xref: /freebsd/sys/cam/cam_periph.c (revision febdb468801f35e51c6c5c22221cfce9197c6f3b)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/bio.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/buf.h>
42 #include <sys/proc.h>
43 #include <sys/devicestat.h>
44 #include <sys/bus.h>
45 #include <sys/sbuf.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_queue.h>
52 #include <cam/cam_xpt_periph.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_debug.h>
55 #include <cam/cam_sim.h>
56 
57 #include <cam/scsi/scsi_all.h>
58 #include <cam/scsi/scsi_message.h>
59 #include <cam/scsi/scsi_pass.h>
60 
61 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
62 					  u_int newunit, int wired,
63 					  path_id_t pathid, target_id_t target,
64 					  lun_id_t lun);
65 static	u_int		camperiphunit(struct periph_driver *p_drv,
66 				      path_id_t pathid, target_id_t target,
67 				      lun_id_t lun);
68 static	void		camperiphdone(struct cam_periph *periph,
69 					union ccb *done_ccb);
70 static  void		camperiphfree(struct cam_periph *periph);
71 static int		camperiphscsistatuserror(union ccb *ccb,
72 					        union ccb **orig_ccb,
73 						 cam_flags camflags,
74 						 u_int32_t sense_flags,
75 						 int *openings,
76 						 u_int32_t *relsim_flags,
77 						 u_int32_t *timeout,
78 						 u_int32_t  *action,
79 						 const char **action_string);
80 static	int		camperiphscsisenseerror(union ccb *ccb,
81 					        union ccb **orig_ccb,
82 					        cam_flags camflags,
83 					        u_int32_t sense_flags,
84 					        int *openings,
85 					        u_int32_t *relsim_flags,
86 					        u_int32_t *timeout,
87 					        u_int32_t *action,
88 					        const char **action_string);
89 
90 static int nperiph_drivers;
91 static int initialized = 0;
92 struct periph_driver **periph_drivers;
93 
94 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
95 
96 static int periph_selto_delay = 1000;
97 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
98 static int periph_noresrc_delay = 500;
99 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
100 static int periph_busy_delay = 500;
101 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
102 
103 
104 void
105 periphdriver_register(void *data)
106 {
107 	struct periph_driver *drv = (struct periph_driver *)data;
108 	struct periph_driver **newdrivers, **old;
109 	int ndrivers;
110 
111 	ndrivers = nperiph_drivers + 2;
112 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
113 			    M_WAITOK);
114 	if (periph_drivers)
115 		bcopy(periph_drivers, newdrivers,
116 		      sizeof(*newdrivers) * nperiph_drivers);
117 	newdrivers[nperiph_drivers] = drv;
118 	newdrivers[nperiph_drivers + 1] = NULL;
119 	old = periph_drivers;
120 	periph_drivers = newdrivers;
121 	if (old)
122 		free(old, M_CAMPERIPH);
123 	nperiph_drivers++;
124 	/* If driver marked as early or it is late now, initialize it. */
125 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
126 	    initialized > 1)
127 		(*drv->init)();
128 }
129 
130 void
131 periphdriver_init(int level)
132 {
133 	int	i, early;
134 
135 	initialized = max(initialized, level);
136 	for (i = 0; periph_drivers[i] != NULL; i++) {
137 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
138 		if (early == initialized)
139 			(*periph_drivers[i]->init)();
140 	}
141 }
142 
143 cam_status
144 cam_periph_alloc(periph_ctor_t *periph_ctor,
145 		 periph_oninv_t *periph_oninvalidate,
146 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
147 		 char *name, cam_periph_type type, struct cam_path *path,
148 		 ac_callback_t *ac_callback, ac_code code, void *arg)
149 {
150 	struct		periph_driver **p_drv;
151 	struct		cam_sim *sim;
152 	struct		cam_periph *periph;
153 	struct		cam_periph *cur_periph;
154 	path_id_t	path_id;
155 	target_id_t	target_id;
156 	lun_id_t	lun_id;
157 	cam_status	status;
158 	u_int		init_level;
159 
160 	init_level = 0;
161 	/*
162 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
163 	 * of our type assigned to this path, we are likely waiting for
164 	 * final close on an old, invalidated, peripheral.  If this is
165 	 * the case, queue up a deferred call to the peripheral's async
166 	 * handler.  If it looks like a mistaken re-allocation, complain.
167 	 */
168 	if ((periph = cam_periph_find(path, name)) != NULL) {
169 
170 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
171 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
172 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
173 			periph->deferred_callback = ac_callback;
174 			periph->deferred_ac = code;
175 			return (CAM_REQ_INPROG);
176 		} else {
177 			printf("cam_periph_alloc: attempt to re-allocate "
178 			       "valid device %s%d rejected flags %#x "
179 			       "refcount %d\n", periph->periph_name,
180 			       periph->unit_number, periph->flags,
181 			       periph->refcount);
182 		}
183 		return (CAM_REQ_INVALID);
184 	}
185 
186 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
187 					     M_NOWAIT|M_ZERO);
188 
189 	if (periph == NULL)
190 		return (CAM_RESRC_UNAVAIL);
191 
192 	init_level++;
193 
194 
195 	sim = xpt_path_sim(path);
196 	path_id = xpt_path_path_id(path);
197 	target_id = xpt_path_target_id(path);
198 	lun_id = xpt_path_lun_id(path);
199 	cam_init_pinfo(&periph->pinfo);
200 	periph->periph_start = periph_start;
201 	periph->periph_dtor = periph_dtor;
202 	periph->periph_oninval = periph_oninvalidate;
203 	periph->type = type;
204 	periph->periph_name = name;
205 	periph->immediate_priority = CAM_PRIORITY_NONE;
206 	periph->refcount = 1;		/* Dropped by invalidation. */
207 	periph->sim = sim;
208 	SLIST_INIT(&periph->ccb_list);
209 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
210 	if (status != CAM_REQ_CMP)
211 		goto failure;
212 	periph->path = path;
213 
214 	xpt_lock_buses();
215 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
216 		if (strcmp((*p_drv)->driver_name, name) == 0)
217 			break;
218 	}
219 	if (*p_drv == NULL) {
220 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
221 		xpt_unlock_buses();
222 		xpt_free_path(periph->path);
223 		free(periph, M_CAMPERIPH);
224 		return (CAM_REQ_INVALID);
225 	}
226 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
227 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
228 	while (cur_periph != NULL
229 	    && cur_periph->unit_number < periph->unit_number)
230 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
231 	if (cur_periph != NULL) {
232 		KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
233 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
234 	} else {
235 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
236 		(*p_drv)->generation++;
237 	}
238 	xpt_unlock_buses();
239 
240 	init_level++;
241 
242 	status = xpt_add_periph(periph);
243 	if (status != CAM_REQ_CMP)
244 		goto failure;
245 
246 	init_level++;
247 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
248 
249 	status = periph_ctor(periph, arg);
250 
251 	if (status == CAM_REQ_CMP)
252 		init_level++;
253 
254 failure:
255 	switch (init_level) {
256 	case 4:
257 		/* Initialized successfully */
258 		break;
259 	case 3:
260 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
261 		xpt_remove_periph(periph);
262 		/* FALLTHROUGH */
263 	case 2:
264 		xpt_lock_buses();
265 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
266 		xpt_unlock_buses();
267 		xpt_free_path(periph->path);
268 		/* FALLTHROUGH */
269 	case 1:
270 		free(periph, M_CAMPERIPH);
271 		/* FALLTHROUGH */
272 	case 0:
273 		/* No cleanup to perform. */
274 		break;
275 	default:
276 		panic("%s: Unknown init level", __func__);
277 	}
278 	return(status);
279 }
280 
281 /*
282  * Find a peripheral structure with the specified path, target, lun,
283  * and (optionally) type.  If the name is NULL, this function will return
284  * the first peripheral driver that matches the specified path.
