xref: /freebsd/sys/cam/cam_xpt.c (revision 058ab969fd2f7a8d04240d1e9bc9d63918480226)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/stdarg.h>	/* for xpt_print below */
75 
76 #include "opt_cam.h"
77 
78 /* Wild guess based on not wanting to grow the stack too much */
79 #define XPT_PRINT_MAXLEN	512
80 #ifdef PRINTF_BUFR_SIZE
81 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
82 #else
83 #define XPT_PRINT_LEN	128
84 #endif
85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
86 
87 /*
88  * This is the maximum number of high powered commands (e.g. start unit)
89  * that can be outstanding at a particular time.
90  */
91 #ifndef CAM_MAX_HIGHPOWER
92 #define CAM_MAX_HIGHPOWER  4
93 #endif
94 
95 /* Datastructures internal to the xpt layer */
96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
100 
101 struct xpt_softc {
102 	uint32_t		xpt_generation;
103 
104 	/* number of high powered commands that can go through right now */
105 	struct mtx		xpt_highpower_lock;
106 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
107 	int			num_highpower;
108 
109 	/* queue for handling async rescan requests. */
110 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
111 	int buses_to_config;
112 	int buses_config_done;
113 
114 	/*
115 	 * Registered buses
116 	 *
117 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
118 	 * "buses" is preferred.
119 	 */
120 	TAILQ_HEAD(,cam_eb)	xpt_busses;
121 	u_int			bus_generation;
122 
123 	int			boot_delay;
124 	struct callout 		boot_callout;
125 	struct task		boot_task;
126 	struct root_hold_token	xpt_rootmount;
127 
128 	struct mtx		xpt_topo_lock;
129 	struct taskqueue	*xpt_taskq;
130 };
131 
132 typedef enum {
133 	DM_RET_COPY		= 0x01,
134 	DM_RET_FLAG_MASK	= 0x0f,
135 	DM_RET_NONE		= 0x00,
136 	DM_RET_STOP		= 0x10,
137 	DM_RET_DESCEND		= 0x20,
138 	DM_RET_ERROR		= 0x30,
139 	DM_RET_ACTION_MASK	= 0xf0
140 } dev_match_ret;
141 
142 typedef enum {
143 	XPT_DEPTH_BUS,
144 	XPT_DEPTH_TARGET,
145 	XPT_DEPTH_DEVICE,
146 	XPT_DEPTH_PERIPH
147 } xpt_traverse_depth;
148 
149 struct xpt_traverse_config {
150 	xpt_traverse_depth	depth;
151 	void			*tr_func;
152 	void			*tr_arg;
153 };
154 
155 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
156 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
157 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
158 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
159 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
160 
161 /* Transport layer configuration information */
162 static struct xpt_softc xsoftc;
163 
164 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
165 
166 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
167            &xsoftc.boot_delay, 0, "Bus registration wait time");
168 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
169 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
170 
171 struct cam_doneq {
172 	struct mtx_padalign	cam_doneq_mtx;
173 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
174 	int			cam_doneq_sleep;
175 };
176 
177 static struct cam_doneq cam_doneqs[MAXCPU];
178 static u_int __read_mostly cam_num_doneqs;
179 static struct proc *cam_proc;
180 static struct cam_doneq cam_async;
181 
182 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
183            &cam_num_doneqs, 0, "Number of completion queues/threads");
184 
185 struct cam_periph *xpt_periph;
186 
187 static periph_init_t xpt_periph_init;
188 
189 static struct periph_driver xpt_driver =
190 {
191 	xpt_periph_init, "xpt",
192 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
193 	CAM_PERIPH_DRV_EARLY
194 };
195 
196 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
197 
198 static d_open_t xptopen;
199 static d_close_t xptclose;
200 static d_ioctl_t xptioctl;
201 static d_ioctl_t xptdoioctl;
202 
203 static struct cdevsw xpt_cdevsw = {
204 	.d_version =	D_VERSION,
205 	.d_flags =	0,
206 	.d_open =	xptopen,
207 	.d_close =	xptclose,
208 	.d_ioctl =	xptioctl,
209 	.d_name =	"xpt",
210 };
211 
212 /* Storage for debugging datastructures */
213 struct cam_path *cam_dpath;
214 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
215 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
216 	&cam_dflags, 0, "Enabled debug flags");
217 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
218 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
219 	&cam_debug_delay, 0, "Delay in us after each debug message");
220 
221 /* Our boot-time initialization hook */
222 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
223 
224 static moduledata_t cam_moduledata = {
225 	"cam",
226 	cam_module_event_handler,
227 	NULL
228 };
229 
230 static int	xpt_init(void *);
231 
232 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
233 MODULE_VERSION(cam, 1);
234 
235 static void		xpt_async_bcast(struct async_list *async_head,
236 					uint32_t async_code,
237 					struct cam_path *path,
238 					void *async_arg);
239 static path_id_t xptnextfreepathid(void);
240 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
241 static union ccb *xpt_get_ccb(struct cam_periph *periph);
242 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
243 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
244 static void	 xpt_run_allocq_task(void *context, int pending);
245 static void	 xpt_run_devq(struct cam_devq *devq);
246 static callout_func_t xpt_release_devq_timeout;
247 static void	 xpt_acquire_bus(struct cam_eb *bus);
248 static void	 xpt_release_bus(struct cam_eb *bus);
249 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
250 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
251 		    int run_queue);
252 static struct cam_et*
253 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
254 static void	 xpt_acquire_target(struct cam_et *target);
255 static void	 xpt_release_target(struct cam_et *target);
256 static struct cam_eb*
257 		 xpt_find_bus(path_id_t path_id);
258 static struct cam_et*
259 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
260 static struct cam_ed*
261 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
262 static void	 xpt_config(void *arg);
263 static void	 xpt_hold_boot_locked(void);
264 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
265 				 uint32_t new_priority);
266 static xpt_devicefunc_t xptpassannouncefunc;
267 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
268 static void	 xptpoll(struct cam_sim *sim);
269 static void	 camisr_runqueue(void);
270 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
271 static void	 xpt_done_td(void *);
272 static void	 xpt_async_td(void *);
273 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
274 				    u_int num_patterns, struct cam_eb *bus);
275 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
276 				       u_int num_patterns,
277 				       struct cam_ed *device);
278 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
279 				       u_int num_patterns,
280 				       struct cam_periph *periph);
281 static xpt_busfunc_t	xptedtbusfunc;
282 static xpt_targetfunc_t	xptedttargetfunc;
283 static xpt_devicefunc_t	xptedtdevicefunc;
284 static xpt_periphfunc_t	xptedtperiphfunc;
285 static xpt_pdrvfunc_t	xptplistpdrvfunc;
286 static xpt_periphfunc_t	xptplistperiphfunc;
287 static int		xptedtmatch(struct ccb_dev_match *cdm);
288 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
289 static int		xptbustraverse(struct cam_eb *start_bus,
290 				       xpt_busfunc_t *tr_func, void *arg);
291 static int		xpttargettraverse(struct cam_eb *bus,
292 					  struct cam_et *start_target,
293 					  xpt_targetfunc_t *tr_func, void *arg);
294 static int		xptdevicetraverse(struct cam_et *target,
295 					  struct cam_ed *start_device,
296 					  xpt_devicefunc_t *tr_func, void *arg);
297 static int		xptperiphtraverse(struct cam_ed *device,
298 					  struct cam_periph *start_periph,
299 					  xpt_periphfunc_t *tr_func, void *arg);
300 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
301 					xpt_pdrvfunc_t *tr_func, void *arg);
302 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
303 					    struct cam_periph *start_periph,
304 					    xpt_periphfunc_t *tr_func,
305 					    void *arg);
306 static xpt_busfunc_t	xptdefbusfunc;
307 static xpt_targetfunc_t	xptdeftargetfunc;
308 static xpt_devicefunc_t	xptdefdevicefunc;
309 static xpt_periphfunc_t	xptdefperiphfunc;
310 static void		xpt_finishconfig_task(void *context, int pending);
311 static void		xpt_dev_async_default(uint32_t async_code,
312 					      struct cam_eb *bus,
313 					      struct cam_et *target,
314 					      struct cam_ed *device,
315 					      void *async_arg);
316 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
317 						 struct cam_et *target,
318 						 lun_id_t lun_id);
319 static xpt_devicefunc_t	xptsetasyncfunc;
320 static xpt_busfunc_t	xptsetasyncbusfunc;
321 static cam_status	xptregister(struct cam_periph *periph,
322 				    void *arg);
323 
324 static __inline int
325 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
326 {
327 	int	retval;
328 
329 	mtx_assert(&devq->send_mtx, MA_OWNED);
330 	if ((dev->ccbq.queue.entries > 0) &&
331 	    (dev->ccbq.dev_openings > 0) &&
332 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
333 		/*
334 		 * The priority of a device waiting for controller
335 		 * resources is that of the highest priority CCB
336 		 * enqueued.
337 		 */
338 		retval =
339 		    xpt_schedule_dev(&devq->send_queue,
340 				     &dev->devq_entry,
341 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
342 	} else {
343 		retval = 0;
344 	}
345 	return (retval);
346 }
347 
348 static __inline int
349 device_is_queued(struct cam_ed *device)
350 {
351 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
352 }
353 
354 static void
355 xpt_periph_init(void)
356 {
357 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
358 }
359 
360 static int
361 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
362 {
363 
364 	/*
365 	 * Only allow read-write access.
366 	 */
367 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
368 		return(EPERM);
369 
370 	/*
371 	 * We don't allow nonblocking access.
372 	 */
373 	if ((flags & O_NONBLOCK) != 0) {
374 		printf("%s: can't do nonblocking access\n", devtoname(dev));
375 		return(ENODEV);
376 	}
377 
378 	return(0);
379 }
380 
381 static int
382 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
383 {
384 
385 	return(0);
386 }
387 
388 /*
389  * Don't automatically grab the xpt softc lock here even though this is going
390  * through the xpt device.  The xpt device is really just a back door for
391  * accessing other devices and SIMs, so the right thing to do is to grab
392  * the appropriate SIM lock once the bus/SIM is located.
393  */
394 static int
395 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
396 {
397 	int error;
398 
399 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
400 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
401 	}
402 	return (error);
403 }
404 
405 static int
406 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
407 {
408 	int error;
409 
410 	error = 0;
411 
412 	switch(cmd) {
413 	/*
414 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
415 	 * to accept CCB types that don't quite make sense to send through a
416 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
417 	 * in the CAM spec.
418 	 */
419 	case CAMIOCOMMAND: {
420 		union ccb *ccb;
421 		union ccb *inccb;
422 		struct cam_eb *bus;
423 
424 		inccb = (union ccb *)addr;
425 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
426 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
427 			inccb->csio.bio = NULL;
428 #endif
429 
430 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
431 			return (EINVAL);
432 
433 		bus = xpt_find_bus(inccb->ccb_h.path_id);
434 		if (bus == NULL)
435 			return (EINVAL);
436 
437 		switch (inccb->ccb_h.func_code) {
438 		case XPT_SCAN_BUS:
439 		case XPT_RESET_BUS:
440 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
441 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
442 				xpt_release_bus(bus);
443 				return (EINVAL);
444 			}
445 			break;
446 		case XPT_SCAN_TGT:
447 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
448 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
449 				xpt_release_bus(bus);
450 				return (EINVAL);
451 			}
452 			break;
453 		default:
454 			break;
455 		}
456 
457 		switch(inccb->ccb_h.func_code) {
458 		case XPT_SCAN_BUS:
459 		case XPT_RESET_BUS:
460 		case XPT_PATH_INQ:
461 		case XPT_ENG_INQ:
462 		case XPT_SCAN_LUN:
463 		case XPT_SCAN_TGT:
464 
465 			ccb = xpt_alloc_ccb();
466 
467 			/*
468 			 * Create a path using the bus, target, and lun the
469 			 * user passed in.
470 			 */
471 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
472 					    inccb->ccb_h.path_id,
473 					    inccb->ccb_h.target_id,
474 					    inccb->ccb_h.target_lun) !=
475 					    CAM_REQ_CMP){
476 				error = EINVAL;
477 				xpt_free_ccb(ccb);
478 				break;
479 			}
480 			/* Ensure all of our fields are correct */
481 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
482 				      inccb->ccb_h.pinfo.priority);
483 			xpt_merge_ccb(ccb, inccb);
484 			xpt_path_lock(ccb->ccb_h.path);
485 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
486 			xpt_path_unlock(ccb->ccb_h.path);
487 			bcopy(ccb, inccb, sizeof(union ccb));
488 			xpt_free_path(ccb->ccb_h.path);
489 			xpt_free_ccb(ccb);
490 			break;
491 
492 		case XPT_DEBUG: {
493 			union ccb ccb;
494 
495 			/*
496 			 * This is an immediate CCB, so it's okay to
497 			 * allocate it on the stack.
498 			 */
499 			memset(&ccb, 0, sizeof(ccb));
500 
501 			/*
502 			 * Create a path using the bus, target, and lun the
503 			 * user passed in.
504 			 */
505 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
506 					    inccb->ccb_h.path_id,
507 					    inccb->ccb_h.target_id,
508 					    inccb->ccb_h.target_lun) !=
509 					    CAM_REQ_CMP){
510 				error = EINVAL;
511 				break;
512 			}
513 			/* Ensure all of our fields are correct */
514 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
515 				      inccb->ccb_h.pinfo.priority);
516 			xpt_merge_ccb(&ccb, inccb);
517 			xpt_action(&ccb);
518 			bcopy(&ccb, inccb, sizeof(union ccb));
519 			xpt_free_path(ccb.ccb_h.path);
520 			break;
521 		}
522 		case XPT_DEV_MATCH: {
523 			struct cam_periph_map_info mapinfo;
524 			struct cam_path *old_path;
525 
526 			/*
527 			 * We can't deal with physical addresses for this
528 			 * type of transaction.
529 			 */
530 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
531 			    CAM_DATA_VADDR) {
532 				error = EINVAL;
533 				break;
534 			}
535 
536 			/*
537 			 * Save this in case the caller had it set to
538 			 * something in particular.
539 			 */
540 			old_path = inccb->ccb_h.path;
541 
542 			/*
543 			 * We really don't need a path for the matching
544 			 * code.  The path is needed because of the
545 			 * debugging statements in xpt_action().  They
546 			 * assume that the CCB has a valid path.
547 			 */
548 			inccb->ccb_h.path = xpt_periph->path;
549 
550 			bzero(&mapinfo, sizeof(mapinfo));
551 
552 			/*
553 			 * Map the pattern and match buffers into kernel
554 			 * virtual address space.
555 			 */
556 			error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
557 
558 			if (error) {
559 				inccb->ccb_h.path = old_path;
560 				break;
561 			}
562 
563 			/*
564 			 * This is an immediate CCB, we can send it on directly.
565 			 */
566 			xpt_action(inccb);
567 
568 			/*
569 			 * Map the buffers back into user space.
570 			 */
571 			cam_periph_unmapmem(inccb, &mapinfo);
572 
573 			inccb->ccb_h.path = old_path;
574 
575 			error = 0;
576 			break;
577 		}
578 		default:
579 			error = ENOTSUP;
580 			break;
581 		}
582 		xpt_release_bus(bus);
583 		break;
584 	}
585 	/*
586 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
587 	 * with the periphal driver name and unit name filled in.  The other
588 	 * fields don't really matter as input.  The passthrough driver name
589 	 * ("pass"), and unit number are passed back in the ccb.  The current
590 	 * device generation number, and the index into the device peripheral
591 	 * driver list, and the status are also passed back.  Note that
592 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
593 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
594 	 * (or rather should be) impossible for the device peripheral driver
595 	 * list to change since we look at the whole thing in one pass, and
596 	 * we do it with lock protection.
597 	 *
598 	 */
599 	case CAMGETPASSTHRU: {
600 		union ccb *ccb;
601 		struct cam_periph *periph;
602 		struct periph_driver **p_drv;
603 		char   *name;
604 		u_int unit;
605 		bool base_periph_found;
606 
607 		ccb = (union ccb *)addr;
608 		unit = ccb->cgdl.unit_number;
609 		name = ccb->cgdl.periph_name;
610 		base_periph_found = false;
611 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
612 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
613 			ccb->csio.bio = NULL;
614 #endif
615 
616 		/*
617 		 * Sanity check -- make sure we don't get a null peripheral
618 		 * driver name.
619 		 */
620 		if (*ccb->cgdl.periph_name == '\0') {
621 			error = EINVAL;
622 			break;
623 		}
624 
625 		/* Keep the list from changing while we traverse it */
626 		xpt_lock_buses();
627 
628 		/* first find our driver in the list of drivers */
629 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
630 			if (strcmp((*p_drv)->driver_name, name) == 0)
631 				break;
632 
633 		if (*p_drv == NULL) {
634 			xpt_unlock_buses();
635 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
636 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
637 			*ccb->cgdl.periph_name = '\0';
638 			ccb->cgdl.unit_number = 0;
639 			error = ENOENT;
640 			break;
641 		}
642 
643 		/*
644 		 * Run through every peripheral instance of this driver
645 		 * and check to see whether it matches the unit passed
646 		 * in by the user.  If it does, get out of the loops and
647 		 * find the passthrough driver associated with that
648 		 * peripheral driver.
649 		 */
650 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
651 		     periph = TAILQ_NEXT(periph, unit_links)) {
652 			if (periph->unit_number == unit)
653 				break;
654 		}
655 		/*
656 		 * If we found the peripheral driver that the user passed
657 		 * in, go through all of the peripheral drivers for that
658 		 * particular device and look for a passthrough driver.
659 		 */
660 		if (periph != NULL) {
661 			struct cam_ed *device;
662 			int i;
663 
664 			base_periph_found = true;
665 			device = periph->path->device;
666 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
667 			     periph != NULL;
668 			     periph = SLIST_NEXT(periph, periph_links), i++) {
669 				/*
670 				 * Check to see whether we have a
671 				 * passthrough device or not.
672 				 */
673 				if (strcmp(periph->periph_name, "pass") == 0) {
674 					/*
675 					 * Fill in the getdevlist fields.
676 					 */
677 					strlcpy(ccb->cgdl.periph_name,
678 					       periph->periph_name,
679 					       sizeof(ccb->cgdl.periph_name));
680 					ccb->cgdl.unit_number =
681 						periph->unit_number;
682 					if (SLIST_NEXT(periph, periph_links))
683 						ccb->cgdl.status =
684 							CAM_GDEVLIST_MORE_DEVS;
685 					else
686 						ccb->cgdl.status =
687 						       CAM_GDEVLIST_LAST_DEVICE;
688 					ccb->cgdl.generation =
689 						device->generation;
690 					ccb->cgdl.index = i;
691 					/*
692 					 * Fill in some CCB header fields
693 					 * that the user may want.
694 					 */
695 					ccb->ccb_h.path_id =
696 						periph->path->bus->path_id;
697 					ccb->ccb_h.target_id =
698 						periph->path->target->target_id;
699 					ccb->ccb_h.target_lun =
700 						periph->path->device->lun_id;
701 					ccb->ccb_h.status = CAM_REQ_CMP;
702 					break;
703 				}
704 			}
705 		}
706 
707 		/*
708 		 * If the periph is null here, one of two things has
709 		 * happened.  The first possibility is that we couldn't
710 		 * find the unit number of the particular peripheral driver
711 		 * that the user is asking about.  e.g. the user asks for
712 		 * the passthrough driver for "da11".  We find the list of
713 		 * "da" peripherals all right, but there is no unit 11.
714 		 * The other possibility is that we went through the list
715 		 * of peripheral drivers attached to the device structure,
716 		 * but didn't find one with the name "pass".  Either way,
717 		 * we return ENOENT, since we couldn't find something.
718 		 */
719 		if (periph == NULL) {
720 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
721 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
722 			*ccb->cgdl.periph_name = '\0';
723 			ccb->cgdl.unit_number = 0;
724 			error = ENOENT;
725 			/*
726 			 * It is unfortunate that this is even necessary,
727 			 * but there are many, many clueless users out there.
728 			 * If this is true, the user is looking for the
729 			 * passthrough driver, but doesn't have one in his
730 			 * kernel.
