1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_xpt_internal.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_sim.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 static u_int camperiphnextunit(struct periph_driver *p_drv, 67 u_int newunit, bool wired, 68 path_id_t pathid, target_id_t target, 69 lun_id_t lun); 70 static u_int camperiphunit(struct periph_driver *p_drv, 71 path_id_t pathid, target_id_t target, 72 lun_id_t lun, 73 const char *sn); 74 static void camperiphdone(struct cam_periph *periph, 75 union ccb *done_ccb); 76 static void camperiphfree(struct cam_periph *periph); 77 static int camperiphscsistatuserror(union ccb *ccb, 78 union ccb **orig_ccb, 79 cam_flags camflags, 80 u_int32_t sense_flags, 81 int *openings, 82 u_int32_t *relsim_flags, 83 u_int32_t *timeout, 84 u_int32_t *action, 85 const char **action_string); 86 static int camperiphscsisenseerror(union ccb *ccb, 87 union ccb **orig_ccb, 88 cam_flags camflags, 89 u_int32_t sense_flags, 90 int *openings, 91 u_int32_t *relsim_flags, 92 u_int32_t *timeout, 93 u_int32_t *action, 94 const char **action_string); 95 static void cam_periph_devctl_notify(union ccb *ccb); 96 97 static int nperiph_drivers; 98 static int initialized = 0; 99 struct periph_driver **periph_drivers; 100 101 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 102 103 static int periph_selto_delay = 1000; 104 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 105 static int periph_noresrc_delay = 500; 106 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 107 static int periph_busy_delay = 500; 108 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 109 110 static u_int periph_mapmem_thresh = 65536; 111 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 112 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 113 114 void 115 periphdriver_register(void *data) 116 { 117 struct periph_driver *drv = (struct periph_driver *)data; 118 struct periph_driver **newdrivers, **old; 119 int ndrivers; 120 121 again: 122 ndrivers = nperiph_drivers + 2; 123 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 124 M_WAITOK); 125 xpt_lock_buses(); 126 if (ndrivers != nperiph_drivers + 2) { 127 /* 128 * Lost race against itself; go around. 129 */ 130 xpt_unlock_buses(); 131 free(newdrivers, M_CAMPERIPH); 132 goto again; 133 } 134 if (periph_drivers) 135 bcopy(periph_drivers, newdrivers, 136 sizeof(*newdrivers) * nperiph_drivers); 137 newdrivers[nperiph_drivers] = drv; 138 newdrivers[nperiph_drivers + 1] = NULL; 139 old = periph_drivers; 140 periph_drivers = newdrivers; 141 nperiph_drivers++; 142 xpt_unlock_buses(); 143 if (old) 144 free(old, M_CAMPERIPH); 145 /* If driver marked as early or it is late now, initialize it. */ 146 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 147 initialized > 1) 148 (*drv->init)(); 149 } 150 151 int 152 periphdriver_unregister(void *data) 153 { 154 struct periph_driver *drv = (struct periph_driver *)data; 155 int error, n; 156 157 /* If driver marked as early or it is late now, deinitialize it. */ 158 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 159 initialized > 1) { 160 if (drv->deinit == NULL) { 161 printf("CAM periph driver '%s' doesn't have deinit.\n", 162 drv->driver_name); 163 return (EOPNOTSUPP); 164 } 165 error = drv->deinit(); 166 if (error != 0) 167 return (error); 168 } 169 170 xpt_lock_buses(); 171 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 172 ; 173 KASSERT(n < nperiph_drivers, 174 ("Periph driver '%s' was not registered", drv->driver_name)); 175 for (; n + 1 < nperiph_drivers; n++) 176 periph_drivers[n] = periph_drivers[n + 1]; 177 periph_drivers[n + 1] = NULL; 178 nperiph_drivers--; 179 xpt_unlock_buses(); 180 return (0); 181 } 182 183 void 184 periphdriver_init(int level) 185 { 186 int i, early; 187 188 initialized = max(initialized, level); 189 for (i = 0; periph_drivers[i] != NULL; i++) { 190 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 191 if (early == initialized) 192 (*periph_drivers[i]->init)(); 193 } 194 } 195 196 cam_status 197 cam_periph_alloc(periph_ctor_t *periph_ctor, 198 periph_oninv_t *periph_oninvalidate, 199 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 200 char *name, cam_periph_type type, struct cam_path *path, 201 ac_callback_t *ac_callback, ac_code code, void *arg) 202 { 203 struct periph_driver **p_drv; 204 struct cam_sim *sim; 205 struct cam_periph *periph; 206 struct cam_periph *cur_periph; 207 path_id_t path_id; 208 target_id_t target_id; 209 lun_id_t lun_id; 210 cam_status status; 211 u_int init_level; 212 213 init_level = 0; 214 /* 215 * Handle Hot-Plug scenarios. If there is already a peripheral 216 * of our type assigned to this path, we are likely waiting for 217 * final close on an old, invalidated, peripheral. If this is 218 * the case, queue up a deferred call to the peripheral's async 219 * handler. If it looks like a mistaken re-allocation, complain. 220 */ 221 if ((periph = cam_periph_find(path, name)) != NULL) { 222 if ((periph->flags & CAM_PERIPH_INVALID) != 0 223 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 224 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 225 periph->deferred_callback = ac_callback; 226 periph->deferred_ac = code; 227 return (CAM_REQ_INPROG); 228 } else { 229 printf("cam_periph_alloc: attempt to re-allocate " 230 "valid device %s%d rejected flags %#x " 231 "refcount %d\n", periph->periph_name, 232 periph->unit_number, periph->flags, 233 periph->refcount); 234 } 235 return (CAM_REQ_INVALID); 236 } 237 238 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 239 M_NOWAIT|M_ZERO); 240 241 if (periph == NULL) 242 return (CAM_RESRC_UNAVAIL); 243 244 init_level++; 245 246 sim = xpt_path_sim(path); 247 path_id = xpt_path_path_id(path); 248 target_id = xpt_path_target_id(path); 249 lun_id = xpt_path_lun_id(path); 250 periph->periph_start = periph_start; 251 periph->periph_dtor = periph_dtor; 252 periph->periph_oninval = periph_oninvalidate; 253 periph->type = type; 254 periph->periph_name = name; 255 periph->scheduled_priority = CAM_PRIORITY_NONE; 256 periph->immediate_priority = CAM_PRIORITY_NONE; 257 periph->refcount = 1; /* Dropped by invalidation. */ 258 periph->sim = sim; 259 SLIST_INIT(&periph->ccb_list); 260 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 261 if (status != CAM_REQ_CMP) 262 goto failure; 263 periph->path = path; 264 265 xpt_lock_buses(); 266 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 267 if (strcmp((*p_drv)->driver_name, name) == 0) 268 break; 269 } 270 if (*p_drv == NULL) { 271 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 272 xpt_unlock_buses(); 273 xpt_free_path(periph->path); 274 free(periph, M_CAMPERIPH); 275 return (CAM_REQ_INVALID); 276 } 277 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id, 278 path->device->serial_num); 279 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 280 while (cur_periph != NULL 281 && cur_periph->unit_number < periph->unit_number) 282 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 283 if (cur_periph != NULL) { 284 KASSERT(cur_periph->unit_number != periph->unit_number, 285 ("duplicate units on periph list")); 286 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 287 } else { 288 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 289 (*p_drv)->generation++; 290 } 291 xpt_unlock_buses(); 292 293 init_level++; 294 295 status = xpt_add_periph(periph); 296 if (status != CAM_REQ_CMP) 297 goto failure; 298 299 init_level++; 300 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 301 302 status = periph_ctor(periph, arg); 303 304 if (status == CAM_REQ_CMP) 305 init_level++; 306 307 failure: 308 switch (init_level) { 309 case 4: 310 /* Initialized successfully */ 311 break; 312 case 3: 313 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 314 xpt_remove_periph(periph); 315 /* FALLTHROUGH */ 316 case 2: 317 xpt_lock_buses(); 318 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 319 xpt_unlock_buses(); 320 xpt_free_path(periph->path); 321 /* FALLTHROUGH */ 322 case 1: 323 free(periph, M_CAMPERIPH); 324 /* FALLTHROUGH */ 325 case 0: 326 /* No cleanup to perform. */ 327 break; 328 default: 329 panic("%s: Unknown init level", __func__); 330 } 331 return(status); 332 } 333 334 /* 335 * Find a peripheral structure with the specified path, target, lun, 336 * and (optionally) type. If the name is NULL, this function will return 337 * the first peripheral driver that matches the specified path. 338 */ 339 struct cam_periph * 340 cam_periph_find(struct cam_path *path, char *name) 341 { 342 struct periph_driver **p_drv; 343 struct cam_periph *periph; 344 345 xpt_lock_buses(); 346 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 347 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 348 continue; 349 350 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 351 if (xpt_path_comp(periph->path, path) == 0) { 352 xpt_unlock_buses(); 353 cam_periph_assert(periph, MA_OWNED); 354 return(periph); 355 } 356 } 357 if (name != NULL) { 358 xpt_unlock_buses(); 359 return(NULL); 360 } 361 } 362 xpt_unlock_buses(); 363 return(NULL); 364 } 365 366 /* 367 * Find peripheral driver instances attached to the specified path. 368 */ 369 int 370 cam_periph_list(struct cam_path *path, struct sbuf *sb) 371 { 372 struct sbuf local_sb; 373 struct periph_driver **p_drv; 374 struct cam_periph *periph; 375 int count; 376 int sbuf_alloc_len; 377 378 sbuf_alloc_len = 16; 379 retry: 380 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 381 count = 0; 382 xpt_lock_buses(); 383 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 384 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 385 if (xpt_path_comp(periph->path, path) != 0) 386 continue; 387 388 if (sbuf_len(&local_sb) != 0) 389 sbuf_cat(&local_sb, ","); 390 391 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 392 periph->unit_number); 393 394 if (sbuf_error(&local_sb) == ENOMEM) { 395 sbuf_alloc_len *= 2; 396 xpt_unlock_buses(); 397 sbuf_delete(&local_sb); 398 goto retry; 399 } 400 count++; 401 } 402 } 403 xpt_unlock_buses(); 404 sbuf_finish(&local_sb); 405 if (sbuf_len(sb) != 0) 406 sbuf_cat(sb, ","); 407 sbuf_cat(sb, sbuf_data(&local_sb)); 408 sbuf_delete(&local_sb); 409 return (count); 410 } 411 412 int 413 cam_periph_acquire(struct cam_periph *periph) 414 { 415 int status; 416 417 if (periph == NULL) 418 return (EINVAL); 419 420 status = ENOENT; 421 xpt_lock_buses(); 422 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 423 periph->refcount++; 424 status = 0; 425 } 426 xpt_unlock_buses(); 427 428 return (status); 429 } 430 431 void 432 cam_periph_doacquire(struct cam_periph *periph) 433 { 434 435 xpt_lock_buses(); 436 KASSERT(periph->refcount >= 1, 437 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 438 periph->refcount++; 439 xpt_unlock_buses(); 440 } 441 442 void 443 cam_periph_release_locked_buses(struct cam_periph *periph) 444 { 445 446 cam_periph_assert(periph, MA_OWNED); 447 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 448 if (--periph->refcount == 0) 449 camperiphfree(periph); 450 } 451 452 void 453 cam_periph_release_locked(struct cam_periph *periph) 454 { 455 456 if (periph == NULL) 457 return; 458 459 xpt_lock_buses(); 460 cam_periph_release_locked_buses(periph); 461 xpt_unlock_buses(); 462 } 463 464 void 465 cam_periph_release(struct cam_periph *periph) 466 { 467 struct mtx *mtx; 468 469 if (periph == NULL) 470 return; 471 472 cam_periph_assert(periph, MA_NOTOWNED); 473 mtx = cam_periph_mtx(periph); 474 mtx_lock(mtx); 475 cam_periph_release_locked(periph); 476 mtx_unlock(mtx); 477 } 478 479 /* 480 * hold/unhold act as mutual exclusion for sections of the code that 481 * need to sleep and want to make sure that other sections that 482 * will interfere are held off. This only protects exclusive sections 483 * from each other. 484 */ 485 int 486 cam_periph_hold(struct cam_periph *periph, int priority) 487 { 488 int error; 489 490 /* 491 * Increment the reference count on the peripheral 492 * while we wait for our lock attempt to succeed 493 * to ensure the peripheral doesn't disappear out 494 * from user us while we sleep. 495 */ 496 497 if (cam_periph_acquire(periph) != 0) 498 return (ENXIO); 499 500 cam_periph_assert(periph, MA_OWNED); 501 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 502 periph->flags |= CAM_PERIPH_LOCK_WANTED; 503 if ((error = cam_periph_sleep(periph, periph, priority, 504 "caplck", 0)) != 0) { 505 cam_periph_release_locked(periph); 506 return (error); 507 } 508 if (periph->flags & CAM_PERIPH_INVALID) { 509 cam_periph_release_locked(periph); 510 return (ENXIO); 511 } 512 } 513 514 periph->flags |= CAM_PERIPH_LOCKED; 515 return (0); 516 } 517 518 void 519 cam_periph_unhold(struct cam_periph *periph) 520 { 521 522 cam_periph_assert(periph, MA_OWNED); 523 524 periph->flags &= ~CAM_PERIPH_LOCKED; 525 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 526 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 527 wakeup(periph); 528 } 529 530 cam_periph_release_locked(periph); 531 } 532 533 /* 534 * Look for the next unit number that is not currently in use for this 535 * peripheral type starting at "newunit". Also exclude unit numbers that 536 * are reserved by for future "hardwiring" unless we already know that this 537 * is a potential wired device. Only assume that the device is "wired" the 538 * first time through the loop since after that we'll be looking at unit 539 * numbers that did not match a wiring entry. 540 */ 541 static u_int 542 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired, 543 path_id_t pathid, target_id_t target, lun_id_t lun) 544 { 545 struct cam_periph *periph; 546 char *periph_name; 547 int i, val, dunit, r; 548 const char *dname, *strval; 549 550 periph_name = p_drv->driver_name; 551 for (;;newunit++) { 552 for (periph = TAILQ_FIRST(&p_drv->units); 553 periph != NULL && periph->unit_number != newunit; 554 periph = TAILQ_NEXT(periph, unit_links)) 555 ; 556 557 if (periph != NULL && periph->unit_number == newunit) { 558 if (wired) { 559 xpt_print(periph->path, "Duplicate Wired " 560 "Device entry!\n"); 561 xpt_print(periph->path, "Second device (%s " 562 "device at scbus%d target %d lun %d) will " 563 "not be wired\n", periph_name, pathid, 564 target, lun); 565 wired = false; 566 } 567 continue; 568 } 569 if (wired) 570 break; 571 572 /* 573 * Don't allow the mere presence of any attributes of a device 574 * means that it is for a wired down entry. Instead, insist that 575 * one of the matching criteria from camperiphunit be present 576 * for the device. 577 */ 578 i = 0; 579 dname = periph_name; 580 for (;;) { 581 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 582 if (r != 0) 583 break; 584 585 if (newunit != dunit) 586 continue; 587 if (resource_string_value(dname, dunit, "sn", &strval) == 0 || 588 resource_int_value(dname, dunit, "lun", &val) == 0 || 589 resource_int_value(dname, dunit, "target", &val) == 0 || 590 resource_string_value(dname, dunit, "at", &strval) == 0) 591 break; 592 } 593 if (r != 0) 594 break; 595 } 596 return (newunit); 597 } 598 599 static u_int 600 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 601 target_id_t target, lun_id_t lun, const char *sn) 602 { 603 bool wired = false; 604 u_int unit; 605 int i, val, dunit; 606 const char *dname, *strval; 607 char pathbuf[32], *periph_name; 608 609 periph_name = p_drv->driver_name; 610 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 611 unit = 0; 612 i = 0; 613 dname = periph_name; 614 615 for (wired = false; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 616 wired = false) { 617 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 618 if (strcmp(strval, pathbuf) != 0) 619 continue; 620 wired = true; 621 } 622 if (resource_int_value(dname, dunit, "target", &val) == 0) { 623 if (val != target) 624 continue; 625 wired = true; 626 } 627 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 628 if (val != lun) 629 continue; 630 wired = true; 631 } 632 if (resource_string_value(dname, dunit, "sn", &strval) == 0) { 633 if (sn == NULL || strcmp(strval, sn) != 0) 634 continue; 635 wired = true; 636 } 637 if (wired) { 638 unit = dunit; 639 break; 640 } 641 } 642 643 /* 644 * Either start from 0 looking for the next unit or from 645 * the unit number given in the resource config. This way, 646 * if we have wildcard matches, we don't return the same 647 * unit number twice. 