4829 mtx_unlock(&bus->eb_mtx); 4830 return; 4831 } 4832 4833 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4834 device->target->generation++; 4835 mtx_unlock(&bus->eb_mtx); 4836 4837 /* Release our slot in the devq */ 4838 devq = bus->sim->devq; 4839 mtx_lock(&devq->send_mtx); 4840 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4841 mtx_unlock(&devq->send_mtx); 4842 4843 KASSERT(SLIST_EMPTY(&device->periphs), 4844 ("destroying device, but periphs list is not empty")); 4845 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4846 ("destroying device while still queued for ccbs")); 4847 4848 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4849 callout_stop(&device->callout); 4850 4851 xpt_release_target(device->target); 4852 4853 cam_ccbq_fini(&device->ccbq); 4854 /* 4855 * Free allocated memory. free(9) does nothing if the 4856 * supplied pointer is NULL, so it is safe to call without 4857 * checking. 4858 */ 4859 free(device->supported_vpds, M_CAMXPT); 4860 free(device->device_id, M_CAMXPT); 4861 free(device->ext_inq, M_CAMXPT); 4862 free(device->physpath, M_CAMXPT); 4863 free(device->rcap_buf, M_CAMXPT); 4864 free(device->serial_num, M_CAMXPT); 4865 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4866 } 4867 4868 u_int32_t 4869 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4870 { 4871 int result; 4872 struct cam_ed *dev; 4873 4874 dev = path->device; 4875 mtx_lock(&dev->sim->devq->send_mtx); 4876 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4877 mtx_unlock(&dev->sim->devq->send_mtx); 4878 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4879 || (dev->inq_flags & SID_CmdQue) != 0) 4880 dev->tag_saved_openings = newopenings; 4881 return (result); 4882 } 4883 4884 static struct cam_eb * 4885 xpt_find_bus(path_id_t path_id) 4886 { 4887 struct cam_eb *bus; 4888 4889 xpt_lock_buses(); 4890 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4891 bus != NULL; 4892 bus = TAILQ_NEXT(bus, links)) { 4893 if (bus->path_id == path_id) { 4894 bus->refcount++; 4895 break; 4896 } 4897 } 4898 xpt_unlock_buses(); 4899 return (bus); 4900 } 4901 4902 static struct cam_et * 4903 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4904 { 4905 struct cam_et *target; 4906 4907 mtx_assert(&bus->eb_mtx, MA_OWNED); 4908 for (target = TAILQ_FIRST(&bus->et_entries); 4909 target != NULL; 4910 target = TAILQ_NEXT(target, links)) { 4911 if (target->target_id == target_id) { 4912 target->refcount++; 4913 break; 4914 } 4915 } 4916 return (target); 4917 } 4918 4919 static struct cam_ed * 4920 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4921 { 4922 struct cam_ed *device; 4923 4924 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4925 for (device = TAILQ_FIRST(&target->ed_entries); 4926 device != NULL; 4927 device = TAILQ_NEXT(device, links)) { 4928 if (device->lun_id == lun_id) { 4929 device->refcount++; 4930 break; 4931 } 4932 } 4933 return (device); 4934 } 4935 4936 void 4937 xpt_start_tags(struct cam_path *path) 4938 { 4939 struct ccb_relsim crs; 4940 struct cam_ed *device; 4941 struct cam_sim *sim; 4942 int newopenings; 4943 4944 device = path->device; 4945 sim = path->bus->sim; 4946 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4947 xpt_freeze_devq(path, /*count*/1); 4948 device->inq_flags |= SID_CmdQue; 4949 if (device->tag_saved_openings != 0) 4950 newopenings = device->tag_saved_openings; 4951 else 4952 newopenings = min(device->maxtags, 4953 sim->max_tagged_dev_openings); 4954 xpt_dev_ccbq_resize(path, newopenings); 4955 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4956 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4957 crs.ccb_h.func_code = XPT_REL_SIMQ; 4958 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4959 crs.openings 4960 = crs.release_timeout 4961 = crs.qfrozen_cnt 4962 = 0; 4963 xpt_action((union ccb *)&crs); 4964 } 4965 4966 void 4967 xpt_stop_tags(struct cam_path *path) 4968 { 4969 struct ccb_relsim crs; 4970 struct cam_ed *device; 4971 struct cam_sim *sim; 4972 4973 device = path->device; 4974 sim = path->bus->sim; 4975 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4976 device->tag_delay_count = 0; 4977 xpt_freeze_devq(path, /*count*/1); 4978 device->inq_flags &= ~SID_CmdQue; 4979 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4980 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4981 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4982 crs.ccb_h.func_code = XPT_REL_SIMQ; 4983 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4984 crs.openings 4985 = crs.release_timeout 4986 = crs.qfrozen_cnt 4987 = 0; 4988 xpt_action((union ccb *)&crs); 4989 } 4990 4991 static void 4992 xpt_boot_delay(void *arg) 4993 { 4994 4995 xpt_release_boot(); 4996 } 4997 4998 static void 4999 xpt_config(void *arg) 5000 { 5001 /* 5002 * Now that interrupts are enabled, go find our devices 5003 */ 5004 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5005 printf("xpt_config: failed to create taskqueue thread.