731 			 */
732 			if (base_periph_found) {
733 				printf("xptioctl: pass driver is not in the "
734 				       "kernel\n");
735 				printf("xptioctl: put \"device pass\" in "
736 				       "your kernel config file\n");
737 			}
738 		}
739 		xpt_unlock_buses();
740 		break;
741 		}
742 	default:
743 		error = ENOTTY;
744 		break;
745 	}
746 
747 	return(error);
748 }
749 
750 static int
751 cam_module_event_handler(module_t mod, int what, void *arg)
752 {
753 	int error;
754 
755 	switch (what) {
756 	case MOD_LOAD:
757 		if ((error = xpt_init(NULL)) != 0)
758 			return (error);
759 		break;
760 	case MOD_UNLOAD:
761 		return EBUSY;
762 	default:
763 		return EOPNOTSUPP;
764 	}
765 
766 	return 0;
767 }
768 
769 static struct xpt_proto *
770 xpt_proto_find(cam_proto proto)
771 {
772 	struct xpt_proto **pp;
773 
774 	SET_FOREACH(pp, cam_xpt_proto_set) {
775 		if ((*pp)->proto == proto)
776 			return *pp;
777 	}
778 
779 	return NULL;
780 }
781 
782 static void
783 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
784 {
785 
786 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
787 		xpt_free_path(done_ccb->ccb_h.path);
788 		xpt_free_ccb(done_ccb);
789 	} else {
790 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
791 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
792 	}
793 	xpt_release_boot();
794 }
795 
796 /* thread to handle bus rescans */
797 static void
798 xpt_scanner_thread(void *dummy)
799 {
800 	union ccb	*ccb;
801 	struct mtx	*mtx;
802 	struct cam_ed	*device;
803 
804 	xpt_lock_buses();
805 	for (;;) {
806 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
807 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
808 			       "-", 0);
809 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
810 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
811 			xpt_unlock_buses();
812 
813 			/*
814 			 * We need to lock the device's mutex which we use as
815 			 * the path mutex. We can't do it directly because the
816 			 * cam_path in the ccb may wind up going away because
817 			 * the path lock may be dropped and the path retired in
818 			 * the completion callback. We do this directly to keep
819 			 * the reference counts in cam_path sane. We also have
820 			 * to copy the device pointer because ccb_h.path may
821 			 * be freed in the callback.
822 			 */
823 			mtx = xpt_path_mtx(ccb->ccb_h.path);
824 			device = ccb->ccb_h.path->device;
825 			xpt_acquire_device(device);
826 			mtx_lock(mtx);
827 			xpt_action(ccb);
828 			mtx_unlock(mtx);
829 			xpt_release_device(device);
830 
831 			xpt_lock_buses();
832 		}
833 	}
834 }
835 
836 void
837 xpt_rescan(union ccb *ccb)
838 {
839 	struct ccb_hdr *hdr;
840 
841 	/* Prepare request */
842 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
843 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
844 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
845 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
846 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
847 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
848 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
849 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
850 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
851 	else {
852 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
853 		xpt_free_path(ccb->ccb_h.path);
854 		xpt_free_ccb(ccb);
855 		return;
856 	}
857 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
858 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
859  		xpt_action_name(ccb->ccb_h.func_code)));
860 
861 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
862 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
863 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
864 	/* Don't make duplicate entries for the same paths. */
865 	xpt_lock_buses();
866 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
867 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
868 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
869 				wakeup(&xsoftc.ccb_scanq);
870 				xpt_unlock_buses();
871 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
872 				xpt_free_path(ccb->ccb_h.path);
873 				xpt_free_ccb(ccb);
874 				return;
875 			}
876 		}
877 	}
878 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
879 	xpt_hold_boot_locked();
880 	wakeup(&xsoftc.ccb_scanq);
881 	xpt_unlock_buses();
882 }
883 
884 /* Functions accessed by the peripheral drivers */
885 static int
886 xpt_init(void *dummy)
887 {
888 	struct cam_sim *xpt_sim;
889 	struct cam_path *path;
890 	struct cam_devq *devq;
891 	cam_status status;
892 	int error, i;
893 
894 	TAILQ_INIT(&xsoftc.xpt_busses);
895 	TAILQ_INIT(&xsoftc.ccb_scanq);
896 	STAILQ_INIT(&xsoftc.highpowerq);
897 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
898 
899 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
900 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
901 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
902 
903 #ifdef CAM_BOOT_DELAY
904 	/*
905 	 * Override this value at compile time to assist our users
906 	 * who don't use loader to boot a kernel.
907 	 */
908 	xsoftc.boot_delay = CAM_BOOT_DELAY;
909 #endif
910 
911 	/*
912 	 * The xpt layer is, itself, the equivalent of a SIM.
913 	 * Allow 16 ccbs in the ccb pool for it.  This should
914 	 * give decent parallelism when we probe buses and
915 	 * perform other XPT functions.
916 	 */
917 	devq = cam_simq_alloc(16);
918 	xpt_sim = cam_sim_alloc(xptaction,
919 				xptpoll,
920 				"xpt",
921 				/*softc*/NULL,
922 				/*unit*/0,
923 				/*mtx*/NULL,
924 				/*max_dev_transactions*/0,
925 				/*max_tagged_dev_transactions*/0,
926 				devq);
927 	if (xpt_sim == NULL)
928 		return (ENOMEM);
929 
930 	if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
931 		printf("xpt_init: xpt_bus_register failed with errno %d,"
932 		       " failing attach\n", error);
933 		return (EINVAL);
934 	}
935 
936 	/*
937 	 * Looking at the XPT from the SIM layer, the XPT is
938 	 * the equivalent of a peripheral driver.  Allocate
939 	 * a peripheral driver entry for us.
940 	 */
941 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
942 				      CAM_TARGET_WILDCARD,
943 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
944 		printf("xpt_init: xpt_create_path failed with status %#x,"
945 		       " failing attach\n", status);
946 		return (EINVAL);
947 	}
948 	xpt_path_lock(path);
949 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
950 			 path, NULL, 0, xpt_sim);
951 	xpt_path_unlock(path);
952 	xpt_free_path(path);
953 
954 	if (cam_num_doneqs < 1)
955 		cam_num_doneqs = 1 + mp_ncpus / 6;
956 	else if (cam_num_doneqs > MAXCPU)
957 		cam_num_doneqs = MAXCPU;
958 	for (i = 0; i < cam_num_doneqs; i++) {
959 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
960 		    MTX_DEF);
961 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
962 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
963 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
964 		if (error != 0) {
965 			cam_num_doneqs = i;
966 			break;
967 		}
968 	}
969 	if (cam_num_doneqs < 1) {
970 		printf("xpt_init: Cannot init completion queues "
971 		       "- failing attach\n");
972 		return (ENOMEM);
973 	}
974 
975 	mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
976 	STAILQ_INIT(&cam_async.cam_doneq);
977 	if (kproc_kthread_add(xpt_async_td, &cam_async,
978 		&cam_proc, NULL, 0, 0, "cam", "async") != 0) {
979 		printf("xpt_init: Cannot init async thread "
980 		       "- failing attach\n");
981 		return (ENOMEM);
982 	}
983 
984 	/*
985 	 * Register a callback for when interrupts are enabled.
986 	 */
987 	config_intrhook_oneshot(xpt_config, NULL);
988 
989 	return (0);
990 }
991 
992 static cam_status
993 xptregister(struct cam_periph *periph, void *arg)
994 {
995 	struct cam_sim *xpt_sim;
996 
997 	if (periph == NULL) {
998 		printf("xptregister: periph was NULL!!\n");
999 		return(CAM_REQ_CMP_ERR);
1000 	}
1001 
1002 	xpt_sim = (struct cam_sim *)arg;
1003 	xpt_sim->softc = periph;
1004 	xpt_periph = periph;
1005 	periph->softc = NULL;
1006 
1007 	return(CAM_REQ_CMP);
1008 }
1009 
1010 int32_t
1011 xpt_add_periph(struct cam_periph *periph)
1012 {
1013 	struct cam_ed *device;
1014 	int32_t	 status;
1015 
1016 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1017 	device = periph->path->device;
1018 	status = CAM_REQ_CMP;
1019 	if (device != NULL) {
1020 		mtx_lock(&device->target->bus->eb_mtx);
1021 		device->generation++;
1022 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1023 		mtx_unlock(&device->target->bus->eb_mtx);
1024 		atomic_add_32(&xsoftc.xpt_generation, 1);
1025 	}
1026 
1027 	return (status);
1028 }
1029 
1030 void
1031 xpt_remove_periph(struct cam_periph *periph)
1032 {
1033 	struct cam_ed *device;
1034 
1035 	device = periph->path->device;
1036 	if (device != NULL) {
1037 		mtx_lock(&device->target->bus->eb_mtx);
1038 		device->generation++;
1039 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1040 		mtx_unlock(&device->target->bus->eb_mtx);
1041 		atomic_add_32(&xsoftc.xpt_generation, 1);
1042 	}
1043 }
1044 
1045 void
1046 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1047 {
1048 	char buf[128];
1049 	struct sbuf sb;
1050 
1051 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1052 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1053 	xpt_announce_periph_sbuf(periph, &sb, announce_string);
1054 	(void)sbuf_finish(&sb);
1055 }
1056 
1057 void
1058 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1059     char *announce_string)
1060 {
1061 	struct	cam_path *path = periph->path;
1062 	struct  xpt_proto *proto;
1063 
1064 	cam_periph_assert(periph, MA_OWNED);
1065 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1066 
1067 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1068 	    periph->periph_name, periph->unit_number,
1069 	    path->bus->sim->sim_name,
1070 	    path->bus->sim->unit_number,
1071 	    path->bus->sim->bus_id,
1072 	    path->bus->path_id,
1073 	    path->target->target_id,
1074 	    (uintmax_t)path->device->lun_id);
1075 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1076 	proto = xpt_proto_find(path->device->protocol);
1077 	if (proto)
1078 		proto->ops->announce_sbuf(path->device, sb);
1079 	else
1080 		sbuf_printf(sb, "Unknown protocol device %d\n",
1081 		    path->device->protocol);
1082 	if (path->device->serial_num_len > 0) {
1083 		/* Don't wrap the screen  - print only the first 60 chars */
1084 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1085 		    periph->periph_name, periph->unit_number,
1086 		    path->device->serial_num);
1087 	}
1088 	/* Announce transport details. */
1089 	path->bus->xport->ops->announce_sbuf(periph, sb);
1090 	/* Announce command queueing. */
1091 	if (path->device->inq_flags & SID_CmdQue
1092 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1093 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1094 		    periph->periph_name, periph->unit_number);
1095 	}
1096 	/* Announce caller's details if they've passed in. */
1097 	if (announce_string != NULL)
1098 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1099 		    periph->unit_number, announce_string);
1100 }
1101 
1102 void
1103 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1104 {
1105 	if (quirks != 0) {
1106 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1107 		    periph->unit_number, quirks, bit_string);
1108 	}
1109 }
1110 
1111 void
1112 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1113 			 int quirks, char *bit_string)
1114 {
1115 	if (quirks != 0) {
1116 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1117 		    periph->unit_number, quirks, bit_string);
1118 	}
1119 }
1120 
1121 void
1122 xpt_denounce_periph(struct cam_periph *periph)
1123 {
1124 	char buf[128];
1125 	struct sbuf sb;
1126 
1127 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1128 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1129 	xpt_denounce_periph_sbuf(periph, &sb);
1130 	(void)sbuf_finish(&sb);
1131 }
1132 
1133 void
1134 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1135 {
1136 	struct cam_path *path = periph->path;
1137 	struct xpt_proto *proto;
1138 
1139 	cam_periph_assert(periph, MA_OWNED);
1140 
1141 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1142 	    periph->periph_name, periph->unit_number,
1143 	    path->bus->sim->sim_name,
1144 	    path->bus->sim->unit_number,
1145 	    path->bus->sim->bus_id,
1146 	    path->bus->path_id,
1147 	    path->target->target_id,
1148 	    (uintmax_t)path->device->lun_id);
1149 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1150 	proto = xpt_proto_find(path->device->protocol);
1151 	if (proto)
1152 		proto->ops->denounce_sbuf(path->device, sb);
1153 	else
1154 		sbuf_printf(sb, "Unknown protocol device %d",
1155 		    path->device->protocol);
1156 	if (path->device->serial_num_len > 0)
1157 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1158 	sbuf_printf(sb, " detached\n");
1159 }
1160 
1161 int
1162 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1163 {
1164 	int ret = -1, l, o;
1165 	struct ccb_dev_advinfo cdai;
1166 	struct scsi_vpd_device_id *did;
1167 	struct scsi_vpd_id_descriptor *idd;
1168 
1169 	xpt_path_assert(path, MA_OWNED);
1170 
1171 	memset(&cdai, 0, sizeof(cdai));
1172 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1173 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1174 	cdai.flags = CDAI_FLAG_NONE;
1175 	cdai.bufsiz = len;
1176 	cdai.buf = buf;
1177 
1178 	if (!strcmp(attr, "GEOM::ident"))
1179 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1180 	else if (!strcmp(attr, "GEOM::physpath"))
1181 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1182 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1183 		 strcmp(attr, "GEOM::lunname") == 0) {
1184 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1185 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1186 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1187 		if (cdai.buf == NULL) {
1188 			ret = ENOMEM;
1189 			goto out;
1190 		}
1191 	} else
1192 		goto out;
1193 
1194 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1195 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1196 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1197 	if (cdai.provsiz == 0)
1198 		goto out;
1199 	switch(cdai.buftype) {
1200 	case CDAI_TYPE_SCSI_DEVID:
1201 		did = (struct scsi_vpd_device_id *)cdai.buf;
1202 		if (strcmp(attr, "GEOM::lunid") == 0) {
1203 			idd = scsi_get_devid(did, cdai.provsiz,
1204 			    scsi_devid_is_lun_naa);
1205 			if (idd == NULL)
1206 				idd = scsi_get_devid(did, cdai.provsiz,
1207 				    scsi_devid_is_lun_eui64);
1208 			if (idd == NULL)
1209 				idd = scsi_get_devid(did, cdai.provsiz,
1210 				    scsi_devid_is_lun_uuid);
1211 			if (idd == NULL)
1212 				idd = scsi_get_devid(did, cdai.provsiz,
1213 				    scsi_devid_is_lun_md5);
1214 		} else
1215 			idd = NULL;
1216 
1217 		if (idd == NULL)
1218 			idd = scsi_get_devid(did, cdai.provsiz,
1219 			    scsi_devid_is_lun_t10);
1220 		if (idd == NULL)
1221 			idd = scsi_get_devid(did, cdai.provsiz,
1222 			    scsi_devid_is_lun_name);
1223 		if (idd == NULL)
1224 			break;
1225 
1226 		ret = 0;
1227 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1228 		    SVPD_ID_CODESET_ASCII) {
1229 			if (idd->length < len) {
1230 				for (l = 0; l < idd->length; l++)
1231 					buf[l] = idd->identifier[l] ?
1232 					    idd->identifier[l] : ' ';
1233 				buf[l] = 0;
1234 			} else
1235 				ret = EFAULT;
1236 			break;
1237 		}
1238 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1239 		    SVPD_ID_CODESET_UTF8) {
1240 			l = strnlen(idd->identifier, idd->length);
1241 			if (l < len) {
1242 				bcopy(idd->identifier, buf, l);
1243 				buf[l] = 0;
1244 			} else
1245 				ret = EFAULT;
1246 			break;
1247 		}
1248 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1249 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1250 			if ((idd->length - 2) * 2 + 4 >= len) {
1251 				ret = EFAULT;
1252 				break;
1253 			}
1254 			for (l = 2, o = 0; l < idd->length; l++) {
1255 				if (l == 6 || l == 8 || l == 10 || l == 12)
1256 				    o += sprintf(buf + o, "-");
1257 				o += sprintf(buf + o, "%02x",
1258 				    idd->identifier[l]);
1259 			}
1260 			break;
1261 		}
1262 		if (idd->length * 2 < len) {
1263 			for (l = 0; l < idd->length; l++)
1264 				sprintf(buf + l * 2, "%02x",
1265 				    idd->identifier[l]);
1266 		} else
1267 				ret = EFAULT;
1268 		break;
1269 	default:
1270 		if (cdai.provsiz < len) {
1271 			cdai.buf[cdai.provsiz] = 0;
1272 			ret = 0;
1273 		} else
1274 			ret = EFAULT;
1275 		break;
1276 	}
1277 
1278 out:
1279 	if ((char *)cdai.buf != buf)
1280 		free(cdai.buf, M_CAMXPT);
1281 	return ret;
1282 }
1283 
1284 static dev_match_ret
1285 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1286 	    struct cam_eb *bus)
1287 {
1288 	dev_match_ret retval;
1289 	u_int i;
1290 
1291 	retval = DM_RET_NONE;
1292 
1293 	/*
1294 	 * If we aren't given something to match against, that's an error.
1295 	 */
1296 	if (bus == NULL)
1297 		return(DM_RET_ERROR);
1298 
1299 	/*
1300 	 * If there are no match entries, then this bus matches no
1301 	 * matter what.
1302 	 */
1303 	if ((patterns == NULL) || (num_patterns == 0))
1304 		return(DM_RET_DESCEND | DM_RET_COPY);
1305 
1306 	for (i = 0; i < num_patterns; i++) {
1307 		struct bus_match_pattern *cur_pattern;
1308 		struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1309 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1310 
1311 		/*
1312 		 * If the pattern in question isn't for a bus node, we
1313 		 * aren't interested.  However, we do indicate to the
1314 		 * calling routine that we should continue descending the
1315 		 * tree, since the user wants to match against lower-level
1316 		 * EDT elements.
1317 		 */
1318 		if (patterns[i].type == DEV_MATCH_DEVICE &&
1319 		    (dp->flags & DEV_MATCH_PATH) != 0 &&
1320 		    dp->path_id != bus->path_id)
1321 			continue;
1322 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1323 		    (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1324 		    pp->path_id != bus->path_id)
1325 			continue;
1326 		if (patterns[i].type != DEV_MATCH_BUS) {
1327 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1328 				retval |= DM_RET_DESCEND;
1329 			continue;
1330 		}
1331 
1332 		cur_pattern = &patterns[i].pattern.bus_pattern;
1333 
1334 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1335 		 && (cur_pattern->path_id != bus->path_id))
1336 			continue;
1337 
1338 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1339 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1340 			continue;
1341 
1342 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1343 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1344 			continue;
1345 
1346 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1347 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1348 			     DEV_IDLEN) != 0))
1349 			continue;
1350 
1351 		/*
1352 		 * If we get to this point, the user definitely wants
1353 		 * information on this bus.  So tell the caller to copy the
1354 		 * data out.
1355 		 */
1356 		retval |= DM_RET_COPY;
1357 
1358 		/*
1359 		 * If the return action has been set to descend, then we
1360 		 * know that we've already seen a non-bus matching
1361 		 * expression, therefore we need to further descend the tree.
1362 		 * This won't change by continuing around the loop, so we
1363 		 * go ahead and return.  If we haven't seen a non-bus
1364 		 * matching expression, we keep going around the loop until
1365 		 * we exhaust the matching expressions.  We'll set the stop
1366 		 * flag once we fall out of the loop.
1367 		 */
1368 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1369 			return(retval);
1370 	}
1371 
1372 	/*
1373 	 * If the return action hasn't been set to descend yet, that means
1374 	 * we haven't seen anything other than bus matching patterns.  So
1375 	 * tell the caller to stop descending the tree -- the user doesn't
1376 	 * want to match against lower level tree elements.
1377 	 */
1378 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1379 		retval |= DM_RET_STOP;
1380 
1381 	return(retval);
1382 }
1383 
1384 static dev_match_ret
1385 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1386 	       struct cam_ed *device)
1387 {
1388 	dev_match_ret retval;
1389 	u_int i;
1390 
1391 	retval = DM_RET_NONE;
1392 
1393 	/*
1394 	 * If we aren't given something to match against, that's an error.
1395 	 */
1396 	if (device == NULL)
1397 		return(DM_RET_ERROR);
1398 
1399 	/*
1400 	 * If there are no match entries, then this device matches no
1401 	 * matter what.
1402 	 */
1403 	if ((patterns == NULL) || (num_patterns == 0))
1404 		return(DM_RET_DESCEND | DM_RET_COPY);
1405 
1406 	for (i = 0; i < num_patterns; i++) {
1407 		struct device_match_pattern *cur_pattern;
1408 		struct scsi_vpd_device_id *device_id_page;
1409 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1410 
1411 		/*
1412 		 * If the pattern in question isn't for a device node, we
1413 		 * aren't interested.
