1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/buf.h> 42 #include <sys/proc.h> 43 #include <sys/devicestat.h> 44 #include <sys/bus.h> 45 #include <sys/sbuf.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 union ccb **orig_ccb, 73 cam_flags camflags, 74 u_int32_t sense_flags, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout, 78 u_int32_t *action, 79 const char **action_string); 80 static int camperiphscsisenseerror(union ccb *ccb, 81 union ccb **orig_ccb, 82 cam_flags camflags, 83 u_int32_t sense_flags, 84 int *openings, 85 u_int32_t *relsim_flags, 86 u_int32_t *timeout, 87 u_int32_t *action, 88 const char **action_string); 89 90 static int nperiph_drivers; 91 static int initialized = 0; 92 struct periph_driver **periph_drivers; 93 94 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 95 96 static int periph_selto_delay = 1000; 97 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 98 static int periph_noresrc_delay = 500; 99 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 100 static int periph_busy_delay = 500; 101 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 102 103 104 void 105 periphdriver_register(void *data) 106 { 107 struct periph_driver *drv = (struct periph_driver *)data; 108 struct periph_driver **newdrivers, **old; 109 int ndrivers; 110 111 ndrivers = nperiph_drivers + 2; 112 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 113 M_WAITOK); 114 if (periph_drivers) 115 bcopy(periph_drivers, newdrivers, 116 sizeof(*newdrivers) * nperiph_drivers); 117 newdrivers[nperiph_drivers] = drv; 118 newdrivers[nperiph_drivers + 1] = NULL; 119 old = periph_drivers; 120 periph_drivers = newdrivers; 121 if (old) 122 free(old, M_CAMPERIPH); 123 nperiph_drivers++; 124 /* If driver marked as early or it is late now, initialize it. */ 125 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 126 initialized > 1) 127 (*drv->init)(); 128 } 129 130 void 131 periphdriver_init(int level) 132 { 133 int i, early; 134 135 initialized = max(initialized, level); 136 for (i = 0; periph_drivers[i] != NULL; i++) { 137 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 138 if (early == initialized) 139 (*periph_drivers[i]->init)(); 140 } 141 } 142 143 cam_status 144 cam_periph_alloc(periph_ctor_t *periph_ctor, 145 periph_oninv_t *periph_oninvalidate, 146 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 147 char *name, cam_periph_type type, struct cam_path *path, 148 ac_callback_t *ac_callback, ac_code code, void *arg) 149 { 150 struct periph_driver **p_drv; 151 struct cam_sim *sim; 152 struct cam_periph *periph; 153 struct cam_periph *cur_periph; 154 path_id_t path_id; 155 target_id_t target_id; 156 lun_id_t lun_id; 157 cam_status status; 158 u_int init_level; 159 160 init_level = 0; 161 /* 162 * Handle Hot-Plug scenarios. If there is already a peripheral 163 * of our type assigned to this path, we are likely waiting for 164 * final close on an old, invalidated, peripheral. If this is 165 * the case, queue up a deferred call to the peripheral's async 166 * handler. If it looks like a mistaken re-allocation, complain. 167 */ 168 if ((periph = cam_periph_find(path, name)) != NULL) { 169 170 if ((periph->flags & CAM_PERIPH_INVALID) != 0 171 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 172 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 173 periph->deferred_callback = ac_callback; 174 periph->deferred_ac = code; 175 return (CAM_REQ_INPROG); 176 } else { 177 printf("cam_periph_alloc: attempt to re-allocate " 178 "valid device %s%d rejected flags %#x " 179 "refcount %d\n", periph->periph_name, 180 periph->unit_number, periph->flags, 181 periph->refcount); 182 } 183 return (CAM_REQ_INVALID); 184 } 185 186 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 187 M_NOWAIT|M_ZERO); 188 189 if (periph == NULL) 190 return (CAM_RESRC_UNAVAIL); 191 192 init_level++; 193 194 195 sim = xpt_path_sim(path); 196 path_id = xpt_path_path_id(path); 197 target_id = xpt_path_target_id(path); 198 lun_id = xpt_path_lun_id(path); 199 cam_init_pinfo(&periph->pinfo); 200 periph->periph_start = periph_start; 201 periph->periph_dtor = periph_dtor; 202 periph->periph_oninval = periph_oninvalidate; 203 periph->type = type; 204 periph->periph_name = name; 205 periph->immediate_priority = CAM_PRIORITY_NONE; 206 periph->refcount = 1; /* Dropped by invalidation. */ 207 periph->sim = sim; 208 SLIST_INIT(&periph->ccb_list); 209 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 210 if (status != CAM_REQ_CMP) 211 goto failure; 212 periph->path = path; 213 214 xpt_lock_buses(); 215 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 216 if (strcmp((*p_drv)->driver_name, name) == 0) 217 break; 218 } 219 if (*p_drv == NULL) { 220 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 221 xpt_unlock_buses(); 222 xpt_free_path(periph->path); 223 free(periph, M_CAMPERIPH); 224 return (CAM_REQ_INVALID); 225 } 226 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 227 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 228 while (cur_periph != NULL 229 && cur_periph->unit_number < periph->unit_number) 230 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 231 if (cur_periph != NULL) { 232 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 233 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 234 } else { 235 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 236 (*p_drv)->generation++; 237 } 238 xpt_unlock_buses(); 239 240 init_level++; 241 242 status = xpt_add_periph(periph); 243 if (status != CAM_REQ_CMP) 244 goto failure; 245 246 init_level++; 247 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 248 249 status = periph_ctor(periph, arg); 250 251 if (status == CAM_REQ_CMP) 252 init_level++; 253 254 failure: 255 switch (init_level) { 256 case 4: 257 /* Initialized successfully */ 258 break; 259 case 3: 260 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 261 xpt_remove_periph(periph); 262 /* FALLTHROUGH */ 263 case 2: 264 xpt_lock_buses(); 265 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 266 xpt_unlock_buses(); 267 xpt_free_path(periph->path); 268 /* FALLTHROUGH */ 269 case 1: 270 free(periph, M_CAMPERIPH); 271 /* FALLTHROUGH */ 272 case 0: 273 /* No cleanup to perform. */ 274 break; 275 default: 276 