xref: /freebsd/sys/cam/cam_periph.c (revision d8b878873e7aa8df1972cc6a642804b17eb61087)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/linker_set.h>
39 #include <sys/bio.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/buf.h>
43 #include <sys/proc.h>
44 #include <sys/devicestat.h>
45 #include <sys/bus.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_queue.h>
52 #include <cam/cam_xpt_periph.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_debug.h>
55 #include <cam/cam_sim.h>
56 
57 #include <cam/scsi/scsi_all.h>
58 #include <cam/scsi/scsi_message.h>
59 #include <cam/scsi/scsi_pass.h>
60 
61 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
62 					  u_int newunit, int wired,
63 					  path_id_t pathid, target_id_t target,
64 					  lun_id_t lun);
65 static	u_int		camperiphunit(struct periph_driver *p_drv,
66 				      path_id_t pathid, target_id_t target,
67 				      lun_id_t lun);
68 static	void		camperiphdone(struct cam_periph *periph,
69 					union ccb *done_ccb);
70 static  void		camperiphfree(struct cam_periph *periph);
71 static int		camperiphscsistatuserror(union ccb *ccb,
72 						 cam_flags camflags,
73 						 u_int32_t sense_flags,
74 						 int *openings,
75 						 u_int32_t *relsim_flags,
76 						 u_int32_t *timeout,
77 						 const char **action_string);
78 static	int		camperiphscsisenseerror(union ccb *ccb,
79 					        cam_flags camflags,
80 					        u_int32_t sense_flags,
81 					        int *openings,
82 					        u_int32_t *relsim_flags,
83 					        u_int32_t *timeout,
84 					        const char **action_string);
85 
86 static int nperiph_drivers;
87 static int initialized = 0;
88 struct periph_driver **periph_drivers;
89 
90 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
91 
92 static int periph_selto_delay = 1000;
93 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
94 static int periph_noresrc_delay = 500;
95 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
96 static int periph_busy_delay = 500;
97 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
98 
99 
100 void
101 periphdriver_register(void *data)
102 {
103 	struct periph_driver *drv = (struct periph_driver *)data;
104 	struct periph_driver **newdrivers, **old;
105 	int ndrivers;
106 
107 	ndrivers = nperiph_drivers + 2;
108 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
109 			    M_WAITOK);
110 	if (periph_drivers)
111 		bcopy(periph_drivers, newdrivers,
112 		      sizeof(*newdrivers) * nperiph_drivers);
113 	newdrivers[nperiph_drivers] = drv;
114 	newdrivers[nperiph_drivers + 1] = NULL;
115 	old = periph_drivers;
116 	periph_drivers = newdrivers;
117 	if (old)
118 		free(old, M_CAMPERIPH);
119 	nperiph_drivers++;
120 	/* If driver marked as early or it is late now, initialize it. */
121 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
122 	    initialized > 1)
123 		(*drv->init)();
124 }
125 
126 void
127 periphdriver_init(int level)
128 {
129 	int	i, early;
130 
131 	initialized = max(initialized, level);
132 	for (i = 0; periph_drivers[i] != NULL; i++) {
133 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
134 		if (early == initialized)
135 			(*periph_drivers[i]->init)();
136 	}
137 }
138 
139 cam_status
140 cam_periph_alloc(periph_ctor_t *periph_ctor,
141 		 periph_oninv_t *periph_oninvalidate,
142 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
143 		 char *name, cam_periph_type type, struct cam_path *path,
144 		 ac_callback_t *ac_callback, ac_code code, void *arg)
145 {
146 	struct		periph_driver **p_drv;
147 	struct		cam_sim *sim;
148 	struct		cam_periph *periph;
149 	struct		cam_periph *cur_periph;
150 	path_id_t	path_id;
151 	target_id_t	target_id;
152 	lun_id_t	lun_id;
153 	cam_status	status;
154 	u_int		init_level;
155 
156 	init_level = 0;
157 	/*
158 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
159 	 * of our type assigned to this path, we are likely waiting for
160 	 * final close on an old, invalidated, peripheral.  If this is
161 	 * the case, queue up a deferred call to the peripheral's async
162 	 * handler.  If it looks like a mistaken re-allocation, complain.
163 	 */
164 	if ((periph = cam_periph_find(path, name)) != NULL) {
165 
166 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
167 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
168 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
169 			periph->deferred_callback = ac_callback;
170 			periph->deferred_ac = code;
171 			return (CAM_REQ_INPROG);
172 		} else {
173 			printf("cam_periph_alloc: attempt to re-allocate "
174 			       "valid device %s%d rejected\n",
175 			       periph->periph_name, periph->unit_number);
176 		}
177 		return (CAM_REQ_INVALID);
178 	}
179 
180 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
181 					     M_NOWAIT);
182 
183 	if (periph == NULL)
184 		return (CAM_RESRC_UNAVAIL);
185 
186 	init_level++;
187 
188 	xpt_lock_buses();
189 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
190 		if (strcmp((*p_drv)->driver_name, name) == 0)
191 			break;
192 	}
193 	xpt_unlock_buses();
194 	if (*p_drv == NULL) {
195 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
196 		free(periph, M_CAMPERIPH);
197 		return (CAM_REQ_INVALID);
198 	}
199 
200 	sim = xpt_path_sim(path);
201 	path_id = xpt_path_path_id(path);
202 	target_id = xpt_path_target_id(path);
203 	lun_id = xpt_path_lun_id(path);
204 	bzero(periph, sizeof(*periph));
205 	cam_init_pinfo(&periph->pinfo);
206 	periph->periph_start = periph_start;
207 	periph->periph_dtor = periph_dtor;
208 	periph->periph_oninval = periph_oninvalidate;
209 	periph->type = type;
210 	periph->periph_name = name;
211 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
212 	periph->immediate_priority = CAM_PRIORITY_NONE;
213 	periph->refcount = 0;
214 	periph->sim = sim;
215 	SLIST_INIT(&periph->ccb_list);
216 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
217 	if (status != CAM_REQ_CMP)
218 		goto failure;
219 
220 	periph->path = path;
221 	init_level++;
222 
223 	status = xpt_add_periph(periph);
224 
225 	if (status != CAM_REQ_CMP)
226 		goto failure;
227 
228 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
229 	while (cur_periph != NULL
230 	    && cur_periph->unit_number < periph->unit_number)
231 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
232 
233 	if (cur_periph != NULL)
234 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
235 	else {
236 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
237 		(*p_drv)->generation++;
238 	}
239 
240 	init_level++;
241 
242 	status = periph_ctor(periph, arg);
243 
244 	if (status == CAM_REQ_CMP)
245 		init_level++;
246 
247 failure:
248 	switch (init_level) {
249 	case 4:
250 		/* Initialized successfully */
251 		break;
252 	case 3:
253 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
254 		xpt_remove_periph(periph);
255 		/* FALLTHROUGH */
256 	case 2:
257 		xpt_free_path(periph->path);
258 		/* FALLTHROUGH */
259 	case 1:
260 		free(periph, M_CAMPERIPH);
261 		/* FALLTHROUGH */
262 	case 0:
263 		/* No cleanup to perform. */
264 		break;
265 	default:
266 		panic("cam_periph_alloc: Unkown init level");
267 	}
268 	return(status);
269 }
270 
271 /*
272  * Find a peripheral structure with the specified path, target, lun,
273  * and (optionally) type.  If the name is NULL, this function will return
274  * the first peripheral driver that matches the specified path.