1414 		 */
1415 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1416 		    (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1417 		    pp->target_id != device->target->target_id)
1418 			continue;
1419 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1420 		    (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1421 		    pp->target_lun != device->lun_id)
1422 			continue;
1423 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1424 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1425 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1426 				retval |= DM_RET_DESCEND;
1427 			continue;
1428 		}
1429 
1430 		cur_pattern = &patterns[i].pattern.device_pattern;
1431 
1432 		/* Error out if mutually exclusive options are specified. */
1433 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1434 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1435 			return(DM_RET_ERROR);
1436 
1437 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1438 		 && (cur_pattern->path_id != device->target->bus->path_id))
1439 			continue;
1440 
1441 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1442 		 && (cur_pattern->target_id != device->target->target_id))
1443 			continue;
1444 
1445 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1446 		 && (cur_pattern->target_lun != device->lun_id))
1447 			continue;
1448 
1449 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1450 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1451 				    (caddr_t)&cur_pattern->data.inq_pat,
1452 				    1, sizeof(cur_pattern->data.inq_pat),
1453 				    scsi_static_inquiry_match) == NULL))
1454 			continue;
1455 
1456 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1457 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1458 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1459 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1460 				      device->device_id_len
1461 				    - SVPD_DEVICE_ID_HDR_LEN,
1462 				      cur_pattern->data.devid_pat.id,
1463 				      cur_pattern->data.devid_pat.id_len) != 0))
1464 			continue;
1465 
1466 		/*
1467 		 * If we get to this point, the user definitely wants
1468 		 * information on this device.  So tell the caller to copy
1469 		 * the data out.
1470 		 */
1471 		retval |= DM_RET_COPY;
1472 
1473 		/*
1474 		 * If the return action has been set to descend, then we
1475 		 * know that we've already seen a peripheral matching
1476 		 * expression, therefore we need to further descend the tree.
1477 		 * This won't change by continuing around the loop, so we
1478 		 * go ahead and return.  If we haven't seen a peripheral
1479 		 * matching expression, we keep going around the loop until
1480 		 * we exhaust the matching expressions.  We'll set the stop
1481 		 * flag once we fall out of the loop.
1482 		 */
1483 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1484 			return(retval);
1485 	}
1486 
1487 	/*
1488 	 * If the return action hasn't been set to descend yet, that means
1489 	 * we haven't seen any peripheral matching patterns.  So tell the
1490 	 * caller to stop descending the tree -- the user doesn't want to
1491 	 * match against lower level tree elements.
1492 	 */
1493 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1494 		retval |= DM_RET_STOP;
1495 
1496 	return(retval);
1497 }
1498 
1499 /*
1500  * Match a single peripheral against any number of match patterns.
1501  */
1502 static dev_match_ret
1503 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1504 	       struct cam_periph *periph)
1505 {
1506 	dev_match_ret retval;
1507 	u_int i;
1508 
1509 	/*
1510 	 * If we aren't given something to match against, that's an error.
1511 	 */
1512 	if (periph == NULL)
1513 		return(DM_RET_ERROR);
1514 
1515 	/*
1516 	 * If there are no match entries, then this peripheral matches no
1517 	 * matter what.
1518 	 */
1519 	if ((patterns == NULL) || (num_patterns == 0))
1520 		return(DM_RET_STOP | DM_RET_COPY);
1521 
1522 	/*
1523 	 * There aren't any nodes below a peripheral node, so there's no
1524 	 * reason to descend the tree any further.
1525 	 */
1526 	retval = DM_RET_STOP;
1527 
1528 	for (i = 0; i < num_patterns; i++) {
1529 		struct periph_match_pattern *cur_pattern;
1530 
1531 		/*
1532 		 * If the pattern in question isn't for a peripheral, we
1533 		 * aren't interested.
1534 		 */
1535 		if (patterns[i].type != DEV_MATCH_PERIPH)
1536 			continue;
1537 
1538 		cur_pattern = &patterns[i].pattern.periph_pattern;
1539 
1540 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1541 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1542 			continue;
1543 
1544 		/*
1545 		 * For the target and lun id's, we have to make sure the
1546 		 * target and lun pointers aren't NULL.  The xpt peripheral
1547 		 * has a wildcard target and device.
1548 		 */
1549 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1550 		 && ((periph->path->target == NULL)
1551 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1552 			continue;
1553 
1554 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1555 		 && ((periph->path->device == NULL)
1556 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1557 			continue;
1558 
1559 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1560 		 && (cur_pattern->unit_number != periph->unit_number))
1561 			continue;
1562 
1563 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1564 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1565 			     DEV_IDLEN) != 0))
1566 			continue;
1567 
1568 		/*
1569 		 * If we get to this point, the user definitely wants
1570 		 * information on this peripheral.  So tell the caller to
1571 		 * copy the data out.
1572 		 */
1573 		retval |= DM_RET_COPY;
1574 
1575 		/*
1576 		 * The return action has already been set to stop, since
1577 		 * peripherals don't have any nodes below them in the EDT.
1578 		 */
1579 		return(retval);
1580 	}
1581 
1582 	/*
1583 	 * If we get to this point, the peripheral that was passed in
1584 	 * doesn't match any of the patterns.
1585 	 */
1586 	return(retval);
1587 }
1588 
1589 static int
1590 xptedtbusfunc(struct cam_eb *bus, void *arg)
1591 {
1592 	struct ccb_dev_match *cdm;
1593 	struct cam_et *target;
1594 	dev_match_ret retval;
1595 
1596 	cdm = (struct ccb_dev_match *)arg;
1597 
1598 	/*
1599 	 * If our position is for something deeper in the tree, that means
1600 	 * that we've already seen this node.  So, we keep going down.
1601 	 */
1602 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1603 	 && (cdm->pos.cookie.bus == bus)
1604 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1605 	 && (cdm->pos.cookie.target != NULL))
1606 		retval = DM_RET_DESCEND;
1607 	else
1608 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1609 
1610 	/*
1611 	 * If we got an error, bail out of the search.
1612 	 */
1613 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1614 		cdm->status = CAM_DEV_MATCH_ERROR;
1615 		return(0);
1616 	}
1617 
1618 	/*
1619 	 * If the copy flag is set, copy this bus out.
1620 	 */
1621 	if (retval & DM_RET_COPY) {
1622 		int spaceleft, j;
1623 
1624 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1625 			sizeof(struct dev_match_result));
1626 
1627 		/*
1628 		 * If we don't have enough space to put in another
1629 		 * match result, save our position and tell the
1630 		 * user there are more devices to check.
1631 		 */
1632 		if (spaceleft < sizeof(struct dev_match_result)) {
1633 			bzero(&cdm->pos, sizeof(cdm->pos));
1634 			cdm->pos.position_type =
1635 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1636 
1637 			cdm->pos.cookie.bus = bus;
1638 			cdm->pos.generations[CAM_BUS_GENERATION]=
1639 				xsoftc.bus_generation;
1640 			cdm->status = CAM_DEV_MATCH_MORE;
1641 			return(0);
1642 		}
1643 		j = cdm->num_matches;
1644 		cdm->num_matches++;
1645 		cdm->matches[j].type = DEV_MATCH_BUS;
1646 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1647 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1648 		cdm->matches[j].result.bus_result.unit_number =
1649 			bus->sim->unit_number;
1650 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1651 			bus->sim->sim_name,
1652 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1653 	}
1654 
1655 	/*
1656 	 * If the user is only interested in buses, there's no
1657 	 * reason to descend to the next level in the tree.
1658 	 */
1659 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1660 		return(1);
1661 
1662 	/*
1663 	 * If there is a target generation recorded, check it to
1664 	 * make sure the target list hasn't changed.
1665 	 */
1666 	mtx_lock(&bus->eb_mtx);
1667 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1668 	 && (cdm->pos.cookie.bus == bus)
1669 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1670 	 && (cdm->pos.cookie.target != NULL)) {
1671 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1672 		    bus->generation)) {
1673 			mtx_unlock(&bus->eb_mtx);
1674 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1675 			return (0);
1676 		}
1677 		target = (struct cam_et *)cdm->pos.cookie.target;
1678 		target->refcount++;
1679 	} else
1680 		target = NULL;
1681 	mtx_unlock(&bus->eb_mtx);
1682 
1683 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1684 }
1685 
1686 static int
1687 xptedttargetfunc(struct cam_et *target, void *arg)
1688 {
1689 	struct ccb_dev_match *cdm;
1690 	struct cam_eb *bus;
1691 	struct cam_ed *device;
1692 
1693 	cdm = (struct ccb_dev_match *)arg;
1694 	bus = target->bus;
1695 
1696 	/*
1697 	 * If there is a device list generation recorded, check it to
1698 	 * make sure the device list hasn't changed.
1699 	 */
1700 	mtx_lock(&bus->eb_mtx);
1701 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1702 	 && (cdm->pos.cookie.bus == bus)
1703 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1704 	 && (cdm->pos.cookie.target == target)
1705 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1706 	 && (cdm->pos.cookie.device != NULL)) {
1707 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1708 		    target->generation) {
1709 			mtx_unlock(&bus->eb_mtx);
1710 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1711 			return(0);
1712 		}
1713 		device = (struct cam_ed *)cdm->pos.cookie.device;
1714 		device->refcount++;
1715 	} else
1716 		device = NULL;
1717 	mtx_unlock(&bus->eb_mtx);
1718 
1719 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1720 }
1721 
1722 static int
1723 xptedtdevicefunc(struct cam_ed *device, void *arg)
1724 {
1725 	struct cam_eb *bus;
1726 	struct cam_periph *periph;
1727 	struct ccb_dev_match *cdm;
1728 	dev_match_ret retval;
1729 
1730 	cdm = (struct ccb_dev_match *)arg;
1731 	bus = device->target->bus;
1732 
1733 	/*
1734 	 * If our position is for something deeper in the tree, that means
1735 	 * that we've already seen this node.  So, we keep going down.
1736 	 */
1737 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1738 	 && (cdm->pos.cookie.device == device)
1739 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1740 	 && (cdm->pos.cookie.periph != NULL))
1741 		retval = DM_RET_DESCEND;
1742 	else
1743 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1744 					device);
1745 
1746 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1747 		cdm->status = CAM_DEV_MATCH_ERROR;
1748 		return(0);
1749 	}
1750 
1751 	/*
1752 	 * If the copy flag is set, copy this device out.
1753 	 */
1754 	if (retval & DM_RET_COPY) {
1755 		int spaceleft, j;
1756 
1757 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1758 			sizeof(struct dev_match_result));
1759 
1760 		/*
1761 		 * If we don't have enough space to put in another
1762 		 * match result, save our position and tell the
1763 		 * user there are more devices to check.
1764 		 */
1765 		if (spaceleft < sizeof(struct dev_match_result)) {
1766 			bzero(&cdm->pos, sizeof(cdm->pos));
1767 			cdm->pos.position_type =
1768 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1769 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1770 
1771 			cdm->pos.cookie.bus = device->target->bus;
1772 			cdm->pos.generations[CAM_BUS_GENERATION]=
1773 				xsoftc.bus_generation;
1774 			cdm->pos.cookie.target = device->target;
1775 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1776 				device->target->bus->generation;
1777 			cdm->pos.cookie.device = device;
1778 			cdm->pos.generations[CAM_DEV_GENERATION] =
1779 				device->target->generation;
1780 			cdm->status = CAM_DEV_MATCH_MORE;
1781 			return(0);
1782 		}
1783 		j = cdm->num_matches;
1784 		cdm->num_matches++;
1785 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1786 		cdm->matches[j].result.device_result.path_id =
1787 			device->target->bus->path_id;
1788 		cdm->matches[j].result.device_result.target_id =
1789 			device->target->target_id;
1790 		cdm->matches[j].result.device_result.target_lun =
1791 			device->lun_id;
1792 		cdm->matches[j].result.device_result.protocol =
1793 			device->protocol;
1794 		bcopy(&device->inq_data,
1795 		      &cdm->matches[j].result.device_result.inq_data,
1796 		      sizeof(struct scsi_inquiry_data));
1797 		bcopy(&device->ident_data,
1798 		      &cdm->matches[j].result.device_result.ident_data,
1799 		      sizeof(struct ata_params));
1800 
1801 		/* Let the user know whether this device is unconfigured */
1802 		if (device->flags & CAM_DEV_UNCONFIGURED)
1803 			cdm->matches[j].result.device_result.flags =
1804 				DEV_RESULT_UNCONFIGURED;
1805 		else
1806 			cdm->matches[j].result.device_result.flags =
1807 				DEV_RESULT_NOFLAG;
1808 	}
1809 
1810 	/*
1811 	 * If the user isn't interested in peripherals, don't descend
1812 	 * the tree any further.
1813 	 */
1814 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1815 		return(1);
1816 
1817 	/*
1818 	 * If there is a peripheral list generation recorded, make sure
1819 	 * it hasn't changed.
1820 	 */
1821 	xpt_lock_buses();
1822 	mtx_lock(&bus->eb_mtx);
1823 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1824 	 && (cdm->pos.cookie.bus == bus)
1825 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1826 	 && (cdm->pos.cookie.target == device->target)
1827 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1828 	 && (cdm->pos.cookie.device == device)
1829 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1830 	 && (cdm->pos.cookie.periph != NULL)) {
1831 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1832 		    device->generation) {
1833 			mtx_unlock(&bus->eb_mtx);
1834 			xpt_unlock_buses();
1835 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1836 			return(0);
1837 		}
1838 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1839 		periph->refcount++;
1840 	} else
1841 		periph = NULL;
1842 	mtx_unlock(&bus->eb_mtx);
1843 	xpt_unlock_buses();
1844 
1845 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1846 }
1847 
1848 static int
1849 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1850 {
1851 	struct ccb_dev_match *cdm;
1852 	dev_match_ret retval;
1853 
1854 	cdm = (struct ccb_dev_match *)arg;
1855 
1856 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1857 
1858 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1859 		cdm->status = CAM_DEV_MATCH_ERROR;
1860 		return(0);
1861 	}
1862 
1863 	/*
1864 	 * If the copy flag is set, copy this peripheral out.
1865 	 */
1866 	if (retval & DM_RET_COPY) {
1867 		int spaceleft, j;
1868 		size_t l;
1869 
1870 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1871 			sizeof(struct dev_match_result));
1872 
1873 		/*
1874 		 * If we don't have enough space to put in another
1875 		 * match result, save our position and tell the
1876 		 * user there are more devices to check.
1877 		 */
1878 		if (spaceleft < sizeof(struct dev_match_result)) {
1879 			bzero(&cdm->pos, sizeof(cdm->pos));
1880 			cdm->pos.position_type =
1881 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1882 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1883 				CAM_DEV_POS_PERIPH;
1884 
1885 			cdm->pos.cookie.bus = periph->path->bus;
1886 			cdm->pos.generations[CAM_BUS_GENERATION]=
1887 				xsoftc.bus_generation;
1888 			cdm->pos.cookie.target = periph->path->target;
1889 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1890 				periph->path->bus->generation;
1891 			cdm->pos.cookie.device = periph->path->device;
1892 			cdm->pos.generations[CAM_DEV_GENERATION] =
1893 				periph->path->target->generation;
1894 			cdm->pos.cookie.periph = periph;
1895 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1896 				periph->path->device->generation;
1897 			cdm->status = CAM_DEV_MATCH_MORE;
1898 			return(0);
1899 		}
1900 
1901 		j = cdm->num_matches;
1902 		cdm->num_matches++;
1903 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1904 		cdm->matches[j].result.periph_result.path_id =
1905 			periph->path->bus->path_id;
1906 		cdm->matches[j].result.periph_result.target_id =
1907 			periph->path->target->target_id;
1908 		cdm->matches[j].result.periph_result.target_lun =
1909 			periph->path->device->lun_id;
1910 		cdm->matches[j].result.periph_result.unit_number =
1911 			periph->unit_number;
1912 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1913 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
1914 			periph->periph_name, l);
1915 	}
1916 
1917 	return(1);
1918 }
1919 
1920 static int
1921 xptedtmatch(struct ccb_dev_match *cdm)
1922 {
1923 	struct cam_eb *bus;
1924 	int ret;
1925 
1926 	cdm->num_matches = 0;
1927 
1928 	/*
1929 	 * Check the bus list generation.  If it has changed, the user
1930 	 * needs to reset everything and start over.
1931 	 */
1932 	xpt_lock_buses();
1933 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1934 	 && (cdm->pos.cookie.bus != NULL)) {
1935 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1936 		    xsoftc.bus_generation) {
1937 			xpt_unlock_buses();
1938 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1939 			return(0);
1940 		}
1941 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1942 		bus->refcount++;
1943 	} else
1944 		bus = NULL;
1945 	xpt_unlock_buses();
1946 
1947 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1948 
1949 	/*
1950 	 * If we get back 0, that means that we had to stop before fully
1951 	 * traversing the EDT.  It also means that one of the subroutines
1952 	 * has set the status field to the proper value.  If we get back 1,
1953 	 * we've fully traversed the EDT and copied out any matching entries.
1954 	 */
1955 	if (ret == 1)
1956 		cdm->status = CAM_DEV_MATCH_LAST;
1957 
1958 	return(ret);
1959 }
1960 
1961 static int
1962 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1963 {
1964 	struct cam_periph *periph;
1965 	struct ccb_dev_match *cdm;
1966 
1967 	cdm = (struct ccb_dev_match *)arg;
1968 
1969 	xpt_lock_buses();
1970 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1971 	 && (cdm->pos.cookie.pdrv == pdrv)
1972 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1973 	 && (cdm->pos.cookie.periph != NULL)) {
1974 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1975 		    (*pdrv)->generation) {
1976 			xpt_unlock_buses();
1977 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1978 			return(0);
1979 		}
1980 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1981 		periph->refcount++;
1982 	} else
1983 		periph = NULL;
1984 	xpt_unlock_buses();
1985 
1986 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1987 }
1988 
1989 static int
1990 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1991 {
1992 	struct ccb_dev_match *cdm;
1993 	dev_match_ret retval;
1994 
1995 	cdm = (struct ccb_dev_match *)arg;
1996 
1997 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1998 
1999 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2000 		cdm->status = CAM_DEV_MATCH_ERROR;
2001 		return(0);
2002 	}
2003 
2004 	/*
2005 	 * If the copy flag is set, copy this peripheral out.
2006 	 */
2007 	if (retval & DM_RET_COPY) {
2008 		int spaceleft, j;
2009 		size_t l;
2010 
2011 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2012 			sizeof(struct dev_match_result));
2013 
2014 		/*
2015 		 * If we don't have enough space to put in another
2016 		 * match result, save our position and tell the
2017 		 * user there are more devices to check.
2018 		 */
2019 		if (spaceleft < sizeof(struct dev_match_result)) {
2020 			struct periph_driver **pdrv;
2021 
2022 			pdrv = NULL;
2023 			bzero(&cdm->pos, sizeof(cdm->pos));
2024 			cdm->pos.position_type =
2025 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2026 				CAM_DEV_POS_PERIPH;
2027 
2028 			/*
2029 			 * This may look a bit non-sensical, but it is
2030 			 * actually quite logical.  There are very few
2031 			 * peripheral drivers, and bloating every peripheral
2032 			 * structure with a pointer back to its parent
2033 			 * peripheral driver linker set entry would cost
2034 			 * more in the long run than doing this quick lookup.
2035 			 */
2036 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2037 				if (strcmp((*pdrv)->driver_name,
2038 				    periph->periph_name) == 0)
2039 					break;
2040 			}
2041 
2042 			if (*pdrv == NULL) {
2043 				cdm->status = CAM_DEV_MATCH_ERROR;
2044 				return(0);
2045 			}
2046 
2047 			cdm->pos.cookie.pdrv = pdrv;
2048 			/*
2049 			 * The periph generation slot does double duty, as
2050 			 * does the periph pointer slot.  They are used for
2051 			 * both edt and pdrv lookups and positioning.
2052 			 */
2053 			cdm->pos.cookie.periph = periph;
2054 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2055 				(*pdrv)->generation;
2056 			cdm->status = CAM_DEV_MATCH_MORE;
2057 			return(0);
2058 		}
2059 
2060 		j = cdm->num_matches;
2061 		cdm->num_matches++;
2062 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2063 		cdm->matches[j].result.periph_result.path_id =
2064 			periph->path->bus->path_id;
2065 
2066 		/*
2067 		 * The transport layer peripheral doesn't have a target or
2068 		 * lun.
2069 		 */
2070 		if (periph->path->target)
2071 			cdm->matches[j].result.periph_result.target_id =
2072 				periph->path->target->target_id;
2073 		else
2074 			cdm->matches[j].result.periph_result.target_id =
2075 				CAM_TARGET_WILDCARD;
2076 
2077 		if (periph->path->device)
2078 			cdm->matches[j].result.periph_result.target_lun =
2079 				periph->path->device->lun_id;
2080 		else
2081 			cdm->matches[j].result.periph_result.target_lun =
2082 				CAM_LUN_WILDCARD;
2083 
2084 		cdm->matches[j].result.periph_result.unit_number =
2085 			periph->unit_number;
2086 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2087 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2088 			periph->periph_name, l);
2089 	}
2090 
2091 	return(1);
2092 }
2093 
2094 static int
2095 xptperiphlistmatch(struct ccb_dev_match *cdm)
2096 {
2097 	int ret;
2098 
2099 	cdm->num_matches = 0;
2100 
2101 	/*
2102 	 * At this point in the edt traversal function, we check the bus
2103 	 * list generation to make sure that no buses have been added or
2104 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2105 	 * For the peripheral driver list traversal function, however, we
2106 	 * don't have to worry about new peripheral driver types coming or
2107 	 * going; they're in a linker set, and therefore can't change
2108 	 * without a recompile.
