1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_xpt_internal.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_sim.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 static u_int camperiphnextunit(struct periph_driver *p_drv, 67 u_int newunit, int wired, 68 path_id_t pathid, target_id_t target, 69 lun_id_t lun); 70 static u_int camperiphunit(struct periph_driver *p_drv, 71 path_id_t pathid, target_id_t target, 72 lun_id_t lun); 73 static void camperiphdone(struct cam_periph *periph, 74 union ccb *done_ccb); 75 static void camperiphfree(struct cam_periph *periph); 76 static int camperiphscsistatuserror(union ccb *ccb, 77 union ccb **orig_ccb, 78 cam_flags camflags, 79 u_int32_t sense_flags, 80 int *openings, 81 u_int32_t *relsim_flags, 82 u_int32_t *timeout, 83 u_int32_t *action, 84 const char **action_string); 85 static int camperiphscsisenseerror(union ccb *ccb, 86 union ccb **orig_ccb, 87 cam_flags camflags, 88 u_int32_t sense_flags, 89 int *openings, 90 u_int32_t *relsim_flags, 91 u_int32_t *timeout, 92 u_int32_t *action, 93 const char **action_string); 94 static void cam_periph_devctl_notify(union ccb *ccb); 95 96 static int nperiph_drivers; 97 static int initialized = 0; 98 struct periph_driver **periph_drivers; 99 100 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 101 102 static int periph_selto_delay = 1000; 103 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 104 static int periph_noresrc_delay = 500; 105 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 106 static int periph_busy_delay = 500; 107 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 108 109 static u_int periph_mapmem_thresh = 65536; 110 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 111 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 112 113 void 114 periphdriver_register(void *data) 115 { 116 struct periph_driver *drv = (struct periph_driver *)data; 117 struct periph_driver **newdrivers, **old; 118 int ndrivers; 119 120 again: 121 ndrivers = nperiph_drivers + 2; 122 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 123 M_WAITOK); 124 xpt_lock_buses(); 125 if (ndrivers != nperiph_drivers + 2) { 126 /* 127 * Lost race against itself; go around. 128 */ 129 xpt_unlock_buses(); 130 free(newdrivers, M_CAMPERIPH); 131 goto again; 132 } 133 if (periph_drivers) 134 bcopy(periph_drivers, newdrivers, 135 sizeof(*newdrivers) * nperiph_drivers); 136 newdrivers[nperiph_drivers] = drv; 137 newdrivers[nperiph_drivers + 1] = NULL; 138 old = periph_drivers; 139 periph_drivers = newdrivers; 140 nperiph_drivers++; 141 xpt_unlock_buses(); 142 if (old) 143 free(old, M_CAMPERIPH); 144 /* If driver marked as early or it is late now, initialize it. */ 145 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 146 initialized > 1) 147 (*drv->init)(); 148 } 149 150 int 151 periphdriver_unregister(void *data) 152 { 153 struct periph_driver *drv = (struct periph_driver *)data; 154 int error, n; 155 156 /* If driver marked as early or it is late now, deinitialize it. */ 157 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 158 initialized > 1) { 159 if (drv->deinit == NULL) { 160 printf("CAM periph driver '%s' doesn't have deinit.\n", 161 drv->driver_name); 162 return (EOPNOTSUPP); 163 } 164 error = drv->deinit(); 165 if (error != 0) 166 return (error); 167 } 168 169 xpt_lock_buses(); 170 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 171 ; 172 KASSERT(n < nperiph_drivers, 173 ("Periph driver '%s' was not registered", drv->driver_name)); 174 for (; n + 1 < nperiph_drivers; n++) 175 periph_drivers[n] = periph_drivers[n + 1]; 176 periph_drivers[n + 1] = NULL; 177 nperiph_drivers--; 178 xpt_unlock_buses(); 179 return (0); 180 } 181 182 void 183 periphdriver_init(int level) 184 { 185 int i, early; 186 187 initialized = max(initialized, level); 188 for (i = 0; periph_drivers[i] != NULL; i++) { 189 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 190 if (early == initialized) 191 (*periph_drivers[i]->init)(); 192 } 193 } 194 195 cam_status 196 cam_periph_alloc(periph_ctor_t *periph_ctor, 197 periph_oninv_t *periph_oninvalidate, 198 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 199 char *name, cam_periph_type type, struct cam_path *path, 200 ac_callback_t *ac_callback, ac_code code, void *arg) 201 { 202 struct periph_driver **p_drv; 203 struct cam_sim *sim; 204 struct cam_periph *periph; 205 struct cam_periph *cur_periph; 206 path_id_t path_id; 207 target_id_t target_id; 208 lun_id_t lun_id; 209 cam_status status; 210 u_int init_level; 211 212 init_level = 0; 213 /* 214 * Handle Hot-Plug scenarios. If there is already a peripheral 215 * of our type assigned to this path, we are likely waiting for 216 * final close on an old, invalidated, peripheral. If this is 217 * the case, queue up a deferred call to the peripheral's async 218 * handler. If it looks like a mistaken re-allocation, complain. 219 */ 220 if ((periph = cam_periph_find(path, name)) != NULL) { 221 if ((periph->flags & CAM_PERIPH_INVALID) != 0 222 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 223 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 224 periph->deferred_callback = ac_callback; 225 periph->deferred_ac = code; 226 return (CAM_REQ_INPROG); 227 } else { 228 printf("cam_periph_alloc: attempt to re-allocate " 229 "valid device %s%d rejected flags %#x " 230 "refcount %d\n", periph->periph_name, 231 periph->unit_number, periph->flags, 232 periph->refcount); 233 } 234 return (CAM_REQ_INVALID); 235 } 236 237 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 238 M_NOWAIT|M_ZERO); 239 240 if (periph == NULL) 241 return (CAM_RESRC_UNAVAIL); 242 243 init_level++; 244 245 sim = xpt_path_sim(path); 246 path_id = xpt_path_path_id(path); 247 target_id = xpt_path_target_id(path); 248 lun_id = xpt_path_lun_id(path); 249 periph->periph_start = periph_start; 250 periph->periph_dtor = periph_dtor; 251 periph->periph_oninval = periph_oninvalidate; 252 periph->type = type; 253 periph->periph_name = name; 254 periph->scheduled_priority = CAM_PRIORITY_NONE; 255 periph->immediate_priority = CAM_PRIORITY_NONE; 256 periph->refcount = 1; /* Dropped by invalidation. */ 257 periph->sim = sim; 258 SLIST_INIT(&periph->ccb_list); 259 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 260 if (status != CAM_REQ_CMP) 261 goto failure; 262 periph->path = path; 263 264 xpt_lock_buses(); 265 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 266 if (strcmp((*p_drv)->driver_name, name) == 0) 267 break; 268 } 269 if (*p_drv == NULL) { 270 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 271 xpt_unlock_buses(); 272 xpt_free_path(periph->path); 273 free(periph, M_CAMPERIPH); 274 return (CAM_REQ_INVALID); 275 } 276 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 277 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 278 while (cur_periph != NULL 279 && cur_periph->unit_number < periph->unit_number) 280 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 281 if (cur_periph != NULL) { 282 KASSERT(cur_periph->unit_number != periph->unit_number, 283 ("duplicate units on periph list")); 284 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 285 } else { 286 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 287 (*p_drv)->generation++; 288 } 289 xpt_unlock_buses(); 290 291 init_level++; 292 293 status = xpt_add_periph(periph); 294 if (status != CAM_REQ_CMP) 295 goto failure; 296 297 init_level++; 298 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 299 300 status = periph_ctor(periph, arg); 301 302 if (status == CAM_REQ_CMP) 303 init_level++; 304 305 failure: 306 switch (init_level) { 307 case 4: 308 /* Initialized successfully */ 309 break; 310 case 3: 311 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 312 xpt_remove_periph(periph); 313 /* FALLTHROUGH */ 314 case 2: 315 xpt_lock_buses(); 316 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 317 xpt_unlock_buses(); 318 xpt_free_path(periph->path); 319 /* FALLTHROUGH */ 