1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/linker_set.h> 39 #include <sys/bio.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/buf.h> 43 #include <sys/proc.h> 44 #include <sys/devicestat.h> 45 #include <sys/bus.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 cam_flags camflags, 73 u_int32_t sense_flags, 74 int *openings, 75 u_int32_t *relsim_flags, 76 u_int32_t *timeout, 77 const char **action_string); 78 static int camperiphscsisenseerror(union ccb *ccb, 79 cam_flags camflags, 80 u_int32_t sense_flags, 81 int *openings, 82 u_int32_t *relsim_flags, 83 u_int32_t *timeout, 84 const char **action_string); 85 86 static int nperiph_drivers; 87 static int initialized = 0; 88 struct periph_driver **periph_drivers; 89 90 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 91 92 static int periph_selto_delay = 1000; 93 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 94 static int periph_noresrc_delay = 500; 95 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 96 static int periph_busy_delay = 500; 97 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 98 99 100 void 101 periphdriver_register(void *data) 102 { 103 struct periph_driver *drv = (struct periph_driver *)data; 104 struct periph_driver **newdrivers, **old; 105 int ndrivers; 106 107 ndrivers = nperiph_drivers + 2; 108 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 109 M_WAITOK); 110 if (periph_drivers) 111 bcopy(periph_drivers, newdrivers, 112 sizeof(*newdrivers) * nperiph_drivers); 113 newdrivers[nperiph_drivers] = drv; 114 newdrivers[nperiph_drivers + 1] = NULL; 115 old = periph_drivers; 116 periph_drivers = newdrivers; 117 if (old) 118 free(old, M_CAMPERIPH); 119 nperiph_drivers++; 120 /* If driver marked as early or it is late now, initialize it. */ 121 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 122 initialized > 1) 123 (*drv->init)(); 124 } 125 126 void 127 periphdriver_init(int level) 128 { 129 int i, early; 130 131 initialized = max(initialized, level); 132 for (i = 0; periph_drivers[i] != NULL; i++) { 133 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 134 if (early == initialized) 135 (*periph_drivers[i]->init)(); 136 } 137 } 138 139 cam_status 140 cam_periph_alloc(periph_ctor_t *periph_ctor, 141 periph_oninv_t *periph_oninvalidate, 142 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 143 char *name, cam_periph_type type, struct cam_path *path, 144 ac_callback_t *ac_callback, ac_code code, void *arg) 145 { 146 struct periph_driver **p_drv; 147 struct cam_sim *sim; 148 struct cam_periph *periph; 149 struct cam_periph *cur_periph; 150 path_id_t path_id; 151 target_id_t target_id; 152 lun_id_t lun_id; 153 cam_status status; 154 u_int init_level; 155 156 init_level = 0; 157 /* 158 * Handle Hot-Plug scenarios. If there is already a peripheral 159 * of our type assigned to this path, we are likely waiting for 160 * final close on an old, invalidated, peripheral. If this is 161 * the case, queue up a deferred call to the peripheral's async 162 * handler. If it looks like a mistaken re-allocation, complain. 163 */ 164 if ((periph = cam_periph_find(path, name)) != NULL) { 165 166 if ((periph->flags & CAM_PERIPH_INVALID) != 0 167 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 168 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 169 periph->deferred_callback = ac_callback; 170 periph->deferred_ac = code; 171 return (CAM_REQ_INPROG); 172 } else { 173 printf("cam_periph_alloc: attempt to re-allocate " 174 "valid device %s%d rejected\n", 175 periph->periph_name, periph->unit_number); 176 } 177 return (CAM_REQ_INVALID); 178 } 179 180 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 181 M_NOWAIT); 182 183 if (periph == NULL) 184 return (CAM_RESRC_UNAVAIL); 185 186 init_level++; 187 188 189 sim = xpt_path_sim(path); 190 path_id = xpt_path_path_id(path); 191 target_id = xpt_path_target_id(path); 192 lun_id = xpt_path_lun_id(path); 193 bzero(periph, sizeof(*periph)); 194 cam_init_pinfo(&periph->pinfo); 195 periph->periph_start = periph_start; 196 periph->periph_dtor = periph_dtor; 197 periph->periph_oninval = periph_oninvalidate; 198 periph->type = type; 199 periph->periph_name = name; 200 periph->immediate_priority = CAM_PRIORITY_NONE; 201 periph->refcount = 0; 202 periph->sim = sim; 203 SLIST_INIT(&periph->ccb_list); 204 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 205 if (status != CAM_REQ_CMP) 206 goto failure; 207 periph->path = path; 208 209 xpt_lock_buses(); 210 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 211 if (strcmp((*p_drv)->driver_name, name) == 0) 212 break; 213 } 214 if (*p_drv == NULL) { 215 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 216 xpt_free_path(periph->path); 217 free(periph, M_CAMPERIPH); 218 xpt_unlock_buses(); 219 return (CAM_REQ_INVALID); 220 } 221 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 222 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 223 while (cur_periph != NULL 224 && cur_periph->unit_number < periph->unit_number) 225 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 226 if (cur_periph != NULL) { 227 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 228 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 229 } else { 230 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 231 (*p_drv)->generation++; 232 } 233 xpt_unlock_buses(); 234 235 init_level++; 236 237 status = xpt_add_periph(periph); 238 if (status != CAM_REQ_CMP) 239 goto failure; 240 241 init_level++; 242 243 status = periph_ctor(periph, arg); 244 245 if (status == CAM_REQ_CMP) 246 init_level++; 247 248 failure: 249 switch (init_level) { 250 case 4: 251 /* Initialized successfully */ 252 break; 253 case 3: 254 xpt_remove_periph(periph); 255 /* FALLTHROUGH */ 256 case 2: 257 xpt_lock_buses(); 258 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 259 xpt_unlock_buses(); 260 xpt_free_path(periph->path); 261 /* FALLTHROUGH */ 262 case 1: 263 free(periph, M_CAMPERIPH); 264 /* FALLTHROUGH */ 265 case 0: 266 /* No cleanup to perform. */ 267 break; 268 default: 269 panic("cam_periph_alloc: Unkown init level"); 270 } 271 return(status); 272 } 273 274 /* 275 * Find a peripheral structure with the specified path, target, lun, 276 * and (optionally) type. If the name is NULL, this function will return 277 * the first peripheral driver that matches the specified path. 278 */ 279 struct