1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/linker_set.h> 39 #include <sys/bio.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/buf.h> 43 #include <sys/proc.h> 44 #include <sys/devicestat.h> 45 #include <sys/bus.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 cam_flags camflags, 73 u_int32_t sense_flags, 74 union ccb *save_ccb, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout); 78 static int camperiphscsisenseerror(union ccb *ccb, 79 cam_flags camflags, 80 u_int32_t sense_flags, 81 union ccb *save_ccb, 82 int *openings, 83 u_int32_t *relsim_flags, 84 u_int32_t *timeout); 85 86 static int nperiph_drivers; 87 struct periph_driver **periph_drivers; 88 89 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 90 91 static int periph_selto_delay = 1000; 92 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 93 static int periph_noresrc_delay = 500; 94 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 95 static int periph_busy_delay = 500; 96 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 97 98 99 void 100 periphdriver_register(void *data) 101 { 102 struct periph_driver **newdrivers, **old; 103 int ndrivers; 104 105 ndrivers = nperiph_drivers + 2; 106 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 107 M_WAITOK); 108 if (periph_drivers) 109 bcopy(periph_drivers, newdrivers, 110 sizeof(*newdrivers) * nperiph_drivers); 111 newdrivers[nperiph_drivers] = (struct periph_driver *)data; 112 newdrivers[nperiph_drivers + 1] = NULL; 113 old = periph_drivers; 114 periph_drivers = newdrivers; 115 if (old) 116 free(old, M_CAMPERIPH); 117 nperiph_drivers++; 118 } 119 120 cam_status 121 cam_periph_alloc(periph_ctor_t *periph_ctor, 122 periph_oninv_t *periph_oninvalidate, 123 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 124 char *name, cam_periph_type type, struct cam_path *path, 125 ac_callback_t *ac_callback, ac_code code, void *arg) 126 { 127 struct periph_driver **p_drv; 128 struct cam_sim *sim; 129 struct cam_periph *periph; 130 struct cam_periph *cur_periph; 131 path_id_t path_id; 132 target_id_t target_id; 133 lun_id_t lun_id; 134 cam_status status; 135 u_int init_level; 136 137 init_level = 0; 138 /* 139 * Handle Hot-Plug scenarios. If there is already a peripheral 140 * of our type assigned to this path, we are likely waiting for 141 * final close on an old, invalidated, peripheral. If this is 142 * the case, queue up a deferred call to the peripheral's async 143 * handler. If it looks like a mistaken re-allocation, complain. 144 */ 145 if ((periph = cam_periph_find(path, name)) != NULL) { 146 147 if ((periph->flags & CAM_PERIPH_INVALID) != 0 148 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 149 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 150 periph->deferred_callback = ac_callback; 151 periph->deferred_ac = code; 152 return (CAM_REQ_INPROG); 153 } else { 154 printf("cam_periph_alloc: attempt to re-allocate " 155 "valid device %s%d rejected\n", 156 periph->periph_name, periph->unit_number); 157 } 158 return (CAM_REQ_INVALID); 159 } 160 161 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 162 M_NOWAIT); 163 164 if (periph == NULL) 165 return (CAM_RESRC_UNAVAIL); 166 167 init_level++; 168 169 xpt_lock_buses(); 170 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 171 if (strcmp((*p_drv)->driver_name, name) == 0) 172 break; 173 } 174 xpt_unlock_buses(); 175 if (*p_drv == NULL) { 176 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 177 free(periph, M_CAMPERIPH); 178 return (CAM_REQ_INVALID); 179 } 180 181 sim = xpt_path_sim(path); 182 path_id = xpt_path_path_id(path); 183 target_id = xpt_path_target_id(path); 184 lun_id = xpt_path_lun_id(path); 185 bzero(periph, sizeof(*periph)); 186 cam_init_pinfo(&periph->pinfo); 187 periph->periph_start = periph_start; 188 periph->periph_dtor = periph_dtor; 189 periph->periph_oninval = periph_oninvalidate; 190 periph->type = type; 191 periph->periph_name = name; 192 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 193 periph->immediate_priority = CAM_PRIORITY_NONE; 194 periph->refcount = 0; 195 periph->sim = sim; 196 SLIST_INIT(&periph->ccb_list); 197 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 198 if (status != CAM_REQ_CMP) 199 goto failure; 200 201 periph->path = path; 202 init_level++; 203 204 status = xpt_add_periph(periph); 205 206 if (status != CAM_REQ_CMP) 207 goto failure; 208 209 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 210 while (cur_periph != NULL 211 && cur_periph->unit_number < periph->unit_number) 212 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 213 214 if (cur_periph != NULL) 215 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 216 else { 217 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 218 (*p_drv)->generation++; 219 } 220 221 init_level++; 222 223 status = periph_ctor(periph, arg); 224 225 if (status == CAM_REQ_CMP) 226 init_level++; 227 228 failure: 229 switch (init_level) { 230 case 4: 231 /* Initialized successfully */ 232 break; 233 case 3: 234 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 235 xpt_remove_periph(periph); 236 /* FALLTHROUGH */ 237 case 2: 238 xpt_free_path(periph->path); 239 /* FALLTHROUGH */ 240 case 1: 241 free(periph, M_CAMPERIPH); 242 /* FALLTHROUGH */ 243 case 0: 244 /* No cleanup to perform. */ 245 break; 246 default: 247 panic("cam_periph_alloc: Unkown init level"); 248 } 249 return(status); 250 } 251 252 /* 253 * Find a peripheral structure with the specified path, target, lun, 254 * and (optionally) type. If the name is NULL, this function will return 255 * the first peripheral driver that matches the specified path. 256 */ 257 struct cam_periph * 258 cam_periph_find(struct cam_path *path, char *name) 259 { 260 struct periph_driver **p_drv; 261 struct cam_periph *periph; 262 263 xpt_lock_buses(); 264 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 265 266 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 267 continue; 268 269 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 270 if (xpt_path_comp(periph->path, path) == 0) { 271 xpt_unlock_buses(); 272 return(periph); 273 } 274 } 