\n"); 5006 5007 /* Setup debugging path */ 5008 if (cam_dflags != CAM_DEBUG_NONE) { 5009 if (xpt_create_path(&cam_dpath, NULL, 5010 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5011 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5012 printf("xpt_config: xpt_create_path() failed for debug" 5013 " target %d:%d:%d, debugging disabled\n", 5014 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5015 cam_dflags = CAM_DEBUG_NONE; 5016 } 5017 } else 5018 cam_dpath = NULL; 5019 5020 periphdriver_init(1); 5021 xpt_hold_boot(); 5022 callout_init(&xsoftc.boot_callout, 1); 5023 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5024 xpt_boot_delay, NULL, 0); 5025 /* Fire up rescan thread. */ 5026 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5027 "cam", "scanner")) { 5028 printf("xpt_config: failed to create rescan thread.\n"); 5029 } 5030 } 5031 5032 void 5033 xpt_hold_boot(void) 5034 { 5035 xpt_lock_buses(); 5036 xsoftc.buses_to_config++; 5037 xpt_unlock_buses(); 5038 } 5039 5040 void 5041 xpt_release_boot(void) 5042 { 5043 xpt_lock_buses(); 5044 xsoftc.buses_to_config--; 5045 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5046 struct xpt_task *task; 5047 5048 xsoftc.buses_config_done = 1; 5049 xpt_unlock_buses(); 5050 /* Call manually because we don't have any buses */ 5051 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5052 if (task != NULL) { 5053 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5054 taskqueue_enqueue(taskqueue_thread, &task->task); 5055 } 5056 } else 5057 xpt_unlock_buses(); 5058 } 5059 5060 /* 5061 * If the given device only has one peripheral attached to it, and if that 5062 * peripheral is the passthrough driver, announce it. This insures that the 5063 * user sees some sort of announcement for every peripheral in their system. 5064 */ 5065 static int 5066 xptpassannouncefunc(struct cam_ed *device, void *arg) 5067 { 5068 struct cam_periph *periph; 5069 int i; 5070 5071 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5072 periph = SLIST_NEXT(periph, periph_links), i++); 5073 5074 periph = SLIST_FIRST(&device->periphs); 5075 if ((i == 1) 5076 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5077 xpt_announce_periph(periph, NULL); 5078 5079 return(1); 5080 } 5081 5082 static void 5083 xpt_finishconfig_task(void *context, int pending) 5084 { 5085 5086 periphdriver_init(2); 5087 /* 5088 * Check for devices with no "standard" peripheral driver 5089 * attached. For any devices like that, announce the 5090 * passthrough driver so the user will see something. 5091 */ 5092 if (!bootverbose) 5093 xpt_for_all_devices(xptpassannouncefunc, NULL); 5094 5095 /* Release our hook so that the boot can continue. */ 5096 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5097 free(xsoftc.xpt_config_hook, M_CAMXPT); 5098 xsoftc.xpt_config_hook = NULL; 5099 5100 free(context, M_CAMXPT); 5101 } 5102 5103 cam_status 5104 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5105 struct cam_path *path) 5106 { 5107 struct ccb_setasync csa; 5108 cam_status status; 5109 int xptpath = 0; 5110 5111 if (path == NULL) { 5112 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5113 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5114 if (status != CAM_REQ_CMP) 5115 return (status); 5116 xpt_path_lock(path); 5117 xptpath = 1; 5118 } 5119 5120 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5121 csa.ccb_h.func_code = XPT_SASYNC_CB; 5122 csa.event_enable = event; 5123 csa.callback = cbfunc; 5124 csa.callback_arg = cbarg; 5125 xpt_action((union ccb *)&csa); 5126 status = csa.ccb_h.status; 5127 5128 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5129 ("xpt_register_async: func %p\n", cbfunc)); 5130 5131 if (xptpath) { 5132 xpt_path_unlock(path); 5133 xpt_free_path(path); 5134 } 5135 5136 if ((status == CAM_REQ_CMP) && 5137 (csa.event_enable & AC_FOUND_DEVICE)) { 5138 /* 5139 * Get this peripheral up to date with all 5140 * the currently existing devices. 5141 */ 5142 xpt_for_all_devices(xptsetasyncfunc, &csa); 5143 } 5144 if ((status == CAM_REQ_CMP) && 5145 (csa.event_enable & AC_PATH_REGISTERED)) { 5146 /* 5147 * Get this peripheral up to date with all 5148 * the currently existing buses. 