1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_xpt_internal.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_sim.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 static u_int camperiphnextunit(struct periph_driver *p_drv, 67 u_int newunit, int wired, 68 path_id_t pathid, target_id_t target, 69 lun_id_t lun); 70 static u_int camperiphunit(struct periph_driver *p_drv, 71 path_id_t pathid, target_id_t target, 72 lun_id_t lun); 73 static void camperiphdone(struct cam_periph *periph, 74 union ccb *done_ccb); 75 static void camperiphfree(struct cam_periph *periph); 76 static int camperiphscsistatuserror(union ccb *ccb, 77 union ccb **orig_ccb, 78 cam_flags camflags, 79 u_int32_t sense_flags, 80 int *openings, 81 u_int32_t *relsim_flags, 82 u_int32_t *timeout, 83 u_int32_t *action, 84 const char **action_string); 85 static int camperiphscsisenseerror(union ccb *ccb, 86 union ccb **orig_ccb, 87 cam_flags camflags, 88 u_int32_t sense_flags, 89 int *openings, 90 u_int32_t *relsim_flags, 91 u_int32_t *timeout, 92 u_int32_t *action, 93 const char **action_string); 94 static void cam_periph_devctl_notify(union ccb *ccb); 95 96 static int nperiph_drivers; 97 static int initialized = 0; 98 struct periph_driver **periph_drivers; 99 100 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 101 102 static int periph_selto_delay = 1000; 103 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 104 static int periph_noresrc_delay = 500; 105 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 106 static int periph_busy_delay = 500; 107 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 108 109 static u_int periph_mapmem_thresh = 65536; 110 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 111 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 112 113 void 114 periphdriver_register(void *data) 115 { 116 struct periph_driver *drv = (struct periph_driver *)data; 117 struct periph_driver **newdrivers, **old; 118 int ndrivers; 119 120 again: 121 ndrivers = nperiph_drivers + 2; 122 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 123 M_WAITOK); 124 xpt_lock_buses(); 125 if (ndrivers != nperiph_drivers + 2) { 126 /* 127 * Lost race against itself; go around. 128 */ 129 xpt_unlock_buses(); 130 free(newdrivers, M_CAMPERIPH); 131 goto again; 132 } 133 if (periph_drivers) 134 bcopy(periph_drivers, newdrivers, 135 sizeof(*newdrivers) * nperiph_drivers); 136 newdrivers[nperiph_drivers] = drv; 137 newdrivers[nperiph_drivers + 1] = NULL; 138 old = periph_drivers; 139 periph_drivers = newdrivers; 140 nperiph_drivers++; 141 xpt_unlock_buses(); 142 if (old) 143 free(old, M_CAMPERIPH); 144 /* If driver marked as early or it is late now, initialize it. */ 145 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 146 initialized > 1) 147 (*drv->init)(); 148 } 149 150 int 151 periphdriver_unregister(void *data) 152 { 153 struct periph_driver *drv = (struct periph_driver *)data; 154 int error, n; 155 156 /* If driver marked as early or it is late now, deinitialize it. */ 157 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 158 initialized > 1) { 159 if (drv->deinit == NULL) { 160 printf("CAM periph driver '%s' doesn't have deinit.\n", 161 drv->driver_name); 162 return (EOPNOTSUPP); 163 } 164 error = drv->deinit(); 165 if (error != 0) 166 return (error); 167 } 168 169 xpt_lock_buses(); 170 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 171 ; 172 KASSERT(n < nperiph_drivers, 173 ("Periph driver '%s' was not registered", drv->driver_name)); 174 for (; n + 1 < nperiph_drivers; n++) 175 periph_drivers[n] = periph_drivers[n + 1]; 176 periph_drivers[n + 1] = NULL; 177 nperiph_drivers--; 178 xpt_unlock_buses(); 179 return (0); 180 } 181 182 void 183 periphdriver_init(int level) 184 { 185 int i, early; 186 187 initialized = max(initialized, level); 188 for (i = 0; periph_drivers[i] != NULL; i++) { 189 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 190 if (early == initialized) 191 (*periph_drivers[i]->init)(); 192 } 193 } 194 195 cam_status 196 cam_periph_alloc(periph_ctor_t *periph_ctor, 197 periph_oninv_t *periph_oninvalidate, 198 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 199 char *name, cam_periph_type type, struct cam_path *path, 200 ac_callback_t *ac_callback, ac_code code, void *arg) 201 { 202 struct periph_driver **p_drv; 203 struct cam_sim *sim; 204 struct cam_periph *periph; 205 struct cam_periph *cur_periph; 206 path_id_t path_id; 207 target_id_t target_id; 208 lun_id_t lun_id; 209 cam_status status; 210 u_int init_level; 211 212 init_level = 0; 213 /* 214 * Handle Hot-Plug scenarios. If there is already a peripheral 215 * of our type assigned to this path, we are likely waiting for 216 * final close on an old, invalidated, peripheral. If this is 217 * the case, queue up a deferred call to the peripheral's async 218 * handler. If it looks like a mistaken re-allocation, complain. 219 */ 220 if ((periph = cam_periph_find(path, name)) != NULL) { 221 if ((periph->flags & CAM_PERIPH_INVALID) != 0 222 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 223 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 224 periph->deferred_callback = ac_callback; 225 periph->deferred_ac = code; 226 return (CAM_REQ_INPROG); 227 } else { 228 printf("cam_periph_alloc: attempt to re-allocate " 229 "valid device %s%d rejected flags %#x " 230 "refcount %d\n", periph->periph_name, 231 periph->unit_number, periph->flags, 232 periph->refcount); 233 } 234 return (CAM_REQ_INVALID); 235 } 236 237 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 238 M_NOWAIT|M_ZERO); 239 240 if (periph == NULL) 241 return (CAM_RESRC_UNAVAIL); 242 243 init_level++; 244 245 sim = xpt_path_sim(path); 246 path_id = xpt_path_path_id(path); 247 target_id = xpt_path_target_id(path); 248 lun_id = xpt_path_lun_id(path); 249 periph->periph_start = periph_start; 250 periph->periph_dtor = periph_dtor; 251 periph->periph_oninval = periph_oninvalidate; 252 periph->type = type; 253 periph->periph_name = name; 254 periph->scheduled_priority = CAM_PRIORITY_NONE; 255 periph->immediate_priority = CAM_PRIORITY_NONE; 256 periph->refcount = 1; /* Dropped by invalidation. */ 257 periph->sim = sim; 258 SLIST_INIT(&periph->ccb_list); 259 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 260 if (status != CAM_REQ_CMP) 261 goto failure; 262 periph->path = path; 263 264 xpt_lock_buses(); 265 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 266 if (strcmp((*p_drv)->driver_name, name) == 0) 267 break; 268 } 269 if (*p_drv == NULL) { 270 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 271 xpt_unlock_buses(); 272 xpt_free_path(periph->path); 273 free(periph, M_CAMPERIPH); 274 return (CAM_REQ_INVALID); 275 } 276 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 277 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 278 while (cur_periph != NULL 279 && cur_periph->unit_number < periph->unit_number) 280 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 281 if (cur_periph != NULL) { 282 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 283 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 284 } else { 285 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 286 (*p_drv)->generation++; 287 } 288 xpt_unlock_buses(); 289 290 init_level++; 291 292 status = xpt_add_periph(periph); 293 if (status != CAM_REQ_CMP) 294 goto failure; 295 296 init_level++; 297 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 298 299 status = periph_ctor(periph, arg); 300 301 if (status == CAM_REQ_CMP) 302 init_level++; 303 304 failure: 305 switch (init_level) { 306 case 4: 307 /* Initialized successfully */ 308 break; 309 case 3: 310 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 311 xpt_remove_periph(periph); 312 /* FALLTHROUGH */ 313 case 2: 314 xpt_lock_buses(); 315 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 316 xpt_unlock_buses(); 317 xpt_free_path(periph->path); 318 /* FALLTHROUGH */ 319 case 1: 320 free(periph, M_CAMPERIPH); 