275 if (name != NULL) { 276 xpt_unlock_buses(); 277 return(NULL); 278 } 279 } 280 xpt_unlock_buses(); 281 return(NULL); 282 } 283 284 cam_status 285 cam_periph_acquire(struct cam_periph *periph) 286 { 287 288 if (periph == NULL) 289 return(CAM_REQ_CMP_ERR); 290 291 xpt_lock_buses(); 292 periph->refcount++; 293 xpt_unlock_buses(); 294 295 return(CAM_REQ_CMP); 296 } 297 298 void 299 cam_periph_release_locked(struct cam_periph *periph) 300 { 301 302 if (periph == NULL) 303 return; 304 305 xpt_lock_buses(); 306 if ((--periph->refcount == 0) 307 && (periph->flags & CAM_PERIPH_INVALID)) { 308 camperiphfree(periph); 309 } 310 xpt_unlock_buses(); 311 } 312 313 void 314 cam_periph_release(struct cam_periph *periph) 315 { 316 struct cam_sim *sim; 317 318 if (periph == NULL) 319 return; 320 321 sim = periph->sim; 322 mtx_assert(sim->mtx, MA_NOTOWNED); 323 mtx_lock(sim->mtx); 324 cam_periph_release_locked(periph); 325 mtx_unlock(sim->mtx); 326 } 327 328 int 329 cam_periph_hold(struct cam_periph *periph, int priority) 330 { 331 int error; 332 333 /* 334 * Increment the reference count on the peripheral 335 * while we wait for our lock attempt to succeed 336 * to ensure the peripheral doesn't disappear out 337 * from user us while we sleep. 338 */ 339 340 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 341 return (ENXIO); 342 343 mtx_assert(periph->sim->mtx, MA_OWNED); 344 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 345 periph->flags |= CAM_PERIPH_LOCK_WANTED; 346 if ((error = mtx_sleep(periph, periph->sim->mtx, priority, 347 "caplck", 0)) != 0) { 348 cam_periph_release_locked(periph); 349 return (error); 350 } 351 } 352 353 periph->flags |= CAM_PERIPH_LOCKED; 354 return (0); 355 } 356 357 void 358 cam_periph_unhold(struct cam_periph *periph) 359 { 360 361 mtx_assert(periph->sim->mtx, MA_OWNED); 362 363 periph->flags &= ~CAM_PERIPH_LOCKED; 364 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 365 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 366 wakeup(periph); 367 } 368 369 cam_periph_release_locked(periph); 370 } 371 372 /* 373 * Look for the next unit number that is not currently in use for this 374 * peripheral type starting at "newunit". Also exclude unit numbers that 375 * are reserved by for future "hardwiring" unless we already know that this 376 * is a potential wired device. Only assume that the device is "wired" the 377 * first time through the loop since after that we'll be looking at unit 378 * numbers that did not match a wiring entry. 379 */ 380 static u_int 381 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 382 path_id_t pathid, target_id_t target, lun_id_t lun) 383 { 384 struct cam_periph *periph; 385 char *periph_name; 386 int i, val, dunit, r; 387 const char *dname, *strval; 388 389 periph_name = p_drv->driver_name; 390 for (;;newunit++) { 391 392 for (periph = TAILQ_FIRST(&p_drv->units); 393 periph != NULL && periph->unit_number != newunit; 394 periph = TAILQ_NEXT(periph, unit_links)) 395 ; 396 397 if (periph != NULL && periph->unit_number == newunit) { 398 if (wired != 0) { 399 xpt_print(periph->path, "Duplicate Wired " 400 "Device entry!\n"); 401 xpt_print(periph->path, "Second device (%s " 402 "device at scbus%d target %d lun %d) will " 403 "not be wired\n", periph_name, pathid, 404 target, lun); 405 wired = 0; 406 } 407 continue; 408 } 409 if (wired) 410 break; 411 412 /* 413 * Don't match entries like "da 4" as a wired down 414 * device, but do match entries like "da 4 target 5" 415 * or even "da 4 scbus 1". 416 */ 417 i = 0; 418 dname = periph_name; 419 for (;;) { 420 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 421 if (r != 0) 422 break; 423 /* if no "target" and no specific scbus, skip */ 424 if (resource_int_value(dname, dunit, "target", &val) && 425 (resource_string_value(dname, dunit, "at",&strval)|| 426 strcmp(strval, "scbus") == 0)) 427 continue; 428 if (newunit == dunit) 429 break; 430 } 431 if (r != 0) 432 break; 433 } 434 return (newunit); 435 } 436 437 static u_int 438 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 439 target_id_t target, lun_id_t lun) 440 { 441 u_int unit; 442 int wired, i, val, dunit; 443 const char *dname, *strval; 444 char pathbuf[32], *periph_name; 445 446 periph_name = p_drv->driver_name; 447 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 448 unit = 0; 449 i = 0; 450 dname = periph_name; 451 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 452 wired = 0) { 453 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 454 if (strcmp(strval, pathbuf) != 0) 455 continue; 456 wired++; 457 } 458 if (resource_int_value(dname, dunit, "target", &val) == 0) { 459 if (val != target) 460 continue; 461 wired++; 462 } 463 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 464 if (val != lun) 465 continue; 466 wired++; 467 } 468 if (wired != 0) { 469 unit = dunit; 470 break; 471 } 472 } 473 474 /* 475 * Either start from 0 looking for the next unit or from 476 * the unit number given in the resource config. This way, 477 * if we have wildcard matches, we don't return the same 478 * unit number twice. 479 */ 480 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 481 482 return (unit); 483 } 484 485 void 486 cam_periph_invalidate(struct cam_periph *periph) 487 { 488 489 /* 490 * We only call this routine the first time a peripheral is 491 * invalidated. 492 */ 493 if (((periph->flags & CAM_PERIPH_INVALID) == 0) 494 && (periph->periph_oninval != NULL)) 495 periph->periph_oninval(periph); 496 497 periph->flags |= CAM_PERIPH_INVALID; 498 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 499 500 xpt_lock_buses(); 501 if (periph->refcount == 0) 502 camperiphfree(periph); 503 else if (periph->refcount < 0) 504 printf("cam_invalidate_periph: refcount < 0!!