panic("%s: Unknown init level", __func__); 277 } 278 return(status); 279 } 280 281 /* 282 * Find a peripheral structure with the specified path, target, lun, 283 * and (optionally) type. If the name is NULL, this function will return 284 * the first peripheral driver that matches the specified path. 285 */ 286 struct cam_periph * 287 cam_periph_find(struct cam_path *path, char *name) 288 { 289 struct periph_driver **p_drv; 290 struct cam_periph *periph; 291 292 xpt_lock_buses(); 293 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 294 295 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 296 continue; 297 298 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 299 if (xpt_path_comp(periph->path, path) == 0) { 300 xpt_unlock_buses(); 301 mtx_assert(periph->sim->mtx, MA_OWNED); 302 return(periph); 303 } 304 } 305 if (name != NULL) { 306 xpt_unlock_buses(); 307 return(NULL); 308 } 309 } 310 xpt_unlock_buses(); 311 return(NULL); 312 } 313 314 /* 315 * Find peripheral driver instances attached to the specified path. 316 */ 317 int 318 cam_periph_list(struct cam_path *path, struct sbuf *sb) 319 { 320 struct sbuf local_sb; 321 struct periph_driver **p_drv; 322 struct cam_periph *periph; 323 int count; 324 int sbuf_alloc_len; 325 326 sbuf_alloc_len = 16; 327 retry: 328 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 329 count = 0; 330 xpt_lock_buses(); 331 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 332 333 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 334 if (xpt_path_comp(periph->path, path) != 0) 335 continue; 336 337 if (sbuf_len(&local_sb) != 0) 338 sbuf_cat(&local_sb, ","); 339 340 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 341 periph->unit_number); 342 343 if (sbuf_error(&local_sb) == ENOMEM) { 344 sbuf_alloc_len *= 2; 345 xpt_unlock_buses(); 346 sbuf_delete(&local_sb); 347 goto retry; 348 } 349 count++; 350 } 351 } 352 xpt_unlock_buses(); 353 sbuf_finish(&local_sb); 354 sbuf_cpy(sb, sbuf_data(&local_sb)); 355 sbuf_delete(&local_sb); 356 return (count); 357 } 358 359 cam_status 360 cam_periph_acquire(struct cam_periph *periph) 361 { 362 cam_status status; 363 364 status = CAM_REQ_CMP_ERR; 365 if (periph == NULL) 366 return (status); 367 368 xpt_lock_buses(); 369 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 370 periph->refcount++; 371 status = CAM_REQ_CMP; 372 } 373 xpt_unlock_buses(); 374 375 return (status); 376 } 377 378 void 379 cam_periph_release_locked_buses(struct cam_periph *periph) 380 { 381 382 mtx_assert(periph->sim->mtx, MA_OWNED); 383 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 384 if (--periph->refcount == 0) 385 camperiphfree(periph); 386 } 387 388 void 389 cam_periph_release_locked(struct cam_periph *periph) 390 { 391 392 if (periph == NULL) 393 return; 394 395 xpt_lock_buses(); 396 cam_periph_release_locked_buses(periph); 397 xpt_unlock_buses(); 398 } 399 400 void 401 cam_periph_release(struct cam_periph *periph) 402 { 403 struct cam_sim *sim; 404 405 if (periph == NULL) 406 return; 407 408 sim = periph->sim; 409 mtx_assert(sim->mtx, MA_NOTOWNED); 410 mtx_lock(sim->mtx); 411 cam_periph_release_locked(periph); 412 mtx_unlock(sim->mtx); 413 } 414 415 int 416 cam_periph_hold(struct cam_periph *periph, int priority) 417 { 418 int error; 419 420 /* 421 * Increment the reference count on the peripheral 422 * while we wait for our lock attempt to succeed 423 * to ensure the peripheral doesn't disappear out 424 * from user us while we sleep. 425 */ 426 427 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 428 return (ENXIO); 429 430 mtx_assert(periph->sim->mtx, MA_OWNED); 431 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 432 periph->flags |= CAM_PERIPH_LOCK_WANTED; 433 if ((error = mtx_sleep(periph, periph->sim->mtx, priority, 434 "caplck", 0)) != 0) { 435 cam_periph_release_locked(periph); 436 return (error); 437 } 438 if (periph->flags & CAM_PERIPH_INVALID) { 439 cam_periph_release_locked(periph); 440 return (ENXIO); 441 } 442 } 443 444 periph->flags |= CAM_PERIPH_LOCKED; 445 return (0); 446 } 447 448 void 449 cam_periph_unhold(struct cam_periph *periph) 450 { 451 452 mtx_assert(periph->sim->mtx, MA_OWNED); 453 454 periph->flags &= ~CAM_PERIPH_LOCKED; 455 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 456 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 457 wakeup(periph); 458 } 459 460 cam_periph_release_locked(periph); 461 } 462 463 /* 464 * Look for the next unit number that is not currently in use for this 465 * peripheral type starting at "newunit". Also exclude unit numbers that 466 * are reserved by for future "hardwiring" unless we already know that this 467 * is a potential wired device. Only assume that the device is "wired" the 468 * first time through the loop since after that we'll be looking at unit 469 * numbers that did not match a wiring entry. 470 */ 471 static u_int 472 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 473 path_id_t pathid, target_id_t target, lun_id_t lun) 474 { 475 struct cam_periph *periph; 476 char *periph_name; 477 int i, val, dunit, r; 478 const char *dname, *strval; 479 480 periph_name = p_drv->driver_name; 481 for (;;newunit++) { 482 483 for (periph = TAILQ_FIRST(&p_drv->units); 484 periph != NULL && periph->unit_number != newunit; 485 periph = TAILQ_NEXT(periph, unit_links)) 486 ; 487 488 if (periph != NULL && periph->unit_number == newunit) { 489 if (wired != 0) { 490 xpt_print(periph->path, "Duplicate Wired " 491 "Device entry!\n"); 492 xpt_print(periph->path, "Second device (%s " 493 "device at scbus%d target %d lun %d) will " 494 "not be wired\n", periph_name, pathid, 495 target, lun); 496 wired = 0; 497 } 498 continue; 499 } 500 if (wired) 501 break; 502 503 /* 504 * Don't match entries like "da 4" as a wired down 505 * device, but do match entries like "da 4 target 5" 506 * or even "da 4 scbus 1". 