321 /* FALLTHROUGH */ 322 case 0: 323 /* No cleanup to perform. */ 324 break; 325 default: 326 panic("%s: Unknown init level", __func__); 327 } 328 return(status); 329 } 330 331 /* 332 * Find a peripheral structure with the specified path, target, lun, 333 * and (optionally) type. If the name is NULL, this function will return 334 * the first peripheral driver that matches the specified path. 335 */ 336 struct cam_periph * 337 cam_periph_find(struct cam_path *path, char *name) 338 { 339 struct periph_driver **p_drv; 340 struct cam_periph *periph; 341 342 xpt_lock_buses(); 343 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 344 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 345 continue; 346 347 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 348 if (xpt_path_comp(periph->path, path) == 0) { 349 xpt_unlock_buses(); 350 cam_periph_assert(periph, MA_OWNED); 351 return(periph); 352 } 353 } 354 if (name != NULL) { 355 xpt_unlock_buses(); 356 return(NULL); 357 } 358 } 359 xpt_unlock_buses(); 360 return(NULL); 361 } 362 363 /* 364 * Find peripheral driver instances attached to the specified path. 365 */ 366 int 367 cam_periph_list(struct cam_path *path, struct sbuf *sb) 368 { 369 struct sbuf local_sb; 370 struct periph_driver **p_drv; 371 struct cam_periph *periph; 372 int count; 373 int sbuf_alloc_len; 374 375 sbuf_alloc_len = 16; 376 retry: 377 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 378 count = 0; 379 xpt_lock_buses(); 380 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 381 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 382 if (xpt_path_comp(periph->path, path) != 0) 383 continue; 384 385 if (sbuf_len(&local_sb) != 0) 386 sbuf_cat(&local_sb, ","); 387 388 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 389 periph->unit_number); 390 391 if (sbuf_error(&local_sb) == ENOMEM) { 392 sbuf_alloc_len *= 2; 393 xpt_unlock_buses(); 394 sbuf_delete(&local_sb); 395 goto retry; 396 } 397 count++; 398 } 399 } 400 xpt_unlock_buses(); 401 sbuf_finish(&local_sb); 402 if (sbuf_len(sb) != 0) 403 sbuf_cat(sb, ","); 404 sbuf_cat(sb, sbuf_data(&local_sb)); 405 sbuf_delete(&local_sb); 406 return (count); 407 } 408 409 int 410 cam_periph_acquire(struct cam_periph *periph) 411 { 412 int status; 413 414 if (periph == NULL) 415 return (EINVAL); 416 417 status = ENOENT; 418 xpt_lock_buses(); 419 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 420 periph->refcount++; 421 status = 0; 422 } 423 xpt_unlock_buses(); 424 425 return (status); 426 } 427 428 void 429 cam_periph_doacquire(struct cam_periph *periph) 430 { 431 432 xpt_lock_buses(); 433 KASSERT(periph->refcount >= 1, 434 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 435 periph->refcount++; 436 xpt_unlock_buses(); 437 } 438 439 void 440 cam_periph_release_locked_buses(struct cam_periph *periph) 441 { 442 443 cam_periph_assert(periph, MA_OWNED); 444 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 445 if (--periph->refcount == 0) 446 camperiphfree(periph); 447 } 448 449 void 450 cam_periph_release_locked(struct cam_periph *periph) 451 { 452 453 if (periph == NULL) 454 return; 455 456 xpt_lock_buses(); 457 cam_periph_release_locked_buses(periph); 458 xpt_unlock_buses(); 459 } 460 461 void 462 cam_periph_release(struct cam_periph *periph) 463 { 464 struct mtx *mtx; 465 466 if (periph == NULL) 467 return; 468 469 cam_periph_assert(periph, MA_NOTOWNED); 470 mtx = cam_periph_mtx(periph); 471 mtx_lock(mtx); 472 cam_periph_release_locked(periph); 473 mtx_unlock(mtx); 474 } 475 476 /* 477 * hold/unhold act as mutual exclusion for sections of the code that 478 * need to sleep and want to make sure that other sections that 479 * will interfere are held off. This only protects exclusive sections 480 * from each other. 481 */ 482 int 483 cam_periph_hold(struct cam_periph *periph, int priority) 484 { 485 int error; 486 487 /* 488 * Increment the reference count on the peripheral 489 * while we wait for our lock attempt to succeed 490 * to ensure the peripheral doesn't disappear out 491 * from user us while we sleep. 492 */ 493 494 if (cam_periph_acquire(periph) != 0) 495 return (ENXIO); 496 497 cam_periph_assert(periph, MA_OWNED); 498 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 499 periph->flags |= CAM_PERIPH_LOCK_WANTED; 500 if ((error = cam_periph_sleep(periph, periph, priority, 501 "caplck", 0)) != 0) { 502 cam_periph_release_locked(periph); 503 return (error); 504 } 505 if (periph->flags & CAM_PERIPH_INVALID) { 506 cam_periph_release_locked(periph); 507 return (ENXIO); 508 } 509 } 510 511 periph->flags |= CAM_PERIPH_LOCKED; 512 return (0); 513 } 514 515 void 516 cam_periph_unhold(struct cam_periph *periph) 517 { 518 519 cam_periph_assert(periph, MA_OWNED); 520 521 periph->flags &= ~CAM_PERIPH_LOCKED; 522 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 523 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 524 wakeup(periph); 525 } 526 527 cam_periph_release_locked(periph); 528 } 529 530 /* 531 * Look for the next unit number that is not currently in use for this 532 * peripheral type starting at "newunit". Also exclude unit numbers that 533 * are reserved by for future "hardwiring" unless we already know that this 534 * is a potential wired device. Only assume that the device is "wired" the 535 * first time through the loop since after that we'll be looking at unit 536 * numbers that did not match a wiring entry. 537 */ 538 static u_int 539 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 540 path_id_t pathid, target_id_t target, lun_id_t lun) 541 { 542 struct cam_periph *periph; 543 char *periph_name; 544 int i, val, dunit, r; 545 const char *dname, *strval; 546 547 periph_name = p_drv->driver_name; 548 for (;;newunit++) { 549 for (periph = TAILQ_FIRST(&p_drv->units); 550 periph != NULL && periph->unit_number != newunit; 551 periph = TAILQ_NEXT(periph, unit_links)) 552 ; 553 554 if (periph != NULL && periph->unit_number == newunit) { 555 if (wired != 0) { 556 xpt_print(periph->path, "Duplicate Wired " 557 "Device entry!\n"); 558 xpt_print(periph->path, "Second device (%s " 559 "device at scbus%d target %d lun %d) will " 560 "not be wired\n", periph_name, pathid, 561 target, lun); 562 wired = 0; 563 } 564 continue; 565 } 566 if (wired) 567 break; 568 569 /* 570 * Don't match entries like "da 4" as a wired down 571 * device, but do match entries like "da 4 target 5" 572 * or even "da 4 scbus 1". 573 */ 574 i = 0; 575 dname = periph_name; 576 for (;;) { 577 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 578 if (r != 0) 579 break; 580 /* if no "target" and no specific scbus, skip */ 581 if (resource_int_value(dname, dunit, "target", &val) && 582 (resource_string_value(dname, dunit, "at",&strval)|| 583 strcmp(strval, "scbus") == 0)) 584 continue; 585 if (newunit == dunit) 586 break; 587 } 588 if (r != 0) 589 break; 590 } 591 return (newunit); 592 } 593 594 static u_int 595 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 596 target_id_t target, lun_id_t lun) 597 { 598 u_int unit; 599 int wired, i, val, dunit; 600 const char *dname, *strval; 601 char pathbuf[32], *periph_name; 602 603 periph_name = p_drv->driver_name; 604 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 605 unit = 0; 606 i = 0; 607 dname = periph_name; 608 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 609 wired = 0) { 610 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 611 if (strcmp(strval, pathbuf) != 0) 612 continue; 613 wired++; 614 } 615 if (resource_int_value(dname, dunit, "target", &val) == 0) { 616 if (val != target) 617 continue; 618 wired++; 619 } 620 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 621 if (val != lun) 622 continue; 623 wired++; 624 } 625 if (wired != 0) { 626 unit = dunit; 627 break; 628 } 629 } 630 631 /* 632 * Either start from 0 looking for the next unit or from 633 * the unit number given in the resource config. This way, 634 * if we have wildcard matches, we don't return the same 635 * unit number twice. 