320 case 1: 321 free(periph, M_CAMPERIPH); 322 /* FALLTHROUGH */ 323 case 0: 324 /* No cleanup to perform. */ 325 break; 326 default: 327 panic("%s: Unknown init level", __func__); 328 } 329 return(status); 330 } 331 332 /* 333 * Find a peripheral structure with the specified path, target, lun, 334 * and (optionally) type. If the name is NULL, this function will return 335 * the first peripheral driver that matches the specified path. 336 */ 337 struct cam_periph * 338 cam_periph_find(struct cam_path *path, char *name) 339 { 340 struct periph_driver **p_drv; 341 struct cam_periph *periph; 342 343 xpt_lock_buses(); 344 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 345 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 346 continue; 347 348 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 349 if (xpt_path_comp(periph->path, path) == 0) { 350 xpt_unlock_buses(); 351 cam_periph_assert(periph, MA_OWNED); 352 return(periph); 353 } 354 } 355 if (name != NULL) { 356 xpt_unlock_buses(); 357 return(NULL); 358 } 359 } 360 xpt_unlock_buses(); 361 return(NULL); 362 } 363 364 /* 365 * Find peripheral driver instances attached to the specified path. 366 */ 367 int 368 cam_periph_list(struct cam_path *path, struct sbuf *sb) 369 { 370 struct sbuf local_sb; 371 struct periph_driver **p_drv; 372 struct cam_periph *periph; 373 int count; 374 int sbuf_alloc_len; 375 376 sbuf_alloc_len = 16; 377 retry: 378 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 379 count = 0; 380 xpt_lock_buses(); 381 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 382 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 383 if (xpt_path_comp(periph->path, path) != 0) 384 continue; 385 386 if (sbuf_len(&local_sb) != 0) 387 sbuf_cat(&local_sb, ","); 388 389 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 390 periph->unit_number); 391 392 if (sbuf_error(&local_sb) == ENOMEM) { 393 sbuf_alloc_len *= 2; 394 xpt_unlock_buses(); 395 sbuf_delete(&local_sb); 396 goto retry; 397 } 398 count++; 399 } 400 } 401 xpt_unlock_buses(); 402 sbuf_finish(&local_sb); 403 if (sbuf_len(sb) != 0) 404 sbuf_cat(sb, ","); 405 sbuf_cat(sb, sbuf_data(&local_sb)); 406 sbuf_delete(&local_sb); 407 return (count); 408 } 409 410 int 411 cam_periph_acquire(struct cam_periph *periph) 412 { 413 int status; 414 415 if (periph == NULL) 416 return (EINVAL); 417 418 status = ENOENT; 419 xpt_lock_buses(); 420 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 421 periph->refcount++; 422 status = 0; 423 } 424 xpt_unlock_buses(); 425 426 return (status); 427 } 428 429 void 430 cam_periph_doacquire(struct cam_periph *periph) 431 { 432 433 xpt_lock_buses(); 434 KASSERT(periph->refcount >= 1, 435 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 436 periph->refcount++; 437 xpt_unlock_buses(); 438 } 439 440 void 441 cam_periph_release_locked_buses(struct cam_periph *periph) 442 { 443 444 cam_periph_assert(periph, MA_OWNED); 445 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 446 if (--periph->refcount == 0) 447 camperiphfree(periph); 448 } 449 450 void 451 cam_periph_release_locked(struct cam_periph *periph) 452 { 453 454 if (periph == NULL) 455 return; 456 457 xpt_lock_buses(); 458 cam_periph_release_locked_buses(periph); 459 xpt_unlock_buses(); 460 } 461 462 void 463 cam_periph_release(struct cam_periph *periph) 464 { 465 struct mtx *mtx; 466 467 if (periph == NULL) 468 return; 469 470 cam_periph_assert(periph, MA_NOTOWNED); 471 mtx = cam_periph_mtx(periph); 472 mtx_lock(mtx); 473 cam_periph_release_locked(periph); 474 mtx_unlock(mtx); 475 } 476 477 /* 478 * hold/unhold act as mutual exclusion for sections of the code that 479 * need to sleep and want to make sure that other sections that 480 * will interfere are held off. This only protects exclusive sections 481 * from each other. 482 */ 483 int 484 cam_periph_hold(struct cam_periph *periph, int priority) 485 { 486 int error; 487 488 /* 489 * Increment the reference count on the peripheral 490 * while we wait for our lock attempt to succeed 491 * to ensure the peripheral doesn't disappear out 492 * from user us while we sleep. 493 */ 494 495 if (cam_periph_acquire(periph) != 0) 496 return (ENXIO); 497 498 cam_periph_assert(periph, MA_OWNED); 499 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 500 periph->flags |= CAM_PERIPH_LOCK_WANTED; 501 if ((error = cam_periph_sleep(periph, periph, priority, 502 "caplck", 0)) != 0) { 503 cam_periph_release_locked(periph); 504 return (error); 505 } 506 if (periph->flags & CAM_PERIPH_INVALID) { 507 cam_periph_release_locked(periph); 508 return (ENXIO); 509 } 510 } 511 512 periph->flags |= CAM_PERIPH_LOCKED; 513 return (0); 514 } 515 516 void 517 cam_periph_unhold(struct cam_periph *periph) 518 { 519 520 cam_periph_assert(periph, MA_OWNED); 521 522 periph->flags &= ~CAM_PERIPH_LOCKED; 523 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 524 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 525 wakeup(periph); 526 } 527 528 cam_periph_release_locked(periph); 529 } 530 531 /* 532 * Look for the next unit number that is not currently in use for this 533 * peripheral type starting at "newunit". Also exclude unit numbers that 534 * are reserved by for future "hardwiring" unless we already know that this 535 * is a potential wired device. Only assume that the device is "wired" the 536 * first time through the loop since after that we'll be looking at unit 537 * numbers that did not match a wiring entry. 538 */ 539 static u_int 540 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 541 path_id_t pathid, target_id_t target, lun_id_t lun) 542 { 543 struct cam_periph *periph; 544 char *periph_name; 545 int i, val, dunit, r; 546 const char *dname, *strval; 547 548 periph_name = p_drv->driver_name; 549 for (;;newunit++) { 550 for (periph = TAILQ_FIRST(&p_drv->units); 551 periph != NULL && periph->unit_number != newunit; 552 periph = TAILQ_NEXT(periph, unit_links)) 553 ; 554 555 if (periph != NULL && periph->unit_number == newunit) { 556 if (wired != 0) { 557 xpt_print(periph->path, "Duplicate Wired " 558 "Device entry!\n"); 559 xpt_print(periph->path, "Second device (%s " 560 "device at scbus%d target %d lun %d) will " 561 "not be wired\n", periph_name, pathid, 562 target, lun); 563 wired = 0; 564 } 565 continue; 566 } 567 if (wired) 568 break; 569 570 /* 571 * Don't match entries like "da 4" as a wired down 572 * device, but do match entries like "da 4 target 5" 573 * or even "da 4 scbus 1". 574 */ 575 i = 0; 576 dname = periph_name; 577 for (;;) { 578 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 579 if (r != 0) 580 break; 581 /* if no "target" and no specific scbus, skip */ 582 if (resource_int_value(dname, dunit, "target", &val) && 583 (resource_string_value(dname, dunit, "at",&strval)|| 584 strcmp(strval, "scbus") == 0)) 585 continue; 586 if (newunit == dunit) 587 break; 588 } 589 if (r != 0) 590 break; 591 } 592 return (newunit); 593 } 594 595 static u_int 596 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 597 target_id_t target, lun_id_t lun) 598 { 599 u_int unit; 600 int wired, i, val, dunit; 601 const char *dname, *strval; 602 char pathbuf[32], *periph_name; 603 604 periph_name = p_drv->driver_name; 605 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 606 unit = 0; 607 i = 0; 608 dname = periph_name; 609 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 610 wired = 0) { 611 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 612 if (strcmp(strval, pathbuf) != 0) 613 continue; 614 wired++; 615 } 616 if (resource_int_value(dname, dunit, "target", &val) == 0) { 617 if (val != target) 618 continue; 619 wired++; 620 } 621 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 622 if (val != lun) 623 continue; 624 wired++; 625 } 626 if (wired != 0) { 627 unit = dunit; 628 break; 629 } 630 } 631 632 /* 633 * Either start from 0 looking for the next unit or from 634 * the unit number given in the resource config. This way, 635 * if we have wildcard matches, we don't return the same 636 * unit number twice. 