1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/buf.h> 42 #include <sys/proc.h> 43 #include <sys/devicestat.h> 44 #include <sys/bus.h> 45 #include <sys/sbuf.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 union ccb **orig_ccb, 73 cam_flags camflags, 74 u_int32_t sense_flags, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout, 78 int *print, 79 const char **action_string); 80 static int camperiphscsisenseerror(union ccb *ccb, 81 union ccb **orig_ccb, 82 cam_flags camflags, 83 u_int32_t sense_flags, 84 int *openings, 85 u_int32_t *relsim_flags, 86 u_int32_t *timeout, 87 int *print, 88 const char **action_string); 89 90 static int nperiph_drivers; 91 static int initialized = 0; 92 struct periph_driver **periph_drivers; 93 94 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 95 96 static int periph_selto_delay = 1000; 97 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 98 static int periph_noresrc_delay = 500; 99 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 100 static int periph_busy_delay = 500; 101 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 102 103 104 void 105 periphdriver_register(void *data) 106 { 107 struct periph_driver *drv = (struct periph_driver *)data; 108 struct periph_driver **newdrivers, **old; 109 int ndrivers; 110 111 ndrivers = nperiph_drivers + 2; 112 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 113 M_WAITOK); 114 if (periph_drivers) 115 bcopy(periph_drivers, newdrivers, 116 sizeof(*newdrivers) * nperiph_drivers); 117 newdrivers[nperiph_drivers] = drv; 118 newdrivers[nperiph_drivers + 1] = NULL; 119 old = periph_drivers; 120 periph_drivers = newdrivers; 121 if (old) 122 free(old, M_CAMPERIPH); 123 nperiph_drivers++; 124 /* If driver marked as early or it is late now, initialize it. */ 125 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 126 initialized > 1) 127 (*drv->init)(); 128 } 129 130 void 131 periphdriver_init(int level) 132 { 133 int i, early; 134 135 initialized = max(initialized, level); 136 for (i = 0; periph_drivers[i] != NULL; i++) { 137 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 138 if (early == initialized) 139 (*periph_drivers[i]->init)(); 140 } 141 } 142 143 cam_status 144 cam_periph_alloc(periph_ctor_t *periph_ctor, 145 periph_oninv_t *periph_oninvalidate, 146 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 147 char *name, cam_periph_type type, struct cam_path *path, 148 ac_callback_t *ac_callback, ac_code code, void *arg) 149 { 150 struct periph_driver **p_drv; 151 struct cam_sim *sim; 152 struct cam_periph *periph; 153 struct cam_periph *cur_periph; 154 path_id_t path_id; 155 target_id_t target_id; 156 lun_id_t lun_id; 157 cam_status status; 158 u_int init_level; 159 160 init_level = 0; 161 /* 162 * Handle Hot-Plug scenarios. If there is already a peripheral 163 * of our type assigned to this path, we are likely waiting for 164 * final close on an old, invalidated, peripheral. If this is 165 * the case, queue up a deferred call to the peripheral's async 166 * handler. If it looks like a mistaken re-allocation, complain. 167 */ 168 if ((periph = cam_periph_find(path, name)) != NULL) { 169 170 if ((periph->flags & CAM_PERIPH_INVALID) != 0 171 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 172 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 173 periph->deferred_callback = ac_callback; 174 periph->deferred_ac = code; 175 return (CAM_REQ_INPROG); 176 } else { 177 printf("cam_periph_alloc: attempt to re-allocate " 178 "valid device %s%d rejected flags %#x " 179 "refcount %d\n", periph->periph_name, 180 periph->unit_number, periph->flags, 181 periph->refcount); 182 } 183 return (CAM_REQ_INVALID); 184 } 185 186 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 187 M_NOWAIT|M_ZERO); 188 189 if (periph == NULL) 190 return (CAM_RESRC_UNAVAIL); 191 192 init_level++; 193 194 195 sim = xpt_path_sim(path); 196 path_id = xpt_path_path_id(path); 197 target_id = xpt_path_target_id(path); 198 lun_id = xpt_path_lun_id(path); 199 cam_init_pinfo(&periph->pinfo); 200 periph->periph_start = periph_start; 201 periph->periph_dtor = periph_dtor; 202 periph->periph_oninval = periph_oninvalidate; 203 periph->type = type; 204 periph->periph_name = name; 205 periph->immediate_priority = CAM_PRIORITY_NONE; 206 periph->refcount = 0; 207 periph->sim = sim; 208 SLIST_INIT(&periph->ccb_list); 209 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 210 if (status != CAM_REQ_CMP) 211 goto failure; 212 periph->path = path; 213 214 xpt_lock_buses(); 215 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 216 if (strcmp((*p_drv)->driver_name, name) == 0) 217 break; 218 } 219 if (*p_drv == NULL) { 220 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 221 xpt_free_path(periph->path); 222 free(periph, M_CAMPERIPH); 223 xpt_unlock_buses(); 224 return (CAM_REQ_INVALID); 225 } 226 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 227 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 228 while (cur_periph != NULL 229 && cur_periph->unit_number < periph->unit_number) 230 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 231 if (cur_periph != NULL) { 232 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 233 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 234 } else { 235 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 236 (*p_drv)->generation++; 237 } 238 xpt_unlock_buses(); 239 240 init_level++; 241 242 status = xpt_add_periph(periph); 243 if (status != CAM_REQ_CMP) 244 goto failure; 245 246 init_level++; 247 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 248 249 status = periph_ctor(periph, arg); 250 251 if (status == CAM_REQ_CMP) 252 init_level++; 253 254 failure: 255 switch (init_level) { 256 case 4: 257 /* Initialized successfully */ 258 break; 259 case 3: 260 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 261 xpt_remove_periph(periph, /*topology_lock_held*/ 0); 262 /* FALLTHROUGH */ 263 case 2: 264 xpt_lock_buses(); 265 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 266 xpt_unlock_buses(); 267 xpt_free_path(periph->path); 268 /* FALLTHROUGH */ 269 case 1: 270 