636 */ 637 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 638 639 return (unit); 640 } 641 642 void 643 cam_periph_invalidate(struct cam_periph *periph) 644 { 645 646 cam_periph_assert(periph, MA_OWNED); 647 /* 648 * We only tear down the device the first time a peripheral is 649 * invalidated. 650 */ 651 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 652 return; 653 654 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 655 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 656 struct sbuf sb; 657 char buffer[160]; 658 659 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 660 xpt_denounce_periph_sbuf(periph, &sb); 661 sbuf_finish(&sb); 662 sbuf_putbuf(&sb); 663 } 664 periph->flags |= CAM_PERIPH_INVALID; 665 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 666 if (periph->periph_oninval != NULL) 667 periph->periph_oninval(periph); 668 cam_periph_release_locked(periph); 669 } 670 671 static void 672 camperiphfree(struct cam_periph *periph) 673 { 674 struct periph_driver **p_drv; 675 struct periph_driver *drv; 676 677 cam_periph_assert(periph, MA_OWNED); 678 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 679 periph->periph_name, periph->unit_number)); 680 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 681 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 682 break; 683 } 684 if (*p_drv == NULL) { 685 printf("camperiphfree: attempt to free non-existant periph\n"); 686 return; 687 } 688 /* 689 * Cache a pointer to the periph_driver structure. If a 690 * periph_driver is added or removed from the array (see 691 * periphdriver_register()) while we drop the toplogy lock 692 * below, p_drv may change. This doesn't protect against this 693 * particular periph_driver going away. That will require full 694 * reference counting in the periph_driver infrastructure. 695 */ 696 drv = *p_drv; 697 698 /* 699 * We need to set this flag before dropping the topology lock, to 700 * let anyone who is traversing the list that this peripheral is 701 * about to be freed, and there will be no more reference count 702 * checks. 703 */ 704 periph->flags |= CAM_PERIPH_FREE; 705 706 /* 707 * The peripheral destructor semantics dictate calling with only the 708 * SIM mutex held. Since it might sleep, it should not be called 709 * with the topology lock held. 710 */ 711 xpt_unlock_buses(); 712 713 /* 714 * We need to call the peripheral destructor prior to removing the 715 * peripheral from the list. Otherwise, we risk running into a 716 * scenario where the peripheral unit number may get reused 717 * (because it has been removed from the list), but some resources 718 * used by the peripheral are still hanging around. In particular, 719 * the devfs nodes used by some peripherals like the pass(4) driver 720 * aren't fully cleaned up until the destructor is run. If the 721 * unit number is reused before the devfs instance is fully gone, 722 * devfs will panic. 723 */ 724 if (periph->periph_dtor != NULL) 725 periph->periph_dtor(periph); 726 727 /* 728 * The peripheral list is protected by the topology lock. We have to 729 * remove the periph from the drv list before we call deferred_ac. The 730 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 731 */ 732 xpt_lock_buses(); 733 734 TAILQ_REMOVE(&drv->units, periph, unit_links); 735 drv->generation++; 736 737 xpt_remove_periph(periph); 738 739 xpt_unlock_buses(); 740 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 741 xpt_print(periph->path, "Periph destroyed\n"); 742 else 743 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 744 745 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 746 union ccb ccb; 747 void *arg; 748 749 memset(&ccb, 0, sizeof(ccb)); 750 switch (periph->deferred_ac) { 751 case AC_FOUND_DEVICE: 752 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 753 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 754 xpt_action(&ccb); 755 arg = &ccb; 756 break; 757 case AC_PATH_REGISTERED: 758 xpt_path_inq(&ccb.cpi, periph->path); 759 arg = &ccb; 760 break; 761 default: 762 arg = NULL; 763 break; 764 } 765 periph->deferred_callback(NULL, periph->deferred_ac, 766 periph->path, arg); 767 } 768 xpt_free_path(periph->path); 769 free(periph, M_CAMPERIPH); 770 xpt_lock_buses(); 771 } 772 773 /* 774 * Map user virtual pointers into kernel virtual address space, so we can 775 * access the memory. This is now a generic function that centralizes most 776 * of the sanity checks on the data flags, if any. 777 * This also only works for up to maxphys memory. Since we use 778 * buffers to map stuff in and out, we're limited to the buffer size. 779 */ 780 int 781 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 782 u_int maxmap) 783 { 784 int numbufs, i; 785 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 786 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 787 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 788 789 bzero(mapinfo, sizeof(*mapinfo)); 790 if (maxmap == 0) 791 maxmap = DFLTPHYS; /* traditional default */ 792 else if (maxmap > maxphys) 793 maxmap = maxphys; /* for safety */ 794 switch(ccb->ccb_h.func_code) { 795 case XPT_DEV_MATCH: 796 if (ccb->cdm.match_buf_len == 0) { 797 printf("cam_periph_mapmem: invalid match buffer " 798 "length 0\n"); 799 return(EINVAL); 800 } 801 if (ccb->cdm.pattern_buf_len > 0) { 802 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 803 lengths[0] = ccb->cdm.pattern_buf_len; 804 dirs[0] = CAM_DIR_OUT; 805 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 806 lengths[1] = ccb->cdm.match_buf_len; 807 dirs[1] = CAM_DIR_IN; 808 numbufs = 2; 809 } else { 810 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 811 lengths[0] = ccb->cdm.match_buf_len; 812 dirs[0] = CAM_DIR_IN; 813 numbufs = 1; 814 } 815 /* 816 * This request will not go to the hardware, no reason 817 * to be so strict. vmapbuf() is able to map up to maxphys. 818 */ 819 maxmap = maxphys; 820 break; 821 case XPT_SCSI_IO: 822 case XPT_CONT_TARGET_IO: 823 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 824 return(0); 825 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 826 return (EINVAL); 827 data_ptrs[0] = &ccb->csio.data_ptr; 828 lengths[0] = ccb->csio.dxfer_len; 829 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 830 numbufs = 1; 831 break; 832 case XPT_ATA_IO: 833 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 834 return(0); 835 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 836 return (EINVAL); 837 data_ptrs[0] = &ccb->ataio.data_ptr; 838 lengths[0] = ccb->ataio.dxfer_len; 839 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 840 numbufs = 1; 841 break; 842 case XPT_MMC_IO: 843 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 844 return(0); 845 /* Two mappings: one for cmd->data and one for cmd->data->data */ 846 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 847 lengths[0] = sizeof(struct mmc_data *); 848 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 849 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 850 lengths[1] = ccb->mmcio.cmd.data->len; 851 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 852 numbufs = 2; 853 break; 854 case XPT_SMP_IO: 855 data_ptrs[0] = &ccb->smpio.smp_request; 856 lengths[0] = ccb->smpio.smp_request_len; 857 dirs[0] = CAM_DIR_OUT; 858 data_ptrs[1] = &ccb->smpio.smp_response; 859 lengths[1] = ccb->smpio.smp_response_len; 860 dirs[1] = CAM_DIR_IN; 861 numbufs = 2; 862 break; 863 case XPT_NVME_IO: 864 case XPT_NVME_ADMIN: 865 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 866 return (0); 867 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 868 return (EINVAL); 869 data_ptrs[0] = &ccb->nvmeio.data_ptr; 870 lengths[0] = ccb->nvmeio.dxfer_len; 871 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 872 numbufs = 1; 873 break; 874 case XPT_DEV_ADVINFO: 875 if (ccb->cdai.bufsiz == 0) 876 return (0); 877 878 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 879 lengths[0] = ccb->cdai.bufsiz; 880 dirs[0] = CAM_DIR_IN; 881 numbufs = 1; 882 883 /* 884 * This request will not go to the hardware, no reason 885 * to be so strict. vmapbuf() is able to map up to maxphys. 