637 */ 638 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 639 640 return (unit); 641 } 642 643 void 644 cam_periph_invalidate(struct cam_periph *periph) 645 { 646 647 cam_periph_assert(periph, MA_OWNED); 648 /* 649 * We only tear down the device the first time a peripheral is 650 * invalidated. 651 */ 652 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 653 return; 654 655 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 656 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 657 struct sbuf sb; 658 char buffer[160]; 659 660 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 661 xpt_denounce_periph_sbuf(periph, &sb); 662 sbuf_finish(&sb); 663 sbuf_putbuf(&sb); 664 } 665 periph->flags |= CAM_PERIPH_INVALID; 666 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 667 if (periph->periph_oninval != NULL) 668 periph->periph_oninval(periph); 669 cam_periph_release_locked(periph); 670 } 671 672 static void 673 camperiphfree(struct cam_periph *periph) 674 { 675 struct periph_driver **p_drv; 676 struct periph_driver *drv; 677 678 cam_periph_assert(periph, MA_OWNED); 679 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 680 periph->periph_name, periph->unit_number)); 681 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 682 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 683 break; 684 } 685 if (*p_drv == NULL) { 686 printf("camperiphfree: attempt to free non-existant periph\n"); 687 return; 688 } 689 /* 690 * Cache a pointer to the periph_driver structure. If a 691 * periph_driver is added or removed from the array (see 692 * periphdriver_register()) while we drop the toplogy lock 693 * below, p_drv may change. This doesn't protect against this 694 * particular periph_driver going away. That will require full 695 * reference counting in the periph_driver infrastructure. 696 */ 697 drv = *p_drv; 698 699 /* 700 * We need to set this flag before dropping the topology lock, to 701 * let anyone who is traversing the list that this peripheral is 702 * about to be freed, and there will be no more reference count 703 * checks. 704 */ 705 periph->flags |= CAM_PERIPH_FREE; 706 707 /* 708 * The peripheral destructor semantics dictate calling with only the 709 * SIM mutex held. Since it might sleep, it should not be called 710 * with the topology lock held. 711 */ 712 xpt_unlock_buses(); 713 714 /* 715 * We need to call the peripheral destructor prior to removing the 716 * peripheral from the list. Otherwise, we risk running into a 717 * scenario where the peripheral unit number may get reused 718 * (because it has been removed from the list), but some resources 719 * used by the peripheral are still hanging around. In particular, 720 * the devfs nodes used by some peripherals like the pass(4) driver 721 * aren't fully cleaned up until the destructor is run. If the 722 * unit number is reused before the devfs instance is fully gone, 723 * devfs will panic. 724 */ 725 if (periph->periph_dtor != NULL) 726 periph->periph_dtor(periph); 727 728 /* 729 * The peripheral list is protected by the topology lock. We have to 730 * remove the periph from the drv list before we call deferred_ac. The 731 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 732 */ 733 xpt_lock_buses(); 734 735 TAILQ_REMOVE(&drv->units, periph, unit_links); 736 drv->generation++; 737 738 xpt_remove_periph(periph); 739 740 xpt_unlock_buses(); 741 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 742 xpt_print(periph->path, "Periph destroyed\n"); 743 else 744 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 745 746 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 747 union ccb ccb; 748 void *arg; 749 750 memset(&ccb, 0, sizeof(ccb)); 751 switch (periph->deferred_ac) { 752 case AC_FOUND_DEVICE: 753 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 754 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 755 xpt_action(&ccb); 756 arg = &ccb; 757 break; 758 case AC_PATH_REGISTERED: 759 xpt_path_inq(&ccb.cpi, periph->path); 760 arg = &ccb; 761 break; 762 default: 763 arg = NULL; 764 break; 765 } 766 periph->deferred_callback(NULL, periph->deferred_ac, 767 periph->path, arg); 768 } 769 xpt_free_path(periph->path); 770 free(periph, M_CAMPERIPH); 771 xpt_lock_buses(); 772 } 773 774 /* 775 * Map user virtual pointers into kernel virtual address space, so we can 776 * access the memory. This is now a generic function that centralizes most 777 * of the sanity checks on the data flags, if any. 778 * This also only works for up to maxphys memory. Since we use 779 * buffers to map stuff in and out, we're limited to the buffer size. 780 */ 781 int 782 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 783 u_int maxmap) 784 { 785 int numbufs, i; 786 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 787 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 788 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 789 790 bzero(mapinfo, sizeof(*mapinfo)); 791 if (maxmap == 0) 792 maxmap = DFLTPHYS; /* traditional default */ 793 else if (maxmap > maxphys) 794 maxmap = maxphys; /* for safety */ 795 switch(ccb->ccb_h.func_code) { 796 case XPT_DEV_MATCH: 797 if (ccb->cdm.match_buf_len == 0) { 798 printf("cam_periph_mapmem: invalid match buffer " 799 "length 0\n"); 800 return(EINVAL); 801 } 802 if (ccb->cdm.pattern_buf_len > 0) { 803 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 804 lengths[0] = ccb->cdm.pattern_buf_len; 805 dirs[0] = CAM_DIR_OUT; 806 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 807 lengths[1] = ccb->cdm.match_buf_len; 808 dirs[1] = CAM_DIR_IN; 809 numbufs = 2; 810 } else { 811 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 812 lengths[0] = ccb->cdm.match_buf_len; 813 dirs[0] = CAM_DIR_IN; 814 numbufs = 1; 815 } 816 /* 817 * This request will not go to the hardware, no reason 818 * to be so strict. vmapbuf() is able to map up to maxphys. 819 */ 820 maxmap = maxphys; 821 break; 822 case XPT_SCSI_IO: 823 case XPT_CONT_TARGET_IO: 824 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 825 return(0); 826 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 827 return (EINVAL); 828 data_ptrs[0] = &ccb->csio.data_ptr; 829 lengths[0] = ccb->csio.dxfer_len; 830 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 831 numbufs = 1; 832 break; 833 case XPT_ATA_IO: 834 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 835 return(0); 836 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 837 return (EINVAL); 838 data_ptrs[0] = &ccb->ataio.data_ptr; 839 lengths[0] = ccb->ataio.dxfer_len; 840 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 841 numbufs = 1; 842 break; 843 case XPT_MMC_IO: 844 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 845 return(0); 846 /* Two mappings: one for cmd->data and one for cmd->data->data */ 847 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 848 lengths[0] = sizeof(struct mmc_data *); 849 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 850 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 851 lengths[1] = ccb->mmcio.cmd.data->len; 852 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 853 numbufs = 2; 854 break; 855 case XPT_SMP_IO: 856 data_ptrs[0] = &ccb->smpio.smp_request; 857 lengths[0] = ccb->smpio.smp_request_len; 858 dirs[0] = CAM_DIR_OUT; 859 data_ptrs[1] = &ccb->smpio.smp_response; 860 lengths[1] = ccb->smpio.smp_response_len; 861 dirs[1] = CAM_DIR_IN; 862 numbufs = 2; 863 break; 864 case XPT_NVME_IO: 865 case XPT_NVME_ADMIN: 866 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 867 return (0); 868 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 869 return (EINVAL); 870 data_ptrs[0] = &ccb->nvmeio.data_ptr; 871 lengths[0] = ccb->nvmeio.dxfer_len; 872 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 873 numbufs = 1; 874 break; 875 case XPT_DEV_ADVINFO: 876 if (ccb->cdai.bufsiz == 0) 877 return (0); 878 879 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 880 lengths[0] = ccb->cdai.bufsiz; 881 dirs[0] = CAM_DIR_IN; 882 numbufs = 1; 883 884 /* 885 * This request will not go to the hardware, no reason 886 * to be so strict. vmapbuf() is able to map up to maxphys. 