\n"); 505 xpt_unlock_buses(); 506 } 507 508 static void 509 camperiphfree(struct cam_periph *periph) 510 { 511 struct periph_driver **p_drv; 512 513 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 514 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 515 break; 516 } 517 if (*p_drv == NULL) { 518 printf("camperiphfree: attempt to free non-existant periph\n"); 519 return; 520 } 521 522 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 523 (*p_drv)->generation++; 524 xpt_unlock_buses(); 525 526 if (periph->periph_dtor != NULL) 527 periph->periph_dtor(periph); 528 xpt_remove_periph(periph); 529 530 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 531 union ccb ccb; 532 void *arg; 533 534 switch (periph->deferred_ac) { 535 case AC_FOUND_DEVICE: 536 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 537 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 538 xpt_action(&ccb); 539 arg = &ccb; 540 break; 541 case AC_PATH_REGISTERED: 542 ccb.ccb_h.func_code = XPT_PATH_INQ; 543 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 544 xpt_action(&ccb); 545 arg = &ccb; 546 break; 547 default: 548 arg = NULL; 549 break; 550 } 551 periph->deferred_callback(NULL, periph->deferred_ac, 552 periph->path, arg); 553 } 554 xpt_free_path(periph->path); 555 free(periph, M_CAMPERIPH); 556 xpt_lock_buses(); 557 } 558 559 /* 560 * Map user virtual pointers into kernel virtual address space, so we can 561 * access the memory. This won't work on physical pointers, for now it's 562 * up to the caller to check for that. (XXX KDM -- should we do that here 563 * instead?) This also only works for up to MAXPHYS memory. Since we use 564 * buffers to map stuff in and out, we're limited to the buffer size. 565 */ 566 int 567 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 568 { 569 int numbufs, i, j; 570 int flags[CAM_PERIPH_MAXMAPS]; 571 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 572 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 573 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 574 /* Some controllers may not be able to handle more data. */ 575 size_t maxmap = DFLTPHYS; 576 577 switch(ccb->ccb_h.func_code) { 578 case XPT_DEV_MATCH: 579 if (ccb->cdm.match_buf_len == 0) { 580 printf("cam_periph_mapmem: invalid match buffer " 581 "length 0\n"); 582 return(EINVAL); 583 } 584 if (ccb->cdm.pattern_buf_len > 0) { 585 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 586 lengths[0] = ccb->cdm.pattern_buf_len; 587 dirs[0] = CAM_DIR_OUT; 588 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 589 lengths[1] = ccb->cdm.match_buf_len; 590 dirs[1] = CAM_DIR_IN; 591 numbufs = 2; 592 } else { 593 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 594 lengths[0] = ccb->cdm.match_buf_len; 595 dirs[0] = CAM_DIR_IN; 596 numbufs = 1; 597 } 598 /* 599 * This request will not go to the hardware, no reason 600 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 601 */ 602 maxmap = MAXPHYS; 603 break; 604 case XPT_SCSI_IO: 605 case XPT_CONT_TARGET_IO: 606 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 607 return(0); 608 609 data_ptrs[0] = &ccb->csio.data_ptr; 610 lengths[0] = ccb->csio.dxfer_len; 611 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 612 numbufs = 1; 613 break; 614 case XPT_ATA_IO: 615 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 616 return(0); 617 618 data_ptrs[0] = &ccb->ataio.data_ptr; 619 lengths[0] = ccb->ataio.dxfer_len; 620 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 621 numbufs = 1; 622 break; 623 default: 624 return(EINVAL); 625 break; /* NOTREACHED */ 626 } 627 628 /* 629 * Check the transfer length and permissions first, so we don't 630 * have to unmap any previously mapped buffers. 631 */ 632 for (i = 0; i < numbufs; i++) { 633 634 flags[i] = 0; 635 636 /* 637 * The userland data pointer passed in may not be page 638 * aligned. vmapbuf() truncates the address to a page 639 * boundary, so if the address isn't page aligned, we'll 640 * need enough space for the given transfer length, plus 641 * whatever extra space is necessary to make it to the page 642 * boundary. 643 */ 644 if ((lengths[i] + 645 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 646 printf("cam_periph_mapmem: attempt to map %lu bytes, " 647 "which is greater than %lu\n", 648 (long)(lengths[i] + 649 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 650 (u_long)maxmap); 651 return(E2BIG); 652 } 653 654 if (dirs[i] & CAM_DIR_OUT) { 655 flags[i] = BIO_WRITE; 656 } 657 658 if (dirs[i] & CAM_DIR_IN) { 659 flags[i] = BIO_READ; 660 } 661 662 } 663 664 /* this keeps the current process from getting swapped */ 665 /* 666 * XXX KDM should I use P_NOSWAP instead? 667 */ 668 PHOLD(curproc); 669 670 for (i = 0; i < numbufs; i++) { 671 /* 672 * Get the buffer. 673 */ 674 mapinfo->bp[i] = getpbuf(NULL); 675 676 /* save the buffer's data address */ 677 mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; 678 679 /* put our pointer in the data slot */ 680 mapinfo->bp[i]->b_data = *data_ptrs[i]; 681 682 /* set the transfer length, we know it's < MAXPHYS */ 683 mapinfo->bp[i]->b_bufsize = lengths[i]; 684 685 /* set the direction */ 686 mapinfo->bp[i]->b_iocmd = flags[i]; 687 688 /* 689 * Map the buffer into kernel memory. 690 * 691 * Note that useracc() alone is not a sufficient test. 692 * vmapbuf() can still fail due to a smaller file mapped 693 * into a larger area of VM, or if userland races against 694 * vmapbuf() after the useracc() check. 695 */ 696 if (vmapbuf(mapinfo->bp[i]) < 0) { 697 for (j = 0; j < i; ++j) { 698 *data_ptrs[j] = mapinfo->bp[j]->b_saveaddr; 699 vunmapbuf(mapinfo->bp[j]); 700 relpbuf(mapinfo->bp[j], NULL); 701 } 702 relpbuf(mapinfo->bp[i], NULL); 703 PRELE(curproc); 704 return(EACCES); 705 } 706 707 /* set our pointer to the new mapped area */ 708 *data_ptrs[i] = mapinfo->bp[i]->b_data; 709 710 mapinfo->num_bufs_used++; 711 } 712 713 /* 714 * Now that we've gotten this far, change ownership to the kernel 715 * of the buffers so that we don't run afoul of returning to user 716 * space with locks (on the buffer) held. 717 */ 718 for (i = 0; i < numbufs; i++) { 719 BUF_KERNPROC(mapinfo->bp[i]); 720 } 721 722 723 return(0); 724 } 725 726 /* 727 * Unmap memory segments mapped into kernel virtual address space by 728 * cam_periph_mapmem(). 