1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_debug.h> 59 #include <cam/cam_sim.h> 60 61 #include <cam/scsi/scsi_all.h> 62 #include <cam/scsi/scsi_message.h> 63 #include <cam/scsi/scsi_pass.h> 64 65 static u_int camperiphnextunit(struct periph_driver *p_drv, 66 u_int newunit, int wired, 67 path_id_t pathid, target_id_t target, 68 lun_id_t lun); 69 static u_int camperiphunit(struct periph_driver *p_drv, 70 path_id_t pathid, target_id_t target, 71 lun_id_t lun); 72 static void camperiphdone(struct cam_periph *periph, 73 union ccb *done_ccb); 74 static void camperiphfree(struct cam_periph *periph); 75 static int camperiphscsistatuserror(union ccb *ccb, 76 union ccb **orig_ccb, 77 cam_flags camflags, 78 u_int32_t sense_flags, 79 int *openings, 80 u_int32_t *relsim_flags, 81 u_int32_t *timeout, 82 u_int32_t *action, 83 const char **action_string); 84 static int camperiphscsisenseerror(union ccb *ccb, 85 union ccb **orig_ccb, 86 cam_flags camflags, 87 u_int32_t sense_flags, 88 int *openings, 89 u_int32_t *relsim_flags, 90 u_int32_t *timeout, 91 u_int32_t *action, 92 const char **action_string); 93 static void cam_periph_devctl_notify(union ccb *ccb); 94 95 static int nperiph_drivers; 96 static int initialized = 0; 97 struct periph_driver **periph_drivers; 98 99 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 100 101 static int periph_selto_delay = 1000; 102 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 103 static int periph_noresrc_delay = 500; 104 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 105 static int periph_busy_delay = 500; 106 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 107 108 static u_int periph_mapmem_thresh = 65536; 109 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 110 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 111 112 void 113 periphdriver_register(void *data) 114 { 115 struct periph_driver *drv = (struct periph_driver *)data; 116 struct periph_driver **newdrivers, **old; 117 int ndrivers; 118 119 again: 120 ndrivers = nperiph_drivers + 2; 121 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 122 M_WAITOK); 123 xpt_lock_buses(); 124 if (ndrivers != nperiph_drivers + 2) { 125 /* 126 * Lost race against itself; go around. 127 */ 128 xpt_unlock_buses(); 129 free(newdrivers, M_CAMPERIPH); 130 goto again; 131 } 132 if (periph_drivers) 133 bcopy(periph_drivers, newdrivers, 134 sizeof(*newdrivers) * nperiph_drivers); 135 newdrivers[nperiph_drivers] = drv; 136 newdrivers[nperiph_drivers + 1] = NULL; 137 old = periph_drivers; 138 periph_drivers = newdrivers; 139 nperiph_drivers++; 140 xpt_unlock_buses(); 141 if (old) 142 free(old, M_CAMPERIPH); 143 /* If driver marked as early or it is late now, initialize it. */ 144 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 145 initialized > 1) 146 (*drv->init)(); 147 } 148 149 int 150 periphdriver_unregister(void *data) 151 { 152 struct periph_driver *drv = (struct periph_driver *)data; 153 int error, n; 154 155 /* If driver marked as early or it is late now, deinitialize it. */ 156 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 157 initialized > 1) { 158 if (drv->deinit == NULL) { 159 printf("CAM periph driver '%s' doesn't have deinit.\n", 160 drv->driver_name); 161 return (EOPNOTSUPP); 162 } 163 error = drv->deinit(); 164 if (error != 0) 165 return (error); 166 } 167 168 xpt_lock_buses(); 169 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 170 ; 171 KASSERT(n < nperiph_drivers, 172 ("Periph driver '%s' was not registered", drv->driver_name)); 173 for (; n + 1 < nperiph_drivers; n++) 174 periph_drivers[n] = periph_drivers[n + 1]; 175 periph_drivers[n + 1] = NULL; 176 nperiph_drivers--; 177 xpt_unlock_buses(); 178 return (0); 179 } 180 181 void 182 periphdriver_init(int level) 183 { 184 int i, early; 185 186 initialized = max(initialized, level); 187 for (i = 0; periph_drivers[i] != NULL; i++) { 188 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 189 if (early == initialized) 190 (*periph_drivers[i]->init)(); 191 } 192 } 193 194 cam_status 195 cam_periph_alloc(periph_ctor_t *periph_ctor, 196 periph_oninv_t *periph_oninvalidate, 197 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 198 char *name, cam_periph_type type, struct cam_path *path, 199 ac_callback_t *ac_callback, ac_code code, void *arg) 200 { 201 struct periph_driver **p_drv; 202 struct cam_sim *sim; 203 struct cam_periph *periph; 204 struct cam_periph *cur_periph; 205 path_id_t path_id; 206 target_id_t target_id; 207 lun_id_t lun_id; 208 cam_status status; 209 u_int init_level; 210 211 init_level = 0; 212 /* 213 * Handle Hot-Plug scenarios. If there is already a peripheral 214 * of our type assigned to this path, we are likely waiting for 215 * final close on an old, invalidated, peripheral. If this is 216 * the case, queue up a deferred call to the peripheral's async 217 * handler. If it looks like a mistaken re-allocation, complain. 