887 */ 888 maxmap = maxphys; 889 break; 890 default: 891 return(EINVAL); 892 break; /* NOTREACHED */ 893 } 894 895 /* 896 * Check the transfer length and permissions first, so we don't 897 * have to unmap any previously mapped buffers. 898 */ 899 for (i = 0; i < numbufs; i++) { 900 if (lengths[i] > maxmap) { 901 printf("cam_periph_mapmem: attempt to map %lu bytes, " 902 "which is greater than %lu\n", 903 (long)(lengths[i]), (u_long)maxmap); 904 return (E2BIG); 905 } 906 } 907 908 /* 909 * This keeps the kernel stack of current thread from getting 910 * swapped. In low-memory situations where the kernel stack might 911 * otherwise get swapped out, this holds it and allows the thread 912 * to make progress and release the kernel mapped pages sooner. 913 * 914 * XXX KDM should I use P_NOSWAP instead? 915 */ 916 PHOLD(curproc); 917 918 for (i = 0; i < numbufs; i++) { 919 /* Save the user's data address. */ 920 mapinfo->orig[i] = *data_ptrs[i]; 921 922 /* 923 * For small buffers use malloc+copyin/copyout instead of 924 * mapping to KVA to avoid expensive TLB shootdowns. For 925 * small allocations malloc is backed by UMA, and so much 926 * cheaper on SMP systems. 927 */ 928 if (lengths[i] <= periph_mapmem_thresh && 929 ccb->ccb_h.func_code != XPT_MMC_IO) { 930 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 931 M_WAITOK); 932 if (dirs[i] != CAM_DIR_IN) { 933 if (copyin(mapinfo->orig[i], *data_ptrs[i], 934 lengths[i]) != 0) { 935 free(*data_ptrs[i], M_CAMPERIPH); 936 *data_ptrs[i] = mapinfo->orig[i]; 937 goto fail; 938 } 939 } else 940 bzero(*data_ptrs[i], lengths[i]); 941 continue; 942 } 943 944 /* 945 * Get the buffer. 946 */ 947 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 948 949 /* set the direction */ 950 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 951 BIO_WRITE : BIO_READ; 952 953 /* Map the buffer into kernel memory. */ 954 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 955 uma_zfree(pbuf_zone, mapinfo->bp[i]); 956 goto fail; 957 } 958 959 /* set our pointer to the new mapped area */ 960 *data_ptrs[i] = mapinfo->bp[i]->b_data; 961 } 962 963 /* 964 * Now that we've gotten this far, change ownership to the kernel 965 * of the buffers so that we don't run afoul of returning to user 966 * space with locks (on the buffer) held. 967 */ 968 for (i = 0; i < numbufs; i++) { 969 if (mapinfo->bp[i]) 970 BUF_KERNPROC(mapinfo->bp[i]); 971 } 972 973 mapinfo->num_bufs_used = numbufs; 974 return(0); 975 976 fail: 977 for (i--; i >= 0; i--) { 978 if (mapinfo->bp[i]) { 979 vunmapbuf(mapinfo->bp[i]); 980 uma_zfree(pbuf_zone, mapinfo->bp[i]); 981 } else 982 free(*data_ptrs[i], M_CAMPERIPH); 983 *data_ptrs[i] = mapinfo->orig[i]; 984 } 985 PRELE(curproc); 986 return(EACCES); 987 } 988 989 /* 990 * Unmap memory segments mapped into kernel virtual address space by 991 * cam_periph_mapmem(). 992 */ 993 void 994 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 995 { 996 int numbufs, i; 997 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 998 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 999 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1000 1001 if (mapinfo->num_bufs_used <= 0) { 1002 /* nothing to free and the process wasn't held. */ 1003 return; 1004 } 1005 1006 switch (ccb->ccb_h.func_code) { 1007 case XPT_DEV_MATCH: 1008 if (ccb->cdm.pattern_buf_len > 0) { 1009 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1010 lengths[0] = ccb->cdm.pattern_buf_len; 1011 dirs[0] = CAM_DIR_OUT; 1012 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1013 lengths[1] = ccb->cdm.match_buf_len; 1014 dirs[1] = CAM_DIR_IN; 1015 numbufs = 2; 1016 } else { 1017 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1018 lengths[0] = ccb->cdm.match_buf_len; 1019 dirs[0] = CAM_DIR_IN; 1020 numbufs = 1; 1021 } 1022 break; 1023 case XPT_SCSI_IO: 1024 case XPT_CONT_TARGET_IO: 1025 data_ptrs[0] = &ccb->csio.data_ptr; 1026 lengths[0] = ccb->csio.dxfer_len; 1027 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1028 numbufs = 1; 1029 break; 1030 case XPT_ATA_IO: 1031 data_ptrs[0] = &ccb->ataio.data_ptr; 1032 lengths[0] = ccb->ataio.dxfer_len; 1033 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1034 numbufs = 1; 1035 break; 1036 case XPT_MMC_IO: 1037 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1038 lengths[0] = sizeof(struct mmc_data *); 1039 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1040 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1041 lengths[1] = ccb->mmcio.cmd.data->len; 1042 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1043 numbufs = 2; 1044 break; 1045 case XPT_SMP_IO: 1046 data_ptrs[0] = &ccb->smpio.smp_request; 1047 lengths[0] = ccb->smpio.smp_request_len; 1048 dirs[0] = CAM_DIR_OUT; 1049 data_ptrs[1] = &ccb->smpio.smp_response; 1050 lengths[1] = ccb->smpio.smp_response_len; 1051 dirs[1] = CAM_DIR_IN; 1052 numbufs = 2; 1053 break; 1054 case XPT_NVME_IO: 1055 case XPT_NVME_ADMIN: 1056 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1057 lengths[0] = ccb->nvmeio.dxfer_len; 1058 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1059 numbufs = 1; 1060 break; 1061 case XPT_DEV_ADVINFO: 1062 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1063 lengths[0] = ccb->cdai.bufsiz; 1064 dirs[0] = CAM_DIR_IN; 1065 numbufs = 1; 1066 break; 1067 default: 1068 /* allow ourselves to be swapped once again */ 1069 PRELE(curproc); 1070 return; 1071 break; /* NOTREACHED */ 1072 } 1073 1074 for (i = 0; i < numbufs; i++) { 1075 if (mapinfo->bp[i]) { 1076 /* unmap the buffer */ 1077 vunmapbuf(mapinfo->bp[i]); 1078 1079 /* release the buffer */ 1080 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1081 } else { 1082 if (dirs[i] != CAM_DIR_OUT) { 1083 copyout(*data_ptrs[i], mapinfo->orig[i], 1084 lengths[i]); 1085 } 1086 free(*data_ptrs[i], M_CAMPERIPH); 1087 } 1088 1089 /* Set the user's pointer back to the original value */ 1090 *data_ptrs[i] = mapinfo->orig[i]; 1091 } 1092 1093 /* allow ourselves to be swapped once again */ 1094 PRELE(curproc); 1095 } 1096 1097 int 1098 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1099 int (*error_routine)(union ccb *ccb, 1100 cam_flags camflags, 1101 u_int32_t sense_flags)) 1102 { 1103 union ccb *ccb; 1104 int error; 1105 int found; 1106 1107 error = found = 0; 1108 1109 switch(cmd){ 1110 case CAMGETPASSTHRU: 1111 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1112 xpt_setup_ccb(&ccb->ccb_h, 1113 ccb->ccb_h.path, 1114 CAM_PRIORITY_NORMAL); 1115 ccb->ccb_h.func_code = XPT_GDEVLIST; 1116 1117 /* 1118 * Basically, the point of this is that we go through 1119 * getting the list of devices, until we find a passthrough 1120 * device. In the current version of the CAM code, the 1121 * only way to determine what type of device we're dealing 1122 * with is by its name. 1123 */ 1124 while (found == 0) { 1125 ccb->cgdl.index = 0; 1126 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1127 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1128 /* we want the next device in the list */ 1129 xpt_action(ccb); 1130 if (strncmp(ccb->cgdl.periph_name, 1131 "pass", 4) == 0){ 1132 found = 1; 1133 break; 1134 } 1135 } 1136 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1137 (found == 0)) { 1138 ccb->cgdl.periph_name[0] = '\0'; 1139 ccb->cgdl.unit_number = 0; 1140 break; 1141 } 1142 } 1143 1144 /* copy the result back out */ 1145 bcopy(ccb, addr, sizeof(union ccb)); 1146 1147 /* and release the ccb */ 1148 xpt_release_ccb(ccb); 1149 1150 break; 1151 default: 1152 error = ENOTTY; 1153 break; 1154 } 1155 return(error); 1156 } 1157 1158 static void 1159 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1160 { 1161 1162 panic("%s: already done with ccb %p", __func__, done_ccb); 1163 } 1164 