275  */
276 struct cam_periph *
277 cam_periph_find(struct cam_path *path, char *name)
278 {
279 	struct periph_driver **p_drv;
280 	struct cam_periph *periph;
281 
282 	xpt_lock_buses();
283 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
284 
285 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
286 			continue;
287 
288 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
289 			if (xpt_path_comp(periph->path, path) == 0) {
290 				xpt_unlock_buses();
291 				return(periph);
292 			}
293 		}
294 		if (name != NULL) {
295 			xpt_unlock_buses();
296 			return(NULL);
297 		}
298 	}
299 	xpt_unlock_buses();
300 	return(NULL);
301 }
302 
303 cam_status
304 cam_periph_acquire(struct cam_periph *periph)
305 {
306 
307 	if (periph == NULL)
308 		return(CAM_REQ_CMP_ERR);
309 
310 	xpt_lock_buses();
311 	periph->refcount++;
312 	xpt_unlock_buses();
313 
314 	return(CAM_REQ_CMP);
315 }
316 
317 void
318 cam_periph_release_locked(struct cam_periph *periph)
319 {
320 
321 	if (periph == NULL)
322 		return;
323 
324 	xpt_lock_buses();
325 	if ((--periph->refcount == 0)
326 	 && (periph->flags & CAM_PERIPH_INVALID)) {
327 		camperiphfree(periph);
328 	}
329 	xpt_unlock_buses();
330 }
331 
332 void
333 cam_periph_release(struct cam_periph *periph)
334 {
335 	struct cam_sim *sim;
336 
337 	if (periph == NULL)
338 		return;
339 
340 	sim = periph->sim;
341 	mtx_assert(sim->mtx, MA_NOTOWNED);
342 	mtx_lock(sim->mtx);
343 	cam_periph_release_locked(periph);
344 	mtx_unlock(sim->mtx);
345 }
346 
347 int
348 cam_periph_hold(struct cam_periph *periph, int priority)
349 {
350 	int error;
351 
352 	/*
353 	 * Increment the reference count on the peripheral
354 	 * while we wait for our lock attempt to succeed
355 	 * to ensure the peripheral doesn't disappear out
356 	 * from user us while we sleep.
357 	 */
358 
359 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
360 		return (ENXIO);
361 
362 	mtx_assert(periph->sim->mtx, MA_OWNED);
363 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
364 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
365 		if ((error = mtx_sleep(periph, periph->sim->mtx, priority,
366 		    "caplck", 0)) != 0) {
367 			cam_periph_release_locked(periph);
368 			return (error);
369 		}
370 	}
371 
372 	periph->flags |= CAM_PERIPH_LOCKED;
373 	return (0);
374 }
375 
376 void
377 cam_periph_unhold(struct cam_periph *periph)
378 {
379 
380 	mtx_assert(periph->sim->mtx, MA_OWNED);
381 
382 	periph->flags &= ~CAM_PERIPH_LOCKED;
383 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
384 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
385 		wakeup(periph);
386 	}
387 
388 	cam_periph_release_locked(periph);
389 }
390 
391 /*
392  * Look for the next unit number that is not currently in use for this
393  * peripheral type starting at "newunit".  Also exclude unit numbers that
394  * are reserved by for future "hardwiring" unless we already know that this
395  * is a potential wired device.  Only assume that the device is "wired" the
396  * first time through the loop since after that we'll be looking at unit
397  * numbers that did not match a wiring entry.
398  */
399 static u_int
400 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
401 		  path_id_t pathid, target_id_t target, lun_id_t lun)
402 {
403 	struct	cam_periph *periph;
404 	char	*periph_name;
405 	int	i, val, dunit, r;
406 	const char *dname, *strval;
407 
408 	periph_name = p_drv->driver_name;
409 	for (;;newunit++) {
410 
411 		for (periph = TAILQ_FIRST(&p_drv->units);
412 		     periph != NULL && periph->unit_number != newunit;
413 		     periph = TAILQ_NEXT(periph, unit_links))
414 			;
415 
416 		if (periph != NULL && periph->unit_number == newunit) {
417 			if (wired != 0) {
418 				xpt_print(periph->path, "Duplicate Wired "
419 				    "Device entry!\n");
420 				xpt_print(periph->path, "Second device (%s "
421 				    "device at scbus%d target %d lun %d) will "
422 				    "not be wired\n", periph_name, pathid,
423 				    target, lun);
424 				wired = 0;
425 			}
426 			continue;
427 		}
428 		if (wired)
429 			break;
430 
431 		/*
432 		 * Don't match entries like "da 4" as a wired down
433 		 * device, but do match entries like "da 4 target 5"
434 		 * or even "da 4 scbus 1".
435 		 */
436 		i = 0;
437 		dname = periph_name;
438 		for (;;) {
439 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
440 			if (r != 0)
441 				break;
442 			/* if no "target" and no specific scbus, skip */
443 			if (resource_int_value(dname, dunit, "target", &val) &&
444 			    (resource_string_value(dname, dunit, "at",&strval)||
445 			     strcmp(strval, "scbus") == 0))
446 				continue;
447 			if (newunit == dunit)
448 				break;
449 		}
450 		if (r != 0)
451 			break;
452 	}
453 	return (newunit);
454 }
455 
456 static u_int
457 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
458 	      target_id_t target, lun_id_t lun)
459 {
460 	u_int	unit;
461 	int	wired, i, val, dunit;
462 	const char *dname, *strval;
463 	char	pathbuf[32], *periph_name;
464 
465 	periph_name = p_drv->driver_name;
466 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
467 	unit = 0;
468 	i = 0;
469 	dname = periph_name;
470 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
471 	     wired = 0) {
472 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
473 			if (strcmp(strval, pathbuf) != 0)
474 				continue;
475 			wired++;
476 		}
477 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
478 			if (val != target)
479 				continue;
480 			wired++;
481 		}
482 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
483 			if (val != lun)
484 				continue;
485 			wired++;
486 		}
487 		if (wired != 0) {
488 			unit = dunit;
489 			break;
490 		}
491 	}
492 
493 	/*
494 	 * Either start from 0 looking for the next unit or from
495 	 * the unit number given in the resource config.  This way,
496 	 * if we have wildcard matches, we don't return the same
497 	 * unit number twice.
498 	 */
499 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
500 
501 	return (unit);
502 }
503 
504 void
505 cam_periph_invalidate(struct cam_periph *periph)
506 {
507 
508 	/*
509 	 * We only call this routine the first time a peripheral is
510 	 * invalidated.