cam_periph * 280 cam_periph_find(struct cam_path *path, char *name) 281 { 282 struct periph_driver **p_drv; 283 struct cam_periph *periph; 284 285 xpt_lock_buses(); 286 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 287 288 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 289 continue; 290 291 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 292 if (xpt_path_comp(periph->path, path) == 0) { 293 xpt_unlock_buses(); 294 mtx_assert(periph->sim->mtx, MA_OWNED); 295 return(periph); 296 } 297 } 298 if (name != NULL) { 299 xpt_unlock_buses(); 300 return(NULL); 301 } 302 } 303 xpt_unlock_buses(); 304 return(NULL); 305 } 306 307 cam_status 308 cam_periph_acquire(struct cam_periph *periph) 309 { 310 311 if (periph == NULL) 312 return(CAM_REQ_CMP_ERR); 313 314 xpt_lock_buses(); 315 periph->refcount++; 316 xpt_unlock_buses(); 317 318 return(CAM_REQ_CMP); 319 } 320 321 void 322 cam_periph_release_locked(struct cam_periph *periph) 323 { 324 325 if (periph == NULL) 326 return; 327 328 xpt_lock_buses(); 329 if (periph->refcount != 0) { 330 periph->refcount--; 331 } else { 332 xpt_print(periph->path, "%s: release %p when refcount is zero\n ", __func__, periph); 333 } 334 if (periph->refcount == 0 335 && (periph->flags & CAM_PERIPH_INVALID)) { 336 camperiphfree(periph); 337 } 338 xpt_unlock_buses(); 339 } 340 341 void 342 cam_periph_release(struct cam_periph *periph) 343 { 344 struct cam_sim *sim; 345 346 if (periph == NULL) 347 return; 348 349 sim = periph->sim; 350 mtx_assert(sim->mtx, MA_NOTOWNED); 351 mtx_lock(sim->mtx); 352 cam_periph_release_locked(periph); 353 mtx_unlock(sim->mtx); 354 } 355 356 int 357 cam_periph_hold(struct cam_periph *periph, int priority) 358 { 359 int error; 360 361 /* 362 * Increment the reference count on the peripheral 363 * while we wait for our lock attempt to succeed 364 * to ensure the peripheral doesn't disappear out 365 * from user us while we sleep. 366 */ 367 368 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 369 return (ENXIO); 370 371 mtx_assert(periph->sim->mtx, MA_OWNED); 372 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 373 periph->flags |= CAM_PERIPH_LOCK_WANTED; 374 if ((error = mtx_sleep(periph, periph->sim->mtx, priority, 375 "caplck", 0)) != 0) { 376 cam_periph_release_locked(periph); 377 return (error); 378 } 379 } 380 381 periph->flags |= CAM_PERIPH_LOCKED; 382 return (0); 383 } 384 385 void 386 cam_periph_unhold(struct cam_periph *periph) 387 { 388 389 mtx_assert(periph->sim->mtx, MA_OWNED); 390 391 periph->flags &= ~CAM_PERIPH_LOCKED; 392 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 393 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 394 wakeup(periph); 395 } 396 397 cam_periph_release_locked(periph); 398 } 399 400 /* 401 * Look for the next unit number that is not currently in use for this 402 * peripheral type starting at "newunit". Also exclude unit numbers that 403 * are reserved by for future "hardwiring" unless we already know that this 404 * is a potential wired device. Only assume that the device is "wired" the 405 * first time through the loop since after that we'll be looking at unit 406 * numbers that did not match a wiring entry. 407 */ 408 static u_int 409 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 410 path_id_t pathid, target_id_t target, lun_id_t lun) 411 { 412 struct cam_periph *periph; 413 char *periph_name; 414 int i, val, dunit, r; 415 const char *dname, *strval; 416 417 periph_name = p_drv->driver_name; 418 for (;;newunit++) { 419 420 for (periph = TAILQ_FIRST(&p_drv->units); 421 periph != NULL && periph->unit_number != newunit; 422 periph = TAILQ_NEXT(periph, unit_links)) 423 ; 424 425 if (periph != NULL && periph->unit_number == newunit) { 426 if (wired != 0) { 427 xpt_print(periph->path, "Duplicate Wired " 428 "Device entry!\n"); 429 xpt_print(periph->path, "Second device (%s " 430 "device at scbus%d target %d lun %d) will " 431 "not be wired\n", periph_name, pathid, 432 target, lun); 433 wired = 0; 434 } 435 continue; 436 } 437 if (wired) 438 break; 439 440 /* 441 * Don't match entries like "da 4" as a wired down 442 * device, but do match entries like "da 4 target 5" 443 * or even "da 4 scbus 1". 444 */ 445 i = 0; 446 dname = periph_name; 447 for (;;) { 448 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 449 if (r != 0) 450 break; 451 /* if no "target" and no specific scbus, skip */ 452 if (resource_int_value(dname, dunit, "target", &val) && 453 (resource_string_value(dname, dunit, "at",&strval)|| 454 strcmp(strval, "scbus") == 0)) 455 continue; 456 if (newunit == dunit) 457 break; 458 } 459 if (r != 0) 460 break; 461 } 462 return (newunit); 463 } 464 465 static u_int 466 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 467 target_id_t target, lun_id_t lun) 468 { 469 u_int unit; 470 int wired, i, val, dunit; 471 const char *dname, *strval; 472 char pathbuf[32], *periph_name; 473 474 periph_name = p_drv->driver_name; 475 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 476 unit = 0; 477 i = 0; 478 dname = periph_name; 479 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 480 wired = 0) { 481 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 482 if (strcmp(strval, pathbuf) != 0) 483 continue; 484 wired++; 485 } 486 if (resource_int_value(dname, dunit, "target", &val) == 0) { 487 if (val != target) 488 continue; 489 wired++; 490 } 491 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 492 if (val != lun) 493 continue; 494 wired++; 495 } 496 if (wired != 0) { 497 unit = dunit; 498 break; 499 } 500 } 501 502 /* 503 * Either start from 0 looking for the next unit or from 504 * the unit number given in the resource config. This way, 505 * if we have wildcard matches, we don't return the same 506 * unit number twice. 507 */ 508 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 509 510 return (unit); 511 } 512 513 void 514 cam_periph_invalidate(struct cam_periph *periph) 515 { 516 517 /* 518 * We only call this routine the first time a peripheral is 519 * invalidated. 520 */ 521 if (((periph->flags & CAM_PERIPH_INVALID) == 0) 522 && (periph->periph_oninval != NULL)) 523 periph->periph_oninval(periph); 524 525 periph->flags |= CAM_PERIPH_INVALID; 526 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 527 528 xpt_lock_buses(); 529 if (periph->refcount == 0) 530 camperiphfree(periph); 531 else if (periph->refcount < 0) 532 printf("cam_invalidate_periph: refcount < 0!!