2109 	 */
2110 
2111 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2112 	 && (cdm->pos.cookie.pdrv != NULL))
2113 		ret = xptpdrvtraverse(
2114 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2115 				xptplistpdrvfunc, cdm);
2116 	else
2117 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2118 
2119 	/*
2120 	 * If we get back 0, that means that we had to stop before fully
2121 	 * traversing the peripheral driver tree.  It also means that one of
2122 	 * the subroutines has set the status field to the proper value.  If
2123 	 * we get back 1, we've fully traversed the EDT and copied out any
2124 	 * matching entries.
2125 	 */
2126 	if (ret == 1)
2127 		cdm->status = CAM_DEV_MATCH_LAST;
2128 
2129 	return(ret);
2130 }
2131 
2132 static int
2133 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2134 {
2135 	struct cam_eb *bus, *next_bus;
2136 	int retval;
2137 
2138 	retval = 1;
2139 	if (start_bus)
2140 		bus = start_bus;
2141 	else {
2142 		xpt_lock_buses();
2143 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2144 		if (bus == NULL) {
2145 			xpt_unlock_buses();
2146 			return (retval);
2147 		}
2148 		bus->refcount++;
2149 		xpt_unlock_buses();
2150 	}
2151 	for (; bus != NULL; bus = next_bus) {
2152 		retval = tr_func(bus, arg);
2153 		if (retval == 0) {
2154 			xpt_release_bus(bus);
2155 			break;
2156 		}
2157 		xpt_lock_buses();
2158 		next_bus = TAILQ_NEXT(bus, links);
2159 		if (next_bus)
2160 			next_bus->refcount++;
2161 		xpt_unlock_buses();
2162 		xpt_release_bus(bus);
2163 	}
2164 	return(retval);
2165 }
2166 
2167 static int
2168 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2169 		  xpt_targetfunc_t *tr_func, void *arg)
2170 {
2171 	struct cam_et *target, *next_target;
2172 	int retval;
2173 
2174 	retval = 1;
2175 	if (start_target)
2176 		target = start_target;
2177 	else {
2178 		mtx_lock(&bus->eb_mtx);
2179 		target = TAILQ_FIRST(&bus->et_entries);
2180 		if (target == NULL) {
2181 			mtx_unlock(&bus->eb_mtx);
2182 			return (retval);
2183 		}
2184 		target->refcount++;
2185 		mtx_unlock(&bus->eb_mtx);
2186 	}
2187 	for (; target != NULL; target = next_target) {
2188 		retval = tr_func(target, arg);
2189 		if (retval == 0) {
2190 			xpt_release_target(target);
2191 			break;
2192 		}
2193 		mtx_lock(&bus->eb_mtx);
2194 		next_target = TAILQ_NEXT(target, links);
2195 		if (next_target)
2196 			next_target->refcount++;
2197 		mtx_unlock(&bus->eb_mtx);
2198 		xpt_release_target(target);
2199 	}
2200 	return(retval);
2201 }
2202 
2203 static int
2204 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2205 		  xpt_devicefunc_t *tr_func, void *arg)
2206 {
2207 	struct cam_eb *bus;
2208 	struct cam_ed *device, *next_device;
2209 	int retval;
2210 
2211 	retval = 1;
2212 	bus = target->bus;
2213 	if (start_device)
2214 		device = start_device;
2215 	else {
2216 		mtx_lock(&bus->eb_mtx);
2217 		device = TAILQ_FIRST(&target->ed_entries);
2218 		if (device == NULL) {
2219 			mtx_unlock(&bus->eb_mtx);
2220 			return (retval);
2221 		}
2222 		device->refcount++;
2223 		mtx_unlock(&bus->eb_mtx);
2224 	}
2225 	for (; device != NULL; device = next_device) {
2226 		mtx_lock(&device->device_mtx);
2227 		retval = tr_func(device, arg);
2228 		mtx_unlock(&device->device_mtx);
2229 		if (retval == 0) {
2230 			xpt_release_device(device);
2231 			break;
2232 		}
2233 		mtx_lock(&bus->eb_mtx);
2234 		next_device = TAILQ_NEXT(device, links);
2235 		if (next_device)
2236 			next_device->refcount++;
2237 		mtx_unlock(&bus->eb_mtx);
2238 		xpt_release_device(device);
2239 	}
2240 	return(retval);
2241 }
2242 
2243 static int
2244 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2245 		  xpt_periphfunc_t *tr_func, void *arg)
2246 {
2247 	struct cam_eb *bus;
2248 	struct cam_periph *periph, *next_periph;
2249 	int retval;
2250 
2251 	retval = 1;
2252 
2253 	bus = device->target->bus;
2254 	if (start_periph)
2255 		periph = start_periph;
2256 	else {
2257 		xpt_lock_buses();
2258 		mtx_lock(&bus->eb_mtx);
2259 		periph = SLIST_FIRST(&device->periphs);
2260 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2261 			periph = SLIST_NEXT(periph, periph_links);
2262 		if (periph == NULL) {
2263 			mtx_unlock(&bus->eb_mtx);
2264 			xpt_unlock_buses();
2265 			return (retval);
2266 		}
2267 		periph->refcount++;
2268 		mtx_unlock(&bus->eb_mtx);
2269 		xpt_unlock_buses();
2270 	}
2271 	for (; periph != NULL; periph = next_periph) {
2272 		retval = tr_func(periph, arg);
2273 		if (retval == 0) {
2274 			cam_periph_release_locked(periph);
2275 			break;
2276 		}
2277 		xpt_lock_buses();
2278 		mtx_lock(&bus->eb_mtx);
2279 		next_periph = SLIST_NEXT(periph, periph_links);
2280 		while (next_periph != NULL &&
2281 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2282 			next_periph = SLIST_NEXT(next_periph, periph_links);
2283 		if (next_periph)
2284 			next_periph->refcount++;
2285 		mtx_unlock(&bus->eb_mtx);
2286 		xpt_unlock_buses();
2287 		cam_periph_release_locked(periph);
2288 	}
2289 	return(retval);
2290 }
2291 
2292 static int
2293 xptpdrvtraverse(struct periph_driver **start_pdrv,
2294 		xpt_pdrvfunc_t *tr_func, void *arg)
2295 {
2296 	struct periph_driver **pdrv;
2297 	int retval;
2298 
2299 	retval = 1;
2300 
2301 	/*
2302 	 * We don't traverse the peripheral driver list like we do the
2303 	 * other lists, because it is a linker set, and therefore cannot be
2304 	 * changed during runtime.  If the peripheral driver list is ever
2305 	 * re-done to be something other than a linker set (i.e. it can
2306 	 * change while the system is running), the list traversal should
2307 	 * be modified to work like the other traversal functions.
2308 	 */
2309 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2310 	     *pdrv != NULL; pdrv++) {
2311 		retval = tr_func(pdrv, arg);
2312 
2313 		if (retval == 0)
2314 			return(retval);
2315 	}
2316 
2317 	return(retval);
2318 }
2319 
2320 static int
2321 xptpdperiphtraverse(struct periph_driver **pdrv,
2322 		    struct cam_periph *start_periph,
2323 		    xpt_periphfunc_t *tr_func, void *arg)
2324 {
2325 	struct cam_periph *periph, *next_periph;
2326 	int retval;
2327 
2328 	retval = 1;
2329 
2330 	if (start_periph)
2331 		periph = start_periph;
2332 	else {
2333 		xpt_lock_buses();
2334 		periph = TAILQ_FIRST(&(*pdrv)->units);
2335 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2336 			periph = TAILQ_NEXT(periph, unit_links);
2337 		if (periph == NULL) {
2338 			xpt_unlock_buses();
2339 			return (retval);
2340 		}
2341 		periph->refcount++;
2342 		xpt_unlock_buses();
2343 	}
2344 	for (; periph != NULL; periph = next_periph) {
2345 		cam_periph_lock(periph);
2346 		retval = tr_func(periph, arg);
2347 		cam_periph_unlock(periph);
2348 		if (retval == 0) {
2349 			cam_periph_release(periph);
2350 			break;
2351 		}
2352 		xpt_lock_buses();
2353 		next_periph = TAILQ_NEXT(periph, unit_links);
2354 		while (next_periph != NULL &&
2355 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2356 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2357 		if (next_periph)
2358 			next_periph->refcount++;
2359 		xpt_unlock_buses();
2360 		cam_periph_release(periph);
2361 	}
2362 	return(retval);
2363 }
2364 
2365 static int
2366 xptdefbusfunc(struct cam_eb *bus, void *arg)
2367 {
2368 	struct xpt_traverse_config *tr_config;
2369 
2370 	tr_config = (struct xpt_traverse_config *)arg;
2371 
2372 	if (tr_config->depth == XPT_DEPTH_BUS) {
2373 		xpt_busfunc_t *tr_func;
2374 
2375 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2376 
2377 		return(tr_func(bus, tr_config->tr_arg));
2378 	} else
2379 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2380 }
2381 
2382 static int
2383 xptdeftargetfunc(struct cam_et *target, void *arg)
2384 {
2385 	struct xpt_traverse_config *tr_config;
2386 
2387 	tr_config = (struct xpt_traverse_config *)arg;
2388 
2389 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2390 		xpt_targetfunc_t *tr_func;
2391 
2392 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2393 
2394 		return(tr_func(target, tr_config->tr_arg));
2395 	} else
2396 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2397 }
2398 
2399 static int
2400 xptdefdevicefunc(struct cam_ed *device, void *arg)
2401 {
2402 	struct xpt_traverse_config *tr_config;
2403 
2404 	tr_config = (struct xpt_traverse_config *)arg;
2405 
2406 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2407 		xpt_devicefunc_t *tr_func;
2408 
2409 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2410 
2411 		return(tr_func(device, tr_config->tr_arg));
2412 	} else
2413 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2414 }
2415 
2416 static int
2417 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2418 {
2419 	struct xpt_traverse_config *tr_config;
2420 	xpt_periphfunc_t *tr_func;
2421 
2422 	tr_config = (struct xpt_traverse_config *)arg;
2423 
2424 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2425 
2426 	/*
2427 	 * Unlike the other default functions, we don't check for depth
2428 	 * here.  The peripheral driver level is the last level in the EDT,
2429 	 * so if we're here, we should execute the function in question.
2430 	 */
2431 	return(tr_func(periph, tr_config->tr_arg));
2432 }
2433 
2434 /*
2435  * Execute the given function for every bus in the EDT.
2436  */
2437 static int
2438 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2439 {
2440 	struct xpt_traverse_config tr_config;
2441 
2442 	tr_config.depth = XPT_DEPTH_BUS;
2443 	tr_config.tr_func = tr_func;
2444 	tr_config.tr_arg = arg;
2445 
2446 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2447 }
2448 
2449 /*
2450  * Execute the given function for every device in the EDT.
2451  */
2452 static int
2453 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2454 {
2455 	struct xpt_traverse_config tr_config;
2456 
2457 	tr_config.depth = XPT_DEPTH_DEVICE;
2458 	tr_config.tr_func = tr_func;
2459 	tr_config.tr_arg = arg;
2460 
2461 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2462 }
2463 
2464 static int
2465 xptsetasyncfunc(struct cam_ed *device, void *arg)
2466 {
2467 	struct cam_path path;
2468 	struct ccb_getdev cgd;
2469 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2470 
2471 	/*
2472 	 * Don't report unconfigured devices (Wildcard devs,
2473 	 * devices only for target mode, device instances
2474 	 * that have been invalidated but are waiting for
2475 	 * their last reference count to be released).
2476 	 */
2477 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2478 		return (1);
2479 
2480 	memset(&cgd, 0, sizeof(cgd));
2481 	xpt_compile_path(&path,
2482 			 NULL,
2483 			 device->target->bus->path_id,
2484 			 device->target->target_id,
2485 			 device->lun_id);
2486 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2487 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2488 	xpt_action((union ccb *)&cgd);
2489 	csa->callback(csa->callback_arg,
2490 			    AC_FOUND_DEVICE,
2491 			    &path, &cgd);
2492 	xpt_release_path(&path);
2493 
2494 	return(1);
2495 }
2496 
2497 static int
2498 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2499 {
2500 	struct cam_path path;
2501 	struct ccb_pathinq cpi;
2502 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2503 
2504 	xpt_compile_path(&path, /*periph*/NULL,
2505 			 bus->path_id,
2506 			 CAM_TARGET_WILDCARD,
2507 			 CAM_LUN_WILDCARD);
2508 	xpt_path_lock(&path);
2509 	xpt_path_inq(&cpi, &path);
2510 	csa->callback(csa->callback_arg,
2511 			    AC_PATH_REGISTERED,
2512 			    &path, &cpi);
2513 	xpt_path_unlock(&path);
2514 	xpt_release_path(&path);
2515 
2516 	return(1);
2517 }
2518 
2519 void
2520 xpt_action(union ccb *start_ccb)
2521 {
2522 
2523 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2524 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2525 		xpt_action_name(start_ccb->ccb_h.func_code)));
2526 
2527 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2528 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2529 }
2530 
2531 void
2532 xpt_action_default(union ccb *start_ccb)
2533 {
2534 	struct cam_path *path;
2535 	struct cam_sim *sim;
2536 	struct mtx *mtx;
2537 
2538 	path = start_ccb->ccb_h.path;
2539 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2540 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2541 		xpt_action_name(start_ccb->ccb_h.func_code)));
2542 
2543 	switch (start_ccb->ccb_h.func_code) {
2544 	case XPT_SCSI_IO:
2545 	{
2546 		struct cam_ed *device;
2547 
2548 		/*
2549 		 * For the sake of compatibility with SCSI-1
2550 		 * devices that may not understand the identify
2551 		 * message, we include lun information in the
2552 		 * second byte of all commands.  SCSI-1 specifies
2553 		 * that luns are a 3 bit value and reserves only 3
2554 		 * bits for lun information in the CDB.  Later
2555 		 * revisions of the SCSI spec allow for more than 8
2556 		 * luns, but have deprecated lun information in the
2557 		 * CDB.  So, if the lun won't fit, we must omit.
2558 		 *
2559 		 * Also be aware that during initial probing for devices,
2560 		 * the inquiry information is unknown but initialized to 0.
2561 		 * This means that this code will be exercised while probing
2562 		 * devices with an ANSI revision greater than 2.
2563 		 */
2564 		device = path->device;
2565 		if (device->protocol_version <= SCSI_REV_2
2566 		 && start_ccb->ccb_h.target_lun < 8
2567 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2568 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2569 			    start_ccb->ccb_h.target_lun << 5;
2570 		}
2571 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2572 	}
2573 	/* FALLTHROUGH */
2574 	case XPT_TARGET_IO:
2575 	case XPT_CONT_TARGET_IO:
2576 		start_ccb->csio.sense_resid = 0;
2577 		start_ccb->csio.resid = 0;
2578 		/* FALLTHROUGH */
2579 	case XPT_ATA_IO:
2580 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2581 			start_ccb->ataio.resid = 0;
2582 		/* FALLTHROUGH */
2583 	case XPT_NVME_IO:
2584 	case XPT_NVME_ADMIN:
2585 	case XPT_MMC_IO:
2586 	case XPT_MMC_GET_TRAN_SETTINGS:
2587 	case XPT_MMC_SET_TRAN_SETTINGS:
2588 	case XPT_RESET_DEV:
2589 	case XPT_ENG_EXEC:
2590 	case XPT_SMP_IO:
2591 	{
2592 		struct cam_devq *devq;
2593 
2594 		devq = path->bus->sim->devq;
2595 		mtx_lock(&devq->send_mtx);
2596 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2597 		if (xpt_schedule_devq(devq, path->device) != 0)
2598 			xpt_run_devq(devq);
2599 		mtx_unlock(&devq->send_mtx);
2600 		break;
2601 	}
2602 	case XPT_CALC_GEOMETRY:
2603 		/* Filter out garbage */
2604 		if (start_ccb->ccg.block_size == 0
2605 		 || start_ccb->ccg.volume_size == 0) {
2606 			start_ccb->ccg.cylinders = 0;
2607 			start_ccb->ccg.heads = 0;
2608 			start_ccb->ccg.secs_per_track = 0;
2609 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2610 			break;
2611 		}
2612 		goto call_sim;
2613 	case XPT_ABORT:
2614 	{
2615 		union ccb* abort_ccb;
2616 
2617 		abort_ccb = start_ccb->cab.abort_ccb;
2618 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2619 			struct cam_ed *device;
2620 			struct cam_devq *devq;
2621 
2622 			device = abort_ccb->ccb_h.path->device;
2623 			devq = device->sim->devq;
2624 
2625 			mtx_lock(&devq->send_mtx);
2626 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2627 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2628 				abort_ccb->ccb_h.status =
2629 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2630 				xpt_freeze_devq_device(device, 1);
2631 				mtx_unlock(&devq->send_mtx);
2632 				xpt_done(abort_ccb);
2633 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2634 				break;
2635 			}
2636 			mtx_unlock(&devq->send_mtx);
2637 
2638 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2639 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2640 				/*
2641 				 * We've caught this ccb en route to
2642 				 * the SIM.  Flag it for abort and the
2643 				 * SIM will do so just before starting
2644 				 * real work on the CCB.
2645 				 */
2646 				abort_ccb->ccb_h.status =
2647 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2648 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2649 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2650 				break;
2651 			}
2652 		}
2653 		if (XPT_FC_IS_QUEUED(abort_ccb)
2654 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2655 			/*
2656 			 * It's already completed but waiting
2657 			 * for our SWI to get to it.
2658 			 */
2659 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2660 			break;
2661 		}
2662 		/*
2663 		 * If we weren't able to take care of the abort request
2664 		 * in the XPT, pass the request down to the SIM for processing.
2665 		 */
2666 	}
2667 	/* FALLTHROUGH */
2668 	case XPT_ACCEPT_TARGET_IO:
2669 	case XPT_EN_LUN:
2670 	case XPT_IMMED_NOTIFY:
2671 	case XPT_NOTIFY_ACK:
2672 	case XPT_RESET_BUS:
2673 	case XPT_IMMEDIATE_NOTIFY:
2674 	case XPT_NOTIFY_ACKNOWLEDGE:
2675 	case XPT_GET_SIM_KNOB_OLD:
2676 	case XPT_GET_SIM_KNOB:
2677 	case XPT_SET_SIM_KNOB:
2678 	case XPT_GET_TRAN_SETTINGS:
2679 	case XPT_SET_TRAN_SETTINGS:
2680 	case XPT_PATH_INQ:
2681 call_sim:
2682 		sim = path->bus->sim;
2683 		mtx = sim->mtx;
2684 		if (mtx && !mtx_owned(mtx))
2685 			mtx_lock(mtx);
2686 		else
2687 			mtx = NULL;
2688 
2689 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2690 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2691 		(*(sim->sim_action))(sim, start_ccb);
2692 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2693 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2694 		if (mtx)
2695 			mtx_unlock(mtx);
2696 		break;
2697 	case XPT_PATH_STATS:
2698 		start_ccb->cpis.last_reset = path->bus->last_reset;
2699 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2700 		break;
2701 	case XPT_GDEV_TYPE:
2702 	{
2703 		struct cam_ed *dev;
2704 
2705 		dev = path->device;
2706 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2707 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2708 		} else {
2709 			struct ccb_getdev *cgd;
2710 
2711 			cgd = &start_ccb->cgd;
2712 			cgd->protocol = dev->protocol;
2713 			cgd->inq_data = dev->inq_data;
2714 			cgd->ident_data = dev->ident_data;
2715 			cgd->inq_flags = dev->inq_flags;
2716 			cgd->ccb_h.status = CAM_REQ_CMP;
2717 			cgd->serial_num_len = dev->serial_num_len;
2718 			if ((dev->serial_num_len > 0)
2719 			 && (dev->serial_num != NULL))
2720 				bcopy(dev->serial_num, cgd->serial_num,
2721 				      dev->serial_num_len);
2722 		}
2723 		break;
2724 	}
2725 	case XPT_GDEV_STATS:
2726 	{
2727 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2728 		struct cam_ed *dev = path->device;
2729 		struct cam_eb *bus = path->bus;
2730 		struct cam_et *tar = path->target;
2731 		struct cam_devq *devq = bus->sim->devq;
2732 
2733 		mtx_lock(&devq->send_mtx);
2734 		cgds->dev_openings = dev->ccbq.dev_openings;
2735 		cgds->dev_active = dev->ccbq.dev_active;
2736 		cgds->allocated = dev->ccbq.allocated;
2737 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2738 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2739 		cgds->last_reset = tar->last_reset;
2740 		cgds->maxtags = dev->maxtags;
2741 		cgds->mintags = dev->mintags;
2742 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2743 			cgds->last_reset = bus->last_reset;
2744 		mtx_unlock(&devq->send_mtx);
2745 		cgds->ccb_h.status = CAM_REQ_CMP;
2746 		break;
2747 	}
2748 	case XPT_GDEVLIST:
2749 	{
2750 		struct cam_periph	*nperiph;
2751 		struct periph_list	*periph_head;
2752 		struct ccb_getdevlist	*cgdl;
2753 		u_int			i;
2754 		struct cam_ed		*device;
2755 		bool			found;
2756 
2757 		found = false;
2758 
2759 		/*
2760 		 * Don't want anyone mucking with our data.