1165 static void 1166 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1167 { 1168 1169 /* Caller will release the CCB */ 1170 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1171 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1172 wakeup(&done_ccb->ccb_h.cbfcnp); 1173 } 1174 1175 static void 1176 cam_periph_ccbwait(union ccb *ccb) 1177 { 1178 1179 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1180 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1181 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1182 PRIBIO, "cbwait", 0); 1183 } 1184 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1185 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1186 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1187 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1188 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1189 } 1190 1191 /* 1192 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1193 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1194 */ 1195 int 1196 cam_periph_runccb(union ccb *ccb, 1197 int (*error_routine)(union ccb *ccb, 1198 cam_flags camflags, 1199 u_int32_t sense_flags), 1200 cam_flags camflags, u_int32_t sense_flags, 1201 struct devstat *ds) 1202 { 1203 struct bintime *starttime; 1204 struct bintime ltime; 1205 int error; 1206 bool must_poll; 1207 uint32_t timeout = 1; 1208 1209 starttime = NULL; 1210 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1211 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1212 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1213 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1214 1215 /* 1216 * If the user has supplied a stats structure, and if we understand 1217 * this particular type of ccb, record the transaction start. 1218 */ 1219 if (ds != NULL && 1220 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1221 ccb->ccb_h.func_code == XPT_ATA_IO || 1222 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1223 starttime = <ime; 1224 binuptime(starttime); 1225 devstat_start_transaction(ds, starttime); 1226 } 1227 1228 /* 1229 * We must poll the I/O while we're dumping. The scheduler is normally 1230 * stopped for dumping, except when we call doadump from ddb. While the 1231 * scheduler is running in this case, we still need to poll the I/O to 1232 * avoid sleeping waiting for the ccb to complete. 1233 * 1234 * A panic triggered dump stops the scheduler, any callback from the 1235 * shutdown_post_sync event will run with the scheduler stopped, but 1236 * before we're officially dumping. To avoid hanging in adashutdown 1237 * initiated commands (or other similar situations), we have to test for 1238 * either SCHEDULER_STOPPED() here as well. 1239 * 1240 * To avoid locking problems, dumping/polling callers must call 1241 * without a periph lock held. 1242 */ 1243 must_poll = dumping || SCHEDULER_STOPPED(); 1244 ccb->ccb_h.cbfcnp = cam_periph_done; 1245 1246 /* 1247 * If we're polling, then we need to ensure that we have ample resources 1248 * in the periph. cam_periph_error can reschedule the ccb by calling 1249 * xpt_action and returning ERESTART, so we have to effect the polling 1250 * in the do loop below. 1251 */ 1252 if (must_poll) { 1253 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1254 timeout = xpt_poll_setup(ccb); 1255 else 1256 timeout = 0; 1257 } 1258 1259 if (timeout == 0) { 1260 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1261 error = EBUSY; 1262 } else { 1263 xpt_action(ccb); 1264 do { 1265 if (must_poll) { 1266 xpt_pollwait(ccb, timeout); 1267 timeout = ccb->ccb_h.timeout * 10; 1268 } else { 1269 cam_periph_ccbwait(ccb); 1270 } 1271 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1272 error = 0; 1273 else if (error_routine != NULL) { 1274 ccb->ccb_h.cbfcnp = cam_periph_done; 1275 error = (*error_routine)(ccb, camflags, sense_flags); 1276 } else 1277 error = 0; 1278 } while (error == ERESTART); 1279 } 1280 1281 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1282 cam_release_devq(ccb->ccb_h.path, 1283 /* relsim_flags */0, 1284 /* openings */0, 1285 /* timeout */0, 1286 /* getcount_only */ FALSE); 1287 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1288 } 1289 1290 if (ds != NULL) { 1291 uint32_t bytes; 1292 devstat_tag_type tag; 1293 bool valid = true; 1294 1295 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1296 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1297 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1298 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1299 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1300 tag = (devstat_tag_type)0; 1301 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1302 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1303 tag = (devstat_tag_type)0; 1304 } else { 1305 valid = false; 1306 } 1307 if (valid) 1308 devstat_end_transaction(ds, bytes, tag, 1309 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1310 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1311 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1312 } 1313 1314 return(error); 1315 } 1316 1317 void 1318 cam_freeze_devq(struct cam_path *path) 1319 { 1320 struct ccb_hdr ccb_h; 1321 1322 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1323 memset(&ccb_h, 0, sizeof(ccb_h)); 1324 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1325 ccb_h.func_code = XPT_NOOP; 1326 ccb_h.flags = CAM_DEV_QFREEZE; 1327 xpt_action((union ccb *)&ccb_h); 1328 } 1329 1330 u_int32_t 1331 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1332 u_int32_t openings, u_int32_t arg, 1333 int getcount_only) 1334 { 1335 struct ccb_relsim crs; 1336 1337 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1338 relsim_flags, openings, arg, getcount_only)); 1339 memset(&crs, 0, sizeof(crs)); 1340 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1341 crs.ccb_h.func_code = XPT_REL_SIMQ; 1342 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1343 crs.release_flags = relsim_flags; 1344 crs.openings = openings; 1345 crs.release_timeout = arg; 1346 xpt_action((union ccb *)&crs); 1347 return (crs.qfrozen_cnt); 1348 } 1349 1350 #define saved_ccb_ptr ppriv_ptr0 1351 static void 1352 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1353 { 1354 union ccb *saved_ccb; 1355 cam_status status; 1356 struct scsi_start_stop_unit *scsi_cmd; 1357 int error = 0, error_code, sense_key, asc, ascq; 1358 u_int16_t done_flags; 1359 1360 scsi_cmd = (struct scsi_start_stop_unit *) 1361 &done_ccb->csio.cdb_io.cdb_bytes; 1362 status = done_ccb->ccb_h.status; 1363 1364 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1365 if (scsi_extract_sense_ccb(done_ccb, 1366 &error_code, &sense_key, &asc, &ascq)) { 1367 /* 1368 * If the error is "invalid field in CDB", 1369 * and the load/eject flag is set, turn the 1370 * flag off and try again. This is just in 1371 * case the drive in question barfs on the 1372 * load eject flag. The CAM code should set 1373 * the load/eject flag by default for 1374 * removable media. 