\n"); 533 xpt_unlock_buses(); 534 } 535 536 static void 537 camperiphfree(struct cam_periph *periph) 538 { 539 struct periph_driver **p_drv; 540 541 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 542 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 543 break; 544 } 545 if (*p_drv == NULL) { 546 printf("camperiphfree: attempt to free non-existant periph\n"); 547 return; 548 } 549 550 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 551 (*p_drv)->generation++; 552 xpt_unlock_buses(); 553 554 if (periph->periph_dtor != NULL) 555 periph->periph_dtor(periph); 556 xpt_remove_periph(periph); 557 558 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 559 union ccb ccb; 560 void *arg; 561 562 switch (periph->deferred_ac) { 563 case AC_FOUND_DEVICE: 564 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 565 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 566 xpt_action(&ccb); 567 arg = &ccb; 568 break; 569 case AC_PATH_REGISTERED: 570 ccb.ccb_h.func_code = XPT_PATH_INQ; 571 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 572 xpt_action(&ccb); 573 arg = &ccb; 574 break; 575 default: 576 arg = NULL; 577 break; 578 } 579 periph->deferred_callback(NULL, periph->deferred_ac, 580 periph->path, arg); 581 } 582 xpt_free_path(periph->path); 583 free(periph, M_CAMPERIPH); 584 xpt_lock_buses(); 585 } 586 587 /* 588 * Map user virtual pointers into kernel virtual address space, so we can 589 * access the memory. This won't work on physical pointers, for now it's 590 * up to the caller to check for that. (XXX KDM -- should we do that here 591 * instead?) This also only works for up to MAXPHYS memory. Since we use 592 * buffers to map stuff in and out, we're limited to the buffer size. 593 */ 594 int 595 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 596 { 597 int numbufs, i, j; 598 int flags[CAM_PERIPH_MAXMAPS]; 599 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 600 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 601 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 602 /* Some controllers may not be able to handle more data. */ 603 size_t maxmap = DFLTPHYS; 604 605 switch(ccb->ccb_h.func_code) { 606 case XPT_DEV_MATCH: 607 if (ccb->cdm.match_buf_len == 0) { 608 printf("cam_periph_mapmem: invalid match buffer " 609 "length 0\n"); 610 return(EINVAL); 611 } 612 if (ccb->cdm.pattern_buf_len > 0) { 613 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 614 lengths[0] = ccb->cdm.pattern_buf_len; 615 dirs[0] = CAM_DIR_OUT; 616 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 617 lengths[1] = ccb->cdm.match_buf_len; 618 dirs[1] = CAM_DIR_IN; 619 numbufs = 2; 620 } else { 621 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 622 lengths[0] = ccb->cdm.match_buf_len; 623 dirs[0] = CAM_DIR_IN; 624 numbufs = 1; 625 } 626 /* 627 * This request will not go to the hardware, no reason 628 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 629 */ 630 maxmap = MAXPHYS; 631 break; 632 case XPT_SCSI_IO: 633 case XPT_CONT_TARGET_IO: 634 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 635 return(0); 636 637 data_ptrs[0] = &ccb->csio.data_ptr; 638 lengths[0] = ccb->csio.dxfer_len; 639 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 640 numbufs = 1; 641 break; 642 case XPT_ATA_IO: 643 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 644 return(0); 645 646 data_ptrs[0] = &ccb->ataio.data_ptr; 647 lengths[0] = ccb->ataio.dxfer_len; 648 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 649 numbufs = 1; 650 break; 651 default: 652 return(EINVAL); 653 break; /* NOTREACHED */ 654 } 655 656 /* 657 * Check the transfer length and permissions first, so we don't 658 * have to unmap any previously mapped buffers. 659 */ 660 for (i = 0; i < numbufs; i++) { 661 662 flags[i] = 0; 663 664 /* 665 * The userland data pointer passed in may not be page 666 * aligned. vmapbuf() truncates the address to a page 667 * boundary, so if the address isn't page aligned, we'll 668 * need enough space for the given transfer length, plus 669 * whatever extra space is necessary to make it to the page 670 * boundary. 671 */ 672 if ((lengths[i] + 673 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 674 printf("cam_periph_mapmem: attempt to map %lu bytes, " 675 "which is greater than %lu\n", 676 (long)(lengths[i] + 677 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 678 (u_long)maxmap); 679 return(E2BIG); 680 } 681 682 if (dirs[i] & CAM_DIR_OUT) { 683 flags[i] = BIO_WRITE; 684 } 685 686 if (dirs[i] & CAM_DIR_IN) { 687 flags[i] = BIO_READ; 688 } 689 690 } 691 692 /* this keeps the current process from getting swapped */ 693 /* 694 * XXX KDM should I use P_NOSWAP instead? 695 */ 696 PHOLD(curproc); 697 698 for (i = 0; i < numbufs; i++) { 699 /* 700 * Get the buffer. 701 */ 702 mapinfo->bp[i] = getpbuf(NULL); 703 704 /* save the buffer's data address */ 705 mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; 706 707 /* put our pointer in the data slot */ 708 mapinfo->bp[i]->b_data = *data_ptrs[i]; 709 710 /* set the transfer length, we know it's < MAXPHYS */ 711 mapinfo->bp[i]->b_bufsize = lengths[i]; 712 713 /* set the direction */ 714 mapinfo->bp[i]->b_iocmd = flags[i]; 715 716 /* 717 * Map the buffer into kernel memory. 718 * 719 * Note that useracc() alone is not a sufficient test. 720 * vmapbuf() can still fail due to a smaller file mapped 721 * into a larger area of VM, or if userland races against 722 * vmapbuf() after the useracc() check. 723 */ 724 if (vmapbuf(mapinfo->bp[i]) < 0) { 725 for (j = 0; j < i; ++j) { 726 *data_ptrs[j] = mapinfo->bp[j]->b_saveaddr; 727 vunmapbuf(mapinfo->bp[j]); 728 relpbuf(mapinfo->bp[j], NULL); 729 } 730 relpbuf(mapinfo->bp[i], NULL); 731 PRELE(curproc); 732 return(EACCES); 733 } 734 735 /* set our pointer to the new mapped area */ 736 *data_ptrs[i] = mapinfo->bp[i]->b_data; 737 738 mapinfo->num_bufs_used++; 739 } 740 741 /* 742 * Now that we've gotten this far, change ownership to the kernel 743 * of the buffers so that we don't run afoul of returning to user 744 * space with locks (on the buffer) held. 745 */ 746 for (i = 0; i < numbufs; i++) { 747 BUF_KERNPROC(mapinfo->bp[i]); 748 } 749 750 751 return(0); 752 } 753 754 /* 755 * Unmap memory segments mapped into kernel virtual address space by 756 * cam_periph_mapmem(). 