free(periph, M_CAMPERIPH); 271 /* FALLTHROUGH */ 272 case 0: 273 /* No cleanup to perform. */ 274 break; 275 default: 276 panic("%s: Unknown init level", __func__); 277 } 278 return(status); 279 } 280 281 /* 282 * Find a peripheral structure with the specified path, target, lun, 283 * and (optionally) type. If the name is NULL, this function will return 284 * the first peripheral driver that matches the specified path. 285 */ 286 struct cam_periph * 287 cam_periph_find(struct cam_path *path, char *name) 288 { 289 struct periph_driver **p_drv; 290 struct cam_periph *periph; 291 292 xpt_lock_buses(); 293 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 294 295 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 296 continue; 297 298 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 299 if (xpt_path_comp(periph->path, path) == 0) { 300 xpt_unlock_buses(); 301 mtx_assert(periph->sim->mtx, MA_OWNED); 302 return(periph); 303 } 304 } 305 if (name != NULL) { 306 xpt_unlock_buses(); 307 return(NULL); 308 } 309 } 310 xpt_unlock_buses(); 311 return(NULL); 312 } 313 314 /* 315 * Find peripheral driver instances attached to the specified path. 316 */ 317 int 318 cam_periph_list(struct cam_path *path, struct sbuf *sb) 319 { 320 struct sbuf local_sb; 321 struct periph_driver **p_drv; 322 struct cam_periph *periph; 323 int count; 324 int sbuf_alloc_len; 325 326 sbuf_alloc_len = 16; 327 retry: 328 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 329 count = 0; 330 xpt_lock_buses(); 331 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 332 333 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 334 if (xpt_path_comp(periph->path, path) != 0) 335 continue; 336 337 if (sbuf_len(&local_sb) != 0) 338 sbuf_cat(&local_sb, ","); 339 340 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 341 periph->unit_number); 342 343 if (sbuf_error(&local_sb) == ENOMEM) { 344 sbuf_alloc_len *= 2; 345 xpt_unlock_buses(); 346 sbuf_delete(&local_sb); 347 goto retry; 348 } 349 count++; 350 } 351 } 352 xpt_unlock_buses(); 353 sbuf_finish(&local_sb); 354 sbuf_cpy(sb, sbuf_data(&local_sb)); 355 sbuf_delete(&local_sb); 356 return (count); 357 } 358 359 cam_status 360 cam_periph_acquire(struct cam_periph *periph) 361 { 362 cam_status status; 363 364 status = CAM_REQ_CMP_ERR; 365 if (periph == NULL) 366 return (status); 367 368 xpt_lock_buses(); 369 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 370 periph->refcount++; 371 status = CAM_REQ_CMP; 372 } 373 xpt_unlock_buses(); 374 375 return (status); 376 } 377 378 void 379 cam_periph_release_locked_buses(struct cam_periph *periph) 380 { 381 if (periph->refcount != 0) { 382 periph->refcount--; 383 } else { 384 panic("%s: release of %p when refcount is zero\n ", __func__, 385 periph); 386 } 387 if (periph->refcount == 0 388 && (periph->flags & CAM_PERIPH_INVALID)) { 389 camperiphfree(periph); 390 } 391 } 392 393 void 394 cam_periph_release_locked(struct cam_periph *periph) 395 { 396 397 if (periph == NULL) 398 return; 399 400 xpt_lock_buses(); 401 cam_periph_release_locked_buses(periph); 402 xpt_unlock_buses(); 403 } 404 405 void 406 cam_periph_release(struct cam_periph *periph) 407 { 408 struct cam_sim *sim; 409 410 if (periph == NULL) 411 return; 412 413 sim = periph->sim; 414 mtx_assert(sim->mtx, MA_NOTOWNED); 415 mtx_lock(sim->mtx); 416 cam_periph_release_locked(periph); 417 mtx_unlock(sim->mtx); 418 } 419 420 int 421 cam_periph_hold(struct cam_periph *periph, int priority) 422 { 423 int error; 424 425 /* 426 * Increment the reference count on the peripheral 427 * while we wait for our lock attempt to succeed 428 * to ensure the peripheral doesn't disappear out 429 * from user us while we sleep. 430 */ 431 432 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 433 return (ENXIO); 434 435 mtx_assert(periph->sim->mtx, MA_OWNED); 436 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 437 periph->flags |= CAM_PERIPH_LOCK_WANTED; 438 if ((error = mtx_sleep(periph, periph->sim->mtx, priority, 439 "caplck", 0)) != 0) { 440 cam_periph_release_locked(periph); 441 return (error); 442 } 443 if (periph->flags & CAM_PERIPH_INVALID) { 444 cam_periph_release_locked(periph); 445 return (ENXIO); 446 } 447 } 448 449 periph->flags |= CAM_PERIPH_LOCKED; 450 return (0); 451 } 452 453 void 454 cam_periph_unhold(struct cam_periph *periph) 455 { 456 457 mtx_assert(periph->sim->mtx, MA_OWNED); 458 459 periph->flags &= ~CAM_PERIPH_LOCKED; 460 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 461 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 462 wakeup(periph); 463 } 464 465 cam_periph_release_locked(periph); 466 } 467 468 /* 469 * Look for the next unit number that is not currently in use for this 470 * peripheral type starting at "newunit". Also exclude unit numbers that 471 * are reserved by for future "hardwiring" unless we already know that this 472 * is a potential wired device. Only assume that the device is "wired" the 473 * first time through the loop since after that we'll be looking at unit 474 * numbers that did not match a wiring entry. 475 */ 476 static u_int 477 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 478 path_id_t pathid, target_id_t target, lun_id_t lun) 479 { 480 struct cam_periph *periph; 481 char *periph_name; 482 int i, val, dunit, r; 483 const char *dname, *strval; 484 485 periph_name = p_drv->driver_name; 486 for (;;newunit++) { 487 488 for (periph = TAILQ_FIRST(&p_drv->units); 489 periph != NULL && periph->unit_number != newunit; 490 periph = TAILQ_NEXT(periph, unit_links)) 491 ; 492 493 if (periph != NULL && periph->unit_number == newunit) { 494 if (wired != 0) { 495 xpt_print(periph->path, "Duplicate Wired " 496 "Device entry!\n"); 497 xpt_print(periph->path, "Second device (%s " 498 "device at scbus%d target %d lun %d) will " 499 "not be wired\n", periph_name, pathid, 500 target, lun); 501 wired = 0; 502 } 503 continue; 504 } 505 if (wired) 506 break; 507 508 /* 509 * Don't match entries like "da 4" as a wired down 510 * device, but do match entries like "da 4 target 5" 511 * or even "da 4 scbus 1". 