729 */ 730 void 731 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 732 { 733 int numbufs, i; 734 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 735 736 if (mapinfo->num_bufs_used <= 0) { 737 /* allow ourselves to be swapped once again */ 738 PRELE(curproc); 739 return; 740 } 741 742 switch (ccb->ccb_h.func_code) { 743 case XPT_DEV_MATCH: 744 numbufs = min(mapinfo->num_bufs_used, 2); 745 746 if (numbufs == 1) { 747 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 748 } else { 749 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 750 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 751 } 752 break; 753 case XPT_SCSI_IO: 754 case XPT_CONT_TARGET_IO: 755 data_ptrs[0] = &ccb->csio.data_ptr; 756 numbufs = min(mapinfo->num_bufs_used, 1); 757 break; 758 case XPT_ATA_IO: 759 data_ptrs[0] = &ccb->ataio.data_ptr; 760 numbufs = min(mapinfo->num_bufs_used, 1); 761 break; 762 default: 763 /* allow ourselves to be swapped once again */ 764 PRELE(curproc); 765 return; 766 break; /* NOTREACHED */ 767 } 768 769 for (i = 0; i < numbufs; i++) { 770 /* Set the user's pointer back to the original value */ 771 *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; 772 773 /* unmap the buffer */ 774 vunmapbuf(mapinfo->bp[i]); 775 776 /* release the buffer */ 777 relpbuf(mapinfo->bp[i], NULL); 778 } 779 780 /* allow ourselves to be swapped once again */ 781 PRELE(curproc); 782 } 783 784 union ccb * 785 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 786 { 787 struct ccb_hdr *ccb_h; 788 789 mtx_assert(periph->sim->mtx, MA_OWNED); 790 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n")); 791 792 while (SLIST_FIRST(&periph->ccb_list) == NULL) { 793 if (periph->immediate_priority > priority) 794 periph->immediate_priority = priority; 795 xpt_schedule(periph, priority); 796 if ((SLIST_FIRST(&periph->ccb_list) != NULL) 797 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority)) 798 break; 799 mtx_assert(periph->sim->mtx, MA_OWNED); 800 mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb", 801 0); 802 } 803 804 ccb_h = SLIST_FIRST(&periph->ccb_list); 805 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 806 return ((union ccb *)ccb_h); 807 } 808 809 void 810 cam_periph_ccbwait(union ccb *ccb) 811 { 812 struct cam_sim *sim; 813 814 sim = xpt_path_sim(ccb->ccb_h.path); 815 if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) 816 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) 817 mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0); 818 } 819 820 int 821 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 822 int (*error_routine)(union ccb *ccb, 823 cam_flags camflags, 824 u_int32_t sense_flags)) 825 { 826 union ccb *ccb; 827 int error; 828 int found; 829 830 error = found = 0; 831 832 switch(cmd){ 833 case CAMGETPASSTHRU: 834 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 835 xpt_setup_ccb(&ccb->ccb_h, 836 ccb->ccb_h.path, 837 CAM_PRIORITY_NORMAL); 838 ccb->ccb_h.func_code = XPT_GDEVLIST; 839 840 /* 841 * Basically, the point of this is that we go through 842 * getting the list of devices, until we find a passthrough 843 * device. In the current version of the CAM code, the 844 * only way to determine what type of device we're dealing 845 * with is by its name. 846 */ 847 while (found == 0) { 848 ccb->cgdl.index = 0; 849 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 850 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 851 852 /* we want the next device in the list */ 853 xpt_action(ccb); 854 if (strncmp(ccb->cgdl.periph_name, 855 "pass", 4) == 0){ 856 found = 1; 857 break; 858 } 859 } 860 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 861 (found == 0)) { 862 ccb->cgdl.periph_name[0] = '\0'; 863 ccb->cgdl.unit_number = 0; 864 break; 865 } 866 } 867 868 /* copy the result back out */ 869 bcopy(ccb, addr, sizeof(union ccb)); 870 871 /* and release the ccb */ 872 xpt_release_ccb(ccb); 873 874 break; 875 default: 876 error = ENOTTY; 877 break; 878 } 879 return(error); 880 } 881 882 int 883 cam_periph_runccb(union ccb *ccb, 884 int (*error_routine)(union ccb *ccb, 885 cam_flags camflags, 886 u_int32_t sense_flags), 887 cam_flags camflags, u_int32_t sense_flags, 888 struct devstat *ds) 889 { 890 struct cam_sim *sim; 891 int error; 892 893 error = 0; 894 sim = xpt_path_sim(ccb->ccb_h.path); 895 mtx_assert(sim->mtx, MA_OWNED); 896 897 /* 898 * If the user has supplied a stats structure, and if we understand 899 * this particular type of ccb, record the transaction start. 900 */ 901 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 902 ccb->ccb_h.func_code == XPT_ATA_IO)) 903 devstat_start_transaction(ds, NULL); 904 905 xpt_action(ccb); 906 907 do { 908 cam_periph_ccbwait(ccb); 909 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 910 error = 0; 911 else if (error_routine != NULL) 912 error = (*error_routine)(ccb, camflags, sense_flags); 913 else 914 error = 0; 915 916 } while (error == ERESTART); 917 918 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 919 cam_release_devq(ccb->ccb_h.path, 920 /* relsim_flags */0, 921 /* openings */0, 922 /* timeout */0, 923 /* getcount_only */ FALSE); 924 925 if (ds != NULL) { 926 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 927 devstat_end_transaction(ds, 928 ccb->csio.dxfer_len, 929 ccb->csio.tag_action & 0x3, 930 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 931 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 932 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 933 DEVSTAT_WRITE : 934 DEVSTAT_READ, NULL, NULL); 935 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 936 devstat_end_transaction(ds, 937 ccb->ataio.dxfer_len, 938 ccb->ataio.tag_action & 0x3, 939 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 940 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 941 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 942 DEVSTAT_WRITE : 943 DEVSTAT_READ, NULL, NULL); 944 } 945 } 946 947 return(error); 948 } 949 950 void 951 cam_freeze_devq(struct cam_path *path) 952 { 953 struct ccb_hdr ccb_h; 954 955 xpt_setup_ccb(&ccb_h, path, CAM_PRIORITY_NORMAL); 956 ccb_h.func_code = XPT_NOOP; 957 ccb_h.flags = CAM_DEV_QFREEZE; 958 xpt_action((union ccb *)&ccb_h); 959 } 960 961 u_int32_t 962 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 