757 */ 758 void 759 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 760 { 761 int numbufs, i; 762 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 763 764 if (mapinfo->num_bufs_used <= 0) { 765 /* allow ourselves to be swapped once again */ 766 PRELE(curproc); 767 return; 768 } 769 770 switch (ccb->ccb_h.func_code) { 771 case XPT_DEV_MATCH: 772 numbufs = min(mapinfo->num_bufs_used, 2); 773 774 if (numbufs == 1) { 775 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 776 } else { 777 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 778 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 779 } 780 break; 781 case XPT_SCSI_IO: 782 case XPT_CONT_TARGET_IO: 783 data_ptrs[0] = &ccb->csio.data_ptr; 784 numbufs = min(mapinfo->num_bufs_used, 1); 785 break; 786 case XPT_ATA_IO: 787 data_ptrs[0] = &ccb->ataio.data_ptr; 788 numbufs = min(mapinfo->num_bufs_used, 1); 789 break; 790 default: 791 /* allow ourselves to be swapped once again */ 792 PRELE(curproc); 793 return; 794 break; /* NOTREACHED */ 795 } 796 797 for (i = 0; i < numbufs; i++) { 798 /* Set the user's pointer back to the original value */ 799 *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; 800 801 /* unmap the buffer */ 802 vunmapbuf(mapinfo->bp[i]); 803 804 /* release the buffer */ 805 relpbuf(mapinfo->bp[i], NULL); 806 } 807 808 /* allow ourselves to be swapped once again */ 809 PRELE(curproc); 810 } 811 812 union ccb * 813 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 814 { 815 struct ccb_hdr *ccb_h; 816 817 mtx_assert(periph->sim->mtx, MA_OWNED); 818 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n")); 819 820 while (SLIST_FIRST(&periph->ccb_list) == NULL) { 821 if (periph->immediate_priority > priority) 822 periph->immediate_priority = priority; 823 xpt_schedule(periph, priority); 824 if ((SLIST_FIRST(&periph->ccb_list) != NULL) 825 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority)) 826 break; 827 mtx_assert(periph->sim->mtx, MA_OWNED); 828 mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb", 829 0); 830 } 831 832 ccb_h = SLIST_FIRST(&periph->ccb_list); 833 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 834 return ((union ccb *)ccb_h); 835 } 836 837 void 838 cam_periph_ccbwait(union ccb *ccb) 839 { 840 struct cam_sim *sim; 841 842 sim = xpt_path_sim(ccb->ccb_h.path); 843 if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) 844 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) 845 mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0); 846 } 847 848 int 849 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 850 int (*error_routine)(union ccb *ccb, 851 cam_flags camflags, 852 u_int32_t sense_flags)) 853 { 854 union ccb *ccb; 855 int error; 856 int found; 857 858 error = found = 0; 859 860 switch(cmd){ 861 case CAMGETPASSTHRU: 862 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 863 xpt_setup_ccb(&ccb->ccb_h, 864 ccb->ccb_h.path, 865 CAM_PRIORITY_NORMAL); 866 ccb->ccb_h.func_code = XPT_GDEVLIST; 867 868 /* 869 * Basically, the point of this is that we go through 870 * getting the list of devices, until we find a passthrough 871 * device. In the current version of the CAM code, the 872 * only way to determine what type of device we're dealing 873 * with is by its name. 874 */ 875 while (found == 0) { 876 ccb->cgdl.index = 0; 877 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 878 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 879 880 /* we want the next device in the list */ 881 xpt_action(ccb); 882 if (strncmp(ccb->cgdl.periph_name, 883 "pass", 4) == 0){ 884 found = 1; 885 break; 886 } 887 } 888 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 889 (found == 0)) { 890 ccb->cgdl.periph_name[0] = '\0'; 891 ccb->cgdl.unit_number = 0; 892 break; 893 } 894 } 895 896 /* copy the result back out */ 897 bcopy(ccb, addr, sizeof(union ccb)); 898 899 /* and release the ccb */ 900 xpt_release_ccb(ccb); 901 902 break; 903 default: 904 error = ENOTTY; 905 break; 906 } 907 return(error); 908 } 909 910 int 911 cam_periph_runccb(union ccb *ccb, 912 int (*error_routine)(union ccb *ccb, 913 cam_flags camflags, 914 u_int32_t sense_flags), 915 cam_flags camflags, u_int32_t sense_flags, 916 struct devstat *ds) 917 { 918 struct cam_sim *sim; 919 int error; 920 921 error = 0; 922 sim = xpt_path_sim(ccb->ccb_h.path); 923 mtx_assert(sim->mtx, MA_OWNED); 924 925 /* 926 * If the user has supplied a stats structure, and if we understand 927 * this particular type of ccb, record the transaction start. 928 */ 929 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 930 ccb->ccb_h.func_code == XPT_ATA_IO)) 931 devstat_start_transaction(ds, NULL); 932 933 xpt_action(ccb); 934 935 do { 936 cam_periph_ccbwait(ccb); 937 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 938 error = 0; 939 else if (error_routine != NULL) 940 error = (*error_routine)(ccb, camflags, sense_flags); 941 else 942 error = 0; 943 944 } while (error == ERESTART); 945 946 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 947 cam_release_devq(ccb->ccb_h.path, 948 /* relsim_flags */0, 949 /* openings */0, 950 /* timeout */0, 951 /* getcount_only */ FALSE); 952 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 953 } 954 955 if (ds != NULL) { 956 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 957 devstat_end_transaction(ds, 958 ccb->csio.dxfer_len, 959 ccb->csio.tag_action & 0x3, 960 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 961 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 962 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 963 DEVSTAT_WRITE : 964 DEVSTAT_READ, NULL, NULL); 965 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 966 devstat_end_transaction(ds, 967 ccb->ataio.dxfer_len, 968 ccb->ataio.tag_action & 0x3, 969 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 970 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 971 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 972 DEVSTAT_WRITE : 973 DEVSTAT_READ, NULL, NULL); 974 } 975 } 976 977 return(error); 978 } 979 980 void 981 cam_freeze_devq(struct cam_path *path) 982 { 983 984 cam_freeze_devq_arg(path, 0, 0); 985 } 986 987 void 988 cam_freeze_devq_arg(struct cam_path *path, uint32_t flags, uint32_t arg) 989 { 990 struct ccb_relsim crs; 991 992 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NONE); 993 crs.ccb_h.func_code = XPT_FREEZE_QUEUE; 994 crs.release_flags = flags; 995 crs.openings = arg; 996 crs.release_timeout = arg; 997 xpt_action((union ccb *)&crs); 998 } 999 1000 u_int32_t 1001 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1002 u_int32_t openings, u_int32_t arg, 1003 int getcount_only) 1004 { 1005 struct ccb_relsim crs; 1006 1007 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1008 crs.ccb_h.func_code = XPT_REL_SIMQ; 1009 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1010 crs.release_flags = relsim_flags; 1011 crs.openings = openings; 1012 crs.release_timeout = arg; 1013 xpt_action((union ccb *)&crs); 1014 return (crs.qfrozen_cnt); 1015 } 1016 1017 #define saved_ccb_ptr ppriv_ptr0 1018 #define recovery_depth ppriv_field1 1019 static void 1020 camperiphsensedone(struct cam_periph *periph, union ccb *done_ccb) 1021 { 1022 union ccb *saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1023 cam_status status; 1024 int frozen = 0; 1025 u_int sense_key; 1026 int depth = done_ccb->ccb_h.recovery_depth; 1027 1028 status = done_ccb->ccb_h.status; 1029 if (status & CAM_DEV_QFRZN) { 1030 frozen = 1; 1031 /* 1032 * Clear freeze flag now for case of retry, 1033 * freeze will be dropped later. 1034 */ 1035 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1036 } 1037 status &= CAM_STATUS_MASK; 1038 switch (status) { 1039 case CAM_REQ_CMP: 1040 { 1041 /* 1042 * If we manually retrieved sense into a CCB and got 1043 * something other than "NO SENSE" send the updated CCB 1044 * back to the client via xpt_done() to be processed via 1045 * the error recovery code again. 1046 */ 1047 sense_key = saved_ccb->csio.sense_data.flags; 1048 sense_key &= SSD_KEY; 1049 if (sense_key != SSD_KEY_NO_SENSE) { 1050 saved_ccb->ccb_h.status |= 1051 CAM_AUTOSNS_VALID; 1052 } else { 1053 saved_ccb->ccb_h.status &= 1054 ~CAM_STATUS_MASK; 1055 saved_ccb->ccb_h.status |= 1056 CAM_AUTOSENSE_FAIL; 1057 } 1058 saved_ccb->csio.sense_resid = done_ccb->csio.resid; 1059 bcopy(saved_ccb, done_ccb, sizeof(union ccb)); 1060 xpt_free_ccb(saved_ccb); 1061 break; 1062 } 1063 default: 1064 bcopy(saved_ccb, done_ccb, sizeof(union ccb)); 1065 xpt_free_ccb(saved_ccb); 1066 done_ccb->ccb_h.status &= ~CAM_STATUS_MASK; 1067 done_ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL; 1068 break; 1069 } 1070 periph->flags &= ~CAM_PERIPH_SENSE_INPROG; 1071 /* 1072 * If it is the end of recovery, drop freeze, taken due to 1073 * CAM_DEV_QFREEZE flag, set on recovery request. 1074 */ 1075 if (depth == 0) { 1076 cam_release_devq(done_ccb->ccb_h.path, 1077 /*relsim_flags*/0, 1078 /*openings*/0, 1079 /*timeout*/0, 1080 /*getcount_only*/0); 1081 } 1082 /* 1083 * Copy frozen flag from recovery request if it is set there 1084 * for some reason. 1085 */ 1086 if (frozen != 0) 1087 done_ccb->ccb_h.status |= CAM_DEV_QFRZN; 1088 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 1089 } 1090 1091 static void 1092 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1093 { 1094 union ccb *saved_ccb, *save_ccb; 1095 cam_status status; 1096 int frozen = 0; 1097 struct scsi_start_stop_unit *scsi_cmd; 1098 u_int32_t relsim_flags, timeout; 1099 1100 status = done_ccb->ccb_h.status; 1101 if (status & CAM_DEV_QFRZN) { 1102 frozen = 1; 1103 /* 1104 * Clear freeze flag now for case of retry, 1105 * freeze will be dropped later. 1106 */ 1107 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1108 } 1109 1110 timeout = 0; 1111 relsim_flags = 0; 1112 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1113 1114 switch (status & CAM_STATUS_MASK) { 1115 case CAM_REQ_CMP: 1116 { 1117 /* 1118 * If we have successfully taken a device from the not 1119 * ready to ready state, re-scan the device and re-get 1120 * the inquiry information. Many devices (mostly disks) 1121 * don't properly report their inquiry information unless 1122 * they are spun up. 1123 */ 1124 scsi_cmd = (struct scsi_start_stop_unit *) 1125 &done_ccb->csio.cdb_io.cdb_bytes; 1126 1127 if (scsi_cmd->opcode == START_STOP_UNIT) 1128 xpt_async(AC_INQ_CHANGED, 1129 done_ccb->ccb_h.path, NULL); 1130 goto final; 1131 } 1132 case CAM_SCSI_STATUS_ERROR: 1133 scsi_cmd = (struct scsi_start_stop_unit *) 1134 &done_ccb->csio.cdb_io.cdb_bytes; 1135 if (status & CAM_AUTOSNS_VALID) { 1136 struct ccb_getdev cgd; 1137 struct scsi_sense_data *sense; 1138 int error_code, sense_key, asc, ascq; 1139 scsi_sense_action err_action; 1140 1141 sense = &done_ccb->csio.sense_data; 1142 scsi_extract_sense(sense, &error_code, 1143 &sense_key, &asc, &ascq); 1144 /* 1145 * Grab the inquiry data for this device. 1146 */ 1147 xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path, 1148 CAM_PRIORITY_NORMAL); 1149 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1150 xpt_action((union ccb *)&cgd); 1151 err_action = scsi_error_action(&done_ccb->csio, 1152 &cgd.inq_data, 0); 1153 /* 1154 * If the error is "invalid field in CDB", 1155 * and the load/eject flag is set, turn the 1156 * flag off and try again. This is just in 1157 * case the drive in question barfs on the 1158 * load eject flag. The CAM code should set 1159 * the load/eject flag by default for 1160 * removable media. 1161 */ 1162 /* XXX KDM 1163 * Should we check to see what the specific 1164 * scsi status is?? Or does it not matter 1165 * since we already know that there was an 1166 * error, and we know what the specific 1167 * error code was, and we know what the 1168 * opcode is.. 1169 */ 1170 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1171 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1172 (asc == 0x24) && (ascq == 0x00) && 1173 (done_ccb->ccb_h.retry_count > 0)) { 1174 1175 scsi_cmd->how &= ~SSS_LOEJ; 1176 xpt_action(done_ccb); 1177 } else if ((done_ccb->ccb_h.retry_count > 1) 1178 && ((err_action & SS_MASK) != SS_FAIL)) { 1179 1180 /* 1181 * In this case, the error recovery 1182 * command failed, but we've got 1183 * some retries left on it. Give 1184 * it another try unless this is an 1185 * unretryable error. 1186 */ 1187 /* set the timeout to .5 sec */ 1188 relsim_flags = 1189 RELSIM_RELEASE_AFTER_TIMEOUT; 1190 timeout = 500; 1191 xpt_action(done_ccb); 1192 break; 1193 } else { 1194 /* 1195 * Perform the final retry with the original 1196 * CCB so that final error processing is 1197 * performed by the owner of the CCB. 1198 */ 1199 goto final; 1200 } 1201 } else { 1202 save_ccb = xpt_alloc_ccb_nowait(); 1203 if (save_ccb == NULL) 1204 goto final; 1205 bcopy(done_ccb, save_ccb, sizeof(*save_ccb)); 1206 periph->flags |= CAM_PERIPH_SENSE_INPROG; 1207 /* 1208 * Send a Request Sense to the device. We 1209 * assume that we are in a contingent allegiance 1210 * condition so we do not tag this request. 