218 */ 219 if ((periph = cam_periph_find(path, name)) != NULL) { 220 if ((periph->flags & CAM_PERIPH_INVALID) != 0 221 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 222 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 223 periph->deferred_callback = ac_callback; 224 periph->deferred_ac = code; 225 return (CAM_REQ_INPROG); 226 } else { 227 printf("cam_periph_alloc: attempt to re-allocate " 228 "valid device %s%d rejected flags %#x " 229 "refcount %d\n", periph->periph_name, 230 periph->unit_number, periph->flags, 231 periph->refcount); 232 } 233 return (CAM_REQ_INVALID); 234 } 235 236 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 237 M_NOWAIT|M_ZERO); 238 239 if (periph == NULL) 240 return (CAM_RESRC_UNAVAIL); 241 242 init_level++; 243 244 sim = xpt_path_sim(path); 245 path_id = xpt_path_path_id(path); 246 target_id = xpt_path_target_id(path); 247 lun_id = xpt_path_lun_id(path); 248 periph->periph_start = periph_start; 249 periph->periph_dtor = periph_dtor; 250 periph->periph_oninval = periph_oninvalidate; 251 periph->type = type; 252 periph->periph_name = name; 253 periph->scheduled_priority = CAM_PRIORITY_NONE; 254 periph->immediate_priority = CAM_PRIORITY_NONE; 255 periph->refcount = 1; /* Dropped by invalidation. */ 256 periph->sim = sim; 257 SLIST_INIT(&periph->ccb_list); 258 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 259 if (status != CAM_REQ_CMP) 260 goto failure; 261 periph->path = path; 262 263 xpt_lock_buses(); 264 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 265 if (strcmp((*p_drv)->driver_name, name) == 0) 266 break; 267 } 268 if (*p_drv == NULL) { 269 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 270 xpt_unlock_buses(); 271 xpt_free_path(periph->path); 272 free(periph, M_CAMPERIPH); 273 return (CAM_REQ_INVALID); 274 } 275 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 276 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 277 while (cur_periph != NULL 278 && cur_periph->unit_number < periph->unit_number) 279 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 280 if (cur_periph != NULL) { 281 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 282 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 283 } else { 284 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 285 (*p_drv)->generation++; 286 } 287 xpt_unlock_buses(); 288 289 init_level++; 290 291 status = xpt_add_periph(periph); 292 if (status != CAM_REQ_CMP) 293 goto failure; 294 295 init_level++; 296 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 297 298 status = periph_ctor(periph, arg); 299 300 if (status == CAM_REQ_CMP) 301 init_level++; 302 303 failure: 304 switch (init_level) { 305 case 4: 306 /* Initialized successfully */ 307 break; 308 case 3: 309 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 310 xpt_remove_periph(periph); 311 /* FALLTHROUGH */ 312 case 2: 313 xpt_lock_buses(); 314 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 315 xpt_unlock_buses(); 316 xpt_free_path(periph->path); 317 /* FALLTHROUGH */ 318 case 1: 319 free(periph, M_CAMPERIPH); 320 /* FALLTHROUGH */ 321 case 0: 322 /* No cleanup to perform. */ 323 break; 324 default: 325 panic("%s: Unknown init level", __func__); 326 } 327 return(status); 328 } 329 330 /* 331 * Find a peripheral structure with the specified path, target, lun, 332 * and (optionally) type. If the name is NULL, this function will return 333 * the first peripheral driver that matches the specified path. 334 */ 335 struct cam_periph * 336 cam_periph_find(struct cam_path *path, char *name) 337 { 338 struct periph_driver **p_drv; 339 struct cam_periph *periph; 340 341 xpt_lock_buses(); 342 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 343 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 344 continue; 345 346 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 347 if (xpt_path_comp(periph->path, path) == 0) { 348 xpt_unlock_buses(); 349 cam_periph_assert(periph, MA_OWNED); 350 return(periph); 351 } 352 } 353 if (name != NULL) { 354 xpt_unlock_buses(); 355 return(NULL); 356 } 357 } 358 xpt_unlock_buses(); 359 return(NULL); 360 } 361 362 /* 363 * Find peripheral driver instances attached to the specified path. 364 */ 365 int 366 cam_periph_list(struct cam_path *path, struct sbuf *sb) 367 { 368 struct sbuf local_sb; 369 struct periph_driver **p_drv; 370 struct cam_periph *periph; 371 int count; 372 int sbuf_alloc_len; 373 374 sbuf_alloc_len = 16; 375 retry: 376 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 377 count = 0; 378 xpt_lock_buses(); 379 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 380 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 381 if (xpt_path_comp(periph->path, path) != 0) 382 continue; 383 384 if (sbuf_len(&local_sb) != 0) 385 sbuf_cat(&local_sb, ","); 386 387 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 388 periph->unit_number); 389 390 if (sbuf_error(&local_sb) == ENOMEM) { 391 sbuf_alloc_len *= 2; 392 xpt_unlock_buses(); 393 sbuf_delete(&local_sb); 394 goto retry; 395 } 396 count++; 397 } 398 } 399 xpt_unlock_buses(); 400 sbuf_finish(&local_sb); 401 if (sbuf_len(sb) != 0) 402 sbuf_cat(sb, ","); 403 sbuf_cat(sb, sbuf_data(&local_sb)); 404 sbuf_delete(&local_sb); 405 return (count); 406 } 407 408 int 409 cam_periph_acquire(struct cam_periph *periph) 410 { 411 int status; 412 413 if (periph == NULL) 414 return (EINVAL); 415 416 status = ENOENT; 417 xpt_lock_buses(); 418 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 419 periph->refcount++; 420 status = 0; 421 } 422 xpt_unlock_buses(); 423 424 return (status); 425 } 426 427 void 428 cam_periph_doacquire(struct cam_periph *periph) 429 { 430 431 xpt_lock_buses(); 432 KASSERT(periph->refcount >= 1, 433 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 434 periph->refcount++; 435 xpt_unlock_buses(); 436 } 437 438 void 439 cam_periph_release_locked_buses(struct cam_periph *periph) 440 { 441 442 cam_periph_assert(periph, MA_OWNED); 443 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 444 if (--periph->refcount == 0) 445 camperiphfree(periph); 446 } 447 448 void 449 cam_periph_release_locked(struct cam_periph *periph) 450 { 451 452 if (periph == NULL) 453 return; 454 455 xpt_lock_buses(); 456 cam_periph_release_locked_buses(periph); 457 xpt_unlock_buses(); 458 } 459 460 void 461 cam_periph_release(struct cam_periph *periph) 462 { 463 struct mtx *mtx; 464 465 if (periph == NULL) 466 return; 467 468 cam_periph_assert(periph, MA_NOTOWNED); 469 mtx = cam_periph_mtx(periph); 470 mtx_lock(mtx); 471 cam_periph_release_locked(periph); 472 mtx_unlock(mtx); 473 } 474 475 /* 476 * hold/unhold act as mutual exclusion for sections of the code that 477 * need to sleep and want to make sure that other sections that 478 * will interfere are held off. This only protects exclusive sections 479 * from each other. 480 */ 481 int 482 cam_periph_hold(struct cam_periph *periph, int priority) 483 { 484 int error; 485 486 /* 487 * Increment the reference count on the peripheral 488 * while we wait for our lock attempt to succeed 489 * to ensure the peripheral doesn't disappear out 490 * from user us while we sleep. 491 */ 492 493 if (cam_periph_acquire(periph) != 0) 494 return (ENXIO); 495 496 cam_periph_assert(periph, MA_OWNED); 497 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 498 periph->flags |= CAM_PERIPH_LOCK_WANTED; 499 if ((error = cam_periph_sleep(periph, periph, priority, 500 "caplck", 0)) != 0) { 501 cam_periph_release_locked(periph); 502 return (error); 503 } 504 if (periph->flags & CAM_PERIPH_INVALID) { 505 cam_periph_release_locked(periph); 506 return (ENXIO); 507 } 508 } 509 510 periph->flags |= CAM_PERIPH_LOCKED; 511 return (0); 512 } 513 514 void 515 cam_periph_unhold(struct cam_periph *periph) 516 { 517 518 cam_periph_assert(periph, MA_OWNED); 519 520 periph->flags &= ~CAM_PERIPH_LOCKED; 521 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 522 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 523 wakeup(periph); 524 } 525 526 cam_periph_release_locked(periph); 527 } 528 529 /* 530 * Look for the next unit number that is not currently in use for this 531 * peripheral type starting at "newunit". Also exclude unit numbers that 532 * are reserved by for future "hardwiring" unless we already know that this 533 * is a potential wired device. Only assume that the device is "wired" the 534 * first time through the loop since after that we'll be looking at unit 535 * numbers that did not match a wiring entry. 536 */ 537 static u_int 538 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 539 path_id_t pathid, target_id_t target, lun_id_t lun) 540 { 541 struct cam_periph *periph; 542 char *periph_name; 543 int i, val, dunit, r; 544 const char *dname, *strval; 545 546 periph_name = p_drv->driver_name; 547 for (;;newunit++) { 548 for (periph = TAILQ_FIRST(&p_drv->units); 549 periph != NULL && periph->unit_number != newunit; 550 periph = TAILQ_NEXT(periph, unit_links)) 551 ; 552 553 if (periph != NULL && periph->unit_number == newunit) { 554 if (wired != 0) { 555 xpt_print(periph->path, "Duplicate Wired " 556 "Device entry!\n"); 557 xpt_print(periph->path, "Second device (%s " 558 "device at scbus%d target %d lun %d) will " 559 "not be wired\n", periph_name, pathid, 560 target, lun); 561 wired = 0; 562 } 563 continue; 564 } 565 if (wired) 566 break; 567 568 /* 569 * Don't match entries like "da 4" as a wired down 570 * device, but do match entries like "da 4 target 5" 571 * or even "da 4 scbus 1". 