511 	 */
512 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
513 	 && (periph->periph_oninval != NULL))
514 		periph->periph_oninval(periph);
515 
516 	periph->flags |= CAM_PERIPH_INVALID;
517 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
518 
519 	xpt_lock_buses();
520 	if (periph->refcount == 0)
521 		camperiphfree(periph);
522 	else if (periph->refcount < 0)
523 		printf("cam_invalidate_periph: refcount < 0!!\n");
524 	xpt_unlock_buses();
525 }
526 
527 static void
528 camperiphfree(struct cam_periph *periph)
529 {
530 	struct periph_driver **p_drv;
531 
532 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
533 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
534 			break;
535 	}
536 	if (*p_drv == NULL) {
537 		printf("camperiphfree: attempt to free non-existant periph\n");
538 		return;
539 	}
540 
541 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
542 	(*p_drv)->generation++;
543 	xpt_unlock_buses();
544 
545 	if (periph->periph_dtor != NULL)
546 		periph->periph_dtor(periph);
547 	xpt_remove_periph(periph);
548 
549 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
550 		union ccb ccb;
551 		void *arg;
552 
553 		switch (periph->deferred_ac) {
554 		case AC_FOUND_DEVICE:
555 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
556 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
557 			xpt_action(&ccb);
558 			arg = &ccb;
559 			break;
560 		case AC_PATH_REGISTERED:
561 			ccb.ccb_h.func_code = XPT_PATH_INQ;
562 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
563 			xpt_action(&ccb);
564 			arg = &ccb;
565 			break;
566 		default:
567 			arg = NULL;
568 			break;
569 		}
570 		periph->deferred_callback(NULL, periph->deferred_ac,
571 					  periph->path, arg);
572 	}
573 	xpt_free_path(periph->path);
574 	free(periph, M_CAMPERIPH);
575 	xpt_lock_buses();
576 }
577 
578 /*
579  * Map user virtual pointers into kernel virtual address space, so we can
580  * access the memory.  This won't work on physical pointers, for now it's
581  * up to the caller to check for that.  (XXX KDM -- should we do that here
582  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
583  * buffers to map stuff in and out, we're limited to the buffer size.
584  */
585 int
586 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
587 {
588 	int numbufs, i, j;
589 	int flags[CAM_PERIPH_MAXMAPS];
590 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
591 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
592 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
593 	/* Some controllers may not be able to handle more data. */
594 	size_t maxmap = DFLTPHYS;
595 
596 	switch(ccb->ccb_h.func_code) {
597 	case XPT_DEV_MATCH:
598 		if (ccb->cdm.match_buf_len == 0) {
599 			printf("cam_periph_mapmem: invalid match buffer "
600 			       "length 0\n");
601 			return(EINVAL);
602 		}
603 		if (ccb->cdm.pattern_buf_len > 0) {
604 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
605 			lengths[0] = ccb->cdm.pattern_buf_len;
606 			dirs[0] = CAM_DIR_OUT;
607 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
608 			lengths[1] = ccb->cdm.match_buf_len;
609 			dirs[1] = CAM_DIR_IN;
610 			numbufs = 2;
611 		} else {
612 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
613 			lengths[0] = ccb->cdm.match_buf_len;
614 			dirs[0] = CAM_DIR_IN;
615 			numbufs = 1;
616 		}
617 		/*
618 		 * This request will not go to the hardware, no reason
619 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
620 		 */
621 		maxmap = MAXPHYS;
622 		break;
623 	case XPT_SCSI_IO:
624 	case XPT_CONT_TARGET_IO:
625 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
626 			return(0);
627 
628 		data_ptrs[0] = &ccb->csio.data_ptr;
629 		lengths[0] = ccb->csio.dxfer_len;
630 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
631 		numbufs = 1;
632 		break;
633 	case XPT_ATA_IO:
634 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
635 			return(0);
636 
637 		data_ptrs[0] = &ccb->ataio.data_ptr;
638 		lengths[0] = ccb->ataio.dxfer_len;
639 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
640 		numbufs = 1;
641 		break;
642 	default:
643 		return(EINVAL);
644 		break; /* NOTREACHED */
645 	}
646 
647 	/*
648 	 * Check the transfer length and permissions first, so we don't
649 	 * have to unmap any previously mapped buffers.
650 	 */
651 	for (i = 0; i < numbufs; i++) {
652 
653 		flags[i] = 0;
654 
655 		/*
656 		 * The userland data pointer passed in may not be page
657 		 * aligned.  vmapbuf() truncates the address to a page
658 		 * boundary, so if the address isn't page aligned, we'll
659 		 * need enough space for the given transfer length, plus
660 		 * whatever extra space is necessary to make it to the page
661 		 * boundary.
662 		 */
663 		if ((lengths[i] +
664 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
665 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
666 			       "which is greater than %lu\n",
667 			       (long)(lengths[i] +
668 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
669 			       (u_long)maxmap);
670 			return(E2BIG);
671 		}
672 
673 		if (dirs[i] & CAM_DIR_OUT) {
674 			flags[i] = BIO_WRITE;
675 		}
676 
677 		if (dirs[i] & CAM_DIR_IN) {
678 			flags[i] = BIO_READ;
679 		}
680 
681 	}
682 
683 	/* this keeps the current process from getting swapped */
684 	/*
685 	 * XXX KDM should I use P_NOSWAP instead?
686 	 */
687 	PHOLD(curproc);
688 
689 	for (i = 0; i < numbufs; i++) {
690 		/*
691 		 * Get the buffer.
692 		 */
693 		mapinfo->bp[i] = getpbuf(NULL);
694 
695 		/* save the buffer's data address */
696 		mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
697 
698 		/* put our pointer in the data slot */
699 		mapinfo->bp[i]->b_data = *data_ptrs[i];
700 
701 		/* set the transfer length, we know it's < MAXPHYS */
702 		mapinfo->bp[i]->b_bufsize = lengths[i];
703 
704 		/* set the direction */
705 		mapinfo->bp[i]->b_iocmd = flags[i];
706 
707 		/*
708 		 * Map the buffer into kernel memory.
709 		 *
710 		 * Note that useracc() alone is not a  sufficient test.
711 		 * vmapbuf() can still fail due to a smaller file mapped
712 		 * into a larger area of VM, or if userland races against
713 		 * vmapbuf() after the useracc() check.
714 		 */
715 		if (vmapbuf(mapinfo->bp[i]) < 0) {
716 			for (j = 0; j < i; ++j) {
717 				*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
718 				vunmapbuf(mapinfo->bp[j]);
719 				relpbuf(mapinfo->bp[j], NULL);
720 			}
721 			relpbuf(mapinfo->bp[i], NULL);
722 			PRELE(curproc);
723 			return(EACCES);
724 		}
725 
726 		/* set our pointer to the new mapped area */
727 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
728 
729 		mapinfo->num_bufs_used++;
730 	}
731 
732 	/*
733 	 * Now that we've gotten this far, change ownership to the kernel
734 	 * of the buffers so that we don't run afoul of returning to user
735 	 * space with locks (on the buffer) held.
736 	 */
737 	for (i = 0; i < numbufs; i++) {
738 		BUF_KERNPROC(mapinfo->bp[i]);
739 	}
740 
741 
742 	return(0);
743 }
744 
745 /*
746  * Unmap memory segments mapped into kernel virtual address space by
747  * cam_periph_mapmem().
