xref: /freebsd/sys/cam/cam_periph.c (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/types.h>
38 #include <sys/malloc.h>
39 #include <sys/kernel.h>
40 #include <sys/bio.h>
41 #include <sys/conf.h>
42 #include <sys/devctl.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/devicestat.h>
48 #include <sys/sbuf.h>
49 #include <sys/sysctl.h>
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52 
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_queue.h>
56 #include <cam/cam_xpt_periph.h>
57 #include <cam/cam_xpt_internal.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_debug.h>
60 #include <cam/cam_sim.h>
61 
62 #include <cam/scsi/scsi_all.h>
63 #include <cam/scsi/scsi_message.h>
64 #include <cam/scsi/scsi_pass.h>
65 
66 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
67 					  u_int newunit, int wired,
68 					  path_id_t pathid, target_id_t target,
69 					  lun_id_t lun);
70 static	u_int		camperiphunit(struct periph_driver *p_drv,
71 				      path_id_t pathid, target_id_t target,
72 				      lun_id_t lun);
73 static	void		camperiphdone(struct cam_periph *periph,
74 					union ccb *done_ccb);
75 static  void		camperiphfree(struct cam_periph *periph);
76 static int		camperiphscsistatuserror(union ccb *ccb,
77 					        union ccb **orig_ccb,
78 						 cam_flags camflags,
79 						 u_int32_t sense_flags,
80 						 int *openings,
81 						 u_int32_t *relsim_flags,
82 						 u_int32_t *timeout,
83 						 u_int32_t  *action,
84 						 const char **action_string);
85 static	int		camperiphscsisenseerror(union ccb *ccb,
86 					        union ccb **orig_ccb,
87 					        cam_flags camflags,
88 					        u_int32_t sense_flags,
89 					        int *openings,
90 					        u_int32_t *relsim_flags,
91 					        u_int32_t *timeout,
92 					        u_int32_t *action,
93 					        const char **action_string);
94 static void		cam_periph_devctl_notify(union ccb *ccb);
95 
96 static int nperiph_drivers;
97 static int initialized = 0;
98 struct periph_driver **periph_drivers;
99 
100 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
101 
102 static int periph_selto_delay = 1000;
103 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
104 static int periph_noresrc_delay = 500;
105 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
106 static int periph_busy_delay = 500;
107 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
108 
109 static u_int periph_mapmem_thresh = 65536;
110 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN,
111     &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping");
112 
113 void
114 periphdriver_register(void *data)
115 {
116 	struct periph_driver *drv = (struct periph_driver *)data;
117 	struct periph_driver **newdrivers, **old;
118 	int ndrivers;
119 
120 again:
121 	ndrivers = nperiph_drivers + 2;
122 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
123 			    M_WAITOK);
124 	xpt_lock_buses();
125 	if (ndrivers != nperiph_drivers + 2) {
126 		/*
127 		 * Lost race against itself; go around.
128 		 */
129 		xpt_unlock_buses();
130 		free(newdrivers, M_CAMPERIPH);
131 		goto again;
132 	}
133 	if (periph_drivers)
134 		bcopy(periph_drivers, newdrivers,
135 		      sizeof(*newdrivers) * nperiph_drivers);
136 	newdrivers[nperiph_drivers] = drv;
137 	newdrivers[nperiph_drivers + 1] = NULL;
138 	old = periph_drivers;
139 	periph_drivers = newdrivers;
140 	nperiph_drivers++;
141 	xpt_unlock_buses();
142 	if (old)
143 		free(old, M_CAMPERIPH);
144 	/* If driver marked as early or it is late now, initialize it. */
145 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
146 	    initialized > 1)
147 		(*drv->init)();
148 }
149 
150 int
151 periphdriver_unregister(void *data)
152 {
153 	struct periph_driver *drv = (struct periph_driver *)data;
154 	int error, n;
155 
156 	/* If driver marked as early or it is late now, deinitialize it. */
157 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
158 	    initialized > 1) {
159 		if (drv->deinit == NULL) {
160 			printf("CAM periph driver '%s' doesn't have deinit.\n",
161 			    drv->driver_name);
162 			return (EOPNOTSUPP);
163 		}
164 		error = drv->deinit();
165 		if (error != 0)
166 			return (error);
167 	}
168 
169 	xpt_lock_buses();
170 	for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++)
171 		;
172 	KASSERT(n < nperiph_drivers,
173 	    ("Periph driver '%s' was not registered", drv->driver_name));
174 	for (; n + 1 < nperiph_drivers; n++)
175 		periph_drivers[n] = periph_drivers[n + 1];
176 	periph_drivers[n + 1] = NULL;
177 	nperiph_drivers--;
178 	xpt_unlock_buses();
179 	return (0);
180 }
181 
182 void
183 periphdriver_init(int level)
184 {
185 	int	i, early;
186 
187 	initialized = max(initialized, level);
188 	for (i = 0; periph_drivers[i] != NULL; i++) {
189 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
190 		if (early == initialized)
191 			(*periph_drivers[i]->init)();
192 	}
193 }
194 
195 cam_status
196 cam_periph_alloc(periph_ctor_t *periph_ctor,
197 		 periph_oninv_t *periph_oninvalidate,
198 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
199 		 char *name, cam_periph_type type, struct cam_path *path,
200 		 ac_callback_t *ac_callback, ac_code code, void *arg)
201 {
202 	struct		periph_driver **p_drv;
203 	struct		cam_sim *sim;
204 	struct		cam_periph *periph;
205 	struct		cam_periph *cur_periph;
206 	path_id_t	path_id;
207 	target_id_t	target_id;
208 	lun_id_t	lun_id;
209 	cam_status	status;
210 	u_int		init_level;
211 
212 	init_level = 0;
213 	/*
214 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
215 	 * of our type assigned to this path, we are likely waiting for
216 	 * final close on an old, invalidated, peripheral.  If this is
217 	 * the case, queue up a deferred call to the peripheral's async
218 	 * handler.  If it looks like a mistaken re-allocation, complain.
219 	 */
220 	if ((periph = cam_periph_find(path, name)) != NULL) {
221 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
222 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
223 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
224 			periph->deferred_callback = ac_callback;
225 			periph->deferred_ac = code;
226 			return (CAM_REQ_INPROG);
227 		} else {
228 			printf("cam_periph_alloc: attempt to re-allocate "
229 			       "valid device %s%d rejected flags %#x "
230 			       "refcount %d\n", periph->periph_name,
231 			       periph->unit_number, periph->flags,
232 			       periph->refcount);
233 		}
234 		return (CAM_REQ_INVALID);
235 	}
236 
237 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
238 					     M_NOWAIT|M_ZERO);
239 
240 	if (periph == NULL)
241 		return (CAM_RESRC_UNAVAIL);
242 
243 	init_level++;
244 
245 	sim = xpt_path_sim(path);
246 	path_id = xpt_path_path_id(path);
247 	target_id = xpt_path_target_id(path);
248 	lun_id = xpt_path_lun_id(path);
249 	periph->periph_start = periph_start;
250 	periph->periph_dtor = periph_dtor;
251 	periph->periph_oninval = periph_oninvalidate;
252 	periph->type = type;
253 	periph->periph_name = name;
254 	periph->scheduled_priority = CAM_PRIORITY_NONE;
255 	periph->immediate_priority = CAM_PRIORITY_NONE;
256 	periph->refcount = 1;		/* Dropped by invalidation. */
257 	periph->sim = sim;
258 	SLIST_INIT(&periph->ccb_list);
259 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
260 	if (status != CAM_REQ_CMP)
261 		goto failure;
262 	periph->path = path;
263 
264 	xpt_lock_buses();
265 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
266 		if (strcmp((*p_drv)->driver_name, name) == 0)
267 			break;
268 	}
269 	if (*p_drv == NULL) {
270 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
271 		xpt_unlock_buses();
272 		xpt_free_path(periph->path);
273 		free(periph, M_CAMPERIPH);
274 		return (CAM_REQ_INVALID);
275 	}
276 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
277 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
278 	while (cur_periph != NULL
279 	    && cur_periph->unit_number < periph->unit_number)
280 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
281 	if (cur_periph != NULL) {
282 		KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
283 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
284 	} else {
285 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
286 		(*p_drv)->generation++;
287 	}
288 	xpt_unlock_buses();
289 
290 	init_level++;
291 
292 	status = xpt_add_periph(periph);
293 	if (status != CAM_REQ_CMP)
294 		goto failure;
295 
296 	init_level++;
297 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
298 
299 	status = periph_ctor(periph, arg);
300 
301 	if (status == CAM_REQ_CMP)
302 		init_level++;
303 
304 failure:
305 	switch (init_level) {
306 	case 4:
307 		/* Initialized successfully */
308 		break;
309 	case 3:
310 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
311 		xpt_remove_periph(periph);
312 		/* FALLTHROUGH */
313 	case 2:
314 		xpt_lock_buses();
315 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
316 		xpt_unlock_buses();
317 		xpt_free_path(periph->path);
318 		/* FALLTHROUGH */
319 	case 1:
320 		free(periph, M_CAMPERIPH);
321 		/* FALLTHROUGH */
322 	case 0:
323 		/* No cleanup to perform. */
324 		break;
325 	default:
326 		panic("%s: Unknown init level", __func__);
327 	}
328 	return(status);
329 }
330 
331 /*
332  * Find a peripheral structure with the specified path, target, lun,
333  * and (optionally) type.  If the name is NULL, this function will return
334  * the first peripheral driver that matches the specified path.