648 */ 649 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 650 651 return (unit); 652 } 653 654 void 655 cam_periph_invalidate(struct cam_periph *periph) 656 { 657 658 cam_periph_assert(periph, MA_OWNED); 659 /* 660 * We only tear down the device the first time a peripheral is 661 * invalidated. 662 */ 663 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 664 return; 665 666 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 667 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 668 struct sbuf sb; 669 char buffer[160]; 670 671 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 672 xpt_denounce_periph_sbuf(periph, &sb); 673 sbuf_finish(&sb); 674 sbuf_putbuf(&sb); 675 } 676 periph->flags |= CAM_PERIPH_INVALID; 677 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 678 if (periph->periph_oninval != NULL) 679 periph->periph_oninval(periph); 680 cam_periph_release_locked(periph); 681 } 682 683 static void 684 camperiphfree(struct cam_periph *periph) 685 { 686 struct periph_driver **p_drv; 687 struct periph_driver *drv; 688 689 cam_periph_assert(periph, MA_OWNED); 690 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 691 periph->periph_name, periph->unit_number)); 692 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 693 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 694 break; 695 } 696 if (*p_drv == NULL) { 697 printf("camperiphfree: attempt to free non-existant periph\n"); 698 return; 699 } 700 /* 701 * Cache a pointer to the periph_driver structure. If a 702 * periph_driver is added or removed from the array (see 703 * periphdriver_register()) while we drop the toplogy lock 704 * below, p_drv may change. This doesn't protect against this 705 * particular periph_driver going away. That will require full 706 * reference counting in the periph_driver infrastructure. 707 */ 708 drv = *p_drv; 709 710 /* 711 * We need to set this flag before dropping the topology lock, to 712 * let anyone who is traversing the list that this peripheral is 713 * about to be freed, and there will be no more reference count 714 * checks. 715 */ 716 periph->flags |= CAM_PERIPH_FREE; 717 718 /* 719 * The peripheral destructor semantics dictate calling with only the 720 * SIM mutex held. Since it might sleep, it should not be called 721 * with the topology lock held. 722 */ 723 xpt_unlock_buses(); 724 725 /* 726 * We need to call the peripheral destructor prior to removing the 727 * peripheral from the list. Otherwise, we risk running into a 728 * scenario where the peripheral unit number may get reused 729 * (because it has been removed from the list), but some resources 730 * used by the peripheral are still hanging around. In particular, 731 * the devfs nodes used by some peripherals like the pass(4) driver 732 * aren't fully cleaned up until the destructor is run. If the 733 * unit number is reused before the devfs instance is fully gone, 734 * devfs will panic. 735 */ 736 if (periph->periph_dtor != NULL) 737 periph->periph_dtor(periph); 738 739 /* 740 * The peripheral list is protected by the topology lock. We have to 741 * remove the periph from the drv list before we call deferred_ac. The 742 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 743 */ 744 xpt_lock_buses(); 745 746 TAILQ_REMOVE(&drv->units, periph, unit_links); 747 drv->generation++; 748 749 xpt_remove_periph(periph); 750 751 xpt_unlock_buses(); 752 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 753 xpt_print(periph->path, "Periph destroyed\n"); 754 else 755 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 756 757 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 758 union ccb ccb; 759 void *arg; 760 761 memset(&ccb, 0, sizeof(ccb)); 762 switch (periph->deferred_ac) { 763 case AC_FOUND_DEVICE: 764 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 765 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 766 xpt_action(&ccb); 767 arg = &ccb; 768 break; 769 case AC_PATH_REGISTERED: 770 xpt_path_inq(&ccb.cpi, periph->path); 771 arg = &ccb; 772 break; 773 default: 774 arg = NULL; 775 break; 776 } 777 periph->deferred_callback(NULL, periph->deferred_ac, 778 periph->path, arg); 779 } 780 xpt_free_path(periph->path); 781 free(periph, M_CAMPERIPH); 782 xpt_lock_buses(); 783 } 784 785 /* 786 * Map user virtual pointers into kernel virtual address space, so we can 787 * access the memory. This is now a generic function that centralizes most 788 * of the sanity checks on the data flags, if any. 789 * This also only works for up to maxphys memory. Since we use 790 * buffers to map stuff in and out, we're limited to the buffer size. 791 */ 792 int 793 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 794 u_int maxmap) 795 { 796 int numbufs, i; 797 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 798 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 799 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 800 801 bzero(mapinfo, sizeof(*mapinfo)); 802 if (maxmap == 0) 803 maxmap = DFLTPHYS; /* traditional default */ 804 else if (maxmap > maxphys) 805 maxmap = maxphys; /* for safety */ 806 switch(ccb->ccb_h.func_code) { 807 case XPT_DEV_MATCH: 808 if (ccb->cdm.match_buf_len == 0) { 809 printf("cam_periph_mapmem: invalid match buffer " 810 "length 0\n"); 811 return(EINVAL); 812 } 813 if (ccb->cdm.pattern_buf_len > 0) { 814 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 815 lengths[0] = ccb->cdm.pattern_buf_len; 816 dirs[0] = CAM_DIR_OUT; 817 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 818 lengths[1] = ccb->cdm.match_buf_len; 819 dirs[1] = CAM_DIR_IN; 820 numbufs = 2; 821 } else { 822 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 823 lengths[0] = ccb->cdm.match_buf_len; 824 dirs[0] = CAM_DIR_IN; 825 numbufs = 1; 826 } 827 /* 828 * This request will not go to the hardware, no reason 829 * to be so strict. vmapbuf() is able to map up to maxphys. 830 */ 831 maxmap = maxphys; 832 break; 833 case XPT_SCSI_IO: 834 case XPT_CONT_TARGET_IO: 835 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 836 return(0); 837 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 838 return (EINVAL); 839 data_ptrs[0] = &ccb->csio.data_ptr; 840 lengths[0] = ccb->csio.dxfer_len; 841 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 842 numbufs = 1; 843 break; 844 case XPT_ATA_IO: 845 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 846 return(0); 847 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 848 return (EINVAL); 849 data_ptrs[0] = &ccb->ataio.data_ptr; 850 lengths[0] = ccb->ataio.dxfer_len; 851 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 852 numbufs = 1; 853 break; 854 case XPT_MMC_IO: 855 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 856 return(0); 857 /* Two mappings: one for cmd->data and one for cmd->data->data */ 858 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 859 lengths[0] = sizeof(struct mmc_data *); 860 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 861 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 862 lengths[1] = ccb->mmcio.cmd.data->len; 863 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 864 numbufs = 2; 865 break; 866 case XPT_SMP_IO: 867 data_ptrs[0] = &ccb->smpio.smp_request; 868 lengths[0] = ccb->smpio.smp_request_len; 869 dirs[0] = CAM_DIR_OUT; 870 data_ptrs[1] = &ccb->smpio.smp_response; 871 lengths[1] = ccb->smpio.smp_response_len; 872 dirs[1] = CAM_DIR_IN; 873 numbufs = 2; 874 break; 875 case XPT_NVME_IO: 876 case XPT_NVME_ADMIN: 877 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 878 return (0); 879 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 880 return (EINVAL); 881 data_ptrs[0] = &ccb->nvmeio.data_ptr; 882 lengths[0] = ccb->nvmeio.dxfer_len; 883 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 884 numbufs = 1; 885 break; 886 case XPT_DEV_ADVINFO: 887 if (ccb->cdai.bufsiz == 0) 888 return (0); 889 890 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 891 lengths[0] = ccb->cdai.bufsiz; 892 dirs[0] = CAM_DIR_IN; 893 numbufs = 1; 894 895 /* 896 * This request will not go to the hardware, no reason 897 * to be so strict. vmapbuf() is able to map up to maxphys. 