963 u_int32_t openings, u_int32_t timeout, 964 int getcount_only) 965 { 966 struct ccb_relsim crs; 967 968 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 969 crs.ccb_h.func_code = XPT_REL_SIMQ; 970 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 971 crs.release_flags = relsim_flags; 972 crs.openings = openings; 973 crs.release_timeout = timeout; 974 xpt_action((union ccb *)&crs); 975 return (crs.qfrozen_cnt); 976 } 977 978 #define saved_ccb_ptr ppriv_ptr0 979 static void 980 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 981 { 982 union ccb *saved_ccb; 983 cam_status status; 984 int frozen = 0; 985 int sense; 986 struct scsi_start_stop_unit *scsi_cmd; 987 u_int32_t relsim_flags, timeout; 988 int xpt_done_ccb = FALSE; 989 990 status = done_ccb->ccb_h.status; 991 if (status & CAM_DEV_QFRZN) { 992 frozen = 1; 993 /* 994 * Clear freeze flag now for case of retry, 995 * freeze will be dropped later. 996 */ 997 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 998 } 999 sense = (status & CAM_AUTOSNS_VALID) != 0; 1000 status &= CAM_STATUS_MASK; 1001 1002 timeout = 0; 1003 relsim_flags = 0; 1004 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1005 1006 switch (status) { 1007 case CAM_REQ_CMP: 1008 { 1009 /* 1010 * If we have successfully taken a device from the not 1011 * ready to ready state, re-scan the device and re-get 1012 * the inquiry information. Many devices (mostly disks) 1013 * don't properly report their inquiry information unless 1014 * they are spun up. 1015 * 1016 * If we manually retrieved sense into a CCB and got 1017 * something other than "NO SENSE" send the updated CCB 1018 * back to the client via xpt_done() to be processed via 1019 * the error recovery code again. 1020 */ 1021 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) { 1022 scsi_cmd = (struct scsi_start_stop_unit *) 1023 &done_ccb->csio.cdb_io.cdb_bytes; 1024 1025 if (scsi_cmd->opcode == START_STOP_UNIT) 1026 xpt_async(AC_INQ_CHANGED, 1027 done_ccb->ccb_h.path, NULL); 1028 if (scsi_cmd->opcode == REQUEST_SENSE) { 1029 u_int sense_key; 1030 1031 sense_key = saved_ccb->csio.sense_data.flags; 1032 sense_key &= SSD_KEY; 1033 if (sense_key != SSD_KEY_NO_SENSE) { 1034 saved_ccb->ccb_h.status |= 1035 CAM_AUTOSNS_VALID; 1036 #if 0 1037 xpt_print(saved_ccb->ccb_h.path, 1038 "Recovered Sense\n"); 1039 scsi_sense_print(&saved_ccb->csio); 1040 cam_error_print(saved_ccb, CAM_ESF_ALL, 1041 CAM_EPF_ALL); 1042 #endif 1043 } else { 1044 saved_ccb->ccb_h.status &= 1045 ~CAM_STATUS_MASK; 1046 saved_ccb->ccb_h.status |= 1047 CAM_AUTOSENSE_FAIL; 1048 } 1049 xpt_done_ccb = TRUE; 1050 } 1051 } 1052 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, 1053 sizeof(union ccb)); 1054 1055 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1056 1057 if (xpt_done_ccb == FALSE) 1058 xpt_action(done_ccb); 1059 1060 break; 1061 } 1062 case CAM_SCSI_STATUS_ERROR: 1063 scsi_cmd = (struct scsi_start_stop_unit *) 1064 &done_ccb->csio.cdb_io.cdb_bytes; 1065 if (sense != 0) { 1066 struct ccb_getdev cgd; 1067 struct scsi_sense_data *sense; 1068 int error_code, sense_key, asc, ascq; 1069 scsi_sense_action err_action; 1070 1071 sense = &done_ccb->csio.sense_data; 1072 scsi_extract_sense(sense, &error_code, 1073 &sense_key, &asc, &ascq); 1074 1075 /* 1076 * Grab the inquiry data for this device. 1077 */ 1078 xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path, 1079 CAM_PRIORITY_NORMAL); 1080 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1081 xpt_action((union ccb *)&cgd); 1082 err_action = scsi_error_action(&done_ccb->csio, 1083 &cgd.inq_data, 0); 1084 1085 /* 1086 * If the error is "invalid field in CDB", 1087 * and the load/eject flag is set, turn the 1088 * flag off and try again. This is just in 1089 * case the drive in question barfs on the 1090 * load eject flag. The CAM code should set 1091 * the load/eject flag by default for 1092 * removable media. 1093 */ 1094 1095 /* XXX KDM 1096 * Should we check to see what the specific 1097 * scsi status is?? Or does it not matter 1098 * since we already know that there was an 1099 * error, and we know what the specific 1100 * error code was, and we know what the 1101 * opcode is.. 1102 */ 1103 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1104 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1105 (asc == 0x24) && (ascq == 0x00) && 1106 (done_ccb->ccb_h.retry_count > 0)) { 1107 1108 scsi_cmd->how &= ~SSS_LOEJ; 1109 1110 xpt_action(done_ccb); 1111 1112 } else if ((done_ccb->ccb_h.retry_count > 1) 1113 && ((err_action & SS_MASK) != SS_FAIL)) { 1114 1115 /* 1116 * In this case, the error recovery 1117 * command failed, but we've got 1118 * some retries left on it. Give 1119 * it another try unless this is an 1120 * unretryable error. 1121 */ 1122 1123 /* set the timeout to .5 sec */ 1124 relsim_flags = 1125 RELSIM_RELEASE_AFTER_TIMEOUT; 1126 timeout = 500; 1127 1128 xpt_action(done_ccb); 1129 1130 break; 1131 1132 } else { 1133 /* 1134 * Perform the final retry with the original 1135 * CCB so that final error processing is 1136 * performed by the owner of the CCB. 1137 */ 1138 bcopy(done_ccb->ccb_h.saved_ccb_ptr, 1139 done_ccb, sizeof(union ccb)); 1140 1141 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1142 1143 xpt_action(done_ccb); 1144 } 1145 } else { 1146 /* 1147 * Eh?? The command failed, but we don't 1148 * have any sense. What's up with that? 1149 * Fire the CCB again to return it to the 1150 * caller. 1151 */ 1152 bcopy(done_ccb->ccb_h.saved_ccb_ptr, 1153 done_ccb, sizeof(union ccb)); 1154 1155 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1156 1157 xpt_action(done_ccb); 1158 1159 } 1160 break; 1161 default: 1162 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, 1163 sizeof(union ccb)); 1164 1165 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1166 1167 xpt_action(done_ccb); 1168 1169 break; 1170 } 1171 1172 /* decrement the retry count */ 1173 /* 1174 * XXX This isn't appropriate in all cases. Restructure, 1175 * so that the retry count is only decremented on an 1176 * actual retry. Remeber that the orignal ccb had its 1177 * retry count dropped before entering recovery, so 1178 * doing it again is a bug. 1179 */ 1180 if (done_ccb->ccb_h.retry_count > 0) 1181 done_ccb->ccb_h.retry_count--; 1182 /* 1183 * Drop freeze taken due to CAM_DEV_QFREEZE flag set on recovery 1184 * request. 