1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/buf.h> 42 #include <sys/proc.h> 43 #include <sys/devicestat.h> 44 #include <sys/bus.h> 45 #include <sys/sbuf.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 union ccb **orig_ccb, 73 cam_flags camflags, 74 u_int32_t sense_flags, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout, 78 u_int32_t *action, 79 const char **action_string); 80 static int camperiphscsisenseerror(union ccb *ccb, 81 union ccb **orig_ccb, 82 cam_flags camflags, 83 u_int32_t sense_flags, 84 int *openings, 85 u_int32_t *relsim_flags, 86 u_int32_t *timeout, 87 u_int32_t *action, 88 const char **action_string); 89 static void cam_periph_devctl_notify(union ccb *ccb); 90 91 static int nperiph_drivers; 92 static int initialized = 0; 93 struct periph_driver **periph_drivers; 94 95 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 96 97 static int periph_selto_delay = 1000; 98 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 99 static int periph_noresrc_delay = 500; 100 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 101 static int periph_busy_delay = 500; 102 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 103 104 105 void 106 periphdriver_register(void *data) 107 { 108 struct periph_driver *drv = (struct periph_driver *)data; 109 struct periph_driver **newdrivers, **old; 110 int ndrivers; 111 112 again: 113 ndrivers = nperiph_drivers + 2; 114 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 115 M_WAITOK); 116 xpt_lock_buses(); 117 if (ndrivers != nperiph_drivers + 2) { 118 /* 119 * Lost race against itself; go around. 120 */ 121 xpt_unlock_buses(); 122 free(newdrivers, M_CAMPERIPH); 123 goto again; 124 } 125 if (periph_drivers) 126 bcopy(periph_drivers, newdrivers, 127 sizeof(*newdrivers) * nperiph_drivers); 128 newdrivers[nperiph_drivers] = drv; 129 newdrivers[nperiph_drivers + 1] = NULL; 130 old = periph_drivers; 131 periph_drivers = newdrivers; 132 nperiph_drivers++; 133 xpt_unlock_buses(); 134 if (old) 135 free(old, M_CAMPERIPH); 136 /* If driver marked as early or it is late now, initialize it. */ 137 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 138 initialized > 1) 139 (*drv->init)(); 140 } 141 142 void 143 periphdriver_init(int level) 144 { 145 int i, early; 146 147 initialized = max(initialized, level); 148 for (i = 0; periph_drivers[i] != NULL; i++) { 149 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 150 if (early == initialized) 151 (*periph_drivers[i]->init)(); 152 } 153 } 154 155 cam_status 156 cam_periph_alloc(periph_ctor_t *periph_ctor, 157 periph_oninv_t *periph_oninvalidate, 158 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 159 char *name, cam_periph_type type, struct cam_path *path, 160 ac_callback_t *ac_callback, ac_code code, void *arg) 161 { 162 struct periph_driver **p_drv; 163 struct cam_sim *sim; 164 struct cam_periph *periph; 165 struct cam_periph *cur_periph; 166 path_id_t path_id; 167 target_id_t target_id; 168 lun_id_t lun_id; 169 cam_status status; 170 u_int init_level; 171 172 init_level = 0; 173 /* 174 * Handle Hot-Plug scenarios. If there is already a peripheral 175 * of our type assigned to this path, we are likely waiting for 176 * final close on an old, invalidated, peripheral. If this is 177 * the case, queue up a deferred call to the peripheral's async 178 * handler. If it looks like a mistaken re-allocation, complain. 179 */ 180 if ((periph = cam_periph_find(path, name)) != NULL) { 181 182 if ((periph->flags & CAM_PERIPH_INVALID) != 0 183 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 184 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 185 periph->deferred_callback = ac_callback; 186 periph->deferred_ac = code; 187 return (CAM_REQ_INPROG); 188 } else { 189 printf("cam_periph_alloc: attempt to re-allocate " 190 "valid device %s%d rejected flags %#x " 191 "refcount %d\n", periph->periph_name, 192 periph->unit_number, periph->flags, 193 periph->refcount); 194 } 195 return (CAM_REQ_INVALID); 196 } 197 198 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 199 M_NOWAIT|M_ZERO); 200 201 if (periph == NULL) 202 return (CAM_RESRC_UNAVAIL); 203 204 init_level++; 205 206 207 sim = xpt_path_sim(path); 208 path_id = xpt_path_path_id(path); 209 target_id = xpt_path_target_id(path); 210 lun_id = xpt_path_lun_id(path); 211 periph->periph_start = periph_start; 212 periph->periph_dtor = periph_dtor; 213 periph->periph_oninval = periph_oninvalidate; 214 periph->type = type; 215 periph->periph_name = name; 216 periph->scheduled_priority = CAM_PRIORITY_NONE; 217 periph->immediate_priority = CAM_PRIORITY_NONE; 218 periph->refcount = 1; /* Dropped by invalidation. */ 219 periph->sim = sim; 220 SLIST_INIT(&periph->ccb_list); 221 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 222 if (status != CAM_REQ_CMP) 223 goto failure; 224 periph->path = path; 225 226 xpt_lock_buses(); 227 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 228 if (strcmp((*p_drv)->driver_name, name) == 0) 229 break; 230 } 231 if (*p_drv == NULL) { 232 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 233 xpt_unlock_buses(); 234 xpt_free_path(periph->path); 235 free(periph, M_CAMPERIPH); 236 return (CAM_REQ_INVALID); 237 } 238 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 239 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 240 while (cur_periph != NULL 241 && cur_periph->unit_number < periph->unit_number) 242 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 243 if (cur_periph != NULL) { 244 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 245 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 246 } else { 247 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 248 (*p_drv)->generation++; 249 } 250 xpt_unlock_buses(); 251 252 init_level++; 253 254 status = xpt_add_periph(periph); 255 if (status != CAM_REQ_CMP) 256 goto failure; 257 258 init_level++; 259 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 260 261 status = periph_ctor(periph, arg); 262 263 if (status == CAM_REQ_CMP) 264 init_level++; 265 266 failure: 267 switch (init_level) { 268 case 4: 269 /* Initialized successfully */ 270 break; 271 case 3: 272 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 273 xpt_remove_periph(periph); 274 /* FALLTHROUGH */ 275 case 2: 276 xpt_lock_buses(); 277 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 278 xpt_unlock_buses(); 279 xpt_free_path(periph->path); 280 /* FALLTHROUGH */ 281 case 1: 282 free(periph, M_CAMPERIPH); 283 /* FALLTHROUGH */ 284 case 0: 285 /* No cleanup to perform. */ 286 break; 287 default: 288 panic("%s: Unknown init level", __func__); 289 } 290 return(status); 291 } 292 293 /* 294 * Find a peripheral structure with the specified path, target, lun, 295 * and (optionally) type. If the name is NULL, this function