898 */ 899 maxmap = maxphys; 900 break; 901 default: 902 return(EINVAL); 903 break; /* NOTREACHED */ 904 } 905 906 /* 907 * Check the transfer length and permissions first, so we don't 908 * have to unmap any previously mapped buffers. 909 */ 910 for (i = 0; i < numbufs; i++) { 911 if (lengths[i] > maxmap) { 912 printf("cam_periph_mapmem: attempt to map %lu bytes, " 913 "which is greater than %lu\n", 914 (long)(lengths[i]), (u_long)maxmap); 915 return (E2BIG); 916 } 917 } 918 919 /* 920 * This keeps the kernel stack of current thread from getting 921 * swapped. In low-memory situations where the kernel stack might 922 * otherwise get swapped out, this holds it and allows the thread 923 * to make progress and release the kernel mapped pages sooner. 924 * 925 * XXX KDM should I use P_NOSWAP instead? 926 */ 927 PHOLD(curproc); 928 929 for (i = 0; i < numbufs; i++) { 930 /* Save the user's data address. */ 931 mapinfo->orig[i] = *data_ptrs[i]; 932 933 /* 934 * For small buffers use malloc+copyin/copyout instead of 935 * mapping to KVA to avoid expensive TLB shootdowns. For 936 * small allocations malloc is backed by UMA, and so much 937 * cheaper on SMP systems. 938 */ 939 if (lengths[i] <= periph_mapmem_thresh && 940 ccb->ccb_h.func_code != XPT_MMC_IO) { 941 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 942 M_WAITOK); 943 if (dirs[i] != CAM_DIR_IN) { 944 if (copyin(mapinfo->orig[i], *data_ptrs[i], 945 lengths[i]) != 0) { 946 free(*data_ptrs[i], M_CAMPERIPH); 947 *data_ptrs[i] = mapinfo->orig[i]; 948 goto fail; 949 } 950 } else 951 bzero(*data_ptrs[i], lengths[i]); 952 continue; 953 } 954 955 /* 956 * Get the buffer. 957 */ 958 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 959 960 /* set the direction */ 961 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 962 BIO_WRITE : BIO_READ; 963 964 /* Map the buffer into kernel memory. */ 965 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 966 uma_zfree(pbuf_zone, mapinfo->bp[i]); 967 goto fail; 968 } 969 970 /* set our pointer to the new mapped area */ 971 *data_ptrs[i] = mapinfo->bp[i]->b_data; 972 } 973 974 /* 975 * Now that we've gotten this far, change ownership to the kernel 976 * of the buffers so that we don't run afoul of returning to user 977 * space with locks (on the buffer) held. 978 */ 979 for (i = 0; i < numbufs; i++) { 980 if (mapinfo->bp[i]) 981 BUF_KERNPROC(mapinfo->bp[i]); 982 } 983 984 mapinfo->num_bufs_used = numbufs; 985 return(0); 986 987 fail: 988 for (i--; i >= 0; i--) { 989 if (mapinfo->bp[i]) { 990 vunmapbuf(mapinfo->bp[i]); 991 uma_zfree(pbuf_zone, mapinfo->bp[i]); 992 } else 993 free(*data_ptrs[i], M_CAMPERIPH); 994 *data_ptrs[i] = mapinfo->orig[i]; 995 } 996 PRELE(curproc); 997 return(EACCES); 998 } 999 1000 /* 1001 * Unmap memory segments mapped into kernel virtual address space by 1002 * cam_periph_mapmem(). 1003 */ 1004 void 1005 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1006 { 1007 int numbufs, i; 1008 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1009 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 1010 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1011 1012 if (mapinfo->num_bufs_used <= 0) { 1013 /* nothing to free and the process wasn't held. */ 1014 return; 1015 } 1016 1017 switch (ccb->ccb_h.func_code) { 1018 case XPT_DEV_MATCH: 1019 if (ccb->cdm.pattern_buf_len > 0) { 1020 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1021 lengths[0] = ccb->cdm.pattern_buf_len; 1022 dirs[0] = CAM_DIR_OUT; 1023 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1024 lengths[1] = ccb->cdm.match_buf_len; 1025 dirs[1] = CAM_DIR_IN; 1026 numbufs = 2; 1027 } else { 1028 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1029 lengths[0] = ccb->cdm.match_buf_len; 1030 dirs[0] = CAM_DIR_IN; 1031 numbufs = 1; 1032 } 1033 break; 1034 case XPT_SCSI_IO: 1035 case XPT_CONT_TARGET_IO: 1036 data_ptrs[0] = &ccb->csio.data_ptr; 1037 lengths[0] = ccb->csio.dxfer_len; 1038 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1039 numbufs = 1; 1040 break; 1041 case XPT_ATA_IO: 1042 data_ptrs[0] = &ccb->ataio.data_ptr; 1043 lengths[0] = ccb->ataio.dxfer_len; 1044 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1045 numbufs = 1; 1046 break; 1047 case XPT_MMC_IO: 1048 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1049 lengths[0] = sizeof(struct mmc_data *); 1050 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1051 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1052 lengths[1] = ccb->mmcio.cmd.data->len; 1053 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1054 numbufs = 2; 1055 break; 1056 case XPT_SMP_IO: 1057 data_ptrs[0] = &ccb->smpio.smp_request; 1058 lengths[0] = ccb->smpio.smp_request_len; 1059 dirs[0] = CAM_DIR_OUT; 1060 data_ptrs[1] = &ccb->smpio.smp_response; 1061 lengths[1] = ccb->smpio.smp_response_len; 1062 dirs[1] = CAM_DIR_IN; 1063 numbufs = 2; 1064 break; 1065 case XPT_NVME_IO: 1066 case XPT_NVME_ADMIN: 1067 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1068 lengths[0] = ccb->nvmeio.dxfer_len; 1069 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1070 numbufs = 1; 1071 break; 1072 case XPT_DEV_ADVINFO: 1073 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1074 lengths[0] = ccb->cdai.bufsiz; 1075 dirs[0] = CAM_DIR_IN; 1076 numbufs = 1; 1077 break; 1078 default: 1079 /* allow ourselves to be swapped once again */ 1080 PRELE(curproc); 1081 return; 1082 break; /* NOTREACHED */ 1083 } 1084 1085 for (i = 0; i < numbufs; i++) { 1086 if (mapinfo->bp[i]) { 1087 /* unmap the buffer */ 1088 vunmapbuf(mapinfo->bp[i]); 1089 1090 /* release the buffer */ 1091 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1092 } else { 1093 if (dirs[i] != CAM_DIR_OUT) { 1094 copyout(*data_ptrs[i], mapinfo->orig[i], 1095 lengths[i]); 1096 } 1097 free(*data_ptrs[i], M_CAMPERIPH); 1098 } 1099 1100 /* Set the user's pointer back to the original value */ 1101 *data_ptrs[i] = mapinfo->orig[i]; 1102 } 1103 1104 /* allow ourselves to be swapped once again */ 1105 PRELE(curproc); 1106 } 1107 1108 int 1109 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1110 int (*error_routine)(union ccb *ccb, 1111 cam_flags camflags, 1112 u_int32_t sense_flags)) 1113 { 1114 union ccb *ccb; 1115 int error; 1116 int found; 1117 1118 error = found = 0; 1119 1120 switch(cmd){ 1121 case CAMGETPASSTHRU: 1122 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1123 xpt_setup_ccb(&ccb->ccb_h, 1124 ccb->ccb_h.path, 1125 CAM_PRIORITY_NORMAL); 1126 ccb->ccb_h.func_code = XPT_GDEVLIST; 1127 1128 /* 1129 * Basically, the point of this is that we go through 1130 * getting the list of devices, until we find a passthrough 1131 * device. In the current version of the CAM code, the 1132 * only way to determine what type of device we're dealing 1133 * with is by its name. 1134 */ 1135 while (found == 0) { 1136 ccb->cgdl.index = 0; 1137 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1138 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1139 /* we want the next device in the list */ 1140 xpt_action(ccb); 1141 if (strncmp(ccb->cgdl.periph_name, 1142 "pass", 4) == 0){ 1143 found = 1; 1144 break; 1145 } 1146 } 1147 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1148 (found == 0)) { 1149 ccb->cgdl.periph_name[0] = '\0'; 1150 ccb->cgdl.unit_number = 0; 1151 break; 1152 } 1153 } 1154 1155 /* copy the result back out */ 1156 bcopy(ccb, addr, sizeof(union ccb)); 1157 1158 /* and release the ccb */ 1159 xpt_release_ccb(ccb); 1160 1161 break; 