512 */ 513 i = 0; 514 dname = periph_name; 515 for (;;) { 516 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 517 if (r != 0) 518 break; 519 /* if no "target" and no specific scbus, skip */ 520 if (resource_int_value(dname, dunit, "target", &val) && 521 (resource_string_value(dname, dunit, "at",&strval)|| 522 strcmp(strval, "scbus") == 0)) 523 continue; 524 if (newunit == dunit) 525 break; 526 } 527 if (r != 0) 528 break; 529 } 530 return (newunit); 531 } 532 533 static u_int 534 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 535 target_id_t target, lun_id_t lun) 536 { 537 u_int unit; 538 int wired, i, val, dunit; 539 const char *dname, *strval; 540 char pathbuf[32], *periph_name; 541 542 periph_name = p_drv->driver_name; 543 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 544 unit = 0; 545 i = 0; 546 dname = periph_name; 547 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 548 wired = 0) { 549 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 550 if (strcmp(strval, pathbuf) != 0) 551 continue; 552 wired++; 553 } 554 if (resource_int_value(dname, dunit, "target", &val) == 0) { 555 if (val != target) 556 continue; 557 wired++; 558 } 559 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 560 if (val != lun) 561 continue; 562 wired++; 563 } 564 if (wired != 0) { 565 unit = dunit; 566 break; 567 } 568 } 569 570 /* 571 * Either start from 0 looking for the next unit or from 572 * the unit number given in the resource config. This way, 573 * if we have wildcard matches, we don't return the same 574 * unit number twice. 575 */ 576 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 577 578 return (unit); 579 } 580 581 void 582 cam_periph_invalidate(struct cam_periph *periph) 583 { 584 585 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 586 /* 587 * We only call this routine the first time a peripheral is 588 * invalidated. 589 */ 590 if (((periph->flags & CAM_PERIPH_INVALID) == 0) 591 && (periph->periph_oninval != NULL)) 592 periph->periph_oninval(periph); 593 594 periph->flags |= CAM_PERIPH_INVALID; 595 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 596 597 xpt_lock_buses(); 598 if (periph->refcount == 0) 599 camperiphfree(periph); 600 xpt_unlock_buses(); 601 } 602 603 static void 604 camperiphfree(struct cam_periph *periph) 605 { 606 struct periph_driver **p_drv; 607 608 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 609 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 610 break; 611 } 612 if (*p_drv == NULL) { 613 printf("camperiphfree: attempt to free non-existant periph\n"); 614 return; 615 } 616 617 /* 618 * The peripheral destructor semantics dictate calling with only the 619 * SIM mutex held. Since it might sleep, it should not be called 620 * with the topology lock held. 621 */ 622 xpt_unlock_buses(); 623 624 /* 625 * We need to call the peripheral destructor prior to removing the 626 * peripheral from the list. Otherwise, we risk running into a 627 * scenario where the peripheral unit number may get reused 628 * (because it has been removed from the list), but some resources 629 * used by the peripheral are still hanging around. In particular, 630 * the devfs nodes used by some peripherals like the pass(4) driver 631 * aren't fully cleaned up until the destructor is run. If the 632 * unit number is reused before the devfs instance is fully gone, 633 * devfs will panic. 634 */ 635 if (periph->periph_dtor != NULL) 636 periph->periph_dtor(periph); 637 638 /* 639 * The peripheral list is protected by the topology lock. 640 */ 641 xpt_lock_buses(); 642 643 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 644 (*p_drv)->generation++; 645 646 xpt_remove_periph(periph, /*topology_lock_held*/ 1); 647 648 xpt_unlock_buses(); 649 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 650 651 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 652 union ccb ccb; 653 void *arg; 654 655 switch (periph->deferred_ac) { 656 case AC_FOUND_DEVICE: 657 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 658 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 659 xpt_action(&ccb); 660 arg = &ccb; 661 break; 662 case AC_PATH_REGISTERED: 663 ccb.ccb_h.func_code = XPT_PATH_INQ; 664 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 665 xpt_action(&ccb); 666 arg = &ccb; 667 break; 668 default: 669 arg = NULL; 670 break; 671 } 672 periph->deferred_callback(NULL, periph->deferred_ac, 673 periph->path, arg); 674 } 675 xpt_free_path(periph->path); 676 free(periph, M_CAMPERIPH); 677 xpt_lock_buses(); 678 } 679 680 /* 681 * Map user virtual pointers into kernel virtual address space, so we can 682 * access the memory. This won't work on physical pointers, for now it's 683 * up to the caller to check for that. (XXX KDM -- should we do that here 684 * instead?) This also only works for up to MAXPHYS memory. Since we use 685 * buffers to map stuff in and out, we're limited to the buffer size. 686 */ 687 int 688 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 689 { 690 int numbufs, i, j; 691 int flags[CAM_PERIPH_MAXMAPS]; 692 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 693 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 694 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 695 /* Some controllers may not be able to handle more data. */ 696 size_t maxmap = DFLTPHYS; 697 698 switch(ccb->ccb_h.func_code) { 699 case XPT_DEV_MATCH: 700 if (ccb->cdm.match_buf_len == 0) { 701 printf("cam_periph_mapmem: invalid match buffer " 702 "length 0\n"); 703 return(EINVAL); 704 } 705 if (ccb->cdm.pattern_buf_len > 0) { 706 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 707 lengths[0] = ccb->cdm.pattern_buf_len; 708 dirs[0] = CAM_DIR_OUT; 709 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 710 lengths[1] = ccb->cdm.match_buf_len; 711 dirs[1] = CAM_DIR_IN; 712 numbufs = 2; 713 } else { 714 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 715 lengths[0] = ccb->cdm.match_buf_len; 716 dirs[0] = CAM_DIR_IN; 717 numbufs = 1; 718 } 719 /* 720 * This request will not go to the hardware, no reason 721 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 722 */ 723 maxmap = MAXPHYS; 724 