1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/buf.h> 45 #include <sys/proc.h> 46 #include <sys/devicestat.h> 47 #include <sys/bus.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_debug.h> 59 #include <cam/cam_sim.h> 60 61 #include <cam/scsi/scsi_all.h> 62 #include <cam/scsi/scsi_message.h> 63 #include <cam/scsi/scsi_pass.h> 64 65 static u_int camperiphnextunit(struct periph_driver *p_drv, 66 u_int newunit, int wired, 67 path_id_t pathid, target_id_t target, 68 lun_id_t lun); 69 static u_int camperiphunit(struct periph_driver *p_drv, 70 path_id_t pathid, target_id_t target, 71 lun_id_t lun); 72 static void camperiphdone(struct cam_periph *periph, 73 union ccb *done_ccb); 74 static void camperiphfree(struct cam_periph *periph); 75 static int camperiphscsistatuserror(union ccb *ccb, 76 union ccb **orig_ccb, 77 cam_flags camflags, 78 u_int32_t sense_flags, 79 int *openings, 80 u_int32_t *relsim_flags, 81 u_int32_t *timeout, 82 u_int32_t *action, 83 const char **action_string); 84 static int camperiphscsisenseerror(union ccb *ccb, 85 union ccb **orig_ccb, 86 cam_flags camflags, 87 u_int32_t sense_flags, 88 int *openings, 89 u_int32_t *relsim_flags, 90 u_int32_t *timeout, 91 u_int32_t *action, 92 const char **action_string); 93 static void cam_periph_devctl_notify(union ccb *ccb); 94 95 static int nperiph_drivers; 96 static int initialized = 0; 97 struct periph_driver **periph_drivers; 98 99 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 100 101 static int periph_selto_delay = 1000; 102 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 103 static int periph_noresrc_delay = 500; 104 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 105 static int periph_busy_delay = 500; 106 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 107 108 static u_int periph_mapmem_thresh = 65536; 109 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 110 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 111 112 void 113 periphdriver_register(void *data) 114 { 115 struct periph_driver *drv = (struct periph_driver *)data; 116 struct periph_driver **newdrivers, **old; 117 int ndrivers; 118 119 again: 120 ndrivers = nperiph_drivers + 2; 121 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 122 M_WAITOK); 123 xpt_lock_buses(); 124 if (ndrivers != nperiph_drivers + 2) { 125 /* 126 * Lost race against itself; go around. 127 */ 128 xpt_unlock_buses(); 129 free(newdrivers, M_CAMPERIPH); 130 goto again; 131 } 132 if (periph_drivers) 133 bcopy(periph_drivers, newdrivers, 134 sizeof(*newdrivers) * nperiph_drivers); 135 newdrivers[nperiph_drivers] = drv; 136 newdrivers[nperiph_drivers + 1] = NULL; 137 old = periph_drivers; 138 periph_drivers = newdrivers; 139 nperiph_drivers++; 140 xpt_unlock_buses(); 141 if (old) 142 free(old, M_CAMPERIPH); 143 /* If driver marked as early or it is late now, initialize it. */ 144 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 145 initialized > 1) 146 (*drv->init)(); 147 } 148 149 int 150 periphdriver_unregister(void *data) 151 { 152 struct periph_driver *drv = (struct periph_driver *)data; 153 int error, n; 154 155 /* If driver marked as early or it is late now, deinitialize it. */ 156 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 157 initialized > 1) { 158 if (drv->deinit == NULL) { 159 printf("CAM periph driver '%s' doesn't have deinit.\n", 160 drv->driver_name); 161 return (EOPNOTSUPP); 162 } 163 error = drv->deinit(); 164 if (error != 0) 165 return (error); 166 } 167 168 xpt_lock_buses(); 169 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 170 ; 171 KASSERT(n < nperiph_drivers, 172 ("Periph driver '%s' was not registered", drv->driver_name)); 173 for (; n + 1 < nperiph_drivers; n++) 174 periph_drivers[n] = periph_drivers[n + 1]; 175 periph_drivers[n + 1] = NULL; 176 nperiph_drivers--; 177 xpt_unlock_buses(); 178 return (0); 179 } 180 181 void 182 periphdriver_init(int level) 183 { 184 int i, early; 185 186 initialized = max(initialized, level); 187 for (i = 0; periph_drivers[i] != NULL; i++) { 188 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 189 if (early == initialized) 190 (*periph_drivers[i]->init)(); 191 } 192 } 193 194 cam_status 195 cam_periph_alloc(periph_ctor_t *periph_ctor, 196 periph_oninv_t *periph_oninvalidate, 197 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 198 char *name, cam_periph_type type, struct cam_path *path, 199 ac_callback_t *ac_callback, ac_code code, void *arg) 200 { 201 struct periph_driver **p_drv; 202 struct cam_sim *sim; 203 struct cam_periph *periph; 204 struct cam_periph *cur_periph; 205 path_id_t path_id; 206 target_id_t target_id; 207 lun_id_t lun_id; 208 cam_status status; 209 u_int init_level; 210 211 init_level = 0; 212 /* 213 * Handle Hot-Plug scenarios. If there is already a peripheral 214 * of our type assigned to this path, we are likely waiting for 215 * final close on an old, invalidated, peripheral. If this is 216 * the case, queue up a deferred call to the peripheral's async 217 * handler. If it looks like a mistaken re-allocation, complain. 218 */ 219 if ((periph = cam_periph_find(path, name)) != NULL) { 220 221 if ((periph->flags & CAM_PERIPH_INVALID) != 0 222 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 223 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 224 periph->deferred_callback = ac_callback; 225 periph->deferred_ac = code; 226 return (CAM_REQ_INPROG); 227 } else { 228 printf("cam_periph_alloc: attempt to re-allocate " 229 "valid device %s%d rejected flags %#x " 230 "refcount %d\n", periph->periph_name, 231 periph->unit_number, periph->flags, 232 periph->refcount); 233 } 234 return (CAM_REQ_INVALID); 235 } 236 237 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 238 M_NOWAIT|M_ZERO); 239 240 if (periph == NULL) 241 return (CAM_RESRC_UNAVAIL); 242 243 init_level++; 244 245 246 sim = xpt_path_sim(path); 247 path_id = xpt_path_path_id(path); 248 target_id = xpt_path_target_id(path); 249 lun_id = xpt_path_lun_id(path); 250 periph->periph_start = periph_start; 251 periph->periph_dtor = periph_dtor; 252 periph->periph_oninval = periph_oninvalidate; 253 periph->type = type; 254 periph->periph_name = name; 255 periph->scheduled_priority = CAM_PRIORITY_NONE; 256 periph->immediate_priority = CAM_PRIORITY_NONE; 257 periph->refcount = 1; /* Dropped by invalidation. */ 258 periph->sim = sim; 259 SLIST_INIT(&periph->ccb_list); 260 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 261 if (status != CAM_REQ_CMP) 262 goto failure; 263 periph->path = path; 264 265 xpt_lock_buses(); 266 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 267 if (strcmp((*p_drv)->driver_name, name) == 0) 268 break; 269 } 270 if (*p_drv == NULL) { 271 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 272 xpt_unlock_buses(); 273 xpt_free_path(periph->path); 274 free(periph, M_CAMPERIPH); 275 return (CAM_REQ_INVALID); 276 } 277 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 278 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 279 while (cur_periph != NULL 280 && cur_periph->unit_number < periph->unit_number) 281 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 282 if (cur_periph != NULL) { 283 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 284 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 285 } else { 286 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 287 (*p_drv)->generation++; 288 } 289 xpt_unlock_buses(); 290 291 init_level++; 292 293 status = xpt_add_periph(periph); 294 if (status != CAM_REQ_CMP) 295 goto failure; 296 297 init_level++; 298 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 299 300 status = periph_ctor(periph, arg); 301 302 if (status == CAM_REQ_CMP) 303 init_level++; 304 305 failure: 306 switch (init_level) { 307 case 4: 308 /* Initialized successfully */ 309 break; 310 case 3: 311 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 312 xpt_remove_periph(periph); 313 /* FALLTHROUGH */ 314 case 2: 315 