335  */
336 struct cam_periph *
337 cam_periph_find(struct cam_path *path, char *name)
338 {
339 	struct periph_driver **p_drv;
340 	struct cam_periph *periph;
341 
342 	xpt_lock_buses();
343 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
344 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
345 			continue;
346 
347 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
348 			if (xpt_path_comp(periph->path, path) == 0) {
349 				xpt_unlock_buses();
350 				cam_periph_assert(periph, MA_OWNED);
351 				return(periph);
352 			}
353 		}
354 		if (name != NULL) {
355 			xpt_unlock_buses();
356 			return(NULL);
357 		}
358 	}
359 	xpt_unlock_buses();
360 	return(NULL);
361 }
362 
363 /*
364  * Find peripheral driver instances attached to the specified path.
365  */
366 int
367 cam_periph_list(struct cam_path *path, struct sbuf *sb)
368 {
369 	struct sbuf local_sb;
370 	struct periph_driver **p_drv;
371 	struct cam_periph *periph;
372 	int count;
373 	int sbuf_alloc_len;
374 
375 	sbuf_alloc_len = 16;
376 retry:
377 	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
378 	count = 0;
379 	xpt_lock_buses();
380 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
381 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
382 			if (xpt_path_comp(periph->path, path) != 0)
383 				continue;
384 
385 			if (sbuf_len(&local_sb) != 0)
386 				sbuf_cat(&local_sb, ",");
387 
388 			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
389 				    periph->unit_number);
390 
391 			if (sbuf_error(&local_sb) == ENOMEM) {
392 				sbuf_alloc_len *= 2;
393 				xpt_unlock_buses();
394 				sbuf_delete(&local_sb);
395 				goto retry;
396 			}
397 			count++;
398 		}
399 	}
400 	xpt_unlock_buses();
401 	sbuf_finish(&local_sb);
402 	if (sbuf_len(sb) != 0)
403 		sbuf_cat(sb, ",");
404 	sbuf_cat(sb, sbuf_data(&local_sb));
405 	sbuf_delete(&local_sb);
406 	return (count);
407 }
408 
409 int
410 cam_periph_acquire(struct cam_periph *periph)
411 {
412 	int status;
413 
414 	if (periph == NULL)
415 		return (EINVAL);
416 
417 	status = ENOENT;
418 	xpt_lock_buses();
419 	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
420 		periph->refcount++;
421 		status = 0;
422 	}
423 	xpt_unlock_buses();
424 
425 	return (status);
426 }
427 
428 void
429 cam_periph_doacquire(struct cam_periph *periph)
430 {
431 
432 	xpt_lock_buses();
433 	KASSERT(periph->refcount >= 1,
434 	    ("cam_periph_doacquire() with refcount == %d", periph->refcount));
435 	periph->refcount++;
436 	xpt_unlock_buses();
437 }
438 
439 void
440 cam_periph_release_locked_buses(struct cam_periph *periph)
441 {
442 
443 	cam_periph_assert(periph, MA_OWNED);
444 	KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
445 	if (--periph->refcount == 0)
446 		camperiphfree(periph);
447 }
448 
449 void
450 cam_periph_release_locked(struct cam_periph *periph)
451 {
452 
453 	if (periph == NULL)
454 		return;
455 
456 	xpt_lock_buses();
457 	cam_periph_release_locked_buses(periph);
458 	xpt_unlock_buses();
459 }
460 
461 void
462 cam_periph_release(struct cam_periph *periph)
463 {
464 	struct mtx *mtx;
465 
466 	if (periph == NULL)
467 		return;
468 
469 	cam_periph_assert(periph, MA_NOTOWNED);
470 	mtx = cam_periph_mtx(periph);
471 	mtx_lock(mtx);
472 	cam_periph_release_locked(periph);
473 	mtx_unlock(mtx);
474 }
475 
476 /*
477  * hold/unhold act as mutual exclusion for sections of the code that
478  * need to sleep and want to make sure that other sections that
479  * will interfere are held off. This only protects exclusive sections
480  * from each other.
481  */
482 int
483 cam_periph_hold(struct cam_periph *periph, int priority)
484 {
485 	int error;
486 
487 	/*
488 	 * Increment the reference count on the peripheral
489 	 * while we wait for our lock attempt to succeed
490 	 * to ensure the peripheral doesn't disappear out
491 	 * from user us while we sleep.
492 	 */
493 
494 	if (cam_periph_acquire(periph) != 0)
495 		return (ENXIO);
496 
497 	cam_periph_assert(periph, MA_OWNED);
498 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
499 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
500 		if ((error = cam_periph_sleep(periph, periph, priority,
501 		    "caplck", 0)) != 0) {
502 			cam_periph_release_locked(periph);
503 			return (error);
504 		}
505 		if (periph->flags & CAM_PERIPH_INVALID) {
506 			cam_periph_release_locked(periph);
507 			return (ENXIO);
508 		}
509 	}
510 
511 	periph->flags |= CAM_PERIPH_LOCKED;
512 	return (0);
513 }
514 
515 void
516 cam_periph_unhold(struct cam_periph *periph)
517 {
518 
519 	cam_periph_assert(periph, MA_OWNED);
520 
521 	periph->flags &= ~CAM_PERIPH_LOCKED;
522 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
523 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
524 		wakeup(periph);
525 	}
526 
527 	cam_periph_release_locked(periph);
528 }
529 
530 /*
531  * Look for the next unit number that is not currently in use for this
532  * peripheral type starting at "newunit".  Also exclude unit numbers that
533  * are reserved by for future "hardwiring" unless we already know that this
534  * is a potential wired device.  Only assume that the device is "wired" the
535  * first time through the loop since after that we'll be looking at unit
536  * numbers that did not match a wiring entry.
537  */
538 static u_int
539 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
540 		  path_id_t pathid, target_id_t target, lun_id_t lun)
541 {
542 	struct	cam_periph *periph;
543 	char	*periph_name;
544 	int	i, val, dunit, r;
545 	const char *dname, *strval;
546 
547 	periph_name = p_drv->driver_name;
548 	for (;;newunit++) {
549 		for (periph = TAILQ_FIRST(&p_drv->units);
550 		     periph != NULL && periph->unit_number != newunit;
551 		     periph = TAILQ_NEXT(periph, unit_links))
552 			;
553 
554 		if (periph != NULL && periph->unit_number == newunit) {
555 			if (wired != 0) {
556 				xpt_print(periph->path, "Duplicate Wired "
557 				    "Device entry!\n");
558 				xpt_print(periph->path, "Second device (%s "
559 				    "device at scbus%d target %d lun %d) will "
560 				    "not be wired\n", periph_name, pathid,
561 				    target, lun);
562 				wired = 0;
563 			}
564 			continue;
565 		}
566 		if (wired)
567 			break;
568 
569 		/*
570 		 * Don't match entries like "da 4" as a wired down
571 		 * device, but do match entries like "da 4 target 5"
572 		 * or even "da 4 scbus 1".
573 		 */
574 		i = 0;
575 		dname = periph_name;
576 		for (;;) {
577 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
578 			if (r != 0)
579 				break;
580 			/* if no "target" and no specific scbus, skip */
581 			if (resource_int_value(dname, dunit, "target", &val) &&
582 			    (resource_string_value(dname, dunit, "at",&strval)||
583 			     strcmp(strval, "scbus") == 0))
584 				continue;
585 			if (newunit == dunit)
586 				break;
587 		}
588 		if (r != 0)
589 			break;
590 	}
591 	return (newunit);
592 }
593 
594 static u_int
595 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
596 	      target_id_t target, lun_id_t lun)
597 {
598 	u_int	unit;
599 	int	wired, i, val, dunit;
600 	const char *dname, *strval;
601 	char	pathbuf[32], *periph_name;
602 
603 	periph_name = p_drv->driver_name;
604 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
605 	unit = 0;
606 	i = 0;
607 	dname = periph_name;
608 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
609 	     wired = 0) {
610 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
611 			if (strcmp(strval, pathbuf) != 0)
612 				continue;
613 			wired++;
614 		}
615 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
616 			if (val != target)
617 				continue;
618 			wired++;
619 		}
620 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
621 			if (val != lun)
622 				continue;
623 			wired++;
624 		}
625 		if (wired != 0) {
626 			unit = dunit;
627 			break;
628 		}
629 	}
630 
631 	/*
632 	 * Either start from 0 looking for the next unit or from
633 	 * the unit number given in the resource config.  This way,
634 	 * if we have wildcard matches, we don't return the same
635 	 * unit number twice.