2761 		 */
2762 		device = path->device;
2763 		periph_head = &device->periphs;
2764 		cgdl = &start_ccb->cgdl;
2765 
2766 		/*
2767 		 * Check and see if the list has changed since the user
2768 		 * last requested a list member.  If so, tell them that the
2769 		 * list has changed, and therefore they need to start over
2770 		 * from the beginning.
2771 		 */
2772 		if ((cgdl->index != 0) &&
2773 		    (cgdl->generation != device->generation)) {
2774 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2775 			break;
2776 		}
2777 
2778 		/*
2779 		 * Traverse the list of peripherals and attempt to find
2780 		 * the requested peripheral.
2781 		 */
2782 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2783 		     (nperiph != NULL) && (i <= cgdl->index);
2784 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2785 			if (i == cgdl->index) {
2786 				strlcpy(cgdl->periph_name,
2787 					nperiph->periph_name,
2788 					sizeof(cgdl->periph_name));
2789 				cgdl->unit_number = nperiph->unit_number;
2790 				found = true;
2791 			}
2792 		}
2793 		if (!found) {
2794 			cgdl->status = CAM_GDEVLIST_ERROR;
2795 			break;
2796 		}
2797 
2798 		if (nperiph == NULL)
2799 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2800 		else
2801 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2802 
2803 		cgdl->index++;
2804 		cgdl->generation = device->generation;
2805 
2806 		cgdl->ccb_h.status = CAM_REQ_CMP;
2807 		break;
2808 	}
2809 	case XPT_DEV_MATCH:
2810 	{
2811 		dev_pos_type position_type;
2812 		struct ccb_dev_match *cdm;
2813 
2814 		cdm = &start_ccb->cdm;
2815 
2816 		/*
2817 		 * There are two ways of getting at information in the EDT.
2818 		 * The first way is via the primary EDT tree.  It starts
2819 		 * with a list of buses, then a list of targets on a bus,
2820 		 * then devices/luns on a target, and then peripherals on a
2821 		 * device/lun.  The "other" way is by the peripheral driver
2822 		 * lists.  The peripheral driver lists are organized by
2823 		 * peripheral driver.  (obviously)  So it makes sense to
2824 		 * use the peripheral driver list if the user is looking
2825 		 * for something like "da1", or all "da" devices.  If the
2826 		 * user is looking for something on a particular bus/target
2827 		 * or lun, it's generally better to go through the EDT tree.
2828 		 */
2829 
2830 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2831 			position_type = cdm->pos.position_type;
2832 		else {
2833 			u_int i;
2834 
2835 			position_type = CAM_DEV_POS_NONE;
2836 
2837 			for (i = 0; i < cdm->num_patterns; i++) {
2838 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2839 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2840 					position_type = CAM_DEV_POS_EDT;
2841 					break;
2842 				}
2843 			}
2844 
2845 			if (cdm->num_patterns == 0)
2846 				position_type = CAM_DEV_POS_EDT;
2847 			else if (position_type == CAM_DEV_POS_NONE)
2848 				position_type = CAM_DEV_POS_PDRV;
2849 		}
2850 
2851 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2852 		case CAM_DEV_POS_EDT:
2853 			xptedtmatch(cdm);
2854 			break;
2855 		case CAM_DEV_POS_PDRV:
2856 			xptperiphlistmatch(cdm);
2857 			break;
2858 		default:
2859 			cdm->status = CAM_DEV_MATCH_ERROR;
2860 			break;
2861 		}
2862 
2863 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2864 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2865 		else
2866 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2867 
2868 		break;
2869 	}
2870 	case XPT_SASYNC_CB:
2871 	{
2872 		struct ccb_setasync *csa;
2873 		struct async_node *cur_entry;
2874 		struct async_list *async_head;
2875 		uint32_t added;
2876 
2877 		csa = &start_ccb->csa;
2878 		added = csa->event_enable;
2879 		async_head = &path->device->asyncs;
2880 
2881 		/*
2882 		 * If there is already an entry for us, simply
2883 		 * update it.
2884 		 */
2885 		cur_entry = SLIST_FIRST(async_head);
2886 		while (cur_entry != NULL) {
2887 			if ((cur_entry->callback_arg == csa->callback_arg)
2888 			 && (cur_entry->callback == csa->callback))
2889 				break;
2890 			cur_entry = SLIST_NEXT(cur_entry, links);
2891 		}
2892 
2893 		if (cur_entry != NULL) {
2894 		 	/*
2895 			 * If the request has no flags set,
2896 			 * remove the entry.
2897 			 */
2898 			added &= ~cur_entry->event_enable;
2899 			if (csa->event_enable == 0) {
2900 				SLIST_REMOVE(async_head, cur_entry,
2901 					     async_node, links);
2902 				xpt_release_device(path->device);
2903 				free(cur_entry, M_CAMXPT);
2904 			} else {
2905 				cur_entry->event_enable = csa->event_enable;
2906 			}
2907 			csa->event_enable = added;
2908 		} else {
2909 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2910 					   M_NOWAIT);
2911 			if (cur_entry == NULL) {
2912 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2913 				break;
2914 			}
2915 			cur_entry->event_enable = csa->event_enable;
2916 			cur_entry->event_lock = (path->bus->sim->mtx &&
2917 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2918 			cur_entry->callback_arg = csa->callback_arg;
2919 			cur_entry->callback = csa->callback;
2920 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2921 			xpt_acquire_device(path->device);
2922 		}
2923 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2924 		break;
2925 	}
2926 	case XPT_REL_SIMQ:
2927 	{
2928 		struct ccb_relsim *crs;
2929 		struct cam_ed *dev;
2930 
2931 		crs = &start_ccb->crs;
2932 		dev = path->device;
2933 		if (dev == NULL) {
2934 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2935 			break;
2936 		}
2937 
2938 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2939 			/* Don't ever go below one opening */
2940 			if (crs->openings > 0) {
2941 				xpt_dev_ccbq_resize(path, crs->openings);
2942 				if (bootverbose) {
2943 					xpt_print(path,
2944 					    "number of openings is now %d\n",
2945 					    crs->openings);
2946 				}
2947 			}
2948 		}
2949 
2950 		mtx_lock(&dev->sim->devq->send_mtx);
2951 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2952 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2953 				/*
2954 				 * Just extend the old timeout and decrement
2955 				 * the freeze count so that a single timeout
2956 				 * is sufficient for releasing the queue.
2957 				 */
2958 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2959 				callout_stop(&dev->callout);
2960 			} else {
2961 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2962 			}
2963 
2964 			callout_reset_sbt(&dev->callout,
2965 			    SBT_1MS * crs->release_timeout, SBT_1MS,
2966 			    xpt_release_devq_timeout, dev, 0);
2967 
2968 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2969 		}
2970 
2971 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2972 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2973 				/*
2974 				 * Decrement the freeze count so that a single
2975 				 * completion is still sufficient to unfreeze
2976 				 * the queue.
2977 				 */
2978 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2979 			} else {
2980 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2981 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2982 			}
2983 		}
2984 
2985 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2986 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2987 			 || (dev->ccbq.dev_active == 0)) {
2988 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2989 			} else {
2990 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2991 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2992 			}
2993 		}
2994 		mtx_unlock(&dev->sim->devq->send_mtx);
2995 
2996 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2997 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2998 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2999 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3000 		break;
3001 	}
3002 	case XPT_DEBUG: {
3003 		struct cam_path *oldpath;
3004 
3005 		/* Check that all request bits are supported. */
3006 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3007 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3008 			break;
3009 		}
3010 
3011 		cam_dflags = CAM_DEBUG_NONE;
3012 		if (cam_dpath != NULL) {
3013 			oldpath = cam_dpath;
3014 			cam_dpath = NULL;
3015 			xpt_free_path(oldpath);
3016 		}
3017 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3018 			if (xpt_create_path(&cam_dpath, NULL,
3019 					    start_ccb->ccb_h.path_id,
3020 					    start_ccb->ccb_h.target_id,
3021 					    start_ccb->ccb_h.target_lun) !=
3022 					    CAM_REQ_CMP) {
3023 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3024 			} else {
3025 				cam_dflags = start_ccb->cdbg.flags;
3026 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3027 				xpt_print(cam_dpath, "debugging flags now %x\n",
3028 				    cam_dflags);
3029 			}
3030 		} else
3031 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3032 		break;
3033 	}
3034 	case XPT_NOOP:
3035 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3036 			xpt_freeze_devq(path, 1);
3037 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3038 		break;
3039 	case XPT_REPROBE_LUN:
3040 		xpt_async(AC_INQ_CHANGED, path, NULL);
3041 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3042 		xpt_done(start_ccb);
3043 		break;
3044 	case XPT_ASYNC:
3045 		/*
3046 		 * Queue the async operation so it can be run from a sleepable
3047 		 * context.
3048 		 */
3049 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3050 		mtx_lock(&cam_async.cam_doneq_mtx);
3051 		STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3052 		start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3053 		mtx_unlock(&cam_async.cam_doneq_mtx);
3054 		wakeup(&cam_async.cam_doneq);
3055 		break;
3056 	default:
3057 	case XPT_SDEV_TYPE:
3058 	case XPT_TERM_IO:
3059 	case XPT_ENG_INQ:
3060 		/* XXX Implement */
3061 		xpt_print(start_ccb->ccb_h.path,
3062 		    "%s: CCB type %#x %s not supported\n", __func__,
3063 		    start_ccb->ccb_h.func_code,
3064 		    xpt_action_name(start_ccb->ccb_h.func_code));
3065 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3066 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3067 			xpt_done(start_ccb);
3068 		}
3069 		break;
3070 	}
3071 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3072 	    ("xpt_action_default: func= %#x %s status %#x\n",
3073 		start_ccb->ccb_h.func_code,
3074  		xpt_action_name(start_ccb->ccb_h.func_code),
3075 		start_ccb->ccb_h.status));
3076 }
3077 
3078 /*
3079  * Call the sim poll routine to allow the sim to complete
3080  * any inflight requests, then call camisr_runqueue to
3081  * complete any CCB that the polling completed.
3082  */
3083 void
3084 xpt_sim_poll(struct cam_sim *sim)
3085 {
3086 	struct mtx *mtx;
3087 
3088 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3089 	mtx = sim->mtx;
3090 	if (mtx)
3091 		mtx_lock(mtx);
3092 	(*(sim->sim_poll))(sim);
3093 	if (mtx)
3094 		mtx_unlock(mtx);
3095 	camisr_runqueue();
3096 }
3097 
3098 uint32_t
3099 xpt_poll_setup(union ccb *start_ccb)
3100 {
3101 	uint32_t timeout;
3102 	struct	  cam_sim *sim;
3103 	struct	  cam_devq *devq;
3104 	struct	  cam_ed *dev;
3105 
3106 	timeout = start_ccb->ccb_h.timeout * 10;
3107 	sim = start_ccb->ccb_h.path->bus->sim;
3108 	devq = sim->devq;
3109 	dev = start_ccb->ccb_h.path->device;
3110 
3111 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3112 
3113 	/*
3114 	 * Steal an opening so that no other queued requests
3115 	 * can get it before us while we simulate interrupts.
3116 	 */
3117 	mtx_lock(&devq->send_mtx);
3118 	dev->ccbq.dev_openings--;
3119 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3120 	    (--timeout > 0)) {
3121 		mtx_unlock(&devq->send_mtx);
3122 		DELAY(100);
3123 		xpt_sim_poll(sim);
3124 		mtx_lock(&devq->send_mtx);
3125 	}
3126 	dev->ccbq.dev_openings++;
3127 	mtx_unlock(&devq->send_mtx);
3128 
3129 	return (timeout);
3130 }
3131 
3132 void
3133 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3134 {
3135 
3136 	KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3137 	    ("%s: non-pollable sim", __func__));
3138 	while (--timeout > 0) {
3139 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3140 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3141 		    != CAM_REQ_INPROG)
3142 			break;
3143 		DELAY(100);
3144 	}
3145 
3146 	if (timeout == 0) {
3147 		/*
3148 		 * XXX Is it worth adding a sim_timeout entry
3149 		 * point so we can attempt recovery?  If
3150 		 * this is only used for dumps, I don't think
3151 		 * it is.
3152 		 */
3153 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3154 	}
3155 }
3156 
3157 /*
3158  * Schedule a peripheral driver to receive a ccb when its
3159  * target device has space for more transactions.
3160  */
3161 void
3162 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3163 {
3164 
3165 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3166 	cam_periph_assert(periph, MA_OWNED);
3167 	if (new_priority < periph->scheduled_priority) {
3168 		periph->scheduled_priority = new_priority;
3169 		xpt_run_allocq(periph, 0);
3170 	}
3171 }
3172 
3173 /*
3174  * Schedule a device to run on a given queue.
3175  * If the device was inserted as a new entry on the queue,
3176  * return 1 meaning the device queue should be run. If we
3177  * were already queued, implying someone else has already
3178  * started the queue, return 0 so the caller doesn't attempt
3179  * to run the queue.
3180  */
3181 static int
3182 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3183 		 uint32_t new_priority)
3184 {
3185 	int retval;
3186 	uint32_t old_priority;
3187 
3188 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3189 
3190 	old_priority = pinfo->priority;
3191 
3192 	/*
3193 	 * Are we already queued?
3194 	 */
3195 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3196 		/* Simply reorder based on new priority */
3197 		if (new_priority < old_priority) {
3198 			camq_change_priority(queue, pinfo->index,
3199 					     new_priority);
3200 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3201 					("changed priority to %d\n",
3202 					 new_priority));
3203 			retval = 1;
3204 		} else
3205 			retval = 0;
3206 	} else {
3207 		/* New entry on the queue */
3208 		if (new_priority < old_priority)
3209 			pinfo->priority = new_priority;
3210 
3211 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3212 				("Inserting onto queue\n"));
3213 		pinfo->generation = ++queue->generation;
3214 		camq_insert(queue, pinfo);
3215 		retval = 1;
3216 	}
3217 	return (retval);
3218 }
3219 
3220 static void
3221 xpt_run_allocq_task(void *context, int pending)
3222 {
3223 	struct cam_periph *periph = context;
3224 
3225 	cam_periph_lock(periph);
3226 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3227 	xpt_run_allocq(periph, 1);
3228 	cam_periph_unlock(periph);
3229 	cam_periph_release(periph);
3230 }
3231 
3232 static void
3233 xpt_run_allocq(struct cam_periph *periph, int sleep)
3234 {
3235 	struct cam_ed	*device;
3236 	union ccb	*ccb;
3237 	uint32_t	 prio;
3238 
3239 	cam_periph_assert(periph, MA_OWNED);
3240 	if (periph->periph_allocating)
3241 		return;
3242 	cam_periph_doacquire(periph);
3243 	periph->periph_allocating = 1;
3244 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3245 	device = periph->path->device;
3246 	ccb = NULL;
3247 restart:
3248 	while ((prio = min(periph->scheduled_priority,
3249 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3250 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3251 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3252 		if (ccb == NULL &&
3253 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3254 			if (sleep) {
3255 				ccb = xpt_get_ccb(periph);
3256 				goto restart;
3257 			}
3258 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3259 				break;
3260 			cam_periph_doacquire(periph);
3261 			periph->flags |= CAM_PERIPH_RUN_TASK;
3262 			taskqueue_enqueue(xsoftc.xpt_taskq,
3263 			    &periph->periph_run_task);
3264 			break;
3265 		}
3266 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3267 		if (prio == periph->immediate_priority) {
3268 			periph->immediate_priority = CAM_PRIORITY_NONE;
3269 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3270 					("waking cam_periph_getccb()\n"));
3271 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3272 					  periph_links.sle);
3273 			wakeup(&periph->ccb_list);
3274 		} else {
3275 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3276 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3277 					("calling periph_start()\n"));
3278 			periph->periph_start(periph, ccb);
3279 		}
3280 		ccb = NULL;
3281 	}
3282 	if (ccb != NULL)
3283 		xpt_release_ccb(ccb);
3284 	periph->periph_allocating = 0;
3285 	cam_periph_release_locked(periph);
3286 }
3287 
3288 static void
3289 xpt_run_devq(struct cam_devq *devq)
3290 {
3291 	struct mtx *mtx;
3292 
3293 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3294 
3295 	devq->send_queue.qfrozen_cnt++;
3296 	while ((devq->send_queue.entries > 0)
3297 	    && (devq->send_openings > 0)
3298 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3299 		struct	cam_ed *device;
3300 		union ccb *work_ccb;
3301 		struct	cam_sim *sim;
3302 		struct xpt_proto *proto;
3303 
3304 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3305 							   CAMQ_HEAD);
3306 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3307 				("running device %p\n", device));
3308 
3309 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3310 		if (work_ccb == NULL) {
3311 			printf("device on run queue with no ccbs???\n");
3312 			continue;
3313 		}
3314 
3315 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3316 			mtx_lock(&xsoftc.xpt_highpower_lock);
3317 		 	if (xsoftc.num_highpower <= 0) {
3318 				/*
3319 				 * We got a high power command, but we
3320 				 * don't have any available slots.  Freeze
3321 				 * the device queue until we have a slot
3322 				 * available.
3323 				 */
3324 				xpt_freeze_devq_device(device, 1);
3325 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3326 						   highpowerq_entry);
3327 
3328 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3329 				continue;
3330 			} else {
3331 				/*
3332 				 * Consume a high power slot while
3333 				 * this ccb runs.
3334 				 */
3335 				xsoftc.num_highpower--;
3336 			}
3337 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3338 		}
3339 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3340 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3341 		devq->send_openings--;
3342 		devq->send_active++;
3343 		xpt_schedule_devq(devq, device);
3344 		mtx_unlock(&devq->send_mtx);
3345 
3346 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3347 			/*
3348 			 * The client wants to freeze the queue
3349 			 * after this CCB is sent.
3350 			 */
3351 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3352 		}
3353 
3354 		/* In Target mode, the peripheral driver knows best... */
3355 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3356 			if ((device->inq_flags & SID_CmdQue) != 0
3357 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3358 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3359 			else
3360 				/*
3361 				 * Clear this in case of a retried CCB that
3362 				 * failed due to a rejected tag.
3363 				 */
3364 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3365 		}
3366 
3367 		KASSERT(device == work_ccb->ccb_h.path->device,
3368 		    ("device (%p) / path->device (%p) mismatch",
3369 			device, work_ccb->ccb_h.path->device));
3370 		proto = xpt_proto_find(device->protocol);
3371 		if (proto && proto->ops->debug_out)
3372 			proto->ops->debug_out(work_ccb);
3373 
3374 		/*
3375 		 * Device queues can be shared among multiple SIM instances
3376 		 * that reside on different buses.  Use the SIM from the
3377 		 * queued device, rather than the one from the calling bus.
3378 		 */
3379 		sim = device->sim;
3380 		mtx = sim->mtx;
3381 		if (mtx && !mtx_owned(mtx))
3382 			mtx_lock(mtx);
3383 		else
3384 			mtx = NULL;
3385 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3386 		(*(sim->sim_action))(sim, work_ccb);
3387 		if (mtx)
3388 			mtx_unlock(mtx);
3389 		mtx_lock(&devq->send_mtx);
3390 	}
3391 	devq->send_queue.qfrozen_cnt--;
3392 }
3393 
3394 /*
3395  * This function merges stuff from the src ccb into the dst ccb, while keeping
3396  * important fields in the dst ccb constant.
3397  */
3398 void
3399 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3400 {
3401 
3402 	/*
3403 	 * Pull fields that are valid for peripheral drivers to set
3404 	 * into the dst CCB along with the CCB "payload".