285  */
286 struct cam_periph *
287 cam_periph_find(struct cam_path *path, char *name)
288 {
289 	struct periph_driver **p_drv;
290 	struct cam_periph *periph;
291 
292 	xpt_lock_buses();
293 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
294 
295 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
296 			continue;
297 
298 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
299 			if (xpt_path_comp(periph->path, path) == 0) {
300 				xpt_unlock_buses();
301 				mtx_assert(periph->sim->mtx, MA_OWNED);
302 				return(periph);
303 			}
304 		}
305 		if (name != NULL) {
306 			xpt_unlock_buses();
307 			return(NULL);
308 		}
309 	}
310 	xpt_unlock_buses();
311 	return(NULL);
312 }
313 
314 /*
315  * Find peripheral driver instances attached to the specified path.
316  */
317 int
318 cam_periph_list(struct cam_path *path, struct sbuf *sb)
319 {
320 	struct sbuf local_sb;
321 	struct periph_driver **p_drv;
322 	struct cam_periph *periph;
323 	int count;
324 	int sbuf_alloc_len;
325 
326 	sbuf_alloc_len = 16;
327 retry:
328 	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
329 	count = 0;
330 	xpt_lock_buses();
331 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
332 
333 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
334 			if (xpt_path_comp(periph->path, path) != 0)
335 				continue;
336 
337 			if (sbuf_len(&local_sb) != 0)
338 				sbuf_cat(&local_sb, ",");
339 
340 			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
341 				    periph->unit_number);
342 
343 			if (sbuf_error(&local_sb) == ENOMEM) {
344 				sbuf_alloc_len *= 2;
345 				xpt_unlock_buses();
346 				sbuf_delete(&local_sb);
347 				goto retry;
348 			}
349 			count++;
350 		}
351 	}
352 	xpt_unlock_buses();
353 	sbuf_finish(&local_sb);
354 	sbuf_cpy(sb, sbuf_data(&local_sb));
355 	sbuf_delete(&local_sb);
356 	return (count);
357 }
358 
359 cam_status
360 cam_periph_acquire(struct cam_periph *periph)
361 {
362 	cam_status status;
363 
364 	status = CAM_REQ_CMP_ERR;
365 	if (periph == NULL)
366 		return (status);
367 
368 	xpt_lock_buses();
369 	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
370 		periph->refcount++;
371 		status = CAM_REQ_CMP;
372 	}
373 	xpt_unlock_buses();
374 
375 	return (status);
376 }
377 
378 void
379 cam_periph_release_locked_buses(struct cam_periph *periph)
380 {
381 
382 	mtx_assert(periph->sim->mtx, MA_OWNED);
383 	KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
384 	if (--periph->refcount == 0)
385 		camperiphfree(periph);
386 }
387 
388 void
389 cam_periph_release_locked(struct cam_periph *periph)
390 {
391 
392 	if (periph == NULL)
393 		return;
394 
395 	xpt_lock_buses();
396 	cam_periph_release_locked_buses(periph);
397 	xpt_unlock_buses();
398 }
399 
400 void
401 cam_periph_release(struct cam_periph *periph)
402 {
403 	struct cam_sim *sim;
404 
405 	if (periph == NULL)
406 		return;
407 
408 	sim = periph->sim;
409 	mtx_assert(sim->mtx, MA_NOTOWNED);
410 	mtx_lock(sim->mtx);
411 	cam_periph_release_locked(periph);
412 	mtx_unlock(sim->mtx);
413 }
414 
415 int
416 cam_periph_hold(struct cam_periph *periph, int priority)
417 {
418 	int error;
419 
420 	/*
421 	 * Increment the reference count on the peripheral
422 	 * while we wait for our lock attempt to succeed
423 	 * to ensure the peripheral doesn't disappear out
424 	 * from user us while we sleep.
425 	 */
426 
427 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
428 		return (ENXIO);
429 
430 	mtx_assert(periph->sim->mtx, MA_OWNED);
431 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
432 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
433 		if ((error = mtx_sleep(periph, periph->sim->mtx, priority,
434 		    "caplck", 0)) != 0) {
435 			cam_periph_release_locked(periph);
436 			return (error);
437 		}
438 		if (periph->flags & CAM_PERIPH_INVALID) {
439 			cam_periph_release_locked(periph);
440 			return (ENXIO);
441 		}
442 	}
443 
444 	periph->flags |= CAM_PERIPH_LOCKED;
445 	return (0);
446 }
447 
448 void
449 cam_periph_unhold(struct cam_periph *periph)
450 {
451 
452 	mtx_assert(periph->sim->mtx, MA_OWNED);
453 
454 	periph->flags &= ~CAM_PERIPH_LOCKED;
455 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
456 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
457 		wakeup(periph);
458 	}
459 
460 	cam_periph_release_locked(periph);
461 }
462 
463 /*
464  * Look for the next unit number that is not currently in use for this
465  * peripheral type starting at "newunit".  Also exclude unit numbers that
466  * are reserved by for future "hardwiring" unless we already know that this
467  * is a potential wired device.  Only assume that the device is "wired" the
468  * first time through the loop since after that we'll be looking at unit
469  * numbers that did not match a wiring entry.
470  */
471 static u_int
472 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
473 		  path_id_t pathid, target_id_t target, lun_id_t lun)
474 {
475 	struct	cam_periph *periph;
476 	char	*periph_name;
477 	int	i, val, dunit, r;
478 	const char *dname, *strval;
479 
480 	periph_name = p_drv->driver_name;
481 	for (;;newunit++) {
482 
483 		for (periph = TAILQ_FIRST(&p_drv->units);
484 		     periph != NULL && periph->unit_number != newunit;
485 		     periph = TAILQ_NEXT(periph, unit_links))
486 			;
487 
488 		if (periph != NULL && periph->unit_number == newunit) {
489 			if (wired != 0) {
490 				xpt_print(periph->path, "Duplicate Wired "
491 				    "Device entry!\n");
492 				xpt_print(periph->path, "Second device (%s "
493 				    "device at scbus%d target %d lun %d) will "
494 				    "not be wired\n", periph_name, pathid,
495 				    target, lun);
496 				wired = 0;
497 			}
498 			continue;
499 		}
500 		if (wired)
501 			break;
502 
503 		/*
504 		 * Don't match entries like "da 4" as a wired down
505 		 * device, but do match entries like "da 4 target 5"
506 		 * or even "da 4 scbus 1".