572 */ 573 i = 0; 574 dname = periph_name; 575 for (;;) { 576 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 577 if (r != 0) 578 break; 579 /* if no "target" and no specific scbus, skip */ 580 if (resource_int_value(dname, dunit, "target", &val) && 581 (resource_string_value(dname, dunit, "at",&strval)|| 582 strcmp(strval, "scbus") == 0)) 583 continue; 584 if (newunit == dunit) 585 break; 586 } 587 if (r != 0) 588 break; 589 } 590 return (newunit); 591 } 592 593 static u_int 594 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 595 target_id_t target, lun_id_t lun) 596 { 597 u_int unit; 598 int wired, i, val, dunit; 599 const char *dname, *strval; 600 char pathbuf[32], *periph_name; 601 602 periph_name = p_drv->driver_name; 603 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 604 unit = 0; 605 i = 0; 606 dname = periph_name; 607 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 608 wired = 0) { 609 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 610 if (strcmp(strval, pathbuf) != 0) 611 continue; 612 wired++; 613 } 614 if (resource_int_value(dname, dunit, "target", &val) == 0) { 615 if (val != target) 616 continue; 617 wired++; 618 } 619 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 620 if (val != lun) 621 continue; 622 wired++; 623 } 624 if (wired != 0) { 625 unit = dunit; 626 break; 627 } 628 } 629 630 /* 631 * Either start from 0 looking for the next unit or from 632 * the unit number given in the resource config. This way, 633 * if we have wildcard matches, we don't return the same 634 * unit number twice. 635 */ 636 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 637 638 return (unit); 639 } 640 641 void 642 cam_periph_invalidate(struct cam_periph *periph) 643 { 644 645 cam_periph_assert(periph, MA_OWNED); 646 /* 647 * We only tear down the device the first time a peripheral is 648 * invalidated. 649 */ 650 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 651 return; 652 653 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 654 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 655 struct sbuf sb; 656 char buffer[160]; 657 658 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 659 xpt_denounce_periph_sbuf(periph, &sb); 660 sbuf_finish(&sb); 661 sbuf_putbuf(&sb); 662 } 663 periph->flags |= CAM_PERIPH_INVALID; 664 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 665 if (periph->periph_oninval != NULL) 666 periph->periph_oninval(periph); 667 cam_periph_release_locked(periph); 668 } 669 670 static void 671 camperiphfree(struct cam_periph *periph) 672 { 673 struct periph_driver **p_drv; 674 struct periph_driver *drv; 675 676 cam_periph_assert(periph, MA_OWNED); 677 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 678 periph->periph_name, periph->unit_number)); 679 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 680 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 681 break; 682 } 683 if (*p_drv == NULL) { 684 printf("camperiphfree: attempt to free non-existant periph\n"); 685 return; 686 } 687 /* 688 * Cache a pointer to the periph_driver structure. If a 689 * periph_driver is added or removed from the array (see 690 * periphdriver_register()) while we drop the toplogy lock 691 * below, p_drv may change. This doesn't protect against this 692 * particular periph_driver going away. That will require full 693 * reference counting in the periph_driver infrastructure. 694 */ 695 drv = *p_drv; 696 697 /* 698 * We need to set this flag before dropping the topology lock, to 699 * let anyone who is traversing the list that this peripheral is 700 * about to be freed, and there will be no more reference count 701 * checks. 702 */ 703 periph->flags |= CAM_PERIPH_FREE; 704 705 /* 706 * The peripheral destructor semantics dictate calling with only the 707 * SIM mutex held. Since it might sleep, it should not be called 708 * with the topology lock held. 709 */ 710 xpt_unlock_buses(); 711 712 /* 713 * We need to call the peripheral destructor prior to removing the 714 * peripheral from the list. Otherwise, we risk running into a 715 * scenario where the peripheral unit number may get reused 716 * (because it has been removed from the list), but some resources 717 * used by the peripheral are still hanging around. In particular, 718 * the devfs nodes used by some peripherals like the pass(4) driver 719 * aren't fully cleaned up until the destructor is run. If the 720 * unit number is reused before the devfs instance is fully gone, 721 * devfs will panic. 