1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_xpt_internal.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_sim.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 static u_int camperiphnextunit(struct periph_driver *p_drv, 67 u_int newunit, int wired, 68 path_id_t pathid, target_id_t target, 69 lun_id_t lun); 70 static u_int camperiphunit(struct periph_driver *p_drv, 71 path_id_t pathid, target_id_t target, 72 lun_id_t lun); 73 static void camperiphdone(struct cam_periph *periph, 74 union ccb *done_ccb); 75 static void camperiphfree(struct cam_periph *periph); 76 static int camperiphscsistatuserror(union ccb *ccb, 77 union ccb **orig_ccb, 78 cam_flags camflags, 79 u_int32_t sense_flags, 80 int *openings, 81 u_int32_t *relsim_flags, 82 u_int32_t *timeout, 83 u_int32_t *action, 84 const char **action_string); 85 static int camperiphscsisenseerror(union ccb *ccb, 86 union ccb **orig_ccb, 87 cam_flags camflags, 88 u_int32_t sense_flags, 89 int *openings, 90 u_int32_t *relsim_flags, 91 u_int32_t *timeout, 92 u_int32_t *action, 93 const char **action_string); 94 static void cam_periph_devctl_notify(union ccb *ccb); 95 96 static int nperiph_drivers; 97 static int initialized = 0; 98 struct periph_driver **periph_drivers; 99 100 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 101 102 static int periph_selto_delay = 1000; 103 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 104 static int periph_noresrc_delay = 500; 105 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 106 static int periph_busy_delay = 500; 107 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 108 109 static u_int periph_mapmem_thresh = 65536; 110 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 111 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 112 113 void 114 periphdriver_register(void *data) 115 { 116 struct periph_driver *drv = (struct periph_driver *)data; 117 struct periph_driver **newdrivers, **old; 118 int ndrivers; 119 120 again: 121 ndrivers = nperiph_drivers + 2; 122 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 123 M_WAITOK); 124 xpt_lock_buses(); 125 if (ndrivers != nperiph_drivers + 2) { 126 /* 127 * Lost race against itself; go around. 128 */ 129 xpt_unlock_buses(); 130 free(newdrivers, M_CAMPERIPH); 131 goto again; 132 } 133 if (periph_drivers) 134 bcopy(periph_drivers, newdrivers, 135 sizeof(*newdrivers) * nperiph_drivers); 136 newdrivers[nperiph_drivers] = drv; 137 newdrivers[nperiph_drivers + 1] = NULL; 138 old = periph_drivers; 139 periph_drivers = newdrivers; 140 nperiph_drivers++; 141 xpt_unlock_buses(); 142 if (old) 143 free(old, M_CAMPERIPH); 144 /* If driver marked as early or it is late now, initialize it. */ 145 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 146 initialized > 1) 147 (*drv->init)(); 148 } 149 150 int 151 periphdriver_unregister(void *data) 152 { 153 struct periph_driver *drv = (struct periph_driver *)data; 154 int error, n; 155 156 /* If driver marked as early or it is late now, deinitialize it. */ 157 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 158 initialized > 1) { 159 if (drv->deinit == NULL) { 160 printf("CAM periph driver '%s' doesn't have deinit.\n", 161 drv->driver_name); 162 return (EOPNOTSUPP); 163 } 164 error = drv->deinit(); 165 if (error != 0) 166 return (error); 167 } 168 169 xpt_lock_buses(); 170 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 171 ; 172 KASSERT(n < nperiph_drivers, 173 ("Periph driver '%s' was not registered", drv->driver_name)); 174 for (; n + 1 < nperiph_drivers; n++) 175 periph_drivers[n] = periph_drivers[n + 1]; 176 periph_drivers[n + 1] = NULL; 177 nperiph_drivers--; 178 xpt_unlock_buses(); 179 return (0); 180 } 181 182 void 183 periphdriver_init(int level) 184 { 185 int i, early; 186 187 initialized = max(initialized, level); 188 for (i = 0; periph_drivers[i] != NULL; i++) { 189 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 190 if (early == initialized) 191 (*periph_drivers[i]->init)(); 192 } 193 } 194 195 cam_status 196 cam_periph_alloc(periph_ctor_t *periph_ctor, 197 periph_oninv_t *periph_oninvalidate, 198 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 199 char *name, cam_periph_type type, struct cam_path *path, 200 ac_callback_t *ac_callback, ac_code code, void *arg) 201 { 202 struct periph_driver **p_drv; 203 struct cam_sim *sim; 204 struct cam_periph *periph; 205 struct cam_periph *cur_periph; 206 path_id_t path_id; 207 target_id_t target_id; 208 lun_id_t lun_id; 209 cam_status status; 210 u_int init_level; 211 212 init_level = 0; 213 /* 214 * Handle Hot-Plug scenarios. If there is already a peripheral 215 * of our type assigned to this path, we are likely waiting for 216 * final close on an old, invalidated, peripheral. If this is 217 * the case, queue up a deferred call to the peripheral's async 218 * handler. If it looks like a mistaken re-allocation, complain. 219 */ 220 if ((periph = cam_periph_find(path, name)) != NULL) { 221 if ((periph->flags & CAM_PERIPH_INVALID) != 0 222 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 223 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 224 periph->deferred_callback = ac_callback; 225 periph->deferred_ac = code; 226 return (CAM_REQ_INPROG); 227 } else { 228 printf("cam_periph_alloc: attempt to re-allocate " 229 "valid device %s%d rejected flags %#x " 230 "refcount %d\n", periph->periph_name, 231 periph->unit_number, periph->flags, 232 periph->refcount); 233 } 234 return (CAM_REQ_INVALID); 235 } 236 237 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 238 M_NOWAIT|M_ZERO); 239 240 if (periph == NULL) 241 return (CAM_RESRC_UNAVAIL); 242 243 init_level++; 244 245 sim = xpt_path_sim(path); 246 path_id = xpt_path_path_id(path); 247 target_id = xpt_path_target_id(path); 248 lun_id = xpt_path_lun_id(path); 249 periph->periph_start = periph_start; 250 periph->periph_dtor = periph_dtor; 251 periph->periph_oninval = periph_oninvalidate; 252 periph->type = type; 253 periph->periph_name = name; 254 periph->scheduled_priority = CAM_PRIORITY_NONE; 255 periph->immediate_priority = CAM_PRIORITY_NONE; 256 periph->refcount = 1; /* Dropped by invalidation. */ 257 periph->sim = sim; 258 SLIST_INIT(&periph->ccb_list); 259 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 260 if (status != CAM_REQ_CMP) 261 goto failure; 262 periph->path = path; 263 264 xpt_lock_buses(); 265 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 266 if (strcmp((*p_drv)->driver_name, name) == 0) 267 break; 268 } 269 if (*p_drv == NULL) { 270 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 271 xpt_unlock_buses(); 272 xpt_free_path(periph->path); 273 free(periph, M_CAMPERIPH); 274 return (CAM_REQ_INVALID); 275 } 276 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 277 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 278 while (cur_periph != NULL 279 && cur_periph->unit_number < periph->unit_number) 280 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 281 if (cur_periph != NULL) { 282 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 283 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 284 } else { 285 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 286 (*p_drv)->generation++; 287 } 288 xpt_unlock_buses(); 289 290 init_level++; 291 292 status = xpt_add_periph(periph); 293 if (status != CAM_REQ_CMP) 294 goto failure; 295 296 init_level++; 297 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 298 299 status = periph_ctor(periph, arg); 300 301 if (status == CAM_REQ_CMP) 302 init_level++; 303 304 failure: 305 switch (init_level) { 306 case 4: 307 /* Initialized successfully */ 308 break; 309 case 3: 310 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 311 xpt_remove_periph(periph); 312 /* FALLTHROUGH */ 313 case 2: 314 xpt_lock_buses(); 315 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 