507 		 */
508 		i = 0;
509 		dname = periph_name;
510 		for (;;) {
511 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
512 			if (r != 0)
513 				break;
514 			/* if no "target" and no specific scbus, skip */
515 			if (resource_int_value(dname, dunit, "target", &val) &&
516 			    (resource_string_value(dname, dunit, "at",&strval)||
517 			     strcmp(strval, "scbus") == 0))
518 				continue;
519 			if (newunit == dunit)
520 				break;
521 		}
522 		if (r != 0)
523 			break;
524 	}
525 	return (newunit);
526 }
527 
528 static u_int
529 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
530 	      target_id_t target, lun_id_t lun)
531 {
532 	u_int	unit;
533 	int	wired, i, val, dunit;
534 	const char *dname, *strval;
535 	char	pathbuf[32], *periph_name;
536 
537 	periph_name = p_drv->driver_name;
538 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
539 	unit = 0;
540 	i = 0;
541 	dname = periph_name;
542 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
543 	     wired = 0) {
544 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
545 			if (strcmp(strval, pathbuf) != 0)
546 				continue;
547 			wired++;
548 		}
549 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
550 			if (val != target)
551 				continue;
552 			wired++;
553 		}
554 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
555 			if (val != lun)
556 				continue;
557 			wired++;
558 		}
559 		if (wired != 0) {
560 			unit = dunit;
561 			break;
562 		}
563 	}
564 
565 	/*
566 	 * Either start from 0 looking for the next unit or from
567 	 * the unit number given in the resource config.  This way,
568 	 * if we have wildcard matches, we don't return the same
569 	 * unit number twice.
570 	 */
571 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
572 
573 	return (unit);
574 }
575 
576 void
577 cam_periph_invalidate(struct cam_periph *periph)
578 {
579 
580 	mtx_assert(periph->sim->mtx, MA_OWNED);
581 	/*
582 	 * We only call this routine the first time a peripheral is
583 	 * invalidated.
584 	 */
585 	if ((periph->flags & CAM_PERIPH_INVALID) != 0)
586 		return;
587 
588 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
589 	periph->flags |= CAM_PERIPH_INVALID;
590 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
591 	if (periph->periph_oninval != NULL)
592 		periph->periph_oninval(periph);
593 	cam_periph_release_locked(periph);
594 }
595 
596 static void
597 camperiphfree(struct cam_periph *periph)
598 {
599 	struct periph_driver **p_drv;
600 
601 	mtx_assert(periph->sim->mtx, MA_OWNED);
602 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
603 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
604 			break;
605 	}
606 	if (*p_drv == NULL) {
607 		printf("camperiphfree: attempt to free non-existant periph\n");
608 		return;
609 	}
610 
611 	/*
612 	 * We need to set this flag before dropping the topology lock, to
613 	 * let anyone who is traversing the list that this peripheral is
614 	 * about to be freed, and there will be no more reference count
615 	 * checks.
616 	 */
617 	periph->flags |= CAM_PERIPH_FREE;
618 
619 	/*
620 	 * The peripheral destructor semantics dictate calling with only the
621 	 * SIM mutex held.  Since it might sleep, it should not be called
622 	 * with the topology lock held.
623 	 */
624 	xpt_unlock_buses();
625 
626 	/*
627 	 * We need to call the peripheral destructor prior to removing the
628 	 * peripheral from the list.  Otherwise, we risk running into a
629 	 * scenario where the peripheral unit number may get reused
630 	 * (because it has been removed from the list), but some resources
631 	 * used by the peripheral are still hanging around.  In particular,
632 	 * the devfs nodes used by some peripherals like the pass(4) driver
633 	 * aren't fully cleaned up until the destructor is run.  If the
634 	 * unit number is reused before the devfs instance is fully gone,
635 	 * devfs will panic.
636 	 */
637 	if (periph->periph_dtor != NULL)
638 		periph->periph_dtor(periph);
639 
640 	/*
641 	 * The peripheral list is protected by the topology lock.
642 	 */
643 	xpt_lock_buses();
644 
645 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
646 	(*p_drv)->generation++;
647 
648 	xpt_remove_periph(periph);
649 
650 	xpt_unlock_buses();
651 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
652 
653 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
654 		union ccb ccb;
655 		void *arg;
656 
657 		switch (periph->deferred_ac) {
658 		case AC_FOUND_DEVICE:
659 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
660 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
661 			xpt_action(&ccb);
662 			arg = &ccb;
663 			break;
664 		case AC_PATH_REGISTERED:
665 			ccb.ccb_h.func_code = XPT_PATH_INQ;
666 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
667 			xpt_action(&ccb);
668 			arg = &ccb;
669 			break;
670 		default:
671 			arg = NULL;
672 			break;
673 		}
674 		periph->deferred_callback(NULL, periph->deferred_ac,
675 					  periph->path, arg);
676 	}
677 	xpt_free_path(periph->path);
678 	free(periph, M_CAMPERIPH);
679 	xpt_lock_buses();
680 }
681 
682 /*
683  * Map user virtual pointers into kernel virtual address space, so we can
684  * access the memory.  This is now a generic function that centralizes most
685  * of the sanity checks on the data flags, if any.
686  * This also only works for up to MAXPHYS memory.  Since we use
687  * buffers to map stuff in and out, we're limited to the buffer size.
688  */
689 int
690 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
691 {
692 	int numbufs, i, j;
693 	int flags[CAM_PERIPH_MAXMAPS];
694 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
695 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
696 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
697 	/* Some controllers may not be able to handle more data. */
698 	size_t maxmap = DFLTPHYS;
699 
700 	switch(ccb->ccb_h.func_code) {
701 	case XPT_DEV_MATCH:
702 		if (ccb->cdm.match_buf_len == 0) {
703 			printf("cam_periph_mapmem: invalid match buffer "
704 			       "length 0\n");
705 			return(EINVAL);
706 		}
707 		if (ccb->cdm.pattern_buf_len > 0) {
708 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
709 			lengths[0] = ccb->cdm.pattern_buf_len;
710 			dirs[0] = CAM_DIR_OUT;
711 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
712 			lengths[1] = ccb->cdm.match_buf_len;
713 			dirs[1] = CAM_DIR_IN;
714 			numbufs = 2;
715 		} else {
716 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
717 			lengths[0] = ccb->cdm.match_buf_len;
718 			dirs[0] = CAM_DIR_IN;
719 			numbufs = 1;
720 		}
721 		/*
722 		 * This request will not go to the hardware, no reason
723 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
724 		 */
725 		maxmap = MAXPHYS;
726 		break;
727 	case XPT_SCSI_IO:
728 	case XPT_CONT_TARGET_IO:
729 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
730 			return(0);
731 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
732 			return (EINVAL);
733 		data_ptrs[0] = &ccb->csio.data_ptr;
734 		lengths[0] = ccb->csio.dxfer_len;
735 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
736 		numbufs = 1;
737 		break;
738 	case XPT_ATA_IO:
739 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
740 			return(0);
741 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
742 			return (EINVAL);
743 		data_ptrs[0] = &ccb->ataio.data_ptr;
744 		lengths[0] = ccb->ataio.dxfer_len;
745 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
746 		numbufs = 1;
747 		break;
748 	case XPT_SMP_IO:
749 		data_ptrs[0] = &ccb->smpio.smp_request;
750 		lengths[0] = ccb->smpio.smp_request_len;
751 		dirs[0] = CAM_DIR_OUT;
752 		data_ptrs[1] = &ccb->smpio.smp_response;
753 		lengths[1] = ccb->smpio.smp_response_len;
754 		dirs[1] = CAM_DIR_IN;
755 		numbufs = 2;
756 		break;
757 	case XPT_DEV_ADVINFO:
758 		if (ccb->cdai.bufsiz == 0)
759 			return (0);
760 
761 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
762 		lengths[0] = ccb->cdai.bufsiz;
763 		dirs[0] = CAM_DIR_IN;
764 		numbufs = 1;
765 
766 		/*
767 		 * This request will not go to the hardware, no reason
768 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
769 		 */
770 		maxmap = MAXPHYS;
771 		break;
772 	default:
773 		return(EINVAL);
774 		break; /* NOTREACHED */
775 	}
776 
777 	/*
778 	 * Check the transfer length and permissions first, so we don't
779 	 * have to unmap any previously mapped buffers.