748  */
749 void
750 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
751 {
752 	int numbufs, i;
753 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
754 
755 	if (mapinfo->num_bufs_used <= 0) {
756 		/* allow ourselves to be swapped once again */
757 		PRELE(curproc);
758 		return;
759 	}
760 
761 	switch (ccb->ccb_h.func_code) {
762 	case XPT_DEV_MATCH:
763 		numbufs = min(mapinfo->num_bufs_used, 2);
764 
765 		if (numbufs == 1) {
766 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
767 		} else {
768 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
769 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
770 		}
771 		break;
772 	case XPT_SCSI_IO:
773 	case XPT_CONT_TARGET_IO:
774 		data_ptrs[0] = &ccb->csio.data_ptr;
775 		numbufs = min(mapinfo->num_bufs_used, 1);
776 		break;
777 	case XPT_ATA_IO:
778 		data_ptrs[0] = &ccb->ataio.data_ptr;
779 		numbufs = min(mapinfo->num_bufs_used, 1);
780 		break;
781 	default:
782 		/* allow ourselves to be swapped once again */
783 		PRELE(curproc);
784 		return;
785 		break; /* NOTREACHED */
786 	}
787 
788 	for (i = 0; i < numbufs; i++) {
789 		/* Set the user's pointer back to the original value */
790 		*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
791 
792 		/* unmap the buffer */
793 		vunmapbuf(mapinfo->bp[i]);
794 
795 		/* release the buffer */
796 		relpbuf(mapinfo->bp[i], NULL);
797 	}
798 
799 	/* allow ourselves to be swapped once again */
800 	PRELE(curproc);
801 }
802 
803 union ccb *
804 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
805 {
806 	struct ccb_hdr *ccb_h;
807 
808 	mtx_assert(periph->sim->mtx, MA_OWNED);
809 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
810 
811 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
812 		if (periph->immediate_priority > priority)
813 			periph->immediate_priority = priority;
814 		xpt_schedule(periph, priority);
815 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
816 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
817 			break;
818 		mtx_assert(periph->sim->mtx, MA_OWNED);
819 		mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb",
820 		    0);
821 	}
822 
823 	ccb_h = SLIST_FIRST(&periph->ccb_list);
824 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
825 	return ((union ccb *)ccb_h);
826 }
827 
828 void
829 cam_periph_ccbwait(union ccb *ccb)
830 {
831 	struct cam_sim *sim;
832 
833 	sim = xpt_path_sim(ccb->ccb_h.path);
834 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
835 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
836 		mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0);
837 }
838 
839 int
840 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
841 		 int (*error_routine)(union ccb *ccb,
842 				      cam_flags camflags,
843 				      u_int32_t sense_flags))
844 {
845 	union ccb 	     *ccb;
846 	int 		     error;
847 	int		     found;
848 
849 	error = found = 0;
850 
851 	switch(cmd){
852 	case CAMGETPASSTHRU:
853 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
854 		xpt_setup_ccb(&ccb->ccb_h,
855 			      ccb->ccb_h.path,
856 			      CAM_PRIORITY_NORMAL);
857 		ccb->ccb_h.func_code = XPT_GDEVLIST;
858 
859 		/*
860 		 * Basically, the point of this is that we go through
861 		 * getting the list of devices, until we find a passthrough
862 		 * device.  In the current version of the CAM code, the
863 		 * only way to determine what type of device we're dealing
864 		 * with is by its name.
865 		 */
866 		while (found == 0) {
867 			ccb->cgdl.index = 0;
868 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
869 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
870 
871 				/* we want the next device in the list */
872 				xpt_action(ccb);
873 				if (strncmp(ccb->cgdl.periph_name,
874 				    "pass", 4) == 0){
875 					found = 1;
876 					break;
877 				}
878 			}
879 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
880 			    (found == 0)) {
881 				ccb->cgdl.periph_name[0] = '\0';
882 				ccb->cgdl.unit_number = 0;
883 				break;
884 			}
885 		}
886 
887 		/* copy the result back out */
888 		bcopy(ccb, addr, sizeof(union ccb));
889 
890 		/* and release the ccb */
891 		xpt_release_ccb(ccb);
892 
893 		break;
894 	default:
895 		error = ENOTTY;
896 		break;
897 	}
898 	return(error);
899 }
900 
901 int
902 cam_periph_runccb(union ccb *ccb,
903 		  int (*error_routine)(union ccb *ccb,
904 				       cam_flags camflags,
905 				       u_int32_t sense_flags),
906 		  cam_flags camflags, u_int32_t sense_flags,
907 		  struct devstat *ds)
908 {
909 	struct cam_sim *sim;
910 	int error;
911 
912 	error = 0;
913 	sim = xpt_path_sim(ccb->ccb_h.path);
914 	mtx_assert(sim->mtx, MA_OWNED);
915 
916 	/*
917 	 * If the user has supplied a stats structure, and if we understand
918 	 * this particular type of ccb, record the transaction start.
919 	 */
920 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
921 	    ccb->ccb_h.func_code == XPT_ATA_IO))
922 		devstat_start_transaction(ds, NULL);
923 
924 	xpt_action(ccb);
925 
926 	do {
927 		cam_periph_ccbwait(ccb);
928 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
929 			error = 0;
930 		else if (error_routine != NULL)
931 			error = (*error_routine)(ccb, camflags, sense_flags);
932 		else
933 			error = 0;
934 
935 	} while (error == ERESTART);
936 
937 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
938 		cam_release_devq(ccb->ccb_h.path,
939 				 /* relsim_flags */0,
940 				 /* openings */0,
941 				 /* timeout */0,
942 				 /* getcount_only */ FALSE);
943 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
944 	}
945 
946 	if (ds != NULL) {
947 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
948 			devstat_end_transaction(ds,
949 					ccb->csio.dxfer_len,
950 					ccb->csio.tag_action & 0x3,
951 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
952 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
953 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
954 					DEVSTAT_WRITE :
955 					DEVSTAT_READ, NULL, NULL);
956 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
957 			devstat_end_transaction(ds,
958 					ccb->ataio.dxfer_len,
959 					ccb->ataio.tag_action & 0x3,
960 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
961 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
962 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
963 					DEVSTAT_WRITE :
964 					DEVSTAT_READ, NULL, NULL);
965 		}
966 	}
967 
968 	return(error);
969 }
970 
971 void
972 cam_freeze_devq(struct cam_path *path)
973 {
974 
975 	cam_freeze_devq_arg(path, 0, 0);
976 }
977 
978 void
979 cam_freeze_devq_arg(struct cam_path *path, uint32_t flags, uint32_t arg)
980 {
981 	struct ccb_relsim crs;
982 
983 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NONE);
984 	crs.ccb_h.func_code = XPT_FREEZE_QUEUE;
985 	crs.release_flags = flags;
986 	crs.openings = arg;
987 	crs.release_timeout = arg;
988 	xpt_action((union ccb *)&crs);
989 }
990 
991 u_int32_t
992 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
993 		 u_int32_t openings, u_int32_t arg,
994 		 int getcount_only)
995 {
996 	struct ccb_relsim crs;
997 
998 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
999 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1000 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1001 	crs.release_flags = relsim_flags;
1002 	crs.openings = openings;
1003 	crs.release_timeout = arg;
1004 	xpt_action((union ccb *)&crs);
1005 	return (crs.qfrozen_cnt);
1006 }
1007 
1008 #define saved_ccb_ptr ppriv_ptr0
1009 #define recovery_depth ppriv_field1
1010 static void
1011 camperiphsensedone(struct cam_periph *periph, union ccb *done_ccb)
1012 {
1013 	union ccb      *saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1014 	cam_status	status;
1015 	int		frozen = 0;
1016 	u_int		sense_key;
1017 	int		depth = done_ccb->ccb_h.recovery_depth;
1018 
1019 	status = done_ccb->ccb_h.status;
1020 	if (status & CAM_DEV_QFRZN) {
1021 		frozen = 1;
1022 		/*
1023 		 * Clear freeze flag now for case of retry,
1024 		 * freeze will be dropped later.
1025 		 */
1026 		done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1027 	}
1028 	status &= CAM_STATUS_MASK;
1029 	switch (status) {
1030 	case CAM_REQ_CMP:
1031 	{
1032 		/*
1033 		 * If we manually retrieved sense into a CCB and got
1034 		 * something other than "NO SENSE" send the updated CCB
1035 		 * back to the client via xpt_done() to be processed via
1036 		 * the error recovery code again.