1211 */ 1212 scsi_request_sense(&done_ccb->csio, /*retries*/1, 1213 camperiphsensedone, 1214 &save_ccb->csio.sense_data, 1215 save_ccb->csio.sense_len, 1216 CAM_TAG_ACTION_NONE, 1217 /*sense_len*/SSD_FULL_SIZE, 1218 /*timeout*/5000); 1219 done_ccb->ccb_h.pinfo.priority--; 1220 done_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1221 done_ccb->ccb_h.saved_ccb_ptr = save_ccb; 1222 done_ccb->ccb_h.recovery_depth++; 1223 xpt_action(done_ccb); 1224 } 1225 break; 1226 default: 1227 final: 1228 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1229 xpt_free_ccb(saved_ccb); 1230 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1231 xpt_action(done_ccb); 1232 break; 1233 } 1234 1235 /* decrement the retry count */ 1236 /* 1237 * XXX This isn't appropriate in all cases. Restructure, 1238 * so that the retry count is only decremented on an 1239 * actual retry. Remeber that the orignal ccb had its 1240 * retry count dropped before entering recovery, so 1241 * doing it again is a bug. 1242 */ 1243 if (done_ccb->ccb_h.retry_count > 0) 1244 done_ccb->ccb_h.retry_count--; 1245 /* 1246 * Drop freeze taken due to CAM_DEV_QFREEZE flag set on recovery 1247 * request. 1248 */ 1249 cam_release_devq(done_ccb->ccb_h.path, 1250 /*relsim_flags*/relsim_flags, 1251 /*openings*/0, 1252 /*timeout*/timeout, 1253 /*getcount_only*/0); 1254 /* Drop freeze taken, if this recovery request got error. */ 1255 if (frozen != 0) { 1256 cam_release_devq(done_ccb->ccb_h.path, 1257 /*relsim_flags*/0, 1258 /*openings*/0, 1259 /*timeout*/0, 1260 /*getcount_only*/0); 1261 } 1262 } 1263 1264 /* 1265 * Generic Async Event handler. Peripheral drivers usually 1266 * filter out the events that require personal attention, 1267 * and leave the rest to this function. 1268 */ 1269 void 1270 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1271 struct cam_path *path, void *arg) 1272 { 1273 switch (code) { 1274 case AC_LOST_DEVICE: 1275 cam_periph_invalidate(periph); 1276 break; 1277 default: 1278 break; 1279 } 1280 } 1281 1282 void 1283 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1284 { 1285 struct ccb_getdevstats cgds; 1286 1287 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1288 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1289 xpt_action((union ccb *)&cgds); 1290 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1291 } 1292 1293 void 1294 cam_periph_freeze_after_event(struct cam_periph *periph, 1295 struct timeval* event_time, u_int duration_ms) 1296 { 1297 struct timeval delta; 1298 struct timeval duration_tv; 1299 1300 microtime(&delta); 1301 timevalsub(&delta, event_time); 1302 duration_tv.tv_sec = duration_ms / 1000; 1303 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1304 if (timevalcmp(&delta, &duration_tv, <)) { 1305 timevalsub(&duration_tv, &delta); 1306 1307 duration_ms = duration_tv.tv_sec * 1000; 1308 duration_ms += duration_tv.tv_usec / 1000; 1309 cam_freeze_devq(periph->path); 1310 cam_release_devq(periph->path, 1311 RELSIM_RELEASE_AFTER_TIMEOUT, 1312 /*reduction*/0, 1313 /*timeout*/duration_ms, 1314 /*getcount_only*/0); 1315 } 1316 1317 } 1318 1319 static int 1320 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags, 1321 u_int32_t sense_flags, 1322 int *openings, u_int32_t *relsim_flags, 1323 u_int32_t *timeout, const char **action_string) 1324 { 1325 int error; 1326 1327 switch (ccb->csio.scsi_status) { 1328 case SCSI_STATUS_OK: 1329 case SCSI_STATUS_COND_MET: 1330 case SCSI_STATUS_INTERMED: 1331 case SCSI_STATUS_INTERMED_COND_MET: 1332 error = 0; 1333 break; 1334 case SCSI_STATUS_CMD_TERMINATED: 1335 case SCSI_STATUS_CHECK_COND: 1336 if (bootverbose) 1337 xpt_print(ccb->ccb_h.path, "SCSI status error\n"); 1338 error = camperiphscsisenseerror(ccb, 1339 camflags, 1340 sense_flags, 1341 openings, 1342 relsim_flags, 1343 timeout, 1344 action_string); 1345 break; 1346 case SCSI_STATUS_QUEUE_FULL: 1347 { 1348 /* no decrement */ 1349 struct ccb_getdevstats cgds; 1350 1351 /* 1352 * First off, find out what the current 1353 * transaction counts are. 1354 */ 1355 xpt_setup_ccb(&cgds.ccb_h, 1356 ccb->ccb_h.path, 1357 CAM_PRIORITY_NORMAL); 1358 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1359 xpt_action((union ccb *)&cgds); 1360 1361 /* 1362 * If we were the only transaction active, treat 1363 * the QUEUE FULL as if it were a BUSY condition. 1364 */ 1365 if (cgds.dev_active != 0) { 1366 int total_openings; 1367 1368 /* 1369 * Reduce the number of openings to 1370 * be 1 less than the amount it took 1371 * to get a queue full bounded by the 1372 * minimum allowed tag count for this 1373 * device. 1374 */ 1375 total_openings = cgds.dev_active + cgds.dev_openings; 1376 *openings = cgds.dev_active; 1377 if (*openings < cgds.mintags) 1378 *openings = cgds.mintags; 1379 if (*openings < total_openings) 1380 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1381 else { 1382 /* 1383 * Some devices report queue full for 1384 * temporary resource shortages. For 1385 * this reason, we allow a minimum 1386 * tag count to be entered via a 1387 * quirk entry to prevent the queue 1388 * count on these devices from falling 1389 * to a pessimisticly low value. We 1390 * still wait for the next successful 1391 * completion, however, before queueing 1392 * more transactions to the device. 1393 */ 1394 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1395 } 1396 *timeout = 0; 1397 error = ERESTART; 1398 if (bootverbose) { 1399 xpt_print(ccb->ccb_h.path, "Queue full\n"); 1400 } 1401 break; 1402 } 1403 /* FALLTHROUGH */ 1404 } 1405 case SCSI_STATUS_BUSY: 1406 /* 1407 * Restart the queue after either another 1408 * command completes or a 1 second timeout. 