316 xpt_unlock_buses(); 317 xpt_free_path(periph->path); 318 /* FALLTHROUGH */ 319 case 1: 320 free(periph, M_CAMPERIPH); 321 /* FALLTHROUGH */ 322 case 0: 323 /* No cleanup to perform. */ 324 break; 325 default: 326 panic("%s: Unknown init level", __func__); 327 } 328 return(status); 329 } 330 331 /* 332 * Find a peripheral structure with the specified path, target, lun, 333 * and (optionally) type. If the name is NULL, this function will return 334 * the first peripheral driver that matches the specified path. 335 */ 336 struct cam_periph * 337 cam_periph_find(struct cam_path *path, char *name) 338 { 339 struct periph_driver **p_drv; 340 struct cam_periph *periph; 341 342 xpt_lock_buses(); 343 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 344 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 345 continue; 346 347 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 348 if (xpt_path_comp(periph->path, path) == 0) { 349 xpt_unlock_buses(); 350 cam_periph_assert(periph, MA_OWNED); 351 return(periph); 352 } 353 } 354 if (name != NULL) { 355 xpt_unlock_buses(); 356 return(NULL); 357 } 358 } 359 xpt_unlock_buses(); 360 return(NULL); 361 } 362 363 /* 364 * Find peripheral driver instances attached to the specified path. 365 */ 366 int 367 cam_periph_list(struct cam_path *path, struct sbuf *sb) 368 { 369 struct sbuf local_sb; 370 struct periph_driver **p_drv; 371 struct cam_periph *periph; 372 int count; 373 int sbuf_alloc_len; 374 375 sbuf_alloc_len = 16; 376 retry: 377 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 378 count = 0; 379 xpt_lock_buses(); 380 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 381 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 382 if (xpt_path_comp(periph->path, path) != 0) 383 continue; 384 385 if (sbuf_len(&local_sb) != 0) 386 sbuf_cat(&local_sb, ","); 387 388 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 389 periph->unit_number); 390 391 if (sbuf_error(&local_sb) == ENOMEM) { 392 sbuf_alloc_len *= 2; 393 xpt_unlock_buses(); 394 sbuf_delete(&local_sb); 395 goto retry; 396 } 397 count++; 398 } 399 } 400 xpt_unlock_buses(); 401 sbuf_finish(&local_sb); 402 if (sbuf_len(sb) != 0) 403 sbuf_cat(sb, ","); 404 sbuf_cat(sb, sbuf_data(&local_sb)); 405 sbuf_delete(&local_sb); 406 return (count); 407 } 408 409 int 410 cam_periph_acquire(struct cam_periph *periph) 411 { 412 int status; 413 414 if (periph == NULL) 415 return (EINVAL); 416 417 status = ENOENT; 418 xpt_lock_buses(); 419 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 420 periph->refcount++; 421 status = 0; 422 } 423 xpt_unlock_buses(); 424 425 return (status); 426 } 427 428 void 429 cam_periph_doacquire(struct cam_periph *periph) 430 { 431 432 xpt_lock_buses(); 433 KASSERT(periph->refcount >= 1, 434 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 435 periph->refcount++; 436 xpt_unlock_buses(); 437 } 438 439 void 440 cam_periph_release_locked_buses(struct cam_periph *periph) 441 { 442 443 cam_periph_assert(periph, MA_OWNED); 444 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 445 if (--periph->refcount == 0) 446 camperiphfree(periph); 447 } 448 449 void 450 cam_periph_release_locked(struct cam_periph *periph) 451 { 452 453 if (periph == NULL) 454 return; 455 456 xpt_lock_buses(); 457 cam_periph_release_locked_buses(periph); 458 xpt_unlock_buses(); 459 } 460 461 void 462 cam_periph_release(struct cam_periph *periph) 463 { 464 struct mtx *mtx; 465 466 if (periph == NULL) 467 return; 468 469 cam_periph_assert(periph, MA_NOTOWNED); 470 mtx = cam_periph_mtx(periph); 471 mtx_lock(mtx); 472 cam_periph_release_locked(periph); 473 mtx_unlock(mtx); 474 } 475 476 /* 477 * hold/unhold act as mutual exclusion for sections of the code that 478 * need to sleep and want to make sure that other sections that 479 * will interfere are held off. This only protects exclusive sections 480 * from each other. 481 */ 482 int 483 cam_periph_hold(struct cam_periph *periph, int priority) 484 { 485 int error; 486 487 /* 488 * Increment the reference count on the peripheral 489 * while we wait for our lock attempt to succeed 490 * to ensure the peripheral doesn't disappear out 491 * from user us while we sleep. 492 */ 493 494 if (cam_periph_acquire(periph) != 0) 495 return (ENXIO); 496 497 cam_periph_assert(periph, MA_OWNED); 498 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 499 periph->flags |= CAM_PERIPH_LOCK_WANTED; 500 if ((error = cam_periph_sleep(periph, periph, priority, 501 "caplck", 0)) != 0) { 502 cam_periph_release_locked(periph); 503 return (error); 504 } 505 if (periph->flags & CAM_PERIPH_INVALID) { 506 cam_periph_release_locked(periph); 507 return (ENXIO); 508 } 509 } 510 511 periph->flags |= CAM_PERIPH_LOCKED; 512 return (0); 513 } 514 515 void 516 cam_periph_unhold(struct cam_periph *periph) 517 { 518 519 cam_periph_assert(periph, MA_OWNED); 520 521 periph->flags &= ~CAM_PERIPH_LOCKED; 522 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 523 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 524 wakeup(periph); 525 } 526 527 cam_periph_release_locked(periph); 528 } 529 530 /* 531 * Look for the next unit number that is not currently in use for this 532 * peripheral type starting at "newunit". Also exclude unit numbers that 533 * are reserved by for future "hardwiring" unless we already know that this 534 * is a potential wired device. Only assume that the device is "wired" the 535 * first time through the loop since after that we'll be looking at unit 536 * numbers that did not match a wiring entry. 537 */ 538 static u_int 539 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 540 path_id_t pathid, target_id_t target, lun_id_t lun) 541 { 542 struct cam_periph *periph; 543 char *periph_name; 544 int i, val, dunit, r; 545 const char *dname, *strval; 546 547 periph_name = p_drv->driver_name; 548 for (;;newunit++) { 549 for (periph = TAILQ_FIRST(&p_drv->units); 550 periph != NULL && periph->unit_number != newunit; 551 periph = TAILQ_NEXT(periph, unit_links)) 552 ; 553 554 if (periph != NULL && periph->unit_number == newunit) { 555 if (wired != 0) { 556 xpt_print(periph->path, "Duplicate Wired " 557 "Device entry!\n"); 558 xpt_print(periph->path, "Second device (%s " 559 "device at scbus%d target %d lun %d) will " 560 "not be wired\n", periph_name, pathid, 561 target, lun); 562 wired = 0; 563 } 564 continue; 565 } 566 if (wired) 567 break; 568 569 /* 570 * Don't match entries like "da 4" as a wired down 571 * device, but do match entries like "da 4 target 5" 572 * or even "da 4 scbus 1". 573 */ 574 i = 0; 575 dname = periph_name; 576 for (;;) { 577 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 578 if (r != 0) 579 break; 580 /* if no "target" and no specific scbus, skip */ 581 if (resource_int_value(dname, dunit, "target", &val) && 582 (resource_string_value(dname, dunit, "at",&strval)|| 583 strcmp(strval, "scbus") == 0)) 584 continue; 585 if (newunit == dunit) 586 break; 587 } 588 if (r != 0) 589 break; 590 } 591 return (newunit); 592 } 593 594 static u_int 595 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 596 target_id_t target, lun_id_t lun) 597 { 598 u_int unit; 599 int wired, i, val, dunit; 600 const char *dname, *strval; 601 char pathbuf[32], *periph_name; 602 603 periph_name = p_drv->driver_name; 604 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 605 unit = 0; 606 i = 0; 607 dname = periph_name; 608 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 609 wired = 0) { 610 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 611 if (strcmp(strval, pathbuf) != 0) 612 continue; 613 wired++; 614 } 615 if (resource_int_value(dname, dunit, "target", &val) == 0) { 616 if (val != target) 617 continue; 618 wired++; 619 } 620 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 621 if (val != lun) 622 continue; 623 wired++; 624 } 625 if (wired != 0) { 626 unit = dunit; 627 break; 628 } 629 } 630 631 /* 632 * Either start from 0 looking for the next unit or from 633 * the unit number given in the resource config. This way, 634 * if we have wildcard matches, we don't return the same 635 * unit number twice. 