1162 default: 1163 error = ENOTTY; 1164 break; 1165 } 1166 return(error); 1167 } 1168 1169 static void 1170 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1171 { 1172 1173 panic("%s: already done with ccb %p", __func__, done_ccb); 1174 } 1175 1176 static void 1177 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1178 { 1179 1180 /* Caller will release the CCB */ 1181 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1182 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1183 wakeup(&done_ccb->ccb_h.cbfcnp); 1184 } 1185 1186 static void 1187 cam_periph_ccbwait(union ccb *ccb) 1188 { 1189 1190 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1191 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1192 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1193 PRIBIO, "cbwait", 0); 1194 } 1195 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1196 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1197 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1198 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1199 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1200 } 1201 1202 /* 1203 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1204 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1205 */ 1206 int 1207 cam_periph_runccb(union ccb *ccb, 1208 int (*error_routine)(union ccb *ccb, 1209 cam_flags camflags, 1210 u_int32_t sense_flags), 1211 cam_flags camflags, u_int32_t sense_flags, 1212 struct devstat *ds) 1213 { 1214 struct bintime *starttime; 1215 struct bintime ltime; 1216 int error; 1217 bool must_poll; 1218 uint32_t timeout = 1; 1219 1220 starttime = NULL; 1221 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1222 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1223 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1224 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1225 1226 /* 1227 * If the user has supplied a stats structure, and if we understand 1228 * this particular type of ccb, record the transaction start. 1229 */ 1230 if (ds != NULL && 1231 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1232 ccb->ccb_h.func_code == XPT_ATA_IO || 1233 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1234 starttime = <ime; 1235 binuptime(starttime); 1236 devstat_start_transaction(ds, starttime); 1237 } 1238 1239 /* 1240 * We must poll the I/O while we're dumping. The scheduler is normally 1241 * stopped for dumping, except when we call doadump from ddb. While the 1242 * scheduler is running in this case, we still need to poll the I/O to 1243 * avoid sleeping waiting for the ccb to complete. 1244 * 1245 * A panic triggered dump stops the scheduler, any callback from the 1246 * shutdown_post_sync event will run with the scheduler stopped, but 1247 * before we're officially dumping. To avoid hanging in adashutdown 1248 * initiated commands (or other similar situations), we have to test for 1249 * either SCHEDULER_STOPPED() here as well. 1250 * 1251 * To avoid locking problems, dumping/polling callers must call 1252 * without a periph lock held. 1253 */ 1254 must_poll = dumping || SCHEDULER_STOPPED(); 1255 ccb->ccb_h.cbfcnp = cam_periph_done; 1256 1257 /* 1258 * If we're polling, then we need to ensure that we have ample resources 1259 * in the periph. cam_periph_error can reschedule the ccb by calling 1260 * xpt_action and returning ERESTART, so we have to effect the polling 1261 * in the do loop below. 1262 */ 1263 if (must_poll) { 1264 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1265 timeout = xpt_poll_setup(ccb); 1266 else 1267 timeout = 0; 1268 } 1269 1270 if (timeout == 0) { 1271 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1272 error = EBUSY; 1273 } else { 1274 xpt_action(ccb); 1275 do { 1276 if (must_poll) { 1277 xpt_pollwait(ccb, timeout); 1278 timeout = ccb->ccb_h.timeout * 10; 1279 } else { 1280 cam_periph_ccbwait(ccb); 1281 } 1282 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1283 error = 0; 1284 else if (error_routine != NULL) { 1285 ccb->ccb_h.cbfcnp = cam_periph_done; 1286 error = (*error_routine)(ccb, camflags, sense_flags); 1287 } else 1288 error = 0; 1289 } while (error == ERESTART); 1290 } 1291 1292 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1293 cam_release_devq(ccb->ccb_h.path, 1294 /* relsim_flags */0, 1295 /* openings */0, 1296 /* timeout */0, 1297 /* getcount_only */ FALSE); 1298 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1299 } 1300 1301 if (ds != NULL) { 1302 uint32_t bytes; 1303 devstat_tag_type tag; 1304 bool valid = true; 1305 1306 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1307 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1308 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1309 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1310 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1311 tag = (devstat_tag_type)0; 1312 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1313 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1314 tag = (devstat_tag_type)0; 1315 } else { 1316 valid = false; 1317 } 1318 if (valid) 1319 devstat_end_transaction(ds, bytes, tag, 1320 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1321 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1322 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1323 } 1324 1325 return(error); 1326 } 1327 1328 void 1329 cam_freeze_devq(struct cam_path *path) 1330 { 1331 struct ccb_hdr ccb_h; 1332 1333 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1334 memset(&ccb_h, 0, sizeof(ccb_h)); 1335 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1336 ccb_h.func_code = XPT_NOOP; 1337 ccb_h.flags = CAM_DEV_QFREEZE; 1338 xpt_action((union ccb *)&ccb_h); 1339 } 1340 1341 u_int32_t 1342 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1343 u_int32_t openings, u_int32_t arg, 1344 int getcount_only) 1345 { 1346 struct ccb_relsim crs; 1347 1348 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1349 relsim_flags, openings, arg, getcount_only)); 1350 memset(&crs, 0, sizeof(crs)); 1351 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1352 crs.ccb_h.func_code = XPT_REL_SIMQ; 1353 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1354 crs.release_flags = relsim_flags; 1355 crs.openings = openings; 1356 crs.release_timeout = arg; 1357 xpt_action((union ccb *)&crs); 1358 return (crs.qfrozen_cnt); 1359 } 1360 1361 #define saved_ccb_ptr ppriv_ptr0 1362 static void 1363 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1364 { 1365 union ccb *saved_ccb; 1366 cam_status status; 1367 struct scsi_start_stop_unit *scsi_cmd; 1368 int error = 0, error_code, sense_key, asc, ascq; 1369 u_int16_t done_flags; 1370 1371 scsi_cmd = (struct scsi_start_stop_unit *) 1372 &done_ccb->csio.cdb_io.cdb_bytes; 1373 status = done_ccb->ccb_h.status; 1374 1375 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1376 if (scsi_extract_sense_ccb(done_ccb, 1377 &error_code, &sense_key, &asc, &ascq)) { 1378 /* 1379 * If the error is "invalid field in CDB", 1380 * and the load/eject flag is set, turn the 1381 * flag off and try again. This is just in 1382 * case the drive in question barfs on the 1383 * load eject flag. The CAM code should set 1384 * the load/eject flag by default for 1385 * removable media. 