722 */ 723 if (periph->periph_dtor != NULL) 724 periph->periph_dtor(periph); 725 726 /* 727 * The peripheral list is protected by the topology lock. We have to 728 * remove the periph from the drv list before we call deferred_ac. The 729 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 730 */ 731 xpt_lock_buses(); 732 733 TAILQ_REMOVE(&drv->units, periph, unit_links); 734 drv->generation++; 735 736 xpt_remove_periph(periph); 737 738 xpt_unlock_buses(); 739 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 740 xpt_print(periph->path, "Periph destroyed\n"); 741 else 742 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 743 744 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 745 union ccb ccb; 746 void *arg; 747 748 switch (periph->deferred_ac) { 749 case AC_FOUND_DEVICE: 750 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 751 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 752 xpt_action(&ccb); 753 arg = &ccb; 754 break; 755 case AC_PATH_REGISTERED: 756 xpt_path_inq(&ccb.cpi, periph->path); 757 arg = &ccb; 758 break; 759 default: 760 arg = NULL; 761 break; 762 } 763 periph->deferred_callback(NULL, periph->deferred_ac, 764 periph->path, arg); 765 } 766 xpt_free_path(periph->path); 767 free(periph, M_CAMPERIPH); 768 xpt_lock_buses(); 769 } 770 771 /* 772 * Map user virtual pointers into kernel virtual address space, so we can 773 * access the memory. This is now a generic function that centralizes most 774 * of the sanity checks on the data flags, if any. 775 * This also only works for up to maxphys memory. Since we use 776 * buffers to map stuff in and out, we're limited to the buffer size. 777 */ 778 int 779 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 780 u_int maxmap) 781 { 782 int numbufs, i; 783 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 784 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 785 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 786 787 bzero(mapinfo, sizeof(*mapinfo)); 788 if (maxmap == 0) 789 maxmap = DFLTPHYS; /* traditional default */ 790 else if (maxmap > maxphys) 791 maxmap = maxphys; /* for safety */ 792 switch(ccb->ccb_h.func_code) { 793 case XPT_DEV_MATCH: 794 if (ccb->cdm.match_buf_len == 0) { 795 printf("cam_periph_mapmem: invalid match buffer " 796 "length 0\n"); 797 return(EINVAL); 798 } 799 if (ccb->cdm.pattern_buf_len > 0) { 800 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 801 lengths[0] = ccb->cdm.pattern_buf_len; 802 dirs[0] = CAM_DIR_OUT; 803 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 804 lengths[1] = ccb->cdm.match_buf_len; 805 dirs[1] = CAM_DIR_IN; 806 numbufs = 2; 807 } else { 808 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 809 lengths[0] = ccb->cdm.match_buf_len; 810 dirs[0] = CAM_DIR_IN; 811 numbufs = 1; 812 } 813 /* 814 * This request will not go to the hardware, no reason 815 * to be so strict. vmapbuf() is able to map up to maxphys. 816 */ 817 maxmap = maxphys; 818 break; 819 case XPT_SCSI_IO: 820 case XPT_CONT_TARGET_IO: 821 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 822 return(0); 823 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 824 return (EINVAL); 825 data_ptrs[0] = &ccb->csio.data_ptr; 826 lengths[0] = ccb->csio.dxfer_len; 827 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 828 numbufs = 1; 829 break; 830 case XPT_ATA_IO: 831 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 832 return(0); 833 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 834 return (EINVAL); 835 data_ptrs[0] = &ccb->ataio.data_ptr; 836 lengths[0] = ccb->ataio.dxfer_len; 837 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 838 numbufs = 1; 839 break; 840 case XPT_MMC_IO: 841 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 842 return(0); 843 /* Two mappings: one for cmd->data and one for cmd->data->data */ 844 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 845 lengths[0] = sizeof(struct mmc_data *); 846 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 847 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 848 lengths[1] = ccb->mmcio.cmd.data->len; 849 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 850 numbufs = 2; 851 break; 852 case XPT_SMP_IO: 853 data_ptrs[0] = &ccb->smpio.smp_request; 854 lengths[0] = ccb->smpio.smp_request_len; 855 dirs[0] = CAM_DIR_OUT; 856 data_ptrs[1] = &ccb->smpio.smp_response; 857 lengths[1] = ccb->smpio.smp_response_len; 858 dirs[1] = CAM_DIR_IN; 859 numbufs = 2; 860 break; 861 case XPT_NVME_IO: 862 case XPT_NVME_ADMIN: 863 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 864 return (0); 865 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 866 return (EINVAL); 867 data_ptrs[0] = &ccb->nvmeio.data_ptr; 868 lengths[0] = ccb->nvmeio.dxfer_len; 869 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 870 numbufs = 1; 871 break; 872 case XPT_DEV_ADVINFO: 873 if (ccb->cdai.bufsiz == 0) 874 return (0); 875 876 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 877 lengths[0] = ccb->cdai.bufsiz; 878 dirs[0] = CAM_DIR_IN; 879 numbufs = 1; 880 881 /* 882 * This request will not go to the hardware, no reason 883 * to be so strict. vmapbuf() is able to map up to maxphys. 