636 	 */
637 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
638 
639 	return (unit);
640 }
641 
642 void
643 cam_periph_invalidate(struct cam_periph *periph)
644 {
645 
646 	cam_periph_assert(periph, MA_OWNED);
647 	/*
648 	 * We only tear down the device the first time a peripheral is
649 	 * invalidated.
650 	 */
651 	if ((periph->flags & CAM_PERIPH_INVALID) != 0)
652 		return;
653 
654 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
655 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) {
656 		struct sbuf sb;
657 		char buffer[160];
658 
659 		sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN);
660 		xpt_denounce_periph_sbuf(periph, &sb);
661 		sbuf_finish(&sb);
662 		sbuf_putbuf(&sb);
663 	}
664 	periph->flags |= CAM_PERIPH_INVALID;
665 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
666 	if (periph->periph_oninval != NULL)
667 		periph->periph_oninval(periph);
668 	cam_periph_release_locked(periph);
669 }
670 
671 static void
672 camperiphfree(struct cam_periph *periph)
673 {
674 	struct periph_driver **p_drv;
675 	struct periph_driver *drv;
676 
677 	cam_periph_assert(periph, MA_OWNED);
678 	KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating",
679 	    periph->periph_name, periph->unit_number));
680 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
681 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
682 			break;
683 	}
684 	if (*p_drv == NULL) {
685 		printf("camperiphfree: attempt to free non-existant periph\n");
686 		return;
687 	}
688 	/*
689 	 * Cache a pointer to the periph_driver structure.  If a
690 	 * periph_driver is added or removed from the array (see
691 	 * periphdriver_register()) while we drop the toplogy lock
692 	 * below, p_drv may change.  This doesn't protect against this
693 	 * particular periph_driver going away.  That will require full
694 	 * reference counting in the periph_driver infrastructure.
695 	 */
696 	drv = *p_drv;
697 
698 	/*
699 	 * We need to set this flag before dropping the topology lock, to
700 	 * let anyone who is traversing the list that this peripheral is
701 	 * about to be freed, and there will be no more reference count
702 	 * checks.
703 	 */
704 	periph->flags |= CAM_PERIPH_FREE;
705 
706 	/*
707 	 * The peripheral destructor semantics dictate calling with only the
708 	 * SIM mutex held.  Since it might sleep, it should not be called
709 	 * with the topology lock held.
710 	 */
711 	xpt_unlock_buses();
712 
713 	/*
714 	 * We need to call the peripheral destructor prior to removing the
715 	 * peripheral from the list.  Otherwise, we risk running into a
716 	 * scenario where the peripheral unit number may get reused
717 	 * (because it has been removed from the list), but some resources
718 	 * used by the peripheral are still hanging around.  In particular,
719 	 * the devfs nodes used by some peripherals like the pass(4) driver
720 	 * aren't fully cleaned up until the destructor is run.  If the
721 	 * unit number is reused before the devfs instance is fully gone,
722 	 * devfs will panic.
723 	 */
724 	if (periph->periph_dtor != NULL)
725 		periph->periph_dtor(periph);
726 
727 	/*
728 	 * The peripheral list is protected by the topology lock. We have to
729 	 * remove the periph from the drv list before we call deferred_ac. The
730 	 * AC_FOUND_DEVICE callback won't create a new periph if it's still there.
731 	 */
732 	xpt_lock_buses();
733 
734 	TAILQ_REMOVE(&drv->units, periph, unit_links);
735 	drv->generation++;
736 
737 	xpt_remove_periph(periph);
738 
739 	xpt_unlock_buses();
740 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
741 		xpt_print(periph->path, "Periph destroyed\n");
742 	else
743 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
744 
745 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
746 		union ccb ccb;
747 		void *arg;
748 
749 		memset(&ccb, 0, sizeof(ccb));
750 		switch (periph->deferred_ac) {
751 		case AC_FOUND_DEVICE:
752 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
753 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
754 			xpt_action(&ccb);
755 			arg = &ccb;
756 			break;
757 		case AC_PATH_REGISTERED:
758 			xpt_path_inq(&ccb.cpi, periph->path);
759 			arg = &ccb;
760 			break;
761 		default:
762 			arg = NULL;
763 			break;
764 		}
765 		periph->deferred_callback(NULL, periph->deferred_ac,
766 					  periph->path, arg);
767 	}
768 	xpt_free_path(periph->path);
769 	free(periph, M_CAMPERIPH);
770 	xpt_lock_buses();
771 }
772 
773 /*
774  * Map user virtual pointers into kernel virtual address space, so we can
775  * access the memory.  This is now a generic function that centralizes most
776  * of the sanity checks on the data flags, if any.
777  * This also only works for up to maxphys memory.  Since we use
778  * buffers to map stuff in and out, we're limited to the buffer size.
779  */
780 int
781 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo,
782     u_int maxmap)
783 {
784 	int numbufs, i;
785 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
786 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
787 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
788 
789 	bzero(mapinfo, sizeof(*mapinfo));
790 	if (maxmap == 0)
791 		maxmap = DFLTPHYS;	/* traditional default */
792 	else if (maxmap > maxphys)
793 		maxmap = maxphys;	/* for safety */
794 	switch(ccb->ccb_h.func_code) {
795 	case XPT_DEV_MATCH:
796 		if (ccb->cdm.match_buf_len == 0) {
797 			printf("cam_periph_mapmem: invalid match buffer "
798 			       "length 0\n");
799 			return(EINVAL);
800 		}
801 		if (ccb->cdm.pattern_buf_len > 0) {
802 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
803 			lengths[0] = ccb->cdm.pattern_buf_len;
804 			dirs[0] = CAM_DIR_OUT;
805 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
806 			lengths[1] = ccb->cdm.match_buf_len;
807 			dirs[1] = CAM_DIR_IN;
808 			numbufs = 2;
809 		} else {
810 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
811 			lengths[0] = ccb->cdm.match_buf_len;
812 			dirs[0] = CAM_DIR_IN;
813 			numbufs = 1;
814 		}
815 		/*
816 		 * This request will not go to the hardware, no reason
817 		 * to be so strict. vmapbuf() is able to map up to maxphys.
818 		 */
819 		maxmap = maxphys;
820 		break;
821 	case XPT_SCSI_IO:
822 	case XPT_CONT_TARGET_IO:
823 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
824 			return(0);
825 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
826 			return (EINVAL);
827 		data_ptrs[0] = &ccb->csio.data_ptr;
828 		lengths[0] = ccb->csio.dxfer_len;
829 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
830 		numbufs = 1;
831 		break;
832 	case XPT_ATA_IO:
833 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
834 			return(0);
835 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
836 			return (EINVAL);
837 		data_ptrs[0] = &ccb->ataio.data_ptr;
838 		lengths[0] = ccb->ataio.dxfer_len;
839 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
840 		numbufs = 1;
841 		break;
842 	case XPT_MMC_IO:
843 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
844 			return(0);
845 		/* Two mappings: one for cmd->data and one for cmd->data->data */
846 		data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data;
847 		lengths[0] = sizeof(struct mmc_data *);
848 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
849 		data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data;
850 		lengths[1] = ccb->mmcio.cmd.data->len;
851 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
852 		numbufs = 2;
853 		break;
854 	case XPT_SMP_IO:
855 		data_ptrs[0] = &ccb->smpio.smp_request;
856 		lengths[0] = ccb->smpio.smp_request_len;
857 		dirs[0] = CAM_DIR_OUT;
858 		data_ptrs[1] = &ccb->smpio.smp_response;
859 		lengths[1] = ccb->smpio.smp_response_len;
860 		dirs[1] = CAM_DIR_IN;
861 		numbufs = 2;
862 		break;
863 	case XPT_NVME_IO:
864 	case XPT_NVME_ADMIN:
865 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
866 			return (0);
867 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
868 			return (EINVAL);
869 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
870 		lengths[0] = ccb->nvmeio.dxfer_len;
871 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
872 		numbufs = 1;
873 		break;
874 	case XPT_DEV_ADVINFO:
875 		if (ccb->cdai.bufsiz == 0)
876 			return (0);
877 
878 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
879 		lengths[0] = ccb->cdai.bufsiz;
880 		dirs[0] = CAM_DIR_IN;
881 		numbufs = 1;
882 
883 		/*
884 		 * This request will not go to the hardware, no reason
885 		 * to be so strict. vmapbuf() is able to map up to maxphys.
886 		 */
887 		maxmap = maxphys;
888 		break;
889 	default:
890 		return(EINVAL);
891 		break; /* NOTREACHED */
892 	}
893 
894 	/*
895 	 * Check the transfer length and permissions first, so we don't
896 	 * have to unmap any previously mapped buffers.
897 	 */
898 	for (i = 0; i < numbufs; i++) {
899 		if (lengths[i] > maxmap) {
900 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
901 			       "which is greater than %lu\n",
902 			       (long)(lengths[i]), (u_long)maxmap);
903 			return (E2BIG);
904 		}
905 	}
906 
907 	/*
908 	 * This keeps the kernel stack of current thread from getting
909 	 * swapped.  In low-memory situations where the kernel stack might
910 	 * otherwise get swapped out, this holds it and allows the thread
911 	 * to make progress and release the kernel mapped pages sooner.