780 	 */
781 	for (i = 0; i < numbufs; i++) {
782 
783 		flags[i] = 0;
784 
785 		/*
786 		 * The userland data pointer passed in may not be page
787 		 * aligned.  vmapbuf() truncates the address to a page
788 		 * boundary, so if the address isn't page aligned, we'll
789 		 * need enough space for the given transfer length, plus
790 		 * whatever extra space is necessary to make it to the page
791 		 * boundary.
792 		 */
793 		if ((lengths[i] +
794 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
795 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
796 			       "which is greater than %lu\n",
797 			       (long)(lengths[i] +
798 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
799 			       (u_long)maxmap);
800 			return(E2BIG);
801 		}
802 
803 		if (dirs[i] & CAM_DIR_OUT) {
804 			flags[i] = BIO_WRITE;
805 		}
806 
807 		if (dirs[i] & CAM_DIR_IN) {
808 			flags[i] = BIO_READ;
809 		}
810 
811 	}
812 
813 	/*
814 	 * This keeps the the kernel stack of current thread from getting
815 	 * swapped.  In low-memory situations where the kernel stack might
816 	 * otherwise get swapped out, this holds it and allows the thread
817 	 * to make progress and release the kernel mapped pages sooner.
818 	 *
819 	 * XXX KDM should I use P_NOSWAP instead?
820 	 */
821 	PHOLD(curproc);
822 
823 	for (i = 0; i < numbufs; i++) {
824 		/*
825 		 * Get the buffer.
826 		 */
827 		mapinfo->bp[i] = getpbuf(NULL);
828 
829 		/* save the buffer's data address */
830 		mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
831 
832 		/* put our pointer in the data slot */
833 		mapinfo->bp[i]->b_data = *data_ptrs[i];
834 
835 		/* set the transfer length, we know it's < MAXPHYS */
836 		mapinfo->bp[i]->b_bufsize = lengths[i];
837 
838 		/* set the direction */
839 		mapinfo->bp[i]->b_iocmd = flags[i];
840 
841 		/*
842 		 * Map the buffer into kernel memory.
843 		 *
844 		 * Note that useracc() alone is not a  sufficient test.
845 		 * vmapbuf() can still fail due to a smaller file mapped
846 		 * into a larger area of VM, or if userland races against
847 		 * vmapbuf() after the useracc() check.
848 		 */
849 		if (vmapbuf(mapinfo->bp[i], 1) < 0) {
850 			for (j = 0; j < i; ++j) {
851 				*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
852 				vunmapbuf(mapinfo->bp[j]);
853 				relpbuf(mapinfo->bp[j], NULL);
854 			}
855 			relpbuf(mapinfo->bp[i], NULL);
856 			PRELE(curproc);
857 			return(EACCES);
858 		}
859 
860 		/* set our pointer to the new mapped area */
861 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
862 
863 		mapinfo->num_bufs_used++;
864 	}
865 
866 	/*
867 	 * Now that we've gotten this far, change ownership to the kernel
868 	 * of the buffers so that we don't run afoul of returning to user
869 	 * space with locks (on the buffer) held.
870 	 */
871 	for (i = 0; i < numbufs; i++) {
872 		BUF_KERNPROC(mapinfo->bp[i]);
873 	}
874 
875 
876 	return(0);
877 }
878 
879 /*
880  * Unmap memory segments mapped into kernel virtual address space by
881  * cam_periph_mapmem().
882  */
883 void
884 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
885 {
886 	int numbufs, i;
887 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
888 
889 	if (mapinfo->num_bufs_used <= 0) {
890 		/* nothing to free and the process wasn't held. */
891 		return;
892 	}
893 
894 	switch (ccb->ccb_h.func_code) {
895 	case XPT_DEV_MATCH:
896 		numbufs = min(mapinfo->num_bufs_used, 2);
897 
898 		if (numbufs == 1) {
899 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
900 		} else {
901 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
902 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
903 		}
904 		break;
905 	case XPT_SCSI_IO:
906 	case XPT_CONT_TARGET_IO:
907 		data_ptrs[0] = &ccb->csio.data_ptr;
908 		numbufs = min(mapinfo->num_bufs_used, 1);
909 		break;
910 	case XPT_ATA_IO:
911 		data_ptrs[0] = &ccb->ataio.data_ptr;
912 		numbufs = min(mapinfo->num_bufs_used, 1);
913 		break;
914 	case XPT_SMP_IO:
915 		numbufs = min(mapinfo->num_bufs_used, 2);
916 		data_ptrs[0] = &ccb->smpio.smp_request;
917 		data_ptrs[1] = &ccb->smpio.smp_response;
918 		break;
919 	case XPT_DEV_ADVINFO:
920 		numbufs = min(mapinfo->num_bufs_used, 1);
921 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
922 		break;
923 	default:
924 		/* allow ourselves to be swapped once again */
925 		PRELE(curproc);
926 		return;
927 		break; /* NOTREACHED */
928 	}
929 
930 	for (i = 0; i < numbufs; i++) {
931 		/* Set the user's pointer back to the original value */
932 		*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
933 
934 		/* unmap the buffer */
935 		vunmapbuf(mapinfo->bp[i]);
936 
937 		/* release the buffer */
938 		relpbuf(mapinfo->bp[i], NULL);
939 	}
940 
941 	/* allow ourselves to be swapped once again */
942 	PRELE(curproc);
943 }
944 
945 union ccb *
946 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
947 {
948 	struct ccb_hdr *ccb_h;
949 
950 	mtx_assert(periph->sim->mtx, MA_OWNED);
951 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
952 
953 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
954 		if (periph->immediate_priority > priority)
955 			periph->immediate_priority = priority;
956 		xpt_schedule(periph, priority);
957 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
958 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
959 			break;
960 		mtx_assert(periph->sim->mtx, MA_OWNED);
961 		mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb",
962 		    0);
963 	}
964 
965 	ccb_h = SLIST_FIRST(&periph->ccb_list);
966 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
967 	return ((union ccb *)ccb_h);
968 }
969 
970 void
971 cam_periph_ccbwait(union ccb *ccb)
972 {
973 	struct cam_sim *sim;
974 
975 	sim = xpt_path_sim(ccb->ccb_h.path);
976 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
977 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
978 		mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0);
979 }
980 
981 int
982 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
983 		 int (*error_routine)(union ccb *ccb,
984 				      cam_flags camflags,
985 				      u_int32_t sense_flags))
986 {
987 	union ccb 	     *ccb;
988 	int 		     error;
989 	int		     found;
990 
991 	error = found = 0;
992 
993 	switch(cmd){
994 	case CAMGETPASSTHRU:
995 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
996 		xpt_setup_ccb(&ccb->ccb_h,
997 			      ccb->ccb_h.path,
998 			      CAM_PRIORITY_NORMAL);
999 		ccb->ccb_h.func_code = XPT_GDEVLIST;
1000 
1001 		/*
1002 		 * Basically, the point of this is that we go through
1003 		 * getting the list of devices, until we find a passthrough
1004 		 * device.  In the current version of the CAM code, the
1005 		 * only way to determine what type of device we're dealing
1006 		 * with is by its name.