break; 725 case XPT_SCSI_IO: 726 case XPT_CONT_TARGET_IO: 727 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 728 return(0); 729 730 data_ptrs[0] = &ccb->csio.data_ptr; 731 lengths[0] = ccb->csio.dxfer_len; 732 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 733 numbufs = 1; 734 break; 735 case XPT_ATA_IO: 736 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 737 return(0); 738 739 data_ptrs[0] = &ccb->ataio.data_ptr; 740 lengths[0] = ccb->ataio.dxfer_len; 741 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 742 numbufs = 1; 743 break; 744 case XPT_SMP_IO: 745 data_ptrs[0] = &ccb->smpio.smp_request; 746 lengths[0] = ccb->smpio.smp_request_len; 747 dirs[0] = CAM_DIR_OUT; 748 data_ptrs[1] = &ccb->smpio.smp_response; 749 lengths[1] = ccb->smpio.smp_response_len; 750 dirs[1] = CAM_DIR_IN; 751 numbufs = 2; 752 break; 753 case XPT_DEV_ADVINFO: 754 if (ccb->cdai.bufsiz == 0) 755 return (0); 756 757 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 758 lengths[0] = ccb->cdai.bufsiz; 759 dirs[0] = CAM_DIR_IN; 760 numbufs = 1; 761 762 /* 763 * This request will not go to the hardware, no reason 764 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 765 */ 766 maxmap = MAXPHYS; 767 break; 768 default: 769 return(EINVAL); 770 break; /* NOTREACHED */ 771 } 772 773 /* 774 * Check the transfer length and permissions first, so we don't 775 * have to unmap any previously mapped buffers. 776 */ 777 for (i = 0; i < numbufs; i++) { 778 779 flags[i] = 0; 780 781 /* 782 * The userland data pointer passed in may not be page 783 * aligned. vmapbuf() truncates the address to a page 784 * boundary, so if the address isn't page aligned, we'll 785 * need enough space for the given transfer length, plus 786 * whatever extra space is necessary to make it to the page 787 * boundary. 788 */ 789 if ((lengths[i] + 790 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 791 printf("cam_periph_mapmem: attempt to map %lu bytes, " 792 "which is greater than %lu\n", 793 (long)(lengths[i] + 794 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 795 (u_long)maxmap); 796 return(E2BIG); 797 } 798 799 if (dirs[i] & CAM_DIR_OUT) { 800 flags[i] = BIO_WRITE; 801 } 802 803 if (dirs[i] & CAM_DIR_IN) { 804 flags[i] = BIO_READ; 805 } 806 807 } 808 809 /* this keeps the current process from getting swapped */ 810 /* 811 * XXX KDM should I use P_NOSWAP instead? 812 */ 813 PHOLD(curproc); 814 815 for (i = 0; i < numbufs; i++) { 816 /* 817 * Get the buffer. 818 */ 819 mapinfo->bp[i] = getpbuf(NULL); 820 821 /* save the buffer's data address */ 822 mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; 823 824 /* put our pointer in the data slot */ 825 mapinfo->bp[i]->b_data = *data_ptrs[i]; 826 827 /* set the transfer length, we know it's < MAXPHYS */ 828 mapinfo->bp[i]->b_bufsize = lengths[i]; 829 830 /* set the direction */ 831 mapinfo->bp[i]->b_iocmd = flags[i]; 832 833 /* 834 * Map the buffer into kernel memory. 835 * 836 * Note that useracc() alone is not a sufficient test. 837 * vmapbuf() can still fail due to a smaller file mapped 838 * into a larger area of VM, or if userland races against 839 * vmapbuf() after the useracc() check. 840 */ 841 if (vmapbuf(mapinfo->bp[i]) < 0) { 842 for (j = 0; j < i; ++j) { 843 *data_ptrs[j] = mapinfo->bp[j]->b_saveaddr; 844 vunmapbuf(mapinfo->bp[j]); 845 relpbuf(mapinfo->bp[j], NULL); 846 } 847 relpbuf(mapinfo->bp[i], NULL); 848 PRELE(curproc); 849 return(EACCES); 850 } 851 852 /* set our pointer to the new mapped area */ 853 *data_ptrs[i] = mapinfo->bp[i]->b_data; 854 855 mapinfo->num_bufs_used++; 856 } 857 858 /* 859 * Now that we've gotten this far, change ownership to the kernel 860 * of the buffers so that we don't run afoul of returning to user 861 * space with locks (on the buffer) held. 862 */ 863 for (i = 0; i < numbufs; i++) { 864 BUF_KERNPROC(mapinfo->bp[i]); 865 } 866 867 868 return(0); 869 } 870 871 /* 872 * Unmap memory segments mapped into kernel virtual address space by 873 * cam_periph_mapmem(). 874 */ 875 void 876 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 877 { 878 int numbufs, i; 879 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 880 881 if (mapinfo->num_bufs_used <= 0) { 882 /* allow ourselves to be swapped once again */ 883 PRELE(curproc); 884 return; 885 } 886 887 switch (ccb->ccb_h.func_code) { 888 case XPT_DEV_MATCH: 889 numbufs = min(mapinfo->num_bufs_used, 2); 890 891 if (numbufs == 1) { 892 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 893 } else { 894 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 895 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 896 } 897 break; 898 case XPT_SCSI_IO: 899 case XPT_CONT_TARGET_IO: 900 data_ptrs[0] = &ccb->csio.data_ptr; 901 numbufs = min(mapinfo->num_bufs_used, 1); 902 break; 903 case XPT_ATA_IO: 904 data_ptrs[0] = &ccb->ataio.data_ptr; 905 numbufs = min(mapinfo->num_bufs_used, 1); 906 break; 907 case XPT_SMP_IO: 908 numbufs = min(mapinfo->num_bufs_used, 2); 909 data_ptrs[0] = &ccb->smpio.smp_request; 910 data_ptrs[1] = &ccb->smpio.smp_response; 911 break; 912 case XPT_DEV_ADVINFO: 913 numbufs = min(mapinfo->num_bufs_used, 1); 914 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 915 break; 916 default: 917 /* allow ourselves to be swapped once again */ 918 PRELE(curproc); 919 return; 920 break; /* NOTREACHED */ 921 } 922 923 for (i = 0; i < numbufs; i++) { 924 /* Set the user's pointer back to the original value */ 925 *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; 926 927 /* unmap the buffer */ 928 vunmapbuf(mapinfo->bp[i]); 929 930 /* release the buffer */ 931 relpbuf(mapinfo->bp[i], NULL); 932 } 933 934 /* allow ourselves to be swapped once again */ 935 PRELE(curproc); 936 } 937 938 union ccb * 939 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 940 { 941 struct ccb_hdr *ccb_h; 942 943 mtx_assert(periph->sim->mtx, MA_OWNED); 944 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n")); 945 946 while (SLIST_FIRST(&periph->ccb_list) == NULL) { 947 if (periph->immediate_priority > priority) 948 periph->immediate_priority = priority; 949 xpt_schedule(periph, priority); 