912 	 *
913 	 * XXX KDM should I use P_NOSWAP instead?
914 	 */
915 	PHOLD(curproc);
916 
917 	for (i = 0; i < numbufs; i++) {
918 		/* Save the user's data address. */
919 		mapinfo->orig[i] = *data_ptrs[i];
920 
921 		/*
922 		 * For small buffers use malloc+copyin/copyout instead of
923 		 * mapping to KVA to avoid expensive TLB shootdowns.  For
924 		 * small allocations malloc is backed by UMA, and so much
925 		 * cheaper on SMP systems.
926 		 */
927 		if (lengths[i] <= periph_mapmem_thresh &&
928 		    ccb->ccb_h.func_code != XPT_MMC_IO) {
929 			*data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH,
930 			    M_WAITOK);
931 			if (dirs[i] != CAM_DIR_IN) {
932 				if (copyin(mapinfo->orig[i], *data_ptrs[i],
933 				    lengths[i]) != 0) {
934 					free(*data_ptrs[i], M_CAMPERIPH);
935 					*data_ptrs[i] = mapinfo->orig[i];
936 					goto fail;
937 				}
938 			} else
939 				bzero(*data_ptrs[i], lengths[i]);
940 			continue;
941 		}
942 
943 		/*
944 		 * Get the buffer.
945 		 */
946 		mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK);
947 
948 		/* set the direction */
949 		mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ?
950 		    BIO_WRITE : BIO_READ;
951 
952 		/* Map the buffer into kernel memory. */
953 		if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) {
954 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
955 			goto fail;
956 		}
957 
958 		/* set our pointer to the new mapped area */
959 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
960 	}
961 
962 	/*
963 	 * Now that we've gotten this far, change ownership to the kernel
964 	 * of the buffers so that we don't run afoul of returning to user
965 	 * space with locks (on the buffer) held.
966 	 */
967 	for (i = 0; i < numbufs; i++) {
968 		if (mapinfo->bp[i])
969 			BUF_KERNPROC(mapinfo->bp[i]);
970 	}
971 
972 	mapinfo->num_bufs_used = numbufs;
973 	return(0);
974 
975 fail:
976 	for (i--; i >= 0; i--) {
977 		if (mapinfo->bp[i]) {
978 			vunmapbuf(mapinfo->bp[i]);
979 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
980 		} else
981 			free(*data_ptrs[i], M_CAMPERIPH);
982 		*data_ptrs[i] = mapinfo->orig[i];
983 	}
984 	PRELE(curproc);
985 	return(EACCES);
986 }
987 
988 /*
989  * Unmap memory segments mapped into kernel virtual address space by
990  * cam_periph_mapmem().
991  */
992 void
993 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
994 {
995 	int numbufs, i;
996 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
997 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
998 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
999 
1000 	if (mapinfo->num_bufs_used <= 0) {
1001 		/* nothing to free and the process wasn't held. */
1002 		return;
1003 	}
1004 
1005 	switch (ccb->ccb_h.func_code) {
1006 	case XPT_DEV_MATCH:
1007 		if (ccb->cdm.pattern_buf_len > 0) {
1008 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1009 			lengths[0] = ccb->cdm.pattern_buf_len;
1010 			dirs[0] = CAM_DIR_OUT;
1011 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1012 			lengths[1] = ccb->cdm.match_buf_len;
1013 			dirs[1] = CAM_DIR_IN;
1014 			numbufs = 2;
1015 		} else {
1016 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1017 			lengths[0] = ccb->cdm.match_buf_len;
1018 			dirs[0] = CAM_DIR_IN;
1019 			numbufs = 1;
1020 		}
1021 		break;
1022 	case XPT_SCSI_IO:
1023 	case XPT_CONT_TARGET_IO:
1024 		data_ptrs[0] = &ccb->csio.data_ptr;
1025 		lengths[0] = ccb->csio.dxfer_len;
1026 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1027 		numbufs = 1;
1028 		break;
1029 	case XPT_ATA_IO:
1030 		data_ptrs[0] = &ccb->ataio.data_ptr;
1031 		lengths[0] = ccb->ataio.dxfer_len;
1032 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1033 		numbufs = 1;
1034 		break;
1035 	case XPT_MMC_IO:
1036 		data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data;
1037 		lengths[0] = sizeof(struct mmc_data *);
1038 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1039 		data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data;
1040 		lengths[1] = ccb->mmcio.cmd.data->len;
1041 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
1042 		numbufs = 2;
1043 		break;
1044 	case XPT_SMP_IO:
1045 		data_ptrs[0] = &ccb->smpio.smp_request;
1046 		lengths[0] = ccb->smpio.smp_request_len;
1047 		dirs[0] = CAM_DIR_OUT;
1048 		data_ptrs[1] = &ccb->smpio.smp_response;
1049 		lengths[1] = ccb->smpio.smp_response_len;
1050 		dirs[1] = CAM_DIR_IN;
1051 		numbufs = 2;
1052 		break;
1053 	case XPT_NVME_IO:
1054 	case XPT_NVME_ADMIN:
1055 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1056 		lengths[0] = ccb->nvmeio.dxfer_len;
1057 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1058 		numbufs = 1;
1059 		break;
1060 	case XPT_DEV_ADVINFO:
1061 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1062 		lengths[0] = ccb->cdai.bufsiz;
1063 		dirs[0] = CAM_DIR_IN;
1064 		numbufs = 1;
1065 		break;
1066 	default:
1067 		/* allow ourselves to be swapped once again */
1068 		PRELE(curproc);
1069 		return;
1070 		break; /* NOTREACHED */
1071 	}
1072 
1073 	for (i = 0; i < numbufs; i++) {
1074 		if (mapinfo->bp[i]) {
1075 			/* unmap the buffer */
1076 			vunmapbuf(mapinfo->bp[i]);
1077 
1078 			/* release the buffer */
1079 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
1080 		} else {
1081 			if (dirs[i] != CAM_DIR_OUT) {
1082 				copyout(*data_ptrs[i], mapinfo->orig[i],
1083 				    lengths[i]);
1084 			}
1085 			free(*data_ptrs[i], M_CAMPERIPH);
1086 		}
1087 
1088 		/* Set the user's pointer back to the original value */
1089 		*data_ptrs[i] = mapinfo->orig[i];
1090 	}
1091 
1092 	/* allow ourselves to be swapped once again */
1093 	PRELE(curproc);
1094 }
1095 
1096 int
1097 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
1098 		 int (*error_routine)(union ccb *ccb,
1099 				      cam_flags camflags,
1100 				      u_int32_t sense_flags))
1101 {
1102 	union ccb 	     *ccb;
1103 	int 		     error;
1104 	int		     found;
1105 
1106 	error = found = 0;
1107 
1108 	switch(cmd){
1109 	case CAMGETPASSTHRU:
1110 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
1111 		xpt_setup_ccb(&ccb->ccb_h,
1112 			      ccb->ccb_h.path,
1113 			      CAM_PRIORITY_NORMAL);
1114 		ccb->ccb_h.func_code = XPT_GDEVLIST;
1115 
1116 		/*
1117 		 * Basically, the point of this is that we go through
1118 		 * getting the list of devices, until we find a passthrough
1119 		 * device.  In the current version of the CAM code, the
1120 		 * only way to determine what type of device we're dealing
1121 		 * with is by its name.
1122 		 */
1123 		while (found == 0) {
1124 			ccb->cgdl.index = 0;
1125 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
1126 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
1127 				/* we want the next device in the list */
1128 				xpt_action(ccb);
1129 				if (strncmp(ccb->cgdl.periph_name,
1130 				    "pass", 4) == 0){
1131 					found = 1;
1132 					break;
1133 				}
1134 			}
1135 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
1136 			    (found == 0)) {
1137 				ccb->cgdl.periph_name[0] = '\0';
1138 				ccb->cgdl.unit_number = 0;
1139 				break;
1140 			}
1141 		}
1142 
1143 		/* copy the result back out */
1144 		bcopy(ccb, addr, sizeof(union ccb));
1145 
1146 		/* and release the ccb */
1147 		xpt_release_ccb(ccb);
1148 
1149 		break;
1150 	default:
1151 		error = ENOTTY;
1152 		break;
1153 	}
1154 	return(error);
1155 }
1156 
1157 static void
1158 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb)
1159 {
1160 
1161 	panic("%s: already done with ccb %p", __func__, done_ccb);
1162 }
1163 
1164 static void
1165 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb)
1166 {
1167 
1168 	/* Caller will release the CCB */
1169 	xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED);
1170 	done_ccb->ccb_h.cbfcnp = cam_periph_done_panic;
1171 	wakeup(&done_ccb->ccb_h.cbfcnp);
1172 }
1173 
1174 static void
1175 cam_periph_ccbwait(union ccb *ccb)
1176 {
1177 
1178 	if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
1179 		while (ccb->ccb_h.cbfcnp != cam_periph_done_panic)
1180 			xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp,
1181 			    PRIBIO, "cbwait", 0);
1182 	}
1183 	KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX &&
1184 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG,
1185 	    ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, "
1186 	     "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code,
1187 	     ccb->ccb_h.status, ccb->ccb_h.pinfo.index));
1188 }
1189 
1190 /*
1191  * Dispatch a CCB and wait for it to complete.  If the CCB has set a
1192  * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost.