xpt_lock_buses(); 316 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 317 xpt_unlock_buses(); 318 xpt_free_path(periph->path); 319 /* FALLTHROUGH */ 320 case 1: 321 free(periph, M_CAMPERIPH); 322 /* FALLTHROUGH */ 323 case 0: 324 /* No cleanup to perform. */ 325 break; 326 default: 327 panic("%s: Unknown init level", __func__); 328 } 329 return(status); 330 } 331 332 /* 333 * Find a peripheral structure with the specified path, target, lun, 334 * and (optionally) type. If the name is NULL, this function will return 335 * the first peripheral driver that matches the specified path. 336 */ 337 struct cam_periph * 338 cam_periph_find(struct cam_path *path, char *name) 339 { 340 struct periph_driver **p_drv; 341 struct cam_periph *periph; 342 343 xpt_lock_buses(); 344 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 345 346 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 347 continue; 348 349 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 350 if (xpt_path_comp(periph->path, path) == 0) { 351 xpt_unlock_buses(); 352 cam_periph_assert(periph, MA_OWNED); 353 return(periph); 354 } 355 } 356 if (name != NULL) { 357 xpt_unlock_buses(); 358 return(NULL); 359 } 360 } 361 xpt_unlock_buses(); 362 return(NULL); 363 } 364 365 /* 366 * Find peripheral driver instances attached to the specified path. 367 */ 368 int 369 cam_periph_list(struct cam_path *path, struct sbuf *sb) 370 { 371 struct sbuf local_sb; 372 struct periph_driver **p_drv; 373 struct cam_periph *periph; 374 int count; 375 int sbuf_alloc_len; 376 377 sbuf_alloc_len = 16; 378 retry: 379 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 380 count = 0; 381 xpt_lock_buses(); 382 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 383 384 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 385 if (xpt_path_comp(periph->path, path) != 0) 386 continue; 387 388 if (sbuf_len(&local_sb) != 0) 389 sbuf_cat(&local_sb, ","); 390 391 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 392 periph->unit_number); 393 394 if (sbuf_error(&local_sb) == ENOMEM) { 395 sbuf_alloc_len *= 2; 396 xpt_unlock_buses(); 397 sbuf_delete(&local_sb); 398 goto retry; 399 } 400 count++; 401 } 402 } 403 xpt_unlock_buses(); 404 sbuf_finish(&local_sb); 405 if (sbuf_len(sb) != 0) 406 sbuf_cat(sb, ","); 407 sbuf_cat(sb, sbuf_data(&local_sb)); 408 sbuf_delete(&local_sb); 409 return (count); 410 } 411 412 int 413 cam_periph_acquire(struct cam_periph *periph) 414 { 415 int status; 416 417 if (periph == NULL) 418 return (EINVAL); 419 420 status = ENOENT; 421 xpt_lock_buses(); 422 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 423 periph->refcount++; 424 status = 0; 425 } 426 xpt_unlock_buses(); 427 428 return (status); 429 } 430 431 void 432 cam_periph_doacquire(struct cam_periph *periph) 433 { 434 435 xpt_lock_buses(); 436 KASSERT(periph->refcount >= 1, 437 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 438 periph->refcount++; 439 xpt_unlock_buses(); 440 } 441 442 void 443 cam_periph_release_locked_buses(struct cam_periph *periph) 444 { 445 446 cam_periph_assert(periph, MA_OWNED); 447 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 448 if (--periph->refcount == 0) 449 camperiphfree(periph); 450 } 451 452 void 453 cam_periph_release_locked(struct cam_periph *periph) 454 { 455 456 if (periph == NULL) 457 return; 458 459 xpt_lock_buses(); 460 cam_periph_release_locked_buses(periph); 461 xpt_unlock_buses(); 462 } 463 464 void 465 cam_periph_release(struct cam_periph *periph) 466 { 467 struct mtx *mtx; 468 469 if (periph == NULL) 470 return; 471 472 cam_periph_assert(periph, MA_NOTOWNED); 473 mtx = cam_periph_mtx(periph); 474 mtx_lock(mtx); 475 cam_periph_release_locked(periph); 476 mtx_unlock(mtx); 477 } 478 479 /* 480 * hold/unhold act as mutual exclusion for sections of the code that 481 * need to sleep and want to make sure that other sections that 482 * will interfere are held off. This only protects exclusive sections 483 * from each other. 484 */ 485 int 486 cam_periph_hold(struct cam_periph *periph, int priority) 487 { 488 int error; 489 490 /* 491 * Increment the reference count on the peripheral 492 * while we wait for our lock attempt to succeed 493 * to ensure the peripheral doesn't disappear out 494 * from user us while we sleep. 495 */ 496 497 if (cam_periph_acquire(periph) != 0) 498 return (ENXIO); 499 500 cam_periph_assert(periph, MA_OWNED); 501 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 502 periph->flags |= CAM_PERIPH_LOCK_WANTED; 503 if ((error = cam_periph_sleep(periph, periph, priority, 504 "caplck", 0)) != 0) { 505 cam_periph_release_locked(periph); 506 return (error); 507 } 508 if (periph->flags & CAM_PERIPH_INVALID) { 509 cam_periph_release_locked(periph); 510 return (ENXIO); 511 } 512 } 513 514 periph->flags |= CAM_PERIPH_LOCKED; 515 return (0); 516 } 517 518 void 519 cam_periph_unhold(struct cam_periph *periph) 520 { 521 522 cam_periph_assert(periph, MA_OWNED); 523 524 periph->flags &= ~CAM_PERIPH_LOCKED; 525 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 526 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 527 wakeup(periph); 528 } 529 530 cam_periph_release_locked(periph); 531 } 532 533 /* 534 * Look for the next unit number that is not currently in use for this 535 * peripheral type starting at "newunit". Also exclude unit numbers that 536 * are reserved by for future "hardwiring" unless we already know that this 537 * is a potential wired device. Only assume that the device is "wired" the 538 * first time through the loop since after that we'll be looking at unit 539 * numbers that did not match a wiring entry. 540 */ 541 static u_int 542 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 543 path_id_t pathid, target_id_t target, lun_id_t lun) 544 { 545 struct cam_periph *periph; 546 char *periph_name; 547 int i, val, dunit, r; 548 const char *dname, *strval; 549 550 periph_name = p_drv->driver_name; 551 for (;;newunit++) { 552 553 for (periph = TAILQ_FIRST(&p_drv->units); 554 periph != NULL && periph->unit_number != newunit; 555 periph = TAILQ_NEXT(periph, unit_links)) 556 ; 557 558 if (periph != NULL && periph->unit_number == newunit) { 559 if (wired != 0) { 560 xpt_print(periph->path, "Duplicate Wired " 561 "Device entry!\n"); 562 xpt_print(periph->path, "Second device (%s " 563 "device at scbus%d target %d lun %d) will " 564 "not be wired\n", periph_name, pathid, 565 target, lun); 566 wired = 0; 567 } 568 continue; 569 } 570 if (wired) 571 break; 572 573 /* 574 * Don't match entries like "da 4" as a wired down 575 * device, but do match entries like "da 4 target 5" 576 * or even "da 4 scbus 1". 577 */ 578 i = 0; 579 dname = periph_name; 580 for (;;) { 581 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 582 if (r != 0) 583 break; 584 /* if no "target" and no specific scbus, skip */ 585 if (resource_int_value(dname, dunit, "target", &val) && 586 (resource_string_value(dname, dunit, "at",&strval)|| 587 strcmp(strval, "scbus") == 0)) 588 continue; 589 if (newunit == dunit) 590 break; 591 } 592 if (r != 0) 593 break; 594 } 595 return (newunit); 596 } 597 598 static u_int 599 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 600 target_id_t target, lun_id_t lun) 601 { 602 u_int unit; 603 int wired, i, val, dunit; 604 const char *dname, *strval; 605 char pathbuf[32], *periph_name; 606 607 periph_name = p_drv->driver_name; 608 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 609 unit = 0; 610 i = 0; 611 dname = periph_name; 612 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 613 wired = 0) { 614 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 615 if (strcmp(strval, pathbuf) != 0) 616 continue; 617 wired++; 618 } 619 if (resource_int_value(dname, dunit, "target", &val) == 0) { 620 if (val != target) 621 continue; 622 wired++; 623 } 624 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 625 if (val != lun) 626 continue; 627 wired++; 628 } 629 if (wired != 0) { 630 unit = dunit; 631 break; 632 } 633 } 634 635 /* 636 * Either start from 0 looking for the next unit or from 637 * the unit number given in the resource config. This way, 638 * if we have wildcard matches, we don't return the same 639 * unit number twice. 