1037 		 */
1038 		sense_key = saved_ccb->csio.sense_data.flags;
1039 		sense_key &= SSD_KEY;
1040 		if (sense_key != SSD_KEY_NO_SENSE) {
1041 			saved_ccb->ccb_h.status |=
1042 			    CAM_AUTOSNS_VALID;
1043 		} else {
1044 			saved_ccb->ccb_h.status &=
1045 			    ~CAM_STATUS_MASK;
1046 			saved_ccb->ccb_h.status |=
1047 			    CAM_AUTOSENSE_FAIL;
1048 		}
1049 		bcopy(saved_ccb, done_ccb, sizeof(union ccb));
1050 		xpt_free_ccb(saved_ccb);
1051 		break;
1052 	}
1053 	default:
1054 		bcopy(saved_ccb, done_ccb, sizeof(union ccb));
1055 		xpt_free_ccb(saved_ccb);
1056 		done_ccb->ccb_h.status &= ~CAM_STATUS_MASK;
1057 		done_ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL;
1058 		break;
1059 	}
1060 	periph->flags &= ~CAM_PERIPH_SENSE_INPROG;
1061 	/*
1062 	 * If it is the end of recovery, drop freeze, taken due to
1063 	 * CAM_DEV_QFREEZE flag, set on recovery request.
1064 	 */
1065 	if (depth == 0) {
1066 		cam_release_devq(done_ccb->ccb_h.path,
1067 			 /*relsim_flags*/0,
1068 			 /*openings*/0,
1069 			 /*timeout*/0,
1070 			 /*getcount_only*/0);
1071 	}
1072 	/*
1073 	 * Copy frozen flag from recovery request if it is set there
1074 	 * for some reason.
1075 	 */
1076 	if (frozen != 0)
1077 		done_ccb->ccb_h.status |= CAM_DEV_QFRZN;
1078 	(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1079 }
1080 
1081 static void
1082 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1083 {
1084 	union ccb      *saved_ccb, *save_ccb;
1085 	cam_status	status;
1086 	int		frozen = 0;
1087 	struct scsi_start_stop_unit *scsi_cmd;
1088 	u_int32_t	relsim_flags, timeout;
1089 
1090 	status = done_ccb->ccb_h.status;
1091 	if (status & CAM_DEV_QFRZN) {
1092 		frozen = 1;
1093 		/*
1094 		 * Clear freeze flag now for case of retry,
1095 		 * freeze will be dropped later.
1096 		 */
1097 		done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1098 	}
1099 
1100 	timeout = 0;
1101 	relsim_flags = 0;
1102 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1103 
1104 	switch (status & CAM_STATUS_MASK) {
1105 	case CAM_REQ_CMP:
1106 	{
1107 		/*
1108 		 * If we have successfully taken a device from the not
1109 		 * ready to ready state, re-scan the device and re-get
1110 		 * the inquiry information.  Many devices (mostly disks)
1111 		 * don't properly report their inquiry information unless
1112 		 * they are spun up.
1113 		 */
1114 		scsi_cmd = (struct scsi_start_stop_unit *)
1115 				&done_ccb->csio.cdb_io.cdb_bytes;
1116 
1117 	 	if (scsi_cmd->opcode == START_STOP_UNIT)
1118 			xpt_async(AC_INQ_CHANGED,
1119 				  done_ccb->ccb_h.path, NULL);
1120 		goto final;
1121 	}
1122 	case CAM_SCSI_STATUS_ERROR:
1123 		scsi_cmd = (struct scsi_start_stop_unit *)
1124 				&done_ccb->csio.cdb_io.cdb_bytes;
1125 		if (status & CAM_AUTOSNS_VALID) {
1126 			struct ccb_getdev cgd;
1127 			struct scsi_sense_data *sense;
1128 			int    error_code, sense_key, asc, ascq;
1129 			scsi_sense_action err_action;
1130 
1131 			sense = &done_ccb->csio.sense_data;
1132 			scsi_extract_sense(sense, &error_code,
1133 					   &sense_key, &asc, &ascq);
1134 			/*
1135 			 * Grab the inquiry data for this device.
1136 			 */
1137 			xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1138 			    CAM_PRIORITY_NORMAL);
1139 			cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1140 			xpt_action((union ccb *)&cgd);
1141 			err_action = scsi_error_action(&done_ccb->csio,
1142 						       &cgd.inq_data, 0);
1143 			/*
1144 	 		 * If the error is "invalid field in CDB",
1145 			 * and the load/eject flag is set, turn the
1146 			 * flag off and try again.  This is just in
1147 			 * case the drive in question barfs on the
1148 			 * load eject flag.  The CAM code should set
1149 			 * the load/eject flag by default for
1150 			 * removable media.
1151 			 */
1152 			/* XXX KDM
1153 			 * Should we check to see what the specific
1154 			 * scsi status is??  Or does it not matter
1155 			 * since we already know that there was an
1156 			 * error, and we know what the specific
1157 			 * error code was, and we know what the
1158 			 * opcode is..
1159 			 */
1160 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1161 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1162 			     (asc == 0x24) && (ascq == 0x00) &&
1163 			     (done_ccb->ccb_h.retry_count > 0)) {
1164 
1165 				scsi_cmd->how &= ~SSS_LOEJ;
1166 				xpt_action(done_ccb);
1167 			} else if ((done_ccb->ccb_h.retry_count > 1)
1168 				&& ((err_action & SS_MASK) != SS_FAIL)) {
1169 
1170 				/*
1171 				 * In this case, the error recovery
1172 				 * command failed, but we've got
1173 				 * some retries left on it.  Give
1174 				 * it another try unless this is an
1175 				 * unretryable error.
1176 				 */
1177 				/* set the timeout to .5 sec */
1178 				relsim_flags =
1179 					RELSIM_RELEASE_AFTER_TIMEOUT;
1180 				timeout = 500;
1181 				xpt_action(done_ccb);
1182 				break;
1183 			} else {
1184 				/*
1185 				 * Perform the final retry with the original
1186 				 * CCB so that final error processing is
1187 				 * performed by the owner of the CCB.
1188 				 */
1189 				goto final;
1190 			}
1191 		} else {
1192 			save_ccb = xpt_alloc_ccb_nowait();
1193 			if (save_ccb == NULL)
1194 				goto final;
1195 			bcopy(done_ccb, save_ccb, sizeof(*save_ccb));
1196 			periph->flags |= CAM_PERIPH_SENSE_INPROG;
1197 			/*
1198 			 * Send a Request Sense to the device.  We
1199 			 * assume that we are in a contingent allegiance
1200 			 * condition so we do not tag this request.
1201 			 */
1202 			scsi_request_sense(&done_ccb->csio, /*retries*/1,
1203 					   camperiphsensedone,
1204 					   &save_ccb->csio.sense_data,
1205 					   sizeof(save_ccb->csio.sense_data),
1206 					   CAM_TAG_ACTION_NONE,
1207 					   /*sense_len*/SSD_FULL_SIZE,
1208 					   /*timeout*/5000);
1209 			done_ccb->ccb_h.pinfo.priority--;
1210 			done_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1211 			done_ccb->ccb_h.saved_ccb_ptr = save_ccb;
1212 			done_ccb->ccb_h.recovery_depth++;
1213 			xpt_action(done_ccb);
1214 		}
1215 		break;
1216 	default:
1217 final:
1218 		bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
1219 		xpt_free_ccb(saved_ccb);
1220 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1221 		xpt_action(done_ccb);
1222 		break;
1223 	}
1224 
1225 	/* decrement the retry count */
1226 	/*
1227 	 * XXX This isn't appropriate in all cases.  Restructure,
1228 	 *     so that the retry count is only decremented on an
1229 	 *     actual retry.  Remeber that the orignal ccb had its
1230 	 *     retry count dropped before entering recovery, so
1231 	 *     doing it again is a bug.