1386 */ 1387 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1388 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1389 (asc == 0x24) && (ascq == 0x00)) { 1390 scsi_cmd->how &= ~SSS_LOEJ; 1391 if (status & CAM_DEV_QFRZN) { 1392 cam_release_devq(done_ccb->ccb_h.path, 1393 0, 0, 0, 0); 1394 done_ccb->ccb_h.status &= 1395 ~CAM_DEV_QFRZN; 1396 } 1397 xpt_action(done_ccb); 1398 goto out; 1399 } 1400 } 1401 error = cam_periph_error(done_ccb, 0, 1402 SF_RETRY_UA | SF_NO_PRINT); 1403 if (error == ERESTART) 1404 goto out; 1405 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1406 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1407 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1408 } 1409 } else { 1410 /* 1411 * If we have successfully taken a device from the not 1412 * ready to ready state, re-scan the device and re-get 1413 * the inquiry information. Many devices (mostly disks) 1414 * don't properly report their inquiry information unless 1415 * they are spun up. 1416 */ 1417 if (scsi_cmd->opcode == START_STOP_UNIT) 1418 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1419 } 1420 1421 /* If we tried long wait and still failed, remember that. */ 1422 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1423 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1424 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1425 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1426 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1427 } 1428 1429 /* 1430 * After recovery action(s) completed, return to the original CCB. 1431 * If the recovery CCB has failed, considering its own possible 1432 * retries and recovery, assume we are back in state where we have 1433 * been originally, but without recovery hopes left. In such case, 1434 * after the final attempt below, we cancel any further retries, 1435 * blocking by that also any new recovery attempts for this CCB, 1436 * and the result will be the final one returned to the CCB owher. 1437 */ 1438 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1439 KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO, 1440 ("%s: saved_ccb func_code %#x != XPT_SCSI_IO", 1441 __func__, saved_ccb->ccb_h.func_code)); 1442 KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO, 1443 ("%s: done_ccb func_code %#x != XPT_SCSI_IO", 1444 __func__, done_ccb->ccb_h.func_code)); 1445 saved_ccb->ccb_h.periph_links = done_ccb->ccb_h.periph_links; 1446 done_flags = done_ccb->ccb_h.alloc_flags; 1447 bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio)); 1448 done_ccb->ccb_h.alloc_flags = done_flags; 1449 xpt_free_ccb(saved_ccb); 1450 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1451 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1452 if (error != 0) 1453 done_ccb->ccb_h.retry_count = 0; 1454 xpt_action(done_ccb); 1455 1456 out: 1457 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1458 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1459 } 1460 1461 /* 1462 * Generic Async Event handler. Peripheral drivers usually 1463 * filter out the events that require personal attention, 1464 * and leave the rest to this function. 1465 */ 1466 void 1467 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1468 struct cam_path *path, void *arg) 1469 { 1470 switch (code) { 1471 case AC_LOST_DEVICE: 1472 cam_periph_invalidate(periph); 1473 break; 1474 default: 1475 break; 1476 } 1477 } 1478 1479 void 1480 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1481 { 1482 struct ccb_getdevstats cgds; 1483 1484 memset(&cgds, 0, sizeof(cgds)); 1485 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1486 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1487 xpt_action((union ccb *)&cgds); 1488 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1489 } 1490 1491 void 1492 cam_periph_freeze_after_event(struct cam_periph *periph, 1493 struct timeval* event_time, u_int duration_ms) 1494 { 1495 struct timeval delta; 1496 struct timeval duration_tv; 1497 1498 if (!timevalisset(event_time)) 1499 return; 1500 1501 microtime(&delta); 1502 timevalsub(&delta, event_time); 1503 duration_tv.tv_sec = duration_ms / 1000; 1504 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1505 if (timevalcmp(&delta, &duration_tv, <)) { 1506 timevalsub(&duration_tv, &delta); 1507 1508 duration_ms = duration_tv.tv_sec * 1000; 1509 duration_ms += duration_tv.tv_usec / 1000; 1510 cam_freeze_devq(periph->path); 1511 cam_release_devq(periph->path, 1512 RELSIM_RELEASE_AFTER_TIMEOUT, 1513 /*reduction*/0, 1514 /*timeout*/duration_ms, 1515 /*getcount_only*/0); 1516 } 1517 1518 } 1519 1520 static int 1521 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1522 cam_flags camflags, u_int32_t sense_flags, 1523 int *openings, u_int32_t *relsim_flags, 1524 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1525 { 1526 struct cam_periph *periph; 1527 int error; 1528 1529 switch (ccb->csio.scsi_status) { 1530 case SCSI_STATUS_OK: 1531 case SCSI_STATUS_COND_MET: 1532 case SCSI_STATUS_INTERMED: 1533 case SCSI_STATUS_INTERMED_COND_MET: 1534 error = 0; 1535 break; 1536 case SCSI_STATUS_CMD_TERMINATED: 1537 case SCSI_STATUS_CHECK_COND: 1538 error = camperiphscsisenseerror(ccb, orig_ccb, 1539 camflags, 1540 sense_flags, 1541 openings, 1542 relsim_flags, 1543 timeout, 1544 action, 1545 action_string); 1546 break; 1547 case SCSI_STATUS_QUEUE_FULL: 1548 { 1549 /* no decrement */ 1550 struct ccb_getdevstats cgds; 1551 1552 /* 1553 * First off, find out what the current 1554 * transaction counts are. 1555 */ 1556 memset(&cgds, 0, sizeof(cgds)); 1557 xpt_setup_ccb(&cgds.ccb_h, 1558 ccb->ccb_h.path, 1559 CAM_PRIORITY_NORMAL); 1560 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1561 xpt_action((union ccb *)&cgds); 1562 1563 /* 1564 * If we were the only transaction active, treat 1565 * the QUEUE FULL as if it were a BUSY condition. 1566 */ 1567 if (cgds.dev_active != 0) { 1568 int total_openings; 1569 1570 /* 1571 * Reduce the number of openings to 1572 * be 1 less than the amount it took 1573 * to get a queue full bounded by the 1574 * minimum allowed tag count for this 1575 * device. 1576 */ 1577 total_openings = cgds.dev_active + cgds.dev_openings; 1578 *openings = cgds.dev_active; 1579 if (*openings < cgds.mintags) 1580 *openings = cgds.mintags; 1581 if (*openings < total_openings) 1582 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1583 else { 1584 /* 1585 * Some devices report queue full for 1586 * temporary resource shortages. For 1587 * this reason, we allow a minimum 1588 * tag count to be entered via a 1589 * quirk entry to prevent the queue 1590 * count on these devices from falling 1591 * to a pessimisticly low value. We 1592 * still wait for the next successful 1593 * completion, however, before queueing 1594 * more transactions to the device. 1595 */ 1596 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1597 } 1598 *timeout = 0; 1599 error = ERESTART; 1600 *action &= ~SSQ_PRINT_SENSE; 1601 break; 1602 } 1603 /* FALLTHROUGH */ 1604 } 1605 case SCSI_STATUS_BUSY: 1606 /* 1607 * Restart the queue after either another 1608 * command completes or a 1 second timeout. 1609 */ 1610 periph = xpt_path_periph(ccb->ccb_h.path); 1611 if (periph->flags & CAM_PERIPH_INVALID) { 1612 error = ENXIO; 1613 *action_string = "Periph was invalidated"; 1614 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1615 ccb->ccb_h.retry_count > 0) { 1616 if ((sense_flags & SF_RETRY_BUSY) == 0) 1617 ccb->ccb_h.retry_count--; 1618 error = ERESTART; 1619 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1620 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1621 *timeout = 1000; 1622 } else { 1623 error = EIO; 1624 *action_string = "Retries exhausted"; 1625 } 1626 break; 1627 case SCSI_STATUS_RESERV_CONFLICT: 1628 default: 1629 error = EIO; 1630 break; 1631 } 1632 return (error); 1633 } 1634 1635 static int 1636 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1637 cam_flags camflags, u_int32_t sense_flags, 1638 int *openings, u_int32_t *relsim_flags, 1639 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1640 { 1641 struct cam_periph *periph; 1642 union ccb *orig_ccb = ccb; 1643 int error, recoveryccb; 1644 u_int16_t flags; 1645 1646 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1647 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1648 biotrack(ccb->csio.bio, __func__); 1649 #endif 1650 1651 periph = xpt_path_periph(ccb->ccb_h.path); 1652 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1653 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1654 /* 1655 * If error recovery is already in progress, don't attempt 1656 * to process this error, but requeue it unconditionally 1657 * and attempt to process it once error recovery has 1658 * completed. This failed command is probably related to 1659 * the error that caused the currently active error recovery 1660 * action so our current recovery efforts should also 1661 * address this command. Be aware that the error recovery 1662 * code assumes that only one recovery action is in progress 1663 * on a particular peripheral instance at any given time 1664 * (e.g. only one saved CCB for error recovery) so it is 1665 * imperitive that we don't violate this assumption. 