640 */ 641 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 642 643 return (unit); 644 } 645 646 void 647 cam_periph_invalidate(struct cam_periph *periph) 648 { 649 650 cam_periph_assert(periph, MA_OWNED); 651 /* 652 * We only call this routine the first time a peripheral is 653 * invalidated. 654 */ 655 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 656 return; 657 658 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 659 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 660 struct sbuf sb; 661 char buffer[160]; 662 663 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 664 xpt_denounce_periph_sbuf(periph, &sb); 665 sbuf_finish(&sb); 666 sbuf_putbuf(&sb); 667 } 668 periph->flags |= CAM_PERIPH_INVALID; 669 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 670 if (periph->periph_oninval != NULL) 671 periph->periph_oninval(periph); 672 cam_periph_release_locked(periph); 673 } 674 675 static void 676 camperiphfree(struct cam_periph *periph) 677 { 678 struct periph_driver **p_drv; 679 struct periph_driver *drv; 680 681 cam_periph_assert(periph, MA_OWNED); 682 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 683 periph->periph_name, periph->unit_number)); 684 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 685 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 686 break; 687 } 688 if (*p_drv == NULL) { 689 printf("camperiphfree: attempt to free non-existant periph\n"); 690 return; 691 } 692 /* 693 * Cache a pointer to the periph_driver structure. If a 694 * periph_driver is added or removed from the array (see 695 * periphdriver_register()) while we drop the toplogy lock 696 * below, p_drv may change. This doesn't protect against this 697 * particular periph_driver going away. That will require full 698 * reference counting in the periph_driver infrastructure. 699 */ 700 drv = *p_drv; 701 702 /* 703 * We need to set this flag before dropping the topology lock, to 704 * let anyone who is traversing the list that this peripheral is 705 * about to be freed, and there will be no more reference count 706 * checks. 707 */ 708 periph->flags |= CAM_PERIPH_FREE; 709 710 /* 711 * The peripheral destructor semantics dictate calling with only the 712 * SIM mutex held. Since it might sleep, it should not be called 713 * with the topology lock held. 714 */ 715 xpt_unlock_buses(); 716 717 /* 718 * We need to call the peripheral destructor prior to removing the 719 * peripheral from the list. Otherwise, we risk running into a 720 * scenario where the peripheral unit number may get reused 721 * (because it has been removed from the list), but some resources 722 * used by the peripheral are still hanging around. In particular, 723 * the devfs nodes used by some peripherals like the pass(4) driver 724 * aren't fully cleaned up until the destructor is run. If the 725 * unit number is reused before the devfs instance is fully gone, 726 * devfs will panic. 727 */ 728 if (periph->periph_dtor != NULL) 729 periph->periph_dtor(periph); 730 731 /* 732 * The peripheral list is protected by the topology lock. 733 */ 734 xpt_lock_buses(); 735 736 TAILQ_REMOVE(&drv->units, periph, unit_links); 737 drv->generation++; 738 739 xpt_remove_periph(periph); 740 741 xpt_unlock_buses(); 742 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 743 xpt_print(periph->path, "Periph destroyed\n"); 744 else 745 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 746 747 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 748 union ccb ccb; 749 void *arg; 750 751 switch (periph->deferred_ac) { 752 case AC_FOUND_DEVICE: 753 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 754 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 755 xpt_action(&ccb); 756 arg = &ccb; 757 break; 758 case AC_PATH_REGISTERED: 759 xpt_path_inq(&ccb.cpi, periph->path); 760 arg = &ccb; 761 break; 762 default: 763 arg = NULL; 764 break; 765 } 766 periph->deferred_callback(NULL, periph->deferred_ac, 767 periph->path, arg); 768 } 769 xpt_free_path(periph->path); 770 free(periph, M_CAMPERIPH); 771 xpt_lock_buses(); 772 } 773 774 /* 775 * Map user virtual pointers into kernel virtual address space, so we can 776 * access the memory. This is now a generic function that centralizes most 777 * of the sanity checks on the data flags, if any. 778 * This also only works for up to MAXPHYS memory. Since we use 779 * buffers to map stuff in and out, we're limited to the buffer size. 780 */ 781 int 782 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 783 u_int maxmap) 784 { 785 int numbufs, i; 786 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 787 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 788 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 789 bool misaligned[CAM_PERIPH_MAXMAPS]; 790 791 bzero(mapinfo, sizeof(*mapinfo)); 792 if (maxmap == 0) 793 maxmap = DFLTPHYS; /* traditional default */ 794 else if (maxmap > MAXPHYS) 795 maxmap = MAXPHYS; /* for safety */ 796 switch(ccb->ccb_h.func_code) { 797 case XPT_DEV_MATCH: 798 if (ccb->cdm.match_buf_len == 0) { 799 printf("cam_periph_mapmem: invalid match buffer " 800 "length 0\n"); 801 return(EINVAL); 802 } 803 if (ccb->cdm.pattern_buf_len > 0) { 804 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 805 lengths[0] = ccb->cdm.pattern_buf_len; 806 dirs[0] = CAM_DIR_OUT; 807 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 808 lengths[1] = ccb->cdm.match_buf_len; 809 dirs[1] = CAM_DIR_IN; 810 numbufs = 2; 811 } else { 812 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 813 lengths[0] = ccb->cdm.match_buf_len; 814 dirs[0] = CAM_DIR_IN; 815 numbufs = 1; 816 } 817 /* 818 * This request will not go to the hardware, no reason 819 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 820 */ 821 maxmap = MAXPHYS; 822 break; 823 case XPT_SCSI_IO: 824 case XPT_CONT_TARGET_IO: 825 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 826 return(0); 827 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 828 return (EINVAL); 829 data_ptrs[0] = &ccb->csio.data_ptr; 830 lengths[0] = ccb->csio.dxfer_len; 831 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 832 numbufs = 1; 833 break; 834 case XPT_ATA_IO: 835 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 836 return(0); 837 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 838 return (EINVAL); 839 data_ptrs[0] = &ccb->ataio.data_ptr; 840 lengths[0] = ccb->ataio.dxfer_len; 841 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 842 numbufs = 1; 843 break; 844 case XPT_MMC_IO: 845 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 846 return(0); 847 /* Two mappings: one for cmd->data and one for cmd->data->data */ 848 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 849 lengths[0] = sizeof(struct mmc_data *); 850 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 851 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 852 lengths[1] = ccb->mmcio.cmd.data->len; 853 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 854 numbufs = 2; 855 break; 856 case XPT_SMP_IO: 857 data_ptrs[0] = &ccb->smpio.smp_request; 858 lengths[0] = ccb->smpio.smp_request_len; 859 dirs[0] = CAM_DIR_OUT; 860 data_ptrs[1] = &ccb->smpio.smp_response; 861 lengths[1] = ccb->smpio.smp_response_len; 862 dirs[1] = CAM_DIR_IN; 863 numbufs = 2; 864 break; 865 case XPT_NVME_IO: 866 case XPT_NVME_ADMIN: 867 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 868 return (0); 869 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 870 return (EINVAL); 871 data_ptrs[0] = &ccb->nvmeio.data_ptr; 872 lengths[0] = ccb->nvmeio.dxfer_len; 873 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 874 numbufs = 1; 875 break; 876 case XPT_DEV_ADVINFO: 877 if (ccb->cdai.bufsiz == 0) 878 return (0); 879 880 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 881 lengths[0] = ccb->cdai.bufsiz; 882 dirs[0] = CAM_DIR_IN; 883 numbufs = 1; 884 885 /* 886 * This request will not go to the hardware, no reason 887 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 888 */ 889 maxmap = MAXPHYS; 890 break; 891 default: 892 return(EINVAL); 893 break; /* NOTREACHED */ 894 } 895 896 /* 897 * Check the transfer length and permissions first, so we don't 898 * have to unmap any previously mapped buffers. 