will return 296 * the first peripheral driver that matches the specified path. 297 */ 298 struct cam_periph * 299 cam_periph_find(struct cam_path *path, char *name) 300 { 301 struct periph_driver **p_drv; 302 struct cam_periph *periph; 303 304 xpt_lock_buses(); 305 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 306 307 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 308 continue; 309 310 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 311 if (xpt_path_comp(periph->path, path) == 0) { 312 xpt_unlock_buses(); 313 cam_periph_assert(periph, MA_OWNED); 314 return(periph); 315 } 316 } 317 if (name != NULL) { 318 xpt_unlock_buses(); 319 return(NULL); 320 } 321 } 322 xpt_unlock_buses(); 323 return(NULL); 324 } 325 326 /* 327 * Find peripheral driver instances attached to the specified path. 328 */ 329 int 330 cam_periph_list(struct cam_path *path, struct sbuf *sb) 331 { 332 struct sbuf local_sb; 333 struct periph_driver **p_drv; 334 struct cam_periph *periph; 335 int count; 336 int sbuf_alloc_len; 337 338 sbuf_alloc_len = 16; 339 retry: 340 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 341 count = 0; 342 xpt_lock_buses(); 343 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 344 345 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 346 if (xpt_path_comp(periph->path, path) != 0) 347 continue; 348 349 if (sbuf_len(&local_sb) != 0) 350 sbuf_cat(&local_sb, ","); 351 352 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 353 periph->unit_number); 354 355 if (sbuf_error(&local_sb) == ENOMEM) { 356 sbuf_alloc_len *= 2; 357 xpt_unlock_buses(); 358 sbuf_delete(&local_sb); 359 goto retry; 360 } 361 count++; 362 } 363 } 364 xpt_unlock_buses(); 365 sbuf_finish(&local_sb); 366 sbuf_cpy(sb, sbuf_data(&local_sb)); 367 sbuf_delete(&local_sb); 368 return (count); 369 } 370 371 cam_status 372 cam_periph_acquire(struct cam_periph *periph) 373 { 374 cam_status status; 375 376 status = CAM_REQ_CMP_ERR; 377 if (periph == NULL) 378 return (status); 379 380 xpt_lock_buses(); 381 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 382 periph->refcount++; 383 status = CAM_REQ_CMP; 384 } 385 xpt_unlock_buses(); 386 387 return (status); 388 } 389 390 void 391 cam_periph_doacquire(struct cam_periph *periph) 392 { 393 394 xpt_lock_buses(); 395 KASSERT(periph->refcount >= 1, 396 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 397 periph->refcount++; 398 xpt_unlock_buses(); 399 } 400 401 void 402 cam_periph_release_locked_buses(struct cam_periph *periph) 403 { 404 405 cam_periph_assert(periph, MA_OWNED); 406 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 407 if (--periph->refcount == 0) 408 camperiphfree(periph); 409 } 410 411 void 412 cam_periph_release_locked(struct cam_periph *periph) 413 { 414 415 if (periph == NULL) 416 return; 417 418 xpt_lock_buses(); 419 cam_periph_release_locked_buses(periph); 420 xpt_unlock_buses(); 421 } 422 423 void 424 cam_periph_release(struct cam_periph *periph) 425 { 426 struct mtx *mtx; 427 428 if (periph == NULL) 429 return; 430 431 cam_periph_assert(periph, MA_NOTOWNED); 432 mtx = cam_periph_mtx(periph); 433 mtx_lock(mtx); 434 cam_periph_release_locked(periph); 435 mtx_unlock(mtx); 436 } 437 438 int 439 cam_periph_hold(struct cam_periph *periph, int priority) 440 { 441 int error; 442 443 /* 444 * Increment the reference count on the peripheral 445 * while we wait for our lock attempt to succeed 446 * to ensure the peripheral doesn't disappear out 447 * from user us while we sleep. 448 */ 449 450 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 451 return (ENXIO); 452 453 cam_periph_assert(periph, MA_OWNED); 454 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 455 periph->flags |= CAM_PERIPH_LOCK_WANTED; 456 if ((error = cam_periph_sleep(periph, periph, priority, 457 "caplck", 0)) != 0) { 458 cam_periph_release_locked(periph); 459 return (error); 460 } 461 if (periph->flags & CAM_PERIPH_INVALID) { 462 cam_periph_release_locked(periph); 463 return (ENXIO); 464 } 465 } 466 467 periph->flags |= CAM_PERIPH_LOCKED; 468 return (0); 469 } 470 471 void 472 cam_periph_unhold(struct cam_periph *periph) 473 { 474 475 cam_periph_assert(periph, MA_OWNED); 476 477 periph->flags &= ~CAM_PERIPH_LOCKED; 478 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 479 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 480 wakeup(periph); 481 } 482 483 cam_periph_release_locked(periph); 484 } 485 486 /* 487 * Look for the next unit number that is not currently in use for this 488 * peripheral type starting at "newunit". Also exclude unit numbers that 489 * are reserved by for future "hardwiring" unless we already know that this 490 * is a potential wired device. Only assume that the device is "wired" the 491 * first time through the loop since after that we'll be looking at unit 492 * numbers that did not match a wiring entry. 493 */ 494 static u_int 495 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 496 path_id_t pathid, target_id_t target, lun_id_t lun) 497 { 498 struct cam_periph *periph; 499 char *periph_name; 500 int i, val, dunit, r; 501 const char *dname, *strval; 502 503 periph_name = p_drv->driver_name; 504 for (;;newunit++) { 505 506 for (periph = TAILQ_FIRST(&p_drv->units); 507 periph != NULL && periph->unit_number != newunit; 508 periph = TAILQ_NEXT(periph, unit_links)) 509 ; 510 511 if (periph != NULL && periph->unit_number == newunit) { 512 if (wired != 0) { 513 xpt_print(periph->path, "Duplicate Wired " 514 "Device entry!\n"); 515 xpt_print(periph->path, "Second device (%s " 516 "device at scbus%d target %d lun %d) will " 517 "not be wired\n", periph_name, pathid, 518 target, lun); 519 wired = 0; 520 } 521 continue; 522 } 523 if (wired) 524 break; 525 526 /* 527 * Don't match entries like "da 4" as a wired down 528 * device, but do match entries like "da 4 target 5" 529 * or even "da 4 scbus 1". 530 */ 531 i = 0; 532 dname = periph_name; 533 for (;;) { 534 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 535 if (r != 0) 536 break; 537 /* if no "target" and no specific scbus, skip */ 538 if (resource_int_value(dname, dunit, "target", &val) && 539 (resource_string_value(dname, dunit, "at",&strval)|| 540 strcmp(strval, "scbus") == 0)) 541 continue; 542 if (newunit == dunit) 543 break; 544 } 545 if (r != 0) 546 break; 547 } 548 return (newunit); 549 } 550 551 static u_int 552 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 553 target_id_t target, lun_id_t lun) 554 { 555 u_int unit; 556 int wired, i, val, dunit; 557 const char *dname, *strval; 558 char pathbuf[32], *periph_name; 559 560 periph_name = p_drv->driver_name; 561 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 562 unit = 0; 563 i = 0; 564 dname = periph_name; 565 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 566 wired = 0) { 567 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 568 if (strcmp(strval, pathbuf) != 0) 569 continue; 570 wired++; 571 } 572 if (resource_int_value(dname, dunit, "target", &val) == 0) { 573 if (val != target) 574 continue; 575 wired++; 576 } 577 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 578 if (val != lun) 579 continue; 580 wired++; 581 } 582 if (wired != 0) { 583 unit = dunit; 584 break; 585 } 586 } 587 588 /* 589 * Either start from 0 looking for the next unit or from 590 * the unit number given in the resource config. This way, 591 * if we have wildcard matches, we don't return the same 592 * unit number twice. 