3405 	 */
3406 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3407 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3408 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3409 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3410 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3411 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3412 }
3413 
3414 void
3415 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3416 		    uint32_t priority, uint32_t flags)
3417 {
3418 
3419 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3420 	ccb_h->pinfo.priority = priority;
3421 	ccb_h->path = path;
3422 	ccb_h->path_id = path->bus->path_id;
3423 	if (path->target)
3424 		ccb_h->target_id = path->target->target_id;
3425 	else
3426 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3427 	if (path->device) {
3428 		ccb_h->target_lun = path->device->lun_id;
3429 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3430 	} else {
3431 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3432 	}
3433 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3434 	ccb_h->flags = flags;
3435 	ccb_h->xflags = 0;
3436 }
3437 
3438 void
3439 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3440 {
3441 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3442 }
3443 
3444 /* Path manipulation functions */
3445 cam_status
3446 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3447 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3448 {
3449 	struct	   cam_path *path;
3450 	cam_status status;
3451 
3452 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3453 
3454 	if (path == NULL) {
3455 		status = CAM_RESRC_UNAVAIL;
3456 		return(status);
3457 	}
3458 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3459 	if (status != CAM_REQ_CMP) {
3460 		free(path, M_CAMPATH);
3461 		path = NULL;
3462 	}
3463 	*new_path_ptr = path;
3464 	return (status);
3465 }
3466 
3467 cam_status
3468 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3469 			 struct cam_periph *periph, path_id_t path_id,
3470 			 target_id_t target_id, lun_id_t lun_id)
3471 {
3472 
3473 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3474 	    lun_id));
3475 }
3476 
3477 cam_status
3478 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3479 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3480 {
3481 	struct	     cam_eb *bus;
3482 	struct	     cam_et *target;
3483 	struct	     cam_ed *device;
3484 	cam_status   status;
3485 
3486 	status = CAM_REQ_CMP;	/* Completed without error */
3487 	target = NULL;		/* Wildcarded */
3488 	device = NULL;		/* Wildcarded */
3489 
3490 	/*
3491 	 * We will potentially modify the EDT, so block interrupts
3492 	 * that may attempt to create cam paths.
3493 	 */
3494 	bus = xpt_find_bus(path_id);
3495 	if (bus == NULL) {
3496 		status = CAM_PATH_INVALID;
3497 	} else {
3498 		xpt_lock_buses();
3499 		mtx_lock(&bus->eb_mtx);
3500 		target = xpt_find_target(bus, target_id);
3501 		if (target == NULL) {
3502 			/* Create one */
3503 			struct cam_et *new_target;
3504 
3505 			new_target = xpt_alloc_target(bus, target_id);
3506 			if (new_target == NULL) {
3507 				status = CAM_RESRC_UNAVAIL;
3508 			} else {
3509 				target = new_target;
3510 			}
3511 		}
3512 		xpt_unlock_buses();
3513 		if (target != NULL) {
3514 			device = xpt_find_device(target, lun_id);
3515 			if (device == NULL) {
3516 				/* Create one */
3517 				struct cam_ed *new_device;
3518 
3519 				new_device =
3520 				    (*(bus->xport->ops->alloc_device))(bus,
3521 								       target,
3522 								       lun_id);
3523 				if (new_device == NULL) {
3524 					status = CAM_RESRC_UNAVAIL;
3525 				} else {
3526 					device = new_device;
3527 				}
3528 			}
3529 		}
3530 		mtx_unlock(&bus->eb_mtx);
3531 	}
3532 
3533 	/*
3534 	 * Only touch the user's data if we are successful.
3535 	 */
3536 	if (status == CAM_REQ_CMP) {
3537 		new_path->periph = perph;
3538 		new_path->bus = bus;
3539 		new_path->target = target;
3540 		new_path->device = device;
3541 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3542 	} else {
3543 		if (device != NULL)
3544 			xpt_release_device(device);
3545 		if (target != NULL)
3546 			xpt_release_target(target);
3547 		if (bus != NULL)
3548 			xpt_release_bus(bus);
3549 	}
3550 	return (status);
3551 }
3552 
3553 int
3554 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3555 {
3556 	struct	   cam_path *new_path;
3557 
3558 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3559 	if (new_path == NULL)
3560 		return (ENOMEM);
3561 	*new_path = *path;
3562 	if (path->bus != NULL)
3563 		xpt_acquire_bus(path->bus);
3564 	if (path->target != NULL)
3565 		xpt_acquire_target(path->target);
3566 	if (path->device != NULL)
3567 		xpt_acquire_device(path->device);
3568 	*new_path_ptr = new_path;
3569 	return (0);
3570 }
3571 
3572 void
3573 xpt_release_path(struct cam_path *path)
3574 {
3575 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3576 	if (path->device != NULL) {
3577 		xpt_release_device(path->device);
3578 		path->device = NULL;
3579 	}
3580 	if (path->target != NULL) {
3581 		xpt_release_target(path->target);
3582 		path->target = NULL;
3583 	}
3584 	if (path->bus != NULL) {
3585 		xpt_release_bus(path->bus);
3586 		path->bus = NULL;
3587 	}
3588 }
3589 
3590 void
3591 xpt_free_path(struct cam_path *path)
3592 {
3593 
3594 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3595 	xpt_release_path(path);
3596 	free(path, M_CAMPATH);
3597 }
3598 
3599 void
3600 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3601     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3602 {
3603 
3604 	xpt_lock_buses();
3605 	if (bus_ref) {
3606 		if (path->bus)
3607 			*bus_ref = path->bus->refcount;
3608 		else
3609 			*bus_ref = 0;
3610 	}
3611 	if (periph_ref) {
3612 		if (path->periph)
3613 			*periph_ref = path->periph->refcount;
3614 		else
3615 			*periph_ref = 0;
3616 	}
3617 	xpt_unlock_buses();
3618 	if (target_ref) {
3619 		if (path->target)
3620 			*target_ref = path->target->refcount;
3621 		else
3622 			*target_ref = 0;
3623 	}
3624 	if (device_ref) {
3625 		if (path->device)
3626 			*device_ref = path->device->refcount;
3627 		else
3628 			*device_ref = 0;
3629 	}
3630 }
3631 
3632 /*
3633  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3634  * in path1, 2 for match with wildcards in path2.
3635  */
3636 int
3637 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3638 {
3639 	int retval = 0;
3640 
3641 	if (path1->bus != path2->bus) {
3642 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3643 			retval = 1;
3644 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3645 			retval = 2;
3646 		else
3647 			return (-1);
3648 	}
3649 	if (path1->target != path2->target) {
3650 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3651 			if (retval == 0)
3652 				retval = 1;
3653 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3654 			retval = 2;
3655 		else
3656 			return (-1);
3657 	}
3658 	if (path1->device != path2->device) {
3659 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3660 			if (retval == 0)
3661 				retval = 1;
3662 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3663 			retval = 2;
3664 		else
3665 			return (-1);
3666 	}
3667 	return (retval);
3668 }
3669 
3670 int
3671 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3672 {
3673 	int retval = 0;
3674 
3675 	if (path->bus != dev->target->bus) {
3676 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3677 			retval = 1;
3678 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3679 			retval = 2;
3680 		else
3681 			return (-1);
3682 	}
3683 	if (path->target != dev->target) {
3684 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3685 			if (retval == 0)
3686 				retval = 1;
3687 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3688 			retval = 2;
3689 		else
3690 			return (-1);
3691 	}
3692 	if (path->device != dev) {
3693 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3694 			if (retval == 0)
3695 				retval = 1;
3696 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3697 			retval = 2;
3698 		else
3699 			return (-1);
3700 	}
3701 	return (retval);
3702 }
3703 
3704 void
3705 xpt_print_path(struct cam_path *path)
3706 {
3707 	struct sbuf sb;
3708 	char buffer[XPT_PRINT_LEN];
3709 
3710 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3711 	xpt_path_sbuf(path, &sb);
3712 	sbuf_finish(&sb);
3713 	printf("%s", sbuf_data(&sb));
3714 	sbuf_delete(&sb);
3715 }
3716 
3717 void
3718 xpt_print_device(struct cam_ed *device)
3719 {
3720 
3721 	if (device == NULL)
3722 		printf("(nopath): ");
3723 	else {
3724 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3725 		       device->sim->unit_number,
3726 		       device->sim->bus_id,
3727 		       device->target->target_id,
3728 		       (uintmax_t)device->lun_id);
3729 	}
3730 }
3731 
3732 void
3733 xpt_print(struct cam_path *path, const char *fmt, ...)
3734 {
3735 	va_list ap;
3736 	struct sbuf sb;
3737 	char buffer[XPT_PRINT_LEN];
3738 
3739 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3740 
3741 	xpt_path_sbuf(path, &sb);
3742 	va_start(ap, fmt);
3743 	sbuf_vprintf(&sb, fmt, ap);
3744 	va_end(ap);
3745 
3746 	sbuf_finish(&sb);
3747 	printf("%s", sbuf_data(&sb));
3748 	sbuf_delete(&sb);
3749 }
3750 
3751 int
3752 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3753 {
3754 	struct sbuf sb;
3755 	int len;
3756 
3757 	sbuf_new(&sb, str, str_len, 0);
3758 	len = xpt_path_sbuf(path, &sb);
3759 	sbuf_finish(&sb);
3760 	return (len);
3761 }
3762 
3763 int
3764 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3765 {
3766 
3767 	if (path == NULL)
3768 		sbuf_printf(sb, "(nopath): ");
3769 	else {
3770 		if (path->periph != NULL)
3771 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3772 				    path->periph->unit_number);
3773 		else
3774 			sbuf_printf(sb, "(noperiph:");
3775 
3776 		if (path->bus != NULL)
3777 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3778 				    path->bus->sim->unit_number,
3779 				    path->bus->sim->bus_id);
3780 		else
3781 			sbuf_printf(sb, "nobus:");
3782 
3783 		if (path->target != NULL)
3784 			sbuf_printf(sb, "%d:", path->target->target_id);
3785 		else
3786 			sbuf_printf(sb, "X:");
3787 
3788 		if (path->device != NULL)
3789 			sbuf_printf(sb, "%jx): ",
3790 			    (uintmax_t)path->device->lun_id);
3791 		else
3792 			sbuf_printf(sb, "X): ");
3793 	}
3794 
3795 	return(sbuf_len(sb));
3796 }
3797 
3798 path_id_t
3799 xpt_path_path_id(struct cam_path *path)
3800 {
3801 	return(path->bus->path_id);
3802 }
3803 
3804 target_id_t
3805 xpt_path_target_id(struct cam_path *path)
3806 {
3807 	if (path->target != NULL)
3808 		return (path->target->target_id);
3809 	else
3810 		return (CAM_TARGET_WILDCARD);
3811 }
3812 
3813 lun_id_t
3814 xpt_path_lun_id(struct cam_path *path)
3815 {
3816 	if (path->device != NULL)
3817 		return (path->device->lun_id);
3818 	else
3819 		return (CAM_LUN_WILDCARD);
3820 }
3821 
3822 struct cam_sim *
3823 xpt_path_sim(struct cam_path *path)
3824 {
3825 
3826 	return (path->bus->sim);
3827 }
3828 
3829 struct cam_periph*
3830 xpt_path_periph(struct cam_path *path)
3831 {
3832 
3833 	return (path->periph);
3834 }
3835 
3836 /*
3837  * Release a CAM control block for the caller.  Remit the cost of the structure
3838  * to the device referenced by the path.  If the this device had no 'credits'
3839  * and peripheral drivers have registered async callbacks for this notification
3840  * call them now.
3841  */
3842 void
3843 xpt_release_ccb(union ccb *free_ccb)
3844 {
3845 	struct	 cam_ed *device;
3846 	struct	 cam_periph *periph;
3847 
3848 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3849 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3850 	device = free_ccb->ccb_h.path->device;
3851 	periph = free_ccb->ccb_h.path->periph;
3852 
3853 	xpt_free_ccb(free_ccb);
3854 	periph->periph_allocated--;
3855 	cam_ccbq_release_opening(&device->ccbq);
3856 	xpt_run_allocq(periph, 0);
3857 }
3858 
3859 /* Functions accessed by SIM drivers */
3860 
3861 static struct xpt_xport_ops xport_default_ops = {
3862 	.alloc_device = xpt_alloc_device_default,
3863 	.action = xpt_action_default,
3864 	.async = xpt_dev_async_default,
3865 };
3866 static struct xpt_xport xport_default = {
3867 	.xport = XPORT_UNKNOWN,
3868 	.name = "unknown",
3869 	.ops = &xport_default_ops,
3870 };
3871 
3872 CAM_XPT_XPORT(xport_default);
3873 
3874 /*
3875  * A sim structure, listing the SIM entry points and instance
3876  * identification info is passed to xpt_bus_register to hook the SIM
3877  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3878  * for this new bus and places it in the array of buses and assigns
3879  * it a path_id.  The path_id may be influenced by "hard wiring"
3880  * information specified by the user.  Once interrupt services are
3881  * available, the bus will be probed.
3882  */
3883 int
3884 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3885 {
3886 	struct cam_eb *new_bus;
3887 	struct cam_eb *old_bus;
3888 	struct ccb_pathinq cpi;
3889 	struct cam_path *path;
3890 	cam_status status;
3891 
3892 	sim->bus_id = bus;
3893 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3894 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3895 	if (new_bus == NULL) {
3896 		/* Couldn't satisfy request */
3897 		return (ENOMEM);
3898 	}
3899 
3900 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3901 	TAILQ_INIT(&new_bus->et_entries);
3902 	cam_sim_hold(sim);
3903 	new_bus->sim = sim;
3904 	timevalclear(&new_bus->last_reset);
3905 	new_bus->flags = 0;
3906 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3907 	new_bus->generation = 0;
3908 	new_bus->parent_dev = parent;
3909 
3910 	xpt_lock_buses();
3911 	sim->path_id = new_bus->path_id =
3912 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3913 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3914 	while (old_bus != NULL
3915 	    && old_bus->path_id < new_bus->path_id)
3916 		old_bus = TAILQ_NEXT(old_bus, links);
3917 	if (old_bus != NULL)
3918 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3919 	else
3920 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3921 	xsoftc.bus_generation++;
3922 	xpt_unlock_buses();
3923 
3924 	/*
3925 	 * Set a default transport so that a PATH_INQ can be issued to
3926 	 * the SIM.  This will then allow for probing and attaching of
3927 	 * a more appropriate transport.
3928 	 */
3929 	new_bus->xport = &xport_default;
3930 
3931 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3932 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3933 	if (status != CAM_REQ_CMP) {
3934 		xpt_release_bus(new_bus);
3935 		return (ENOMEM);
3936 	}
3937 
3938 	xpt_path_inq(&cpi, path);
3939 
3940 	/*
3941 	 * Use the results of PATH_INQ to pick a transport.  Note that
3942 	 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3943 	 * xport_default instead of a transport from
3944 	 * cam_xpt_port_set.
3945 	 */
3946 	if (cam_ccb_success((union ccb *)&cpi) &&
3947 	    cpi.transport != XPORT_UNSPECIFIED) {
3948 		struct xpt_xport **xpt;
3949 
3950 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3951 			if ((*xpt)->xport == cpi.transport) {
3952 				new_bus->xport = *xpt;
3953 				break;
3954 			}
3955 		}
3956 		if (new_bus->xport == &xport_default) {
3957 			xpt_print(path,
3958 			    "No transport found for %d\n", cpi.transport);
3959 			xpt_release_bus(new_bus);
3960 			xpt_free_path(path);
3961 			return (EINVAL);
3962 		}
3963 	}
3964 
3965 	/* Notify interested parties */
3966 	if (sim->path_id != CAM_XPT_PATH_ID) {
3967 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3968 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3969 			union	ccb *scan_ccb;
3970 
3971 			/* Initiate bus rescan. */
3972 			scan_ccb = xpt_alloc_ccb_nowait();
3973 			if (scan_ccb != NULL) {
3974 				scan_ccb->ccb_h.path = path;
3975 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3976 				scan_ccb->crcn.flags = 0;
3977 				xpt_rescan(scan_ccb);
3978 			} else {
3979 				xpt_print(path,
3980 					  "Can't allocate CCB to scan bus\n");
3981 				xpt_free_path(path);
3982 			}
3983 		} else
3984 			xpt_free_path(path);
3985 	} else
3986 		xpt_free_path(path);
3987 	return (CAM_SUCCESS);
3988 }
3989 
3990 int
3991 xpt_bus_deregister(path_id_t pathid)
3992 {
3993 	struct cam_path bus_path;
3994 	cam_status status;
3995 
3996 	status = xpt_compile_path(&bus_path, NULL, pathid,
3997 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3998 	if (status != CAM_REQ_CMP)
3999 		return (ENOMEM);
4000 
4001 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4002 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4003 
4004 	/* Release the reference count held while registered. */
4005 	xpt_release_bus(bus_path.bus);
4006 	xpt_release_path(&bus_path);
4007 
4008 	return (CAM_SUCCESS);
4009 }
4010 
4011 static path_id_t
4012 xptnextfreepathid(void)
4013 {
4014 	struct cam_eb *bus;
4015 	path_id_t pathid;
4016 	const char *strval;
4017 
4018 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4019 	pathid = 0;
4020 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4021 retry:
4022 	/* Find an unoccupied pathid */
4023 	while (bus != NULL && bus->path_id <= pathid) {
4024 		if (bus->path_id == pathid)
4025 			pathid++;
4026 		bus = TAILQ_NEXT(bus, links);
4027 	}
4028 
4029 	/*
4030 	 * Ensure that this pathid is not reserved for
4031 	 * a bus that may be registered in the future.
4032 	 */
4033 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4034 		++pathid;
4035 		/* Start the search over */
4036 		goto retry;
4037 	}
4038 	return (pathid);
4039 }
4040 
4041 static path_id_t
4042 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4043 {
4044 	path_id_t pathid;
4045 	int i, dunit, val;
4046 	char buf[32];
4047 	const char *dname;
4048 
4049 	pathid = CAM_XPT_PATH_ID;
4050 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4051 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4052 		return (pathid);
4053 	i = 0;
4054 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4055 		if (strcmp(dname, "scbus")) {
4056 			/* Avoid a bit of foot shooting. */
4057 			continue;
4058 		}
4059 		if (dunit < 0)		/* unwired?! */
4060 			continue;
4061 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4062 			if (sim_bus == val) {
4063 				pathid = dunit;
4064 				break;
4065 			}
4066 		} else if (sim_bus == 0) {
4067 			/* Unspecified matches bus 0 */
4068 			pathid = dunit;
4069 			break;
4070 		} else {
4071 			printf("Ambiguous scbus configuration for %s%d "
4072 			       "bus %d, cannot wire down.  The kernel "
4073 			       "config entry for scbus%d should "
4074 			       "specify a controller bus.\n"
4075 			       "Scbus will be assigned dynamically.\n",
4076 			       sim_name, sim_unit, sim_bus, dunit);
4077 			break;
4078 		}
4079 	}
4080 
4081 	if (pathid == CAM_XPT_PATH_ID)
4082 		pathid = xptnextfreepathid();
4083 	return (pathid);
4084 }
4085 
4086 static const char *
4087 xpt_async_string(uint32_t async_code)
4088 {
4089 
4090 	switch (async_code) {
4091 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4092 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4093 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4094 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4095 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4096 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4097 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4098 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4099 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4100 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4101 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4102 	case AC_CONTRACT: return ("AC_CONTRACT");
4103 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4104 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4105 	}
4106 	return ("AC_UNKNOWN");
4107 }
4108 
4109 static int
4110 xpt_async_size(uint32_t async_code)
4111 {
4112 
4113 	switch (async_code) {
4114 	case AC_BUS_RESET: return (0);
4115 	case AC_UNSOL_RESEL: return (0);
4116 	case AC_SCSI_AEN: return (0);
4117 	case AC_SENT_BDR: return (0);
4118 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4119 	case AC_PATH_DEREGISTERED: return (0);
4120 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4121 	case AC_LOST_DEVICE: return (0);
4122 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4123 	case AC_INQ_CHANGED: return (0);
4124 	case AC_GETDEV_CHANGED: return (0);
4125 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4126 	case AC_ADVINFO_CHANGED: return (-1);
4127 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4128 	}
4129 	return (0);
4130 }
4131 
4132 static int
4133 xpt_async_process_dev(struct cam_ed *device, void *arg)
4134 {
4135 	union ccb *ccb = arg;
4136 	struct cam_path *path = ccb->ccb_h.path;
4137 	void *async_arg = ccb->casync.async_arg_ptr;
4138 	uint32_t async_code = ccb->casync.async_code;
4139 	bool relock;
4140 
4141 	if (path->device != device
4142 	 && path->device->lun_id != CAM_LUN_WILDCARD
4143 	 && device->lun_id != CAM_LUN_WILDCARD)
4144 		return (1);
4145 
4146 	/*
4147 	 * The async callback could free the device.
4148 	 * If it is a broadcast async, it doesn't hold
4149 	 * device reference, so take our own reference.