1666 */ 1667 error = ERESTART; 1668 *action &= ~SSQ_PRINT_SENSE; 1669 } else { 1670 scsi_sense_action err_action; 1671 struct ccb_getdev cgd; 1672 1673 /* 1674 * Grab the inquiry data for this device. 1675 */ 1676 memset(&cgd, 0, sizeof(cgd)); 1677 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1678 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1679 xpt_action((union ccb *)&cgd); 1680 1681 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1682 sense_flags); 1683 error = err_action & SS_ERRMASK; 1684 1685 /* 1686 * Do not autostart sequential access devices 1687 * to avoid unexpected tape loading. 1688 */ 1689 if ((err_action & SS_MASK) == SS_START && 1690 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1691 *action_string = "Will not autostart a " 1692 "sequential access device"; 1693 goto sense_error_done; 1694 } 1695 1696 /* 1697 * Avoid recovery recursion if recovery action is the same. 1698 */ 1699 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1700 if (((err_action & SS_MASK) == SS_START && 1701 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1702 ((err_action & SS_MASK) == SS_TUR && 1703 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1704 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1705 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1706 *timeout = 500; 1707 } 1708 } 1709 1710 /* 1711 * If the recovery action will consume a retry, 1712 * make sure we actually have retries available. 1713 */ 1714 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1715 if (ccb->ccb_h.retry_count > 0 && 1716 (periph->flags & CAM_PERIPH_INVALID) == 0) 1717 ccb->ccb_h.retry_count--; 1718 else { 1719 *action_string = "Retries exhausted"; 1720 goto sense_error_done; 1721 } 1722 } 1723 1724 if ((err_action & SS_MASK) >= SS_START) { 1725 /* 1726 * Do common portions of commands that 1727 * use recovery CCBs. 1728 */ 1729 orig_ccb = xpt_alloc_ccb_nowait(); 1730 if (orig_ccb == NULL) { 1731 *action_string = "Can't allocate recovery CCB"; 1732 goto sense_error_done; 1733 } 1734 /* 1735 * Clear freeze flag for original request here, as 1736 * this freeze will be dropped as part of ERESTART. 1737 */ 1738 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1739 1740 KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO, 1741 ("%s: ccb func_code %#x != XPT_SCSI_IO", 1742 __func__, ccb->ccb_h.func_code)); 1743 flags = orig_ccb->ccb_h.alloc_flags; 1744 bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio)); 1745 orig_ccb->ccb_h.alloc_flags = flags; 1746 } 1747 1748 switch (err_action & SS_MASK) { 1749 case SS_NOP: 1750 *action_string = "No recovery action needed"; 1751 error = 0; 1752 break; 1753 case SS_RETRY: 1754 *action_string = "Retrying command (per sense data)"; 1755 error = ERESTART; 1756 break; 1757 case SS_FAIL: 1758 *action_string = "Unretryable error"; 1759 break; 1760 case SS_START: 1761 { 1762 int le; 1763 1764 /* 1765 * Send a start unit command to the device, and 1766 * then retry the command. 1767 */ 1768 *action_string = "Attempting to start unit"; 1769 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1770 1771 /* 1772 * Check for removable media and set 1773 * load/eject flag appropriately. 1774 */ 1775 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1776 le = TRUE; 1777 else 1778 le = FALSE; 1779 1780 scsi_start_stop(&ccb->csio, 1781 /*retries*/1, 1782 camperiphdone, 1783 MSG_SIMPLE_Q_TAG, 1784 /*start*/TRUE, 1785 /*load/eject*/le, 1786 /*immediate*/FALSE, 1787 SSD_FULL_SIZE, 1788 /*timeout*/50000); 1789 break; 1790 } 1791 case SS_TUR: 1792 { 1793 /* 1794 * Send a Test Unit Ready to the device. 1795 * If the 'many' flag is set, we send 120 1796 * test unit ready commands, one every half 1797 * second. Otherwise, we just send one TUR. 1798 * We only want to do this if the retry 1799 * count has not been exhausted. 1800 */ 1801 int retries; 1802 1803 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1804 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1805 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1806 *action_string = "Polling device for readiness"; 1807 retries = 120; 1808 } else { 1809 *action_string = "Testing device for readiness"; 1810 retries = 1; 1811 } 1812 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1813 scsi_test_unit_ready(&ccb->csio, 1814 retries, 1815 camperiphdone, 1816 MSG_SIMPLE_Q_TAG, 1817 SSD_FULL_SIZE, 1818 /*timeout*/5000); 1819 1820 /* 1821 * Accomplish our 500ms delay by deferring 1822 * the release of our device queue appropriately. 1823 */ 1824 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1825 *timeout = 500; 1826 break; 1827 } 1828 default: 1829 panic("Unhandled error action %x", err_action); 1830 } 1831 1832 if ((err_action & SS_MASK) >= SS_START) { 1833 /* 1834 * Drop the priority, so that the recovery 1835 * CCB is the first to execute. Freeze the queue 1836 * after this command is sent so that we can 1837 * restore the old csio and have it queued in 1838 * the proper order before we release normal 1839 * transactions to the device. 1840 */ 1841 ccb->ccb_h.pinfo.priority--; 1842 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1843 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1844 error = ERESTART; 1845 *orig = orig_ccb; 1846 } 1847 1848 sense_error_done: 1849 *action = err_action; 1850 } 1851 return (error); 1852 } 1853 1854 /* 1855 * Generic error handler. Peripheral drivers usually filter 1856 * out the errors that they handle in a unique manner, then 1857 * call this function. 1858 */ 1859 int 1860 cam_periph_error(union ccb *ccb, cam_flags camflags, 1861 u_int32_t sense_flags) 1862 { 1863 struct cam_path *newpath; 1864 union ccb *orig_ccb, *scan_ccb; 1865 struct cam_periph *periph; 1866 const char *action_string; 1867 cam_status status; 1868 int frozen, error, openings, devctl_err; 1869 u_int32_t action, relsim_flags, timeout; 1870 1871 action = SSQ_PRINT_SENSE; 1872 periph = xpt_path_periph(ccb->ccb_h.path); 1873 action_string = NULL; 1874 status = ccb->ccb_h.status; 1875 frozen = (status & CAM_DEV_QFRZN) != 0; 1876 status &= CAM_STATUS_MASK; 1877 devctl_err = openings = relsim_flags = timeout = 0; 1878 orig_ccb = ccb; 1879 1880 /* Filter the errors that should be reported via devctl */ 1881 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1882 case CAM_CMD_TIMEOUT: 1883 case CAM_REQ_ABORTED: 1884 case CAM_REQ_CMP_ERR: 1885 case CAM_REQ_TERMIO: 1886 case CAM_UNREC_HBA_ERROR: 1887 case CAM_DATA_RUN_ERR: 1888 case CAM_SCSI_STATUS_ERROR: 1889 case CAM_ATA_STATUS_ERROR: 1890 case CAM_SMP_STATUS_ERROR: 1891 devctl_err++; 1892 break; 1893 default: 1894 break; 1895 } 1896 1897 switch (status) { 1898 case CAM_REQ_CMP: 1899 error = 0; 1900 action &= ~SSQ_PRINT_SENSE; 1901 break; 1902 case CAM_SCSI_STATUS_ERROR: 1903 error = camperiphscsistatuserror(ccb, &orig_ccb, 1904 camflags, sense_flags, &openings, &relsim_flags, 1905 &timeout, &action, &action_string); 1906 break; 1907 case CAM_AUTOSENSE_FAIL: 1908 error = EIO; /* we have to kill the command */ 1909 break; 1910 case CAM_UA_ABORT: 1911 case CAM_UA_TERMIO: 1912 case CAM_MSG_REJECT_REC: 1913 /* XXX Don't know that these are correct */ 1914 error = EIO; 1915 break; 1916 case CAM_SEL_TIMEOUT: 1917 if ((camflags & CAM_RETRY_SELTO) != 0) { 1918 if (ccb->ccb_h.retry_count > 0 && 1919 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1920 ccb->ccb_h.retry_count--; 1921 error = ERESTART; 1922 1923 /* 1924 * Wait a bit to give the device 1925 * time to recover before we try again. 