593 */ 594 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 595 596 return (unit); 597 } 598 599 void 600 cam_periph_invalidate(struct cam_periph *periph) 601 { 602 603 cam_periph_assert(periph, MA_OWNED); 604 /* 605 * We only call this routine the first time a peripheral is 606 * invalidated. 607 */ 608 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 609 return; 610 611 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 612 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 613 xpt_denounce_periph(periph); 614 periph->flags |= CAM_PERIPH_INVALID; 615 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 616 if (periph->periph_oninval != NULL) 617 periph->periph_oninval(periph); 618 cam_periph_release_locked(periph); 619 } 620 621 static void 622 camperiphfree(struct cam_periph *periph) 623 { 624 struct periph_driver **p_drv; 625 626 cam_periph_assert(periph, MA_OWNED); 627 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 628 periph->periph_name, periph->unit_number)); 629 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 630 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 631 break; 632 } 633 if (*p_drv == NULL) { 634 printf("camperiphfree: attempt to free non-existant periph\n"); 635 return; 636 } 637 638 /* 639 * We need to set this flag before dropping the topology lock, to 640 * let anyone who is traversing the list that this peripheral is 641 * about to be freed, and there will be no more reference count 642 * checks. 643 */ 644 periph->flags |= CAM_PERIPH_FREE; 645 646 /* 647 * The peripheral destructor semantics dictate calling with only the 648 * SIM mutex held. Since it might sleep, it should not be called 649 * with the topology lock held. 650 */ 651 xpt_unlock_buses(); 652 653 /* 654 * We need to call the peripheral destructor prior to removing the 655 * peripheral from the list. Otherwise, we risk running into a 656 * scenario where the peripheral unit number may get reused 657 * (because it has been removed from the list), but some resources 658 * used by the peripheral are still hanging around. In particular, 659 * the devfs nodes used by some peripherals like the pass(4) driver 660 * aren't fully cleaned up until the destructor is run. If the 661 * unit number is reused before the devfs instance is fully gone, 662 * devfs will panic. 663 */ 664 if (periph->periph_dtor != NULL) 665 periph->periph_dtor(periph); 666 667 /* 668 * The peripheral list is protected by the topology lock. 669 */ 670 xpt_lock_buses(); 671 672 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 673 (*p_drv)->generation++; 674 675 xpt_remove_periph(periph); 676 677 xpt_unlock_buses(); 678 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 679 xpt_print(periph->path, "Periph destroyed\n"); 680 else 681 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 682 683 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 684 union ccb ccb; 685 void *arg; 686 687 switch (periph->deferred_ac) { 688 case AC_FOUND_DEVICE: 689 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 690 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 691 xpt_action(&ccb); 692 arg = &ccb; 693 break; 694 case AC_PATH_REGISTERED: 695 ccb.ccb_h.func_code = XPT_PATH_INQ; 696 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 697 xpt_action(&ccb); 698 arg = &ccb; 699 break; 700 default: 701 arg = NULL; 702 break; 703 } 704 periph->deferred_callback(NULL, periph->deferred_ac, 705 periph->path, arg); 706 } 707 xpt_free_path(periph->path); 708 free(periph, M_CAMPERIPH); 709 xpt_lock_buses(); 710 } 711 712 /* 713 * Map user virtual pointers into kernel virtual address space, so we can 714 * access the memory. This is now a generic function that centralizes most 715 * of the sanity checks on the data flags, if any. 716 * This also only works for up to MAXPHYS memory. Since we use 717 * buffers to map stuff in and out, we're limited to the buffer size. 718 */ 719 int 720 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 721 u_int maxmap) 722 { 723 int numbufs, i, j; 724 int flags[CAM_PERIPH_MAXMAPS]; 725 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 726 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 727 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 728 729 if (maxmap == 0) 730 maxmap = DFLTPHYS; /* traditional default */ 731 else if (maxmap > MAXPHYS) 732 maxmap = MAXPHYS; /* for safety */ 733 switch(ccb->ccb_h.func_code) { 734 case XPT_DEV_MATCH: 735 if (ccb->cdm.match_buf_len == 0) { 736 printf("cam_periph_mapmem: invalid match buffer " 737 "length 0\n"); 738 return(EINVAL); 739 } 740 if (ccb->cdm.pattern_buf_len > 0) { 741 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 742 lengths[0] = ccb->cdm.pattern_buf_len; 743 dirs[0] = CAM_DIR_OUT; 744 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 745 lengths[1] = ccb->cdm.match_buf_len; 746 dirs[1] = CAM_DIR_IN; 747 numbufs = 2; 748 } else { 749 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 750 lengths[0] = ccb->cdm.match_buf_len; 751 dirs[0] = CAM_DIR_IN; 752 numbufs = 1; 753 } 754 /* 755 * This request will not go to the hardware, no reason 756 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 757 */ 758 maxmap = MAXPHYS; 759 break; 760 case XPT_SCSI_IO: 761 case XPT_CONT_TARGET_IO: 762 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 763 return(0); 764 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 765 return (EINVAL); 766 data_ptrs[0] = &ccb->csio.data_ptr; 767 lengths[0] = ccb->csio.dxfer_len; 768 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 769 numbufs = 1; 770 break; 771 case XPT_ATA_IO: 772 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 773 return(0); 774 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 775 return (EINVAL); 776 data_ptrs[0] = &ccb->ataio.data_ptr; 777 lengths[0] = ccb->ataio.dxfer_len; 778 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 779 numbufs = 1; 780 break; 781 case XPT_SMP_IO: 782 data_ptrs[0] = &ccb->smpio.smp_request; 783 lengths[0] = ccb->smpio.smp_request_len; 784 dirs[0] = CAM_DIR_OUT; 785 data_ptrs[1] = &ccb->smpio.smp_response; 786 lengths[1] = ccb->smpio.smp_response_len; 787 dirs[1] = CAM_DIR_IN; 788 numbufs = 2; 789 break; 790 case XPT_DEV_ADVINFO: 791 if (ccb->cdai.bufsiz == 0) 792 return (0); 793 794 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 795 lengths[0] = ccb->cdai.bufsiz; 796 dirs[0] = CAM_DIR_IN; 797 numbufs = 1; 798 799 /* 800 * This request will not go to the hardware, no reason 801 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 802 */ 803 maxmap = MAXPHYS; 804 break; 805 default: 806 return(EINVAL); 807 break; /* NOTREACHED */ 808 } 809 810 /* 811 * Check the transfer length and permissions first, so we don't 812 * have to unmap any previously mapped buffers. 