886 */ 887 maxmap = maxphys; 888 break; 889 default: 890 return(EINVAL); 891 break; /* NOTREACHED */ 892 } 893 894 /* 895 * Check the transfer length and permissions first, so we don't 896 * have to unmap any previously mapped buffers. 897 */ 898 for (i = 0; i < numbufs; i++) { 899 if (lengths[i] > maxmap) { 900 printf("cam_periph_mapmem: attempt to map %lu bytes, " 901 "which is greater than %lu\n", 902 (long)(lengths[i]), (u_long)maxmap); 903 return (E2BIG); 904 } 905 } 906 907 /* 908 * This keeps the kernel stack of current thread from getting 909 * swapped. In low-memory situations where the kernel stack might 910 * otherwise get swapped out, this holds it and allows the thread 911 * to make progress and release the kernel mapped pages sooner. 912 * 913 * XXX KDM should I use P_NOSWAP instead? 914 */ 915 PHOLD(curproc); 916 917 for (i = 0; i < numbufs; i++) { 918 /* Save the user's data address. */ 919 mapinfo->orig[i] = *data_ptrs[i]; 920 921 /* 922 * For small buffers use malloc+copyin/copyout instead of 923 * mapping to KVA to avoid expensive TLB shootdowns. For 924 * small allocations malloc is backed by UMA, and so much 925 * cheaper on SMP systems. 926 */ 927 if (lengths[i] <= periph_mapmem_thresh && 928 ccb->ccb_h.func_code != XPT_MMC_IO) { 929 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 930 M_WAITOK); 931 if (dirs[i] != CAM_DIR_IN) { 932 if (copyin(mapinfo->orig[i], *data_ptrs[i], 933 lengths[i]) != 0) { 934 free(*data_ptrs[i], M_CAMPERIPH); 935 *data_ptrs[i] = mapinfo->orig[i]; 936 goto fail; 937 } 938 } else 939 bzero(*data_ptrs[i], lengths[i]); 940 continue; 941 } 942 943 /* 944 * Get the buffer. 945 */ 946 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 947 948 /* set the direction */ 949 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 950 BIO_WRITE : BIO_READ; 951 952 /* Map the buffer into kernel memory. */ 953 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 954 uma_zfree(pbuf_zone, mapinfo->bp[i]); 955 goto fail; 956 } 957 958 /* set our pointer to the new mapped area */ 959 *data_ptrs[i] = mapinfo->bp[i]->b_data; 960 } 961 962 /* 963 * Now that we've gotten this far, change ownership to the kernel 964 * of the buffers so that we don't run afoul of returning to user 965 * space with locks (on the buffer) held. 966 */ 967 for (i = 0; i < numbufs; i++) { 968 if (mapinfo->bp[i]) 969 BUF_KERNPROC(mapinfo->bp[i]); 970 } 971 972 mapinfo->num_bufs_used = numbufs; 973 return(0); 974 975 fail: 976 for (i--; i >= 0; i--) { 977 if (mapinfo->bp[i]) { 978 vunmapbuf(mapinfo->bp[i]); 979 uma_zfree(pbuf_zone, mapinfo->bp[i]); 980 } else 981 free(*data_ptrs[i], M_CAMPERIPH); 982 *data_ptrs[i] = mapinfo->orig[i]; 983 } 984 PRELE(curproc); 985 return(EACCES); 986 } 987 988 /* 989 * Unmap memory segments mapped into kernel virtual address space by 990 * cam_periph_mapmem(). 991 */ 992 void 993 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 994 { 995 int numbufs, i; 996 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 997 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 998 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 999 1000 if (mapinfo->num_bufs_used <= 0) { 1001 /* nothing to free and the process wasn't held. */ 1002 return; 1003 } 1004 1005 switch (ccb->ccb_h.func_code) { 1006 case XPT_DEV_MATCH: 1007 if (ccb->cdm.pattern_buf_len > 0) { 1008 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1009 lengths[0] = ccb->cdm.pattern_buf_len; 1010 dirs[0] = CAM_DIR_OUT; 1011 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1012 lengths[1] = ccb->cdm.match_buf_len; 1013 dirs[1] = CAM_DIR_IN; 1014 numbufs = 2; 1015 } else { 1016 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1017 lengths[0] = ccb->cdm.match_buf_len; 1018 dirs[0] = CAM_DIR_IN; 1019 numbufs = 1; 1020 } 1021 break; 1022 case XPT_SCSI_IO: 1023 case XPT_CONT_TARGET_IO: 1024 data_ptrs[0] = &ccb->csio.data_ptr; 1025 lengths[0] = ccb->csio.dxfer_len; 1026 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1027 numbufs = 1; 1028 break; 1029 case XPT_ATA_IO: 1030 data_ptrs[0] = &ccb->ataio.data_ptr; 1031 lengths[0] = ccb->ataio.dxfer_len; 1032 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1033 numbufs = 1; 1034 break; 1035 case XPT_MMC_IO: 1036 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1037 lengths[0] = sizeof(struct mmc_data *); 1038 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1039 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1040 lengths[1] = ccb->mmcio.cmd.data->len; 1041 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1042 numbufs = 2; 1043 break; 1044 case XPT_SMP_IO: 1045 data_ptrs[0] = &ccb->smpio.smp_request; 1046 lengths[0] = ccb->smpio.smp_request_len; 1047 dirs[0] = CAM_DIR_OUT; 1048 data_ptrs[1] = &ccb->smpio.smp_response; 1049 lengths[1] = ccb->smpio.smp_response_len; 1050 dirs[1] = CAM_DIR_IN; 1051 numbufs = 2; 1052 break; 1053 case XPT_NVME_IO: 1054 case XPT_NVME_ADMIN: 1055 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1056 lengths[0] = ccb->nvmeio.dxfer_len; 1057 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1058 numbufs = 1; 1059 break; 1060 case XPT_DEV_ADVINFO: 1061 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1062 lengths[0] = ccb->cdai.bufsiz; 1063 dirs[0] = CAM_DIR_IN; 1064 numbufs = 1; 1065 break; 1066 default: 1067 /* allow ourselves to be swapped once again */ 1068 PRELE(curproc); 1069 return; 1070 break; /* NOTREACHED */ 1071 } 1072 1073 for (i = 0; i < numbufs; i++) { 1074 if (mapinfo->bp[i]) { 1075 /* unmap the buffer */ 1076 vunmapbuf(mapinfo->bp[i]); 1077 1078 /* release the buffer */ 1079 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1080 } else { 1081 if (dirs[i] != CAM_DIR_OUT) { 1082 copyout(*data_ptrs[i], mapinfo->orig[i], 1083 lengths[i]); 1084 } 1085 free(*data_ptrs[i], M_CAMPERIPH); 1086 } 1087 1088 /* Set the user's pointer back to the original value */ 1089 *data_ptrs[i] = mapinfo->orig[i]; 1090 } 1091 1092 /* allow ourselves to be swapped once again */ 1093 PRELE(curproc); 1094 } 1095 1096 int 1097 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1098 int (*error_routine)(union ccb *ccb, 1099 cam_flags camflags, 1100 u_int32_t sense_flags)) 1101 { 1102 union ccb *ccb; 1103 int error; 1104 int found; 1105 1106 error = found = 0; 1107 1108 switch(cmd){ 1109 case CAMGETPASSTHRU: 1110 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1111 xpt_setup_ccb(&ccb->ccb_h, 1112 ccb->ccb_h.path, 1113 CAM_PRIORITY_NORMAL); 1114 ccb->ccb_h.func_code = XPT_GDEVLIST; 1115 1116 /* 1117 * Basically, the point of this is that we go through 1118 * getting the list of devices, until we find a passthrough 1119 * device. In the current version of the CAM code, the 1120 * only way to determine what type of device we're dealing 1121 * with is by its name. 1122 */ 1123 while (found == 0) { 1124 ccb->cgdl.index = 0; 1125 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1126 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1127 /* we want the next device in the list */ 1128 xpt_action(ccb); 1129 if (strncmp(ccb->cgdl.periph_name, 1130 "pass", 4) == 0){ 1131 found = 1; 1132 break; 1133 } 1134 } 1135 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1136 (found == 0)) { 1137 ccb->cgdl.periph_name[0] = '\0'; 1138 ccb->cgdl.unit_number = 0; 1139 break; 1140 } 1141 } 1142 1143 /* copy the result back out */ 1144 bcopy(ccb, addr, sizeof(union ccb)); 1145 1146 /* and release the ccb */ 1147 xpt_release_ccb(ccb); 1148 1149 break; 1150 default: 1151 error = ENOTTY; 1152 break; 1153 } 1154 return(error); 1155 } 1156 1157 static void 1158 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1159 { 1160 1161 panic("%s: already done with ccb %p", __func__, done_ccb); 1162 } 1163 1164 static void 1165 