1409 */ 1410 if (bootverbose) { 1411 xpt_print(ccb->ccb_h.path, "Device busy\n"); 1412 } 1413 if (ccb->ccb_h.retry_count > 0) { 1414 ccb->ccb_h.retry_count--; 1415 error = ERESTART; 1416 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1417 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1418 *timeout = 1000; 1419 } else { 1420 error = EIO; 1421 } 1422 break; 1423 case SCSI_STATUS_RESERV_CONFLICT: 1424 xpt_print(ccb->ccb_h.path, "Reservation conflict\n"); 1425 error = EIO; 1426 break; 1427 default: 1428 xpt_print(ccb->ccb_h.path, "SCSI status 0x%x\n", 1429 ccb->csio.scsi_status); 1430 error = EIO; 1431 break; 1432 } 1433 return (error); 1434 } 1435 1436 static int 1437 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags, 1438 u_int32_t sense_flags, 1439 int *openings, u_int32_t *relsim_flags, 1440 u_int32_t *timeout, const char **action_string) 1441 { 1442 struct cam_periph *periph; 1443 union ccb *orig_ccb = ccb; 1444 int error; 1445 1446 periph = xpt_path_periph(ccb->ccb_h.path); 1447 if (periph->flags & 1448 (CAM_PERIPH_RECOVERY_INPROG | CAM_PERIPH_SENSE_INPROG)) { 1449 /* 1450 * If error recovery is already in progress, don't attempt 1451 * to process this error, but requeue it unconditionally 1452 * and attempt to process it once error recovery has 1453 * completed. This failed command is probably related to 1454 * the error that caused the currently active error recovery 1455 * action so our current recovery efforts should also 1456 * address this command. Be aware that the error recovery 1457 * code assumes that only one recovery action is in progress 1458 * on a particular peripheral instance at any given time 1459 * (e.g. only one saved CCB for error recovery) so it is 1460 * imperitive that we don't violate this assumption. 1461 */ 1462 error = ERESTART; 1463 } else { 1464 scsi_sense_action err_action; 1465 struct ccb_getdev cgd; 1466 1467 /* 1468 * Grab the inquiry data for this device. 1469 */ 1470 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1471 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1472 xpt_action((union ccb *)&cgd); 1473 1474 if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) 1475 err_action = scsi_error_action(&ccb->csio, 1476 &cgd.inq_data, 1477 sense_flags); 1478 else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) 1479 err_action = SS_REQSENSE; 1480 else 1481 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1482 1483 error = err_action & SS_ERRMASK; 1484 1485 /* 1486 * If the recovery action will consume a retry, 1487 * make sure we actually have retries available. 1488 */ 1489 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1490 if (ccb->ccb_h.retry_count > 0) 1491 ccb->ccb_h.retry_count--; 1492 else { 1493 *action_string = "Retries exhausted"; 1494 goto sense_error_done; 1495 } 1496 } 1497 1498 if ((err_action & SS_MASK) >= SS_START) { 1499 /* 1500 * Do common portions of commands that 1501 * use recovery CCBs. 1502 */ 1503 orig_ccb = xpt_alloc_ccb_nowait(); 1504 if (orig_ccb == NULL) { 1505 *action_string = "Can't allocate recovery CCB"; 1506 goto sense_error_done; 1507 } 1508 /* 1509 * Clear freeze flag for original request here, as 1510 * this freeze will be dropped as part of ERESTART. 1511 */ 1512 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1513 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1514 } 1515 1516 switch (err_action & SS_MASK) { 1517 case SS_NOP: 1518 *action_string = "No recovery action needed"; 1519 error = 0; 1520 break; 1521 case SS_RETRY: 1522 *action_string = "Retrying command (per sense data)"; 1523 error = ERESTART; 1524 break; 1525 case SS_FAIL: 1526 *action_string = "Unretryable error"; 1527 break; 1528 case SS_START: 1529 { 1530 int le; 1531 1532 /* 1533 * Send a start unit command to the device, and 1534 * then retry the command. 1535 */ 1536 *action_string = "Attempting to start unit"; 1537 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1538 1539 /* 1540 * Check for removable media and set 1541 * load/eject flag appropriately. 1542 */ 1543 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1544 le = TRUE; 1545 else 1546 le = FALSE; 1547 1548 scsi_start_stop(&ccb->csio, 1549 /*retries*/1, 1550 camperiphdone, 1551 MSG_SIMPLE_Q_TAG, 1552 /*start*/TRUE, 1553 /*load/eject*/le, 1554 /*immediate*/FALSE, 1555 SSD_FULL_SIZE, 1556 /*timeout*/50000); 1557 break; 1558 } 1559 case SS_TUR: 1560 { 1561 /* 1562 * Send a Test Unit Ready to the device. 1563 * If the 'many' flag is set, we send 120 1564 * test unit ready commands, one every half 1565 * second. Otherwise, we just send one TUR. 1566 * We only want to do this if the retry 1567 * count has not been exhausted. 1568 */ 1569 int retries; 1570 1571 if ((err_action & SSQ_MANY) != 0) { 1572 *action_string = "Polling device for readiness"; 1573 retries = 120; 1574 } else { 1575 *action_string = "Testing device for readiness"; 1576 retries = 1; 1577 } 1578 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1579 scsi_test_unit_ready(&ccb->csio, 1580 retries, 1581 camperiphdone, 1582 MSG_SIMPLE_Q_TAG, 1583 SSD_FULL_SIZE, 1584 /*timeout*/5000); 1585 1586 /* 1587 * Accomplish our 500ms delay by deferring 1588 * the release of our device queue appropriately. 1589 */ 1590 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1591 *timeout = 500; 1592 break; 1593 } 1594 case SS_REQSENSE: 1595 { 1596 *action_string = "Requesting SCSI sense data"; 1597 periph->flags |= CAM_PERIPH_SENSE_INPROG; 1598 /* 1599 * Send a Request Sense to the device. We 1600 * assume that we are in a contingent allegiance 1601 * condition so we do not tag this request. 1602 */ 1603 scsi_request_sense(&ccb->csio, /*retries*/1, 1604 camperiphsensedone, 1605 &orig_ccb->csio.sense_data, 1606 orig_ccb->csio.sense_len, 1607 CAM_TAG_ACTION_NONE, 1608 /*sense_len*/SSD_FULL_SIZE, 1609 /*timeout*/5000); 1610 break; 1611 } 1612 default: 1613 panic("Unhandled error action %x", err_action); 1614 } 1615 1616 if ((err_action & SS_MASK) >= SS_START) { 1617 /* 1618 * Drop the priority, so that the recovery 1619 * CCB is the first to execute. Freeze the queue 1620 * after this command is sent so that we can 1621 * restore the old csio and have it queued in 1622 * the proper order before we release normal 1623 * transactions to the device. 1624 */ 1625 ccb->ccb_h.pinfo.priority--; 1626 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1627 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1628 ccb->ccb_h.recovery_depth = 0; 1629 error = ERESTART; 1630 } 1631 1632 sense_error_done: 1633 if ((err_action & SSQ_PRINT_SENSE) != 0 1634 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) 1635 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1636 } 1637 return (error); 1638 } 1639 1640 /* 1641 * Generic error handler. Peripheral drivers usually filter 1642 * out the errors that they handle in a unique mannor, then 1643 * call this function. 