813 */ 814 for (i = 0; i < numbufs; i++) { 815 816 flags[i] = 0; 817 818 /* 819 * The userland data pointer passed in may not be page 820 * aligned. vmapbuf() truncates the address to a page 821 * boundary, so if the address isn't page aligned, we'll 822 * need enough space for the given transfer length, plus 823 * whatever extra space is necessary to make it to the page 824 * boundary. 825 */ 826 if ((lengths[i] + 827 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 828 printf("cam_periph_mapmem: attempt to map %lu bytes, " 829 "which is greater than %lu\n", 830 (long)(lengths[i] + 831 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 832 (u_long)maxmap); 833 return(E2BIG); 834 } 835 836 if (dirs[i] & CAM_DIR_OUT) { 837 flags[i] = BIO_WRITE; 838 } 839 840 if (dirs[i] & CAM_DIR_IN) { 841 flags[i] = BIO_READ; 842 } 843 844 } 845 846 /* 847 * This keeps the kernel stack of current thread from getting 848 * swapped. In low-memory situations where the kernel stack might 849 * otherwise get swapped out, this holds it and allows the thread 850 * to make progress and release the kernel mapped pages sooner. 851 * 852 * XXX KDM should I use P_NOSWAP instead? 853 */ 854 PHOLD(curproc); 855 856 for (i = 0; i < numbufs; i++) { 857 /* 858 * Get the buffer. 859 */ 860 mapinfo->bp[i] = getpbuf(NULL); 861 862 /* put our pointer in the data slot */ 863 mapinfo->bp[i]->b_data = *data_ptrs[i]; 864 865 /* save the user's data address */ 866 mapinfo->bp[i]->b_caller1 = *data_ptrs[i]; 867 868 /* set the transfer length, we know it's < MAXPHYS */ 869 mapinfo->bp[i]->b_bufsize = lengths[i]; 870 871 /* set the direction */ 872 mapinfo->bp[i]->b_iocmd = flags[i]; 873 874 /* 875 * Map the buffer into kernel memory. 876 * 877 * Note that useracc() alone is not a sufficient test. 878 * vmapbuf() can still fail due to a smaller file mapped 879 * into a larger area of VM, or if userland races against 880 * vmapbuf() after the useracc() check. 881 */ 882 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 883 for (j = 0; j < i; ++j) { 884 *data_ptrs[j] = mapinfo->bp[j]->b_caller1; 885 vunmapbuf(mapinfo->bp[j]); 886 relpbuf(mapinfo->bp[j], NULL); 887 } 888 relpbuf(mapinfo->bp[i], NULL); 889 PRELE(curproc); 890 return(EACCES); 891 } 892 893 /* set our pointer to the new mapped area */ 894 *data_ptrs[i] = mapinfo->bp[i]->b_data; 895 896 mapinfo->num_bufs_used++; 897 } 898 899 /* 900 * Now that we've gotten this far, change ownership to the kernel 901 * of the buffers so that we don't run afoul of returning to user 902 * space with locks (on the buffer) held. 903 */ 904 for (i = 0; i < numbufs; i++) { 905 BUF_KERNPROC(mapinfo->bp[i]); 906 } 907 908 909 return(0); 910 } 911 912 /* 913 * Unmap memory segments mapped into kernel virtual address space by 914 * cam_periph_mapmem(). 915 */ 916 void 917 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 918 { 919 int numbufs, i; 920 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 921 922 if (mapinfo->num_bufs_used <= 0) { 923 /* nothing to free and the process wasn't held. */ 924 return; 925 } 926 927 switch (ccb->ccb_h.func_code) { 928 case XPT_DEV_MATCH: 929 numbufs = min(mapinfo->num_bufs_used, 2); 930 931 if (numbufs == 1) { 932 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 933 } else { 934 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 935 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 936 } 937 break; 938 case XPT_SCSI_IO: 939 case XPT_CONT_TARGET_IO: 940 data_ptrs[0] = &ccb->csio.data_ptr; 941 numbufs = min(mapinfo->num_bufs_used, 1); 942 break; 943 case XPT_ATA_IO: 944 data_ptrs[0] = &ccb->ataio.data_ptr; 945 numbufs = min(mapinfo->num_bufs_used, 1); 946 break; 947 case XPT_SMP_IO: 948 numbufs = min(mapinfo->num_bufs_used, 2); 949 data_ptrs[0] = &ccb->smpio.smp_request; 950 data_ptrs[1] = &ccb->smpio.smp_response; 951 break; 952 case XPT_DEV_ADVINFO: 953 numbufs = min(mapinfo->num_bufs_used, 1); 954 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 955 break; 956 default: 957 /* allow ourselves to be swapped once again */ 958 PRELE(curproc); 959 return; 960 break; /* NOTREACHED */ 961 } 962 963 for (i = 0; i < numbufs; i++) { 964 /* Set the user's pointer back to the original value */ 965 *data_ptrs[i] = mapinfo->bp[i]->b_caller1; 966 967 /* unmap the buffer */ 968 vunmapbuf(mapinfo->bp[i]); 969 970 /* release the buffer */ 971 relpbuf(mapinfo->bp[i], NULL); 972 } 973 974 /* allow ourselves to be swapped once again */ 975 PRELE(curproc); 976 } 977 978 int 979 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 980 int (*error_routine)(union ccb *ccb, 981 cam_flags camflags, 982 u_int32_t sense_flags)) 983 { 984 union ccb *ccb; 985 int error; 986 int found; 987 988 error = found = 0; 989 990 switch(cmd){ 991 case CAMGETPASSTHRU: 992 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 993 xpt_setup_ccb(&ccb->ccb_h, 994 ccb->ccb_h.path, 995 CAM_PRIORITY_NORMAL); 996 ccb->ccb_h.func_code = XPT_GDEVLIST; 997 998 /* 999 * Basically, the point of this is that we go through 1000 * getting the list of devices, until we find a passthrough 1001 * device. In the current version of the CAM code, the 1002 * only way to determine what type of device we're dealing 1003 * with is by its name. 1004 */ 1005 while (found == 0) { 1006 ccb->cgdl.index = 0; 1007 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1008 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1009 1010 /* we want the next device in the list */ 1011 xpt_action(ccb); 1012 if (strncmp(ccb->cgdl.periph_name, 1013 "pass", 4) == 0){ 1014 found = 1; 1015 break; 1016 } 1017 } 1018 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1019 (found == 0)) { 1020 ccb->cgdl.periph_name[0] = '\0'; 1021 ccb->cgdl.unit_number = 0; 1022 break; 1023 } 1024 } 1025 1026 /* copy the result back out */ 1027 bcopy(ccb, addr, sizeof(union ccb)); 1028 1029 /* and release the ccb */ 1030 xpt_release_ccb(ccb); 1031 1032 break; 1033 default: 1034 error = ENOTTY; 1035 break; 1036 } 1037 return(error); 1038 } 1039 1040 static void 1041 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1042 { 1043 1044 panic("%s: already done with ccb %p", __func__, done_ccb); 1045 } 1046 1047 static void 1048 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1049 { 1050 1051 /* Caller will release the CCB */ 1052 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1053 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1054 wakeup(&done_ccb->ccb_h.cbfcnp); 1055 } 1056 1057 static void 1058 cam_periph_ccbwait(union ccb *ccb) 1059 { 1060 1061 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1062 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1063 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1064 PRIBIO, "cbwait", 0); 1065 } 1066 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1067 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1068 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1069 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1070 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1071 } 1072 1073 int 1074 cam_periph_runccb(union ccb *ccb, 1075 int (*error_routine)(union ccb *ccb, 1076 cam_flags camflags, 1077 u_int32_t sense_flags), 1078 cam_flags camflags, u_int32_t sense_flags, 1079 struct devstat *ds) 1080 { 1081 struct bintime *starttime; 1082 struct bintime ltime; 1083 int error; 1084 1085 starttime = NULL; 1086 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1087 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1088 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1089 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1090 1091 /* 1092 * If the user has supplied a stats structure, and if we understand 1093 * this particular type of ccb, record the transaction start. 1094 */ 1095 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 1096 ccb->ccb_h.func_code == XPT_ATA_IO)) { 1097 starttime = <ime; 1098 binuptime(starttime); 1099 devstat_start_transaction(ds, starttime); 1100 } 1101 1102 ccb->ccb_h.cbfcnp = cam_periph_done; 1103 xpt_action(ccb); 1104 1105 do { 1106 cam_periph_ccbwait(ccb); 1107 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1108 error = 0; 1109 else if (error_routine != NULL) { 1110 ccb->ccb_h.cbfcnp = cam_periph_done; 1111 error = (*error_routine)(ccb, camflags, sense_flags); 1112 } else 1113 error = 0; 1114 1115 } while (error == ERESTART); 1116 1117 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1118 cam_release_devq(ccb->ccb_h.path, 1119 /* relsim_flags */0, 1120 /* openings */0, 1121 /* timeout */0, 1122 /* getcount_only */ FALSE); 1123 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1124 } 1125 1126 if (ds != NULL) { 1127 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1128 devstat_end_transaction(ds, 1129 ccb->csio.dxfer_len - ccb->csio.resid, 1130 ccb->csio.tag_action & 0x3, 1131 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1132 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1133 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1134 DEVSTAT_WRITE : 1135 DEVSTAT_READ, NULL, starttime); 1136 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1137 devstat_end_transaction(ds, 1138 ccb->ataio.dxfer_len - ccb->ataio.resid, 1139 0, /* Not used in ATA */ 1140 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1141 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1142 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1143 DEVSTAT_WRITE : 1144 DEVSTAT_READ, NULL, starttime); 1145 } 1146 } 1147 1148 return(error); 1149 } 1150 1151 void 1152 cam_freeze_devq(struct cam_path *path) 1153 { 1154 struct ccb_hdr ccb_h; 1155 1156 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1157 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1158 ccb_h.func_code = XPT_NOOP; 1159 ccb_h.flags = CAM_DEV_QFREEZE; 1160 xpt_action((union ccb *)&ccb_h); 1161 } 1162 1163 u_int32_t 1164 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1165 u_int32_t openings, u_int32_t arg, 1166 int getcount_only) 1167 { 1168 struct ccb_relsim crs; 1169 1170 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1171 relsim_flags, openings, arg, getcount_only)); 1172 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1173 crs.ccb_h.func_code = XPT_REL_SIMQ; 1174 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1175 crs.release_flags = relsim_flags; 1176 crs.openings = openings; 1177 crs.release_timeout = arg; 1178 xpt_action((union ccb *)&crs); 1179 return (crs.qfrozen_cnt); 1180 } 1181 1182 #define saved_ccb_ptr ppriv_ptr0 1183 static void 1184 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1185 { 1186 union ccb *saved_ccb; 1187 cam_status status; 1188 struct scsi_start_stop_unit *scsi_cmd; 1189 int error_code, sense_key, asc, ascq; 1190 1191 scsi_cmd = (struct scsi_start_stop_unit *) 1192 &done_ccb->csio.cdb_io.cdb_bytes; 1193 status = done_ccb->ccb_h.status; 1194 1195 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1196 if (scsi_extract_sense_ccb(done_ccb, 1197 &error_code, &sense_key, &asc, &ascq)) { 1198 /* 1199 * If the error is "invalid field in CDB", 1200 * and the load/eject flag is set, turn the 1201 * flag off and try again. This is just in 1202 * case the drive in question barfs on the 1203 * load eject flag. The CAM code should set 1204 * the load/eject flag by default for 1205 * removable media. 1206 */ 1207 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1208 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1209 (asc == 0x24) && (ascq == 0x00)) { 1210 scsi_cmd->how &= ~SSS_LOEJ; 1211 if (status & CAM_DEV_QFRZN) { 1212 cam_release_devq(done_ccb->ccb_h.path, 1213 0, 0, 0, 0); 1214 done_ccb->ccb_h.status &= 1215 ~CAM_DEV_QFRZN; 1216 } 1217 xpt_action(done_ccb); 1218 goto out; 1219 } 1220 } 1221 if (cam_periph_error(done_ccb, 1222 0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART) 1223 goto out; 1224 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1225 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1226 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1227 } 1228 } else { 1229 /* 1230 * If we have successfully taken a device from the not 1231 * ready to ready state, re-scan the device and re-get 1232 * the inquiry information. Many devices (mostly disks) 1233 * don't properly report their inquiry information unless 1234 * they are spun up. 1235 */ 1236 if (scsi_cmd->opcode == START_STOP_UNIT) 1237 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1238 } 1239 1240 /* 1241 * Perform the final retry with the original CCB so that final 1242 * error processing is performed by the owner of the CCB. 1243 */ 1244 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1245 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1246 xpt_free_ccb(saved_ccb); 1247 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1248 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1249 xpt_action(done_ccb); 1250 1251 out: 1252 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1253 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1254 } 1255 1256 /* 1257 * Generic Async Event handler. Peripheral drivers usually 1258 * filter out the events that require personal attention, 1259 * and leave the rest to this function. 