1007 		 */
1008 		while (found == 0) {
1009 			ccb->cgdl.index = 0;
1010 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
1011 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
1012 
1013 				/* we want the next device in the list */
1014 				xpt_action(ccb);
1015 				if (strncmp(ccb->cgdl.periph_name,
1016 				    "pass", 4) == 0){
1017 					found = 1;
1018 					break;
1019 				}
1020 			}
1021 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
1022 			    (found == 0)) {
1023 				ccb->cgdl.periph_name[0] = '\0';
1024 				ccb->cgdl.unit_number = 0;
1025 				break;
1026 			}
1027 		}
1028 
1029 		/* copy the result back out */
1030 		bcopy(ccb, addr, sizeof(union ccb));
1031 
1032 		/* and release the ccb */
1033 		xpt_release_ccb(ccb);
1034 
1035 		break;
1036 	default:
1037 		error = ENOTTY;
1038 		break;
1039 	}
1040 	return(error);
1041 }
1042 
1043 int
1044 cam_periph_runccb(union ccb *ccb,
1045 		  int (*error_routine)(union ccb *ccb,
1046 				       cam_flags camflags,
1047 				       u_int32_t sense_flags),
1048 		  cam_flags camflags, u_int32_t sense_flags,
1049 		  struct devstat *ds)
1050 {
1051 	struct cam_sim *sim;
1052 	int error;
1053 
1054 	error = 0;
1055 	sim = xpt_path_sim(ccb->ccb_h.path);
1056 	mtx_assert(sim->mtx, MA_OWNED);
1057 
1058 	/*
1059 	 * If the user has supplied a stats structure, and if we understand
1060 	 * this particular type of ccb, record the transaction start.
1061 	 */
1062 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1063 	    ccb->ccb_h.func_code == XPT_ATA_IO))
1064 		devstat_start_transaction(ds, NULL);
1065 
1066 	xpt_action(ccb);
1067 
1068 	do {
1069 		cam_periph_ccbwait(ccb);
1070 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1071 			error = 0;
1072 		else if (error_routine != NULL)
1073 			error = (*error_routine)(ccb, camflags, sense_flags);
1074 		else
1075 			error = 0;
1076 
1077 	} while (error == ERESTART);
1078 
1079 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1080 		cam_release_devq(ccb->ccb_h.path,
1081 				 /* relsim_flags */0,
1082 				 /* openings */0,
1083 				 /* timeout */0,
1084 				 /* getcount_only */ FALSE);
1085 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1086 	}
1087 
1088 	if (ds != NULL) {
1089 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1090 			devstat_end_transaction(ds,
1091 					ccb->csio.dxfer_len,
1092 					ccb->csio.tag_action & 0x3,
1093 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1094 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1095 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1096 					DEVSTAT_WRITE :
1097 					DEVSTAT_READ, NULL, NULL);
1098 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1099 			devstat_end_transaction(ds,
1100 					ccb->ataio.dxfer_len,
1101 					ccb->ataio.tag_action & 0x3,
1102 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1103 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1104 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1105 					DEVSTAT_WRITE :
1106 					DEVSTAT_READ, NULL, NULL);
1107 		}
1108 	}
1109 
1110 	return(error);
1111 }
1112 
1113 void
1114 cam_freeze_devq(struct cam_path *path)
1115 {
1116 	struct ccb_hdr ccb_h;
1117 
1118 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
1119 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
1120 	ccb_h.func_code = XPT_NOOP;
1121 	ccb_h.flags = CAM_DEV_QFREEZE;
1122 	xpt_action((union ccb *)&ccb_h);
1123 }
1124 
1125 u_int32_t
1126 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1127 		 u_int32_t openings, u_int32_t arg,
1128 		 int getcount_only)
1129 {
1130 	struct ccb_relsim crs;
1131 
1132 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
1133 	    relsim_flags, openings, arg, getcount_only));
1134 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1135 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1136 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1137 	crs.release_flags = relsim_flags;
1138 	crs.openings = openings;
1139 	crs.release_timeout = arg;
1140 	xpt_action((union ccb *)&crs);
1141 	return (crs.qfrozen_cnt);
1142 }
1143 
1144 #define saved_ccb_ptr ppriv_ptr0
1145 static void
1146 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1147 {
1148 	union ccb      *saved_ccb;
1149 	cam_status	status;
1150 	struct scsi_start_stop_unit *scsi_cmd;
1151 	int    error_code, sense_key, asc, ascq;
1152 
1153 	scsi_cmd = (struct scsi_start_stop_unit *)
1154 	    &done_ccb->csio.cdb_io.cdb_bytes;
1155 	status = done_ccb->ccb_h.status;
1156 
1157 	if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1158 		if (scsi_extract_sense_ccb(done_ccb,
1159 		    &error_code, &sense_key, &asc, &ascq)) {
1160 			/*
1161 			 * If the error is "invalid field in CDB",
1162 			 * and the load/eject flag is set, turn the
1163 			 * flag off and try again.  This is just in
1164 			 * case the drive in question barfs on the
1165 			 * load eject flag.  The CAM code should set
1166 			 * the load/eject flag by default for
1167 			 * removable media.
1168 			 */
1169 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1170 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1171 			     (asc == 0x24) && (ascq == 0x00)) {
1172 				scsi_cmd->how &= ~SSS_LOEJ;
1173 				if (status & CAM_DEV_QFRZN) {
1174 					cam_release_devq(done_ccb->ccb_h.path,
1175 					    0, 0, 0, 0);
1176 					done_ccb->ccb_h.status &=
1177 					    ~CAM_DEV_QFRZN;
1178 				}
1179 				xpt_action(done_ccb);
1180 				goto out;
1181 			}
1182 		}
1183 		if (cam_periph_error(done_ccb,
1184 		    0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART)
1185 			goto out;
1186 		if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
1187 			cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1188 			done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1189 		}
1190 	} else {
1191 		/*
1192 		 * If we have successfully taken a device from the not
1193 		 * ready to ready state, re-scan the device and re-get
1194 		 * the inquiry information.  Many devices (mostly disks)
1195 		 * don't properly report their inquiry information unless
1196 		 * they are spun up.