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1166 { 1167 1168 /* Caller will release the CCB */ 1169 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1170 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1171 wakeup(&done_ccb->ccb_h.cbfcnp); 1172 } 1173 1174 static void 1175 cam_periph_ccbwait(union ccb *ccb) 1176 { 1177 1178 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1179 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1180 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1181 PRIBIO, "cbwait", 0); 1182 } 1183 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1184 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1185 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1186 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1187 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1188 } 1189 1190 /* 1191 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1192 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1193 */ 1194 int 1195 cam_periph_runccb(union ccb *ccb, 1196 int (*error_routine)(union ccb *ccb, 1197 cam_flags camflags, 1198 u_int32_t sense_flags), 1199 cam_flags camflags, u_int32_t sense_flags, 1200 struct devstat *ds) 1201 { 1202 struct bintime *starttime; 1203 struct bintime ltime; 1204 int error; 1205 bool must_poll; 1206 uint32_t timeout = 1; 1207 1208 starttime = NULL; 1209 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1210 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1211 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1212 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1213 1214 /* 1215 * If the user has supplied a stats structure, and if we understand 1216 * this particular type of ccb, record the transaction start. 1217 */ 1218 if (ds != NULL && 1219 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1220 ccb->ccb_h.func_code == XPT_ATA_IO || 1221 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1222 starttime = <ime; 1223 binuptime(starttime); 1224 devstat_start_transaction(ds, starttime); 1225 } 1226 1227 /* 1228 * We must poll the I/O while we're dumping. The scheduler is normally 1229 * stopped for dumping, except when we call doadump from ddb. While the 1230 * scheduler is running in this case, we still need to poll the I/O to 1231 * avoid sleeping waiting for the ccb to complete. 1232 * 1233 * A panic triggered dump stops the scheduler, any callback from the 1234 * shutdown_post_sync event will run with the scheduler stopped, but 1235 * before we're officially dumping. To avoid hanging in adashutdown 1236 * initiated commands (or other similar situations), we have to test for 1237 * either SCHEDULER_STOPPED() here as well. 1238 * 1239 * To avoid locking problems, dumping/polling callers must call 1240 * without a periph lock held. 1241 */ 1242 must_poll = dumping || SCHEDULER_STOPPED(); 1243 ccb->ccb_h.cbfcnp = cam_periph_done; 1244 1245 /* 1246 * If we're polling, then we need to ensure that we have ample resources 1247 * in the periph. cam_periph_error can reschedule the ccb by calling 1248 * xpt_action and returning ERESTART, so we have to effect the polling 1249 * in the do loop below. 1250 */ 1251 if (must_poll) { 1252 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1253 timeout = xpt_poll_setup(ccb); 1254 else 1255 timeout = 0; 1256 } 1257 1258 if (timeout == 0) { 1259 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1260 error = EBUSY; 1261 } else { 1262 xpt_action(ccb); 1263 do { 1264 if (must_poll) { 1265 xpt_pollwait(ccb, timeout); 1266 timeout = ccb->ccb_h.timeout * 10; 1267 } else { 1268 cam_periph_ccbwait(ccb); 1269 } 1270 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1271 error = 0; 1272 else if (error_routine != NULL) { 1273 ccb->ccb_h.cbfcnp = cam_periph_done; 1274 error = (*error_routine)(ccb, camflags, sense_flags); 1275 } else 1276 error = 0; 1277 } while (error == ERESTART); 1278 } 1279 1280 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1281 cam_release_devq(ccb->ccb_h.path, 1282 /* relsim_flags */0, 1283 /* openings */0, 1284 /* timeout */0, 1285 /* getcount_only */ FALSE); 1286 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1287 } 1288 1289 if (ds != NULL) { 1290 uint32_t bytes; 1291 devstat_tag_type tag; 1292 bool valid = true; 1293 1294 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1295 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1296 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1297 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1298 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1299 tag = (devstat_tag_type)0; 1300 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1301 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1302 tag = (devstat_tag_type)0; 1303 } else { 1304 valid = false; 1305 } 1306 if (valid) 1307 devstat_end_transaction(ds, bytes, tag, 1308 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1309 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1310 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1311 } 1312 1313 return(error); 1314 } 1315 1316 void 1317 cam_freeze_devq(struct cam_path *path) 1318 { 1319 struct ccb_hdr ccb_h; 1320 1321 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1322 memset(&ccb_h, 0, sizeof(ccb_h)); 1323 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1324 ccb_h.func_code = XPT_NOOP; 1325 ccb_h.flags = CAM_DEV_QFREEZE; 1326 xpt_action((union ccb *)&ccb_h); 1327 } 1328 1329 u_int32_t 1330 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1331 u_int32_t openings, u_int32_t arg, 1332 int getcount_only) 1333 { 1334 struct ccb_relsim crs; 1335 1336 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1337 relsim_flags, openings, arg, getcount_only)); 1338 memset(&crs, 0, sizeof(crs)); 1339 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1340 crs.ccb_h.func_code = XPT_REL_SIMQ; 1341 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1342 crs.release_flags = relsim_flags; 1343 crs.openings = openings; 1344 crs.release_timeout = arg; 1345 xpt_action((union ccb *)&crs); 1346 return (crs.qfrozen_cnt); 1347 } 1348 1349 #define saved_ccb_ptr ppriv_ptr0 1350 static void 1351 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1352 { 1353 union ccb *saved_ccb; 1354 cam_status status; 1355 struct scsi_start_stop_unit *scsi_cmd; 1356 int error = 0, error_code, sense_key, asc, ascq; 1357 u_int16_t done_flags; 1358 1359 scsi_cmd = (struct scsi_start_stop_unit *) 1360 &done_ccb->csio.cdb_io.cdb_bytes; 1361 status = done_ccb->ccb_h.status; 1362 1363 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1364 if (scsi_extract_sense_ccb(done_ccb, 1365 &error_code, &sense_key, &asc, &ascq)) { 1366 /* 1367 * If the error is "invalid field in CDB", 1368 * and the load/eject flag is set, turn the 1369 * flag off and try again. This is just in 1370 * case the drive in question barfs on the 1371 * load eject flag. The CAM code should set 1372 * the load/eject flag by default for 1373 * removable media. 