884 */ 885 maxmap = maxphys; 886 break; 887 default: 888 return(EINVAL); 889 break; /* NOTREACHED */ 890 } 891 892 /* 893 * Check the transfer length and permissions first, so we don't 894 * have to unmap any previously mapped buffers. 895 */ 896 for (i = 0; i < numbufs; i++) { 897 if (lengths[i] > maxmap) { 898 printf("cam_periph_mapmem: attempt to map %lu bytes, " 899 "which is greater than %lu\n", 900 (long)(lengths[i]), (u_long)maxmap); 901 return (E2BIG); 902 } 903 } 904 905 /* 906 * This keeps the kernel stack of current thread from getting 907 * swapped. In low-memory situations where the kernel stack might 908 * otherwise get swapped out, this holds it and allows the thread 909 * to make progress and release the kernel mapped pages sooner. 910 * 911 * XXX KDM should I use P_NOSWAP instead? 912 */ 913 PHOLD(curproc); 914 915 for (i = 0; i < numbufs; i++) { 916 /* Save the user's data address. */ 917 mapinfo->orig[i] = *data_ptrs[i]; 918 919 /* 920 * For small buffers use malloc+copyin/copyout instead of 921 * mapping to KVA to avoid expensive TLB shootdowns. For 922 * small allocations malloc is backed by UMA, and so much 923 * cheaper on SMP systems. 924 */ 925 if (lengths[i] <= periph_mapmem_thresh && 926 ccb->ccb_h.func_code != XPT_MMC_IO) { 927 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 928 M_WAITOK); 929 if (dirs[i] != CAM_DIR_IN) { 930 if (copyin(mapinfo->orig[i], *data_ptrs[i], 931 lengths[i]) != 0) { 932 free(*data_ptrs[i], M_CAMPERIPH); 933 *data_ptrs[i] = mapinfo->orig[i]; 934 goto fail; 935 } 936 } else 937 bzero(*data_ptrs[i], lengths[i]); 938 continue; 939 } 940 941 /* 942 * Get the buffer. 943 */ 944 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 945 946 /* set the direction */ 947 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 948 BIO_WRITE : BIO_READ; 949 950 /* Map the buffer into kernel memory. */ 951 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 952 uma_zfree(pbuf_zone, mapinfo->bp[i]); 953 goto fail; 954 } 955 956 /* set our pointer to the new mapped area */ 957 *data_ptrs[i] = mapinfo->bp[i]->b_data; 958 } 959 960 /* 961 * Now that we've gotten this far, change ownership to the kernel 962 * of the buffers so that we don't run afoul of returning to user 963 * space with locks (on the buffer) held. 964 */ 965 for (i = 0; i < numbufs; i++) { 966 if (mapinfo->bp[i]) 967 BUF_KERNPROC(mapinfo->bp[i]); 968 } 969 970 mapinfo->num_bufs_used = numbufs; 971 return(0); 972 973 fail: 974 for (i--; i >= 0; i--) { 975 if (mapinfo->bp[i]) { 976 vunmapbuf(mapinfo->bp[i]); 977 uma_zfree(pbuf_zone, mapinfo->bp[i]); 978 } else 979 free(*data_ptrs[i], M_CAMPERIPH); 980 *data_ptrs[i] = mapinfo->orig[i]; 981 } 982 PRELE(curproc); 983 return(EACCES); 984 } 985 986 /* 987 * Unmap memory segments mapped into kernel virtual address space by 988 * cam_periph_mapmem(). 989 */ 990 void 991 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 992 { 993 int numbufs, i; 994 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 995 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 996 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 997 998 if (mapinfo->num_bufs_used <= 0) { 999 /* nothing to free and the process wasn't held. */ 1000 return; 1001 } 1002 1003 switch (ccb->ccb_h.func_code) { 1004 case XPT_DEV_MATCH: 1005 if (ccb->cdm.pattern_buf_len > 0) { 1006 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1007 lengths[0] = ccb->cdm.pattern_buf_len; 1008 dirs[0] = CAM_DIR_OUT; 1009 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1010 lengths[1] = ccb->cdm.match_buf_len; 1011 dirs[1] = CAM_DIR_IN; 1012 numbufs = 2; 1013 } else { 1014 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1015 lengths[0] = ccb->cdm.match_buf_len; 1016 dirs[0] = CAM_DIR_IN; 1017 numbufs = 1; 1018 } 1019 break; 1020 case XPT_SCSI_IO: 1021 case XPT_CONT_TARGET_IO: 1022 data_ptrs[0] = &ccb->csio.data_ptr; 1023 lengths[0] = ccb->csio.dxfer_len; 1024 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1025 numbufs = 1; 1026 break; 1027 case XPT_ATA_IO: 1028 data_ptrs[0] = &ccb->ataio.data_ptr; 1029 lengths[0] = ccb->ataio.dxfer_len; 1030 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1031 numbufs = 1; 1032 break; 1033 case XPT_MMC_IO: 1034 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1035 lengths[0] = sizeof(struct mmc_data *); 1036 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1037 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1038 lengths[1] = ccb->mmcio.cmd.data->len; 1039 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1040 numbufs = 2; 1041 break; 1042 case XPT_SMP_IO: 1043 data_ptrs[0] = &ccb->smpio.smp_request; 1044 lengths[0] = ccb->smpio.smp_request_len; 1045 dirs[0] = CAM_DIR_OUT; 1046 data_ptrs[1] = &ccb->smpio.smp_response; 1047 lengths[1] = ccb->smpio.smp_response_len; 1048 dirs[1] = CAM_DIR_IN; 1049 numbufs = 2; 1050 break; 1051 