1193  */
1194 int
1195 cam_periph_runccb(union ccb *ccb,
1196 		  int (*error_routine)(union ccb *ccb,
1197 				       cam_flags camflags,
1198 				       u_int32_t sense_flags),
1199 		  cam_flags camflags, u_int32_t sense_flags,
1200 		  struct devstat *ds)
1201 {
1202 	struct bintime *starttime;
1203 	struct bintime ltime;
1204 	int error;
1205 	bool must_poll;
1206 	uint32_t timeout = 1;
1207 
1208 	starttime = NULL;
1209 	xpt_path_assert(ccb->ccb_h.path, MA_OWNED);
1210 	KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0,
1211 	    ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb,
1212 	     ccb->ccb_h.func_code, ccb->ccb_h.flags));
1213 
1214 	/*
1215 	 * If the user has supplied a stats structure, and if we understand
1216 	 * this particular type of ccb, record the transaction start.
1217 	 */
1218 	if (ds != NULL &&
1219 	    (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1220 	    ccb->ccb_h.func_code == XPT_ATA_IO ||
1221 	    ccb->ccb_h.func_code == XPT_NVME_IO)) {
1222 		starttime = &ltime;
1223 		binuptime(starttime);
1224 		devstat_start_transaction(ds, starttime);
1225 	}
1226 
1227 	/*
1228 	 * We must poll the I/O while we're dumping. The scheduler is normally
1229 	 * stopped for dumping, except when we call doadump from ddb. While the
1230 	 * scheduler is running in this case, we still need to poll the I/O to
1231 	 * avoid sleeping waiting for the ccb to complete.
1232 	 *
1233 	 * A panic triggered dump stops the scheduler, any callback from the
1234 	 * shutdown_post_sync event will run with the scheduler stopped, but
1235 	 * before we're officially dumping. To avoid hanging in adashutdown
1236 	 * initiated commands (or other similar situations), we have to test for
1237 	 * either SCHEDULER_STOPPED() here as well.
1238 	 *
1239 	 * To avoid locking problems, dumping/polling callers must call
1240 	 * without a periph lock held.
1241 	 */
1242 	must_poll = dumping || SCHEDULER_STOPPED();
1243 	ccb->ccb_h.cbfcnp = cam_periph_done;
1244 
1245 	/*
1246 	 * If we're polling, then we need to ensure that we have ample resources
1247 	 * in the periph.  cam_periph_error can reschedule the ccb by calling
1248 	 * xpt_action and returning ERESTART, so we have to effect the polling
1249 	 * in the do loop below.
1250 	 */
1251 	if (must_poll) {
1252 		if (cam_sim_pollable(ccb->ccb_h.path->bus->sim))
1253 			timeout = xpt_poll_setup(ccb);
1254 		else
1255 			timeout = 0;
1256 	}
1257 
1258 	if (timeout == 0) {
1259 		ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
1260 		error = EBUSY;
1261 	} else {
1262 		xpt_action(ccb);
1263 		do {
1264 			if (must_poll) {
1265 				xpt_pollwait(ccb, timeout);
1266 				timeout = ccb->ccb_h.timeout * 10;
1267 			} else {
1268 				cam_periph_ccbwait(ccb);
1269 			}
1270 			if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1271 				error = 0;
1272 			else if (error_routine != NULL) {
1273 				ccb->ccb_h.cbfcnp = cam_periph_done;
1274 				error = (*error_routine)(ccb, camflags, sense_flags);
1275 			} else
1276 				error = 0;
1277 		} while (error == ERESTART);
1278 	}
1279 
1280 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1281 		cam_release_devq(ccb->ccb_h.path,
1282 				 /* relsim_flags */0,
1283 				 /* openings */0,
1284 				 /* timeout */0,
1285 				 /* getcount_only */ FALSE);
1286 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1287 	}
1288 
1289 	if (ds != NULL) {
1290 		uint32_t bytes;
1291 		devstat_tag_type tag;
1292 		bool valid = true;
1293 
1294 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1295 			bytes = ccb->csio.dxfer_len - ccb->csio.resid;
1296 			tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3);
1297 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1298 			bytes = ccb->ataio.dxfer_len - ccb->ataio.resid;
1299 			tag = (devstat_tag_type)0;
1300 		} else if (ccb->ccb_h.func_code == XPT_NVME_IO) {
1301 			bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */
1302 			tag = (devstat_tag_type)0;
1303 		} else {
1304 			valid = false;
1305 		}
1306 		if (valid)
1307 			devstat_end_transaction(ds, bytes, tag,
1308 			    ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ?
1309 			    DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ?
1310 			    DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime);
1311 	}
1312 
1313 	return(error);
1314 }
1315 
1316 void
1317 cam_freeze_devq(struct cam_path *path)
1318 {
1319 	struct ccb_hdr ccb_h;
1320 
1321 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
1322 	memset(&ccb_h, 0, sizeof(ccb_h));
1323 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
1324 	ccb_h.func_code = XPT_NOOP;
1325 	ccb_h.flags = CAM_DEV_QFREEZE;
1326 	xpt_action((union ccb *)&ccb_h);
1327 }
1328 
1329 u_int32_t
1330 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1331 		 u_int32_t openings, u_int32_t arg,
1332 		 int getcount_only)
1333 {
1334 	struct ccb_relsim crs;
1335 
1336 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
1337 	    relsim_flags, openings, arg, getcount_only));
1338 	memset(&crs, 0, sizeof(crs));
1339 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1340 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1341 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1342 	crs.release_flags = relsim_flags;
1343 	crs.openings = openings;
1344 	crs.release_timeout = arg;
1345 	xpt_action((union ccb *)&crs);
1346 	return (crs.qfrozen_cnt);
1347 }
1348 
1349 #define saved_ccb_ptr ppriv_ptr0
1350 static void
1351 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1352 {
1353 	union ccb      *saved_ccb;
1354 	cam_status	status;
1355 	struct scsi_start_stop_unit *scsi_cmd;
1356 	int		error = 0, error_code, sense_key, asc, ascq;
1357 	u_int16_t	done_flags;
1358 
1359 	scsi_cmd = (struct scsi_start_stop_unit *)
1360 	    &done_ccb->csio.cdb_io.cdb_bytes;
1361 	status = done_ccb->ccb_h.status;
1362 
1363 	if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1364 		if (scsi_extract_sense_ccb(done_ccb,
1365 		    &error_code, &sense_key, &asc, &ascq)) {
1366 			/*
1367 			 * If the error is "invalid field in CDB",
1368 			 * and the load/eject flag is set, turn the
1369 			 * flag off and try again.  This is just in
1370 			 * case the drive in question barfs on the
1371 			 * load eject flag.  The CAM code should set
1372 			 * the load/eject flag by default for
1373 			 * removable media.
1374 			 */
1375 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1376 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1377 			     (asc == 0x24) && (ascq == 0x00)) {
1378 				scsi_cmd->how &= ~SSS_LOEJ;
1379 				if (status & CAM_DEV_QFRZN) {
1380 					cam_release_devq(done_ccb->ccb_h.path,
1381 					    0, 0, 0, 0);
1382 					done_ccb->ccb_h.status &=
1383 					    ~CAM_DEV_QFRZN;
1384 				}
1385 				xpt_action(done_ccb);
1386 				goto out;
1387 			}
1388 		}
1389 		error = cam_periph_error(done_ccb, 0,
1390 		    SF_RETRY_UA | SF_NO_PRINT);
1391 		if (error == ERESTART)
1392 			goto out;
1393 		if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
1394 			cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1395 			done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1396 		}
1397 	} else {
1398 		/*
1399 		 * If we have successfully taken a device from the not
1400 		 * ready to ready state, re-scan the device and re-get
1401 		 * the inquiry information.  Many devices (mostly disks)
1402 		 * don't properly report their inquiry information unless
1403 		 * they are spun up.
1404 		 */
1405 		if (scsi_cmd->opcode == START_STOP_UNIT)
1406 			xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
1407 	}
1408 
1409 	/* If we tried long wait and still failed, remember that. */
1410 	if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) &&
1411 	    (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) {
1412 		periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT;
1413 		if (error != 0 && done_ccb->ccb_h.retry_count == 0)
1414 			periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED;
1415 	}
1416 
1417 	/*
1418 	 * After recovery action(s) completed, return to the original CCB.
1419 	 * If the recovery CCB has failed, considering its own possible
1420 	 * retries and recovery, assume we are back in state where we have
1421 	 * been originally, but without recovery hopes left.  In such case,
1422 	 * after the final attempt below, we cancel any further retries,
1423 	 * blocking by that also any new recovery attempts for this CCB,
1424 	 * and the result will be the final one returned to the CCB owher.