636 */ 637 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 638 639 return (unit); 640 } 641 642 void 643 cam_periph_invalidate(struct cam_periph *periph) 644 { 645 646 cam_periph_assert(periph, MA_OWNED); 647 /* 648 * We only tear down the device the first time a peripheral is 649 * invalidated. 650 */ 651 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 652 return; 653 654 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 655 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 656 struct sbuf sb; 657 char buffer[160]; 658 659 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 660 xpt_denounce_periph_sbuf(periph, &sb); 661 sbuf_finish(&sb); 662 sbuf_putbuf(&sb); 663 } 664 periph->flags |= CAM_PERIPH_INVALID; 665 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 666 if (periph->periph_oninval != NULL) 667 periph->periph_oninval(periph); 668 cam_periph_release_locked(periph); 669 } 670 671 static void 672 camperiphfree(struct cam_periph *periph) 673 { 674 struct periph_driver **p_drv; 675 struct periph_driver *drv; 676 677 cam_periph_assert(periph, MA_OWNED); 678 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 679 periph->periph_name, periph->unit_number)); 680 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 681 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 682 break; 683 } 684 if (*p_drv == NULL) { 685 printf("camperiphfree: attempt to free non-existant periph\n"); 686 return; 687 } 688 /* 689 * Cache a pointer to the periph_driver structure. If a 690 * periph_driver is added or removed from the array (see 691 * periphdriver_register()) while we drop the toplogy lock 692 * below, p_drv may change. This doesn't protect against this 693 * particular periph_driver going away. That will require full 694 * reference counting in the periph_driver infrastructure. 695 */ 696 drv = *p_drv; 697 698 /* 699 * We need to set this flag before dropping the topology lock, to 700 * let anyone who is traversing the list that this peripheral is 701 * about to be freed, and there will be no more reference count 702 * checks. 703 */ 704 periph->flags |= CAM_PERIPH_FREE; 705 706 /* 707 * The peripheral destructor semantics dictate calling with only the 708 * SIM mutex held. Since it might sleep, it should not be called 709 * with the topology lock held. 710 */ 711 xpt_unlock_buses(); 712 713 /* 714 * We need to call the peripheral destructor prior to removing the 715 * peripheral from the list. Otherwise, we risk running into a 716 * scenario where the peripheral unit number may get reused 717 * (because it has been removed from the list), but some resources 718 * used by the peripheral are still hanging around. In particular, 719 * the devfs nodes used by some peripherals like the pass(4) driver 720 * aren't fully cleaned up until the destructor is run. If the 721 * unit number is reused before the devfs instance is fully gone, 722 * devfs will panic. 723 */ 724 if (periph->periph_dtor != NULL) 725 periph->periph_dtor(periph); 726 727 /* 728 * The peripheral list is protected by the topology lock. We have to 729 * remove the periph from the drv list before we call deferred_ac. The 730 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 731 */ 732 xpt_lock_buses(); 733 734 TAILQ_REMOVE(&drv->units, periph, unit_links); 735 drv->generation++; 736 737 xpt_remove_periph(periph); 738 739 xpt_unlock_buses(); 740 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 741 xpt_print(periph->path, "Periph destroyed\n"); 742 else 743 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 744 745 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 746 union ccb ccb; 747 void *arg; 748 749 switch (periph->deferred_ac) { 750 case AC_FOUND_DEVICE: 751 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 752 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 753 xpt_action(&ccb); 754 arg = &ccb; 755 break; 756 case AC_PATH_REGISTERED: 757 xpt_path_inq(&ccb.cpi, periph->path); 758 arg = &ccb; 759 break; 760 default: 761 arg = NULL; 762 break; 763 } 764 periph->deferred_callback(NULL, periph->deferred_ac, 765 periph->path, arg); 766 } 767 xpt_free_path(periph->path); 768 free(periph, M_CAMPERIPH); 769 xpt_lock_buses(); 770 } 771 772 /* 773 * Map user virtual pointers into kernel virtual address space, so we can 774 * access the memory. This is now a generic function that centralizes most 775 * of the sanity checks on the data flags, if any. 776 * This also only works for up to maxphys memory. Since we use 777 * buffers to map stuff in and out, we're limited to the buffer size. 778 */ 779 int 780 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 781 u_int maxmap) 782 { 783 int numbufs, i; 784 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 785 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 786 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 787 788 bzero(mapinfo, sizeof(*mapinfo)); 789 if (maxmap == 0) 790 maxmap = DFLTPHYS; /* traditional default */ 791 else if (maxmap > maxphys) 792 maxmap = maxphys; /* for safety */ 793 switch(ccb->ccb_h.func_code) { 794 case XPT_DEV_MATCH: 795 if (ccb->cdm.match_buf_len == 0) { 796 printf("cam_periph_mapmem: invalid match buffer " 797 "length 0\n"); 798 return(EINVAL); 799 } 800 if (ccb->cdm.pattern_buf_len > 0) { 801 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 802 lengths[0] = ccb->cdm.pattern_buf_len; 803 dirs[0] = CAM_DIR_OUT; 804 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 805 lengths[1] = ccb->cdm.match_buf_len; 806 dirs[1] = CAM_DIR_IN; 807 numbufs = 2; 808 } else { 809 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 810 lengths[0] = ccb->cdm.match_buf_len; 811 dirs[0] = CAM_DIR_IN; 812 numbufs = 1; 813 } 814 /* 815 * This request will not go to the hardware, no reason 816 * to be so strict. vmapbuf() is able to map up to maxphys. 817 */ 818 maxmap = maxphys; 819 break; 820 case XPT_SCSI_IO: 821 case XPT_CONT_TARGET_IO: 822 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 823 return(0); 824 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 825 return (EINVAL); 826 data_ptrs[0] = &ccb->csio.data_ptr; 827 lengths[0] = ccb->csio.dxfer_len; 828 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 829 numbufs = 1; 830 break; 831 case XPT_ATA_IO: 832 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 833 return(0); 834 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 835 return (EINVAL); 836 data_ptrs[0] = &ccb->ataio.data_ptr; 837 lengths[0] = ccb->ataio.dxfer_len; 838 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 839 numbufs = 1; 840 break; 841 case XPT_MMC_IO: 842 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 843 return(0); 844 /* Two mappings: one for cmd->data and one for cmd->data->data */ 845 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 846 lengths[0] = sizeof(struct mmc_data *); 847 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 848 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 849 lengths[1] = ccb->mmcio.cmd.data->len; 850 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 851 numbufs = 2; 852 break; 853 case XPT_SMP_IO: 854 data_ptrs[0] = &ccb->smpio.smp_request; 855 lengths[0] = ccb->smpio.smp_request_len; 856 dirs[0] = CAM_DIR_OUT; 857 data_ptrs[1] = &ccb->smpio.smp_response; 858 lengths[1] = ccb->smpio.smp_response_len; 859 dirs[1] = CAM_DIR_IN; 860 numbufs = 2; 861 break; 862 case XPT_NVME_IO: 863 case XPT_NVME_ADMIN: 864 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 865 return (0); 866 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 867 return (EINVAL); 868 data_ptrs[0] = &ccb->nvmeio.data_ptr; 869 lengths[0] = ccb->nvmeio.dxfer_len; 870 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 871 numbufs = 1; 872 break; 873 case XPT_DEV_ADVINFO: 874 if (ccb->cdai.bufsiz == 0) 875 return (0); 876 877 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 878 lengths[0] = ccb->cdai.bufsiz; 879 dirs[0] = CAM_DIR_IN; 880 numbufs = 1; 881 882 /* 883 * This request will not go to the hardware, no reason 884 * to be so strict. vmapbuf() is able to map up to maxphys. 