1197 		 */
1198 		if (scsi_cmd->opcode == START_STOP_UNIT)
1199 			xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
1200 	}
1201 
1202 	/*
1203 	 * Perform the final retry with the original CCB so that final
1204 	 * error processing is performed by the owner of the CCB.
1205 	 */
1206 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1207 	bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
1208 	xpt_free_ccb(saved_ccb);
1209 	if (done_ccb->ccb_h.cbfcnp != camperiphdone)
1210 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1211 	xpt_action(done_ccb);
1212 
1213 out:
1214 	/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
1215 	cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1216 }
1217 
1218 /*
1219  * Generic Async Event handler.  Peripheral drivers usually
1220  * filter out the events that require personal attention,
1221  * and leave the rest to this function.
1222  */
1223 void
1224 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1225 		 struct cam_path *path, void *arg)
1226 {
1227 	switch (code) {
1228 	case AC_LOST_DEVICE:
1229 		cam_periph_invalidate(periph);
1230 		break;
1231 	default:
1232 		break;
1233 	}
1234 }
1235 
1236 void
1237 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1238 {
1239 	struct ccb_getdevstats cgds;
1240 
1241 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1242 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1243 	xpt_action((union ccb *)&cgds);
1244 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1245 }
1246 
1247 void
1248 cam_periph_freeze_after_event(struct cam_periph *periph,
1249 			      struct timeval* event_time, u_int duration_ms)
1250 {
1251 	struct timeval delta;
1252 	struct timeval duration_tv;
1253 
1254 	if (!timevalisset(event_time))
1255 		return;
1256 
1257 	microtime(&delta);
1258 	timevalsub(&delta, event_time);
1259 	duration_tv.tv_sec = duration_ms / 1000;
1260 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1261 	if (timevalcmp(&delta, &duration_tv, <)) {
1262 		timevalsub(&duration_tv, &delta);
1263 
1264 		duration_ms = duration_tv.tv_sec * 1000;
1265 		duration_ms += duration_tv.tv_usec / 1000;
1266 		cam_freeze_devq(periph->path);
1267 		cam_release_devq(periph->path,
1268 				RELSIM_RELEASE_AFTER_TIMEOUT,
1269 				/*reduction*/0,
1270 				/*timeout*/duration_ms,
1271 				/*getcount_only*/0);
1272 	}
1273 
1274 }
1275 
1276 static int
1277 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
1278     cam_flags camflags, u_int32_t sense_flags,
1279     int *openings, u_int32_t *relsim_flags,
1280     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1281 {
1282 	int error;
1283 
1284 	switch (ccb->csio.scsi_status) {
1285 	case SCSI_STATUS_OK:
1286 	case SCSI_STATUS_COND_MET:
1287 	case SCSI_STATUS_INTERMED:
1288 	case SCSI_STATUS_INTERMED_COND_MET:
1289 		error = 0;
1290 		break;
1291 	case SCSI_STATUS_CMD_TERMINATED:
1292 	case SCSI_STATUS_CHECK_COND:
1293 		error = camperiphscsisenseerror(ccb, orig_ccb,
1294 					        camflags,
1295 					        sense_flags,
1296 					        openings,
1297 					        relsim_flags,
1298 					        timeout,
1299 					        action,
1300 					        action_string);
1301 		break;
1302 	case SCSI_STATUS_QUEUE_FULL:
1303 	{
1304 		/* no decrement */
1305 		struct ccb_getdevstats cgds;
1306 
1307 		/*
1308 		 * First off, find out what the current
1309 		 * transaction counts are.
1310 		 */
1311 		xpt_setup_ccb(&cgds.ccb_h,
1312 			      ccb->ccb_h.path,
1313 			      CAM_PRIORITY_NORMAL);
1314 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1315 		xpt_action((union ccb *)&cgds);
1316 
1317 		/*
1318 		 * If we were the only transaction active, treat
1319 		 * the QUEUE FULL as if it were a BUSY condition.
1320 		 */
1321 		if (cgds.dev_active != 0) {
1322 			int total_openings;
1323 
1324 			/*
1325 		 	 * Reduce the number of openings to
1326 			 * be 1 less than the amount it took
1327 			 * to get a queue full bounded by the
1328 			 * minimum allowed tag count for this
1329 			 * device.
1330 		 	 */
1331 			total_openings = cgds.dev_active + cgds.dev_openings;
1332 			*openings = cgds.dev_active;
1333 			if (*openings < cgds.mintags)
1334 				*openings = cgds.mintags;
1335 			if (*openings < total_openings)
1336 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1337 			else {
1338 				/*
1339 				 * Some devices report queue full for
1340 				 * temporary resource shortages.  For
1341 				 * this reason, we allow a minimum
1342 				 * tag count to be entered via a
1343 				 * quirk entry to prevent the queue
1344 				 * count on these devices from falling
1345 				 * to a pessimisticly low value.  We
1346 				 * still wait for the next successful
1347 				 * completion, however, before queueing
1348 				 * more transactions to the device.
1349 				 */
1350 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1351 			}
1352 			*timeout = 0;
1353 			error = ERESTART;
1354 			*action &= ~SSQ_PRINT_SENSE;
1355 			break;
1356 		}
1357 		/* FALLTHROUGH */
1358 	}
1359 	case SCSI_STATUS_BUSY:
1360 		/*
1361 		 * Restart the queue after either another
1362 		 * command completes or a 1 second timeout.
1363 		 */
1364 	 	if (ccb->ccb_h.retry_count > 0) {
1365 	 		ccb->ccb_h.retry_count--;
1366 			error = ERESTART;
1367 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1368 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1369 			*timeout = 1000;
1370 		} else {
1371 			error = EIO;
1372 		}
1373 		break;
1374 	case SCSI_STATUS_RESERV_CONFLICT:
1375 	default:
1376 		error = EIO;
1377 		break;
1378 	}
1379 	return (error);
1380 }
1381 
1382 static int
1383 camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
1384     cam_flags camflags, u_int32_t sense_flags,
1385     int *openings, u_int32_t *relsim_flags,
1386     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1387 {
1388 	struct cam_periph *periph;
1389 	union ccb *orig_ccb = ccb;
1390 	int error, recoveryccb;
1391 
1392 	periph = xpt_path_periph(ccb->ccb_h.path);
1393 	recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
1394 	if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
1395 		/*
1396 		 * If error recovery is already in progress, don't attempt
1397 		 * to process this error, but requeue it unconditionally
1398 		 * and attempt to process it once error recovery has
1399 		 * completed.  This failed command is probably related to
1400 		 * the error that caused the currently active error recovery
1401 		 * action so our  current recovery efforts should also
1402 		 * address this command.  Be aware that the error recovery
1403 		 * code assumes that only one recovery action is in progress
1404 		 * on a particular peripheral instance at any given time
1405 		 * (e.g. only one saved CCB for error recovery) so it is
1406 		 * imperitive that we don't violate this assumption.