1185 */ 1186 cam_release_devq(done_ccb->ccb_h.path, 1187 /*relsim_flags*/relsim_flags, 1188 /*openings*/0, 1189 /*timeout*/timeout, 1190 /*getcount_only*/0); 1191 if (xpt_done_ccb == TRUE) { 1192 /* 1193 * Copy frozen flag from recovery request if it is set there 1194 * for some reason. 1195 */ 1196 if (frozen != 0) 1197 done_ccb->ccb_h.status |= CAM_DEV_QFRZN; 1198 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 1199 } else { 1200 /* Drop freeze taken, if this recovery request got error. */ 1201 if (frozen != 0) { 1202 cam_release_devq(done_ccb->ccb_h.path, 1203 /*relsim_flags*/0, 1204 /*openings*/0, 1205 /*timeout*/0, 1206 /*getcount_only*/0); 1207 } 1208 } 1209 } 1210 1211 /* 1212 * Generic Async Event handler. Peripheral drivers usually 1213 * filter out the events that require personal attention, 1214 * and leave the rest to this function. 1215 */ 1216 void 1217 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1218 struct cam_path *path, void *arg) 1219 { 1220 switch (code) { 1221 case AC_LOST_DEVICE: 1222 cam_periph_invalidate(periph); 1223 break; 1224 case AC_SENT_BDR: 1225 case AC_BUS_RESET: 1226 { 1227 cam_periph_bus_settle(periph, scsi_delay); 1228 break; 1229 } 1230 default: 1231 break; 1232 } 1233 } 1234 1235 void 1236 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1237 { 1238 struct ccb_getdevstats cgds; 1239 1240 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1241 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1242 xpt_action((union ccb *)&cgds); 1243 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1244 } 1245 1246 void 1247 cam_periph_freeze_after_event(struct cam_periph *periph, 1248 struct timeval* event_time, u_int duration_ms) 1249 { 1250 struct timeval delta; 1251 struct timeval duration_tv; 1252 1253 microtime(&delta); 1254 timevalsub(&delta, event_time); 1255 duration_tv.tv_sec = duration_ms / 1000; 1256 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1257 if (timevalcmp(&delta, &duration_tv, <)) { 1258 timevalsub(&duration_tv, &delta); 1259 1260 duration_ms = duration_tv.tv_sec * 1000; 1261 duration_ms += duration_tv.tv_usec / 1000; 1262 cam_freeze_devq(periph->path); 1263 cam_release_devq(periph->path, 1264 RELSIM_RELEASE_AFTER_TIMEOUT, 1265 /*reduction*/0, 1266 /*timeout*/duration_ms, 1267 /*getcount_only*/0); 1268 } 1269 1270 } 1271 1272 static int 1273 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags, 1274 u_int32_t sense_flags, union ccb *save_ccb, 1275 int *openings, u_int32_t *relsim_flags, 1276 u_int32_t *timeout) 1277 { 1278 int error; 1279 1280 switch (ccb->csio.scsi_status) { 1281 case SCSI_STATUS_OK: 1282 case SCSI_STATUS_COND_MET: 1283 case SCSI_STATUS_INTERMED: 1284 case SCSI_STATUS_INTERMED_COND_MET: 1285 error = 0; 1286 break; 1287 case SCSI_STATUS_CMD_TERMINATED: 1288 case SCSI_STATUS_CHECK_COND: 1289 error = camperiphscsisenseerror(ccb, 1290 camflags, 1291 sense_flags, 1292 save_ccb, 1293 openings, 1294 relsim_flags, 1295 timeout); 1296 break; 1297 case SCSI_STATUS_QUEUE_FULL: 1298 { 1299 /* no decrement */ 1300 struct ccb_getdevstats cgds; 1301 1302 /* 1303 * First off, find out what the current 1304 * transaction counts are. 1305 */ 1306 xpt_setup_ccb(&cgds.ccb_h, 1307 ccb->ccb_h.path, 1308 CAM_PRIORITY_NORMAL); 1309 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1310 xpt_action((union ccb *)&cgds); 1311 1312 /* 1313 * If we were the only transaction active, treat 1314 * the QUEUE FULL as if it were a BUSY condition. 1315 */ 1316 if (cgds.dev_active != 0) { 1317 int total_openings; 1318 1319 /* 1320 * Reduce the number of openings to 1321 * be 1 less than the amount it took 1322 * to get a queue full bounded by the 1323 * minimum allowed tag count for this 1324 * device. 1325 */ 1326 total_openings = cgds.dev_active + cgds.dev_openings; 1327 *openings = cgds.dev_active; 1328 if (*openings < cgds.mintags) 1329 *openings = cgds.mintags; 1330 if (*openings < total_openings) 1331 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1332 else { 1333 /* 1334 * Some devices report queue full for 1335 * temporary resource shortages. For 1336 * this reason, we allow a minimum 1337 * tag count to be entered via a 1338 * quirk entry to prevent the queue 1339 * count on these devices from falling 1340 * to a pessimisticly low value. We 1341 * still wait for the next successful 1342 * completion, however, before queueing 1343 * more transactions to the device. 1344 */ 1345 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1346 } 1347 *timeout = 0; 1348 error = ERESTART; 1349 if (bootverbose) { 1350 xpt_print(ccb->ccb_h.path, "Queue Full\n"); 1351 } 1352 break; 1353 } 1354 /* FALLTHROUGH */ 1355 } 1356 case SCSI_STATUS_BUSY: 1357 /* 1358 * Restart the queue after either another 1359 * command completes or a 1 second timeout. 1360 */ 1361 if (bootverbose) { 1362 xpt_print(ccb->ccb_h.path, "Device Busy\n"); 1363 } 1364 if (ccb->ccb_h.retry_count > 0) { 1365 ccb->ccb_h.retry_count--; 1366 error = ERESTART; 1367 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1368 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1369 *timeout = 1000; 1370 } else { 1371 error = EIO; 1372 } 1373 break; 1374 case SCSI_STATUS_RESERV_CONFLICT: 1375 xpt_print(ccb->ccb_h.path, "Reservation Conflict\n"); 1376 error = EIO; 1377 break; 1378 default: 1379 xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n", 1380 ccb->csio.scsi_status); 1381 error = EIO; 1382 break; 1383 } 1384 return (error); 1385 } 1386 1387 static int 1388 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags, 1389 u_int32_t sense_flags, union ccb *save_ccb, 1390 int *openings, u_int32_t *relsim_flags, 1391 u_int32_t *timeout) 1392 { 1393 struct cam_periph *periph; 1394 int error; 1395 1396 periph = xpt_path_periph(ccb->ccb_h.path); 1397 if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) { 1398 1399 /* 1400 * If error recovery is already in progress, don't attempt 1401 * to process this error, but requeue it unconditionally 1402 * and attempt to process it once error recovery has 1403 * completed. This failed command is probably related to 1404 * the error that caused the currently active error recovery 1405 * action so our current recovery efforts should also 1406 * address this command. Be aware that the error recovery 1407 * code assumes that only one recovery action is in progress 1408 * on a particular peripheral instance at any given time 1409 * (e.g. only one saved CCB for error recovery) so it is 1410 * imperitive that we don't violate this assumption. 