950 if ((SLIST_FIRST(&periph->ccb_list) != NULL) 951 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority)) 952 break; 953 mtx_assert(periph->sim->mtx, MA_OWNED); 954 mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb", 955 0); 956 } 957 958 ccb_h = SLIST_FIRST(&periph->ccb_list); 959 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 960 return ((union ccb *)ccb_h); 961 } 962 963 void 964 cam_periph_ccbwait(union ccb *ccb) 965 { 966 struct cam_sim *sim; 967 968 sim = xpt_path_sim(ccb->ccb_h.path); 969 if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) 970 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) 971 mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0); 972 } 973 974 int 975 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 976 int (*error_routine)(union ccb *ccb, 977 cam_flags camflags, 978 u_int32_t sense_flags)) 979 { 980 union ccb *ccb; 981 int error; 982 int found; 983 984 error = found = 0; 985 986 switch(cmd){ 987 case CAMGETPASSTHRU: 988 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 989 xpt_setup_ccb(&ccb->ccb_h, 990 ccb->ccb_h.path, 991 CAM_PRIORITY_NORMAL); 992 ccb->ccb_h.func_code = XPT_GDEVLIST; 993 994 /* 995 * Basically, the point of this is that we go through 996 * getting the list of devices, until we find a passthrough 997 * device. In the current version of the CAM code, the 998 * only way to determine what type of device we're dealing 999 * with is by its name. 1000 */ 1001 while (found == 0) { 1002 ccb->cgdl.index = 0; 1003 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1004 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1005 1006 /* we want the next device in the list */ 1007 xpt_action(ccb); 1008 if (strncmp(ccb->cgdl.periph_name, 1009 "pass", 4) == 0){ 1010 found = 1; 1011 break; 1012 } 1013 } 1014 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1015 (found == 0)) { 1016 ccb->cgdl.periph_name[0] = '\0'; 1017 ccb->cgdl.unit_number = 0; 1018 break; 1019 } 1020 } 1021 1022 /* copy the result back out */ 1023 bcopy(ccb, addr, sizeof(union ccb)); 1024 1025 /* and release the ccb */ 1026 xpt_release_ccb(ccb); 1027 1028 break; 1029 default: 1030 error = ENOTTY; 1031 break; 1032 } 1033 return(error); 1034 } 1035 1036 int 1037 cam_periph_runccb(union ccb *ccb, 1038 int (*error_routine)(union ccb *ccb, 1039 cam_flags camflags, 1040 u_int32_t sense_flags), 1041 cam_flags camflags, u_int32_t sense_flags, 1042 struct devstat *ds) 1043 { 1044 struct cam_sim *sim; 1045 int error; 1046 1047 error = 0; 1048 sim = xpt_path_sim(ccb->ccb_h.path); 1049 mtx_assert(sim->mtx, MA_OWNED); 1050 1051 /* 1052 * If the user has supplied a stats structure, and if we understand 1053 * this particular type of ccb, record the transaction start. 1054 */ 1055 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 1056 ccb->ccb_h.func_code == XPT_ATA_IO)) 1057 devstat_start_transaction(ds, NULL); 1058 1059 xpt_action(ccb); 1060 1061 do { 1062 cam_periph_ccbwait(ccb); 1063 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1064 error = 0; 1065 else if (error_routine != NULL) 1066 error = (*error_routine)(ccb, camflags, sense_flags); 1067 else 1068 error = 0; 1069 1070 } while (error == ERESTART); 1071 1072 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1073 cam_release_devq(ccb->ccb_h.path, 1074 /* relsim_flags */0, 1075 /* openings */0, 1076 /* timeout */0, 1077 /* getcount_only */ FALSE); 1078 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1079 } 1080 1081 if (ds != NULL) { 1082 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1083 devstat_end_transaction(ds, 1084 ccb->csio.dxfer_len, 1085 ccb->csio.tag_action & 0x3, 1086 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1087 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1088 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1089 DEVSTAT_WRITE : 1090 DEVSTAT_READ, NULL, NULL); 1091 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1092 devstat_end_transaction(ds, 1093 ccb->ataio.dxfer_len, 1094 ccb->ataio.tag_action & 0x3, 1095 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1096 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1097 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1098 DEVSTAT_WRITE : 1099 DEVSTAT_READ, NULL, NULL); 1100 } 1101 } 1102 1103 return(error); 1104 } 1105 1106 void 1107 cam_freeze_devq(struct cam_path *path) 1108 { 1109 1110 cam_freeze_devq_arg(path, 0, 0); 1111 } 1112 1113 void 1114 cam_freeze_devq_arg(struct cam_path *path, uint32_t flags, uint32_t arg) 1115 { 1116 struct ccb_relsim crs; 1117 1118 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NONE); 1119 crs.ccb_h.func_code = XPT_FREEZE_QUEUE; 1120 crs.release_flags = flags; 1121 crs.openings = arg; 1122 crs.release_timeout = arg; 1123 xpt_action((union ccb *)&crs); 1124 } 1125 1126 u_int32_t 1127 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1128 u_int32_t openings, u_int32_t arg, 1129 int getcount_only) 1130 { 1131 struct ccb_relsim crs; 1132 1133 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1134 crs.ccb_h.func_code = XPT_REL_SIMQ; 1135 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1136 crs.release_flags = relsim_flags; 1137 crs.openings = openings; 1138 crs.release_timeout = arg; 1139 xpt_action((union ccb *)&crs); 1140 return (crs.qfrozen_cnt); 1141 } 1142 1143 #define saved_ccb_ptr ppriv_ptr0 1144 static void 1145 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1146 { 1147 union ccb *saved_ccb; 1148 cam_status status; 1149 struct scsi_start_stop_unit *scsi_cmd; 1150 int error_code, sense_key, asc, ascq; 1151 1152 scsi_cmd = (struct scsi_start_stop_unit *) 1153 &done_ccb->csio.cdb_io.cdb_bytes; 1154 status = done_ccb->ccb_h.status; 1155 1156 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1157 if (scsi_extract_sense_ccb(done_ccb, 1158 &error_code, &sense_key, &asc, &ascq)) { 1159 /* 1160 * If the error is "invalid field in CDB", 1161 * and the load/eject flag is set, turn the 1162 * flag off and try again. This is just in 1163 * case the drive in question barfs on the 1164 * load eject flag. The CAM code should set 1165 * the load/eject flag by default for 1166 * removable media. 