5149 */ 5150 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5151 } 5152 5153 return (status); 5154 } 5155 5156 static void 5157 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5158 { 5159 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5160 5161 switch (work_ccb->ccb_h.func_code) { 5162 /* Common cases first */ 5163 case XPT_PATH_INQ: /* Path routing inquiry */ 5164 { 5165 struct ccb_pathinq *cpi; 5166 5167 cpi = &work_ccb->cpi; 5168 cpi->version_num = 1; /* XXX??? */ 5169 cpi->hba_inquiry = 0; 5170 cpi->target_sprt = 0; 5171 cpi->hba_misc = 0; 5172 cpi->hba_eng_cnt = 0; 5173 cpi->max_target = 0; 5174 cpi->max_lun = 0; 5175 cpi->initiator_id = 0; 5176 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5177 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5178 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5179 cpi->unit_number = sim->unit_number; 5180 cpi->bus_id = sim->bus_id; 5181 cpi->base_transfer_speed = 0; 5182 cpi->protocol = PROTO_UNSPECIFIED; 5183 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5184 cpi->transport = XPORT_UNSPECIFIED; 5185 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5186 cpi->ccb_h.status = CAM_REQ_CMP; 5187 xpt_done(work_ccb); 5188 break; 5189 } 5190 default: 5191 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5192 xpt_done(work_ccb); 5193 break; 5194 } 5195 } 5196 5197 /* 5198 * The xpt as a "controller" has no interrupt sources, so polling 5199 * is a no-op. 5200 */ 5201 static void 5202 xptpoll(struct cam_sim *sim) 5203 { 5204 } 5205 5206 void 5207 xpt_lock_buses(void) 5208 { 5209 mtx_lock(&xsoftc.xpt_topo_lock); 5210 } 5211 5212 void 5213 xpt_unlock_buses(void) 5214 { 5215 mtx_unlock(&xsoftc.xpt_topo_lock); 5216 } 5217 5218 struct mtx * 5219 xpt_path_mtx(struct cam_path *path) 5220 { 5221 5222 return (&path->device->device_mtx); 5223 } 5224 5225 static void 5226 xpt_done_process(struct ccb_hdr *ccb_h) 5227 { 5228 struct cam_sim *sim; 5229 struct cam_devq *devq; 5230 struct mtx *mtx = NULL; 5231 5232 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5233 struct ccb_scsiio *csio; 5234 5235 if (ccb_h->func_code == XPT_SCSI_IO) { 5236 csio = &((union ccb *)ccb_h)->csio; 5237 if (csio->bio != NULL) 5238 biotrack(csio->bio, __func__); 5239 } 5240 #endif 5241 5242 if (ccb_h->flags & CAM_HIGH_POWER) { 5243 struct highpowerlist *hphead; 5244 struct cam_ed *device; 5245 5246 mtx_lock(&xsoftc.xpt_highpower_lock); 5247 hphead = &xsoftc.highpowerq; 5248 5249 device = STAILQ_FIRST(hphead); 5250 5251 /* 5252 * Increment the count since this command is done. 5253 */ 5254 xsoftc.num_highpower++; 5255 5256 /* 5257 * Any high powered commands queued up? 5258 */ 5259 if (device != NULL) { 5260 5261 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5262 mtx_unlock(&xsoftc.xpt_highpower_lock); 5263 5264 mtx_lock(&device->sim->devq->send_mtx); 5265 xpt_release_devq_device(device, 5266 /*count*/1, /*runqueue*/TRUE); 5267 mtx_unlock(&device->sim->devq->send_mtx); 5268 } else 5269 mtx_unlock(&xsoftc.xpt_highpower_lock); 5270 } 5271 5272 sim = ccb_h->path->bus->sim; 5273 5274 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5275 xpt_release_simq(sim, /*run_queue*/FALSE); 5276 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5277 } 5278 5279 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5280 && (ccb_h->status & CAM_DEV_QFRZN)) { 5281 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5282 ccb_h->status &= ~CAM_DEV_QFRZN; 5283 } 5284 5285 devq = sim->devq; 5286 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5287 struct cam_ed *dev = ccb_h->path->device; 5288 5289 mtx_lock(&devq->send_mtx); 5290 devq->send_active--; 5291 devq->send_openings++; 5292 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5293 5294 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5295 && (dev->ccbq.dev_active == 0))) { 5296 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5297 xpt_release_devq_device(dev, /*count*/1, 5298 /*run_queue*/FALSE); 5299 } 5300 5301 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5302 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5303 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5304 xpt_release_devq_device(dev, /*count*/1, 5305 /*run_queue*/FALSE); 5306 } 5307 5308 if (!device_is_queued(dev)) 5309 (void)xpt_schedule_devq(devq, dev); 5310 xpt_run_devq(devq); 5311 mtx_unlock(&devq->send_mtx); 5312 5313 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5314 mtx = xpt_path_mtx(ccb_h->path); 5315 mtx_lock(mtx); 5316 5317 