1375 */ 1376 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1377 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1378 (asc == 0x24) && (ascq == 0x00)) { 1379 scsi_cmd->how &= ~SSS_LOEJ; 1380 if (status & CAM_DEV_QFRZN) { 1381 cam_release_devq(done_ccb->ccb_h.path, 1382 0, 0, 0, 0); 1383 done_ccb->ccb_h.status &= 1384 ~CAM_DEV_QFRZN; 1385 } 1386 xpt_action(done_ccb); 1387 goto out; 1388 } 1389 } 1390 error = cam_periph_error(done_ccb, 0, 1391 SF_RETRY_UA | SF_NO_PRINT); 1392 if (error == ERESTART) 1393 goto out; 1394 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1395 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1396 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1397 } 1398 } else { 1399 /* 1400 * If we have successfully taken a device from the not 1401 * ready to ready state, re-scan the device and re-get 1402 * the inquiry information. Many devices (mostly disks) 1403 * don't properly report their inquiry information unless 1404 * they are spun up. 1405 */ 1406 if (scsi_cmd->opcode == START_STOP_UNIT) 1407 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1408 } 1409 1410 /* If we tried long wait and still failed, remember that. */ 1411 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1412 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1413 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1414 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1415 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1416 } 1417 1418 /* 1419 * After recovery action(s) completed, return to the original CCB. 1420 * If the recovery CCB has failed, considering its own possible 1421 * retries and recovery, assume we are back in state where we have 1422 * been originally, but without recovery hopes left. In such case, 1423 * after the final attempt below, we cancel any further retries, 1424 * blocking by that also any new recovery attempts for this CCB, 1425 * and the result will be the final one returned to the CCB owher. 1426 */ 1427 1428 /* 1429 * Copy the CCB back, preserving the alloc_flags field. Things 1430 * will crash horribly if the CCBs are not of the same size. 1431 */ 1432 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1433 KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO, 1434 ("%s: saved_ccb func_code %#x != XPT_SCSI_IO", 1435 __func__, saved_ccb->ccb_h.func_code)); 1436 KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO, 1437 ("%s: done_ccb func_code %#x != XPT_SCSI_IO", 1438 __func__, done_ccb->ccb_h.func_code)); 1439 done_flags = done_ccb->ccb_h.alloc_flags; 1440 bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio)); 1441 done_ccb->ccb_h.alloc_flags = done_flags; 1442 xpt_free_ccb(saved_ccb); 1443 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1444 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1445 if (error != 0) 1446 done_ccb->ccb_h.retry_count = 0; 1447 xpt_action(done_ccb); 1448 1449 out: 1450 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1451 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1452 } 1453 1454 /* 1455 * Generic Async Event handler. Peripheral drivers usually 1456 * filter out the events that require personal attention, 1457 * and leave the rest to this function. 1458 */ 1459 void 1460 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1461 struct cam_path *path, void *arg) 1462 { 1463 switch (code) { 1464 case AC_LOST_DEVICE: 1465 cam_periph_invalidate(periph); 1466 break; 1467 default: 1468 break; 1469 } 1470 } 1471 1472 void 1473 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1474 { 1475 struct ccb_getdevstats cgds; 1476 1477 memset(&cgds, 0, sizeof(cgds)); 1478 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1479 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1480 xpt_action((union ccb *)&cgds); 1481 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1482 } 1483 1484 void 1485 cam_periph_freeze_after_event(struct cam_periph *periph, 1486 struct timeval* event_time, u_int duration_ms) 1487 { 1488 struct timeval delta; 1489 struct timeval duration_tv; 1490 1491 if (!timevalisset(event_time)) 1492 return; 1493 1494 microtime(&delta); 1495 timevalsub(&delta, event_time); 1496 duration_tv.tv_sec = duration_ms / 1000; 1497 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1498 if (timevalcmp(&delta, &duration_tv, <)) { 1499 timevalsub(&duration_tv, &delta); 1500 1501 duration_ms = duration_tv.tv_sec * 1000; 1502 duration_ms += duration_tv.tv_usec / 1000; 1503 cam_freeze_devq(periph->path); 1504 cam_release_devq(periph->path, 1505 RELSIM_RELEASE_AFTER_TIMEOUT, 1506 /*reduction*/0, 1507 /*timeout*/duration_ms, 1508 /*getcount_only*/0); 1509 } 1510 1511 } 1512 1513 static int 1514 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1515 cam_flags camflags, u_int32_t sense_flags, 1516 int *openings, u_int32_t *relsim_flags, 1517 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1518 { 1519 struct cam_periph *periph; 1520 int error; 1521 1522 switch (ccb->csio.scsi_status) { 1523 case SCSI_STATUS_OK: 1524 case SCSI_STATUS_COND_MET: 1525 case SCSI_STATUS_INTERMED: 1526 case SCSI_STATUS_INTERMED_COND_MET: 1527 error = 0; 1528 break; 1529 case SCSI_STATUS_CMD_TERMINATED: 1530 case SCSI_STATUS_CHECK_COND: 1531 error = camperiphscsisenseerror(ccb, orig_ccb, 1532 camflags, 1533 sense_flags, 1534 openings, 1535 relsim_flags, 1536 timeout, 1537 action, 1538 action_string); 1539 break; 1540 case SCSI_STATUS_QUEUE_FULL: 1541 { 1542 /* no decrement */ 1543 struct ccb_getdevstats cgds; 1544 1545 /* 1546 * First off, find out what the current 1547 * transaction counts are. 1548 */ 1549 memset(&cgds, 0, sizeof(cgds)); 1550 xpt_setup_ccb(&cgds.ccb_h, 1551 ccb->ccb_h.path, 1552 CAM_PRIORITY_NORMAL); 1553 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1554 xpt_action((union ccb *)&cgds); 1555 1556 /* 1557 * If we were the only transaction active, treat 1558 * the QUEUE FULL as if it were a BUSY condition. 1559 */ 1560 if (cgds.dev_active != 0) { 1561 int total_openings; 1562 1563 /* 1564 * Reduce the number of openings to 1565 * be 1 less than the amount it took 1566 * to get a queue full bounded by the 1567 * minimum allowed tag count for this 1568 * device. 1569 */ 1570 total_openings = cgds.dev_active + cgds.dev_openings; 1571 *openings = cgds.dev_active; 1572 if (*openings < cgds.mintags) 1573 *openings = cgds.mintags; 1574 if (*openings < total_openings) 1575 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1576 else { 1577 /* 1578 * Some devices report queue full for 1579 * temporary resource shortages. For 1580 * this reason, we allow a minimum 1581 * tag count to be entered via a 1582 * quirk entry to prevent the queue 1583 * count on these devices from falling 1584 * to a pessimisticly low value. We 1585 * still wait for the next successful 1586 * completion, however, before queueing 1587 * more transactions to the device. 1588 */ 1589 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1590 } 1591 *timeout = 0; 1592 error = ERESTART; 1593 *action &= ~SSQ_PRINT_SENSE; 1594 break; 1595 } 1596 /* FALLTHROUGH */ 1597 } 1598 case SCSI_STATUS_BUSY: 1599 /* 1600 * Restart the queue after either another 1601 * command completes or a 1 second timeout. 1602 */ 1603 periph = xpt_path_periph(ccb->ccb_h.path); 1604 if (periph->flags & CAM_PERIPH_INVALID) { 1605 error = EIO; 1606 *action_string = "Periph was invalidated"; 1607 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1608 ccb->ccb_h.retry_count > 0) { 1609 if ((sense_flags & SF_RETRY_BUSY) == 0) 1610 ccb->ccb_h.retry_count--; 1611 error = ERESTART; 1612 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1613 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1614 *timeout = 1000; 1615 } else { 1616 error = EIO; 1617 *action_string = "Retries exhausted"; 1618 } 1619 break; 1620 case SCSI_STATUS_RESERV_CONFLICT: 1621 default: 1622 error = EIO; 1623 break; 1624 } 1625 return (error); 1626 } 1627 1628 static int 1629 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1630 cam_flags camflags, u_int32_t sense_flags, 1631 int *openings, u_int32_t *relsim_flags, 1632 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1633 { 1634 struct cam_periph *periph; 1635 union ccb *orig_ccb = ccb; 1636 int error, recoveryccb; 1637 u_int16_t flags; 1638 1639 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1640 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1641 biotrack(ccb->csio.bio, __func__); 1642 #endif 1643 1644 periph = xpt_path_periph(ccb->ccb_h.path); 1645 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1646 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1647 /* 1648 * If error recovery is already in progress, don't attempt 1649 * to process this error, but requeue it unconditionally 1650 * and attempt to process it once error recovery has 1651 * completed. This failed command is probably related to 1652 * the error that caused the currently active error recovery 1653 * action so our current recovery efforts should also 1654 * address this command. Be aware that the error recovery 1655 * code assumes that only one recovery action is in progress 1656 * on a particular peripheral instance at any given time 1657 * (e.g. only one saved CCB for error recovery) so it is 1658 * imperitive that we don't violate this assumption. 