1232 	 */
1233 	if (done_ccb->ccb_h.retry_count > 0)
1234 		done_ccb->ccb_h.retry_count--;
1235 	/*
1236 	 * Drop freeze taken due to CAM_DEV_QFREEZE flag set on recovery
1237 	 * request.
1238 	 */
1239 	cam_release_devq(done_ccb->ccb_h.path,
1240 			 /*relsim_flags*/relsim_flags,
1241 			 /*openings*/0,
1242 			 /*timeout*/timeout,
1243 			 /*getcount_only*/0);
1244 	/* Drop freeze taken, if this recovery request got error. */
1245 	if (frozen != 0) {
1246 		cam_release_devq(done_ccb->ccb_h.path,
1247 			 /*relsim_flags*/0,
1248 			 /*openings*/0,
1249 			 /*timeout*/0,
1250 			 /*getcount_only*/0);
1251 	}
1252 }
1253 
1254 /*
1255  * Generic Async Event handler.  Peripheral drivers usually
1256  * filter out the events that require personal attention,
1257  * and leave the rest to this function.
1258  */
1259 void
1260 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1261 		 struct cam_path *path, void *arg)
1262 {
1263 	switch (code) {
1264 	case AC_LOST_DEVICE:
1265 		cam_periph_invalidate(periph);
1266 		break;
1267 	default:
1268 		break;
1269 	}
1270 }
1271 
1272 void
1273 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1274 {
1275 	struct ccb_getdevstats cgds;
1276 
1277 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1278 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1279 	xpt_action((union ccb *)&cgds);
1280 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1281 }
1282 
1283 void
1284 cam_periph_freeze_after_event(struct cam_periph *periph,
1285 			      struct timeval* event_time, u_int duration_ms)
1286 {
1287 	struct timeval delta;
1288 	struct timeval duration_tv;
1289 
1290 	microtime(&delta);
1291 	timevalsub(&delta, event_time);
1292 	duration_tv.tv_sec = duration_ms / 1000;
1293 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1294 	if (timevalcmp(&delta, &duration_tv, <)) {
1295 		timevalsub(&duration_tv, &delta);
1296 
1297 		duration_ms = duration_tv.tv_sec * 1000;
1298 		duration_ms += duration_tv.tv_usec / 1000;
1299 		cam_freeze_devq(periph->path);
1300 		cam_release_devq(periph->path,
1301 				RELSIM_RELEASE_AFTER_TIMEOUT,
1302 				/*reduction*/0,
1303 				/*timeout*/duration_ms,
1304 				/*getcount_only*/0);
1305 	}
1306 
1307 }
1308 
1309 static int
1310 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1311 			 u_int32_t sense_flags,
1312 			 int *openings, u_int32_t *relsim_flags,
1313 			 u_int32_t *timeout, const char **action_string)
1314 {
1315 	int error;
1316 
1317 	switch (ccb->csio.scsi_status) {
1318 	case SCSI_STATUS_OK:
1319 	case SCSI_STATUS_COND_MET:
1320 	case SCSI_STATUS_INTERMED:
1321 	case SCSI_STATUS_INTERMED_COND_MET:
1322 		error = 0;
1323 		break;
1324 	case SCSI_STATUS_CMD_TERMINATED:
1325 	case SCSI_STATUS_CHECK_COND:
1326 		if (bootverbose)
1327 			xpt_print(ccb->ccb_h.path, "SCSI status error\n");
1328 		error = camperiphscsisenseerror(ccb,
1329 					        camflags,
1330 					        sense_flags,
1331 					        openings,
1332 					        relsim_flags,
1333 					        timeout,
1334 					        action_string);
1335 		break;
1336 	case SCSI_STATUS_QUEUE_FULL:
1337 	{
1338 		/* no decrement */
1339 		struct ccb_getdevstats cgds;
1340 
1341 		/*
1342 		 * First off, find out what the current
1343 		 * transaction counts are.
1344 		 */
1345 		xpt_setup_ccb(&cgds.ccb_h,
1346 			      ccb->ccb_h.path,
1347 			      CAM_PRIORITY_NORMAL);
1348 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1349 		xpt_action((union ccb *)&cgds);
1350 
1351 		/*
1352 		 * If we were the only transaction active, treat
1353 		 * the QUEUE FULL as if it were a BUSY condition.
1354 		 */
1355 		if (cgds.dev_active != 0) {
1356 			int total_openings;
1357 
1358 			/*
1359 		 	 * Reduce the number of openings to
1360 			 * be 1 less than the amount it took
1361 			 * to get a queue full bounded by the
1362 			 * minimum allowed tag count for this
1363 			 * device.
1364 		 	 */
1365 			total_openings = cgds.dev_active + cgds.dev_openings;
1366 			*openings = cgds.dev_active;
1367 			if (*openings < cgds.mintags)
1368 				*openings = cgds.mintags;
1369 			if (*openings < total_openings)
1370 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1371 			else {
1372 				/*
1373 				 * Some devices report queue full for
1374 				 * temporary resource shortages.  For
1375 				 * this reason, we allow a minimum
1376 				 * tag count to be entered via a
1377 				 * quirk entry to prevent the queue
1378 				 * count on these devices from falling
1379 				 * to a pessimisticly low value.  We
1380 				 * still wait for the next successful
1381 				 * completion, however, before queueing
1382 				 * more transactions to the device.
1383 				 */
1384 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1385 			}
1386 			*timeout = 0;
1387 			error = ERESTART;
1388 			if (bootverbose) {
1389 				xpt_print(ccb->ccb_h.path, "Queue full\n");
1390 			}
1391 			break;
1392 		}
1393 		/* FALLTHROUGH */
1394 	}
1395 	case SCSI_STATUS_BUSY:
1396 		/*
1397 		 * Restart the queue after either another
1398 		 * command completes or a 1 second timeout.
1399 		 */
1400 		if (bootverbose) {
1401 			xpt_print(ccb->ccb_h.path, "Device busy\n");
1402 		}
1403 	 	if (ccb->ccb_h.retry_count > 0) {
1404 	 		ccb->ccb_h.retry_count--;
1405 			error = ERESTART;
1406 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1407 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1408 			*timeout = 1000;
1409 		} else {
1410 			error = EIO;
1411 		}
1412 		break;
1413 	case SCSI_STATUS_RESERV_CONFLICT:
1414 		xpt_print(ccb->ccb_h.path, "Reservation conflict\n");
1415 		error = EIO;
1416 		break;
1417 	default:
1418 		xpt_print(ccb->ccb_h.path, "SCSI status 0x%x\n",
1419 		    ccb->csio.scsi_status);
1420 		error = EIO;
1421 		break;
1422 	}
1423 	return (error);
1424 }
1425 
1426 static int
1427 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1428 			u_int32_t sense_flags,
1429 		       int *openings, u_int32_t *relsim_flags,
1430 		       u_int32_t *timeout, const char **action_string)
1431 {
1432 	struct cam_periph *periph;
1433 	union ccb *orig_ccb = ccb;
1434 	int error;
1435 
1436 	periph = xpt_path_periph(ccb->ccb_h.path);
1437 	if (periph->flags &
1438 	    (CAM_PERIPH_RECOVERY_INPROG | CAM_PERIPH_SENSE_INPROG)) {
1439 		/*
1440 		 * If error recovery is already in progress, don't attempt
1441 		 * to process this error, but requeue it unconditionally
1442 		 * and attempt to process it once error recovery has
1443 		 * completed.  This failed command is probably related to
1444 		 * the error that caused the currently active error recovery
1445 		 * action so our  current recovery efforts should also
1446 		 * address this command.  Be aware that the error recovery
1447 		 * code assumes that only one recovery action is in progress
1448 		 * on a particular peripheral instance at any given time
1449 		 * (e.g. only one saved CCB for error recovery) so it is
1450 		 * imperitive that we don't violate this assumption.