885 */ 886 maxmap = maxphys; 887 break; 888 default: 889 return(EINVAL); 890 break; /* NOTREACHED */ 891 } 892 893 /* 894 * Check the transfer length and permissions first, so we don't 895 * have to unmap any previously mapped buffers. 896 */ 897 for (i = 0; i < numbufs; i++) { 898 if (lengths[i] > maxmap) { 899 printf("cam_periph_mapmem: attempt to map %lu bytes, " 900 "which is greater than %lu\n", 901 (long)(lengths[i]), (u_long)maxmap); 902 return (E2BIG); 903 } 904 } 905 906 /* 907 * This keeps the kernel stack of current thread from getting 908 * swapped. In low-memory situations where the kernel stack might 909 * otherwise get swapped out, this holds it and allows the thread 910 * to make progress and release the kernel mapped pages sooner. 911 * 912 * XXX KDM should I use P_NOSWAP instead? 913 */ 914 PHOLD(curproc); 915 916 for (i = 0; i < numbufs; i++) { 917 /* Save the user's data address. */ 918 mapinfo->orig[i] = *data_ptrs[i]; 919 920 /* 921 * For small buffers use malloc+copyin/copyout instead of 922 * mapping to KVA to avoid expensive TLB shootdowns. For 923 * small allocations malloc is backed by UMA, and so much 924 * cheaper on SMP systems. 925 */ 926 if (lengths[i] <= periph_mapmem_thresh && 927 ccb->ccb_h.func_code != XPT_MMC_IO) { 928 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 929 M_WAITOK); 930 if (dirs[i] != CAM_DIR_IN) { 931 if (copyin(mapinfo->orig[i], *data_ptrs[i], 932 lengths[i]) != 0) { 933 free(*data_ptrs[i], M_CAMPERIPH); 934 *data_ptrs[i] = mapinfo->orig[i]; 935 goto fail; 936 } 937 } else 938 bzero(*data_ptrs[i], lengths[i]); 939 continue; 940 } 941 942 /* 943 * Get the buffer. 944 */ 945 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 946 947 /* set the direction */ 948 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 949 BIO_WRITE : BIO_READ; 950 951 /* Map the buffer into kernel memory. */ 952 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 953 uma_zfree(pbuf_zone, mapinfo->bp[i]); 954 goto fail; 955 } 956 957 /* set our pointer to the new mapped area */ 958 *data_ptrs[i] = mapinfo->bp[i]->b_data; 959 } 960 961 /* 962 * Now that we've gotten this far, change ownership to the kernel 963 * of the buffers so that we don't run afoul of returning to user 964 * space with locks (on the buffer) held. 965 */ 966 for (i = 0; i < numbufs; i++) { 967 if (mapinfo->bp[i]) 968 BUF_KERNPROC(mapinfo->bp[i]); 969 } 970 971 mapinfo->num_bufs_used = numbufs; 972 return(0); 973 974 fail: 975 for (i--; i >= 0; i--) { 976 if (mapinfo->bp[i]) { 977 vunmapbuf(mapinfo->bp[i]); 978 uma_zfree(pbuf_zone, mapinfo->bp[i]); 979 } else 980 free(*data_ptrs[i], M_CAMPERIPH); 981 *data_ptrs[i] = mapinfo->orig[i]; 982 } 983 PRELE(curproc); 984 return(EACCES); 985 } 986 987 /* 988 * Unmap memory segments mapped into kernel virtual address space by 989 * cam_periph_mapmem(). 990 */ 991 void 992 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 993 { 994 int numbufs, i; 995 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 996 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 997 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 998 999 if (mapinfo->num_bufs_used <= 0) { 1000 /* nothing to free and the process wasn't held. */ 1001 return; 1002 } 1003 1004 switch (ccb->ccb_h.func_code) { 1005 case XPT_DEV_MATCH: 1006 if (ccb->cdm.pattern_buf_len > 0) { 1007 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1008 lengths[0] = ccb->cdm.pattern_buf_len; 1009 dirs[0] = CAM_DIR_OUT; 1010 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1011 lengths[1] = ccb->cdm.match_buf_len; 1012 dirs[1] = CAM_DIR_IN; 1013 numbufs = 2; 1014 } else { 1015 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1016 lengths[0] = ccb->cdm.match_buf_len; 1017 dirs[0] = CAM_DIR_IN; 1018 numbufs = 1; 1019 } 1020 break; 1021 case XPT_SCSI_IO: 1022 case XPT_CONT_TARGET_IO: 1023 data_ptrs[0] = &ccb->csio.data_ptr; 1024 lengths[0] = ccb->csio.dxfer_len; 1025 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1026 numbufs = 1; 1027 break; 1028 case XPT_ATA_IO: 1029 data_ptrs[0] = &ccb->ataio.data_ptr; 1030 lengths[0] = ccb->ataio.dxfer_len; 1031 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1032 numbufs = 1; 1033 break; 1034 case XPT_MMC_IO: 1035 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1036 lengths[0] = sizeof(struct mmc_data *); 1037 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1038 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1039 lengths[1] = ccb->mmcio.cmd.data->len; 1040 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1041 numbufs = 2; 1042 break; 1043 case XPT_SMP_IO: 1044 data_ptrs[0] = &ccb->smpio.smp_request; 1045 lengths[0] = ccb->smpio.smp_request_len; 1046 dirs[0] = CAM_DIR_OUT; 1047 data_ptrs[1] = &ccb->smpio.smp_response; 1048 lengths[1] = ccb->smpio.smp_response_len; 1049 dirs[1] = CAM_DIR_IN; 1050 numbufs = 2; 1051 break; 1052 case XPT_NVME_IO: 1053 case XPT_NVME_ADMIN: 1054 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1055 lengths[0] = ccb->nvmeio.dxfer_len; 1056 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1057 numbufs = 1; 1058 break; 1059 case XPT_DEV_ADVINFO: 1060 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1061 lengths[0] = ccb->cdai.bufsiz; 1062 dirs[0] = CAM_DIR_IN; 1063 numbufs = 1; 1064 break; 1065 default: 1066 /* allow ourselves to be swapped once again */ 1067 PRELE(curproc); 1068 return; 1069 break; /* NOTREACHED */ 1070 } 1071 1072 for (i = 0; i < numbufs; i++) { 1073 if (mapinfo->bp[i]) { 1074 /* unmap the buffer */ 1075 vunmapbuf(mapinfo->bp[i]); 1076 1077 /* release the buffer */ 1078 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1079 } else { 1080 if (dirs[i] != CAM_DIR_OUT) { 1081 copyout(*data_ptrs[i], mapinfo->orig[i], 1082 lengths[i]); 1083 } 1084 free(*data_ptrs[i], M_CAMPERIPH); 1085 } 1086 1087 /* Set the user's pointer back to the original value */ 1088 *data_ptrs[i] = mapinfo->orig[i]; 1089 } 1090 1091 /* allow ourselves to be swapped once again */ 1092 PRELE(curproc); 1093 } 1094 1095 int 1096 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1097 int (*error_routine)(union ccb *ccb, 1098 cam_flags camflags, 1099 u_int32_t sense_flags)) 1100 { 1101 union ccb *ccb; 1102 int error; 1103 int found; 1104 1105 error = found = 0; 1106 1107 switch(cmd){ 1108 case CAMGETPASSTHRU: 1109 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1110 xpt_setup_ccb(&ccb->ccb_h, 1111 ccb->ccb_h.path, 1112 CAM_PRIORITY_NORMAL); 1113 ccb->ccb_h.func_code = XPT_GDEVLIST; 1114 1115 /* 1116 * Basically, the point of this is that we go through 1117 * getting the list of devices, until we find a passthrough 1118 * device. In the current version of the CAM code, the 1119 * only way to determine what type of device we're dealing 1120 * with is by its name. 1121 */ 1122 while (found == 0) { 1123 ccb->cgdl.index = 0; 1124 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1125 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1126 /* we want the next device in the list */ 1127 xpt_action(ccb); 1128 if (strncmp(ccb->cgdl.periph_name, 1129 "pass", 4) == 0){ 1130 found = 1; 1131 break; 1132 } 1133 } 1134 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1135 (found == 0)) { 1136 ccb->cgdl.periph_name[0] = '\0'; 