899 */ 900 for (i = 0; i < numbufs; i++) { 901 if (lengths[i] > maxmap) { 902 printf("cam_periph_mapmem: attempt to map %lu bytes, " 903 "which is greater than %lu\n", 904 (long)(lengths[i]), (u_long)maxmap); 905 return (E2BIG); 906 } 907 908 /* 909 * The userland data pointer passed in may not be page 910 * aligned. vmapbuf() truncates the address to a page 911 * boundary, so if the address isn't page aligned, we'll 912 * need enough space for the given transfer length, plus 913 * whatever extra space is necessary to make it to the page 914 * boundary. 915 */ 916 misaligned[i] = (lengths[i] + 917 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK) > MAXPHYS); 918 } 919 920 /* 921 * This keeps the kernel stack of current thread from getting 922 * swapped. In low-memory situations where the kernel stack might 923 * otherwise get swapped out, this holds it and allows the thread 924 * to make progress and release the kernel mapped pages sooner. 925 * 926 * XXX KDM should I use P_NOSWAP instead? 927 */ 928 PHOLD(curproc); 929 930 for (i = 0; i < numbufs; i++) { 931 932 /* Save the user's data address. */ 933 mapinfo->orig[i] = *data_ptrs[i]; 934 935 /* 936 * For small buffers use malloc+copyin/copyout instead of 937 * mapping to KVA to avoid expensive TLB shootdowns. For 938 * small allocations malloc is backed by UMA, and so much 939 * cheaper on SMP systems. 940 */ 941 if ((lengths[i] <= periph_mapmem_thresh || misaligned[i]) && 942 ccb->ccb_h.func_code != XPT_MMC_IO) { 943 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 944 M_WAITOK); 945 if (dirs[i] != CAM_DIR_IN) { 946 if (copyin(mapinfo->orig[i], *data_ptrs[i], 947 lengths[i]) != 0) { 948 free(*data_ptrs[i], M_CAMPERIPH); 949 *data_ptrs[i] = mapinfo->orig[i]; 950 goto fail; 951 } 952 } else 953 bzero(*data_ptrs[i], lengths[i]); 954 continue; 955 } 956 957 /* 958 * Get the buffer. 959 */ 960 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 961 962 /* put our pointer in the data slot */ 963 mapinfo->bp[i]->b_data = *data_ptrs[i]; 964 965 /* set the transfer length, we know it's < MAXPHYS */ 966 mapinfo->bp[i]->b_bufsize = lengths[i]; 967 968 /* set the direction */ 969 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 970 BIO_WRITE : BIO_READ; 971 972 /* 973 * Map the buffer into kernel memory. 974 * 975 * Note that useracc() alone is not a sufficient test. 976 * vmapbuf() can still fail due to a smaller file mapped 977 * into a larger area of VM, or if userland races against 978 * vmapbuf() after the useracc() check. 979 */ 980 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 981 uma_zfree(pbuf_zone, mapinfo->bp[i]); 982 goto fail; 983 } 984 985 /* set our pointer to the new mapped area */ 986 *data_ptrs[i] = mapinfo->bp[i]->b_data; 987 } 988 989 /* 990 * Now that we've gotten this far, change ownership to the kernel 991 * of the buffers so that we don't run afoul of returning to user 992 * space with locks (on the buffer) held. 993 */ 994 for (i = 0; i < numbufs; i++) { 995 if (mapinfo->bp[i]) 996 BUF_KERNPROC(mapinfo->bp[i]); 997 } 998 999 mapinfo->num_bufs_used = numbufs; 1000 return(0); 1001 1002 fail: 1003 for (i--; i >= 0; i--) { 1004 if (mapinfo->bp[i]) { 1005 vunmapbuf(mapinfo->bp[i]); 1006 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1007 } else 1008 free(*data_ptrs[i], M_CAMPERIPH); 1009 *data_ptrs[i] = mapinfo->orig[i]; 1010 } 1011 PRELE(curproc); 1012 return(EACCES); 1013 } 1014 1015 /* 1016 * Unmap memory segments mapped into kernel virtual address space by 1017 * cam_periph_mapmem(). 1018 */ 1019 void 1020 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1021 { 1022 int numbufs, i; 1023 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1024 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 1025 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1026 1027 if (mapinfo->num_bufs_used <= 0) { 1028 /* nothing to free and the process wasn't held. */ 1029 return; 1030 } 1031 1032 switch (ccb->ccb_h.func_code) { 1033 case XPT_DEV_MATCH: 1034 if (ccb->cdm.pattern_buf_len > 0) { 1035 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1036 lengths[0] = ccb->cdm.pattern_buf_len; 1037 dirs[0] = CAM_DIR_OUT; 1038 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1039 lengths[1] = ccb->cdm.match_buf_len; 1040 dirs[1] = CAM_DIR_IN; 1041 numbufs = 2; 1042 } else { 1043 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1044 lengths[0] = ccb->cdm.match_buf_len; 1045 dirs[0] = CAM_DIR_IN; 1046 numbufs = 1; 1047 } 1048 break; 1049 case XPT_SCSI_IO: 1050 case XPT_CONT_TARGET_IO: 1051 data_ptrs[0] = &ccb->csio.data_ptr; 1052 lengths[0] = ccb->csio.dxfer_len; 1053 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1054 numbufs = 1; 1055 break; 1056 case XPT_ATA_IO: 1057 data_ptrs[0] = &ccb->ataio.data_ptr; 1058 lengths[0] = ccb->ataio.dxfer_len; 1059 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1060 numbufs = 1; 1061 break; 1062 case XPT_MMC_IO: 1063 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1064 lengths[0] = sizeof(struct mmc_data *); 1065 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1066 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1067 lengths[1] = ccb->mmcio.cmd.data->len; 1068 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1069 numbufs = 2; 1070 break; 1071 case XPT_SMP_IO: 1072 data_ptrs[0] = &ccb->smpio.smp_request; 1073 lengths[0] = ccb->smpio.smp_request_len; 1074 dirs[0] = CAM_DIR_OUT; 1075 data_ptrs[1] = &ccb->smpio.smp_response; 1076 lengths[1] = ccb->smpio.smp_response_len; 1077 dirs[1] = CAM_DIR_IN; 1078 numbufs = 2; 1079 break; 1080 case XPT_NVME_IO: 1081 case XPT_NVME_ADMIN: 1082 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1083 lengths[0] = ccb->nvmeio.dxfer_len; 1084 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1085 numbufs = 1; 1086 break; 1087 case XPT_DEV_ADVINFO: 1088 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1089 lengths[0] = ccb->cdai.bufsiz; 1090 dirs[0] = CAM_DIR_IN; 1091 numbufs = 1; 1092 break; 1093 default: 1094 /* allow ourselves to be swapped once again */ 1095 PRELE(curproc); 1096 return; 1097 break; /* NOTREACHED */ 1098 } 1099 1100 for (i = 0; i < numbufs; i++) { 1101 if (mapinfo->bp[i]) { 1102 /* unmap the buffer */ 1103 vunmapbuf(mapinfo->bp[i]); 1104 1105 /* release the buffer */ 1106 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1107 } else { 1108 if (dirs[i] != CAM_DIR_OUT) { 1109 copyout(*data_ptrs[i], mapinfo->orig[i], 1110 lengths[i]); 1111 } 1112 free(*data_ptrs[i], M_CAMPERIPH); 1113 } 1114 1115 /* Set the user's pointer back to the original value */ 1116 *data_ptrs[i] = mapinfo->orig[i]; 1117 } 1118 1119 /* allow ourselves to be swapped once again */ 1120 PRELE(curproc); 1121 } 1122 1123 int 1124 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1125 int (*error_routine)(union ccb *ccb, 1126 cam_flags camflags, 1127 u_int32_t sense_flags)) 1128 { 1129 union ccb *ccb; 1130 int error; 1131 int found; 1132 1133 error = found = 0; 1134 1135 switch(cmd){ 1136 case CAMGETPASSTHRU: 1137 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1138 xpt_setup_ccb(&ccb->ccb_h, 1139 ccb->ccb_h.path, 1140 CAM_PRIORITY_NORMAL); 1141 ccb->ccb_h.func_code = XPT_GDEVLIST; 1142 1143 /* 1144 * Basically, the point of this is that we go through 1145 * getting the list of devices, until we find a passthrough 1146 * device. In the current version of the CAM code, the 1147 * only way to determine what type of device we're dealing 1148 * with is by its name. 1149 */ 1150 while (found == 0) { 1151 ccb->cgdl.index = 0; 1152 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1153 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1154 1155 /* we want the next device in the list */ 1156 xpt_action(ccb); 1157 if (strncmp(ccb->cgdl.periph_name, 1158 "pass", 4) == 0){ 1159 found = 1; 1160 break; 1161 } 1162 } 1163 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1164 (found == 0)) { 1165 ccb->cgdl.periph_name[0] = '\0'; 1166 ccb->cgdl.unit_number = 0; 1167 break; 1168 } 1169 } 1170 1171 /* copy the result back out */ 1172 bcopy(ccb, addr, sizeof(union ccb)); 1173 1174 /* and release the ccb */ 1175 xpt_release_ccb(ccb); 1176 1177 break; 1178 default: 1179 error = ENOTTY; 1180 break; 1181 } 1182 return(error); 1183 } 1184 1185 static void 1186 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1187 { 1188 1189 panic("%s: already done with ccb %p", __func__, done_ccb); 1190 } 1191 1192 static void 1193 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1194 { 1195 1196 /* Caller will release the CCB */ 1197 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1198 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1199 wakeup(&done_ccb->ccb_h.cbfcnp); 1200 } 1201 1202 static void 1203 cam_periph_ccbwait(union ccb *ccb) 1204 { 1205 1206 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1207 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1208 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1209 PRIBIO, "cbwait", 0); 1210 } 1211 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1212 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1213 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1214 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1215 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1216 } 1217 1218 /* 1219 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1220 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1221 */ 1222 int 1223 cam_periph_runccb(union ccb *ccb, 1224 int (*error_routine)(union ccb *ccb, 1225 cam_flags camflags, 1226 u_int32_t sense_flags), 1227 cam_flags camflags, u_int32_t sense_flags, 1228 struct devstat *ds) 1229 { 1230 struct bintime *starttime; 1231 struct bintime ltime; 1232 int error; 1233 bool must_poll; 1234 uint32_t timeout = 1; 1235 1236 starttime = NULL; 1237 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1238 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1239 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1240 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1241 1242 /* 1243 * If the user has supplied a stats structure, and if we understand 1244 * this particular type of ccb, record the transaction start. 1245 */ 1246 if (ds != NULL && 1247 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1248 ccb->ccb_h.func_code == XPT_ATA_IO || 1249 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1250 starttime = <ime; 1251 binuptime(starttime); 1252 devstat_start_transaction(ds, starttime); 1253 } 1254 1255 /* 1256 * We must poll the I/O while we're dumping. The scheduler is normally 1257 * stopped for dumping, except when we call doadump from ddb. While the 1258 * scheduler is running in this case, we still need to poll the I/O to 1259 * avoid sleeping waiting for the ccb to complete. 1260 * 1261 * A panic triggered dump stops the scheduler, any callback from the 1262 * shutdown_post_sync event will run with the scheduler stopped, but 1263 * before we're officially dumping. To avoid hanging in adashutdown 1264 * initiated commands (or other similar situations), we have to test for 1265 * either SCHEDULER_STOPPED() here as well. 1266 * 1267 * To avoid locking problems, dumping/polling callers must call 1268 * without a periph lock held. 1269 */ 1270 must_poll = dumping || SCHEDULER_STOPPED(); 1271 ccb->ccb_h.cbfcnp = cam_periph_done; 1272 1273 /* 1274 * If we're polling, then we need to ensure that we have ample resources 1275 * in the periph. cam_periph_error can reschedule the ccb by calling 1276 * xpt_action and returning ERESTART, so we have to effect the polling 1277 * in the do loop below. 1278 */ 1279 if (must_poll) { 1280 timeout = xpt_poll_setup(ccb); 1281 } 1282 1283 if (timeout == 0) { 1284 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1285 error = EBUSY; 1286 } else { 1287 xpt_action(ccb); 1288 do { 1289 if (must_poll) { 1290 xpt_pollwait(ccb, timeout); 1291 timeout = ccb->ccb_h.timeout * 10; 1292 } else { 1293 cam_periph_ccbwait(ccb); 1294 } 1295 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1296 error = 0; 1297 else if (error_routine != NULL) { 1298 ccb->ccb_h.cbfcnp = cam_periph_done; 1299 error = (*error_routine)(ccb, camflags, sense_flags); 1300 } else 1301 error = 0; 1302 } while (error == ERESTART); 1303 } 1304 1305 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1306 cam_release_devq(ccb->ccb_h.path, 1307 /* relsim_flags */0, 1308 /* openings */0, 1309 /* timeout */0, 1310 /* getcount_only */ FALSE); 1311 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1312 } 1313 1314 if (ds != NULL) { 1315 uint32_t bytes; 1316 devstat_tag_type tag; 1317 bool valid = true; 1318 1319 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1320 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1321 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1322 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1323 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1324 tag = (devstat_tag_type)0; 1325 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1326 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1327 tag = (devstat_tag_type)0; 1328 } else { 1329 valid = false; 1330 } 1331 if (valid) 1332 devstat_end_transaction(ds, bytes, tag, 1333 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1334 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1335 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1336 } 1337 1338 return(error); 1339 } 1340 1341 void 1342 cam_freeze_devq(struct cam_path *path) 1343 { 1344 struct ccb_hdr ccb_h; 1345 1346 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1347 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1348 ccb_h.func_code = XPT_NOOP; 1349 ccb_h.flags = CAM_DEV_QFREEZE; 1350 xpt_action((union ccb *)&ccb_h); 1351 } 1352 1353 u_int32_t 1354 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1355 u_int32_t openings, u_int32_t arg, 1356 int getcount_only) 1357 { 1358 struct ccb_relsim crs; 1359 1360 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1361 relsim_flags, openings, arg, getcount_only)); 1362 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1363 crs.ccb_h.func_code = XPT_REL_SIMQ; 1364 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1365 crs.release_flags = relsim_flags; 1366 crs.openings = openings; 1367 crs.release_timeout = arg; 1368 xpt_action((union ccb *)&crs); 1369 return (crs.qfrozen_cnt); 1370 } 1371 1372 #define saved_ccb_ptr ppriv_ptr0 1373 static void 1374 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1375 { 1376 union ccb *saved_ccb; 1377 cam_status status; 1378 struct scsi_start_stop_unit *scsi_cmd; 1379 int error = 0, error_code, sense_key, asc, ascq; 1380 1381 scsi_cmd = (struct scsi_start_stop_unit *) 1382 &done_ccb->csio.cdb_io.cdb_bytes; 1383 status = done_ccb->ccb_h.status; 1384 1385 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1386 if (scsi_extract_sense_ccb(done_ccb, 1387 &error_code, &sense_key, &asc, &ascq)) { 1388 /* 1389 * If the error is "invalid field in CDB", 1390 * and the load/eject flag is set, turn the 1391 * flag off and try again. This is just in 1392 * case the drive in question barfs on the 1393 * load eject flag. The CAM code should set 1394 * the load/eject flag by default for 1395 * removable media. 