507 */ 508 i = 0; 509 dname = periph_name; 510 for (;;) { 511 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 512 if (r != 0) 513 break; 514 /* if no "target" and no specific scbus, skip */ 515 if (resource_int_value(dname, dunit, "target", &val) && 516 (resource_string_value(dname, dunit, "at",&strval)|| 517 strcmp(strval, "scbus") == 0)) 518 continue; 519 if (newunit == dunit) 520 break; 521 } 522 if (r != 0) 523 break; 524 } 525 return (newunit); 526 } 527 528 static u_int 529 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 530 target_id_t target, lun_id_t lun) 531 { 532 u_int unit; 533 int wired, i, val, dunit; 534 const char *dname, *strval; 535 char pathbuf[32], *periph_name; 536 537 periph_name = p_drv->driver_name; 538 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 539 unit = 0; 540 i = 0; 541 dname = periph_name; 542 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 543 wired = 0) { 544 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 545 if (strcmp(strval, pathbuf) != 0) 546 continue; 547 wired++; 548 } 549 if (resource_int_value(dname, dunit, "target", &val) == 0) { 550 if (val != target) 551 continue; 552 wired++; 553 } 554 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 555 if (val != lun) 556 continue; 557 wired++; 558 } 559 if (wired != 0) { 560 unit = dunit; 561 break; 562 } 563 } 564 565 /* 566 * Either start from 0 looking for the next unit or from 567 * the unit number given in the resource config. This way, 568 * if we have wildcard matches, we don't return the same 569 * unit number twice. 570 */ 571 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 572 573 return (unit); 574 } 575 576 void 577 cam_periph_invalidate(struct cam_periph *periph) 578 { 579 580 mtx_assert(periph->sim->mtx, MA_OWNED); 581 /* 582 * We only call this routine the first time a peripheral is 583 * invalidated. 584 */ 585 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 586 return; 587 588 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 589 periph->flags |= CAM_PERIPH_INVALID; 590 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 591 if (periph->periph_oninval != NULL) 592 periph->periph_oninval(periph); 593 cam_periph_release_locked(periph); 594 } 595 596 static void 597 camperiphfree(struct cam_periph *periph) 598 { 599 struct periph_driver **p_drv; 600 601 mtx_assert(periph->sim->mtx, MA_OWNED); 602 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 603 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 604 break; 605 } 606 if (*p_drv == NULL) { 607 printf("camperiphfree: attempt to free non-existant periph\n"); 608 return; 609 } 610 611 /* 612 * We need to set this flag before dropping the topology lock, to 613 * let anyone who is traversing the list that this peripheral is 614 * about to be freed, and there will be no more reference count 615 * checks. 616 */ 617 periph->flags |= CAM_PERIPH_FREE; 618 619 /* 620 * The peripheral destructor semantics dictate calling with only the 621 * SIM mutex held. Since it might sleep, it should not be called 622 * with the topology lock held. 623 */ 624 xpt_unlock_buses(); 625 626 /* 627 * We need to call the peripheral destructor prior to removing the 628 * peripheral from the list. Otherwise, we risk running into a 629 * scenario where the peripheral unit number may get reused 630 * (because it has been removed from the list), but some resources 631 * used by the peripheral are still hanging around. In particular, 632 * the devfs nodes used by some peripherals like the pass(4) driver 633 * aren't fully cleaned up until the destructor is run. If the 634 * unit number is reused before the devfs instance is fully gone, 635 * devfs will panic. 636 */ 637 if (periph->periph_dtor != NULL) 638 periph->periph_dtor(periph); 639 640 /* 641 * The peripheral list is protected by the topology lock. 642 */ 643 xpt_lock_buses(); 644 645 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 646 (*p_drv)->generation++; 647 648 xpt_remove_periph(periph); 649 650 xpt_unlock_buses(); 651 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 652 653 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 654 union ccb ccb; 655 void *arg; 656 657 switch (periph->deferred_ac) { 658 case AC_FOUND_DEVICE: 659 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 660 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 661 xpt_action(&ccb); 662 arg = &ccb; 663 break; 664 case AC_PATH_REGISTERED: 665 ccb.ccb_h.func_code = XPT_PATH_INQ; 666 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 667 xpt_action(&ccb); 668 arg = &ccb; 669 break; 670 default: 671 arg = NULL; 672 break; 673 } 674 periph->deferred_callback(NULL, periph->deferred_ac, 675 periph->path, arg); 676 } 677 xpt_free_path(periph->path); 678 free(periph, M_CAMPERIPH); 679 xpt_lock_buses(); 680 } 681 682 /* 683 * Map user virtual pointers into kernel virtual address space, so we can 684 * access the memory. This is now a generic function that centralizes most 685 * of the sanity checks on the data flags, if any. 686 * This also only works for up to MAXPHYS memory. Since we use 687 * buffers to map stuff in and out, we're limited to the buffer size. 688 */ 689 int 690 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 691 { 692 int numbufs, i, j; 693 int flags[CAM_PERIPH_MAXMAPS]; 694 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 695 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 696 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 697 /* Some controllers may not be able to handle more data. */ 698 size_t maxmap = DFLTPHYS; 699 700 switch(ccb->ccb_h.func_code) { 701 case XPT_DEV_MATCH: 702 if (ccb->cdm.match_buf_len == 0) { 703 printf("cam_periph_mapmem: invalid match buffer " 704 "length 0\n"); 705 return(EINVAL); 706 } 707 if (ccb->cdm.pattern_buf_len > 0) { 708 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 709 lengths[0] = ccb->cdm.pattern_buf_len; 710 dirs[0] = CAM_DIR_OUT; 711 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 712 lengths[1] = ccb->cdm.match_buf_len; 713 dirs[1] = CAM_DIR_IN; 714 numbufs = 2; 715 } else { 716 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 717 lengths[0] = ccb->cdm.match_buf_len; 718 dirs[0] = CAM_DIR_IN; 719 numbufs = 1; 720 } 721 /* 722 * This request will not go to the hardware, no reason 723 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 724 */ 725 maxmap = MAXPHYS; 726 break; 727 case XPT_SCSI_IO: 728 case XPT_CONT_TARGET_IO: 729 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 730 return(0); 731 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 732 return (EINVAL); 733 data_ptrs[0] = &ccb->csio.data_ptr; 