4150 	 */
4151 	xpt_acquire_device(device);
4152 
4153 	/*
4154 	 * If async for specific device is to be delivered to
4155 	 * the wildcard client, take the specific device lock.
4156 	 * XXX: We may need a way for client to specify it.
4157 	 */
4158 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4159 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4160 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4161 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4162 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4163 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4164 		mtx_unlock(&device->device_mtx);
4165 		xpt_path_lock(path);
4166 		relock = true;
4167 	} else
4168 		relock = false;
4169 
4170 	(*(device->target->bus->xport->ops->async))(async_code,
4171 	    device->target->bus, device->target, device, async_arg);
4172 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4173 
4174 	if (relock) {
4175 		xpt_path_unlock(path);
4176 		mtx_lock(&device->device_mtx);
4177 	}
4178 	xpt_release_device(device);
4179 	return (1);
4180 }
4181 
4182 static int
4183 xpt_async_process_tgt(struct cam_et *target, void *arg)
4184 {
4185 	union ccb *ccb = arg;
4186 	struct cam_path *path = ccb->ccb_h.path;
4187 
4188 	if (path->target != target
4189 	 && path->target->target_id != CAM_TARGET_WILDCARD
4190 	 && target->target_id != CAM_TARGET_WILDCARD)
4191 		return (1);
4192 
4193 	if (ccb->casync.async_code == AC_SENT_BDR) {
4194 		/* Update our notion of when the last reset occurred */
4195 		microtime(&target->last_reset);
4196 	}
4197 
4198 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4199 }
4200 
4201 static void
4202 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4203 {
4204 	struct cam_eb *bus;
4205 	struct cam_path *path;
4206 	void *async_arg;
4207 	uint32_t async_code;
4208 
4209 	path = ccb->ccb_h.path;
4210 	async_code = ccb->casync.async_code;
4211 	async_arg = ccb->casync.async_arg_ptr;
4212 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4213 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4214 	bus = path->bus;
4215 
4216 	if (async_code == AC_BUS_RESET) {
4217 		/* Update our notion of when the last reset occurred */
4218 		microtime(&bus->last_reset);
4219 	}
4220 
4221 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4222 
4223 	/*
4224 	 * If this wasn't a fully wildcarded async, tell all
4225 	 * clients that want all async events.
4226 	 */
4227 	if (bus != xpt_periph->path->bus) {
4228 		xpt_path_lock(xpt_periph->path);
4229 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4230 		xpt_path_unlock(xpt_periph->path);
4231 	}
4232 
4233 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4234 		xpt_release_devq(path, 1, TRUE);
4235 	else
4236 		xpt_release_simq(path->bus->sim, TRUE);
4237 	if (ccb->casync.async_arg_size > 0)
4238 		free(async_arg, M_CAMXPT);
4239 	xpt_free_path(path);
4240 	xpt_free_ccb(ccb);
4241 }
4242 
4243 static void
4244 xpt_async_bcast(struct async_list *async_head,
4245 		uint32_t async_code,
4246 		struct cam_path *path, void *async_arg)
4247 {
4248 	struct async_node *cur_entry;
4249 	struct mtx *mtx;
4250 
4251 	cur_entry = SLIST_FIRST(async_head);
4252 	while (cur_entry != NULL) {
4253 		struct async_node *next_entry;
4254 		/*
4255 		 * Grab the next list entry before we call the current
4256 		 * entry's callback.  This is because the callback function
4257 		 * can delete its async callback entry.
4258 		 */
4259 		next_entry = SLIST_NEXT(cur_entry, links);
4260 		if ((cur_entry->event_enable & async_code) != 0) {
4261 			mtx = cur_entry->event_lock ?
4262 			    path->device->sim->mtx : NULL;
4263 			if (mtx)
4264 				mtx_lock(mtx);
4265 			cur_entry->callback(cur_entry->callback_arg,
4266 					    async_code, path,
4267 					    async_arg);
4268 			if (mtx)
4269 				mtx_unlock(mtx);
4270 		}
4271 		cur_entry = next_entry;
4272 	}
4273 }
4274 
4275 void
4276 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4277 {
4278 	union ccb *ccb;
4279 	int size;
4280 
4281 	ccb = xpt_alloc_ccb_nowait();
4282 	if (ccb == NULL) {
4283 		xpt_print(path, "Can't allocate CCB to send %s\n",
4284 		    xpt_async_string(async_code));
4285 		return;
4286 	}
4287 
4288 	if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4289 		xpt_print(path, "Can't allocate path to send %s\n",
4290 		    xpt_async_string(async_code));
4291 		xpt_free_ccb(ccb);
4292 		return;
4293 	}
4294 	ccb->ccb_h.path->periph = NULL;
4295 	ccb->ccb_h.func_code = XPT_ASYNC;
4296 	ccb->ccb_h.cbfcnp = xpt_async_process;
4297 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4298 	ccb->casync.async_code = async_code;
4299 	ccb->casync.async_arg_size = 0;
4300 	size = xpt_async_size(async_code);
4301 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4302 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4303 		ccb->ccb_h.func_code,
4304 		xpt_action_name(ccb->ccb_h.func_code),
4305 		async_code,
4306 		xpt_async_string(async_code)));
4307 	if (size > 0 && async_arg != NULL) {
4308 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4309 		if (ccb->casync.async_arg_ptr == NULL) {
4310 			xpt_print(path, "Can't allocate argument to send %s\n",
4311 			    xpt_async_string(async_code));
4312 			xpt_free_path(ccb->ccb_h.path);
4313 			xpt_free_ccb(ccb);
4314 			return;
4315 		}
4316 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4317 		ccb->casync.async_arg_size = size;
4318 	} else if (size < 0) {
4319 		ccb->casync.async_arg_ptr = async_arg;
4320 		ccb->casync.async_arg_size = size;
4321 	}
4322 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4323 		xpt_freeze_devq(path, 1);
4324 	else
4325 		xpt_freeze_simq(path->bus->sim, 1);
4326 	xpt_action(ccb);
4327 }
4328 
4329 static void
4330 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4331 		      struct cam_et *target, struct cam_ed *device,
4332 		      void *async_arg)
4333 {
4334 
4335 	/*
4336 	 * We only need to handle events for real devices.
4337 	 */
4338 	if (target->target_id == CAM_TARGET_WILDCARD
4339 	 || device->lun_id == CAM_LUN_WILDCARD)
4340 		return;
4341 
4342 	printf("%s called\n", __func__);
4343 }
4344 
4345 static uint32_t
4346 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4347 {
4348 	struct cam_devq	*devq;
4349 	uint32_t freeze;
4350 
4351 	devq = dev->sim->devq;
4352 	mtx_assert(&devq->send_mtx, MA_OWNED);
4353 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4354 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4355 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4356 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4357 	/* Remove frozen device from sendq. */
4358 	if (device_is_queued(dev))
4359 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4360 	return (freeze);
4361 }
4362 
4363 uint32_t
4364 xpt_freeze_devq(struct cam_path *path, u_int count)
4365 {
4366 	struct cam_ed	*dev = path->device;
4367 	struct cam_devq	*devq;
4368 	uint32_t	 freeze;
4369 
4370 	devq = dev->sim->devq;
4371 	mtx_lock(&devq->send_mtx);
4372 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4373 	freeze = xpt_freeze_devq_device(dev, count);
4374 	mtx_unlock(&devq->send_mtx);
4375 	return (freeze);
4376 }
4377 
4378 uint32_t
4379 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4380 {
4381 	struct cam_devq	*devq;
4382 	uint32_t	 freeze;
4383 
4384 	devq = sim->devq;
4385 	mtx_lock(&devq->send_mtx);
4386 	freeze = (devq->send_queue.qfrozen_cnt += count);
4387 	mtx_unlock(&devq->send_mtx);
4388 	return (freeze);
4389 }
4390 
4391 static void
4392 xpt_release_devq_timeout(void *arg)
4393 {
4394 	struct cam_ed *dev;
4395 	struct cam_devq *devq;
4396 
4397 	dev = (struct cam_ed *)arg;
4398 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4399 	devq = dev->sim->devq;
4400 	mtx_assert(&devq->send_mtx, MA_OWNED);
4401 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4402 		xpt_run_devq(devq);
4403 }
4404 
4405 void
4406 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4407 {
4408 	struct cam_ed *dev;
4409 	struct cam_devq *devq;
4410 
4411 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4412 	    count, run_queue));
4413 	dev = path->device;
4414 	devq = dev->sim->devq;
4415 	mtx_lock(&devq->send_mtx);
4416 	if (xpt_release_devq_device(dev, count, run_queue))
4417 		xpt_run_devq(dev->sim->devq);
4418 	mtx_unlock(&devq->send_mtx);
4419 }
4420 
4421 static int
4422 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4423 {
4424 
4425 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4426 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4427 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4428 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4429 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4430 #ifdef INVARIANTS
4431 		printf("xpt_release_devq(): requested %u > present %u\n",
4432 		    count, dev->ccbq.queue.qfrozen_cnt);
4433 #endif
4434 		count = dev->ccbq.queue.qfrozen_cnt;
4435 	}
4436 	dev->ccbq.queue.qfrozen_cnt -= count;
4437 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4438 		/*
4439 		 * No longer need to wait for a successful
4440 		 * command completion.
4441 		 */
4442 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4443 		/*
4444 		 * Remove any timeouts that might be scheduled
4445 		 * to release this queue.
4446 		 */
4447 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4448 			callout_stop(&dev->callout);
4449 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4450 		}
4451 		/*
4452 		 * Now that we are unfrozen schedule the
4453 		 * device so any pending transactions are
4454 		 * run.
4455 		 */
4456 		xpt_schedule_devq(dev->sim->devq, dev);
4457 	} else
4458 		run_queue = 0;
4459 	return (run_queue);
4460 }
4461 
4462 void
4463 xpt_release_simq(struct cam_sim *sim, int run_queue)
4464 {
4465 	struct cam_devq	*devq;
4466 
4467 	devq = sim->devq;
4468 	mtx_lock(&devq->send_mtx);
4469 	if (devq->send_queue.qfrozen_cnt <= 0) {
4470 #ifdef INVARIANTS
4471 		printf("xpt_release_simq: requested 1 > present %u\n",
4472 		    devq->send_queue.qfrozen_cnt);
4473 #endif
4474 	} else
4475 		devq->send_queue.qfrozen_cnt--;
4476 	if (devq->send_queue.qfrozen_cnt == 0) {
4477 		if (run_queue) {
4478 			/*
4479 			 * Now that we are unfrozen run the send queue.
4480 			 */
4481 			xpt_run_devq(sim->devq);
4482 		}
4483 	}
4484 	mtx_unlock(&devq->send_mtx);
4485 }
4486 
4487 void
4488 xpt_done(union ccb *done_ccb)
4489 {
4490 	struct cam_doneq *queue;
4491 	int	run, hash;
4492 
4493 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4494 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4495 	    done_ccb->csio.bio != NULL)
4496 		biotrack(done_ccb->csio.bio, __func__);
4497 #endif
4498 
4499 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4500 	    ("xpt_done: func= %#x %s status %#x\n",
4501 		done_ccb->ccb_h.func_code,
4502 		xpt_action_name(done_ccb->ccb_h.func_code),
4503 		done_ccb->ccb_h.status));
4504 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4505 		return;
4506 
4507 	/* Store the time the ccb was in the sim */
4508 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4509 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4510 	hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4511 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4512 	queue = &cam_doneqs[hash];
4513 	mtx_lock(&queue->cam_doneq_mtx);
4514 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4515 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4516 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4517 	mtx_unlock(&queue->cam_doneq_mtx);
4518 	if (run && !dumping)
4519 		wakeup(&queue->cam_doneq);
4520 }
4521 
4522 void
4523 xpt_done_direct(union ccb *done_ccb)
4524 {
4525 
4526 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4527 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4528 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4529 		return;
4530 
4531 	/* Store the time the ccb was in the sim */
4532 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4533 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4534 	xpt_done_process(&done_ccb->ccb_h);
4535 }
4536 
4537 union ccb *
4538 xpt_alloc_ccb(void)
4539 {
4540 	union ccb *new_ccb;
4541 
4542 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4543 	return (new_ccb);
4544 }
4545 
4546 union ccb *
4547 xpt_alloc_ccb_nowait(void)
4548 {
4549 	union ccb *new_ccb;
4550 
4551 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4552 	return (new_ccb);
4553 }
4554 
4555 void
4556 xpt_free_ccb(union ccb *free_ccb)
4557 {
4558 	struct cam_periph *periph;
4559 
4560 	if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4561 		/*
4562 		 * Looks like a CCB allocated from a periph UMA zone.
4563 		 */
4564 		periph = free_ccb->ccb_h.path->periph;
4565 		uma_zfree(periph->ccb_zone, free_ccb);
4566 	} else {
4567 		free(free_ccb, M_CAMCCB);
4568 	}
4569 }
4570 
4571 /* Private XPT functions */
4572 
4573 /*
4574  * Get a CAM control block for the caller. Charge the structure to the device
4575  * referenced by the path.  If we don't have sufficient resources to allocate
4576  * more ccbs, we return NULL.
4577  */
4578 static union ccb *
4579 xpt_get_ccb_nowait(struct cam_periph *periph)
4580 {
4581 	union ccb *new_ccb;
4582 	int alloc_flags;
4583 
4584 	if (periph->ccb_zone != NULL) {
4585 		alloc_flags = CAM_CCB_FROM_UMA;
4586 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4587 	} else {
4588 		alloc_flags = 0;
4589 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4590 	}
4591 	if (new_ccb == NULL)
4592 		return (NULL);
4593 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4594 	periph->periph_allocated++;
4595 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4596 	return (new_ccb);
4597 }
4598 
4599 static union ccb *
4600 xpt_get_ccb(struct cam_periph *periph)
4601 {
4602 	union ccb *new_ccb;
4603 	int alloc_flags;
4604 
4605 	cam_periph_unlock(periph);
4606 	if (periph->ccb_zone != NULL) {
4607 		alloc_flags = CAM_CCB_FROM_UMA;
4608 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4609 	} else {
4610 		alloc_flags = 0;
4611 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4612 	}
4613 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4614 	cam_periph_lock(periph);
4615 	periph->periph_allocated++;
4616 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4617 	return (new_ccb);
4618 }
4619 
4620 union ccb *
4621 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4622 {
4623 	struct ccb_hdr *ccb_h;
4624 
4625 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4626 	cam_periph_assert(periph, MA_OWNED);
4627 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4628 	    ccb_h->pinfo.priority != priority) {
4629 		if (priority < periph->immediate_priority) {
4630 			periph->immediate_priority = priority;
4631 			xpt_run_allocq(periph, 0);
4632 		} else
4633 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4634 			    "cgticb", 0);
4635 	}
4636 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4637 	return ((union ccb *)ccb_h);
4638 }
4639 
4640 static void
4641 xpt_acquire_bus(struct cam_eb *bus)
4642 {
4643 
4644 	xpt_lock_buses();
4645 	bus->refcount++;
4646 	xpt_unlock_buses();
4647 }
4648 
4649 static void
4650 xpt_release_bus(struct cam_eb *bus)
4651 {
4652 
4653 	xpt_lock_buses();
4654 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4655 	if (--bus->refcount > 0) {
4656 		xpt_unlock_buses();
4657 		return;
4658 	}
4659 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4660 	xsoftc.bus_generation++;
4661 	xpt_unlock_buses();
4662 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4663 	    ("destroying bus, but target list is not empty"));
4664 	cam_sim_release(bus->sim);
4665 	mtx_destroy(&bus->eb_mtx);
4666 	free(bus, M_CAMXPT);
4667 }
4668 
4669 static struct cam_et *
4670 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4671 {
4672 	struct cam_et *cur_target, *target;
4673 
4674 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4675 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4676 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4677 					 M_NOWAIT|M_ZERO);
4678 	if (target == NULL)
4679 		return (NULL);
4680 
4681 	TAILQ_INIT(&target->ed_entries);
4682 	target->bus = bus;
4683 	target->target_id = target_id;
4684 	target->refcount = 1;
4685 	target->generation = 0;
4686 	target->luns = NULL;
4687 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4688 	timevalclear(&target->last_reset);
4689 	/*
4690 	 * Hold a reference to our parent bus so it
4691 	 * will not go away before we do.
4692 	 */
4693 	bus->refcount++;
4694 
4695 	/* Insertion sort into our bus's target list */
4696 	cur_target = TAILQ_FIRST(&bus->et_entries);
4697 	while (cur_target != NULL && cur_target->target_id < target_id)
4698 		cur_target = TAILQ_NEXT(cur_target, links);
4699 	if (cur_target != NULL) {
4700 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4701 	} else {
4702 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4703 	}
4704 	bus->generation++;
4705 	return (target);
4706 }
4707 
4708 static void
4709 xpt_acquire_target(struct cam_et *target)
4710 {
4711 	struct cam_eb *bus = target->bus;
4712 
4713 	mtx_lock(&bus->eb_mtx);
4714 	target->refcount++;
4715 	mtx_unlock(&bus->eb_mtx);
4716 }
4717 
4718 static void
4719 xpt_release_target(struct cam_et *target)
4720 {
4721 	struct cam_eb *bus = target->bus;
4722 
4723 	mtx_lock(&bus->eb_mtx);
4724 	if (--target->refcount > 0) {
4725 		mtx_unlock(&bus->eb_mtx);
4726 		return;
4727 	}
4728 	TAILQ_REMOVE(&bus->et_entries, target, links);
4729 	bus->generation++;
4730 	mtx_unlock(&bus->eb_mtx);
4731 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4732 	    ("destroying target, but device list is not empty"));
4733 	xpt_release_bus(bus);
4734 	mtx_destroy(&target->luns_mtx);
4735 	if (target->luns)
4736 		free(target->luns, M_CAMXPT);
4737 	free(target, M_CAMXPT);
4738 }
4739 
4740 static struct cam_ed *
4741 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4742 			 lun_id_t lun_id)
4743 {
4744 	struct cam_ed *device;
4745 
4746 	device = xpt_alloc_device(bus, target, lun_id);
4747 	if (device == NULL)
4748 		return (NULL);
4749 
4750 	device->mintags = 1;
4751 	device->maxtags = 1;
4752 	return (device);
4753 }
4754 
4755 static void
4756 xpt_destroy_device(void *context, int pending)
4757 {
4758 	struct cam_ed	*device = context;
4759 
4760 	mtx_lock(&device->device_mtx);
4761 	mtx_destroy(&device->device_mtx);
4762 	free(device, M_CAMDEV);
4763 }
4764 
4765 struct cam_ed *
4766 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4767 {
4768 	struct cam_ed	*cur_device, *device;
4769 	struct cam_devq	*devq;
4770 	cam_status status;
4771 
4772 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4773 	/* Make space for us in the device queue on our bus */
4774 	devq = bus->sim->devq;
4775 	mtx_lock(&devq->send_mtx);
4776 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4777 	mtx_unlock(&devq->send_mtx);
4778 	if (status != CAM_REQ_CMP)
4779 		return (NULL);
4780 
4781 	device = (struct cam_ed *)malloc(sizeof(*device),
4782 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4783 	if (device == NULL)
4784 		return (NULL);
4785 
4786 	cam_init_pinfo(&device->devq_entry);
4787 	device->target = target;
4788 	device->lun_id = lun_id;
4789 	device->sim = bus->sim;
4790 	if (cam_ccbq_init(&device->ccbq,
4791 			  bus->sim->max_dev_openings) != 0) {
4792 		free(device, M_CAMDEV);
4793 		return (NULL);
4794 	}
4795 	SLIST_INIT(&device->asyncs);
4796 	SLIST_INIT(&device->periphs);
4797 	device->generation = 0;
4798 	device->flags = CAM_DEV_UNCONFIGURED;
4799 	device->tag_delay_count = 0;
4800 	device->tag_saved_openings = 0;
4801 	device->refcount = 1;
4802 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4803 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4804 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4805 	/*
4806 	 * Hold a reference to our parent bus so it
4807 	 * will not go away before we do.