1374 */ 1375 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1376 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1377 (asc == 0x24) && (ascq == 0x00)) { 1378 scsi_cmd->how &= ~SSS_LOEJ; 1379 if (status & CAM_DEV_QFRZN) { 1380 cam_release_devq(done_ccb->ccb_h.path, 1381 0, 0, 0, 0); 1382 done_ccb->ccb_h.status &= 1383 ~CAM_DEV_QFRZN; 1384 } 1385 xpt_action(done_ccb); 1386 goto out; 1387 } 1388 } 1389 error = cam_periph_error(done_ccb, 0, 1390 SF_RETRY_UA | SF_NO_PRINT); 1391 if (error == ERESTART) 1392 goto out; 1393 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1394 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1395 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1396 } 1397 } else { 1398 /* 1399 * If we have successfully taken a device from the not 1400 * ready to ready state, re-scan the device and re-get 1401 * the inquiry information. Many devices (mostly disks) 1402 * don't properly report their inquiry information unless 1403 * they are spun up. 1404 */ 1405 if (scsi_cmd->opcode == START_STOP_UNIT) 1406 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1407 } 1408 1409 /* If we tried long wait and still failed, remember that. */ 1410 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1411 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1412 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1413 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1414 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1415 } 1416 1417 /* 1418 * After recovery action(s) completed, return to the original CCB. 1419 * If the recovery CCB has failed, considering its own possible 1420 * retries and recovery, assume we are back in state where we have 1421 * been originally, but without recovery hopes left. In such case, 1422 * after the final attempt below, we cancel any further retries, 1423 * blocking by that also any new recovery attempts for this CCB, 1424 * and the result will be the final one returned to the CCB owher. 1425 */ 1426 1427 /* 1428 * Copy the CCB back, preserving the alloc_flags field. Things 1429 * will crash horribly if the CCBs are not of the same size. 1430 */ 1431 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1432 KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO, 1433 ("%s: saved_ccb func_code %#x != XPT_SCSI_IO", 1434 __func__, saved_ccb->ccb_h.func_code)); 1435 KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO, 1436 ("%s: done_ccb func_code %#x != XPT_SCSI_IO", 1437 __func__, done_ccb->ccb_h.func_code)); 1438 done_flags = done_ccb->ccb_h.alloc_flags; 1439 bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio)); 1440 done_ccb->ccb_h.alloc_flags = done_flags; 1441 xpt_free_ccb(saved_ccb); 1442 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1443 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1444 if (error != 0) 1445 done_ccb->ccb_h.retry_count = 0; 1446 xpt_action(done_ccb); 1447 1448 out: 1449 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1450 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1451 } 1452 1453 /* 1454 * Generic Async Event handler. Peripheral drivers usually 1455 * filter out the events that require personal attention, 1456 * and leave the rest to this function. 1457 */ 1458 void 1459 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1460 struct cam_path *path, void *arg) 1461 { 1462 switch (code) { 1463 case AC_LOST_DEVICE: 1464 cam_periph_invalidate(periph); 1465 break; 1466 default: 1467 break; 1468 } 1469 } 1470 1471 void 1472 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1473 { 1474 struct ccb_getdevstats cgds; 1475 1476 memset(&cgds, 0, sizeof(cgds)); 1477 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1478 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1479 xpt_action((union ccb *)&cgds); 1480 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1481 } 1482 1483 void 1484 cam_periph_freeze_after_event(struct cam_periph *periph, 1485 struct timeval* event_time, u_int duration_ms) 1486 { 1487 struct timeval delta; 1488 struct timeval duration_tv; 1489 1490 if (!timevalisset(event_time)) 1491 return; 1492 1493 microtime(&delta); 1494 timevalsub(&delta, event_time); 1495 duration_tv.tv_sec = duration_ms / 1000; 1496 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1497 if (timevalcmp(&delta, &duration_tv, <)) { 1498 timevalsub(&duration_tv, &delta); 1499 1500 duration_ms = duration_tv.tv_sec * 1000; 1501 duration_ms += duration_tv.tv_usec / 1000; 1502 cam_freeze_devq(periph->path); 1503 cam_release_devq(periph->path, 1504 RELSIM_RELEASE_AFTER_TIMEOUT, 1505 /*reduction*/0, 1506 /*timeout*/duration_ms, 1507 /*getcount_only*/0); 1508 } 1509 1510 } 1511 1512 static int 1513 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1514 cam_flags camflags, u_int32_t sense_flags, 1515 int *openings, u_int32_t *relsim_flags, 1516 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1517 { 1518 struct cam_periph *periph; 1519 int error; 1520 1521 switch (ccb->csio.scsi_status) { 1522 case SCSI_STATUS_OK: 1523 case SCSI_STATUS_COND_MET: 1524 case SCSI_STATUS_INTERMED: 1525 case SCSI_STATUS_INTERMED_COND_MET: 1526 error = 0; 1527 break; 1528 case SCSI_STATUS_CMD_TERMINATED: 1529 case SCSI_STATUS_CHECK_COND: 1530 error = camperiphscsisenseerror(ccb, orig_ccb, 1531 camflags, 1532 sense_flags, 1533 openings, 1534 relsim_flags, 1535 timeout, 1536 action, 1537 action_string); 1538 break; 1539 case SCSI_STATUS_QUEUE_FULL: 1540 { 1541 /* no decrement */ 1542 struct ccb_getdevstats cgds; 1543 1544 /* 1545 * First off, find out what the current 1546 * transaction counts are. 1547 */ 1548 memset(&cgds, 0, sizeof(cgds)); 1549 xpt_setup_ccb(&cgds.ccb_h, 1550 ccb->ccb_h.path, 1551 CAM_PRIORITY_NORMAL); 1552 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1553 xpt_action((union ccb *)&cgds); 1554 1555 /* 1556 * If we were the only transaction active, treat 1557 * the QUEUE FULL as if it were a BUSY condition. 1558 */ 1559 if (cgds.dev_active != 0) { 1560 int total_openings; 1561 1562 /* 1563 * Reduce the number of openings to 1564 * be 1 less than the amount it took 1565 * to get a queue full bounded by the 1566 * minimum allowed tag count for this 1567 * device. 1568 */ 1569 total_openings = cgds.dev_active + cgds.dev_openings; 1570 *openings = cgds.dev_active; 1571 if (*openings < cgds.mintags) 1572 *openings = cgds.mintags; 1573 if (*openings < total_openings) 1574 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1575 else { 1576 /* 1577 * Some devices report queue full for 1578 * temporary resource shortages. For 1579 * this reason, we allow a minimum 1580 * tag count to be entered via a 1581 * quirk entry to prevent the queue 1582 * count on these devices from falling 1583 * to a pessimisticly low value. We 1584 * still wait for the next successful 1585 * completion, however, before queueing 1586 * more transactions to the device. 1587 */ 1588 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1589 } 1590 *timeout = 0; 1591 error = ERESTART; 1592 *action &= ~SSQ_PRINT_SENSE; 1593 break; 1594 } 1595 /* FALLTHROUGH */ 1596 } 1597 case SCSI_STATUS_BUSY: 1598 /* 1599 * Restart the queue after either another 1600 * command completes or a 1 second timeout. 1601 */ 1602 periph = xpt_path_periph(ccb->ccb_h.path); 1603 if (periph->flags & CAM_PERIPH_INVALID) { 1604 error = EIO; 1605 *action_string = "Periph was invalidated"; 1606 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1607 ccb->ccb_h.retry_count > 0) { 1608 if ((sense_flags & SF_RETRY_BUSY) == 0) 1609 ccb->ccb_h.retry_count--; 1610 error = ERESTART; 1611 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1612 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1613 *timeout = 1000; 1614 } else { 1615 error = EIO; 1616 *action_string = "Retries exhausted"; 1617 } 1618 break; 1619 case SCSI_STATUS_RESERV_CONFLICT: 1620 default: 1621 error = EIO; 1622 break; 1623 } 1624 return (error); 1625 } 1626 1627 static int 1628 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1629 cam_flags camflags, u_int32_t sense_flags, 1630 int *openings, u_int32_t *relsim_flags, 1631 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1632 { 1633 struct cam_periph *periph; 1634 union ccb *orig_ccb = ccb; 1635 int error, recoveryccb; 1636 u_int16_t flags; 1637 1638 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1639 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1640 biotrack(ccb->csio.bio, __func__); 1641 #endif 1642 1643 periph = xpt_path_periph(ccb->ccb_h.path); 1644 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1645 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1646 /* 1647 * If error recovery is already in progress, don't attempt 1648 * to process this error, but requeue it unconditionally 1649 * and attempt to process it once error recovery has 1650 * completed. This failed command is probably related to 1651 * the error that caused the currently active error recovery 1652 * action so our current recovery efforts should also 1653 * address this command. Be aware that the error recovery 1654 * code assumes that only one recovery action is in progress 1655 * on a particular peripheral instance at any given time 1656 * (e.g. only one saved CCB for error recovery) so it is 1657 * imperitive that we don't violate this assumption. 