1137 ccb->cgdl.unit_number = 0; 1138 break; 1139 } 1140 } 1141 1142 /* copy the result back out */ 1143 bcopy(ccb, addr, sizeof(union ccb)); 1144 1145 /* and release the ccb */ 1146 xpt_release_ccb(ccb); 1147 1148 break; 1149 default: 1150 error = ENOTTY; 1151 break; 1152 } 1153 return(error); 1154 } 1155 1156 static void 1157 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1158 { 1159 1160 panic("%s: already done with ccb %p", __func__, done_ccb); 1161 } 1162 1163 static void 1164 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1165 { 1166 1167 /* Caller will release the CCB */ 1168 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1169 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1170 wakeup(&done_ccb->ccb_h.cbfcnp); 1171 } 1172 1173 static void 1174 cam_periph_ccbwait(union ccb *ccb) 1175 { 1176 1177 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1178 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1179 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1180 PRIBIO, "cbwait", 0); 1181 } 1182 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1183 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1184 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1185 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1186 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1187 } 1188 1189 /* 1190 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1191 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1192 */ 1193 int 1194 cam_periph_runccb(union ccb *ccb, 1195 int (*error_routine)(union ccb *ccb, 1196 cam_flags camflags, 1197 u_int32_t sense_flags), 1198 cam_flags camflags, u_int32_t sense_flags, 1199 struct devstat *ds) 1200 { 1201 struct bintime *starttime; 1202 struct bintime ltime; 1203 int error; 1204 bool must_poll; 1205 uint32_t timeout = 1; 1206 1207 starttime = NULL; 1208 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1209 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1210 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1211 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1212 1213 /* 1214 * If the user has supplied a stats structure, and if we understand 1215 * this particular type of ccb, record the transaction start. 1216 */ 1217 if (ds != NULL && 1218 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1219 ccb->ccb_h.func_code == XPT_ATA_IO || 1220 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1221 starttime = <ime; 1222 binuptime(starttime); 1223 devstat_start_transaction(ds, starttime); 1224 } 1225 1226 /* 1227 * We must poll the I/O while we're dumping. The scheduler is normally 1228 * stopped for dumping, except when we call doadump from ddb. While the 1229 * scheduler is running in this case, we still need to poll the I/O to 1230 * avoid sleeping waiting for the ccb to complete. 1231 * 1232 * A panic triggered dump stops the scheduler, any callback from the 1233 * shutdown_post_sync event will run with the scheduler stopped, but 1234 * before we're officially dumping. To avoid hanging in adashutdown 1235 * initiated commands (or other similar situations), we have to test for 1236 * either SCHEDULER_STOPPED() here as well. 1237 * 1238 * To avoid locking problems, dumping/polling callers must call 1239 * without a periph lock held. 1240 */ 1241 must_poll = dumping || SCHEDULER_STOPPED(); 1242 ccb->ccb_h.cbfcnp = cam_periph_done; 1243 1244 /* 1245 * If we're polling, then we need to ensure that we have ample resources 1246 * in the periph. cam_periph_error can reschedule the ccb by calling 1247 * xpt_action and returning ERESTART, so we have to effect the polling 1248 * in the do loop below. 1249 */ 1250 if (must_poll) { 1251 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1252 timeout = xpt_poll_setup(ccb); 1253 else 1254 timeout = 0; 1255 } 1256 1257 if (timeout == 0) { 1258 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1259 error = EBUSY; 1260 } else { 1261 xpt_action(ccb); 1262 do { 1263 if (must_poll) { 1264 xpt_pollwait(ccb, timeout); 1265 timeout = ccb->ccb_h.timeout * 10; 1266 } else { 1267 cam_periph_ccbwait(ccb); 1268 } 1269 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1270 error = 0; 1271 else if (error_routine != NULL) { 1272 ccb->ccb_h.cbfcnp = cam_periph_done; 1273 error = (*error_routine)(ccb, camflags, sense_flags); 1274 } else 1275 error = 0; 1276 } while (error == ERESTART); 1277 } 1278 1279 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1280 cam_release_devq(ccb->ccb_h.path, 1281 /* relsim_flags */0, 1282 /* openings */0, 1283 /* timeout */0, 1284 /* getcount_only */ FALSE); 1285 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1286 } 1287 1288 if (ds != NULL) { 1289 uint32_t bytes; 1290 devstat_tag_type tag; 1291 bool valid = true; 1292 1293 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1294 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1295 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1296 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1297 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1298 tag = (devstat_tag_type)0; 1299 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1300 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1301 tag = (devstat_tag_type)0; 1302 } else { 1303 valid = false; 1304 } 1305 if (valid) 1306 devstat_end_transaction(ds, bytes, tag, 1307 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1308 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1309 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1310 } 1311 1312 return(error); 1313 } 1314 1315 void 1316 cam_freeze_devq(struct cam_path *path) 1317 { 1318 struct ccb_hdr ccb_h; 1319 1320 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1321 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1322 ccb_h.func_code = XPT_NOOP; 1323 ccb_h.flags = CAM_DEV_QFREEZE; 1324 xpt_action((union ccb *)&ccb_h); 1325 } 1326 1327 u_int32_t 1328 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1329 u_int32_t openings, u_int32_t arg, 1330 int getcount_only) 1331 { 1332 struct ccb_relsim crs; 1333 1334 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1335 relsim_flags, openings, arg, getcount_only)); 1336 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1337 crs.ccb_h.func_code = XPT_REL_SIMQ; 1338 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1339 crs.release_flags = relsim_flags; 1340 crs.openings = openings; 1341 crs.release_timeout = arg; 1342 xpt_action((union ccb *)&crs); 1343 return (crs.qfrozen_cnt); 1344 } 1345 1346 #define saved_ccb_ptr ppriv_ptr0 1347 static void 1348 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1349 { 1350 union ccb *saved_ccb; 1351 cam_status status; 1352 struct scsi_start_stop_unit *scsi_cmd; 1353 int error = 0, error_code, sense_key, asc, ascq; 1354 1355 scsi_cmd = (struct scsi_start_stop_unit *) 1356 &done_ccb->csio.cdb_io.cdb_bytes; 1357 status = done_ccb->ccb_h.status; 1358 1359 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1360 if (scsi_extract_sense_ccb(done_ccb, 1361 &error_code, &sense_key, &asc, &ascq)) { 1362 /* 1363 * If the error is "invalid field in CDB", 1364 * and the load/eject flag is set, turn the 1365 * flag off and try again. This is just in 1366 * case the drive in question barfs on the 1367 * load eject flag. The CAM code should set 1368 * the load/eject flag by default for 1369 * removable media. 