1659 */ 1660 error = ERESTART; 1661 *action &= ~SSQ_PRINT_SENSE; 1662 } else { 1663 scsi_sense_action err_action; 1664 struct ccb_getdev cgd; 1665 1666 /* 1667 * Grab the inquiry data for this device. 1668 */ 1669 memset(&cgd, 0, sizeof(cgd)); 1670 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1671 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1672 xpt_action((union ccb *)&cgd); 1673 1674 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1675 sense_flags); 1676 error = err_action & SS_ERRMASK; 1677 1678 /* 1679 * Do not autostart sequential access devices 1680 * to avoid unexpected tape loading. 1681 */ 1682 if ((err_action & SS_MASK) == SS_START && 1683 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1684 *action_string = "Will not autostart a " 1685 "sequential access device"; 1686 goto sense_error_done; 1687 } 1688 1689 /* 1690 * Avoid recovery recursion if recovery action is the same. 1691 */ 1692 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1693 if (((err_action & SS_MASK) == SS_START && 1694 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1695 ((err_action & SS_MASK) == SS_TUR && 1696 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1697 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1698 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1699 *timeout = 500; 1700 } 1701 } 1702 1703 /* 1704 * If the recovery action will consume a retry, 1705 * make sure we actually have retries available. 1706 */ 1707 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1708 if (ccb->ccb_h.retry_count > 0 && 1709 (periph->flags & CAM_PERIPH_INVALID) == 0) 1710 ccb->ccb_h.retry_count--; 1711 else { 1712 *action_string = "Retries exhausted"; 1713 goto sense_error_done; 1714 } 1715 } 1716 1717 if ((err_action & SS_MASK) >= SS_START) { 1718 /* 1719 * Do common portions of commands that 1720 * use recovery CCBs. 1721 */ 1722 orig_ccb = xpt_alloc_ccb_nowait(); 1723 if (orig_ccb == NULL) { 1724 *action_string = "Can't allocate recovery CCB"; 1725 goto sense_error_done; 1726 } 1727 /* 1728 * Clear freeze flag for original request here, as 1729 * this freeze will be dropped as part of ERESTART. 1730 */ 1731 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1732 1733 KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO, 1734 ("%s: ccb func_code %#x != XPT_SCSI_IO", 1735 __func__, ccb->ccb_h.func_code)); 1736 flags = orig_ccb->ccb_h.alloc_flags; 1737 bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio)); 1738 orig_ccb->ccb_h.alloc_flags = flags; 1739 } 1740 1741 switch (err_action & SS_MASK) { 1742 case SS_NOP: 1743 *action_string = "No recovery action needed"; 1744 error = 0; 1745 break; 1746 case SS_RETRY: 1747 *action_string = "Retrying command (per sense data)"; 1748 error = ERESTART; 1749 break; 1750 case SS_FAIL: 1751 *action_string = "Unretryable error"; 1752 break; 1753 case SS_START: 1754 { 1755 int le; 1756 1757 /* 1758 * Send a start unit command to the device, and 1759 * then retry the command. 1760 */ 1761 *action_string = "Attempting to start unit"; 1762 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1763 1764 /* 1765 * Check for removable media and set 1766 * load/eject flag appropriately. 1767 */ 1768 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1769 le = TRUE; 1770 else 1771 le = FALSE; 1772 1773 scsi_start_stop(&ccb->csio, 1774 /*retries*/1, 1775 camperiphdone, 1776 MSG_SIMPLE_Q_TAG, 1777 /*start*/TRUE, 1778 /*load/eject*/le, 1779 /*immediate*/FALSE, 1780 SSD_FULL_SIZE, 1781 /*timeout*/50000); 1782 break; 1783 } 1784 case SS_TUR: 1785 { 1786 /* 1787 * Send a Test Unit Ready to the device. 1788 * If the 'many' flag is set, we send 120 1789 * test unit ready commands, one every half 1790 * second. Otherwise, we just send one TUR. 1791 * We only want to do this if the retry 1792 * count has not been exhausted. 1793 */ 1794 int retries; 1795 1796 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1797 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1798 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1799 *action_string = "Polling device for readiness"; 1800 retries = 120; 1801 } else { 1802 *action_string = "Testing device for readiness"; 1803 retries = 1; 1804 } 1805 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1806 scsi_test_unit_ready(&ccb->csio, 1807 retries, 1808 camperiphdone, 1809 MSG_SIMPLE_Q_TAG, 1810 SSD_FULL_SIZE, 1811 /*timeout*/5000); 1812 1813 /* 1814 * Accomplish our 500ms delay by deferring 1815 * the release of our device queue appropriately. 1816 */ 1817 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1818 *timeout = 500; 1819 break; 1820 } 1821 default: 1822 panic("Unhandled error action %x", err_action); 1823 } 1824 1825 if ((err_action & SS_MASK) >= SS_START) { 1826 /* 1827 * Drop the priority, so that the recovery 1828 * CCB is the first to execute. Freeze the queue 1829 * after this command is sent so that we can 1830 * restore the old csio and have it queued in 1831 * the proper order before we release normal 1832 * transactions to the device. 1833 */ 1834 ccb->ccb_h.pinfo.priority--; 1835 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1836 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1837 error = ERESTART; 1838 *orig = orig_ccb; 1839 } 1840 1841 sense_error_done: 1842 *action = err_action; 1843 } 1844 return (error); 1845 } 1846 1847 /* 1848 * Generic error handler. Peripheral drivers usually filter 1849 * out the errors that they handle in a unique manner, then 1850 * call this function. 1851 */ 1852 int 1853 cam_periph_error(union ccb *ccb, cam_flags camflags, 1854 u_int32_t sense_flags) 1855 { 1856 struct cam_path *newpath; 1857 union ccb *orig_ccb, *scan_ccb; 1858 struct cam_periph *periph; 1859 const char *action_string; 1860 cam_status status; 1861 int frozen, error, openings, devctl_err; 1862 u_int32_t action, relsim_flags, timeout; 1863 1864 action = SSQ_PRINT_SENSE; 1865 periph = xpt_path_periph(ccb->ccb_h.path); 1866 action_string = NULL; 1867 status = ccb->ccb_h.status; 1868 frozen = (status & CAM_DEV_QFRZN) != 0; 1869 status &= CAM_STATUS_MASK; 1870 devctl_err = openings = relsim_flags = timeout = 0; 1871 orig_ccb = ccb; 1872 1873 /* Filter the errors that should be reported via devctl */ 1874 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1875 case CAM_CMD_TIMEOUT: 1876 case CAM_REQ_ABORTED: 1877 case CAM_REQ_CMP_ERR: 1878 case CAM_REQ_TERMIO: 1879 case CAM_UNREC_HBA_ERROR: 1880 case CAM_DATA_RUN_ERR: 1881 case CAM_SCSI_STATUS_ERROR: 1882 case CAM_ATA_STATUS_ERROR: 1883 case CAM_SMP_STATUS_ERROR: 1884 devctl_err++; 1885 break; 1886 default: 1887 break; 1888 } 1889 1890 switch (status) { 1891 case CAM_REQ_CMP: 1892 error = 0; 1893 action &= ~SSQ_PRINT_SENSE; 1894 break; 1895 case CAM_SCSI_STATUS_ERROR: 1896 error = camperiphscsistatuserror(ccb, &orig_ccb, 1897 camflags, sense_flags, &openings, &relsim_flags, 1898 &timeout, &action, &action_string); 1899 break; 1900 case CAM_AUTOSENSE_FAIL: 1901 error = EIO; /* we have to kill the command */ 1902 break; 1903 case CAM_UA_ABORT: 1904 case CAM_UA_TERMIO: 1905 case CAM_MSG_REJECT_REC: 1906 /* XXX Don't know that these are correct */ 1907 error = EIO; 1908 break; 1909 case CAM_SEL_TIMEOUT: 1910 if ((camflags & CAM_RETRY_SELTO) != 0) { 1911 if (ccb->ccb_h.retry_count > 0 && 1912 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1913 ccb->ccb_h.retry_count--; 1914 error = ERESTART; 1915 1916 /* 1917 * Wait a bit to give the device 1918 * time to recover before we try again. 