1926 */ 1927 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1928 timeout = periph_selto_delay; 1929 break; 1930 } 1931 action_string = "Retries exhausted"; 1932 } 1933 /* FALLTHROUGH */ 1934 case CAM_DEV_NOT_THERE: 1935 error = ENXIO; 1936 action = SSQ_LOST; 1937 break; 1938 case CAM_REQ_INVALID: 1939 case CAM_PATH_INVALID: 1940 case CAM_NO_HBA: 1941 case CAM_PROVIDE_FAIL: 1942 case CAM_REQ_TOO_BIG: 1943 case CAM_LUN_INVALID: 1944 case CAM_TID_INVALID: 1945 case CAM_FUNC_NOTAVAIL: 1946 error = EINVAL; 1947 break; 1948 case CAM_SCSI_BUS_RESET: 1949 case CAM_BDR_SENT: 1950 /* 1951 * Commands that repeatedly timeout and cause these 1952 * kinds of error recovery actions, should return 1953 * CAM_CMD_TIMEOUT, which allows us to safely assume 1954 * that this command was an innocent bystander to 1955 * these events and should be unconditionally 1956 * retried. 1957 */ 1958 case CAM_REQUEUE_REQ: 1959 /* Unconditional requeue if device is still there */ 1960 if (periph->flags & CAM_PERIPH_INVALID) { 1961 action_string = "Periph was invalidated"; 1962 error = ENXIO; 1963 } else if (sense_flags & SF_NO_RETRY) { 1964 error = EIO; 1965 action_string = "Retry was blocked"; 1966 } else { 1967 error = ERESTART; 1968 action &= ~SSQ_PRINT_SENSE; 1969 } 1970 break; 1971 case CAM_RESRC_UNAVAIL: 1972 /* Wait a bit for the resource shortage to abate. */ 1973 timeout = periph_noresrc_delay; 1974 /* FALLTHROUGH */ 1975 case CAM_BUSY: 1976 if (timeout == 0) { 1977 /* Wait a bit for the busy condition to abate. */ 1978 timeout = periph_busy_delay; 1979 } 1980 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1981 /* FALLTHROUGH */ 1982 case CAM_ATA_STATUS_ERROR: 1983 case CAM_REQ_CMP_ERR: 1984 case CAM_CMD_TIMEOUT: 1985 case CAM_UNEXP_BUSFREE: 1986 case CAM_UNCOR_PARITY: 1987 case CAM_DATA_RUN_ERR: 1988 default: 1989 if (periph->flags & CAM_PERIPH_INVALID) { 1990 error = ENXIO; 1991 action_string = "Periph was invalidated"; 1992 } else if (ccb->ccb_h.retry_count == 0) { 1993 error = EIO; 1994 action_string = "Retries exhausted"; 1995 } else if (sense_flags & SF_NO_RETRY) { 1996 error = EIO; 1997 action_string = "Retry was blocked"; 1998 } else { 1999 ccb->ccb_h.retry_count--; 2000 error = ERESTART; 2001 } 2002 break; 2003 } 2004 2005 if ((sense_flags & SF_PRINT_ALWAYS) || 2006 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 2007 action |= SSQ_PRINT_SENSE; 2008 else if (sense_flags & SF_NO_PRINT) 2009 action &= ~SSQ_PRINT_SENSE; 2010 if ((action & SSQ_PRINT_SENSE) != 0) 2011 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2012 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2013 if (error != ERESTART) { 2014 if (action_string == NULL) 2015 action_string = "Unretryable error"; 2016 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2017 error, action_string); 2018 } else if (action_string != NULL) 2019 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2020 else { 2021 xpt_print(ccb->ccb_h.path, 2022 "Retrying command, %d more tries remain\n", 2023 ccb->ccb_h.retry_count); 2024 } 2025 } 2026 2027 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2028 cam_periph_devctl_notify(orig_ccb); 2029 2030 if ((action & SSQ_LOST) != 0) { 2031 lun_id_t lun_id; 2032 2033 /* 2034 * For a selection timeout, we consider all of the LUNs on 2035 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2036 * then we only get rid of the device(s) specified by the 2037 * path in the original CCB. 2038 */ 2039 if (status == CAM_SEL_TIMEOUT) 2040 lun_id = CAM_LUN_WILDCARD; 2041 else 2042 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2043 2044 /* Should we do more if we can't create the path?? */ 2045 if (xpt_create_path(&newpath, periph, 2046 xpt_path_path_id(ccb->ccb_h.path), 2047 xpt_path_target_id(ccb->ccb_h.path), 2048 lun_id) == CAM_REQ_CMP) { 2049 /* 2050 * Let peripheral drivers know that this 2051 * device has gone away. 2052 */ 2053 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2054 xpt_free_path(newpath); 2055 } 2056 } 2057 2058 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2059 if ((action & SSQ_UA) != 0) 2060 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2061 2062 /* Rescan target on "Reported LUNs data has changed" */ 2063 if ((action & SSQ_RESCAN) != 0) { 2064 if (xpt_create_path(&newpath, NULL, 2065 xpt_path_path_id(ccb->ccb_h.path), 2066 xpt_path_target_id(ccb->ccb_h.path), 2067 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2068 scan_ccb = xpt_alloc_ccb_nowait(); 2069 if (scan_ccb != NULL) { 2070 scan_ccb->ccb_h.path = newpath; 2071 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2072 scan_ccb->crcn.flags = 0; 2073 xpt_rescan(scan_ccb); 2074 } else { 2075 xpt_print(newpath, 2076 "Can't allocate CCB to rescan target\n"); 2077 xpt_free_path(newpath); 2078 } 2079 } 2080 } 2081 2082 /* Attempt a retry */ 2083 if (error == ERESTART || error == 0) { 2084 if (frozen != 0) 2085 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2086 if (error == ERESTART) 2087 xpt_action(ccb); 2088 if (frozen != 0) 2089 cam_release_devq(ccb->ccb_h.path, 2090 relsim_flags, 2091 openings, 2092 timeout, 2093 /*getcount_only*/0); 2094 } 2095 2096 return (error); 2097 } 2098 2099 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2100 2101 static void 2102 cam_periph_devctl_notify(union ccb *ccb) 2103 { 2104 struct cam_periph *periph; 2105 struct ccb_getdev *cgd; 2106 struct sbuf sb; 2107 int serr, sk, asc, ascq; 2108 char *sbmsg, *type; 2109 2110 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2111 if (sbmsg == NULL) 2112 return; 2113 2114 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2115 2116 periph = xpt_path_periph(ccb->ccb_h.path); 2117 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2118 periph->unit_number); 2119 2120 sbuf_printf(&sb, "serial=\""); 2121 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2122 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2123 CAM_PRIORITY_NORMAL); 2124 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2125 xpt_action((union ccb *)cgd); 2126 2127 if (cgd->ccb_h.status == CAM_REQ_CMP) 2128 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2129 xpt_free_ccb((union ccb *)cgd); 2130 } 2131 sbuf_printf(&sb, "\" "); 2132 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2133 2134 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2135 case CAM_CMD_TIMEOUT: 2136 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2137 type = "timeout"; 2138 break; 2139 case CAM_SCSI_STATUS_ERROR: 2140 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2141 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2142 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2143 serr, sk, asc, ascq); 2144 type = "error"; 2145 break; 2146 case CAM_ATA_STATUS_ERROR: 2147 sbuf_printf(&sb, "RES=\""); 2148 ata_res_sbuf(&ccb->ataio.res, &sb); 2149 sbuf_printf(&sb, "\" "); 2150 type = "error"; 2151 break; 2152 default: 2153 type = "error"; 2154 break; 2155 } 2156 2157 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2158 sbuf_printf(&sb, "CDB=\""); 2159 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2160 sbuf_printf(&sb, "\" "); 2161 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2162 sbuf_printf(&sb, "ACB=\""); 2163 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2164 sbuf_printf(&sb, "\" "); 2165 } 2166 2167 if (sbuf_finish(&sb) == 0) 2168 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2169 sbuf_delete(&sb); 2170 free(sbmsg, M_CAMPERIPH); 2171 } 2172 2173 /* 2174 * Sysctl to force an invalidation of the drive right now. Can be 2175 * called with CTLFLAG_MPSAFE since we take periph lock. 2176 */ 2177 int 2178 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2179 { 2180 struct cam_periph *periph; 2181 int error, value; 2182 2183 periph = arg1; 2184 value = 0; 2185 error = sysctl_handle_int(oidp, &value, 0, req); 2186 if (error != 0 || req->newptr == NULL || value != 1) 2187 return (error); 2188 2189 cam_periph_lock(periph); 2190 cam_periph_invalidate(periph); 2191 cam_periph_unlock(periph); 2192 2193 return (0); 2194 } 2195