case XPT_NVME_IO: 1052 case XPT_NVME_ADMIN: 1053 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1054 lengths[0] = ccb->nvmeio.dxfer_len; 1055 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1056 numbufs = 1; 1057 break; 1058 case XPT_DEV_ADVINFO: 1059 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1060 lengths[0] = ccb->cdai.bufsiz; 1061 dirs[0] = CAM_DIR_IN; 1062 numbufs = 1; 1063 break; 1064 default: 1065 /* allow ourselves to be swapped once again */ 1066 PRELE(curproc); 1067 return; 1068 break; /* NOTREACHED */ 1069 } 1070 1071 for (i = 0; i < numbufs; i++) { 1072 if (mapinfo->bp[i]) { 1073 /* unmap the buffer */ 1074 vunmapbuf(mapinfo->bp[i]); 1075 1076 /* release the buffer */ 1077 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1078 } else { 1079 if (dirs[i] != CAM_DIR_OUT) { 1080 copyout(*data_ptrs[i], mapinfo->orig[i], 1081 lengths[i]); 1082 } 1083 free(*data_ptrs[i], M_CAMPERIPH); 1084 } 1085 1086 /* Set the user's pointer back to the original value */ 1087 *data_ptrs[i] = mapinfo->orig[i]; 1088 } 1089 1090 /* allow ourselves to be swapped once again */ 1091 PRELE(curproc); 1092 } 1093 1094 int 1095 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1096 int (*error_routine)(union ccb *ccb, 1097 cam_flags camflags, 1098 u_int32_t sense_flags)) 1099 { 1100 union ccb *ccb; 1101 int error; 1102 int found; 1103 1104 error = found = 0; 1105 1106 switch(cmd){ 1107 case CAMGETPASSTHRU: 1108 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1109 xpt_setup_ccb(&ccb->ccb_h, 1110 ccb->ccb_h.path, 1111 CAM_PRIORITY_NORMAL); 1112 ccb->ccb_h.func_code = XPT_GDEVLIST; 1113 1114 /* 1115 * Basically, the point of this is that we go through 1116 * getting the list of devices, until we find a passthrough 1117 * device. In the current version of the CAM code, the 1118 * only way to determine what type of device we're dealing 1119 * with is by its name. 1120 */ 1121 while (found == 0) { 1122 ccb->cgdl.index = 0; 1123 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1124 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1125 /* we want the next device in the list */ 1126 xpt_action(ccb); 1127 if (strncmp(ccb->cgdl.periph_name, 1128 "pass", 4) == 0){ 1129 found = 1; 1130 break; 1131 } 1132 } 1133 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1134 (found == 0)) { 1135 ccb->cgdl.periph_name[0] = '\0'; 1136 ccb->cgdl.unit_number = 0; 1137 break; 1138 } 1139 } 1140 1141 /* copy the result back out */ 1142 bcopy(ccb, addr, sizeof(union ccb)); 1143 1144 /* and release the ccb */ 1145 xpt_release_ccb(ccb); 1146 1147 break; 1148 default: 1149 error = ENOTTY; 1150 break; 1151 } 1152 return(error); 1153 } 1154 1155 static void 1156 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1157 { 1158 1159 panic("%s: already done with ccb %p", __func__, done_ccb); 1160 } 1161 1162 static void 1163 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1164 { 1165 1166 /* Caller will release the CCB */ 1167 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1168 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1169 wakeup(&done_ccb->ccb_h.cbfcnp); 1170 } 1171 1172 static void 1173 cam_periph_ccbwait(union ccb *ccb) 1174 { 1175 1176 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1177 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1178 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1179 PRIBIO, "cbwait", 0); 1180 } 1181 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1182 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1183 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1184 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1185 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1186 } 1187 1188 /* 1189 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1190 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1191 */ 1192 int 1193 cam_periph_runccb(union ccb *ccb, 1194 int (*error_routine)(union ccb *ccb, 1195 cam_flags camflags, 1196 u_int32_t sense_flags), 1197 cam_flags camflags, u_int32_t sense_flags, 1198 struct devstat *ds) 1199 { 1200 struct bintime *starttime; 1201 struct bintime ltime; 1202 int error; 1203 bool must_poll; 1204 uint32_t timeout = 1; 1205 1206 starttime = NULL; 1207 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1208 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1209 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1210 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1211 1212 /* 1213 * If the user has supplied a stats structure, and if we understand 1214 * this particular type of ccb, record the transaction start. 