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5318 && (--dev->tag_delay_count == 0)) 5319 xpt_start_tags(ccb_h->path); 5320 } 5321 } 5322 5323 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5324 if (mtx == NULL) { 5325 mtx = xpt_path_mtx(ccb_h->path); 5326 mtx_lock(mtx); 5327 } 5328 } else { 5329 if (mtx != NULL) { 5330 mtx_unlock(mtx); 5331 mtx = NULL; 5332 } 5333 } 5334 5335 /* Call the peripheral driver's callback */ 5336 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5337 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5338 if (mtx != NULL) 5339 mtx_unlock(mtx); 5340 } 5341 5342 void 5343 xpt_done_td(void *arg) 5344 { 5345 struct cam_doneq *queue = arg; 5346 struct ccb_hdr *ccb_h; 5347 STAILQ_HEAD(, ccb_hdr) doneq; 5348 5349 STAILQ_INIT(&doneq); 5350 mtx_lock(&queue->cam_doneq_mtx); 5351 while (1) { 5352 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5353 queue->cam_doneq_sleep = 1; 5354 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5355 PRIBIO, "-", 0); 5356 queue->cam_doneq_sleep = 0; 5357 } 5358 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5359 mtx_unlock(&queue->cam_doneq_mtx); 5360 5361 THREAD_NO_SLEEPING(); 5362 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5363 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5364 xpt_done_process(ccb_h); 5365 } 5366 THREAD_SLEEPING_OK(); 5367 5368 mtx_lock(&queue->cam_doneq_mtx); 5369 } 5370 } 5371 5372 static void 5373 camisr_runqueue(void) 5374 { 5375 struct ccb_hdr *ccb_h; 5376 struct cam_doneq *queue; 5377 int i; 5378 5379 /* Process global queues. */ 5380 for (i = 0; i < cam_num_doneqs; i++) { 5381 queue = &cam_doneqs[i]; 5382 mtx_lock(&queue->cam_doneq_mtx); 5383 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5384 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5385 mtx_unlock(&queue->cam_doneq_mtx); 5386 xpt_done_process(ccb_h); 5387 mtx_lock(&queue->cam_doneq_mtx); 5388 } 5389 mtx_unlock(&queue->cam_doneq_mtx); 5390 } 5391 } 5392 5393 struct kv 5394 { 5395 uint32_t v; 5396 const char *name; 5397 }; 5398 5399 static struct kv map[] = { 5400 { XPT_NOOP, "XPT_NOOP" }, 5401 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5402 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5403 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5404 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5405 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5406 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5407 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5408 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5409 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5410 { XPT_DEBUG, "XPT_DEBUG" }, 5411 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5412 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5413 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5414 { XPT_ASYNC, "XPT_ASYNC" }, 5415 { XPT_ABORT, "XPT_ABORT" }, 5416 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5417 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5418 { XPT_TERM_IO, "XPT_TERM_IO" }, 5419 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5420 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5421 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5422 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5423 { XPT_ATA_IO, "XPT_ATA_IO" }, 5424 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5425 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5426 { XPT_NVME_IO, "XPT_NVME_IO" }, 5427 { XPT_MMCSD_IO, "XPT_MMCSD_IO" }, 5428 { XPT_SMP_IO, "XPT_SMP_IO" }, 5429 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5430 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5431 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5432 { XPT_EN_LUN, "XPT_EN_LUN" }, 5433 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5434 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5435 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5436 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5437 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5438 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5439 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5440 { 0, 0 } 5441 }; 5442 5443 static const char * 5444 xpt_action_name(uint32_t action) 5445 { 5446 static char buffer[32]; /* Only for unknown messages -- racy */ 5447 struct kv *walker = map; 5448 5449 while (walker->name != NULL) { 5450 if (walker->v == action) 5451 return (walker->name); 5452 walker++; 5453 } 5454 5455 snprintf(buffer, sizeof(buffer), "%#x", action); 5456 return (buffer); 5457 } 5458