1451 		 */
1452 		error = ERESTART;
1453 	} else {
1454 		scsi_sense_action err_action;
1455 		struct ccb_getdev cgd;
1456 
1457 		/*
1458 		 * Grab the inquiry data for this device.
1459 		 */
1460 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1461 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1462 		xpt_action((union ccb *)&cgd);
1463 
1464 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1465 			err_action = scsi_error_action(&ccb->csio,
1466 						       &cgd.inq_data,
1467 						       sense_flags);
1468 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1469 			err_action = SS_REQSENSE;
1470 		else
1471 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1472 
1473 		error = err_action & SS_ERRMASK;
1474 
1475 		/*
1476 		 * If the recovery action will consume a retry,
1477 		 * make sure we actually have retries available.
1478 		 */
1479 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1480 		 	if (ccb->ccb_h.retry_count > 0)
1481 		 		ccb->ccb_h.retry_count--;
1482 			else {
1483 				*action_string = "Retries exhausted";
1484 				goto sense_error_done;
1485 			}
1486 		}
1487 
1488 		if ((err_action & SS_MASK) >= SS_START) {
1489 			/*
1490 			 * Do common portions of commands that
1491 			 * use recovery CCBs.
1492 			 */
1493 			orig_ccb = xpt_alloc_ccb_nowait();
1494 			if (orig_ccb == NULL) {
1495 				*action_string = "Can't allocate recovery CCB";
1496 				goto sense_error_done;
1497 			}
1498 			/*
1499 			 * Clear freeze flag for original request here, as
1500 			 * this freeze will be dropped as part of ERESTART.
1501 			 */
1502 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1503 			bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
1504 		}
1505 
1506 		switch (err_action & SS_MASK) {
1507 		case SS_NOP:
1508 			*action_string = "No recovery action needed";
1509 			error = 0;
1510 			break;
1511 		case SS_RETRY:
1512 			*action_string = "Retrying command (per sense data)";
1513 			error = ERESTART;
1514 			break;
1515 		case SS_FAIL:
1516 			*action_string = "Unretryable error";
1517 			break;
1518 		case SS_START:
1519 		{
1520 			int le;
1521 
1522 			/*
1523 			 * Send a start unit command to the device, and
1524 			 * then retry the command.
1525 			 */
1526 			*action_string = "Attempting to start unit";
1527 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1528 
1529 			/*
1530 			 * Check for removable media and set
1531 			 * load/eject flag appropriately.
1532 			 */
1533 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1534 				le = TRUE;
1535 			else
1536 				le = FALSE;
1537 
1538 			scsi_start_stop(&ccb->csio,
1539 					/*retries*/1,
1540 					camperiphdone,
1541 					MSG_SIMPLE_Q_TAG,
1542 					/*start*/TRUE,
1543 					/*load/eject*/le,
1544 					/*immediate*/FALSE,
1545 					SSD_FULL_SIZE,
1546 					/*timeout*/50000);
1547 			break;
1548 		}
1549 		case SS_TUR:
1550 		{
1551 			/*
1552 			 * Send a Test Unit Ready to the device.
1553 			 * If the 'many' flag is set, we send 120
1554 			 * test unit ready commands, one every half
1555 			 * second.  Otherwise, we just send one TUR.
1556 			 * We only want to do this if the retry
1557 			 * count has not been exhausted.
1558 			 */
1559 			int retries;
1560 
1561 			if ((err_action & SSQ_MANY) != 0) {
1562 				*action_string = "Polling device for readiness";
1563 				retries = 120;
1564 			} else {
1565 				*action_string = "Testing device for readiness";
1566 				retries = 1;
1567 			}
1568 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1569 			scsi_test_unit_ready(&ccb->csio,
1570 					     retries,
1571 					     camperiphdone,
1572 					     MSG_SIMPLE_Q_TAG,
1573 					     SSD_FULL_SIZE,
1574 					     /*timeout*/5000);
1575 
1576 			/*
1577 			 * Accomplish our 500ms delay by deferring
1578 			 * the release of our device queue appropriately.
1579 			 */
1580 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1581 			*timeout = 500;
1582 			break;
1583 		}
1584 		case SS_REQSENSE:
1585 		{
1586 			*action_string = "Requesting SCSI sense data";
1587 			periph->flags |= CAM_PERIPH_SENSE_INPROG;
1588 			/*
1589 			 * Send a Request Sense to the device.  We
1590 			 * assume that we are in a contingent allegiance
1591 			 * condition so we do not tag this request.
1592 			 */
1593 			scsi_request_sense(&ccb->csio, /*retries*/1,
1594 					   camperiphsensedone,
1595 					   &orig_ccb->csio.sense_data,
1596 					   sizeof(orig_ccb->csio.sense_data),
1597 					   CAM_TAG_ACTION_NONE,
1598 					   /*sense_len*/SSD_FULL_SIZE,
1599 					   /*timeout*/5000);
1600 			break;
1601 		}
1602 		default:
1603 			panic("Unhandled error action %x", err_action);
1604 		}
1605 
1606 		if ((err_action & SS_MASK) >= SS_START) {
1607 			/*
1608 			 * Drop the priority, so that the recovery
1609 			 * CCB is the first to execute.  Freeze the queue
1610 			 * after this command is sent so that we can
1611 			 * restore the old csio and have it queued in
1612 			 * the proper order before we release normal
1613 			 * transactions to the device.
1614 			 */
1615 			ccb->ccb_h.pinfo.priority--;
1616 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1617 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1618 			ccb->ccb_h.recovery_depth = 0;
1619 			error = ERESTART;
1620 		}
1621 
1622 sense_error_done:
1623 		if ((err_action & SSQ_PRINT_SENSE) != 0
1624 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1625 			cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1626 	}
1627 	return (error);
1628 }
1629 
1630 /*
1631  * Generic error handler.  Peripheral drivers usually filter
1632  * out the errors that they handle in a unique mannor, then
1633  * call this function.