1411 */ 1412 error = ERESTART; 1413 } else { 1414 scsi_sense_action err_action; 1415 struct ccb_getdev cgd; 1416 const char *action_string; 1417 union ccb* print_ccb; 1418 1419 /* A description of the error recovery action performed */ 1420 action_string = NULL; 1421 1422 /* 1423 * The location of the orignal ccb 1424 * for sense printing purposes. 1425 */ 1426 print_ccb = ccb; 1427 1428 /* 1429 * Grab the inquiry data for this device. 1430 */ 1431 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1432 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1433 xpt_action((union ccb *)&cgd); 1434 1435 if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) 1436 err_action = scsi_error_action(&ccb->csio, 1437 &cgd.inq_data, 1438 sense_flags); 1439 else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) 1440 err_action = SS_REQSENSE; 1441 else 1442 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1443 1444 error = err_action & SS_ERRMASK; 1445 1446 /* 1447 * If the recovery action will consume a retry, 1448 * make sure we actually have retries available. 1449 */ 1450 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1451 if (ccb->ccb_h.retry_count > 0) 1452 ccb->ccb_h.retry_count--; 1453 else { 1454 action_string = "Retries Exhausted"; 1455 goto sense_error_done; 1456 } 1457 } 1458 1459 if ((err_action & SS_MASK) >= SS_START) { 1460 /* 1461 * Do common portions of commands that 1462 * use recovery CCBs. 1463 */ 1464 if (save_ccb == NULL) { 1465 action_string = "No recovery CCB supplied"; 1466 goto sense_error_done; 1467 } 1468 /* 1469 * Clear freeze flag for original request here, as 1470 * this freeze will be dropped as part of ERESTART. 1471 */ 1472 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1473 bcopy(ccb, save_ccb, sizeof(*save_ccb)); 1474 print_ccb = save_ccb; 1475 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1476 } 1477 1478 switch (err_action & SS_MASK) { 1479 case SS_NOP: 1480 action_string = "No Recovery Action Needed"; 1481 error = 0; 1482 break; 1483 case SS_RETRY: 1484 action_string = "Retrying Command (per Sense Data)"; 1485 error = ERESTART; 1486 break; 1487 case SS_FAIL: 1488 action_string = "Unretryable error"; 1489 break; 1490 case SS_START: 1491 { 1492 int le; 1493 1494 /* 1495 * Send a start unit command to the device, and 1496 * then retry the command. 1497 */ 1498 action_string = "Attempting to Start Unit"; 1499 1500 /* 1501 * Check for removable media and set 1502 * load/eject flag appropriately. 1503 */ 1504 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1505 le = TRUE; 1506 else 1507 le = FALSE; 1508 1509 scsi_start_stop(&ccb->csio, 1510 /*retries*/1, 1511 camperiphdone, 1512 MSG_SIMPLE_Q_TAG, 1513 /*start*/TRUE, 1514 /*load/eject*/le, 1515 /*immediate*/FALSE, 1516 SSD_FULL_SIZE, 1517 /*timeout*/50000); 1518 break; 1519 } 1520 case SS_TUR: 1521 { 1522 /* 1523 * Send a Test Unit Ready to the device. 1524 * If the 'many' flag is set, we send 120 1525 * test unit ready commands, one every half 1526 * second. Otherwise, we just send one TUR. 1527 * We only want to do this if the retry 1528 * count has not been exhausted. 1529 */ 1530 int retries; 1531 1532 if ((err_action & SSQ_MANY) != 0) { 1533 action_string = "Polling device for readiness"; 1534 retries = 120; 1535 } else { 1536 action_string = "Testing device for readiness"; 1537 retries = 1; 1538 } 1539 scsi_test_unit_ready(&ccb->csio, 1540 retries, 1541 camperiphdone, 1542 MSG_SIMPLE_Q_TAG, 1543 SSD_FULL_SIZE, 1544 /*timeout*/5000); 1545 1546 /* 1547 * Accomplish our 500ms delay by deferring 1548 * the release of our device queue appropriately. 1549 */ 1550 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1551 *timeout = 500; 1552 break; 1553 } 1554 case SS_REQSENSE: 1555 { 1556 /* 1557 * Send a Request Sense to the device. We 1558 * assume that we are in a contingent allegiance 1559 * condition so we do not tag this request. 1560 */ 1561 scsi_request_sense(&ccb->csio, /*retries*/1, 1562 camperiphdone, 1563 &save_ccb->csio.sense_data, 1564 sizeof(save_ccb->csio.sense_data), 1565 CAM_TAG_ACTION_NONE, 1566 /*sense_len*/SSD_FULL_SIZE, 1567 /*timeout*/5000); 1568 break; 1569 } 1570 default: 1571 panic("Unhandled error action %x", err_action); 1572 } 1573 1574 if ((err_action & SS_MASK) >= SS_START) { 1575 /* 1576 * Drop the priority, so that the recovery 1577 * CCB is the first to execute. Freeze the queue 1578 * after this command is sent so that we can 1579 * restore the old csio and have it queued in 1580 * the proper order before we release normal 1581 * transactions to the device. 1582 */ 1583 ccb->ccb_h.pinfo.priority = CAM_PRIORITY_DEV; 1584 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1585 ccb->ccb_h.saved_ccb_ptr = save_ccb; 1586 error = ERESTART; 1587 } 1588 1589 sense_error_done: 1590 if ((err_action & SSQ_PRINT_SENSE) != 0 1591 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) { 1592 cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1593 xpt_print_path(ccb->ccb_h.path); 1594 if (bootverbose) 1595 scsi_sense_print(&print_ccb->csio); 1596 printf("%s\n", action_string); 1597 } 1598 } 1599 return (error); 1600 } 1601 1602 /* 1603 * Generic error handler. Peripheral drivers usually filter 1604 * out the errors that they handle in a unique mannor, then 1605 * call this function. 