1260 */ 1261 void 1262 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1263 struct cam_path *path, void *arg) 1264 { 1265 switch (code) { 1266 case AC_LOST_DEVICE: 1267 cam_periph_invalidate(periph); 1268 break; 1269 default: 1270 break; 1271 } 1272 } 1273 1274 void 1275 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1276 { 1277 struct ccb_getdevstats cgds; 1278 1279 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1280 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1281 xpt_action((union ccb *)&cgds); 1282 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1283 } 1284 1285 void 1286 cam_periph_freeze_after_event(struct cam_periph *periph, 1287 struct timeval* event_time, u_int duration_ms) 1288 { 1289 struct timeval delta; 1290 struct timeval duration_tv; 1291 1292 if (!timevalisset(event_time)) 1293 return; 1294 1295 microtime(&delta); 1296 timevalsub(&delta, event_time); 1297 duration_tv.tv_sec = duration_ms / 1000; 1298 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1299 if (timevalcmp(&delta, &duration_tv, <)) { 1300 timevalsub(&duration_tv, &delta); 1301 1302 duration_ms = duration_tv.tv_sec * 1000; 1303 duration_ms += duration_tv.tv_usec / 1000; 1304 cam_freeze_devq(periph->path); 1305 cam_release_devq(periph->path, 1306 RELSIM_RELEASE_AFTER_TIMEOUT, 1307 /*reduction*/0, 1308 /*timeout*/duration_ms, 1309 /*getcount_only*/0); 1310 } 1311 1312 } 1313 1314 static int 1315 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1316 cam_flags camflags, u_int32_t sense_flags, 1317 int *openings, u_int32_t *relsim_flags, 1318 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1319 { 1320 int error; 1321 1322 switch (ccb->csio.scsi_status) { 1323 case SCSI_STATUS_OK: 1324 case SCSI_STATUS_COND_MET: 1325 case SCSI_STATUS_INTERMED: 1326 case SCSI_STATUS_INTERMED_COND_MET: 1327 error = 0; 1328 break; 1329 case SCSI_STATUS_CMD_TERMINATED: 1330 case SCSI_STATUS_CHECK_COND: 1331 error = camperiphscsisenseerror(ccb, orig_ccb, 1332 camflags, 1333 sense_flags, 1334 openings, 1335 relsim_flags, 1336 timeout, 1337 action, 1338 action_string); 1339 break; 1340 case SCSI_STATUS_QUEUE_FULL: 1341 { 1342 /* no decrement */ 1343 struct ccb_getdevstats cgds; 1344 1345 /* 1346 * First off, find out what the current 1347 * transaction counts are. 1348 */ 1349 xpt_setup_ccb(&cgds.ccb_h, 1350 ccb->ccb_h.path, 1351 CAM_PRIORITY_NORMAL); 1352 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1353 xpt_action((union ccb *)&cgds); 1354 1355 /* 1356 * If we were the only transaction active, treat 1357 * the QUEUE FULL as if it were a BUSY condition. 1358 */ 1359 if (cgds.dev_active != 0) { 1360 int total_openings; 1361 1362 /* 1363 * Reduce the number of openings to 1364 * be 1 less than the amount it took 1365 * to get a queue full bounded by the 1366 * minimum allowed tag count for this 1367 * device. 1368 */ 1369 total_openings = cgds.dev_active + cgds.dev_openings; 1370 *openings = cgds.dev_active; 1371 if (*openings < cgds.mintags) 1372 *openings = cgds.mintags; 1373 if (*openings < total_openings) 1374 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1375 else { 1376 /* 1377 * Some devices report queue full for 1378 * temporary resource shortages. For 1379 * this reason, we allow a minimum 1380 * tag count to be entered via a 1381 * quirk entry to prevent the queue 1382 * count on these devices from falling 1383 * to a pessimisticly low value. We 1384 * still wait for the next successful 1385 * completion, however, before queueing 1386 * more transactions to the device. 1387 */ 1388 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1389 } 1390 *timeout = 0; 1391 error = ERESTART; 1392 *action &= ~SSQ_PRINT_SENSE; 1393 break; 1394 } 1395 /* FALLTHROUGH */ 1396 } 1397 case SCSI_STATUS_BUSY: 1398 /* 1399 * Restart the queue after either another 1400 * command completes or a 1 second timeout. 1401 */ 1402 if ((sense_flags & SF_RETRY_BUSY) != 0 || 1403 (ccb->ccb_h.retry_count--) > 0) { 1404 error = ERESTART; 1405 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1406 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1407 *timeout = 1000; 1408 } else { 1409 error = EIO; 1410 } 1411 break; 1412 case SCSI_STATUS_RESERV_CONFLICT: 1413 default: 1414 error = EIO; 1415 break; 1416 } 1417 return (error); 1418 } 1419 1420 static int 1421 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1422 cam_flags camflags, u_int32_t sense_flags, 1423 int *openings, u_int32_t *relsim_flags, 1424 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1425 { 1426 struct cam_periph *periph; 1427 union ccb *orig_ccb = ccb; 1428 int error, recoveryccb; 1429 1430 periph = xpt_path_periph(ccb->ccb_h.path); 1431 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1432 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1433 /* 1434 * If error recovery is already in progress, don't attempt 1435 * to process this error, but requeue it unconditionally 1436 * and attempt to process it once error recovery has 1437 * completed. This failed command is probably related to 1438 * the error that caused the currently active error recovery 1439 * action so our current recovery efforts should also 1440 * address this command. Be aware that the error recovery 1441 * code assumes that only one recovery action is in progress 1442 * on a particular peripheral instance at any given time 1443 * (e.g. only one saved CCB for error recovery) so it is 1444 * imperitive that we don't violate this assumption. 1445 */ 1446 error = ERESTART; 1447 *action &= ~SSQ_PRINT_SENSE; 1448 } else { 1449 scsi_sense_action err_action; 1450 struct ccb_getdev cgd; 1451 1452 /* 1453 * Grab the inquiry data for this device. 1454 */ 1455 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1456 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1457 xpt_action((union ccb *)&cgd); 1458 1459 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1460 sense_flags); 1461 error = err_action & SS_ERRMASK; 1462 1463 /* 1464 * Do not autostart sequential access devices 1465 * to avoid unexpected tape loading. 1466 */ 1467 if ((err_action & SS_MASK) == SS_START && 1468 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1469 *action_string = "Will not autostart a " 1470 "sequential access device"; 1471 goto sense_error_done; 1472 } 1473 1474 /* 1475 * Avoid recovery recursion if recovery action is the same. 1476 */ 1477 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1478 if (((err_action & SS_MASK) == SS_START && 1479 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1480 ((err_action & SS_MASK) == SS_TUR && 1481 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1482 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1483 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1484 *timeout = 500; 1485 } 1486 } 1487 1488 /* 1489 * If the recovery action will consume a retry, 1490 * make sure we actually have retries available. 