4808 	 */
4809 	target->refcount++;
4810 
4811 	cur_device = TAILQ_FIRST(&target->ed_entries);
4812 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4813 		cur_device = TAILQ_NEXT(cur_device, links);
4814 	if (cur_device != NULL)
4815 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4816 	else
4817 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4818 	target->generation++;
4819 	return (device);
4820 }
4821 
4822 void
4823 xpt_acquire_device(struct cam_ed *device)
4824 {
4825 	struct cam_eb *bus = device->target->bus;
4826 
4827 	mtx_lock(&bus->eb_mtx);
4828 	device->refcount++;
4829 	mtx_unlock(&bus->eb_mtx);
4830 }
4831 
4832 void
4833 xpt_release_device(struct cam_ed *device)
4834 {
4835 	struct cam_eb *bus = device->target->bus;
4836 	struct cam_devq *devq;
4837 
4838 	mtx_lock(&bus->eb_mtx);
4839 	if (--device->refcount > 0) {
4840 		mtx_unlock(&bus->eb_mtx);
4841 		return;
4842 	}
4843 
4844 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4845 	device->target->generation++;
4846 	mtx_unlock(&bus->eb_mtx);
4847 
4848 	/* Release our slot in the devq */
4849 	devq = bus->sim->devq;
4850 	mtx_lock(&devq->send_mtx);
4851 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4852 
4853 	KASSERT(SLIST_EMPTY(&device->periphs),
4854 	    ("destroying device, but periphs list is not empty"));
4855 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4856 	    ("destroying device while still queued for ccbs"));
4857 
4858 	/* The send_mtx must be held when accessing the callout */
4859 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4860 		callout_stop(&device->callout);
4861 
4862 	mtx_unlock(&devq->send_mtx);
4863 
4864 	xpt_release_target(device->target);
4865 
4866 	cam_ccbq_fini(&device->ccbq);
4867 	/*
4868 	 * Free allocated memory.  free(9) does nothing if the
4869 	 * supplied pointer is NULL, so it is safe to call without
4870 	 * checking.
4871 	 */
4872 	free(device->supported_vpds, M_CAMXPT);
4873 	free(device->device_id, M_CAMXPT);
4874 	free(device->ext_inq, M_CAMXPT);
4875 	free(device->physpath, M_CAMXPT);
4876 	free(device->rcap_buf, M_CAMXPT);
4877 	free(device->serial_num, M_CAMXPT);
4878 	free(device->nvme_data, M_CAMXPT);
4879 	free(device->nvme_cdata, M_CAMXPT);
4880 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4881 }
4882 
4883 uint32_t
4884 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4885 {
4886 	int	result;
4887 	struct	cam_ed *dev;
4888 
4889 	dev = path->device;
4890 	mtx_lock(&dev->sim->devq->send_mtx);
4891 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4892 	mtx_unlock(&dev->sim->devq->send_mtx);
4893 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4894 	 || (dev->inq_flags & SID_CmdQue) != 0)
4895 		dev->tag_saved_openings = newopenings;
4896 	return (result);
4897 }
4898 
4899 static struct cam_eb *
4900 xpt_find_bus(path_id_t path_id)
4901 {
4902 	struct cam_eb *bus;
4903 
4904 	xpt_lock_buses();
4905 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4906 	     bus != NULL;
4907 	     bus = TAILQ_NEXT(bus, links)) {
4908 		if (bus->path_id == path_id) {
4909 			bus->refcount++;
4910 			break;
4911 		}
4912 	}
4913 	xpt_unlock_buses();
4914 	return (bus);
4915 }
4916 
4917 static struct cam_et *
4918 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4919 {
4920 	struct cam_et *target;
4921 
4922 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4923 	for (target = TAILQ_FIRST(&bus->et_entries);
4924 	     target != NULL;
4925 	     target = TAILQ_NEXT(target, links)) {
4926 		if (target->target_id == target_id) {
4927 			target->refcount++;
4928 			break;
4929 		}
4930 	}
4931 	return (target);
4932 }
4933 
4934 static struct cam_ed *
4935 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4936 {
4937 	struct cam_ed *device;
4938 
4939 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4940 	for (device = TAILQ_FIRST(&target->ed_entries);
4941 	     device != NULL;
4942 	     device = TAILQ_NEXT(device, links)) {
4943 		if (device->lun_id == lun_id) {
4944 			device->refcount++;
4945 			break;
4946 		}
4947 	}
4948 	return (device);
4949 }
4950 
4951 void
4952 xpt_start_tags(struct cam_path *path)
4953 {
4954 	struct ccb_relsim crs;
4955 	struct cam_ed *device;
4956 	struct cam_sim *sim;
4957 	int    newopenings;
4958 
4959 	device = path->device;
4960 	sim = path->bus->sim;
4961 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4962 	xpt_freeze_devq(path, /*count*/1);
4963 	device->inq_flags |= SID_CmdQue;
4964 	if (device->tag_saved_openings != 0)
4965 		newopenings = device->tag_saved_openings;
4966 	else
4967 		newopenings = min(device->maxtags,
4968 				  sim->max_tagged_dev_openings);
4969 	xpt_dev_ccbq_resize(path, newopenings);
4970 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4971 	memset(&crs, 0, sizeof(crs));
4972 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4973 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4974 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4975 	crs.openings
4976 	    = crs.release_timeout
4977 	    = crs.qfrozen_cnt
4978 	    = 0;
4979 	xpt_action((union ccb *)&crs);
4980 }
4981 
4982 void
4983 xpt_stop_tags(struct cam_path *path)
4984 {
4985 	struct ccb_relsim crs;
4986 	struct cam_ed *device;
4987 	struct cam_sim *sim;
4988 
4989 	device = path->device;
4990 	sim = path->bus->sim;
4991 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4992 	device->tag_delay_count = 0;
4993 	xpt_freeze_devq(path, /*count*/1);
4994 	device->inq_flags &= ~SID_CmdQue;
4995 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4996 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4997 	memset(&crs, 0, sizeof(crs));
4998 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4999 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5000 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5001 	crs.openings
5002 	    = crs.release_timeout
5003 	    = crs.qfrozen_cnt
5004 	    = 0;
5005 	xpt_action((union ccb *)&crs);
5006 }
5007 
5008 /*
5009  * Assume all possible buses are detected by this time, so allow boot
5010  * as soon as they all are scanned.
5011  */
5012 static void
5013 xpt_boot_delay(void *arg)
5014 {
5015 
5016 	xpt_release_boot();
5017 }
5018 
5019 /*
5020  * Now that all config hooks have completed, start boot_delay timer,
5021  * waiting for possibly still undetected buses (USB) to appear.
5022  */
5023 static void
5024 xpt_ch_done(void *arg)
5025 {
5026 
5027 	callout_init(&xsoftc.boot_callout, 1);
5028 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5029 	    SBT_1MS, xpt_boot_delay, NULL, 0);
5030 }
5031 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5032 
5033 /*
5034  * Now that interrupts are enabled, go find our devices
5035  */
5036 static void
5037 xpt_config(void *arg)
5038 {
5039 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5040 		printf("xpt_config: failed to create taskqueue thread.\n");
5041 
5042 	/* Setup debugging path */
5043 	if (cam_dflags != CAM_DEBUG_NONE) {
5044 		if (xpt_create_path(&cam_dpath, NULL,
5045 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5046 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5047 			printf("xpt_config: xpt_create_path() failed for debug"
5048 			       " target %d:%d:%d, debugging disabled\n",
5049 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5050 			cam_dflags = CAM_DEBUG_NONE;
5051 		}
5052 	} else
5053 		cam_dpath = NULL;
5054 
5055 	periphdriver_init(1);
5056 	xpt_hold_boot();
5057 
5058 	/* Fire up rescan thread. */
5059 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5060 	    "cam", "scanner")) {
5061 		printf("xpt_config: failed to create rescan thread.\n");
5062 	}
5063 }
5064 
5065 void
5066 xpt_hold_boot_locked(void)
5067 {
5068 
5069 	if (xsoftc.buses_to_config++ == 0)
5070 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5071 }
5072 
5073 void
5074 xpt_hold_boot(void)
5075 {
5076 
5077 	xpt_lock_buses();
5078 	xpt_hold_boot_locked();
5079 	xpt_unlock_buses();
5080 }
5081 
5082 void
5083 xpt_release_boot(void)
5084 {
5085 
5086 	xpt_lock_buses();
5087 	if (--xsoftc.buses_to_config == 0) {
5088 		if (xsoftc.buses_config_done == 0) {
5089 			xsoftc.buses_config_done = 1;
5090 			xsoftc.buses_to_config++;
5091 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5092 			    NULL);
5093 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5094 		} else
5095 			root_mount_rel(&xsoftc.xpt_rootmount);
5096 	}
5097 	xpt_unlock_buses();
5098 }
5099 
5100 /*
5101  * If the given device only has one peripheral attached to it, and if that
5102  * peripheral is the passthrough driver, announce it.  This insures that the
5103  * user sees some sort of announcement for every peripheral in their system.
5104  */
5105 static int
5106 xptpassannouncefunc(struct cam_ed *device, void *arg)
5107 {
5108 	struct cam_periph *periph;
5109 	int i;
5110 
5111 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5112 	     periph = SLIST_NEXT(periph, periph_links), i++);
5113 
5114 	periph = SLIST_FIRST(&device->periphs);
5115 	if ((i == 1)
5116 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5117 		xpt_announce_periph(periph, NULL);
5118 
5119 	return(1);
5120 }
5121 
5122 static void
5123 xpt_finishconfig_task(void *context, int pending)
5124 {
5125 
5126 	periphdriver_init(2);
5127 	/*
5128 	 * Check for devices with no "standard" peripheral driver
5129 	 * attached.  For any devices like that, announce the
5130 	 * passthrough driver so the user will see something.
5131 	 */
5132 	if (!bootverbose)
5133 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5134 
5135 	xpt_release_boot();
5136 }
5137 
5138 cam_status
5139 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5140 		   struct cam_path *path)
5141 {
5142 	struct ccb_setasync csa;
5143 	cam_status status;
5144 	bool xptpath = false;
5145 
5146 	if (path == NULL) {
5147 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5148 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5149 		if (status != CAM_REQ_CMP)
5150 			return (status);
5151 		xpt_path_lock(path);
5152 		xptpath = true;
5153 	}
5154 
5155 	memset(&csa, 0, sizeof(csa));
5156 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5157 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5158 	csa.event_enable = event;
5159 	csa.callback = cbfunc;
5160 	csa.callback_arg = cbarg;
5161 	xpt_action((union ccb *)&csa);
5162 	status = csa.ccb_h.status;
5163 
5164 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5165 	    ("xpt_register_async: func %p\n", cbfunc));
5166 
5167 	if (xptpath) {
5168 		xpt_path_unlock(path);
5169 		xpt_free_path(path);
5170 	}
5171 
5172 	if ((status == CAM_REQ_CMP) &&
5173 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5174 		/*
5175 		 * Get this peripheral up to date with all
5176 		 * the currently existing devices.
5177 		 */
5178 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5179 	}
5180 	if ((status == CAM_REQ_CMP) &&
5181 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5182 		/*
5183 		 * Get this peripheral up to date with all
5184 		 * the currently existing buses.
5185 		 */
5186 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5187 	}
5188 
5189 	return (status);
5190 }
5191 
5192 static void
5193 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5194 {
5195 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5196 
5197 	switch (work_ccb->ccb_h.func_code) {
5198 	/* Common cases first */
5199 	case XPT_PATH_INQ:		/* Path routing inquiry */
5200 	{
5201 		struct ccb_pathinq *cpi;
5202 
5203 		cpi = &work_ccb->cpi;
5204 		cpi->version_num = 1; /* XXX??? */
5205 		cpi->hba_inquiry = 0;
5206 		cpi->target_sprt = 0;
5207 		cpi->hba_misc = 0;
5208 		cpi->hba_eng_cnt = 0;
5209 		cpi->max_target = 0;
5210 		cpi->max_lun = 0;
5211 		cpi->initiator_id = 0;
5212 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5213 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5214 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5215 		cpi->unit_number = sim->unit_number;
5216 		cpi->bus_id = sim->bus_id;
5217 		cpi->base_transfer_speed = 0;
5218 		cpi->protocol = PROTO_UNSPECIFIED;
5219 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5220 		cpi->transport = XPORT_UNSPECIFIED;
5221 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5222 		cpi->ccb_h.status = CAM_REQ_CMP;
5223 		break;
5224 	}
5225 	default:
5226 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5227 		break;
5228 	}
5229 	xpt_done(work_ccb);
5230 }
5231 
5232 /*
5233  * The xpt as a "controller" has no interrupt sources, so polling
5234  * is a no-op.
5235  */
5236 static void
5237 xptpoll(struct cam_sim *sim)
5238 {
5239 }
5240 
5241 void
5242 xpt_lock_buses(void)
5243 {
5244 	mtx_lock(&xsoftc.xpt_topo_lock);
5245 }
5246 
5247 void
5248 xpt_unlock_buses(void)
5249 {
5250 	mtx_unlock(&xsoftc.xpt_topo_lock);
5251 }
5252 
5253 struct mtx *
5254 xpt_path_mtx(struct cam_path *path)
5255 {
5256 
5257 	return (&path->device->device_mtx);
5258 }
5259 
5260 static void
5261 xpt_done_process(struct ccb_hdr *ccb_h)
5262 {
5263 	struct cam_sim *sim = NULL;
5264 	struct cam_devq *devq = NULL;
5265 	struct mtx *mtx = NULL;
5266 
5267 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5268 	struct ccb_scsiio *csio;
5269 
5270 	if (ccb_h->func_code == XPT_SCSI_IO) {
5271 		csio = &((union ccb *)ccb_h)->csio;
5272 		if (csio->bio != NULL)
5273 			biotrack(csio->bio, __func__);
5274 	}
5275 #endif
5276 
5277 	if (ccb_h->flags & CAM_HIGH_POWER) {
5278 		struct highpowerlist	*hphead;
5279 		struct cam_ed		*device;
5280 
5281 		mtx_lock(&xsoftc.xpt_highpower_lock);
5282 		hphead = &xsoftc.highpowerq;
5283 
5284 		device = STAILQ_FIRST(hphead);
5285 
5286 		/*
5287 		 * Increment the count since this command is done.
5288 		 */
5289 		xsoftc.num_highpower++;
5290 
5291 		/*
5292 		 * Any high powered commands queued up?
5293 		 */
5294 		if (device != NULL) {
5295 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5296 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5297 
5298 			mtx_lock(&device->sim->devq->send_mtx);
5299 			xpt_release_devq_device(device,
5300 					 /*count*/1, /*runqueue*/TRUE);
5301 			mtx_unlock(&device->sim->devq->send_mtx);
5302 		} else
5303 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5304 	}
5305 
5306 	/*
5307 	 * Insulate against a race where the periph is destroyed but CCBs are
5308 	 * still not all processed. This shouldn't happen, but allows us better
5309 	 * bug diagnostic when it does.
5310 	 */
5311 	if (ccb_h->path->bus)
5312 		sim = ccb_h->path->bus->sim;
5313 
5314 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5315 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5316 		xpt_release_simq(sim, /*run_queue*/FALSE);
5317 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5318 	}
5319 
5320 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5321 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5322 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5323 		ccb_h->status &= ~CAM_DEV_QFRZN;
5324 	}
5325 
5326 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5327 		struct cam_ed *dev = ccb_h->path->device;
5328 
5329 		if (sim)
5330 			devq = sim->devq;
5331 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5332 			ccb_h, xpt_action_name(ccb_h->func_code)));
5333 
5334 		mtx_lock(&devq->send_mtx);
5335 		devq->send_active--;
5336 		devq->send_openings++;
5337 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5338 
5339 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5340 		  && (dev->ccbq.dev_active == 0))) {
5341 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5342 			xpt_release_devq_device(dev, /*count*/1,
5343 					 /*run_queue*/FALSE);
5344 		}
5345 
5346 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5347 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5348 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5349 			xpt_release_devq_device(dev, /*count*/1,
5350 					 /*run_queue*/FALSE);
5351 		}
5352 
5353 		if (!device_is_queued(dev))
5354 			(void)xpt_schedule_devq(devq, dev);
5355 		xpt_run_devq(devq);
5356 		mtx_unlock(&devq->send_mtx);
5357 
5358 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5359 			mtx = xpt_path_mtx(ccb_h->path);
5360 			mtx_lock(mtx);
5361 
5362 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5363 			 && (--dev->tag_delay_count == 0))
5364 				xpt_start_tags(ccb_h->path);
5365 		}
5366 	}
5367 
5368 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5369 		if (mtx == NULL) {
5370 			mtx = xpt_path_mtx(ccb_h->path);
5371 			mtx_lock(mtx);
5372 		}
5373 	} else {
5374 		if (mtx != NULL) {
5375 			mtx_unlock(mtx);
5376 			mtx = NULL;
5377 		}
5378 	}
5379 
5380 	/* Call the peripheral driver's callback */
5381 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5382 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5383 	if (mtx != NULL)
5384 		mtx_unlock(mtx);
5385 }
5386 
5387 /*
5388  * Parameterize instead and use xpt_done_td?
5389  */
5390 static void
5391 xpt_async_td(void *arg)
5392 {
5393 	struct cam_doneq *queue = arg;
5394 	struct ccb_hdr *ccb_h;
5395 	STAILQ_HEAD(, ccb_hdr)	doneq;
5396 
5397 	STAILQ_INIT(&doneq);
5398 	mtx_lock(&queue->cam_doneq_mtx);
5399 	while (1) {
5400 		while (STAILQ_EMPTY(&queue->cam_doneq))
5401 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5402 			    PRIBIO, "-", 0);
5403 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5404 		mtx_unlock(&queue->cam_doneq_mtx);
5405 
5406 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5407 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5408 			xpt_done_process(ccb_h);
5409 		}
5410 
5411 		mtx_lock(&queue->cam_doneq_mtx);
5412 	}
5413 }
5414 
5415 void
5416 xpt_done_td(void *arg)
5417 {
5418 	struct cam_doneq *queue = arg;
5419 	struct ccb_hdr *ccb_h;
5420 	STAILQ_HEAD(, ccb_hdr)	doneq;
5421 
5422 	STAILQ_INIT(&doneq);
5423 	mtx_lock(&queue->cam_doneq_mtx);
5424 	while (1) {
5425 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5426 			queue->cam_doneq_sleep = 1;
5427 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5428 			    PRIBIO, "-", 0);
5429 			queue->cam_doneq_sleep = 0;
5430 		}
5431 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5432 		mtx_unlock(&queue->cam_doneq_mtx);
5433 
5434 		THREAD_NO_SLEEPING();
5435 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5436 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5437 			xpt_done_process(ccb_h);
5438 		}
5439 		THREAD_SLEEPING_OK();
5440 
5441 		mtx_lock(&queue->cam_doneq_mtx);
5442 	}
5443 }
5444 
5445 static void
5446 camisr_runqueue(void)
5447 {
5448 	struct	ccb_hdr *ccb_h;
5449 	struct cam_doneq *queue;
5450 	int i;
5451 
5452 	/* Process global queues. */
5453 	for (i = 0; i < cam_num_doneqs; i++) {
5454 		queue = &cam_doneqs[i];
5455 		mtx_lock(&queue->cam_doneq_mtx);
5456 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5457 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5458 			mtx_unlock(&queue->cam_doneq_mtx);
5459 			xpt_done_process(ccb_h);
5460 			mtx_lock(&queue->cam_doneq_mtx);
5461 		}
5462 		mtx_unlock(&queue->cam_doneq_mtx);
5463 	}
5464 }
5465 
5466 /**
5467  * @brief Return the device_t associated with the path
5468  *
5469  * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5470  * stored in the internal cam_eb bus structure. There is no guarnatee any given
5471  * path will have a @c device_t associated with it (it's legal to call @c
5472  * xpt_bus_register with a @c NULL @c device_t.
5473  *
5474  * @param path		Path to return the device_t for.
5475  */
5476 device_t
5477 xpt_path_sim_device(const struct cam_path *path)
5478 {
5479 	return (path->bus->parent_dev);
5480 }
5481 
5482 struct kv
5483 {
5484 	uint32_t v;
5485 	const char *name;
5486 };
5487 
5488 static struct kv map[] = {
5489 	{ XPT_NOOP, "XPT_NOOP" },
5490 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5491 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5492 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5493 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5494 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5495 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5496 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5497 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5498 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5499 	{ XPT_DEBUG, "XPT_DEBUG" },
5500 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5501 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5502 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5503 	{ XPT_ASYNC, "XPT_ASYNC" },
5504 	{ XPT_ABORT, "XPT_ABORT" },
5505 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5506 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5507 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5508 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5509 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5510 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5511 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5512 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5513 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5514 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5515 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5516 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5517 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5518 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5519 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5520 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5521 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5522 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5523 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5524 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5525 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5526 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5527 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5528 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5529 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5530 	{ 0, 0 }
5531 };
5532 
5533 const char *
5534 xpt_action_name(uint32_t action)
5535 {
5536 	static char buffer[32];	/* Only for unknown messages -- racy */
5537 	struct kv *walker = map;
5538 
5539 	while (walker->name != NULL) {
5540 		if (walker->v == action)
5541 			return (walker->name);
5542 		walker++;
5543 	}
5544 
5545 	snprintf(buffer, sizeof(buffer), "%#x", action);
5546 	return (buffer);
5547 }
5548