1167 */ 1168 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1169 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1170 (asc == 0x24) && (ascq == 0x00)) { 1171 scsi_cmd->how &= ~SSS_LOEJ; 1172 if (status & CAM_DEV_QFRZN) { 1173 cam_release_devq(done_ccb->ccb_h.path, 1174 0, 0, 0, 0); 1175 done_ccb->ccb_h.status &= 1176 ~CAM_DEV_QFRZN; 1177 } 1178 xpt_action(done_ccb); 1179 goto out; 1180 } 1181 } 1182 if (cam_periph_error(done_ccb, 1183 0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART) 1184 goto out; 1185 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1186 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1187 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1188 } 1189 } else { 1190 /* 1191 * If we have successfully taken a device from the not 1192 * ready to ready state, re-scan the device and re-get 1193 * the inquiry information. Many devices (mostly disks) 1194 * don't properly report their inquiry information unless 1195 * they are spun up. 1196 */ 1197 if (scsi_cmd->opcode == START_STOP_UNIT) 1198 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1199 } 1200 1201 /* 1202 * Perform the final retry with the original CCB so that final 1203 * error processing is performed by the owner of the CCB. 1204 */ 1205 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1206 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1207 xpt_free_ccb(saved_ccb); 1208 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1209 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1210 xpt_action(done_ccb); 1211 1212 out: 1213 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1214 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1215 } 1216 1217 /* 1218 * Generic Async Event handler. Peripheral drivers usually 1219 * filter out the events that require personal attention, 1220 * and leave the rest to this function. 1221 */ 1222 void 1223 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1224 struct cam_path *path, void *arg) 1225 { 1226 switch (code) { 1227 case AC_LOST_DEVICE: 1228 cam_periph_invalidate(periph); 1229 break; 1230 default: 1231 break; 1232 } 1233 } 1234 1235 void 1236 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1237 { 1238 struct ccb_getdevstats cgds; 1239 1240 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1241 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1242 xpt_action((union ccb *)&cgds); 1243 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1244 } 1245 1246 void 1247 cam_periph_freeze_after_event(struct cam_periph *periph, 1248 struct timeval* event_time, u_int duration_ms) 1249 { 1250 struct timeval delta; 1251 struct timeval duration_tv; 1252 1253 microtime(&delta); 1254 timevalsub(&delta, event_time); 1255 duration_tv.tv_sec = duration_ms / 1000; 1256 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1257 if (timevalcmp(&delta, &duration_tv, <)) { 1258 timevalsub(&duration_tv, &delta); 1259 1260 duration_ms = duration_tv.tv_sec * 1000; 1261 duration_ms += duration_tv.tv_usec / 1000; 1262 cam_freeze_devq(periph->path); 1263 cam_release_devq(periph->path, 1264 RELSIM_RELEASE_AFTER_TIMEOUT, 1265 /*reduction*/0, 1266 /*timeout*/duration_ms, 1267 /*getcount_only*/0); 1268 } 1269 1270 } 1271 1272 static int 1273 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1274 cam_flags camflags, u_int32_t sense_flags, 1275 int *openings, u_int32_t *relsim_flags, 1276 u_int32_t *timeout, int *print, const char **action_string) 1277 { 1278 int error; 1279 1280 switch (ccb->csio.scsi_status) { 1281 case SCSI_STATUS_OK: 1282 case SCSI_STATUS_COND_MET: 1283 case SCSI_STATUS_INTERMED: 1284 case SCSI_STATUS_INTERMED_COND_MET: 1285 error = 0; 1286 break; 1287 case SCSI_STATUS_CMD_TERMINATED: 1288 case SCSI_STATUS_CHECK_COND: 1289 error = camperiphscsisenseerror(ccb, orig_ccb, 1290 camflags, 1291 sense_flags, 1292 openings, 1293 relsim_flags, 1294 timeout, 1295 print, 1296 action_string); 1297 break; 1298 case SCSI_STATUS_QUEUE_FULL: 1299 { 1300 /* no decrement */ 1301 struct ccb_getdevstats cgds; 1302 1303 /* 1304 * First off, find out what the current 1305 * transaction counts are. 1306 */ 1307 xpt_setup_ccb(&cgds.ccb_h, 1308 ccb->ccb_h.path, 1309 CAM_PRIORITY_NORMAL); 1310 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1311 xpt_action((union ccb *)&cgds); 1312 1313 /* 1314 * If we were the only transaction active, treat 1315 * the QUEUE FULL as if it were a BUSY condition. 1316 */ 1317 if (cgds.dev_active != 0) { 1318 int total_openings; 1319 1320 /* 1321 * Reduce the number of openings to 1322 * be 1 less than the amount it took 1323 * to get a queue full bounded by the 1324 * minimum allowed tag count for this 1325 * device. 1326 */ 1327 total_openings = cgds.dev_active + cgds.dev_openings; 1328 *openings = cgds.dev_active; 1329 if (*openings < cgds.mintags) 1330 *openings = cgds.mintags; 1331 if (*openings < total_openings) 1332 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1333 else { 1334 /* 1335 * Some devices report queue full for 1336 * temporary resource shortages. For 1337 * this reason, we allow a minimum 1338 * tag count to be entered via a 1339 * quirk entry to prevent the queue 1340 * count on these devices from falling 1341 * to a pessimisticly low value. We 1342 * still wait for the next successful 1343 * completion, however, before queueing 1344 * more transactions to the device. 1345 */ 1346 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1347 } 1348 *timeout = 0; 1349 error = ERESTART; 1350 *print = 0; 1351 break; 1352 } 1353 /* FALLTHROUGH */ 1354 } 1355 case SCSI_STATUS_BUSY: 1356 /* 1357 * Restart the queue after either another 1358 * command completes or a 1 second timeout. 