1491 */ 1492 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1493 if (ccb->ccb_h.retry_count > 0 && 1494 (periph->flags & CAM_PERIPH_INVALID) == 0) 1495 ccb->ccb_h.retry_count--; 1496 else { 1497 *action_string = "Retries exhausted"; 1498 goto sense_error_done; 1499 } 1500 } 1501 1502 if ((err_action & SS_MASK) >= SS_START) { 1503 /* 1504 * Do common portions of commands that 1505 * use recovery CCBs. 1506 */ 1507 orig_ccb = xpt_alloc_ccb_nowait(); 1508 if (orig_ccb == NULL) { 1509 *action_string = "Can't allocate recovery CCB"; 1510 goto sense_error_done; 1511 } 1512 /* 1513 * Clear freeze flag for original request here, as 1514 * this freeze will be dropped as part of ERESTART. 1515 */ 1516 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1517 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1518 } 1519 1520 switch (err_action & SS_MASK) { 1521 case SS_NOP: 1522 *action_string = "No recovery action needed"; 1523 error = 0; 1524 break; 1525 case SS_RETRY: 1526 *action_string = "Retrying command (per sense data)"; 1527 error = ERESTART; 1528 break; 1529 case SS_FAIL: 1530 *action_string = "Unretryable error"; 1531 break; 1532 case SS_START: 1533 { 1534 int le; 1535 1536 /* 1537 * Send a start unit command to the device, and 1538 * then retry the command. 1539 */ 1540 *action_string = "Attempting to start unit"; 1541 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1542 1543 /* 1544 * Check for removable media and set 1545 * load/eject flag appropriately. 1546 */ 1547 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1548 le = TRUE; 1549 else 1550 le = FALSE; 1551 1552 scsi_start_stop(&ccb->csio, 1553 /*retries*/1, 1554 camperiphdone, 1555 MSG_SIMPLE_Q_TAG, 1556 /*start*/TRUE, 1557 /*load/eject*/le, 1558 /*immediate*/FALSE, 1559 SSD_FULL_SIZE, 1560 /*timeout*/50000); 1561 break; 1562 } 1563 case SS_TUR: 1564 { 1565 /* 1566 * Send a Test Unit Ready to the device. 1567 * If the 'many' flag is set, we send 120 1568 * test unit ready commands, one every half 1569 * second. Otherwise, we just send one TUR. 1570 * We only want to do this if the retry 1571 * count has not been exhausted. 1572 */ 1573 int retries; 1574 1575 if ((err_action & SSQ_MANY) != 0) { 1576 *action_string = "Polling device for readiness"; 1577 retries = 120; 1578 } else { 1579 *action_string = "Testing device for readiness"; 1580 retries = 1; 1581 } 1582 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1583 scsi_test_unit_ready(&ccb->csio, 1584 retries, 1585 camperiphdone, 1586 MSG_SIMPLE_Q_TAG, 1587 SSD_FULL_SIZE, 1588 /*timeout*/5000); 1589 1590 /* 1591 * Accomplish our 500ms delay by deferring 1592 * the release of our device queue appropriately. 1593 */ 1594 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1595 *timeout = 500; 1596 break; 1597 } 1598 default: 1599 panic("Unhandled error action %x", err_action); 1600 } 1601 1602 if ((err_action & SS_MASK) >= SS_START) { 1603 /* 1604 * Drop the priority, so that the recovery 1605 * CCB is the first to execute. Freeze the queue 1606 * after this command is sent so that we can 1607 * restore the old csio and have it queued in 1608 * the proper order before we release normal 1609 * transactions to the device. 1610 */ 1611 ccb->ccb_h.pinfo.priority--; 1612 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1613 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1614 error = ERESTART; 1615 *orig = orig_ccb; 1616 } 1617 1618 sense_error_done: 1619 *action = err_action; 1620 } 1621 return (error); 1622 } 1623 1624 /* 1625 * Generic error handler. Peripheral drivers usually filter 1626 * out the errors that they handle in a unique manner, then 1627 * call this function. 1628 */ 1629 int 1630 cam_periph_error(union ccb *ccb, cam_flags camflags, 1631 u_int32_t sense_flags, union ccb *save_ccb) 1632 { 1633 struct cam_path *newpath; 1634 union ccb *orig_ccb, *scan_ccb; 1635 struct cam_periph *periph; 1636 const char *action_string; 1637 cam_status status; 1638 int frozen, error, openings, devctl_err; 1639 u_int32_t action, relsim_flags, timeout; 1640 1641 action = SSQ_PRINT_SENSE; 1642 periph = xpt_path_periph(ccb->ccb_h.path); 1643 action_string = NULL; 1644 status = ccb->ccb_h.status; 1645 frozen = (status & CAM_DEV_QFRZN) != 0; 1646 status &= CAM_STATUS_MASK; 1647 devctl_err = openings = relsim_flags = timeout = 0; 1648 orig_ccb = ccb; 1649 1650 /* Filter the errors that should be reported via devctl */ 1651 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1652 case CAM_CMD_TIMEOUT: 1653 case CAM_REQ_ABORTED: 1654 case CAM_REQ_CMP_ERR: 1655 case CAM_REQ_TERMIO: 1656 case CAM_UNREC_HBA_ERROR: 1657 case CAM_DATA_RUN_ERR: 1658 case CAM_SCSI_STATUS_ERROR: 1659 case CAM_ATA_STATUS_ERROR: 1660 case CAM_SMP_STATUS_ERROR: 1661 devctl_err++; 1662 break; 1663 default: 1664 break; 1665 } 1666 1667 switch (status) { 1668 case CAM_REQ_CMP: 1669 error = 0; 1670 action &= ~SSQ_PRINT_SENSE; 1671 break; 1672 case CAM_SCSI_STATUS_ERROR: 1673 error = camperiphscsistatuserror(ccb, &orig_ccb, 1674 camflags, sense_flags, &openings, &relsim_flags, 1675 &timeout, &action, &action_string); 1676 break; 1677 case CAM_AUTOSENSE_FAIL: 1678 error = EIO; /* we have to kill the command */ 1679 break; 1680 case CAM_UA_ABORT: 1681 case CAM_UA_TERMIO: 1682 case CAM_MSG_REJECT_REC: 1683 /* XXX Don't know that these are correct */ 1684 error = EIO; 1685 break; 1686 case CAM_SEL_TIMEOUT: 1687 if ((camflags & CAM_RETRY_SELTO) != 0) { 1688 if (ccb->ccb_h.retry_count > 0 && 1689 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1690 ccb->ccb_h.retry_count--; 1691 error = ERESTART; 1692 1693 /* 1694 * Wait a bit to give the device 1695 * time to recover before we try again. 1696 */ 1697 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1698 timeout = periph_selto_delay; 1699 break; 1700 } 1701 action_string = "Retries exhausted"; 1702 } 1703 /* FALLTHROUGH */ 1704 case CAM_DEV_NOT_THERE: 1705 error = ENXIO; 1706 action = SSQ_LOST; 1707 break; 1708 case CAM_REQ_INVALID: 1709 case CAM_PATH_INVALID: 1710 case CAM_NO_HBA: 1711 case CAM_PROVIDE_FAIL: 1712 case CAM_REQ_TOO_BIG: 1713 case CAM_LUN_INVALID: 1714 case CAM_TID_INVALID: 1715 case CAM_FUNC_NOTAVAIL: 1716 error = EINVAL; 1717 break; 1718 case CAM_SCSI_BUS_RESET: 1719 case CAM_BDR_SENT: 1720 /* 1721 * Commands that repeatedly timeout and cause these 1722 * kinds of error recovery actions, should return 1723 * CAM_CMD_TIMEOUT, which allows us to safely assume 1724 * that this command was an innocent bystander to 1725 * these events and should be unconditionally 1726 * retried. 