734 lengths[0] = ccb->csio.dxfer_len; 735 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 736 numbufs = 1; 737 break; 738 case XPT_ATA_IO: 739 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 740 return(0); 741 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 742 return (EINVAL); 743 data_ptrs[0] = &ccb->ataio.data_ptr; 744 lengths[0] = ccb->ataio.dxfer_len; 745 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 746 numbufs = 1; 747 break; 748 case XPT_SMP_IO: 749 data_ptrs[0] = &ccb->smpio.smp_request; 750 lengths[0] = ccb->smpio.smp_request_len; 751 dirs[0] = CAM_DIR_OUT; 752 data_ptrs[1] = &ccb->smpio.smp_response; 753 lengths[1] = ccb->smpio.smp_response_len; 754 dirs[1] = CAM_DIR_IN; 755 numbufs = 2; 756 break; 757 case XPT_DEV_ADVINFO: 758 if (ccb->cdai.bufsiz == 0) 759 return (0); 760 761 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 762 lengths[0] = ccb->cdai.bufsiz; 763 dirs[0] = CAM_DIR_IN; 764 numbufs = 1; 765 766 /* 767 * This request will not go to the hardware, no reason 768 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 769 */ 770 maxmap = MAXPHYS; 771 break; 772 default: 773 return(EINVAL); 774 break; /* NOTREACHED */ 775 } 776 777 /* 778 * Check the transfer length and permissions first, so we don't 779 * have to unmap any previously mapped buffers. 780 */ 781 for (i = 0; i < numbufs; i++) { 782 783 flags[i] = 0; 784 785 /* 786 * The userland data pointer passed in may not be page 787 * aligned. vmapbuf() truncates the address to a page 788 * boundary, so if the address isn't page aligned, we'll 789 * need enough space for the given transfer length, plus 790 * whatever extra space is necessary to make it to the page 791 * boundary. 792 */ 793 if ((lengths[i] + 794 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 795 printf("cam_periph_mapmem: attempt to map %lu bytes, " 796 "which is greater than %lu\n", 797 (long)(lengths[i] + 798 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 799 (u_long)maxmap); 800 return(E2BIG); 801 } 802 803 if (dirs[i] & CAM_DIR_OUT) { 804 flags[i] = BIO_WRITE; 805 } 806 807 if (dirs[i] & CAM_DIR_IN) { 808 flags[i] = BIO_READ; 809 } 810 811 } 812 813 /* 814 * This keeps the the kernel stack of current thread from getting 815 * swapped. In low-memory situations where the kernel stack might 816 * otherwise get swapped out, this holds it and allows the thread 817 * to make progress and release the kernel mapped pages sooner. 818 * 819 * XXX KDM should I use P_NOSWAP instead? 820 */ 821 PHOLD(curproc); 822 823 for (i = 0; i < numbufs; i++) { 824 /* 825 * Get the buffer. 826 */ 827 mapinfo->bp[i] = getpbuf(NULL); 828 829 /* save the buffer's data address */ 830 mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; 831 832 /* put our pointer in the data slot */ 833 mapinfo->bp[i]->b_data = *data_ptrs[i]; 834 835 /* set the transfer length, we know it's < MAXPHYS */ 836 mapinfo->bp[i]->b_bufsize = lengths[i]; 837 838 /* set the direction */ 839 mapinfo->bp[i]->b_iocmd = flags[i]; 840 841 /* 842 * Map the buffer into kernel memory. 843 * 844 * Note that useracc() alone is not a sufficient test. 845 * vmapbuf() can still fail due to a smaller file mapped 846 * into a larger area of VM, or if userland races against 847 * vmapbuf() after the useracc() check. 848 */ 849 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 850 for (j = 0; j < i; ++j) { 851 *data_ptrs[j] = mapinfo->bp[j]->b_saveaddr; 852 vunmapbuf(mapinfo->bp[j]); 853 relpbuf(mapinfo->bp[j], NULL); 854 } 855 relpbuf(mapinfo->bp[i], NULL); 856 PRELE(curproc); 857 return(EACCES); 858 } 859 860 /* set our pointer to the new mapped area */ 861 *data_ptrs[i] = mapinfo->bp[i]->b_data; 862 863 mapinfo->num_bufs_used++; 864 } 865 866 /* 867 * Now that we've gotten this far, change ownership to the kernel 868 * of the buffers so that we don't run afoul of returning to user 869 * space with locks (on the buffer) held. 870 */ 871 for (i = 0; i < numbufs; i++) { 872 BUF_KERNPROC(mapinfo->bp[i]); 873 } 874 875 876 return(0); 877 } 878 879 /* 880 * Unmap memory segments mapped into kernel virtual address space by 881 * cam_periph_mapmem(). 882 */ 883 void 884 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 885 { 886 int numbufs, i; 887 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 888 889 if (mapinfo->num_bufs_used <= 0) { 890 /* nothing to free and the process wasn't held. */ 891 return; 892 } 893 894 switch (ccb->ccb_h.func_code) { 895 case XPT_DEV_MATCH: 896 numbufs = min(mapinfo->num_bufs_used, 2); 897 898 if (numbufs == 1) { 899 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 900 } else { 901 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 902 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 903 } 904 break; 905 case XPT_SCSI_IO: 906 case XPT_CONT_TARGET_IO: 907 data_ptrs[0] = &ccb->csio.data_ptr; 908 numbufs = min(mapinfo->num_bufs_used, 1); 909 break; 910 case XPT_ATA_IO: 911 data_ptrs[0] = &ccb->ataio.data_ptr; 912 numbufs = min(mapinfo->num_bufs_used, 1); 913 break; 914 case XPT_SMP_IO: 915 numbufs = min(mapinfo->num_bufs_used, 2); 916 data_ptrs[0] = &ccb->smpio.smp_request; 917 data_ptrs[1] = &ccb->smpio.smp_response; 918 break; 919 case XPT_DEV_ADVINFO: 920 numbufs = min(mapinfo->num_bufs_used, 1); 921 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 922 break; 923 default: 924 /* allow ourselves to be swapped once again */ 925 PRELE(curproc); 926 return; 927 break; /* NOTREACHED */ 928 } 929 930 for (i = 0; i < numbufs; i++) { 931 /* Set the user's pointer back to the original value */ 932 *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; 933 934 /* unmap the buffer */ 935 vunmapbuf(mapinfo->bp[i]); 936 937 /* release the buffer */ 938 relpbuf(mapinfo->bp[i], NULL); 939 } 940 941 /* allow ourselves to be swapped once again */ 942 PRELE(curproc); 943 } 944 945 union ccb * 946 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 947 { 948 struct ccb_hdr *ccb_h; 949 950 mtx_assert(periph->sim->mtx, MA_OWNED); 951 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n")); 952 953 while (SLIST_FIRST(&periph->ccb_list) == NULL) { 954 if (periph->immediate_priority > priority) 955 periph->immediate_priority = priority; 956 xpt_schedule(periph, priority); 957 if ((SLIST_FIRST(&periph->ccb_list) != NULL) 958 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority)) 959 break; 960 mtx_assert(periph->sim->mtx, MA_OWNED); 961 mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb", 962 0); 963 } 964 965 ccb_h = SLIST_FIRST(&periph->ccb_list); 966 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 967 return ((union ccb *)ccb_h); 968 } 969 970 void 971 cam_periph_ccbwait(union ccb *ccb) 972 { 973 struct cam_sim *sim; 974 975 sim = xpt_path_sim(ccb->ccb_h.path); 976 if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) 977 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) 978 mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0); 979 } 980 981 int 982 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 983 int (*error_routine)(union ccb *ccb, 984 cam_flags camflags, 985 u_int32_t sense_flags)) 986 { 987 union ccb *ccb; 988 int error; 989 int found; 990 991 error = found = 0; 992 993 switch(cmd){ 994 case CAMGETPASSTHRU: 995 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 996 xpt_setup_ccb(&ccb->ccb_h, 997 ccb->ccb_h.path, 998 CAM_PRIORITY_NORMAL); 999 ccb->ccb_h.func_code = XPT_GDEVLIST; 1000 1001 /* 1002 * Basically, the point of this is that we go through 1003 * getting the list of devices, until we find a passthrough 1004 * device. In the current version of the CAM code, the 1005 * only way to determine what type of device we're dealing 1006 * with is by its name. 1007 */ 1008 while (found == 0) { 1009 ccb->cgdl.index = 0; 1010 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1011 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1012 1013 /* we want the next device in the list */ 1014 xpt_action(ccb); 1015 if (strncmp(ccb->cgdl.periph_name, 1016 "pass", 4) == 0){ 1017 found = 1; 1018 break; 1019 } 1020 } 1021 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1022 (found == 0)) { 1023 ccb->cgdl.periph_name[0] = '\0'; 1024 ccb->cgdl.unit_number = 0; 1025 break; 1026 } 1027 } 1028 1029 /* copy the result back out */ 1030 bcopy(ccb, addr, sizeof(union ccb)); 1031 1032 /* and release the ccb */ 1033 xpt_release_ccb(ccb); 1034 1035 break; 1036 default: 1037 error = ENOTTY; 1038 break; 1039 } 1040 return(error); 1041 } 1042 1043 int 1044 cam_periph_runccb(union ccb *ccb, 1045 int (*error_routine)(union ccb *ccb, 1046 cam_flags camflags, 1047 u_int32_t sense_flags), 1048 cam_flags camflags, u_int32_t sense_flags, 1049 struct devstat *ds) 1050 { 1051 struct cam_sim *sim; 1052 int error; 1053 1054 error = 0; 1055 sim = xpt_path_sim(ccb->ccb_h.path); 1056 mtx_assert(sim->mtx, MA_OWNED); 1057 1058 /* 1059 * If the user has supplied a stats structure, and if we understand 1060 * this particular type of ccb, record the transaction start. 1061 */ 1062 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 1063 ccb->ccb_h.func_code == XPT_ATA_IO)) 1064 devstat_start_transaction(ds, NULL); 1065 1066 xpt_action(ccb); 1067 1068 do { 1069 cam_periph_ccbwait(ccb); 1070 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1071 error = 0; 1072 else if (error_routine != NULL) 1073 error = (*error_routine)(ccb, camflags, sense_flags); 1074 else 1075 error = 0; 1076 1077 } while (error == ERESTART); 1078 1079 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1080 cam_release_devq(ccb->ccb_h.path, 1081 /* relsim_flags */0, 1082 /* openings */0, 1083 /* timeout */0, 1084 /* getcount_only */ FALSE); 1085 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1086 } 1087 1088 if (ds != NULL) { 1089 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1090 devstat_end_transaction(ds, 1091 ccb->csio.dxfer_len, 1092 ccb->csio.tag_action & 0x3, 1093 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1094 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1095 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1096 DEVSTAT_WRITE : 1097 DEVSTAT_READ, NULL, NULL); 1098 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1099 devstat_end_transaction(ds, 1100 ccb->ataio.dxfer_len, 1101 ccb->ataio.tag_action & 0x3, 1102 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1103 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1104 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1105 DEVSTAT_WRITE : 1106 DEVSTAT_READ, NULL, NULL); 1107 } 1108 } 1109 1110 return(error); 1111 } 1112 1113 void 1114 cam_freeze_devq(struct cam_path *path) 1115 { 1116 struct ccb_hdr ccb_h; 1117 1118 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1119 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1120 ccb_h.func_code = XPT_NOOP; 1121 ccb_h.flags = CAM_DEV_QFREEZE; 1122 xpt_action((union ccb *)&ccb_h); 1123 } 1124 1125 u_int32_t 1126 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1127 u_int32_t openings, u_int32_t arg, 1128 int getcount_only) 1129 { 1130 struct ccb_relsim crs; 1131 1132 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1133 relsim_flags, openings, arg, getcount_only)); 1134 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1135 crs.ccb_h.func_code = XPT_REL_SIMQ; 1136 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1137 crs.release_flags = relsim_flags; 1138 crs.openings = openings; 1139 crs.release_timeout = arg; 1140 xpt_action((union ccb *)&crs); 1141 return (crs.qfrozen_cnt); 1142 } 1143 1144 #define saved_ccb_ptr ppriv_ptr0 1145 static void 1146 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1147 { 1148 union ccb *saved_ccb; 1149 cam_status status; 1150 struct scsi_start_stop_unit *scsi_cmd; 1151 int error_code, sense_key, asc, ascq; 1152 1153 scsi_cmd = (struct scsi_start_stop_unit *) 1154 &done_ccb->csio.cdb_io.cdb_bytes; 1155 status = done_ccb->ccb_h.status; 1156 1157 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1158 if (scsi_extract_sense_ccb(done_ccb, 1159 &error_code, &sense_key, &asc, &ascq)) { 1160 /* 1161 * If the error is "invalid field in CDB", 1162 * and the load/eject flag is set, turn the 1163 * flag off and try again. This is just in 1164 * case the drive in question barfs on the 1165 * load eject flag. The CAM code should set 1166 * the load/eject flag by default for 1167 * removable media. 