1658 */ 1659 error = ERESTART; 1660 *action &= ~SSQ_PRINT_SENSE; 1661 } else { 1662 scsi_sense_action err_action; 1663 struct ccb_getdev cgd; 1664 1665 /* 1666 * Grab the inquiry data for this device. 1667 */ 1668 memset(&cgd, 0, sizeof(cgd)); 1669 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1670 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1671 xpt_action((union ccb *)&cgd); 1672 1673 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1674 sense_flags); 1675 error = err_action & SS_ERRMASK; 1676 1677 /* 1678 * Do not autostart sequential access devices 1679 * to avoid unexpected tape loading. 1680 */ 1681 if ((err_action & SS_MASK) == SS_START && 1682 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1683 *action_string = "Will not autostart a " 1684 "sequential access device"; 1685 goto sense_error_done; 1686 } 1687 1688 /* 1689 * Avoid recovery recursion if recovery action is the same. 1690 */ 1691 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1692 if (((err_action & SS_MASK) == SS_START && 1693 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1694 ((err_action & SS_MASK) == SS_TUR && 1695 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1696 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1697 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1698 *timeout = 500; 1699 } 1700 } 1701 1702 /* 1703 * If the recovery action will consume a retry, 1704 * make sure we actually have retries available. 1705 */ 1706 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1707 if (ccb->ccb_h.retry_count > 0 && 1708 (periph->flags & CAM_PERIPH_INVALID) == 0) 1709 ccb->ccb_h.retry_count--; 1710 else { 1711 *action_string = "Retries exhausted"; 1712 goto sense_error_done; 1713 } 1714 } 1715 1716 if ((err_action & SS_MASK) >= SS_START) { 1717 /* 1718 * Do common portions of commands that 1719 * use recovery CCBs. 1720 */ 1721 orig_ccb = xpt_alloc_ccb_nowait(); 1722 if (orig_ccb == NULL) { 1723 *action_string = "Can't allocate recovery CCB"; 1724 goto sense_error_done; 1725 } 1726 /* 1727 * Clear freeze flag for original request here, as 1728 * this freeze will be dropped as part of ERESTART. 1729 */ 1730 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1731 1732 KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO, 1733 ("%s: ccb func_code %#x != XPT_SCSI_IO", 1734 __func__, ccb->ccb_h.func_code)); 1735 flags = orig_ccb->ccb_h.alloc_flags; 1736 bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio)); 1737 orig_ccb->ccb_h.alloc_flags = flags; 1738 } 1739 1740 switch (err_action & SS_MASK) { 1741 case SS_NOP: 1742 *action_string = "No recovery action needed"; 1743 error = 0; 1744 break; 1745 case SS_RETRY: 1746 *action_string = "Retrying command (per sense data)"; 1747 error = ERESTART; 1748 break; 1749 case SS_FAIL: 1750 *action_string = "Unretryable error"; 1751 break; 1752 case SS_START: 1753 { 1754 int le; 1755 1756 /* 1757 * Send a start unit command to the device, and 1758 * then retry the command. 1759 */ 1760 *action_string = "Attempting to start unit"; 1761 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1762 1763 /* 1764 * Check for removable media and set 1765 * load/eject flag appropriately. 1766 */ 1767 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1768 le = TRUE; 1769 else 1770 le = FALSE; 1771 1772 scsi_start_stop(&ccb->csio, 1773 /*retries*/1, 1774 camperiphdone, 1775 MSG_SIMPLE_Q_TAG, 1776 /*start*/TRUE, 1777 /*load/eject*/le, 1778 /*immediate*/FALSE, 1779 SSD_FULL_SIZE, 1780 /*timeout*/50000); 1781 break; 1782 } 1783 case SS_TUR: 1784 { 1785 /* 1786 * Send a Test Unit Ready to the device. 1787 * If the 'many' flag is set, we send 120 1788 * test unit ready commands, one every half 1789 * second. Otherwise, we just send one TUR. 1790 * We only want to do this if the retry 1791 * count has not been exhausted. 1792 */ 1793 int retries; 1794 1795 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1796 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1797 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1798 *action_string = "Polling device for readiness"; 1799 retries = 120; 1800 } else { 1801 *action_string = "Testing device for readiness"; 1802 retries = 1; 1803 } 1804 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1805 scsi_test_unit_ready(&ccb->csio, 1806 retries, 1807 camperiphdone, 1808 MSG_SIMPLE_Q_TAG, 1809 SSD_FULL_SIZE, 1810 /*timeout*/5000); 1811 1812 /* 1813 * Accomplish our 500ms delay by deferring 1814 * the release of our device queue appropriately. 1815 */ 1816 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1817 *timeout = 500; 1818 break; 1819 } 1820 default: 1821 panic("Unhandled error action %x", err_action); 1822 } 1823 1824 if ((err_action & SS_MASK) >= SS_START) { 1825 /* 1826 * Drop the priority, so that the recovery 1827 * CCB is the first to execute. Freeze the queue 1828 * after this command is sent so that we can 1829 * restore the old csio and have it queued in 1830 * the proper order before we release normal 1831 * transactions to the device. 1832 */ 1833 ccb->ccb_h.pinfo.priority--; 1834 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1835 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1836 error = ERESTART; 1837 *orig = orig_ccb; 1838 } 1839 1840 sense_error_done: 1841 *action = err_action; 1842 } 1843 return (error); 1844 } 1845 1846 /* 1847 * Generic error handler. Peripheral drivers usually filter 1848 * out the errors that they handle in a unique manner, then 1849 * call this function. 1850 */ 1851 int 1852 cam_periph_error(union ccb *ccb, cam_flags camflags, 1853 u_int32_t sense_flags) 1854 { 1855 struct cam_path *newpath; 1856 union ccb *orig_ccb, *scan_ccb; 1857 struct cam_periph *periph; 1858 const char *action_string; 1859 cam_status status; 1860 int frozen, error, openings, devctl_err; 1861 u_int32_t action, relsim_flags, timeout; 1862 1863 action = SSQ_PRINT_SENSE; 1864 periph = xpt_path_periph(ccb->ccb_h.path); 1865 action_string = NULL; 1866 status = ccb->ccb_h.status; 1867 frozen = (status & CAM_DEV_QFRZN) != 0; 1868 status &= CAM_STATUS_MASK; 1869 devctl_err = openings = relsim_flags = timeout = 0; 1870 orig_ccb = ccb; 1871 1872 /* Filter the errors that should be reported via devctl */ 1873 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1874 case CAM_CMD_TIMEOUT: 1875 case CAM_REQ_ABORTED: 1876 case CAM_REQ_CMP_ERR: 1877 case CAM_REQ_TERMIO: 1878 case CAM_UNREC_HBA_ERROR: 1879 case CAM_DATA_RUN_ERR: 1880 case CAM_SCSI_STATUS_ERROR: 1881 case CAM_ATA_STATUS_ERROR: 1882 case CAM_SMP_STATUS_ERROR: 1883 devctl_err++; 1884 break; 1885 default: 1886 break; 1887 } 1888 1889 switch (status) { 1890 case CAM_REQ_CMP: 1891 error = 0; 1892 action &= ~SSQ_PRINT_SENSE; 1893 break; 1894 case CAM_SCSI_STATUS_ERROR: 1895 error = camperiphscsistatuserror(ccb, &orig_ccb, 1896 camflags, sense_flags, &openings, &relsim_flags, 1897 &timeout, &action, &action_string); 1898 break; 1899 case CAM_AUTOSENSE_FAIL: 1900 error = EIO; /* we have to kill the command */ 1901 break; 1902 case CAM_UA_ABORT: 1903 case CAM_UA_TERMIO: 1904 case CAM_MSG_REJECT_REC: 1905 /* XXX Don't know that these are correct */ 1906 error = EIO; 1907 break; 1908 case CAM_SEL_TIMEOUT: 1909 if ((camflags & CAM_RETRY_SELTO) != 0) { 1910 if (ccb->ccb_h.retry_count > 0 && 1911 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1912 ccb->ccb_h.retry_count--; 1913 error = ERESTART; 1914 1915 /* 1916 * Wait a bit to give the device 1917 * time to recover before we try again. 