1370 */ 1371 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1372 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1373 (asc == 0x24) && (ascq == 0x00)) { 1374 scsi_cmd->how &= ~SSS_LOEJ; 1375 if (status & CAM_DEV_QFRZN) { 1376 cam_release_devq(done_ccb->ccb_h.path, 1377 0, 0, 0, 0); 1378 done_ccb->ccb_h.status &= 1379 ~CAM_DEV_QFRZN; 1380 } 1381 xpt_action(done_ccb); 1382 goto out; 1383 } 1384 } 1385 error = cam_periph_error(done_ccb, 0, 1386 SF_RETRY_UA | SF_NO_PRINT); 1387 if (error == ERESTART) 1388 goto out; 1389 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1390 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1391 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1392 } 1393 } else { 1394 /* 1395 * If we have successfully taken a device from the not 1396 * ready to ready state, re-scan the device and re-get 1397 * the inquiry information. Many devices (mostly disks) 1398 * don't properly report their inquiry information unless 1399 * they are spun up. 1400 */ 1401 if (scsi_cmd->opcode == START_STOP_UNIT) 1402 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1403 } 1404 1405 /* If we tried long wait and still failed, remember that. */ 1406 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1407 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1408 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1409 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1410 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1411 } 1412 1413 /* 1414 * After recovery action(s) completed, return to the original CCB. 1415 * If the recovery CCB has failed, considering its own possible 1416 * retries and recovery, assume we are back in state where we have 1417 * been originally, but without recovery hopes left. In such case, 1418 * after the final attempt below, we cancel any further retries, 1419 * blocking by that also any new recovery attempts for this CCB, 1420 * and the result will be the final one returned to the CCB owher. 1421 */ 1422 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1423 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1424 xpt_free_ccb(saved_ccb); 1425 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1426 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1427 if (error != 0) 1428 done_ccb->ccb_h.retry_count = 0; 1429 xpt_action(done_ccb); 1430 1431 out: 1432 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1433 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1434 } 1435 1436 /* 1437 * Generic Async Event handler. Peripheral drivers usually 1438 * filter out the events that require personal attention, 1439 * and leave the rest to this function. 1440 */ 1441 void 1442 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1443 struct cam_path *path, void *arg) 1444 { 1445 switch (code) { 1446 case AC_LOST_DEVICE: 1447 cam_periph_invalidate(periph); 1448 break; 1449 default: 1450 break; 1451 } 1452 } 1453 1454 void 1455 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1456 { 1457 struct ccb_getdevstats cgds; 1458 1459 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1460 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1461 xpt_action((union ccb *)&cgds); 1462 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1463 } 1464 1465 void 1466 cam_periph_freeze_after_event(struct cam_periph *periph, 1467 struct timeval* event_time, u_int duration_ms) 1468 { 1469 struct timeval delta; 1470 struct timeval duration_tv; 1471 1472 if (!timevalisset(event_time)) 1473 return; 1474 1475 microtime(&delta); 1476 timevalsub(&delta, event_time); 1477 duration_tv.tv_sec = duration_ms / 1000; 1478 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1479 if (timevalcmp(&delta, &duration_tv, <)) { 1480 timevalsub(&duration_tv, &delta); 1481 1482 duration_ms = duration_tv.tv_sec * 1000; 1483 duration_ms += duration_tv.tv_usec / 1000; 1484 cam_freeze_devq(periph->path); 1485 cam_release_devq(periph->path, 1486 RELSIM_RELEASE_AFTER_TIMEOUT, 1487 /*reduction*/0, 1488 /*timeout*/duration_ms, 1489 /*getcount_only*/0); 1490 } 1491 1492 } 1493 1494 static int 1495 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1496 cam_flags camflags, u_int32_t sense_flags, 1497 int *openings, u_int32_t *relsim_flags, 1498 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1499 { 1500 struct cam_periph *periph; 1501 int error; 1502 1503 switch (ccb->csio.scsi_status) { 1504 case SCSI_STATUS_OK: 1505 case SCSI_STATUS_COND_MET: 1506 case SCSI_STATUS_INTERMED: 1507 case SCSI_STATUS_INTERMED_COND_MET: 1508 error = 0; 1509 break; 1510 case SCSI_STATUS_CMD_TERMINATED: 1511 case SCSI_STATUS_CHECK_COND: 1512 error = camperiphscsisenseerror(ccb, orig_ccb, 1513 camflags, 1514 sense_flags, 1515 openings, 1516 relsim_flags, 1517 timeout, 1518 action, 1519 action_string); 1520 break; 1521 case SCSI_STATUS_QUEUE_FULL: 1522 { 1523 /* no decrement */ 1524 struct ccb_getdevstats cgds; 1525 1526 /* 1527 * First off, find out what the current 1528 * transaction counts are. 1529 */ 1530 xpt_setup_ccb(&cgds.ccb_h, 1531 ccb->ccb_h.path, 1532 CAM_PRIORITY_NORMAL); 1533 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1534 xpt_action((union ccb *)&cgds); 1535 1536 /* 1537 * If we were the only transaction active, treat 1538 * the QUEUE FULL as if it were a BUSY condition. 1539 */ 1540 if (cgds.dev_active != 0) { 1541 int total_openings; 1542 1543 /* 1544 * Reduce the number of openings to 1545 * be 1 less than the amount it took 1546 * to get a queue full bounded by the 1547 * minimum allowed tag count for this 1548 * device. 1549 */ 1550 total_openings = cgds.dev_active + cgds.dev_openings; 1551 *openings = cgds.dev_active; 1552 if (*openings < cgds.mintags) 1553 *openings = cgds.mintags; 1554 if (*openings < total_openings) 1555 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1556 else { 1557 /* 1558 * Some devices report queue full for 1559 * temporary resource shortages. For 1560 * this reason, we allow a minimum 1561 * tag count to be entered via a 1562 * quirk entry to prevent the queue 1563 * count on these devices from falling 1564 * to a pessimisticly low value. We 1565 * still wait for the next successful 1566 * completion, however, before queueing 1567 * more transactions to the device. 1568 */ 1569 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1570 } 1571 *timeout = 0; 1572 error = ERESTART; 1573 *action &= ~SSQ_PRINT_SENSE; 1574 break; 1575 } 1576 /* FALLTHROUGH */ 1577 } 1578 case SCSI_STATUS_BUSY: 1579 /* 1580 * Restart the queue after either another 1581 * command completes or a 1 second timeout. 1582 */ 1583 periph = xpt_path_periph(ccb->ccb_h.path); 1584 if (periph->flags & CAM_PERIPH_INVALID) { 1585 error = EIO; 1586 *action_string = "Periph was invalidated"; 1587 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1588 ccb->ccb_h.retry_count > 0) { 1589 if ((sense_flags & SF_RETRY_BUSY) == 0) 1590 ccb->ccb_h.retry_count--; 1591 error = ERESTART; 1592 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1593 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1594 *timeout = 1000; 1595 } else { 1596 error = EIO; 1597 *action_string = "Retries exhausted"; 1598 } 1599 break; 1600 case SCSI_STATUS_RESERV_CONFLICT: 1601 default: 1602 error = EIO; 1603 break; 1604 } 1605 return (error); 1606 } 1607 1608 static int 1609 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1610 cam_flags camflags, u_int32_t sense_flags, 1611 int *openings, u_int32_t *relsim_flags, 1612 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1613 { 1614 struct cam_periph *periph; 1615 union ccb *orig_ccb = ccb; 1616 int error, recoveryccb; 1617 1618 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1619 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1620 biotrack(ccb->csio.bio, __func__); 1621 #endif 1622 1623 periph = xpt_path_periph(ccb->ccb_h.path); 1624 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1625 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1626 /* 1627 * If error recovery is already in progress, don't attempt 1628 * to process this error, but requeue it unconditionally 1629 * and attempt to process it once error recovery has 1630 * completed. This failed command is probably related to 1631 * the error that caused the currently active error recovery 1632 * action so our current recovery efforts should also 1633 * address this command. Be aware that the error recovery 1634 * code assumes that only one recovery action is in progress 1635 * on a particular peripheral instance at any given time 1636 * (e.g. only one saved CCB for error recovery) so it is 1637 * imperitive that we don't violate this assumption. 