1168 */ 1169 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1170 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1171 (asc == 0x24) && (ascq == 0x00)) { 1172 scsi_cmd->how &= ~SSS_LOEJ; 1173 if (status & CAM_DEV_QFRZN) { 1174 cam_release_devq(done_ccb->ccb_h.path, 1175 0, 0, 0, 0); 1176 done_ccb->ccb_h.status &= 1177 ~CAM_DEV_QFRZN; 1178 } 1179 xpt_action(done_ccb); 1180 goto out; 1181 } 1182 } 1183 if (cam_periph_error(done_ccb, 1184 0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART) 1185 goto out; 1186 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1187 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1188 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1189 } 1190 } else { 1191 /* 1192 * If we have successfully taken a device from the not 1193 * ready to ready state, re-scan the device and re-get 1194 * the inquiry information. Many devices (mostly disks) 1195 * don't properly report their inquiry information unless 1196 * they are spun up. 1197 */ 1198 if (scsi_cmd->opcode == START_STOP_UNIT) 1199 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1200 } 1201 1202 /* 1203 * Perform the final retry with the original CCB so that final 1204 * error processing is performed by the owner of the CCB. 1205 */ 1206 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1207 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1208 xpt_free_ccb(saved_ccb); 1209 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1210 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1211 xpt_action(done_ccb); 1212 1213 out: 1214 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1215 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1216 } 1217 1218 /* 1219 * Generic Async Event handler. Peripheral drivers usually 1220 * filter out the events that require personal attention, 1221 * and leave the rest to this function. 1222 */ 1223 void 1224 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1225 struct cam_path *path, void *arg) 1226 { 1227 switch (code) { 1228 case AC_LOST_DEVICE: 1229 cam_periph_invalidate(periph); 1230 break; 1231 default: 1232 break; 1233 } 1234 } 1235 1236 void 1237 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1238 { 1239 struct ccb_getdevstats cgds; 1240 1241 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1242 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1243 xpt_action((union ccb *)&cgds); 1244 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1245 } 1246 1247 void 1248 cam_periph_freeze_after_event(struct cam_periph *periph, 1249 struct timeval* event_time, u_int duration_ms) 1250 { 1251 struct timeval delta; 1252 struct timeval duration_tv; 1253 1254 if (!timevalisset(event_time)) 1255 return; 1256 1257 microtime(&delta); 1258 timevalsub(&delta, event_time); 1259 duration_tv.tv_sec = duration_ms / 1000; 1260 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1261 if (timevalcmp(&delta, &duration_tv, <)) { 1262 timevalsub(&duration_tv, &delta); 1263 1264 duration_ms = duration_tv.tv_sec * 1000; 1265 duration_ms += duration_tv.tv_usec / 1000; 1266 cam_freeze_devq(periph->path); 1267 cam_release_devq(periph->path, 1268 RELSIM_RELEASE_AFTER_TIMEOUT, 1269 /*reduction*/0, 1270 /*timeout*/duration_ms, 1271 /*getcount_only*/0); 1272 } 1273 1274 } 1275 1276 static int 1277 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1278 cam_flags camflags, u_int32_t sense_flags, 1279 int *openings, u_int32_t *relsim_flags, 1280 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1281 { 1282 int error; 1283 1284 switch (ccb->csio.scsi_status) { 1285 case SCSI_STATUS_OK: 1286 case SCSI_STATUS_COND_MET: 1287 case SCSI_STATUS_INTERMED: 1288 case SCSI_STATUS_INTERMED_COND_MET: 1289 error = 0; 1290 break; 1291 case SCSI_STATUS_CMD_TERMINATED: 1292 case SCSI_STATUS_CHECK_COND: 1293 error = camperiphscsisenseerror(ccb, orig_ccb, 1294 camflags, 1295 sense_flags, 1296 openings, 1297 relsim_flags, 1298 timeout, 1299 action, 1300 action_string); 1301 break; 1302 case SCSI_STATUS_QUEUE_FULL: 1303 { 1304 /* no decrement */ 1305 struct ccb_getdevstats cgds; 1306 1307 /* 1308 * First off, find out what the current 1309 * transaction counts are. 1310 */ 1311 xpt_setup_ccb(&cgds.ccb_h, 1312 ccb->ccb_h.path, 1313 CAM_PRIORITY_NORMAL); 1314 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1315 xpt_action((union ccb *)&cgds); 1316 1317 /* 1318 * If we were the only transaction active, treat 1319 * the QUEUE FULL as if it were a BUSY condition. 1320 */ 1321 if (cgds.dev_active != 0) { 1322 int total_openings; 1323 1324 /* 1325 * Reduce the number of openings to 1326 * be 1 less than the amount it took 1327 * to get a queue full bounded by the 1328 * minimum allowed tag count for this 1329 * device. 1330 */ 1331 total_openings = cgds.dev_active + cgds.dev_openings; 1332 *openings = cgds.dev_active; 1333 if (*openings < cgds.mintags) 1334 *openings = cgds.mintags; 1335 if (*openings < total_openings) 1336 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1337 else { 1338 /* 1339 * Some devices report queue full for 1340 * temporary resource shortages. For 1341 * this reason, we allow a minimum 1342 * tag count to be entered via a 1343 * quirk entry to prevent the queue 1344 * count on these devices from falling 1345 * to a pessimisticly low value. We 1346 * still wait for the next successful 1347 * completion, however, before queueing 1348 * more transactions to the device. 1349 */ 1350 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1351 } 1352 *timeout = 0; 1353 error = ERESTART; 1354 *action &= ~SSQ_PRINT_SENSE; 1355 break; 1356 } 1357 /* FALLTHROUGH */ 1358 } 1359 case SCSI_STATUS_BUSY: 1360 /* 1361 * Restart the queue after either another 1362 * command completes or a 1 second timeout. 