1407 		 */
1408 		error = ERESTART;
1409 		*action &= ~SSQ_PRINT_SENSE;
1410 	} else {
1411 		scsi_sense_action err_action;
1412 		struct ccb_getdev cgd;
1413 
1414 		/*
1415 		 * Grab the inquiry data for this device.
1416 		 */
1417 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1418 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1419 		xpt_action((union ccb *)&cgd);
1420 
1421 		err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
1422 		    sense_flags);
1423 		error = err_action & SS_ERRMASK;
1424 
1425 		/*
1426 		 * Do not autostart sequential access devices
1427 		 * to avoid unexpected tape loading.
1428 		 */
1429 		if ((err_action & SS_MASK) == SS_START &&
1430 		    SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1431 			*action_string = "Will not autostart a "
1432 			    "sequential access device";
1433 			goto sense_error_done;
1434 		}
1435 
1436 		/*
1437 		 * Avoid recovery recursion if recovery action is the same.
1438 		 */
1439 		if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
1440 			if (((err_action & SS_MASK) == SS_START &&
1441 			     ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
1442 			    ((err_action & SS_MASK) == SS_TUR &&
1443 			     (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
1444 				err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1445 				*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1446 				*timeout = 500;
1447 			}
1448 		}
1449 
1450 		/*
1451 		 * If the recovery action will consume a retry,
1452 		 * make sure we actually have retries available.
1453 		 */
1454 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1455 		 	if (ccb->ccb_h.retry_count > 0 &&
1456 			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1457 		 		ccb->ccb_h.retry_count--;
1458 			else {
1459 				*action_string = "Retries exhausted";
1460 				goto sense_error_done;
1461 			}
1462 		}
1463 
1464 		if ((err_action & SS_MASK) >= SS_START) {
1465 			/*
1466 			 * Do common portions of commands that
1467 			 * use recovery CCBs.
1468 			 */
1469 			orig_ccb = xpt_alloc_ccb_nowait();
1470 			if (orig_ccb == NULL) {
1471 				*action_string = "Can't allocate recovery CCB";
1472 				goto sense_error_done;
1473 			}
1474 			/*
1475 			 * Clear freeze flag for original request here, as
1476 			 * this freeze will be dropped as part of ERESTART.
1477 			 */
1478 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1479 			bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
1480 		}
1481 
1482 		switch (err_action & SS_MASK) {
1483 		case SS_NOP:
1484 			*action_string = "No recovery action needed";
1485 			error = 0;
1486 			break;
1487 		case SS_RETRY:
1488 			*action_string = "Retrying command (per sense data)";
1489 			error = ERESTART;
1490 			break;
1491 		case SS_FAIL:
1492 			*action_string = "Unretryable error";
1493 			break;
1494 		case SS_START:
1495 		{
1496 			int le;
1497 
1498 			/*
1499 			 * Send a start unit command to the device, and
1500 			 * then retry the command.
1501 			 */
1502 			*action_string = "Attempting to start unit";
1503 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1504 
1505 			/*
1506 			 * Check for removable media and set
1507 			 * load/eject flag appropriately.
1508 			 */
1509 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1510 				le = TRUE;
1511 			else
1512 				le = FALSE;
1513 
1514 			scsi_start_stop(&ccb->csio,
1515 					/*retries*/1,
1516 					camperiphdone,
1517 					MSG_SIMPLE_Q_TAG,
1518 					/*start*/TRUE,
1519 					/*load/eject*/le,
1520 					/*immediate*/FALSE,
1521 					SSD_FULL_SIZE,
1522 					/*timeout*/50000);
1523 			break;
1524 		}
1525 		case SS_TUR:
1526 		{
1527 			/*
1528 			 * Send a Test Unit Ready to the device.
1529 			 * If the 'many' flag is set, we send 120
1530 			 * test unit ready commands, one every half
1531 			 * second.  Otherwise, we just send one TUR.
1532 			 * We only want to do this if the retry
1533 			 * count has not been exhausted.
1534 			 */
1535 			int retries;
1536 
1537 			if ((err_action & SSQ_MANY) != 0) {
1538 				*action_string = "Polling device for readiness";
1539 				retries = 120;
1540 			} else {
1541 				*action_string = "Testing device for readiness";
1542 				retries = 1;
1543 			}
1544 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1545 			scsi_test_unit_ready(&ccb->csio,
1546 					     retries,
1547 					     camperiphdone,
1548 					     MSG_SIMPLE_Q_TAG,
1549 					     SSD_FULL_SIZE,
1550 					     /*timeout*/5000);
1551 
1552 			/*
1553 			 * Accomplish our 500ms delay by deferring
1554 			 * the release of our device queue appropriately.
1555 			 */
1556 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1557 			*timeout = 500;
1558 			break;
1559 		}
1560 		default:
1561 			panic("Unhandled error action %x", err_action);
1562 		}
1563 
1564 		if ((err_action & SS_MASK) >= SS_START) {
1565 			/*
1566 			 * Drop the priority, so that the recovery
1567 			 * CCB is the first to execute.  Freeze the queue
1568 			 * after this command is sent so that we can
1569 			 * restore the old csio and have it queued in
1570 			 * the proper order before we release normal
1571 			 * transactions to the device.
1572 			 */
1573 			ccb->ccb_h.pinfo.priority--;
1574 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1575 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1576 			error = ERESTART;
1577 			*orig = orig_ccb;
1578 		}
1579 
1580 sense_error_done:
1581 		*action = err_action;
1582 	}
1583 	return (error);
1584 }
1585 
1586 /*
1587  * Generic error handler.  Peripheral drivers usually filter
1588  * out the errors that they handle in a unique mannor, then
1589  * call this function.
1590  */
1591 int
1592 cam_periph_error(union ccb *ccb, cam_flags camflags,
1593 		 u_int32_t sense_flags, union ccb *save_ccb)
1594 {
1595 	struct cam_path *newpath;
1596 	union ccb  *orig_ccb, *scan_ccb;
1597 	struct cam_periph *periph;
1598 	const char *action_string;
1599 	cam_status  status;
1600 	int	    frozen, error, openings;
1601 	u_int32_t   action, relsim_flags, timeout;
1602 
1603 	action = SSQ_PRINT_SENSE;
1604 	periph = xpt_path_periph(ccb->ccb_h.path);
1605 	action_string = NULL;
1606 	status = ccb->ccb_h.status;
1607 	frozen = (status & CAM_DEV_QFRZN) != 0;
1608 	status &= CAM_STATUS_MASK;
1609 	openings = relsim_flags = timeout = 0;
1610 	orig_ccb = ccb;
1611 
1612 	switch (status) {
1613 	case CAM_REQ_CMP:
1614 		error = 0;
1615 		action &= ~SSQ_PRINT_SENSE;
1616 		break;
1617 	case CAM_SCSI_STATUS_ERROR:
1618 		error = camperiphscsistatuserror(ccb, &orig_ccb,
1619 		    camflags, sense_flags, &openings, &relsim_flags,
1620 		    &timeout, &action, &action_string);
1621 		break;
1622 	case CAM_AUTOSENSE_FAIL:
1623 		error = EIO;	/* we have to kill the command */
1624 		break;
1625 	case CAM_UA_ABORT:
1626 	case CAM_UA_TERMIO:
1627 	case CAM_MSG_REJECT_REC:
1628 		/* XXX Don't know that these are correct */
1629 		error = EIO;
1630 		break;
1631 	case CAM_SEL_TIMEOUT:
1632 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1633 			if (ccb->ccb_h.retry_count > 0 &&
1634 			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1635 				ccb->ccb_h.retry_count--;
1636 				error = ERESTART;
1637 
1638 				/*
1639 				 * Wait a bit to give the device
1640 				 * time to recover before we try again.