1606 */ 1607 int 1608 cam_periph_error(union ccb *ccb, cam_flags camflags, 1609 u_int32_t sense_flags, union ccb *save_ccb) 1610 { 1611 const char *action_string; 1612 cam_status status; 1613 int frozen; 1614 int error, printed = 0; 1615 int openings; 1616 u_int32_t relsim_flags; 1617 u_int32_t timeout = 0; 1618 1619 action_string = NULL; 1620 status = ccb->ccb_h.status; 1621 frozen = (status & CAM_DEV_QFRZN) != 0; 1622 status &= CAM_STATUS_MASK; 1623 openings = relsim_flags = 0; 1624 1625 switch (status) { 1626 case CAM_REQ_CMP: 1627 error = 0; 1628 break; 1629 case CAM_SCSI_STATUS_ERROR: 1630 error = camperiphscsistatuserror(ccb, 1631 camflags, 1632 sense_flags, 1633 save_ccb, 1634 &openings, 1635 &relsim_flags, 1636 &timeout); 1637 break; 1638 case CAM_AUTOSENSE_FAIL: 1639 xpt_print(ccb->ccb_h.path, "AutoSense Failed\n"); 1640 error = EIO; /* we have to kill the command */ 1641 break; 1642 case CAM_ATA_STATUS_ERROR: 1643 if (bootverbose && printed == 0) { 1644 xpt_print(ccb->ccb_h.path, 1645 "Request completed with CAM_ATA_STATUS_ERROR\n"); 1646 cam_error_print(ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1647 printed++; 1648 } 1649 /* FALLTHROUGH */ 1650 case CAM_REQ_CMP_ERR: 1651 if (bootverbose && printed == 0) { 1652 xpt_print(ccb->ccb_h.path, 1653 "Request completed with CAM_REQ_CMP_ERR\n"); 1654 printed++; 1655 } 1656 /* FALLTHROUGH */ 1657 case CAM_CMD_TIMEOUT: 1658 if (bootverbose && printed == 0) { 1659 xpt_print(ccb->ccb_h.path, "Command timed out\n"); 1660 printed++; 1661 } 1662 /* FALLTHROUGH */ 1663 case CAM_UNEXP_BUSFREE: 1664 if (bootverbose && printed == 0) { 1665 xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n"); 1666 printed++; 1667 } 1668 /* FALLTHROUGH */ 1669 case CAM_UNCOR_PARITY: 1670 if (bootverbose && printed == 0) { 1671 xpt_print(ccb->ccb_h.path, 1672 "Uncorrected Parity Error\n"); 1673 printed++; 1674 } 1675 /* FALLTHROUGH */ 1676 case CAM_DATA_RUN_ERR: 1677 if (bootverbose && printed == 0) { 1678 xpt_print(ccb->ccb_h.path, "Data Overrun\n"); 1679 printed++; 1680 } 1681 error = EIO; /* we have to kill the command */ 1682 /* decrement the number of retries */ 1683 if (ccb->ccb_h.retry_count > 0) { 1684 ccb->ccb_h.retry_count--; 1685 error = ERESTART; 1686 } else { 1687 action_string = "Retries Exhausted"; 1688 error = EIO; 1689 } 1690 break; 1691 case CAM_UA_ABORT: 1692 case CAM_UA_TERMIO: 1693 case CAM_MSG_REJECT_REC: 1694 /* XXX Don't know that these are correct */ 1695 error = EIO; 1696 break; 1697 case CAM_SEL_TIMEOUT: 1698 { 1699 struct cam_path *newpath; 1700 1701 if ((camflags & CAM_RETRY_SELTO) != 0) { 1702 if (ccb->ccb_h.retry_count > 0) { 1703 1704 ccb->ccb_h.retry_count--; 1705 error = ERESTART; 1706 if (bootverbose && printed == 0) { 1707 xpt_print(ccb->ccb_h.path, 1708 "Selection Timeout\n"); 1709 printed++; 1710 } 1711 1712 /* 1713 * Wait a bit to give the device 1714 * time to recover before we try again. 1715 */ 1716 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1717 timeout = periph_selto_delay; 1718 break; 1719 } 1720 } 1721 error = ENXIO; 1722 /* Should we do more if we can't create the path?? */ 1723 if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path), 1724 xpt_path_path_id(ccb->ccb_h.path), 1725 xpt_path_target_id(ccb->ccb_h.path), 1726 CAM_LUN_WILDCARD) != CAM_REQ_CMP) 1727 break; 1728 1729 /* 1730 * Let peripheral drivers know that this device has gone 1731 * away. 1732 */ 1733 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1734 xpt_free_path(newpath); 1735 break; 1736 } 1737 case CAM_REQ_INVALID: 1738 case CAM_PATH_INVALID: 1739 case CAM_DEV_NOT_THERE: 1740 case CAM_NO_HBA: 1741 case CAM_PROVIDE_FAIL: 1742 case CAM_REQ_TOO_BIG: 1743 case CAM_LUN_INVALID: 1744 case CAM_TID_INVALID: 1745 error = EINVAL; 1746 break; 1747 case CAM_SCSI_BUS_RESET: 1748 case CAM_BDR_SENT: 1749 /* 1750 * Commands that repeatedly timeout and cause these 1751 * kinds of error recovery actions, should return 1752 * CAM_CMD_TIMEOUT, which allows us to safely assume 1753 * that this command was an innocent bystander to 1754 * these events and should be unconditionally 1755 * retried. 1756 */ 1757 if (bootverbose && printed == 0) { 1758 xpt_print_path(ccb->ccb_h.path); 1759 if (status == CAM_BDR_SENT) 1760 printf("Bus Device Reset sent\n"); 1761 else 1762 printf("Bus Reset issued\n"); 1763 printed++; 1764 } 1765 /* FALLTHROUGH */ 1766 case CAM_REQUEUE_REQ: 1767 /* Unconditional requeue */ 1768 error = ERESTART; 1769 if (bootverbose && printed == 0) { 1770 xpt_print(ccb->ccb_h.path, "Request Requeued\n"); 1771 printed++; 1772 } 1773 break; 1774 case CAM_RESRC_UNAVAIL: 1775 /* Wait a bit for the resource shortage to abate. */ 1776 timeout = periph_noresrc_delay; 1777 /* FALLTHROUGH */ 1778 case CAM_BUSY: 1779 if (timeout == 0) { 1780 /* Wait a bit for the busy condition to abate. */ 1781 timeout = periph_busy_delay; 1782 } 1783 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1784 /* FALLTHROUGH */ 1785 default: 1786 /* decrement the number of retries */ 1787 if (ccb->ccb_h.retry_count > 0) { 1788 ccb->ccb_h.retry_count--; 1789 error = ERESTART; 1790 if (bootverbose && printed == 0) { 1791 xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n", 1792 status); 1793 printed++; 1794 } 1795 } else { 1796 error = EIO; 1797 action_string = "Retries Exhausted"; 1798 } 1799 break; 1800 } 1801 1802 /* 1803 * If we have and error and are booting verbosely, whine 1804 * *unless* this was a non-retryable selection timeout. 1805 */ 1806 if (error != 0 && bootverbose && 1807 !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) { 1808 if (error != ERESTART) { 1809 if (action_string == NULL) 1810 action_string = "Unretryable Error"; 1811 xpt_print(ccb->ccb_h.path, "error %d\n", error); 1812 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1813 } else 1814 xpt_print(ccb->ccb_h.path, "Retrying Command\n"); 1815 } 1816 1817 /* Attempt a retry */ 1818 if (error == ERESTART || error == 0) { 1819 if (frozen != 0) 1820 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1821 if (error == ERESTART) 1822 xpt_action(ccb); 1823 if (frozen != 0) 1824 cam_release_devq(ccb->ccb_h.path, 1825 relsim_flags, 1826 openings, 1827 timeout, 1828 /*getcount_only*/0); 1829 } 1830 1831 return (error); 1832 } 1833