1363 */ 1364 if (ccb->ccb_h.retry_count > 0) { 1365 ccb->ccb_h.retry_count--; 1366 error = ERESTART; 1367 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1368 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1369 *timeout = 1000; 1370 } else { 1371 error = EIO; 1372 } 1373 break; 1374 case SCSI_STATUS_RESERV_CONFLICT: 1375 default: 1376 error = EIO; 1377 break; 1378 } 1379 return (error); 1380 } 1381 1382 static int 1383 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1384 cam_flags camflags, u_int32_t sense_flags, 1385 int *openings, u_int32_t *relsim_flags, 1386 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1387 { 1388 struct cam_periph *periph; 1389 union ccb *orig_ccb = ccb; 1390 int error, recoveryccb; 1391 1392 periph = xpt_path_periph(ccb->ccb_h.path); 1393 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1394 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1395 /* 1396 * If error recovery is already in progress, don't attempt 1397 * to process this error, but requeue it unconditionally 1398 * and attempt to process it once error recovery has 1399 * completed. This failed command is probably related to 1400 * the error that caused the currently active error recovery 1401 * action so our current recovery efforts should also 1402 * address this command. Be aware that the error recovery 1403 * code assumes that only one recovery action is in progress 1404 * on a particular peripheral instance at any given time 1405 * (e.g. only one saved CCB for error recovery) so it is 1406 * imperitive that we don't violate this assumption. 1407 */ 1408 error = ERESTART; 1409 *action &= ~SSQ_PRINT_SENSE; 1410 } else { 1411 scsi_sense_action err_action; 1412 struct ccb_getdev cgd; 1413 1414 /* 1415 * Grab the inquiry data for this device. 1416 */ 1417 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1418 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1419 xpt_action((union ccb *)&cgd); 1420 1421 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1422 sense_flags); 1423 error = err_action & SS_ERRMASK; 1424 1425 /* 1426 * Do not autostart sequential access devices 1427 * to avoid unexpected tape loading. 1428 */ 1429 if ((err_action & SS_MASK) == SS_START && 1430 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1431 *action_string = "Will not autostart a " 1432 "sequential access device"; 1433 goto sense_error_done; 1434 } 1435 1436 /* 1437 * Avoid recovery recursion if recovery action is the same. 1438 */ 1439 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1440 if (((err_action & SS_MASK) == SS_START && 1441 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1442 ((err_action & SS_MASK) == SS_TUR && 1443 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1444 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1445 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1446 *timeout = 500; 1447 } 1448 } 1449 1450 /* 1451 * If the recovery action will consume a retry, 1452 * make sure we actually have retries available. 1453 */ 1454 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1455 if (ccb->ccb_h.retry_count > 0 && 1456 (periph->flags & CAM_PERIPH_INVALID) == 0) 1457 ccb->ccb_h.retry_count--; 1458 else { 1459 *action_string = "Retries exhausted"; 1460 goto sense_error_done; 1461 } 1462 } 1463 1464 if ((err_action & SS_MASK) >= SS_START) { 1465 /* 1466 * Do common portions of commands that 1467 * use recovery CCBs. 1468 */ 1469 orig_ccb = xpt_alloc_ccb_nowait(); 1470 if (orig_ccb == NULL) { 1471 *action_string = "Can't allocate recovery CCB"; 1472 goto sense_error_done; 1473 } 1474 /* 1475 * Clear freeze flag for original request here, as 1476 * this freeze will be dropped as part of ERESTART. 1477 */ 1478 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1479 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1480 } 1481 1482 switch (err_action & SS_MASK) { 1483 case SS_NOP: 1484 *action_string = "No recovery action needed"; 1485 error = 0; 1486 break; 1487 case SS_RETRY: 1488 *action_string = "Retrying command (per sense data)"; 1489 error = ERESTART; 1490 break; 1491 case SS_FAIL: 1492 *action_string = "Unretryable error"; 1493 break; 1494 case SS_START: 1495 { 1496 int le; 1497 1498 /* 1499 * Send a start unit command to the device, and 1500 * then retry the command. 1501 */ 1502 *action_string = "Attempting to start unit"; 1503 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1504 1505 /* 1506 * Check for removable media and set 1507 * load/eject flag appropriately. 1508 */ 1509 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1510 le = TRUE; 1511 else 1512 le = FALSE; 1513 1514 scsi_start_stop(&ccb->csio, 1515 /*retries*/1, 1516 camperiphdone, 1517 MSG_SIMPLE_Q_TAG, 1518 /*start*/TRUE, 1519 /*load/eject*/le, 1520 /*immediate*/FALSE, 1521 SSD_FULL_SIZE, 1522 /*timeout*/50000); 1523 break; 1524 } 1525 case SS_TUR: 1526 { 1527 /* 1528 * Send a Test Unit Ready to the device. 1529 * If the 'many' flag is set, we send 120 1530 * test unit ready commands, one every half 1531 * second. Otherwise, we just send one TUR. 1532 * We only want to do this if the retry 1533 * count has not been exhausted. 1534 */ 1535 int retries; 1536 1537 if ((err_action & SSQ_MANY) != 0) { 1538 *action_string = "Polling device for readiness"; 1539 retries = 120; 1540 } else { 1541 *action_string = "Testing device for readiness"; 1542 retries = 1; 1543 } 1544 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1545 scsi_test_unit_ready(&ccb->csio, 1546 retries, 1547 camperiphdone, 1548 MSG_SIMPLE_Q_TAG, 1549 SSD_FULL_SIZE, 1550 /*timeout*/5000); 1551 1552 /* 1553 * Accomplish our 500ms delay by deferring 1554 * the release of our device queue appropriately. 1555 */ 1556 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1557 *timeout = 500; 1558 break; 1559 } 1560 default: 1561 panic("Unhandled error action %x", err_action); 1562 } 1563 1564 if ((err_action & SS_MASK) >= SS_START) { 1565 /* 1566 * Drop the priority, so that the recovery 1567 * CCB is the first to execute. Freeze the queue 1568 * after this command is sent so that we can 1569 * restore the old csio and have it queued in 1570 * the proper order before we release normal 1571 * transactions to the device. 1572 */ 1573 ccb->ccb_h.pinfo.priority--; 1574 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1575 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1576 error = ERESTART; 1577 *orig = orig_ccb; 1578 } 1579 1580 sense_error_done: 1581 *action = err_action; 1582 } 1583 return (error); 1584 } 1585 1586 /* 1587 * Generic error handler. Peripheral drivers usually filter 1588 * out the errors that they handle in a unique mannor, then 1589 * call this function. 