1425 	 */
1426 
1427 	/*
1428 	 * Copy the CCB back, preserving the alloc_flags field.  Things
1429 	 * will crash horribly if the CCBs are not of the same size.
1430 	 */
1431 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1432 	KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO,
1433 	    ("%s: saved_ccb func_code %#x != XPT_SCSI_IO",
1434 	     __func__, saved_ccb->ccb_h.func_code));
1435 	KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO,
1436 	    ("%s: done_ccb func_code %#x != XPT_SCSI_IO",
1437 	     __func__, done_ccb->ccb_h.func_code));
1438 	done_flags = done_ccb->ccb_h.alloc_flags;
1439 	bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio));
1440 	done_ccb->ccb_h.alloc_flags = done_flags;
1441 	xpt_free_ccb(saved_ccb);
1442 	if (done_ccb->ccb_h.cbfcnp != camperiphdone)
1443 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1444 	if (error != 0)
1445 		done_ccb->ccb_h.retry_count = 0;
1446 	xpt_action(done_ccb);
1447 
1448 out:
1449 	/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
1450 	cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1451 }
1452 
1453 /*
1454  * Generic Async Event handler.  Peripheral drivers usually
1455  * filter out the events that require personal attention,
1456  * and leave the rest to this function.
1457  */
1458 void
1459 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1460 		 struct cam_path *path, void *arg)
1461 {
1462 	switch (code) {
1463 	case AC_LOST_DEVICE:
1464 		cam_periph_invalidate(periph);
1465 		break;
1466 	default:
1467 		break;
1468 	}
1469 }
1470 
1471 void
1472 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1473 {
1474 	struct ccb_getdevstats cgds;
1475 
1476 	memset(&cgds, 0, sizeof(cgds));
1477 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1478 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1479 	xpt_action((union ccb *)&cgds);
1480 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1481 }
1482 
1483 void
1484 cam_periph_freeze_after_event(struct cam_periph *periph,
1485 			      struct timeval* event_time, u_int duration_ms)
1486 {
1487 	struct timeval delta;
1488 	struct timeval duration_tv;
1489 
1490 	if (!timevalisset(event_time))
1491 		return;
1492 
1493 	microtime(&delta);
1494 	timevalsub(&delta, event_time);
1495 	duration_tv.tv_sec = duration_ms / 1000;
1496 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1497 	if (timevalcmp(&delta, &duration_tv, <)) {
1498 		timevalsub(&duration_tv, &delta);
1499 
1500 		duration_ms = duration_tv.tv_sec * 1000;
1501 		duration_ms += duration_tv.tv_usec / 1000;
1502 		cam_freeze_devq(periph->path);
1503 		cam_release_devq(periph->path,
1504 				RELSIM_RELEASE_AFTER_TIMEOUT,
1505 				/*reduction*/0,
1506 				/*timeout*/duration_ms,
1507 				/*getcount_only*/0);
1508 	}
1509 
1510 }
1511 
1512 static int
1513 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
1514     cam_flags camflags, u_int32_t sense_flags,
1515     int *openings, u_int32_t *relsim_flags,
1516     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1517 {
1518 	struct cam_periph *periph;
1519 	int error;
1520 
1521 	switch (ccb->csio.scsi_status) {
1522 	case SCSI_STATUS_OK:
1523 	case SCSI_STATUS_COND_MET:
1524 	case SCSI_STATUS_INTERMED:
1525 	case SCSI_STATUS_INTERMED_COND_MET:
1526 		error = 0;
1527 		break;
1528 	case SCSI_STATUS_CMD_TERMINATED:
1529 	case SCSI_STATUS_CHECK_COND:
1530 		error = camperiphscsisenseerror(ccb, orig_ccb,
1531 					        camflags,
1532 					        sense_flags,
1533 					        openings,
1534 					        relsim_flags,
1535 					        timeout,
1536 					        action,
1537 					        action_string);
1538 		break;
1539 	case SCSI_STATUS_QUEUE_FULL:
1540 	{
1541 		/* no decrement */
1542 		struct ccb_getdevstats cgds;
1543 
1544 		/*
1545 		 * First off, find out what the current
1546 		 * transaction counts are.
1547 		 */
1548 		memset(&cgds, 0, sizeof(cgds));
1549 		xpt_setup_ccb(&cgds.ccb_h,
1550 			      ccb->ccb_h.path,
1551 			      CAM_PRIORITY_NORMAL);
1552 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1553 		xpt_action((union ccb *)&cgds);
1554 
1555 		/*
1556 		 * If we were the only transaction active, treat
1557 		 * the QUEUE FULL as if it were a BUSY condition.
1558 		 */
1559 		if (cgds.dev_active != 0) {
1560 			int total_openings;
1561 
1562 			/*
1563 		 	 * Reduce the number of openings to
1564 			 * be 1 less than the amount it took
1565 			 * to get a queue full bounded by the
1566 			 * minimum allowed tag count for this
1567 			 * device.
1568 		 	 */
1569 			total_openings = cgds.dev_active + cgds.dev_openings;
1570 			*openings = cgds.dev_active;
1571 			if (*openings < cgds.mintags)
1572 				*openings = cgds.mintags;
1573 			if (*openings < total_openings)
1574 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1575 			else {
1576 				/*
1577 				 * Some devices report queue full for
1578 				 * temporary resource shortages.  For
1579 				 * this reason, we allow a minimum
1580 				 * tag count to be entered via a
1581 				 * quirk entry to prevent the queue
1582 				 * count on these devices from falling
1583 				 * to a pessimisticly low value.  We
1584 				 * still wait for the next successful
1585 				 * completion, however, before queueing
1586 				 * more transactions to the device.
1587 				 */
1588 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1589 			}
1590 			*timeout = 0;
1591 			error = ERESTART;
1592 			*action &= ~SSQ_PRINT_SENSE;
1593 			break;
1594 		}
1595 		/* FALLTHROUGH */
1596 	}
1597 	case SCSI_STATUS_BUSY:
1598 		/*
1599 		 * Restart the queue after either another
1600 		 * command completes or a 1 second timeout.
1601 		 */
1602 		periph = xpt_path_periph(ccb->ccb_h.path);
1603 		if (periph->flags & CAM_PERIPH_INVALID) {
1604 			error = EIO;
1605 			*action_string = "Periph was invalidated";
1606 		} else if ((sense_flags & SF_RETRY_BUSY) != 0 ||
1607 		    ccb->ccb_h.retry_count > 0) {
1608 			if ((sense_flags & SF_RETRY_BUSY) == 0)
1609 				ccb->ccb_h.retry_count--;
1610 			error = ERESTART;
1611 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1612 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1613 			*timeout = 1000;
1614 		} else {
1615 			error = EIO;
1616 			*action_string = "Retries exhausted";
1617 		}
1618 		break;
1619 	case SCSI_STATUS_RESERV_CONFLICT:
1620 	default:
1621 		error = EIO;
1622 		break;
1623 	}
1624 	return (error);
1625 }
1626 
1627 static int
1628 camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
1629     cam_flags camflags, u_int32_t sense_flags,
1630     int *openings, u_int32_t *relsim_flags,
1631     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1632 {
1633 	struct cam_periph *periph;
1634 	union ccb *orig_ccb = ccb;
1635 	int error, recoveryccb;
1636 	u_int16_t flags;
1637 
1638 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1639 	if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL)
1640 		biotrack(ccb->csio.bio, __func__);
1641 #endif
1642 
1643 	periph = xpt_path_periph(ccb->ccb_h.path);
1644 	recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
1645 	if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
1646 		/*
1647 		 * If error recovery is already in progress, don't attempt
1648 		 * to process this error, but requeue it unconditionally
1649 		 * and attempt to process it once error recovery has
1650 		 * completed.  This failed command is probably related to
1651 		 * the error that caused the currently active error recovery
1652 		 * action so our  current recovery efforts should also
1653 		 * address this command.  Be aware that the error recovery
1654 		 * code assumes that only one recovery action is in progress
1655 		 * on a particular peripheral instance at any given time
1656 		 * (e.g. only one saved CCB for error recovery) so it is
1657 		 * imperitive that we don't violate this assumption.
1658 		 */
1659 		error = ERESTART;
1660 		*action &= ~SSQ_PRINT_SENSE;
1661 	} else {
1662 		scsi_sense_action err_action;
1663 		struct ccb_getdev cgd;
1664 
1665 		/*
1666 		 * Grab the inquiry data for this device.
1667 		 */
1668 		memset(&cgd, 0, sizeof(cgd));
1669 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1670 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1671 		xpt_action((union ccb *)&cgd);
1672 
1673 		err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
1674 		    sense_flags);
1675 		error = err_action & SS_ERRMASK;
1676 
1677 		/*
1678 		 * Do not autostart sequential access devices
1679 		 * to avoid unexpected tape loading.
1680 		 */
1681 		if ((err_action & SS_MASK) == SS_START &&
1682 		    SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1683 			*action_string = "Will not autostart a "
1684 			    "sequential access device";
1685 			goto sense_error_done;
1686 		}
1687 
1688 		/*
1689 		 * Avoid recovery recursion if recovery action is the same.