1359 */ 1360 if (ccb->ccb_h.retry_count > 0) { 1361 ccb->ccb_h.retry_count--; 1362 error = ERESTART; 1363 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1364 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1365 *timeout = 1000; 1366 } else { 1367 error = EIO; 1368 } 1369 break; 1370 case SCSI_STATUS_RESERV_CONFLICT: 1371 default: 1372 error = EIO; 1373 break; 1374 } 1375 return (error); 1376 } 1377 1378 static int 1379 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1380 cam_flags camflags, u_int32_t sense_flags, 1381 int *openings, u_int32_t *relsim_flags, 1382 u_int32_t *timeout, int *print, const char **action_string) 1383 { 1384 struct cam_periph *periph; 1385 union ccb *orig_ccb = ccb; 1386 int error, recoveryccb; 1387 1388 periph = xpt_path_periph(ccb->ccb_h.path); 1389 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1390 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1391 /* 1392 * If error recovery is already in progress, don't attempt 1393 * to process this error, but requeue it unconditionally 1394 * and attempt to process it once error recovery has 1395 * completed. This failed command is probably related to 1396 * the error that caused the currently active error recovery 1397 * action so our current recovery efforts should also 1398 * address this command. Be aware that the error recovery 1399 * code assumes that only one recovery action is in progress 1400 * on a particular peripheral instance at any given time 1401 * (e.g. only one saved CCB for error recovery) so it is 1402 * imperitive that we don't violate this assumption. 1403 */ 1404 error = ERESTART; 1405 *print = 0; 1406 } else { 1407 scsi_sense_action err_action; 1408 struct ccb_getdev cgd; 1409 1410 /* 1411 * Grab the inquiry data for this device. 1412 */ 1413 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1414 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1415 xpt_action((union ccb *)&cgd); 1416 1417 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1418 sense_flags); 1419 error = err_action & SS_ERRMASK; 1420 1421 /* 1422 * Do not autostart sequential access devices 1423 * to avoid unexpected tape loading. 1424 */ 1425 if ((err_action & SS_MASK) == SS_START && 1426 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1427 *action_string = "Will not autostart a " 1428 "sequential access device"; 1429 goto sense_error_done; 1430 } 1431 1432 /* 1433 * Avoid recovery recursion if recovery action is the same. 1434 */ 1435 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1436 if (((err_action & SS_MASK) == SS_START && 1437 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1438 ((err_action & SS_MASK) == SS_TUR && 1439 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1440 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1441 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1442 *timeout = 500; 1443 } 1444 } 1445 1446 /* 1447 * If the recovery action will consume a retry, 1448 * make sure we actually have retries available. 1449 */ 1450 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1451 if (ccb->ccb_h.retry_count > 0 && 1452 (periph->flags & CAM_PERIPH_INVALID) == 0) 1453 ccb->ccb_h.retry_count--; 1454 else { 1455 *action_string = "Retries exhausted"; 1456 goto sense_error_done; 1457 } 1458 } 1459 1460 if ((err_action & SS_MASK) >= SS_START) { 1461 /* 1462 * Do common portions of commands that 1463 * use recovery CCBs. 1464 */ 1465 orig_ccb = xpt_alloc_ccb_nowait(); 1466 if (orig_ccb == NULL) { 1467 *action_string = "Can't allocate recovery CCB"; 1468 goto sense_error_done; 1469 } 1470 /* 1471 * Clear freeze flag for original request here, as 1472 * this freeze will be dropped as part of ERESTART. 1473 */ 1474 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1475 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1476 } 1477 1478 switch (err_action & SS_MASK) { 1479 case SS_NOP: 1480 *action_string = "No recovery action needed"; 1481 error = 0; 1482 break; 1483 case SS_RETRY: 1484 *action_string = "Retrying command (per sense data)"; 1485 error = ERESTART; 1486 break; 1487 case SS_FAIL: 1488 *action_string = "Unretryable error"; 1489 break; 1490 case SS_START: 1491 { 1492 int le; 1493 1494 /* 1495 * Send a start unit command to the device, and 1496 * then retry the command. 1497 */ 1498 *action_string = "Attempting to start unit"; 1499 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1500 1501 /* 1502 * Check for removable media and set 1503 * load/eject flag appropriately. 1504 */ 1505 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1506 le = TRUE; 1507 else 1508 le = FALSE; 1509 1510 scsi_start_stop(&ccb->csio, 1511 /*retries*/1, 1512 camperiphdone, 1513 MSG_SIMPLE_Q_TAG, 1514 /*start*/TRUE, 1515 /*load/eject*/le, 1516 /*immediate*/FALSE, 1517 SSD_FULL_SIZE, 1518 /*timeout*/50000); 1519 break; 1520 } 1521 case SS_TUR: 1522 { 1523 /* 1524 * Send a Test Unit Ready to the device. 1525 * If the 'many' flag is set, we send 120 1526 * test unit ready commands, one every half 1527 * second. Otherwise, we just send one TUR. 1528 * We only want to do this if the retry 1529 * count has not been exhausted. 1530 */ 1531 int retries; 1532 1533 if ((err_action & SSQ_MANY) != 0) { 1534 *action_string = "Polling device for readiness"; 1535 retries = 120; 1536 } else { 1537 *action_string = "Testing device for readiness"; 1538 retries = 1; 1539 } 1540 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1541 scsi_test_unit_ready(&ccb->csio, 1542 retries, 1543 camperiphdone, 1544 MSG_SIMPLE_Q_TAG, 1545 SSD_FULL_SIZE, 1546 /*timeout*/5000); 1547 1548 /* 1549 * Accomplish our 500ms delay by deferring 1550 * the release of our device queue appropriately. 1551 */ 1552 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1553 *timeout = 500; 1554 break; 1555 } 1556 default: 1557 panic("Unhandled error action %x", err_action); 1558 } 1559 1560 if ((err_action & SS_MASK) >= SS_START) { 1561 /* 1562 * Drop the priority, so that the recovery 1563 * CCB is the first to execute. Freeze the queue 1564 * after this command is sent so that we can 1565 * restore the old csio and have it queued in 1566 * the proper order before we release normal 1567 * transactions to the device. 1568 */ 1569 ccb->ccb_h.pinfo.priority--; 1570 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1571 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1572 error = ERESTART; 1573 *orig = orig_ccb; 1574 } 1575 1576 sense_error_done: 1577 *print = ((err_action & SSQ_PRINT_SENSE) != 0); 1578 } 1579 return (error); 1580 } 1581 1582 /* 1583 * Generic error handler. Peripheral drivers usually filter 1584 * out the errors that they handle in a unique mannor, then 1585 * call this function. 