1396 */ 1397 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1398 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1399 (asc == 0x24) && (ascq == 0x00)) { 1400 scsi_cmd->how &= ~SSS_LOEJ; 1401 if (status & CAM_DEV_QFRZN) { 1402 cam_release_devq(done_ccb->ccb_h.path, 1403 0, 0, 0, 0); 1404 done_ccb->ccb_h.status &= 1405 ~CAM_DEV_QFRZN; 1406 } 1407 xpt_action(done_ccb); 1408 goto out; 1409 } 1410 } 1411 error = cam_periph_error(done_ccb, 0, 1412 SF_RETRY_UA | SF_NO_PRINT); 1413 if (error == ERESTART) 1414 goto out; 1415 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1416 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1417 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1418 } 1419 } else { 1420 /* 1421 * If we have successfully taken a device from the not 1422 * ready to ready state, re-scan the device and re-get 1423 * the inquiry information. Many devices (mostly disks) 1424 * don't properly report their inquiry information unless 1425 * they are spun up. 1426 */ 1427 if (scsi_cmd->opcode == START_STOP_UNIT) 1428 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1429 } 1430 1431 /* If we tried long wait and still failed, remember that. */ 1432 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1433 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1434 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1435 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1436 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1437 } 1438 1439 /* 1440 * After recovery action(s) completed, return to the original CCB. 1441 * If the recovery CCB has failed, considering its own possible 1442 * retries and recovery, assume we are back in state where we have 1443 * been originally, but without recovery hopes left. In such case, 1444 * after the final attempt below, we cancel any further retries, 1445 * blocking by that also any new recovery attempts for this CCB, 1446 * and the result will be the final one returned to the CCB owher. 1447 */ 1448 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1449 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1450 xpt_free_ccb(saved_ccb); 1451 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1452 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1453 if (error != 0) 1454 done_ccb->ccb_h.retry_count = 0; 1455 xpt_action(done_ccb); 1456 1457 out: 1458 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1459 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1460 } 1461 1462 /* 1463 * Generic Async Event handler. Peripheral drivers usually 1464 * filter out the events that require personal attention, 1465 * and leave the rest to this function. 1466 */ 1467 void 1468 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1469 struct cam_path *path, void *arg) 1470 { 1471 switch (code) { 1472 case AC_LOST_DEVICE: 1473 cam_periph_invalidate(periph); 1474 break; 1475 default: 1476 break; 1477 } 1478 } 1479 1480 void 1481 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1482 { 1483 struct ccb_getdevstats cgds; 1484 1485 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1486 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1487 xpt_action((union ccb *)&cgds); 1488 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1489 } 1490 1491 void 1492 cam_periph_freeze_after_event(struct cam_periph *periph, 1493 struct timeval* event_time, u_int duration_ms) 1494 { 1495 struct timeval delta; 1496 struct timeval duration_tv; 1497 1498 if (!timevalisset(event_time)) 1499 return; 1500 1501 microtime(&delta); 1502 timevalsub(&delta, event_time); 1503 duration_tv.tv_sec = duration_ms / 1000; 1504 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1505 if (timevalcmp(&delta, &duration_tv, <)) { 1506 timevalsub(&duration_tv, &delta); 1507 1508 duration_ms = duration_tv.tv_sec * 1000; 1509 duration_ms += duration_tv.tv_usec / 1000; 1510 cam_freeze_devq(periph->path); 1511 cam_release_devq(periph->path, 1512 RELSIM_RELEASE_AFTER_TIMEOUT, 1513 /*reduction*/0, 1514 /*timeout*/duration_ms, 1515 /*getcount_only*/0); 1516 } 1517 1518 } 1519 1520 static int 1521 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1522 cam_flags camflags, u_int32_t sense_flags, 1523 int *openings, u_int32_t *relsim_flags, 1524 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1525 { 1526 struct cam_periph *periph; 1527 int error; 1528 1529 switch (ccb->csio.scsi_status) { 1530 case SCSI_STATUS_OK: 1531 case SCSI_STATUS_COND_MET: 1532 case SCSI_STATUS_INTERMED: 1533 case SCSI_STATUS_INTERMED_COND_MET: 1534 error = 0; 1535 break; 1536 case SCSI_STATUS_CMD_TERMINATED: 1537 case SCSI_STATUS_CHECK_COND: 1538 error = camperiphscsisenseerror(ccb, orig_ccb, 1539 camflags, 1540 sense_flags, 1541 openings, 1542 relsim_flags, 1543 timeout, 1544 action, 1545 action_string); 1546 break; 1547 case SCSI_STATUS_QUEUE_FULL: 1548 { 1549 /* no decrement */ 1550 struct ccb_getdevstats cgds; 1551 1552 /* 1553 * First off, find out what the current 1554 * transaction counts are. 1555 */ 1556 xpt_setup_ccb(&cgds.ccb_h, 1557 ccb->ccb_h.path, 1558 CAM_PRIORITY_NORMAL); 1559 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1560 xpt_action((union ccb *)&cgds); 1561 1562 /* 1563 * If we were the only transaction active, treat 1564 * the QUEUE FULL as if it were a BUSY condition. 1565 */ 1566 if (cgds.dev_active != 0) { 1567 int total_openings; 1568 1569 /* 1570 * Reduce the number of openings to 1571 * be 1 less than the amount it took 1572 * to get a queue full bounded by the 1573 * minimum allowed tag count for this 1574 * device. 1575 */ 1576 total_openings = cgds.dev_active + cgds.dev_openings; 1577 *openings = cgds.dev_active; 1578 if (*openings < cgds.mintags) 1579 *openings = cgds.mintags; 1580 if (*openings < total_openings) 1581 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1582 else { 1583 /* 1584 * Some devices report queue full for 1585 * temporary resource shortages. For 1586 * this reason, we allow a minimum 1587 * tag count to be entered via a 1588 * quirk entry to prevent the queue 1589 * count on these devices from falling 1590 * to a pessimisticly low value. We 1591 * still wait for the next successful 1592 * completion, however, before queueing 1593 * more transactions to the device. 1594 */ 1595 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1596 } 1597 *timeout = 0; 1598 error = ERESTART; 1599 *action &= ~SSQ_PRINT_SENSE; 1600 break; 1601 } 1602 /* FALLTHROUGH */ 1603 } 1604 case SCSI_STATUS_BUSY: 1605 /* 1606 * Restart the queue after either another 1607 * command completes or a 1 second timeout. 1608 */ 1609 periph = xpt_path_periph(ccb->ccb_h.path); 1610 if (periph->flags & CAM_PERIPH_INVALID) { 1611 error = EIO; 1612 *action_string = "Periph was invalidated"; 1613 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1614 ccb->ccb_h.retry_count > 0) { 1615 if ((sense_flags & SF_RETRY_BUSY) == 0) 1616 ccb->ccb_h.retry_count--; 1617 error = ERESTART; 1618 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1619 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1620 *timeout = 1000; 1621 } else { 1622 error = EIO; 1623 *action_string = "Retries exhausted"; 1624 } 1625 break; 1626 case SCSI_STATUS_RESERV_CONFLICT: 1627 default: 1628 error = EIO; 1629 break; 1630 } 1631 return (error); 1632 } 1633 1634 static int 1635 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1636 cam_flags camflags, u_int32_t sense_flags, 1637 int *openings, u_int32_t *relsim_flags, 1638 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1639 { 1640 struct cam_periph *periph; 1641 union ccb *orig_ccb = ccb; 1642 int error, recoveryccb; 1643 1644 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1645 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1646 biotrack(ccb->csio.bio, __func__); 1647 #endif 1648 1649 periph = xpt_path_periph(ccb->ccb_h.path); 1650 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1651 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1652 /* 1653 * If error recovery is already in progress, don't attempt 1654 * to process this error, but requeue it unconditionally 1655 * and attempt to process it once error recovery has 1656 * completed. This failed command is probably related to 1657 * the error that caused the currently active error recovery 1658 * action so our current recovery efforts should also 1659 * address this command. Be aware that the error recovery 1660 * code assumes that only one recovery action is in progress 1661 * on a particular peripheral instance at any given time 1662 * (e.g. only one saved CCB for error recovery) so it is 1663 * imperitive that we don't violate this assumption. 