1690 		 */
1691 		if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
1692 			if (((err_action & SS_MASK) == SS_START &&
1693 			     ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
1694 			    ((err_action & SS_MASK) == SS_TUR &&
1695 			     (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
1696 				err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1697 				*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1698 				*timeout = 500;
1699 			}
1700 		}
1701 
1702 		/*
1703 		 * If the recovery action will consume a retry,
1704 		 * make sure we actually have retries available.
1705 		 */
1706 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1707 		 	if (ccb->ccb_h.retry_count > 0 &&
1708 			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1709 		 		ccb->ccb_h.retry_count--;
1710 			else {
1711 				*action_string = "Retries exhausted";
1712 				goto sense_error_done;
1713 			}
1714 		}
1715 
1716 		if ((err_action & SS_MASK) >= SS_START) {
1717 			/*
1718 			 * Do common portions of commands that
1719 			 * use recovery CCBs.
1720 			 */
1721 			orig_ccb = xpt_alloc_ccb_nowait();
1722 			if (orig_ccb == NULL) {
1723 				*action_string = "Can't allocate recovery CCB";
1724 				goto sense_error_done;
1725 			}
1726 			/*
1727 			 * Clear freeze flag for original request here, as
1728 			 * this freeze will be dropped as part of ERESTART.
1729 			 */
1730 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1731 
1732 			KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO,
1733 			    ("%s: ccb func_code %#x != XPT_SCSI_IO",
1734 			     __func__, ccb->ccb_h.func_code));
1735 			flags = orig_ccb->ccb_h.alloc_flags;
1736 			bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio));
1737 			orig_ccb->ccb_h.alloc_flags = flags;
1738 		}
1739 
1740 		switch (err_action & SS_MASK) {
1741 		case SS_NOP:
1742 			*action_string = "No recovery action needed";
1743 			error = 0;
1744 			break;
1745 		case SS_RETRY:
1746 			*action_string = "Retrying command (per sense data)";
1747 			error = ERESTART;
1748 			break;
1749 		case SS_FAIL:
1750 			*action_string = "Unretryable error";
1751 			break;
1752 		case SS_START:
1753 		{
1754 			int le;
1755 
1756 			/*
1757 			 * Send a start unit command to the device, and
1758 			 * then retry the command.
1759 			 */
1760 			*action_string = "Attempting to start unit";
1761 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1762 
1763 			/*
1764 			 * Check for removable media and set
1765 			 * load/eject flag appropriately.
1766 			 */
1767 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1768 				le = TRUE;
1769 			else
1770 				le = FALSE;
1771 
1772 			scsi_start_stop(&ccb->csio,
1773 					/*retries*/1,
1774 					camperiphdone,
1775 					MSG_SIMPLE_Q_TAG,
1776 					/*start*/TRUE,
1777 					/*load/eject*/le,
1778 					/*immediate*/FALSE,
1779 					SSD_FULL_SIZE,
1780 					/*timeout*/50000);
1781 			break;
1782 		}
1783 		case SS_TUR:
1784 		{
1785 			/*
1786 			 * Send a Test Unit Ready to the device.
1787 			 * If the 'many' flag is set, we send 120
1788 			 * test unit ready commands, one every half
1789 			 * second.  Otherwise, we just send one TUR.
1790 			 * We only want to do this if the retry
1791 			 * count has not been exhausted.
1792 			 */
1793 			int retries;
1794 
1795 			if ((err_action & SSQ_MANY) != 0 && (periph->flags &
1796 			     CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) {
1797 				periph->flags |= CAM_PERIPH_RECOVERY_WAIT;
1798 				*action_string = "Polling device for readiness";
1799 				retries = 120;
1800 			} else {
1801 				*action_string = "Testing device for readiness";
1802 				retries = 1;
1803 			}
1804 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1805 			scsi_test_unit_ready(&ccb->csio,
1806 					     retries,
1807 					     camperiphdone,
1808 					     MSG_SIMPLE_Q_TAG,
1809 					     SSD_FULL_SIZE,
1810 					     /*timeout*/5000);
1811 
1812 			/*
1813 			 * Accomplish our 500ms delay by deferring
1814 			 * the release of our device queue appropriately.
1815 			 */
1816 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1817 			*timeout = 500;
1818 			break;
1819 		}
1820 		default:
1821 			panic("Unhandled error action %x", err_action);
1822 		}
1823 
1824 		if ((err_action & SS_MASK) >= SS_START) {
1825 			/*
1826 			 * Drop the priority, so that the recovery
1827 			 * CCB is the first to execute.  Freeze the queue
1828 			 * after this command is sent so that we can
1829 			 * restore the old csio and have it queued in
1830 			 * the proper order before we release normal
1831 			 * transactions to the device.
1832 			 */
1833 			ccb->ccb_h.pinfo.priority--;
1834 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1835 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1836 			error = ERESTART;
1837 			*orig = orig_ccb;
1838 		}
1839 
1840 sense_error_done:
1841 		*action = err_action;
1842 	}
1843 	return (error);
1844 }
1845 
1846 /*
1847  * Generic error handler.  Peripheral drivers usually filter
1848  * out the errors that they handle in a unique manner, then
1849  * call this function.
1850  */
1851 int
1852 cam_periph_error(union ccb *ccb, cam_flags camflags,
1853 		 u_int32_t sense_flags)
1854 {
1855 	struct cam_path *newpath;
1856 	union ccb  *orig_ccb, *scan_ccb;
1857 	struct cam_periph *periph;
1858 	const char *action_string;
1859 	cam_status  status;
1860 	int	    frozen, error, openings, devctl_err;
1861 	u_int32_t   action, relsim_flags, timeout;
1862 
1863 	action = SSQ_PRINT_SENSE;
1864 	periph = xpt_path_periph(ccb->ccb_h.path);
1865 	action_string = NULL;
1866 	status = ccb->ccb_h.status;
1867 	frozen = (status & CAM_DEV_QFRZN) != 0;
1868 	status &= CAM_STATUS_MASK;
1869 	devctl_err = openings = relsim_flags = timeout = 0;
1870 	orig_ccb = ccb;
1871 
1872 	/* Filter the errors that should be reported via devctl */
1873 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
1874 	case CAM_CMD_TIMEOUT:
1875 	case CAM_REQ_ABORTED:
1876 	case CAM_REQ_CMP_ERR:
1877 	case CAM_REQ_TERMIO:
1878 	case CAM_UNREC_HBA_ERROR:
1879 	case CAM_DATA_RUN_ERR:
1880 	case CAM_SCSI_STATUS_ERROR:
1881 	case CAM_ATA_STATUS_ERROR:
1882 	case CAM_SMP_STATUS_ERROR:
1883 		devctl_err++;
1884 		break;
1885 	default:
1886 		break;
1887 	}
1888 
1889 	switch (status) {
1890 	case CAM_REQ_CMP:
1891 		error = 0;
1892 		action &= ~SSQ_PRINT_SENSE;
1893 		break;
1894 	case CAM_SCSI_STATUS_ERROR:
1895 		error = camperiphscsistatuserror(ccb, &orig_ccb,
1896 		    camflags, sense_flags, &openings, &relsim_flags,
1897 		    &timeout, &action, &action_string);
1898 		break;
1899 	case CAM_AUTOSENSE_FAIL:
1900 		error = EIO;	/* we have to kill the command */
1901 		break;
1902 	case CAM_UA_ABORT:
1903 	case CAM_UA_TERMIO:
1904 	case CAM_MSG_REJECT_REC:
1905 		/* XXX Don't know that these are correct */
1906 		error = EIO;
1907 		break;
1908 	case CAM_SEL_TIMEOUT:
1909 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1910 			if (ccb->ccb_h.retry_count > 0 &&
1911 			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1912 				ccb->ccb_h.retry_count--;
1913 				error = ERESTART;
1914 
1915 				/*
1916 				 * Wait a bit to give the device
1917 				 * time to recover before we try again.
1918 				 */
1919 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1920 				timeout = periph_selto_delay;
1921 				break;
1922 			}
1923 			action_string = "Retries exhausted";
1924 		}
1925 		/* FALLTHROUGH */
1926 	case CAM_DEV_NOT_THERE:
1927 		error = ENXIO;
1928 		action = SSQ_LOST;
1929 		break;
1930 	case CAM_REQ_INVALID:
1931 	case CAM_PATH_INVALID:
1932 	case CAM_NO_HBA:
1933 	case CAM_PROVIDE_FAIL:
1934 	case CAM_REQ_TOO_BIG:
1935 	case CAM_LUN_INVALID:
1936 	case CAM_TID_INVALID:
1937 	case CAM_FUNC_NOTAVAIL:
1938 		error = EINVAL;
1939 		break;
1940 	case CAM_SCSI_BUS_RESET:
1941 	case CAM_BDR_SENT:
1942 		/*
1943 		 * Commands that repeatedly timeout and cause these
1944 		 * kinds of error recovery actions, should return
1945 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1946 		 * that this command was an innocent bystander to
1947 		 * these events and should be unconditionally
1948 		 * retried.