1638 */ 1639 error = ERESTART; 1640 *action &= ~SSQ_PRINT_SENSE; 1641 } else { 1642 scsi_sense_action err_action; 1643 struct ccb_getdev cgd; 1644 1645 /* 1646 * Grab the inquiry data for this device. 1647 */ 1648 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1649 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1650 xpt_action((union ccb *)&cgd); 1651 1652 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1653 sense_flags); 1654 error = err_action & SS_ERRMASK; 1655 1656 /* 1657 * Do not autostart sequential access devices 1658 * to avoid unexpected tape loading. 1659 */ 1660 if ((err_action & SS_MASK) == SS_START && 1661 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1662 *action_string = "Will not autostart a " 1663 "sequential access device"; 1664 goto sense_error_done; 1665 } 1666 1667 /* 1668 * Avoid recovery recursion if recovery action is the same. 1669 */ 1670 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1671 if (((err_action & SS_MASK) == SS_START && 1672 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1673 ((err_action & SS_MASK) == SS_TUR && 1674 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1675 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1676 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1677 *timeout = 500; 1678 } 1679 } 1680 1681 /* 1682 * If the recovery action will consume a retry, 1683 * make sure we actually have retries available. 1684 */ 1685 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1686 if (ccb->ccb_h.retry_count > 0 && 1687 (periph->flags & CAM_PERIPH_INVALID) == 0) 1688 ccb->ccb_h.retry_count--; 1689 else { 1690 *action_string = "Retries exhausted"; 1691 goto sense_error_done; 1692 } 1693 } 1694 1695 if ((err_action & SS_MASK) >= SS_START) { 1696 /* 1697 * Do common portions of commands that 1698 * use recovery CCBs. 1699 */ 1700 orig_ccb = xpt_alloc_ccb_nowait(); 1701 if (orig_ccb == NULL) { 1702 *action_string = "Can't allocate recovery CCB"; 1703 goto sense_error_done; 1704 } 1705 /* 1706 * Clear freeze flag for original request here, as 1707 * this freeze will be dropped as part of ERESTART. 1708 */ 1709 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1710 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1711 } 1712 1713 switch (err_action & SS_MASK) { 1714 case SS_NOP: 1715 *action_string = "No recovery action needed"; 1716 error = 0; 1717 break; 1718 case SS_RETRY: 1719 *action_string = "Retrying command (per sense data)"; 1720 error = ERESTART; 1721 break; 1722 case SS_FAIL: 1723 *action_string = "Unretryable error"; 1724 break; 1725 case SS_START: 1726 { 1727 int le; 1728 1729 /* 1730 * Send a start unit command to the device, and 1731 * then retry the command. 1732 */ 1733 *action_string = "Attempting to start unit"; 1734 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1735 1736 /* 1737 * Check for removable media and set 1738 * load/eject flag appropriately. 1739 */ 1740 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1741 le = TRUE; 1742 else 1743 le = FALSE; 1744 1745 scsi_start_stop(&ccb->csio, 1746 /*retries*/1, 1747 camperiphdone, 1748 MSG_SIMPLE_Q_TAG, 1749 /*start*/TRUE, 1750 /*load/eject*/le, 1751 /*immediate*/FALSE, 1752 SSD_FULL_SIZE, 1753 /*timeout*/50000); 1754 break; 1755 } 1756 case SS_TUR: 1757 { 1758 /* 1759 * Send a Test Unit Ready to the device. 1760 * If the 'many' flag is set, we send 120 1761 * test unit ready commands, one every half 1762 * second. Otherwise, we just send one TUR. 1763 * We only want to do this if the retry 1764 * count has not been exhausted. 1765 */ 1766 int retries; 1767 1768 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1769 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1770 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1771 *action_string = "Polling device for readiness"; 1772 retries = 120; 1773 } else { 1774 *action_string = "Testing device for readiness"; 1775 retries = 1; 1776 } 1777 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1778 scsi_test_unit_ready(&ccb->csio, 1779 retries, 1780 camperiphdone, 1781 MSG_SIMPLE_Q_TAG, 1782 SSD_FULL_SIZE, 1783 /*timeout*/5000); 1784 1785 /* 1786 * Accomplish our 500ms delay by deferring 1787 * the release of our device queue appropriately. 1788 */ 1789 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1790 *timeout = 500; 1791 break; 1792 } 1793 default: 1794 panic("Unhandled error action %x", err_action); 1795 } 1796 1797 if ((err_action & SS_MASK) >= SS_START) { 1798 /* 1799 * Drop the priority, so that the recovery 1800 * CCB is the first to execute. Freeze the queue 1801 * after this command is sent so that we can 1802 * restore the old csio and have it queued in 1803 * the proper order before we release normal 1804 * transactions to the device. 1805 */ 1806 ccb->ccb_h.pinfo.priority--; 1807 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1808 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1809 error = ERESTART; 1810 *orig = orig_ccb; 1811 } 1812 1813 sense_error_done: 1814 *action = err_action; 1815 } 1816 return (error); 1817 } 1818 1819 /* 1820 * Generic error handler. Peripheral drivers usually filter 1821 * out the errors that they handle in a unique manner, then 1822 * call this function. 1823 */ 1824 int 1825 cam_periph_error(union ccb *ccb, cam_flags camflags, 1826 u_int32_t sense_flags) 1827 { 1828 struct cam_path *newpath; 1829 union ccb *orig_ccb, *scan_ccb; 1830 struct cam_periph *periph; 1831 const char *action_string; 1832 cam_status status; 1833 int frozen, error, openings, devctl_err; 1834 u_int32_t action, relsim_flags, timeout; 1835 1836 action = SSQ_PRINT_SENSE; 1837 periph = xpt_path_periph(ccb->ccb_h.path); 1838 action_string = NULL; 1839 status = ccb->ccb_h.status; 1840 frozen = (status & CAM_DEV_QFRZN) != 0; 1841 status &= CAM_STATUS_MASK; 1842 devctl_err = openings = relsim_flags = timeout = 0; 1843 orig_ccb = ccb; 1844 1845 /* Filter the errors that should be reported via devctl */ 1846 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1847 case CAM_CMD_TIMEOUT: 1848 case CAM_REQ_ABORTED: 1849 case CAM_REQ_CMP_ERR: 1850 case CAM_REQ_TERMIO: 1851 case CAM_UNREC_HBA_ERROR: 1852 case CAM_DATA_RUN_ERR: 1853 case CAM_SCSI_STATUS_ERROR: 1854 case CAM_ATA_STATUS_ERROR: 1855 case CAM_SMP_STATUS_ERROR: 1856 devctl_err++; 1857 break; 1858 default: 1859 break; 1860 } 1861 1862 switch (status) { 1863 case CAM_REQ_CMP: 1864 error = 0; 1865 action &= ~SSQ_PRINT_SENSE; 1866 break; 1867 case CAM_SCSI_STATUS_ERROR: 1868 error = camperiphscsistatuserror(ccb, &orig_ccb, 1869 camflags, sense_flags, &openings, &relsim_flags, 1870 &timeout, &action, &action_string); 1871 break; 1872 case CAM_AUTOSENSE_FAIL: 1873 error = EIO; /* we have to kill the command */ 1874 break; 1875 case CAM_UA_ABORT: 1876 case CAM_UA_TERMIO: 1877 case CAM_MSG_REJECT_REC: 1878 /* XXX Don't know that these are correct */ 1879 error = EIO; 1880 break; 1881 case CAM_SEL_TIMEOUT: 1882 if ((camflags & CAM_RETRY_SELTO) != 0) { 1883 if (ccb->ccb_h.retry_count > 0 && 1884 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1885 ccb->ccb_h.retry_count--; 1886 error = ERESTART; 1887 1888 /* 1889 * Wait a bit to give the device 1890 * time to recover before we try again. 