1664 */ 1665 error = ERESTART; 1666 *action &= ~SSQ_PRINT_SENSE; 1667 } else { 1668 scsi_sense_action err_action; 1669 struct ccb_getdev cgd; 1670 1671 /* 1672 * Grab the inquiry data for this device. 1673 */ 1674 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1675 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1676 xpt_action((union ccb *)&cgd); 1677 1678 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1679 sense_flags); 1680 error = err_action & SS_ERRMASK; 1681 1682 /* 1683 * Do not autostart sequential access devices 1684 * to avoid unexpected tape loading. 1685 */ 1686 if ((err_action & SS_MASK) == SS_START && 1687 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1688 *action_string = "Will not autostart a " 1689 "sequential access device"; 1690 goto sense_error_done; 1691 } 1692 1693 /* 1694 * Avoid recovery recursion if recovery action is the same. 1695 */ 1696 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1697 if (((err_action & SS_MASK) == SS_START && 1698 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1699 ((err_action & SS_MASK) == SS_TUR && 1700 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1701 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1702 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1703 *timeout = 500; 1704 } 1705 } 1706 1707 /* 1708 * If the recovery action will consume a retry, 1709 * make sure we actually have retries available. 1710 */ 1711 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1712 if (ccb->ccb_h.retry_count > 0 && 1713 (periph->flags & CAM_PERIPH_INVALID) == 0) 1714 ccb->ccb_h.retry_count--; 1715 else { 1716 *action_string = "Retries exhausted"; 1717 goto sense_error_done; 1718 } 1719 } 1720 1721 if ((err_action & SS_MASK) >= SS_START) { 1722 /* 1723 * Do common portions of commands that 1724 * use recovery CCBs. 1725 */ 1726 orig_ccb = xpt_alloc_ccb_nowait(); 1727 if (orig_ccb == NULL) { 1728 *action_string = "Can't allocate recovery CCB"; 1729 goto sense_error_done; 1730 } 1731 /* 1732 * Clear freeze flag for original request here, as 1733 * this freeze will be dropped as part of ERESTART. 1734 */ 1735 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1736 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1737 } 1738 1739 switch (err_action & SS_MASK) { 1740 case SS_NOP: 1741 *action_string = "No recovery action needed"; 1742 error = 0; 1743 break; 1744 case SS_RETRY: 1745 *action_string = "Retrying command (per sense data)"; 1746 error = ERESTART; 1747 break; 1748 case SS_FAIL: 1749 *action_string = "Unretryable error"; 1750 break; 1751 case SS_START: 1752 { 1753 int le; 1754 1755 /* 1756 * Send a start unit command to the device, and 1757 * then retry the command. 1758 */ 1759 *action_string = "Attempting to start unit"; 1760 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1761 1762 /* 1763 * Check for removable media and set 1764 * load/eject flag appropriately. 1765 */ 1766 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1767 le = TRUE; 1768 else 1769 le = FALSE; 1770 1771 scsi_start_stop(&ccb->csio, 1772 /*retries*/1, 1773 camperiphdone, 1774 MSG_SIMPLE_Q_TAG, 1775 /*start*/TRUE, 1776 /*load/eject*/le, 1777 /*immediate*/FALSE, 1778 SSD_FULL_SIZE, 1779 /*timeout*/50000); 1780 break; 1781 } 1782 case SS_TUR: 1783 { 1784 /* 1785 * Send a Test Unit Ready to the device. 1786 * If the 'many' flag is set, we send 120 1787 * test unit ready commands, one every half 1788 * second. Otherwise, we just send one TUR. 1789 * We only want to do this if the retry 1790 * count has not been exhausted. 1791 */ 1792 int retries; 1793 1794 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1795 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1796 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1797 *action_string = "Polling device for readiness"; 1798 retries = 120; 1799 } else { 1800 *action_string = "Testing device for readiness"; 1801 retries = 1; 1802 } 1803 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1804 scsi_test_unit_ready(&ccb->csio, 1805 retries, 1806 camperiphdone, 1807 MSG_SIMPLE_Q_TAG, 1808 SSD_FULL_SIZE, 1809 /*timeout*/5000); 1810 1811 /* 1812 * Accomplish our 500ms delay by deferring 1813 * the release of our device queue appropriately. 1814 */ 1815 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1816 *timeout = 500; 1817 break; 1818 } 1819 default: 1820 panic("Unhandled error action %x", err_action); 1821 } 1822 1823 if ((err_action & SS_MASK) >= SS_START) { 1824 /* 1825 * Drop the priority, so that the recovery 1826 * CCB is the first to execute. Freeze the queue 1827 * after this command is sent so that we can 1828 * restore the old csio and have it queued in 1829 * the proper order before we release normal 1830 * transactions to the device. 1831 */ 1832 ccb->ccb_h.pinfo.priority--; 1833 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1834 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1835 error = ERESTART; 1836 *orig = orig_ccb; 1837 } 1838 1839 sense_error_done: 1840 *action = err_action; 1841 } 1842 return (error); 1843 } 1844 1845 /* 1846 * Generic error handler. Peripheral drivers usually filter 1847 * out the errors that they handle in a unique manner, then 1848 * call this function. 1849 */ 1850 int 1851 cam_periph_error(union ccb *ccb, cam_flags camflags, 1852 u_int32_t sense_flags) 1853 { 1854 struct cam_path *newpath; 1855 union ccb *orig_ccb, *scan_ccb; 1856 struct cam_periph *periph; 1857 const char *action_string; 1858 cam_status status; 1859 int frozen, error, openings, devctl_err; 1860 u_int32_t action, relsim_flags, timeout; 1861 1862 action = SSQ_PRINT_SENSE; 1863 periph = xpt_path_periph(ccb->ccb_h.path); 1864 action_string = NULL; 1865 status = ccb->ccb_h.status; 1866 frozen = (status & CAM_DEV_QFRZN) != 0; 1867 status &= CAM_STATUS_MASK; 1868 devctl_err = openings = relsim_flags = timeout = 0; 1869 orig_ccb = ccb; 1870 1871 /* Filter the errors that should be reported via devctl */ 1872 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1873 case CAM_CMD_TIMEOUT: 1874 case CAM_REQ_ABORTED: 1875 case CAM_REQ_CMP_ERR: 1876 case CAM_REQ_TERMIO: 1877 case CAM_UNREC_HBA_ERROR: 1878 case CAM_DATA_RUN_ERR: 1879 case CAM_SCSI_STATUS_ERROR: 1880 case CAM_ATA_STATUS_ERROR: 1881 case CAM_SMP_STATUS_ERROR: 1882 devctl_err++; 1883 break; 1884 default: 1885 break; 1886 } 1887 1888 switch (status) { 1889 case CAM_REQ_CMP: 1890 error = 0; 1891 action &= ~SSQ_PRINT_SENSE; 1892 break; 1893 case CAM_SCSI_STATUS_ERROR: 1894 error = camperiphscsistatuserror(ccb, &orig_ccb, 1895 camflags, sense_flags, &openings, &relsim_flags, 1896 &timeout, &action, &action_string); 1897 break; 1898 case CAM_AUTOSENSE_FAIL: 1899 error = EIO; /* we have to kill the command */ 1900 break; 1901 case CAM_UA_ABORT: 1902 case CAM_UA_TERMIO: 1903 case CAM_MSG_REJECT_REC: 1904 /* XXX Don't know that these are correct */ 1905 error = EIO; 1906 break; 1907 case CAM_SEL_TIMEOUT: 1908 if ((camflags & CAM_RETRY_SELTO) != 0) { 1909 if (ccb->ccb_h.retry_count > 0 && 1910 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1911 ccb->ccb_h.retry_count--; 1912 error = ERESTART; 1913 1914 /* 1915 * Wait a bit to give the device 1916 * time to recover before we try again. 