1949 		 */
1950 	case CAM_REQUEUE_REQ:
1951 		/* Unconditional requeue if device is still there */
1952 		if (periph->flags & CAM_PERIPH_INVALID) {
1953 			action_string = "Periph was invalidated";
1954 			error = EIO;
1955 		} else if (sense_flags & SF_NO_RETRY) {
1956 			error = EIO;
1957 			action_string = "Retry was blocked";
1958 		} else {
1959 			error = ERESTART;
1960 			action &= ~SSQ_PRINT_SENSE;
1961 		}
1962 		break;
1963 	case CAM_RESRC_UNAVAIL:
1964 		/* Wait a bit for the resource shortage to abate. */
1965 		timeout = periph_noresrc_delay;
1966 		/* FALLTHROUGH */
1967 	case CAM_BUSY:
1968 		if (timeout == 0) {
1969 			/* Wait a bit for the busy condition to abate. */
1970 			timeout = periph_busy_delay;
1971 		}
1972 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1973 		/* FALLTHROUGH */
1974 	case CAM_ATA_STATUS_ERROR:
1975 	case CAM_REQ_CMP_ERR:
1976 	case CAM_CMD_TIMEOUT:
1977 	case CAM_UNEXP_BUSFREE:
1978 	case CAM_UNCOR_PARITY:
1979 	case CAM_DATA_RUN_ERR:
1980 	default:
1981 		if (periph->flags & CAM_PERIPH_INVALID) {
1982 			error = EIO;
1983 			action_string = "Periph was invalidated";
1984 		} else if (ccb->ccb_h.retry_count == 0) {
1985 			error = EIO;
1986 			action_string = "Retries exhausted";
1987 		} else if (sense_flags & SF_NO_RETRY) {
1988 			error = EIO;
1989 			action_string = "Retry was blocked";
1990 		} else {
1991 			ccb->ccb_h.retry_count--;
1992 			error = ERESTART;
1993 		}
1994 		break;
1995 	}
1996 
1997 	if ((sense_flags & SF_PRINT_ALWAYS) ||
1998 	    CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
1999 		action |= SSQ_PRINT_SENSE;
2000 	else if (sense_flags & SF_NO_PRINT)
2001 		action &= ~SSQ_PRINT_SENSE;
2002 	if ((action & SSQ_PRINT_SENSE) != 0)
2003 		cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
2004 	if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
2005 		if (error != ERESTART) {
2006 			if (action_string == NULL)
2007 				action_string = "Unretryable error";
2008 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
2009 			    error, action_string);
2010 		} else if (action_string != NULL)
2011 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
2012 		else {
2013 			xpt_print(ccb->ccb_h.path,
2014 			    "Retrying command, %d more tries remain\n",
2015 			    ccb->ccb_h.retry_count);
2016 		}
2017 	}
2018 
2019 	if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0))
2020 		cam_periph_devctl_notify(orig_ccb);
2021 
2022 	if ((action & SSQ_LOST) != 0) {
2023 		lun_id_t lun_id;
2024 
2025 		/*
2026 		 * For a selection timeout, we consider all of the LUNs on
2027 		 * the target to be gone.  If the status is CAM_DEV_NOT_THERE,
2028 		 * then we only get rid of the device(s) specified by the
2029 		 * path in the original CCB.
2030 		 */
2031 		if (status == CAM_SEL_TIMEOUT)
2032 			lun_id = CAM_LUN_WILDCARD;
2033 		else
2034 			lun_id = xpt_path_lun_id(ccb->ccb_h.path);
2035 
2036 		/* Should we do more if we can't create the path?? */
2037 		if (xpt_create_path(&newpath, periph,
2038 				    xpt_path_path_id(ccb->ccb_h.path),
2039 				    xpt_path_target_id(ccb->ccb_h.path),
2040 				    lun_id) == CAM_REQ_CMP) {
2041 			/*
2042 			 * Let peripheral drivers know that this
2043 			 * device has gone away.
2044 			 */
2045 			xpt_async(AC_LOST_DEVICE, newpath, NULL);
2046 			xpt_free_path(newpath);
2047 		}
2048 	}
2049 
2050 	/* Broadcast UNIT ATTENTIONs to all periphs. */
2051 	if ((action & SSQ_UA) != 0)
2052 		xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
2053 
2054 	/* Rescan target on "Reported LUNs data has changed" */
2055 	if ((action & SSQ_RESCAN) != 0) {
2056 		if (xpt_create_path(&newpath, NULL,
2057 				    xpt_path_path_id(ccb->ccb_h.path),
2058 				    xpt_path_target_id(ccb->ccb_h.path),
2059 				    CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
2060 			scan_ccb = xpt_alloc_ccb_nowait();
2061 			if (scan_ccb != NULL) {
2062 				scan_ccb->ccb_h.path = newpath;
2063 				scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
2064 				scan_ccb->crcn.flags = 0;
2065 				xpt_rescan(scan_ccb);
2066 			} else {
2067 				xpt_print(newpath,
2068 				    "Can't allocate CCB to rescan target\n");
2069 				xpt_free_path(newpath);
2070 			}
2071 		}
2072 	}
2073 
2074 	/* Attempt a retry */
2075 	if (error == ERESTART || error == 0) {
2076 		if (frozen != 0)
2077 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
2078 		if (error == ERESTART)
2079 			xpt_action(ccb);
2080 		if (frozen != 0)
2081 			cam_release_devq(ccb->ccb_h.path,
2082 					 relsim_flags,
2083 					 openings,
2084 					 timeout,
2085 					 /*getcount_only*/0);
2086 	}
2087 
2088 	return (error);
2089 }
2090 
2091 #define CAM_PERIPH_DEVD_MSG_SIZE	256
2092 
2093 static void
2094 cam_periph_devctl_notify(union ccb *ccb)
2095 {
2096 	struct cam_periph *periph;
2097 	struct ccb_getdev *cgd;
2098 	struct sbuf sb;
2099 	int serr, sk, asc, ascq;
2100 	char *sbmsg, *type;
2101 
2102 	sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT);
2103 	if (sbmsg == NULL)
2104 		return;
2105 
2106 	sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN);
2107 
2108 	periph = xpt_path_periph(ccb->ccb_h.path);
2109 	sbuf_printf(&sb, "device=%s%d ", periph->periph_name,
2110 	    periph->unit_number);
2111 
2112 	sbuf_printf(&sb, "serial=\"");
2113 	if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) {
2114 		xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path,
2115 		    CAM_PRIORITY_NORMAL);
2116 		cgd->ccb_h.func_code = XPT_GDEV_TYPE;
2117 		xpt_action((union ccb *)cgd);
2118 
2119 		if (cgd->ccb_h.status == CAM_REQ_CMP)
2120 			sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len);
2121 		xpt_free_ccb((union ccb *)cgd);
2122 	}
2123 	sbuf_printf(&sb, "\" ");
2124 	sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status);
2125 
2126 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
2127 	case CAM_CMD_TIMEOUT:
2128 		sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout);
2129 		type = "timeout";
2130 		break;
2131 	case CAM_SCSI_STATUS_ERROR:
2132 		sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status);
2133 		if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq))
2134 			sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ",
2135 			    serr, sk, asc, ascq);
2136 		type = "error";
2137 		break;
2138 	case CAM_ATA_STATUS_ERROR:
2139 		sbuf_printf(&sb, "RES=\"");
2140 		ata_res_sbuf(&ccb->ataio.res, &sb);
2141 		sbuf_printf(&sb, "\" ");
2142 		type = "error";
2143 		break;
2144 	default:
2145 		type = "error";
2146 		break;
2147 	}
2148 
2149 	if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
2150 		sbuf_printf(&sb, "CDB=\"");
2151 		scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb);
2152 		sbuf_printf(&sb, "\" ");
2153 	} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
2154 		sbuf_printf(&sb, "ACB=\"");
2155 		ata_cmd_sbuf(&ccb->ataio.cmd, &sb);
2156 		sbuf_printf(&sb, "\" ");
2157 	}
2158 
2159 	if (sbuf_finish(&sb) == 0)
2160 		devctl_notify("CAM", "periph", type, sbuf_data(&sb));
2161 	sbuf_delete(&sb);
2162 	free(sbmsg, M_CAMPERIPH);
2163 }
2164 
2165 /*
2166  * Sysctl to force an invalidation of the drive right now. Can be
2167  * called with CTLFLAG_MPSAFE since we take periph lock.
2168  */
2169 int
2170 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS)
2171 {
2172 	struct cam_periph *periph;
2173 	int error, value;
2174 
2175 	periph = arg1;
2176 	value = 0;
2177 	error = sysctl_handle_int(oidp, &value, 0, req);
2178 	if (error != 0 || req->newptr == NULL || value != 1)
2179 		return (error);
2180 
2181 	cam_periph_lock(periph);
2182 	cam_periph_invalidate(periph);
2183 	cam_periph_unlock(periph);
2184 
2185 	return (0);
2186 }
2187