1918 */ 1919 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1920 timeout = periph_selto_delay; 1921 break; 1922 } 1923 action_string = "Retries exhausted"; 1924 } 1925 /* FALLTHROUGH */ 1926 case CAM_DEV_NOT_THERE: 1927 error = ENXIO; 1928 action = SSQ_LOST; 1929 break; 1930 case CAM_REQ_INVALID: 1931 case CAM_PATH_INVALID: 1932 case CAM_NO_HBA: 1933 case CAM_PROVIDE_FAIL: 1934 case CAM_REQ_TOO_BIG: 1935 case CAM_LUN_INVALID: 1936 case CAM_TID_INVALID: 1937 case CAM_FUNC_NOTAVAIL: 1938 error = EINVAL; 1939 break; 1940 case CAM_SCSI_BUS_RESET: 1941 case CAM_BDR_SENT: 1942 /* 1943 * Commands that repeatedly timeout and cause these 1944 * kinds of error recovery actions, should return 1945 * CAM_CMD_TIMEOUT, which allows us to safely assume 1946 * that this command was an innocent bystander to 1947 * these events and should be unconditionally 1948 * retried. 1949 */ 1950 case CAM_REQUEUE_REQ: 1951 /* Unconditional requeue if device is still there */ 1952 if (periph->flags & CAM_PERIPH_INVALID) { 1953 action_string = "Periph was invalidated"; 1954 error = EIO; 1955 } else if (sense_flags & SF_NO_RETRY) { 1956 error = EIO; 1957 action_string = "Retry was blocked"; 1958 } else { 1959 error = ERESTART; 1960 action &= ~SSQ_PRINT_SENSE; 1961 } 1962 break; 1963 case CAM_RESRC_UNAVAIL: 1964 /* Wait a bit for the resource shortage to abate. */ 1965 timeout = periph_noresrc_delay; 1966 /* FALLTHROUGH */ 1967 case CAM_BUSY: 1968 if (timeout == 0) { 1969 /* Wait a bit for the busy condition to abate. */ 1970 timeout = periph_busy_delay; 1971 } 1972 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1973 /* FALLTHROUGH */ 1974 case CAM_ATA_STATUS_ERROR: 1975 case CAM_REQ_CMP_ERR: 1976 case CAM_CMD_TIMEOUT: 1977 case CAM_UNEXP_BUSFREE: 1978 case CAM_UNCOR_PARITY: 1979 case CAM_DATA_RUN_ERR: 1980 default: 1981 if (periph->flags & CAM_PERIPH_INVALID) { 1982 error = EIO; 1983 action_string = "Periph was invalidated"; 1984 } else if (ccb->ccb_h.retry_count == 0) { 1985 error = EIO; 1986 action_string = "Retries exhausted"; 1987 } else if (sense_flags & SF_NO_RETRY) { 1988 error = EIO; 1989 action_string = "Retry was blocked"; 1990 } else { 1991 ccb->ccb_h.retry_count--; 1992 error = ERESTART; 1993 } 1994 break; 1995 } 1996 1997 if ((sense_flags & SF_PRINT_ALWAYS) || 1998 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1999 action |= SSQ_PRINT_SENSE; 2000 else if (sense_flags & SF_NO_PRINT) 2001 action &= ~SSQ_PRINT_SENSE; 2002 if ((action & SSQ_PRINT_SENSE) != 0) 2003 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2004 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2005 if (error != ERESTART) { 2006 if (action_string == NULL) 2007 action_string = "Unretryable error"; 2008 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2009 error, action_string); 2010 } else if (action_string != NULL) 2011 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2012 else { 2013 xpt_print(ccb->ccb_h.path, 2014 "Retrying command, %d more tries remain\n", 2015 ccb->ccb_h.retry_count); 2016 } 2017 } 2018 2019 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2020 cam_periph_devctl_notify(orig_ccb); 2021 2022 if ((action & SSQ_LOST) != 0) { 2023 lun_id_t lun_id; 2024 2025 /* 2026 * For a selection timeout, we consider all of the LUNs on 2027 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2028 * then we only get rid of the device(s) specified by the 2029 * path in the original CCB. 2030 */ 2031 if (status == CAM_SEL_TIMEOUT) 2032 lun_id = CAM_LUN_WILDCARD; 2033 else 2034 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2035 2036 /* Should we do more if we can't create the path?? */ 2037 if (xpt_create_path(&newpath, periph, 2038 xpt_path_path_id(ccb->ccb_h.path), 2039 xpt_path_target_id(ccb->ccb_h.path), 2040 lun_id) == CAM_REQ_CMP) { 2041 /* 2042 * Let peripheral drivers know that this 2043 * device has gone away. 2044 */ 2045 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2046 xpt_free_path(newpath); 2047 } 2048 } 2049 2050 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2051 if ((action & SSQ_UA) != 0) 2052 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2053 2054 /* Rescan target on "Reported LUNs data has changed" */ 2055 if ((action & SSQ_RESCAN) != 0) { 2056 if (xpt_create_path(&newpath, NULL, 2057 xpt_path_path_id(ccb->ccb_h.path), 2058 xpt_path_target_id(ccb->ccb_h.path), 2059 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2060 scan_ccb = xpt_alloc_ccb_nowait(); 2061 if (scan_ccb != NULL) { 2062 scan_ccb->ccb_h.path = newpath; 2063 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2064 scan_ccb->crcn.flags = 0; 2065 xpt_rescan(scan_ccb); 2066 } else { 2067 xpt_print(newpath, 2068 "Can't allocate CCB to rescan target\n"); 2069 xpt_free_path(newpath); 2070 } 2071 } 2072 } 2073 2074 /* Attempt a retry */ 2075 if (error == ERESTART || error == 0) { 2076 if (frozen != 0) 2077 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2078 if (error == ERESTART) 2079 xpt_action(ccb); 2080 if (frozen != 0) 2081 cam_release_devq(ccb->ccb_h.path, 2082 relsim_flags, 2083 openings, 2084 timeout, 2085 /*getcount_only*/0); 2086 } 2087 2088 return (error); 2089 } 2090 2091 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2092 2093 static void 2094 cam_periph_devctl_notify(union ccb *ccb) 2095 { 2096 struct cam_periph *periph; 2097 struct ccb_getdev *cgd; 2098 struct sbuf sb; 2099 int serr, sk, asc, ascq; 2100 char *sbmsg, *type; 2101 2102 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2103 if (sbmsg == NULL) 2104 return; 2105 2106 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2107 2108 periph = xpt_path_periph(ccb->ccb_h.path); 2109 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2110 periph->unit_number); 2111 2112 sbuf_printf(&sb, "serial=\""); 2113 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2114 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2115 CAM_PRIORITY_NORMAL); 2116 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2117 xpt_action((union ccb *)cgd); 2118 2119 if (cgd->ccb_h.status == CAM_REQ_CMP) 2120 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2121 xpt_free_ccb((union ccb *)cgd); 2122 } 2123 sbuf_printf(&sb, "\" "); 2124 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2125 2126 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2127 case CAM_CMD_TIMEOUT: 2128 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2129 type = "timeout"; 2130 break; 2131 case CAM_SCSI_STATUS_ERROR: 2132 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2133 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2134 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2135 serr, sk, asc, ascq); 2136 type = "error"; 2137 break; 2138 case CAM_ATA_STATUS_ERROR: 2139 sbuf_printf(&sb, "RES=\""); 2140 ata_res_sbuf(&ccb->ataio.res, &sb); 2141 sbuf_printf(&sb, "\" "); 2142 type = "error"; 2143 break; 2144 default: 2145 type = "error"; 2146 break; 2147 } 2148 2149 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2150 sbuf_printf(&sb, "CDB=\""); 2151 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2152 sbuf_printf(&sb, "\" "); 2153 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2154 sbuf_printf(&sb, "ACB=\""); 2155 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2156 sbuf_printf(&sb, "\" "); 2157 } 2158 2159 if (sbuf_finish(&sb) == 0) 2160 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2161 sbuf_delete(&sb); 2162 free(sbmsg, M_CAMPERIPH); 2163 } 2164 2165 /* 2166 * Sysctl to force an invalidation of the drive right now. Can be 2167 * called with CTLFLAG_MPSAFE since we take periph lock. 2168 */ 2169 int 2170 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2171 { 2172 struct cam_periph *periph; 2173 int error, value; 2174 2175 periph = arg1; 2176 value = 0; 2177 error = sysctl_handle_int(oidp, &value, 0, req); 2178 if (error != 0 || req->newptr == NULL || value != 1) 2179 return (error); 2180 2181 cam_periph_lock(periph); 2182 cam_periph_invalidate(periph); 2183 cam_periph_unlock(periph); 2184 2185 return (0); 2186 } 2187