1586 */ 1587 int 1588 cam_periph_error(union ccb *ccb, cam_flags camflags, 1589 u_int32_t sense_flags, union ccb *save_ccb) 1590 { 1591 union ccb *orig_ccb; 1592 struct cam_periph *periph; 1593 const char *action_string; 1594 cam_status status; 1595 int frozen, error, openings, print, lost_device; 1596 int error_code, sense_key, asc, ascq; 1597 u_int32_t relsim_flags, timeout; 1598 1599 print = 1; 1600 periph = xpt_path_periph(ccb->ccb_h.path); 1601 action_string = NULL; 1602 status = ccb->ccb_h.status; 1603 frozen = (status & CAM_DEV_QFRZN) != 0; 1604 status &= CAM_STATUS_MASK; 1605 openings = relsim_flags = timeout = lost_device = 0; 1606 orig_ccb = ccb; 1607 1608 switch (status) { 1609 case CAM_REQ_CMP: 1610 error = 0; 1611 print = 0; 1612 break; 1613 case CAM_SCSI_STATUS_ERROR: 1614 error = camperiphscsistatuserror(ccb, &orig_ccb, 1615 camflags, sense_flags, &openings, &relsim_flags, 1616 &timeout, &print, &action_string); 1617 break; 1618 case CAM_AUTOSENSE_FAIL: 1619 error = EIO; /* we have to kill the command */ 1620 break; 1621 case CAM_UA_ABORT: 1622 case CAM_UA_TERMIO: 1623 case CAM_MSG_REJECT_REC: 1624 /* XXX Don't know that these are correct */ 1625 error = EIO; 1626 break; 1627 case CAM_SEL_TIMEOUT: 1628 if ((camflags & CAM_RETRY_SELTO) != 0) { 1629 if (ccb->ccb_h.retry_count > 0 && 1630 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1631 ccb->ccb_h.retry_count--; 1632 error = ERESTART; 1633 1634 /* 1635 * Wait a bit to give the device 1636 * time to recover before we try again. 1637 */ 1638 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1639 timeout = periph_selto_delay; 1640 break; 1641 } 1642 action_string = "Retries exhausted"; 1643 } 1644 /* FALLTHROUGH */ 1645 case CAM_DEV_NOT_THERE: 1646 error = ENXIO; 1647 print = 0; 1648 lost_device = 1; 1649 break; 1650 case CAM_REQ_INVALID: 1651 case CAM_PATH_INVALID: 1652 case CAM_NO_HBA: 1653 case CAM_PROVIDE_FAIL: 1654 case CAM_REQ_TOO_BIG: 1655 case CAM_LUN_INVALID: 1656 case CAM_TID_INVALID: 1657 error = EINVAL; 1658 break; 1659 case CAM_SCSI_BUS_RESET: 1660 case CAM_BDR_SENT: 1661 /* 1662 * Commands that repeatedly timeout and cause these 1663 * kinds of error recovery actions, should return 1664 * CAM_CMD_TIMEOUT, which allows us to safely assume 1665 * that this command was an innocent bystander to 1666 * these events and should be unconditionally 1667 * retried. 1668 */ 1669 case CAM_REQUEUE_REQ: 1670 /* Unconditional requeue if device is still there */ 1671 if (periph->flags & CAM_PERIPH_INVALID) { 1672 action_string = "Periph was invalidated"; 1673 error = EIO; 1674 } else if (sense_flags & SF_NO_RETRY) { 1675 error = EIO; 1676 action_string = "Retry was blocked"; 1677 } else { 1678 error = ERESTART; 1679 print = 0; 1680 } 1681 break; 1682 case CAM_RESRC_UNAVAIL: 1683 /* Wait a bit for the resource shortage to abate. */ 1684 timeout = periph_noresrc_delay; 1685 /* FALLTHROUGH */ 1686 case CAM_BUSY: 1687 if (timeout == 0) { 1688 /* Wait a bit for the busy condition to abate. */ 1689 timeout = periph_busy_delay; 1690 } 1691 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1692 /* FALLTHROUGH */ 1693 case CAM_ATA_STATUS_ERROR: 1694 case CAM_REQ_CMP_ERR: 1695 case CAM_CMD_TIMEOUT: 1696 case CAM_UNEXP_BUSFREE: 1697 case CAM_UNCOR_PARITY: 1698 case CAM_DATA_RUN_ERR: 1699 default: 1700 if (periph->flags & CAM_PERIPH_INVALID) { 1701 error = EIO; 1702 action_string = "Periph was invalidated"; 1703 } else if (ccb->ccb_h.retry_count == 0) { 1704 error = EIO; 1705 action_string = "Retries exhausted"; 1706 } else if (sense_flags & SF_NO_RETRY) { 1707 error = EIO; 1708 action_string = "Retry was blocked"; 1709 } else { 1710 ccb->ccb_h.retry_count--; 1711 error = ERESTART; 1712 } 1713 break; 1714 } 1715 1716 if ((sense_flags & SF_PRINT_ALWAYS) || 1717 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1718 print = 1; 1719 else if (sense_flags & SF_NO_PRINT) 1720 print = 0; 1721 if (print) 1722 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1723 if (error != 0 && print) { 1724 if (error != ERESTART) { 1725 if (action_string == NULL) 1726 action_string = "Unretryable error"; 1727 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1728 error, action_string); 1729 } else if (action_string != NULL) 1730 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1731 else 1732 xpt_print(ccb->ccb_h.path, "Retrying command\n"); 1733 } 1734 1735 if (lost_device) { 1736 struct cam_path *newpath; 1737 lun_id_t lun_id; 1738 1739 /* 1740 * For a selection timeout, we consider all of the LUNs on 1741 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1742 * then we only get rid of the device(s) specified by the 1743 * path in the original CCB. 1744 */ 1745 if (status == CAM_DEV_NOT_THERE) 1746 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1747 else 1748 lun_id = CAM_LUN_WILDCARD; 1749 1750 /* Should we do more if we can't create the path?? */ 1751 if (xpt_create_path(&newpath, periph, 1752 xpt_path_path_id(ccb->ccb_h.path), 1753 xpt_path_target_id(ccb->ccb_h.path), 1754 lun_id) == CAM_REQ_CMP) { 1755 1756 /* 1757 * Let peripheral drivers know that this 1758 * device has gone away. 1759 */ 1760 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1761 xpt_free_path(newpath); 1762 } 1763 1764 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1765 } else if (scsi_extract_sense_ccb(ccb, 1766 &error_code, &sense_key, &asc, &ascq) && 1767 sense_key == SSD_KEY_UNIT_ATTENTION) { 1768 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1769 } 1770 1771 /* Attempt a retry */ 1772 if (error == ERESTART || error == 0) { 1773 if (frozen != 0) 1774 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1775 if (error == ERESTART) 1776 xpt_action(ccb); 1777 if (frozen != 0) 1778 cam_release_devq(ccb->ccb_h.path, 1779 relsim_flags, 1780 openings, 1781 timeout, 1782 /*getcount_only*/0); 1783 } 1784 1785 return (error); 1786 } 1787