1917 */ 1918 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1919 timeout = periph_selto_delay; 1920 break; 1921 } 1922 action_string = "Retries exhausted"; 1923 } 1924 /* FALLTHROUGH */ 1925 case CAM_DEV_NOT_THERE: 1926 error = ENXIO; 1927 action = SSQ_LOST; 1928 break; 1929 case CAM_REQ_INVALID: 1930 case CAM_PATH_INVALID: 1931 case CAM_NO_HBA: 1932 case CAM_PROVIDE_FAIL: 1933 case CAM_REQ_TOO_BIG: 1934 case CAM_LUN_INVALID: 1935 case CAM_TID_INVALID: 1936 case CAM_FUNC_NOTAVAIL: 1937 error = EINVAL; 1938 break; 1939 case CAM_SCSI_BUS_RESET: 1940 case CAM_BDR_SENT: 1941 /* 1942 * Commands that repeatedly timeout and cause these 1943 * kinds of error recovery actions, should return 1944 * CAM_CMD_TIMEOUT, which allows us to safely assume 1945 * that this command was an innocent bystander to 1946 * these events and should be unconditionally 1947 * retried. 1948 */ 1949 case CAM_REQUEUE_REQ: 1950 /* Unconditional requeue if device is still there */ 1951 if (periph->flags & CAM_PERIPH_INVALID) { 1952 action_string = "Periph was invalidated"; 1953 error = EIO; 1954 } else if (sense_flags & SF_NO_RETRY) { 1955 error = EIO; 1956 action_string = "Retry was blocked"; 1957 } else { 1958 error = ERESTART; 1959 action &= ~SSQ_PRINT_SENSE; 1960 } 1961 break; 1962 case CAM_RESRC_UNAVAIL: 1963 /* Wait a bit for the resource shortage to abate. */ 1964 timeout = periph_noresrc_delay; 1965 /* FALLTHROUGH */ 1966 case CAM_BUSY: 1967 if (timeout == 0) { 1968 /* Wait a bit for the busy condition to abate. */ 1969 timeout = periph_busy_delay; 1970 } 1971 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1972 /* FALLTHROUGH */ 1973 case CAM_ATA_STATUS_ERROR: 1974 case CAM_REQ_CMP_ERR: 1975 case CAM_CMD_TIMEOUT: 1976 case CAM_UNEXP_BUSFREE: 1977 case CAM_UNCOR_PARITY: 1978 case CAM_DATA_RUN_ERR: 1979 default: 1980 if (periph->flags & CAM_PERIPH_INVALID) { 1981 error = EIO; 1982 action_string = "Periph was invalidated"; 1983 } else if (ccb->ccb_h.retry_count == 0) { 1984 error = EIO; 1985 action_string = "Retries exhausted"; 1986 } else if (sense_flags & SF_NO_RETRY) { 1987 error = EIO; 1988 action_string = "Retry was blocked"; 1989 } else { 1990 ccb->ccb_h.retry_count--; 1991 error = ERESTART; 1992 } 1993 break; 1994 } 1995 1996 if ((sense_flags & SF_PRINT_ALWAYS) || 1997 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1998 action |= SSQ_PRINT_SENSE; 1999 else if (sense_flags & SF_NO_PRINT) 2000 action &= ~SSQ_PRINT_SENSE; 2001 if ((action & SSQ_PRINT_SENSE) != 0) 2002 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2003 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2004 if (error != ERESTART) { 2005 if (action_string == NULL) 2006 action_string = "Unretryable error"; 2007 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2008 error, action_string); 2009 } else if (action_string != NULL) 2010 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2011 else { 2012 xpt_print(ccb->ccb_h.path, 2013 "Retrying command, %d more tries remain\n", 2014 ccb->ccb_h.retry_count); 2015 } 2016 } 2017 2018 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2019 cam_periph_devctl_notify(orig_ccb); 2020 2021 if ((action & SSQ_LOST) != 0) { 2022 lun_id_t lun_id; 2023 2024 /* 2025 * For a selection timeout, we consider all of the LUNs on 2026 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2027 * then we only get rid of the device(s) specified by the 2028 * path in the original CCB. 2029 */ 2030 if (status == CAM_SEL_TIMEOUT) 2031 lun_id = CAM_LUN_WILDCARD; 2032 else 2033 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2034 2035 /* Should we do more if we can't create the path?? */ 2036 if (xpt_create_path(&newpath, periph, 2037 xpt_path_path_id(ccb->ccb_h.path), 2038 xpt_path_target_id(ccb->ccb_h.path), 2039 lun_id) == CAM_REQ_CMP) { 2040 2041 /* 2042 * Let peripheral drivers know that this 2043 * device has gone away. 2044 */ 2045 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2046 xpt_free_path(newpath); 2047 } 2048 } 2049 2050 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2051 if ((action & SSQ_UA) != 0) 2052 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2053 2054 /* Rescan target on "Reported LUNs data has changed" */ 2055 if ((action & SSQ_RESCAN) != 0) { 2056 if (xpt_create_path(&newpath, NULL, 2057 xpt_path_path_id(ccb->ccb_h.path), 2058 xpt_path_target_id(ccb->ccb_h.path), 2059 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2060 2061 scan_ccb = xpt_alloc_ccb_nowait(); 2062 if (scan_ccb != NULL) { 2063 scan_ccb->ccb_h.path = newpath; 2064 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2065 scan_ccb->crcn.flags = 0; 2066 xpt_rescan(scan_ccb); 2067 } else { 2068 xpt_print(newpath, 2069 "Can't allocate CCB to rescan target\n"); 2070 xpt_free_path(newpath); 2071 } 2072 } 2073 } 2074 2075 /* Attempt a retry */ 2076 if (error == ERESTART || error == 0) { 2077 if (frozen != 0) 2078 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2079 if (error == ERESTART) 2080 xpt_action(ccb); 2081 if (frozen != 0) 2082 cam_release_devq(ccb->ccb_h.path, 2083 relsim_flags, 2084 openings, 2085 timeout, 2086 /*getcount_only*/0); 2087 } 2088 2089 return (error); 2090 } 2091 2092 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2093 2094 static void 2095 cam_periph_devctl_notify(union ccb *ccb) 2096 { 2097 struct cam_periph *periph; 2098 struct ccb_getdev *cgd; 2099 struct sbuf sb; 2100 int serr, sk, asc, ascq; 2101 char *sbmsg, *type; 2102 2103 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2104 if (sbmsg == NULL) 2105 return; 2106 2107 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2108 2109 periph = xpt_path_periph(ccb->ccb_h.path); 2110 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2111 periph->unit_number); 2112 2113 sbuf_printf(&sb, "serial=\""); 2114 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2115 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2116 CAM_PRIORITY_NORMAL); 2117 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2118 xpt_action((union ccb *)cgd); 2119 2120 if (cgd->ccb_h.status == CAM_REQ_CMP) 2121 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2122 xpt_free_ccb((union ccb *)cgd); 2123 } 2124 sbuf_printf(&sb, "\" "); 2125 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2126 2127 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2128 case CAM_CMD_TIMEOUT: 2129 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2130 type = "timeout"; 2131 break; 2132 case CAM_SCSI_STATUS_ERROR: 2133 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2134 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2135 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2136 serr, sk, asc, ascq); 2137 type = "error"; 2138 break; 2139 case CAM_ATA_STATUS_ERROR: 2140 sbuf_printf(&sb, "RES=\""); 2141 ata_res_sbuf(&ccb->ataio.res, &sb); 2142 sbuf_printf(&sb, "\" "); 2143 type = "error"; 2144 break; 2145 default: 2146 type = "error"; 2147 break; 2148 } 2149 2150 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2151 sbuf_printf(&sb, "CDB=\""); 2152 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2153 sbuf_printf(&sb, "\" "); 2154 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2155 sbuf_printf(&sb, "ACB=\""); 2156 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2157 sbuf_printf(&sb, "\" "); 2158 } 2159 2160 if (sbuf_finish(&sb) == 0) 2161 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2162 sbuf_delete(&sb); 2163 free(sbmsg, M_CAMPERIPH); 2164 } 2165 2166 /* 2167 * Sysctl to force an invalidation of the drive right now. Can be 2168 * called with CTLFLAG_MPSAFE since we take periph lock. 2169 */ 2170 int 2171 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2172 { 2173 struct cam_periph *periph; 2174 int error, value; 2175 2176 periph = arg1; 2177 value = 0; 2178 error = sysctl_handle_int(oidp, &value, 0, req); 2179 if (error != 0 || req->newptr == NULL || value != 1) 2180 return (error); 2181 2182 cam_periph_lock(periph); 2183 cam_periph_invalidate(periph); 2184 cam_periph_unlock(periph); 2185 2186 return (0); 2187 } 2188