1641 				 */
1642 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1643 				timeout = periph_selto_delay;
1644 				break;
1645 			}
1646 			action_string = "Retries exhausted";
1647 		}
1648 		/* FALLTHROUGH */
1649 	case CAM_DEV_NOT_THERE:
1650 		error = ENXIO;
1651 		action = SSQ_LOST;
1652 		break;
1653 	case CAM_REQ_INVALID:
1654 	case CAM_PATH_INVALID:
1655 	case CAM_NO_HBA:
1656 	case CAM_PROVIDE_FAIL:
1657 	case CAM_REQ_TOO_BIG:
1658 	case CAM_LUN_INVALID:
1659 	case CAM_TID_INVALID:
1660 		error = EINVAL;
1661 		break;
1662 	case CAM_SCSI_BUS_RESET:
1663 	case CAM_BDR_SENT:
1664 		/*
1665 		 * Commands that repeatedly timeout and cause these
1666 		 * kinds of error recovery actions, should return
1667 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1668 		 * that this command was an innocent bystander to
1669 		 * these events and should be unconditionally
1670 		 * retried.
1671 		 */
1672 	case CAM_REQUEUE_REQ:
1673 		/* Unconditional requeue if device is still there */
1674 		if (periph->flags & CAM_PERIPH_INVALID) {
1675 			action_string = "Periph was invalidated";
1676 			error = EIO;
1677 		} else if (sense_flags & SF_NO_RETRY) {
1678 			error = EIO;
1679 			action_string = "Retry was blocked";
1680 		} else {
1681 			error = ERESTART;
1682 			action &= ~SSQ_PRINT_SENSE;
1683 		}
1684 		break;
1685 	case CAM_RESRC_UNAVAIL:
1686 		/* Wait a bit for the resource shortage to abate. */
1687 		timeout = periph_noresrc_delay;
1688 		/* FALLTHROUGH */
1689 	case CAM_BUSY:
1690 		if (timeout == 0) {
1691 			/* Wait a bit for the busy condition to abate. */
1692 			timeout = periph_busy_delay;
1693 		}
1694 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1695 		/* FALLTHROUGH */
1696 	case CAM_ATA_STATUS_ERROR:
1697 	case CAM_REQ_CMP_ERR:
1698 	case CAM_CMD_TIMEOUT:
1699 	case CAM_UNEXP_BUSFREE:
1700 	case CAM_UNCOR_PARITY:
1701 	case CAM_DATA_RUN_ERR:
1702 	default:
1703 		if (periph->flags & CAM_PERIPH_INVALID) {
1704 			error = EIO;
1705 			action_string = "Periph was invalidated";
1706 		} else if (ccb->ccb_h.retry_count == 0) {
1707 			error = EIO;
1708 			action_string = "Retries exhausted";
1709 		} else if (sense_flags & SF_NO_RETRY) {
1710 			error = EIO;
1711 			action_string = "Retry was blocked";
1712 		} else {
1713 			ccb->ccb_h.retry_count--;
1714 			error = ERESTART;
1715 		}
1716 		break;
1717 	}
1718 
1719 	if ((sense_flags & SF_PRINT_ALWAYS) ||
1720 	    CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
1721 		action |= SSQ_PRINT_SENSE;
1722 	else if (sense_flags & SF_NO_PRINT)
1723 		action &= ~SSQ_PRINT_SENSE;
1724 	if ((action & SSQ_PRINT_SENSE) != 0)
1725 		cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1726 	if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
1727 		if (error != ERESTART) {
1728 			if (action_string == NULL)
1729 				action_string = "Unretryable error";
1730 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
1731 			    error, action_string);
1732 		} else if (action_string != NULL)
1733 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1734 		else
1735 			xpt_print(ccb->ccb_h.path, "Retrying command\n");
1736 	}
1737 
1738 	if ((action & SSQ_LOST) != 0) {
1739 		lun_id_t lun_id;
1740 
1741 		/*
1742 		 * For a selection timeout, we consider all of the LUNs on
1743 		 * the target to be gone.  If the status is CAM_DEV_NOT_THERE,
1744 		 * then we only get rid of the device(s) specified by the
1745 		 * path in the original CCB.
1746 		 */
1747 		if (status == CAM_SEL_TIMEOUT)
1748 			lun_id = CAM_LUN_WILDCARD;
1749 		else
1750 			lun_id = xpt_path_lun_id(ccb->ccb_h.path);
1751 
1752 		/* Should we do more if we can't create the path?? */
1753 		if (xpt_create_path(&newpath, periph,
1754 				    xpt_path_path_id(ccb->ccb_h.path),
1755 				    xpt_path_target_id(ccb->ccb_h.path),
1756 				    lun_id) == CAM_REQ_CMP) {
1757 
1758 			/*
1759 			 * Let peripheral drivers know that this
1760 			 * device has gone away.
1761 			 */
1762 			xpt_async(AC_LOST_DEVICE, newpath, NULL);
1763 			xpt_free_path(newpath);
1764 		}
1765 	}
1766 
1767 	/* Broadcast UNIT ATTENTIONs to all periphs. */
1768 	if ((action & SSQ_UA) != 0)
1769 		xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
1770 
1771 	/* Rescan target on "Reported LUNs data has changed" */
1772 	if ((action & SSQ_RESCAN) != 0) {
1773 		if (xpt_create_path(&newpath, NULL,
1774 				    xpt_path_path_id(ccb->ccb_h.path),
1775 				    xpt_path_target_id(ccb->ccb_h.path),
1776 				    CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
1777 
1778 			scan_ccb = xpt_alloc_ccb_nowait();
1779 			if (scan_ccb != NULL) {
1780 				scan_ccb->ccb_h.path = newpath;
1781 				scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
1782 				scan_ccb->crcn.flags = 0;
1783 				xpt_rescan(scan_ccb);
1784 			} else
1785 				xpt_print(newpath,
1786 				    "Can't allocate CCB to rescan target\n");
1787 		}
1788 	}
1789 
1790 	/* Attempt a retry */
1791 	if (error == ERESTART || error == 0) {
1792 		if (frozen != 0)
1793 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1794 		if (error == ERESTART)
1795 			xpt_action(ccb);
1796 		if (frozen != 0)
1797 			cam_release_devq(ccb->ccb_h.path,
1798 					 relsim_flags,
1799 					 openings,
1800 					 timeout,
1801 					 /*getcount_only*/0);
1802 	}
1803 
1804 	return (error);
1805 }
1806