1919 */ 1920 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1921 timeout = periph_selto_delay; 1922 break; 1923 } 1924 action_string = "Retries exhausted"; 1925 } 1926 /* FALLTHROUGH */ 1927 case CAM_DEV_NOT_THERE: 1928 error = ENXIO; 1929 action = SSQ_LOST; 1930 break; 1931 case CAM_REQ_INVALID: 1932 case CAM_PATH_INVALID: 1933 case CAM_NO_HBA: 1934 case CAM_PROVIDE_FAIL: 1935 case CAM_REQ_TOO_BIG: 1936 case CAM_LUN_INVALID: 1937 case CAM_TID_INVALID: 1938 case CAM_FUNC_NOTAVAIL: 1939 error = EINVAL; 1940 break; 1941 case CAM_SCSI_BUS_RESET: 1942 case CAM_BDR_SENT: 1943 /* 1944 * Commands that repeatedly timeout and cause these 1945 * kinds of error recovery actions, should return 1946 * CAM_CMD_TIMEOUT, which allows us to safely assume 1947 * that this command was an innocent bystander to 1948 * these events and should be unconditionally 1949 * retried. 1950 */ 1951 case CAM_REQUEUE_REQ: 1952 /* Unconditional requeue if device is still there */ 1953 if (periph->flags & CAM_PERIPH_INVALID) { 1954 action_string = "Periph was invalidated"; 1955 error = EIO; 1956 } else if (sense_flags & SF_NO_RETRY) { 1957 error = EIO; 1958 action_string = "Retry was blocked"; 1959 } else { 1960 error = ERESTART; 1961 action &= ~SSQ_PRINT_SENSE; 1962 } 1963 break; 1964 case CAM_RESRC_UNAVAIL: 1965 /* Wait a bit for the resource shortage to abate. */ 1966 timeout = periph_noresrc_delay; 1967 /* FALLTHROUGH */ 1968 case CAM_BUSY: 1969 if (timeout == 0) { 1970 /* Wait a bit for the busy condition to abate. */ 1971 timeout = periph_busy_delay; 1972 } 1973 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1974 /* FALLTHROUGH */ 1975 case CAM_ATA_STATUS_ERROR: 1976 case CAM_REQ_CMP_ERR: 1977 case CAM_CMD_TIMEOUT: 1978 case CAM_UNEXP_BUSFREE: 1979 case CAM_UNCOR_PARITY: 1980 case CAM_DATA_RUN_ERR: 1981 default: 1982 if (periph->flags & CAM_PERIPH_INVALID) { 1983 error = EIO; 1984 action_string = "Periph was invalidated"; 1985 } else if (ccb->ccb_h.retry_count == 0) { 1986 error = EIO; 1987 action_string = "Retries exhausted"; 1988 } else if (sense_flags & SF_NO_RETRY) { 1989 error = EIO; 1990 action_string = "Retry was blocked"; 1991 } else { 1992 ccb->ccb_h.retry_count--; 1993 error = ERESTART; 1994 } 1995 break; 1996 } 1997 1998 if ((sense_flags & SF_PRINT_ALWAYS) || 1999 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 2000 action |= SSQ_PRINT_SENSE; 2001 else if (sense_flags & SF_NO_PRINT) 2002 action &= ~SSQ_PRINT_SENSE; 2003 if ((action & SSQ_PRINT_SENSE) != 0) 2004 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2005 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2006 if (error != ERESTART) { 2007 if (action_string == NULL) 2008 action_string = "Unretryable error"; 2009 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2010 error, action_string); 2011 } else if (action_string != NULL) 2012 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2013 else { 2014 xpt_print(ccb->ccb_h.path, 2015 "Retrying command, %d more tries remain\n", 2016 ccb->ccb_h.retry_count); 2017 } 2018 } 2019 2020 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2021 cam_periph_devctl_notify(orig_ccb); 2022 2023 if ((action & SSQ_LOST) != 0) { 2024 lun_id_t lun_id; 2025 2026 /* 2027 * For a selection timeout, we consider all of the LUNs on 2028 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2029 * then we only get rid of the device(s) specified by the 2030 * path in the original CCB. 2031 */ 2032 if (status == CAM_SEL_TIMEOUT) 2033 lun_id = CAM_LUN_WILDCARD; 2034 else 2035 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2036 2037 /* Should we do more if we can't create the path?? */ 2038 if (xpt_create_path(&newpath, periph, 2039 xpt_path_path_id(ccb->ccb_h.path), 2040 xpt_path_target_id(ccb->ccb_h.path), 2041 lun_id) == CAM_REQ_CMP) { 2042 /* 2043 * Let peripheral drivers know that this 2044 * device has gone away. 2045 */ 2046 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2047 xpt_free_path(newpath); 2048 } 2049 } 2050 2051 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2052 if ((action & SSQ_UA) != 0) 2053 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2054 2055 /* Rescan target on "Reported LUNs data has changed" */ 2056 if ((action & SSQ_RESCAN) != 0) { 2057 if (xpt_create_path(&newpath, NULL, 2058 xpt_path_path_id(ccb->ccb_h.path), 2059 xpt_path_target_id(ccb->ccb_h.path), 2060 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2061 scan_ccb = xpt_alloc_ccb_nowait(); 2062 if (scan_ccb != NULL) { 2063 scan_ccb->ccb_h.path = newpath; 2064 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2065 scan_ccb->crcn.flags = 0; 2066 xpt_rescan(scan_ccb); 2067 } else { 2068 xpt_print(newpath, 2069 "Can't allocate CCB to rescan target\n"); 2070 xpt_free_path(newpath); 2071 } 2072 } 2073 } 2074 2075 /* Attempt a retry */ 2076 if (error == ERESTART || error == 0) { 2077 if (frozen != 0) 2078 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2079 if (error == ERESTART) 2080 xpt_action(ccb); 2081 if (frozen != 0) 2082 cam_release_devq(ccb->ccb_h.path, 2083 relsim_flags, 2084 openings, 2085 timeout, 2086 /*getcount_only*/0); 2087 } 2088 2089 return (error); 2090 } 2091 2092 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2093 2094 static void 2095 cam_periph_devctl_notify(union ccb *ccb) 2096 { 2097 struct cam_periph *periph; 2098 struct ccb_getdev *cgd; 2099 struct sbuf sb; 2100 int serr, sk, asc, ascq; 2101 char *sbmsg, *type; 2102 2103 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2104 if (sbmsg == NULL) 2105 return; 2106 2107 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2108 2109 periph = xpt_path_periph(ccb->ccb_h.path); 2110 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2111 periph->unit_number); 2112 2113 sbuf_printf(&sb, "serial=\""); 2114 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2115 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2116 CAM_PRIORITY_NORMAL); 2117 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2118 xpt_action((union ccb *)cgd); 2119 2120 if (cgd->ccb_h.status == CAM_REQ_CMP) 2121 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2122 xpt_free_ccb((union ccb *)cgd); 2123 } 2124 sbuf_printf(&sb, "\" "); 2125 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2126 2127 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2128 case CAM_CMD_TIMEOUT: 2129 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2130 type = "timeout"; 2131 break; 2132 case CAM_SCSI_STATUS_ERROR: 2133 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2134 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2135 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2136 serr, sk, asc, ascq); 2137 type = "error"; 2138 break; 2139 case CAM_ATA_STATUS_ERROR: 2140 sbuf_printf(&sb, "RES=\""); 2141 ata_res_sbuf(&ccb->ataio.res, &sb); 2142 sbuf_printf(&sb, "\" "); 2143 type = "error"; 2144 break; 2145 default: 2146 type = "error"; 2147 break; 2148 } 2149 2150 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2151 sbuf_printf(&sb, "CDB=\""); 2152 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2153 sbuf_printf(&sb, "\" "); 2154 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2155 sbuf_printf(&sb, "ACB=\""); 2156 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2157 sbuf_printf(&sb, "\" "); 2158 } 2159 2160 if (sbuf_finish(&sb) == 0) 2161 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2162 sbuf_delete(&sb); 2163 free(sbmsg, M_CAMPERIPH); 2164 } 2165 2166 /* 2167 * Sysctl to force an invalidation of the drive right now. Can be 2168 * called with CTLFLAG_MPSAFE since we take periph lock. 2169 */ 2170 int 2171 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2172 { 2173 struct cam_periph *periph; 2174 int error, value; 2175 2176 periph = arg1; 2177 value = 0; 2178 error = sysctl_handle_int(oidp, &value, 0, req); 2179 if (error != 0 || req->newptr == NULL || value != 1) 2180 return (error); 2181 2182 cam_periph_lock(periph); 2183 cam_periph_invalidate(periph); 2184 cam_periph_unlock(periph); 2185 2186 return (0); 2187 } 2188