1590 */ 1591 int 1592 cam_periph_error(union ccb *ccb, cam_flags camflags, 1593 u_int32_t sense_flags, union ccb *save_ccb) 1594 { 1595 struct cam_path *newpath; 1596 union ccb *orig_ccb, *scan_ccb; 1597 struct cam_periph *periph; 1598 const char *action_string; 1599 cam_status status; 1600 int frozen, error, openings; 1601 u_int32_t action, relsim_flags, timeout; 1602 1603 action = SSQ_PRINT_SENSE; 1604 periph = xpt_path_periph(ccb->ccb_h.path); 1605 action_string = NULL; 1606 status = ccb->ccb_h.status; 1607 frozen = (status & CAM_DEV_QFRZN) != 0; 1608 status &= CAM_STATUS_MASK; 1609 openings = relsim_flags = timeout = 0; 1610 orig_ccb = ccb; 1611 1612 switch (status) { 1613 case CAM_REQ_CMP: 1614 error = 0; 1615 action &= ~SSQ_PRINT_SENSE; 1616 break; 1617 case CAM_SCSI_STATUS_ERROR: 1618 error = camperiphscsistatuserror(ccb, &orig_ccb, 1619 camflags, sense_flags, &openings, &relsim_flags, 1620 &timeout, &action, &action_string); 1621 break; 1622 case CAM_AUTOSENSE_FAIL: 1623 error = EIO; /* we have to kill the command */ 1624 break; 1625 case CAM_UA_ABORT: 1626 case CAM_UA_TERMIO: 1627 case CAM_MSG_REJECT_REC: 1628 /* XXX Don't know that these are correct */ 1629 error = EIO; 1630 break; 1631 case CAM_SEL_TIMEOUT: 1632 if ((camflags & CAM_RETRY_SELTO) != 0) { 1633 if (ccb->ccb_h.retry_count > 0 && 1634 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1635 ccb->ccb_h.retry_count--; 1636 error = ERESTART; 1637 1638 /* 1639 * Wait a bit to give the device 1640 * time to recover before we try again. 1641 */ 1642 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1643 timeout = periph_selto_delay; 1644 break; 1645 } 1646 action_string = "Retries exhausted"; 1647 } 1648 /* FALLTHROUGH */ 1649 case CAM_DEV_NOT_THERE: 1650 error = ENXIO; 1651 action = SSQ_LOST; 1652 break; 1653 case CAM_REQ_INVALID: 1654 case CAM_PATH_INVALID: 1655 case CAM_NO_HBA: 1656 case CAM_PROVIDE_FAIL: 1657 case CAM_REQ_TOO_BIG: 1658 case CAM_LUN_INVALID: 1659 case CAM_TID_INVALID: 1660 error = EINVAL; 1661 break; 1662 case CAM_SCSI_BUS_RESET: 1663 case CAM_BDR_SENT: 1664 /* 1665 * Commands that repeatedly timeout and cause these 1666 * kinds of error recovery actions, should return 1667 * CAM_CMD_TIMEOUT, which allows us to safely assume 1668 * that this command was an innocent bystander to 1669 * these events and should be unconditionally 1670 * retried. 1671 */ 1672 case CAM_REQUEUE_REQ: 1673 /* Unconditional requeue if device is still there */ 1674 if (periph->flags & CAM_PERIPH_INVALID) { 1675 action_string = "Periph was invalidated"; 1676 error = EIO; 1677 } else if (sense_flags & SF_NO_RETRY) { 1678 error = EIO; 1679 action_string = "Retry was blocked"; 1680 } else { 1681 error = ERESTART; 1682 action &= ~SSQ_PRINT_SENSE; 1683 } 1684 break; 1685 case CAM_RESRC_UNAVAIL: 1686 /* Wait a bit for the resource shortage to abate. */ 1687 timeout = periph_noresrc_delay; 1688 /* FALLTHROUGH */ 1689 case CAM_BUSY: 1690 if (timeout == 0) { 1691 /* Wait a bit for the busy condition to abate. */ 1692 timeout = periph_busy_delay; 1693 } 1694 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1695 /* FALLTHROUGH */ 1696 case CAM_ATA_STATUS_ERROR: 1697 case CAM_REQ_CMP_ERR: 1698 case CAM_CMD_TIMEOUT: 1699 case CAM_UNEXP_BUSFREE: 1700 case CAM_UNCOR_PARITY: 1701 case CAM_DATA_RUN_ERR: 1702 default: 1703 if (periph->flags & CAM_PERIPH_INVALID) { 1704 error = EIO; 1705 action_string = "Periph was invalidated"; 1706 } else if (ccb->ccb_h.retry_count == 0) { 1707 error = EIO; 1708 action_string = "Retries exhausted"; 1709 } else if (sense_flags & SF_NO_RETRY) { 1710 error = EIO; 1711 action_string = "Retry was blocked"; 1712 } else { 1713 ccb->ccb_h.retry_count--; 1714 error = ERESTART; 1715 } 1716 break; 1717 } 1718 1719 if ((sense_flags & SF_PRINT_ALWAYS) || 1720 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1721 action |= SSQ_PRINT_SENSE; 1722 else if (sense_flags & SF_NO_PRINT) 1723 action &= ~SSQ_PRINT_SENSE; 1724 if ((action & SSQ_PRINT_SENSE) != 0) 1725 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1726 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1727 if (error != ERESTART) { 1728 if (action_string == NULL) 1729 action_string = "Unretryable error"; 1730 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1731 error, action_string); 1732 } else if (action_string != NULL) 1733 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1734 else 1735 xpt_print(ccb->ccb_h.path, "Retrying command\n"); 1736 } 1737 1738 if ((action & SSQ_LOST) != 0) { 1739 lun_id_t lun_id; 1740 1741 /* 1742 * For a selection timeout, we consider all of the LUNs on 1743 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1744 * then we only get rid of the device(s) specified by the 1745 * path in the original CCB. 1746 */ 1747 if (status == CAM_SEL_TIMEOUT) 1748 lun_id = CAM_LUN_WILDCARD; 1749 else 1750 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1751 1752 /* Should we do more if we can't create the path?? */ 1753 if (xpt_create_path(&newpath, periph, 1754 xpt_path_path_id(ccb->ccb_h.path), 1755 xpt_path_target_id(ccb->ccb_h.path), 1756 lun_id) == CAM_REQ_CMP) { 1757 1758 /* 1759 * Let peripheral drivers know that this 1760 * device has gone away. 1761 */ 1762 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1763 xpt_free_path(newpath); 1764 } 1765 } 1766 1767 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1768 if ((action & SSQ_UA) != 0) 1769 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1770 1771 /* Rescan target on "Reported LUNs data has changed" */ 1772 if ((action & SSQ_RESCAN) != 0) { 1773 if (xpt_create_path(&newpath, NULL, 1774 xpt_path_path_id(ccb->ccb_h.path), 1775 xpt_path_target_id(ccb->ccb_h.path), 1776 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 1777 1778 scan_ccb = xpt_alloc_ccb_nowait(); 1779 if (scan_ccb != NULL) { 1780 scan_ccb->ccb_h.path = newpath; 1781 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 1782 scan_ccb->crcn.flags = 0; 1783 xpt_rescan(scan_ccb); 1784 } else 1785 xpt_print(newpath, 1786 "Can't allocate CCB to rescan target\n"); 1787 } 1788 } 1789 1790 /* Attempt a retry */ 1791 if (error == ERESTART || error == 0) { 1792 if (frozen != 0) 1793 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1794 if (error == ERESTART) 1795 xpt_action(ccb); 1796 if (frozen != 0) 1797 cam_release_devq(ccb->ccb_h.path, 1798 relsim_flags, 1799 openings, 1800 timeout, 1801 /*getcount_only*/0); 1802 } 1803 1804 return (error); 1805 } 1806