1727 */ 1728 case CAM_REQUEUE_REQ: 1729 /* Unconditional requeue if device is still there */ 1730 if (periph->flags & CAM_PERIPH_INVALID) { 1731 action_string = "Periph was invalidated"; 1732 error = EIO; 1733 } else if (sense_flags & SF_NO_RETRY) { 1734 error = EIO; 1735 action_string = "Retry was blocked"; 1736 } else { 1737 error = ERESTART; 1738 action &= ~SSQ_PRINT_SENSE; 1739 } 1740 break; 1741 case CAM_RESRC_UNAVAIL: 1742 /* Wait a bit for the resource shortage to abate. */ 1743 timeout = periph_noresrc_delay; 1744 /* FALLTHROUGH */ 1745 case CAM_BUSY: 1746 if (timeout == 0) { 1747 /* Wait a bit for the busy condition to abate. */ 1748 timeout = periph_busy_delay; 1749 } 1750 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1751 /* FALLTHROUGH */ 1752 case CAM_ATA_STATUS_ERROR: 1753 case CAM_REQ_CMP_ERR: 1754 case CAM_CMD_TIMEOUT: 1755 case CAM_UNEXP_BUSFREE: 1756 case CAM_UNCOR_PARITY: 1757 case CAM_DATA_RUN_ERR: 1758 default: 1759 if (periph->flags & CAM_PERIPH_INVALID) { 1760 error = EIO; 1761 action_string = "Periph was invalidated"; 1762 } else if (ccb->ccb_h.retry_count == 0) { 1763 error = EIO; 1764 action_string = "Retries exhausted"; 1765 } else if (sense_flags & SF_NO_RETRY) { 1766 error = EIO; 1767 action_string = "Retry was blocked"; 1768 } else { 1769 ccb->ccb_h.retry_count--; 1770 error = ERESTART; 1771 } 1772 break; 1773 } 1774 1775 if ((sense_flags & SF_PRINT_ALWAYS) || 1776 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1777 action |= SSQ_PRINT_SENSE; 1778 else if (sense_flags & SF_NO_PRINT) 1779 action &= ~SSQ_PRINT_SENSE; 1780 if ((action & SSQ_PRINT_SENSE) != 0) 1781 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1782 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1783 if (error != ERESTART) { 1784 if (action_string == NULL) 1785 action_string = "Unretryable error"; 1786 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1787 error, action_string); 1788 } else if (action_string != NULL) 1789 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1790 else 1791 xpt_print(ccb->ccb_h.path, "Retrying command\n"); 1792 } 1793 1794 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 1795 cam_periph_devctl_notify(orig_ccb); 1796 1797 if ((action & SSQ_LOST) != 0) { 1798 lun_id_t lun_id; 1799 1800 /* 1801 * For a selection timeout, we consider all of the LUNs on 1802 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1803 * then we only get rid of the device(s) specified by the 1804 * path in the original CCB. 1805 */ 1806 if (status == CAM_SEL_TIMEOUT) 1807 lun_id = CAM_LUN_WILDCARD; 1808 else 1809 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1810 1811 /* Should we do more if we can't create the path?? */ 1812 if (xpt_create_path(&newpath, periph, 1813 xpt_path_path_id(ccb->ccb_h.path), 1814 xpt_path_target_id(ccb->ccb_h.path), 1815 lun_id) == CAM_REQ_CMP) { 1816 1817 /* 1818 * Let peripheral drivers know that this 1819 * device has gone away. 1820 */ 1821 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1822 xpt_free_path(newpath); 1823 } 1824 } 1825 1826 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1827 if ((action & SSQ_UA) != 0) 1828 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1829 1830 /* Rescan target on "Reported LUNs data has changed" */ 1831 if ((action & SSQ_RESCAN) != 0) { 1832 if (xpt_create_path(&newpath, NULL, 1833 xpt_path_path_id(ccb->ccb_h.path), 1834 xpt_path_target_id(ccb->ccb_h.path), 1835 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 1836 1837 scan_ccb = xpt_alloc_ccb_nowait(); 1838 if (scan_ccb != NULL) { 1839 scan_ccb->ccb_h.path = newpath; 1840 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 1841 scan_ccb->crcn.flags = 0; 1842 xpt_rescan(scan_ccb); 1843 } else { 1844 xpt_print(newpath, 1845 "Can't allocate CCB to rescan target\n"); 1846 xpt_free_path(newpath); 1847 } 1848 } 1849 } 1850 1851 /* Attempt a retry */ 1852 if (error == ERESTART || error == 0) { 1853 if (frozen != 0) 1854 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1855 if (error == ERESTART) 1856 xpt_action(ccb); 1857 if (frozen != 0) 1858 cam_release_devq(ccb->ccb_h.path, 1859 relsim_flags, 1860 openings, 1861 timeout, 1862 /*getcount_only*/0); 1863 } 1864 1865 return (error); 1866 } 1867 1868 #define CAM_PERIPH_DEVD_MSG_SIZE 256 1869 1870 static void 1871 cam_periph_devctl_notify(union ccb *ccb) 1872 { 1873 struct cam_periph *periph; 1874 struct ccb_getdev *cgd; 1875 struct sbuf sb; 1876 int serr, sk, asc, ascq; 1877 char *sbmsg, *type; 1878 1879 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 1880 if (sbmsg == NULL) 1881 return; 1882 1883 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 1884 1885 periph = xpt_path_periph(ccb->ccb_h.path); 1886 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 1887 periph->unit_number); 1888 1889 sbuf_printf(&sb, "serial=\""); 1890 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 1891 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 1892 CAM_PRIORITY_NORMAL); 1893 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 1894 xpt_action((union ccb *)cgd); 1895 1896 if (cgd->ccb_h.status == CAM_REQ_CMP) 1897 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 1898 xpt_free_ccb((union ccb *)cgd); 1899 } 1900 sbuf_printf(&sb, "\" "); 1901 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 1902 1903 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1904 case CAM_CMD_TIMEOUT: 1905 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 1906 type = "timeout"; 1907 break; 1908 case CAM_SCSI_STATUS_ERROR: 1909 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 1910 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 1911 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 1912 serr, sk, asc, ascq); 1913 type = "error"; 1914 break; 1915 case CAM_ATA_STATUS_ERROR: 1916 sbuf_printf(&sb, "RES=\""); 1917 ata_res_sbuf(&ccb->ataio.res, &sb); 1918 sbuf_printf(&sb, "\" "); 1919 type = "error"; 1920 break; 1921 default: 1922 type = "error"; 1923 break; 1924 } 1925 1926 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1927 sbuf_printf(&sb, "CDB=\""); 1928 if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) 1929 scsi_cdb_sbuf(ccb->csio.cdb_io.cdb_ptr, &sb); 1930 else 1931 scsi_cdb_sbuf(ccb->csio.cdb_io.cdb_bytes, &sb); 1932 sbuf_printf(&sb, "\" "); 1933 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1934 sbuf_printf(&sb, "ACB=\""); 1935 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 1936 sbuf_printf(&sb, "\" "); 1937 } 1938 1939 if (sbuf_finish(&sb) == 0) 1940 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 1941 sbuf_delete(&sb); 1942 free(sbmsg, M_CAMPERIPH); 1943 } 1944 1945