1891 */ 1892 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1893 timeout = periph_selto_delay; 1894 break; 1895 } 1896 action_string = "Retries exhausted"; 1897 } 1898 /* FALLTHROUGH */ 1899 case CAM_DEV_NOT_THERE: 1900 error = ENXIO; 1901 action = SSQ_LOST; 1902 break; 1903 case CAM_REQ_INVALID: 1904 case CAM_PATH_INVALID: 1905 case CAM_NO_HBA: 1906 case CAM_PROVIDE_FAIL: 1907 case CAM_REQ_TOO_BIG: 1908 case CAM_LUN_INVALID: 1909 case CAM_TID_INVALID: 1910 case CAM_FUNC_NOTAVAIL: 1911 error = EINVAL; 1912 break; 1913 case CAM_SCSI_BUS_RESET: 1914 case CAM_BDR_SENT: 1915 /* 1916 * Commands that repeatedly timeout and cause these 1917 * kinds of error recovery actions, should return 1918 * CAM_CMD_TIMEOUT, which allows us to safely assume 1919 * that this command was an innocent bystander to 1920 * these events and should be unconditionally 1921 * retried. 1922 */ 1923 case CAM_REQUEUE_REQ: 1924 /* Unconditional requeue if device is still there */ 1925 if (periph->flags & CAM_PERIPH_INVALID) { 1926 action_string = "Periph was invalidated"; 1927 error = EIO; 1928 } else if (sense_flags & SF_NO_RETRY) { 1929 error = EIO; 1930 action_string = "Retry was blocked"; 1931 } else { 1932 error = ERESTART; 1933 action &= ~SSQ_PRINT_SENSE; 1934 } 1935 break; 1936 case CAM_RESRC_UNAVAIL: 1937 /* Wait a bit for the resource shortage to abate. */ 1938 timeout = periph_noresrc_delay; 1939 /* FALLTHROUGH */ 1940 case CAM_BUSY: 1941 if (timeout == 0) { 1942 /* Wait a bit for the busy condition to abate. */ 1943 timeout = periph_busy_delay; 1944 } 1945 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1946 /* FALLTHROUGH */ 1947 case CAM_ATA_STATUS_ERROR: 1948 case CAM_REQ_CMP_ERR: 1949 case CAM_CMD_TIMEOUT: 1950 case CAM_UNEXP_BUSFREE: 1951 case CAM_UNCOR_PARITY: 1952 case CAM_DATA_RUN_ERR: 1953 default: 1954 if (periph->flags & CAM_PERIPH_INVALID) { 1955 error = EIO; 1956 action_string = "Periph was invalidated"; 1957 } else if (ccb->ccb_h.retry_count == 0) { 1958 error = EIO; 1959 action_string = "Retries exhausted"; 1960 } else if (sense_flags & SF_NO_RETRY) { 1961 error = EIO; 1962 action_string = "Retry was blocked"; 1963 } else { 1964 ccb->ccb_h.retry_count--; 1965 error = ERESTART; 1966 } 1967 break; 1968 } 1969 1970 if ((sense_flags & SF_PRINT_ALWAYS) || 1971 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1972 action |= SSQ_PRINT_SENSE; 1973 else if (sense_flags & SF_NO_PRINT) 1974 action &= ~SSQ_PRINT_SENSE; 1975 if ((action & SSQ_PRINT_SENSE) != 0) 1976 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1977 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1978 if (error != ERESTART) { 1979 if (action_string == NULL) 1980 action_string = "Unretryable error"; 1981 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1982 error, action_string); 1983 } else if (action_string != NULL) 1984 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1985 else { 1986 xpt_print(ccb->ccb_h.path, 1987 "Retrying command, %d more tries remain\n", 1988 ccb->ccb_h.retry_count); 1989 } 1990 } 1991 1992 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 1993 cam_periph_devctl_notify(orig_ccb); 1994 1995 if ((action & SSQ_LOST) != 0) { 1996 lun_id_t lun_id; 1997 1998 /* 1999 * For a selection timeout, we consider all of the LUNs on 2000 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2001 * then we only get rid of the device(s) specified by the 2002 * path in the original CCB. 2003 */ 2004 if (status == CAM_SEL_TIMEOUT) 2005 lun_id = CAM_LUN_WILDCARD; 2006 else 2007 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2008 2009 /* Should we do more if we can't create the path?? */ 2010 if (xpt_create_path(&newpath, periph, 2011 xpt_path_path_id(ccb->ccb_h.path), 2012 xpt_path_target_id(ccb->ccb_h.path), 2013 lun_id) == CAM_REQ_CMP) { 2014 /* 2015 * Let peripheral drivers know that this 2016 * device has gone away. 2017 */ 2018 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2019 xpt_free_path(newpath); 2020 } 2021 } 2022 2023 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2024 if ((action & SSQ_UA) != 0) 2025 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2026 2027 /* Rescan target on "Reported LUNs data has changed" */ 2028 if ((action & SSQ_RESCAN) != 0) { 2029 if (xpt_create_path(&newpath, NULL, 2030 xpt_path_path_id(ccb->ccb_h.path), 2031 xpt_path_target_id(ccb->ccb_h.path), 2032 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2033 scan_ccb = xpt_alloc_ccb_nowait(); 2034 if (scan_ccb != NULL) { 2035 scan_ccb->ccb_h.path = newpath; 2036 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2037 scan_ccb->crcn.flags = 0; 2038 xpt_rescan(scan_ccb); 2039 } else { 2040 xpt_print(newpath, 2041 "Can't allocate CCB to rescan target\n"); 2042 xpt_free_path(newpath); 2043 } 2044 } 2045 } 2046 2047 /* Attempt a retry */ 2048 if (error == ERESTART || error == 0) { 2049 if (frozen != 0) 2050 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2051 if (error == ERESTART) 2052 xpt_action(ccb); 2053 if (frozen != 0) 2054 cam_release_devq(ccb->ccb_h.path, 2055 relsim_flags, 2056 openings, 2057 timeout, 2058 /*getcount_only*/0); 2059 } 2060 2061 return (error); 2062 } 2063 2064 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2065 2066 static void 2067 cam_periph_devctl_notify(union ccb *ccb) 2068 { 2069 struct cam_periph *periph; 2070 struct ccb_getdev *cgd; 2071 struct sbuf sb; 2072 int serr, sk, asc, ascq; 2073 char *sbmsg, *type; 2074 2075 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2076 if (sbmsg == NULL) 2077 return; 2078 2079 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2080 2081 periph = xpt_path_periph(ccb->ccb_h.path); 2082 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2083 periph->unit_number); 2084 2085 sbuf_printf(&sb, "serial=\""); 2086 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2087 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2088 CAM_PRIORITY_NORMAL); 2089 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2090 xpt_action((union ccb *)cgd); 2091 2092 if (cgd->ccb_h.status == CAM_REQ_CMP) 2093 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2094 xpt_free_ccb((union ccb *)cgd); 2095 } 2096 sbuf_printf(&sb, "\" "); 2097 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2098 2099 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2100 case CAM_CMD_TIMEOUT: 2101 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2102 type = "timeout"; 2103 break; 2104 case CAM_SCSI_STATUS_ERROR: 2105 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2106 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2107 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2108 serr, sk, asc, ascq); 2109 type = "error"; 2110 break; 2111 case CAM_ATA_STATUS_ERROR: 2112 sbuf_printf(&sb, "RES=\""); 2113 ata_res_sbuf(&ccb->ataio.res, &sb); 2114 sbuf_printf(&sb, "\" "); 2115 type = "error"; 2116 break; 2117 default: 2118 type = "error"; 2119 break; 2120 } 2121 2122 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2123 sbuf_printf(&sb, "CDB=\""); 2124 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2125 sbuf_printf(&sb, "\" "); 2126 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2127 sbuf_printf(&sb, "ACB=\""); 2128 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2129 sbuf_printf(&sb, "\" "); 2130 } 2131 2132 if (sbuf_finish(&sb) == 0) 2133 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2134 sbuf_delete(&sb); 2135 free(sbmsg, M_CAMPERIPH); 2136 } 2137 2138 /* 2139 * Sysctl to force an invalidation of the drive right now. Can be 2140 * called with CTLFLAG_MPSAFE since we take periph lock. 2141 */ 2142 int 2143 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2144 { 2145 struct cam_periph *periph; 2146 int error, value; 2147 2148 periph = arg1; 2149 value = 0; 2150 error = sysctl_handle_int(oidp, &value, 0, req); 2151 if (error != 0 || req->newptr == NULL || value != 1) 2152 return (error); 2153 2154 cam_periph_lock(periph); 2155 cam_periph_invalidate(periph); 2156 cam_periph_unlock(periph); 2157 2158 return (0); 2159 } 2160