1644 */ 1645 int 1646 cam_periph_error(union ccb *ccb, cam_flags camflags, 1647 u_int32_t sense_flags, union ccb *save_ccb) 1648 { 1649 const char *action_string; 1650 cam_status status; 1651 int frozen; 1652 int error, printed = 0; 1653 int openings; 1654 u_int32_t relsim_flags; 1655 u_int32_t timeout = 0; 1656 1657 action_string = NULL; 1658 status = ccb->ccb_h.status; 1659 frozen = (status & CAM_DEV_QFRZN) != 0; 1660 status &= CAM_STATUS_MASK; 1661 openings = relsim_flags = 0; 1662 1663 switch (status) { 1664 case CAM_REQ_CMP: 1665 error = 0; 1666 break; 1667 case CAM_SCSI_STATUS_ERROR: 1668 error = camperiphscsistatuserror(ccb, 1669 camflags, 1670 sense_flags, 1671 &openings, 1672 &relsim_flags, 1673 &timeout, 1674 &action_string); 1675 break; 1676 case CAM_AUTOSENSE_FAIL: 1677 xpt_print(ccb->ccb_h.path, "AutoSense failed\n"); 1678 error = EIO; /* we have to kill the command */ 1679 break; 1680 case CAM_ATA_STATUS_ERROR: 1681 if (bootverbose && printed == 0) { 1682 xpt_print(ccb->ccb_h.path, "ATA status error\n"); 1683 cam_error_print(ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1684 printed++; 1685 } 1686 /* FALLTHROUGH */ 1687 case CAM_REQ_CMP_ERR: 1688 if (bootverbose && printed == 0) { 1689 xpt_print(ccb->ccb_h.path, 1690 "Request completed with CAM_REQ_CMP_ERR\n"); 1691 printed++; 1692 } 1693 /* FALLTHROUGH */ 1694 case CAM_CMD_TIMEOUT: 1695 if (bootverbose && printed == 0) { 1696 xpt_print(ccb->ccb_h.path, "Command timed out\n"); 1697 printed++; 1698 } 1699 /* FALLTHROUGH */ 1700 case CAM_UNEXP_BUSFREE: 1701 if (bootverbose && printed == 0) { 1702 xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n"); 1703 printed++; 1704 } 1705 /* FALLTHROUGH */ 1706 case CAM_UNCOR_PARITY: 1707 if (bootverbose && printed == 0) { 1708 xpt_print(ccb->ccb_h.path, 1709 "Uncorrected parity error\n"); 1710 printed++; 1711 } 1712 /* FALLTHROUGH */ 1713 case CAM_DATA_RUN_ERR: 1714 if (bootverbose && printed == 0) { 1715 xpt_print(ccb->ccb_h.path, "Data overrun\n"); 1716 printed++; 1717 } 1718 error = EIO; /* we have to kill the command */ 1719 /* decrement the number of retries */ 1720 if (ccb->ccb_h.retry_count > 0) { 1721 ccb->ccb_h.retry_count--; 1722 error = ERESTART; 1723 } else { 1724 action_string = "Retries exhausted"; 1725 error = EIO; 1726 } 1727 break; 1728 case CAM_UA_ABORT: 1729 case CAM_UA_TERMIO: 1730 case CAM_MSG_REJECT_REC: 1731 /* XXX Don't know that these are correct */ 1732 error = EIO; 1733 break; 1734 case CAM_SEL_TIMEOUT: 1735 { 1736 struct cam_path *newpath; 1737 1738 if ((camflags & CAM_RETRY_SELTO) != 0) { 1739 if (ccb->ccb_h.retry_count > 0) { 1740 1741 ccb->ccb_h.retry_count--; 1742 error = ERESTART; 1743 if (bootverbose && printed == 0) { 1744 xpt_print(ccb->ccb_h.path, 1745 "Selection timeout\n"); 1746 printed++; 1747 } 1748 1749 /* 1750 * Wait a bit to give the device 1751 * time to recover before we try again. 1752 */ 1753 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1754 timeout = periph_selto_delay; 1755 break; 1756 } 1757 } 1758 error = ENXIO; 1759 /* Should we do more if we can't create the path?? */ 1760 if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path), 1761 xpt_path_path_id(ccb->ccb_h.path), 1762 xpt_path_target_id(ccb->ccb_h.path), 1763 CAM_LUN_WILDCARD) != CAM_REQ_CMP) 1764 break; 1765 1766 /* 1767 * Let peripheral drivers know that this device has gone 1768 * away. 1769 */ 1770 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1771 xpt_free_path(newpath); 1772 break; 1773 } 1774 case CAM_REQ_INVALID: 1775 case CAM_PATH_INVALID: 1776 case CAM_DEV_NOT_THERE: 1777 case CAM_NO_HBA: 1778 case CAM_PROVIDE_FAIL: 1779 case CAM_REQ_TOO_BIG: 1780 case CAM_LUN_INVALID: 1781 case CAM_TID_INVALID: 1782 error = EINVAL; 1783 break; 1784 case CAM_SCSI_BUS_RESET: 1785 case CAM_BDR_SENT: 1786 /* 1787 * Commands that repeatedly timeout and cause these 1788 * kinds of error recovery actions, should return 1789 * CAM_CMD_TIMEOUT, which allows us to safely assume 1790 * that this command was an innocent bystander to 1791 * these events and should be unconditionally 1792 * retried. 1793 */ 1794 if (bootverbose && printed == 0) { 1795 xpt_print_path(ccb->ccb_h.path); 1796 if (status == CAM_BDR_SENT) 1797 printf("Bus Device Reset sent\n"); 1798 else 1799 printf("Bus Reset issued\n"); 1800 printed++; 1801 } 1802 /* FALLTHROUGH */ 1803 case CAM_REQUEUE_REQ: 1804 /* Unconditional requeue */ 1805 error = ERESTART; 1806 if (bootverbose && printed == 0) { 1807 xpt_print(ccb->ccb_h.path, "Request requeued\n"); 1808 printed++; 1809 } 1810 break; 1811 case CAM_RESRC_UNAVAIL: 1812 /* Wait a bit for the resource shortage to abate. */ 1813 timeout = periph_noresrc_delay; 1814 /* FALLTHROUGH */ 1815 case CAM_BUSY: 1816 if (timeout == 0) { 1817 /* Wait a bit for the busy condition to abate. */ 1818 timeout = periph_busy_delay; 1819 } 1820 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1821 /* FALLTHROUGH */ 1822 default: 1823 /* decrement the number of retries */ 1824 if (ccb->ccb_h.retry_count > 0) { 1825 ccb->ccb_h.retry_count--; 1826 error = ERESTART; 1827 if (bootverbose && printed == 0) { 1828 xpt_print(ccb->ccb_h.path, "CAM status 0x%x\n", 1829 status); 1830 printed++; 1831 } 1832 } else { 1833 error = EIO; 1834 action_string = "Retries exhausted"; 1835 } 1836 break; 1837 } 1838 1839 /* 1840 * If we have and error and are booting verbosely, whine 1841 * *unless* this was a non-retryable selection timeout. 1842 */ 1843 if (error != 0 && bootverbose && 1844 !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) { 1845 if (error != ERESTART) { 1846 if (action_string == NULL) 1847 action_string = "Unretryable error"; 1848 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1849 error, action_string); 1850 } else if (action_string != NULL) 1851 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1852 else 1853 xpt_print(ccb->ccb_h.path, "Retrying command\n"); 1854 } 1855 1856 /* Attempt a retry */ 1857 if (error == ERESTART || error == 0) { 1858 if (frozen != 0) 1859 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1860 if (error == ERESTART) 1861 xpt_action(ccb); 1862 if (frozen != 0) 1863 cam_release_devq(ccb->ccb_h.path, 1864 relsim_flags, 1865 openings, 1866 timeout, 1867 /*getcount_only*/0); 1868 } 1869 1870 return (error); 1871 } 1872