1634  */
1635 int
1636 cam_periph_error(union ccb *ccb, cam_flags camflags,
1637 		 u_int32_t sense_flags, union ccb *save_ccb)
1638 {
1639 	const char *action_string;
1640 	cam_status  status;
1641 	int	    frozen;
1642 	int	    error, printed = 0;
1643 	int         openings;
1644 	u_int32_t   relsim_flags;
1645 	u_int32_t   timeout = 0;
1646 
1647 	action_string = NULL;
1648 	status = ccb->ccb_h.status;
1649 	frozen = (status & CAM_DEV_QFRZN) != 0;
1650 	status &= CAM_STATUS_MASK;
1651 	openings = relsim_flags = 0;
1652 
1653 	switch (status) {
1654 	case CAM_REQ_CMP:
1655 		error = 0;
1656 		break;
1657 	case CAM_SCSI_STATUS_ERROR:
1658 		error = camperiphscsistatuserror(ccb,
1659 						 camflags,
1660 						 sense_flags,
1661 						 &openings,
1662 						 &relsim_flags,
1663 						 &timeout,
1664 						 &action_string);
1665 		break;
1666 	case CAM_AUTOSENSE_FAIL:
1667 		xpt_print(ccb->ccb_h.path, "AutoSense failed\n");
1668 		error = EIO;	/* we have to kill the command */
1669 		break;
1670 	case CAM_ATA_STATUS_ERROR:
1671 		if (bootverbose && printed == 0) {
1672 			xpt_print(ccb->ccb_h.path, "ATA status error\n");
1673 			cam_error_print(ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1674 			printed++;
1675 		}
1676 		/* FALLTHROUGH */
1677 	case CAM_REQ_CMP_ERR:
1678 		if (bootverbose && printed == 0) {
1679 			xpt_print(ccb->ccb_h.path,
1680 			    "Request completed with CAM_REQ_CMP_ERR\n");
1681 			printed++;
1682 		}
1683 		/* FALLTHROUGH */
1684 	case CAM_CMD_TIMEOUT:
1685 		if (bootverbose && printed == 0) {
1686 			xpt_print(ccb->ccb_h.path, "Command timed out\n");
1687 			printed++;
1688 		}
1689 		/* FALLTHROUGH */
1690 	case CAM_UNEXP_BUSFREE:
1691 		if (bootverbose && printed == 0) {
1692 			xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1693 			printed++;
1694 		}
1695 		/* FALLTHROUGH */
1696 	case CAM_UNCOR_PARITY:
1697 		if (bootverbose && printed == 0) {
1698 			xpt_print(ccb->ccb_h.path,
1699 			    "Uncorrected parity error\n");
1700 			printed++;
1701 		}
1702 		/* FALLTHROUGH */
1703 	case CAM_DATA_RUN_ERR:
1704 		if (bootverbose && printed == 0) {
1705 			xpt_print(ccb->ccb_h.path, "Data overrun\n");
1706 			printed++;
1707 		}
1708 		error = EIO;	/* we have to kill the command */
1709 		/* decrement the number of retries */
1710 		if (ccb->ccb_h.retry_count > 0) {
1711 			ccb->ccb_h.retry_count--;
1712 			error = ERESTART;
1713 		} else {
1714 			action_string = "Retries exhausted";
1715 			error = EIO;
1716 		}
1717 		break;
1718 	case CAM_UA_ABORT:
1719 	case CAM_UA_TERMIO:
1720 	case CAM_MSG_REJECT_REC:
1721 		/* XXX Don't know that these are correct */
1722 		error = EIO;
1723 		break;
1724 	case CAM_SEL_TIMEOUT:
1725 	{
1726 		struct cam_path *newpath;
1727 
1728 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1729 			if (ccb->ccb_h.retry_count > 0) {
1730 
1731 				ccb->ccb_h.retry_count--;
1732 				error = ERESTART;
1733 				if (bootverbose && printed == 0) {
1734 					xpt_print(ccb->ccb_h.path,
1735 					    "Selection timeout\n");
1736 					printed++;
1737 				}
1738 
1739 				/*
1740 				 * Wait a bit to give the device
1741 				 * time to recover before we try again.
1742 				 */
1743 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1744 				timeout = periph_selto_delay;
1745 				break;
1746 			}
1747 		}
1748 		error = ENXIO;
1749 		/* Should we do more if we can't create the path?? */
1750 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1751 				    xpt_path_path_id(ccb->ccb_h.path),
1752 				    xpt_path_target_id(ccb->ccb_h.path),
1753 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1754 			break;
1755 
1756 		/*
1757 		 * Let peripheral drivers know that this device has gone
1758 		 * away.
1759 		 */
1760 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1761 		xpt_free_path(newpath);
1762 		break;
1763 	}
1764 	case CAM_REQ_INVALID:
1765 	case CAM_PATH_INVALID:
1766 	case CAM_DEV_NOT_THERE:
1767 	case CAM_NO_HBA:
1768 	case CAM_PROVIDE_FAIL:
1769 	case CAM_REQ_TOO_BIG:
1770 	case CAM_LUN_INVALID:
1771 	case CAM_TID_INVALID:
1772 		error = EINVAL;
1773 		break;
1774 	case CAM_SCSI_BUS_RESET:
1775 	case CAM_BDR_SENT:
1776 		/*
1777 		 * Commands that repeatedly timeout and cause these
1778 		 * kinds of error recovery actions, should return
1779 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1780 		 * that this command was an innocent bystander to
1781 		 * these events and should be unconditionally
1782 		 * retried.
1783 		 */
1784 		if (bootverbose && printed == 0) {
1785 			xpt_print_path(ccb->ccb_h.path);
1786 			if (status == CAM_BDR_SENT)
1787 				printf("Bus Device Reset sent\n");
1788 			else
1789 				printf("Bus Reset issued\n");
1790 			printed++;
1791 		}
1792 		/* FALLTHROUGH */
1793 	case CAM_REQUEUE_REQ:
1794 		/* Unconditional requeue */
1795 		error = ERESTART;
1796 		if (bootverbose && printed == 0) {
1797 			xpt_print(ccb->ccb_h.path, "Request requeued\n");
1798 			printed++;
1799 		}
1800 		break;
1801 	case CAM_RESRC_UNAVAIL:
1802 		/* Wait a bit for the resource shortage to abate. */
1803 		timeout = periph_noresrc_delay;
1804 		/* FALLTHROUGH */
1805 	case CAM_BUSY:
1806 		if (timeout == 0) {
1807 			/* Wait a bit for the busy condition to abate. */
1808 			timeout = periph_busy_delay;
1809 		}
1810 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1811 		/* FALLTHROUGH */
1812 	default:
1813 		/* decrement the number of retries */
1814 		if (ccb->ccb_h.retry_count > 0) {
1815 			ccb->ccb_h.retry_count--;
1816 			error = ERESTART;
1817 			if (bootverbose && printed == 0) {
1818 				xpt_print(ccb->ccb_h.path, "CAM status 0x%x\n",
1819 				    status);
1820 				printed++;
1821 			}
1822 		} else {
1823 			error = EIO;
1824 			action_string = "Retries exhausted";
1825 		}
1826 		break;
1827 	}
1828 
1829 	/*
1830 	 * If we have and error and are booting verbosely, whine
1831 	 * *unless* this was a non-retryable selection timeout.
1832 	 */
1833 	if (error != 0 && bootverbose &&
1834 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1835 		if (error != ERESTART) {
1836 			if (action_string == NULL)
1837 				action_string = "Unretryable error";
1838 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
1839 			    error, action_string);
1840 		} else if (action_string != NULL)
1841 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1842 		else
1843 			xpt_print(ccb->ccb_h.path, "Retrying command\n");
1844 	}
1845 
1846 	/* Attempt a retry */
1847 	if (error == ERESTART || error == 0) {
1848 		if (frozen != 0)
1849 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1850 		if (error == ERESTART)
1851 			xpt_action(ccb);
1852 		if (frozen != 0)
1853 			cam_release_devq(ccb->ccb_h.path,
1854 					 relsim_flags,
1855 					 openings,
1856 					 timeout,
1857 					 /*getcount_only*/0);
1858 	}
1859 
1860 	return (error);
1861 }
1862