1215 */ 1216 if (ds != NULL && 1217 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1218 ccb->ccb_h.func_code == XPT_ATA_IO || 1219 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1220 starttime = <ime; 1221 binuptime(starttime); 1222 devstat_start_transaction(ds, starttime); 1223 } 1224 1225 /* 1226 * We must poll the I/O while we're dumping. The scheduler is normally 1227 * stopped for dumping, except when we call doadump from ddb. While the 1228 * scheduler is running in this case, we still need to poll the I/O to 1229 * avoid sleeping waiting for the ccb to complete. 1230 * 1231 * A panic triggered dump stops the scheduler, any callback from the 1232 * shutdown_post_sync event will run with the scheduler stopped, but 1233 * before we're officially dumping. To avoid hanging in adashutdown 1234 * initiated commands (or other similar situations), we have to test for 1235 * either SCHEDULER_STOPPED() here as well. 1236 * 1237 * To avoid locking problems, dumping/polling callers must call 1238 * without a periph lock held. 1239 */ 1240 must_poll = dumping || SCHEDULER_STOPPED(); 1241 ccb->ccb_h.cbfcnp = cam_periph_done; 1242 1243 /* 1244 * If we're polling, then we need to ensure that we have ample resources 1245 * in the periph. cam_periph_error can reschedule the ccb by calling 1246 * xpt_action and returning ERESTART, so we have to effect the polling 1247 * in the do loop below. 1248 */ 1249 if (must_poll) { 1250 timeout = xpt_poll_setup(ccb); 1251 } 1252 1253 if (timeout == 0) { 1254 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1255 error = EBUSY; 1256 } else { 1257 xpt_action(ccb); 1258 do { 1259 if (must_poll) { 1260 xpt_pollwait(ccb, timeout); 1261 timeout = ccb->ccb_h.timeout * 10; 1262 } else { 1263 cam_periph_ccbwait(ccb); 1264 } 1265 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1266 error = 0; 1267 else if (error_routine != NULL) { 1268 ccb->ccb_h.cbfcnp = cam_periph_done; 1269 error = (*error_routine)(ccb, camflags, sense_flags); 1270 } else 1271 error = 0; 1272 } while (error == ERESTART); 1273 } 1274 1275 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1276 cam_release_devq(ccb->ccb_h.path, 1277 /* relsim_flags */0, 1278 /* openings */0, 1279 /* timeout */0, 1280 /* getcount_only */ FALSE); 1281 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1282 } 1283 1284 if (ds != NULL) { 1285 uint32_t bytes; 1286 devstat_tag_type tag; 1287 bool valid = true; 1288 1289 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1290 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1291 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1292 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1293 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1294 tag = (devstat_tag_type)0; 1295 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1296 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1297 tag = (devstat_tag_type)0; 1298 } else { 1299 valid = false; 1300 } 1301 if (valid) 1302 devstat_end_transaction(ds, bytes, tag, 1303 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1304 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1305 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1306 } 1307 1308 return(error); 1309 } 1310 1311 void 1312 cam_freeze_devq(struct cam_path *path) 1313 { 1314 struct ccb_hdr ccb_h; 1315 1316 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1317 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1318 ccb_h.func_code = XPT_NOOP; 1319 ccb_h.flags = CAM_DEV_QFREEZE; 1320 xpt_action((union ccb *)&ccb_h); 1321 } 1322 1323 u_int32_t 1324 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1325 u_int32_t openings, u_int32_t arg, 1326 int getcount_only) 1327 { 1328 struct ccb_relsim crs; 1329 1330 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1331 relsim_flags, openings, arg, getcount_only)); 1332 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1333 crs.ccb_h.func_code = XPT_REL_SIMQ; 1334 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1335 crs.release_flags = relsim_flags; 1336 crs.openings = openings; 1337 crs.release_timeout = arg; 1338 xpt_action((union ccb *)&crs); 1339 return (crs.qfrozen_cnt); 1340 } 1341 1342 #define saved_ccb_ptr ppriv_ptr0 1343 static void 1344 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1345 { 1346 union ccb *saved_ccb; 1347 cam_status status; 1348 struct scsi_start_stop_unit *scsi_cmd; 1349 int error = 0, error_code, sense_key, asc, ascq; 1350 1351 scsi_cmd = (struct scsi_start_stop_unit *) 1352 &done_ccb->csio.cdb_io.cdb_bytes; 1353 status = done_ccb->ccb_h.status; 1354 1355 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1356 if (scsi_extract_sense_ccb(done_ccb, 1357 &error_code, &sense_key, &asc, &ascq)) { 1358 /* 1359 * If the error is "invalid field in CDB", 1360 * and the load/eject flag is set, turn the 1361 * flag off and try again. This is just in 1362 * case the drive in question barfs on the 1363 * load eject flag. The CAM code should set 1364 * the load/eject flag by default for 1365 * removable media. 1366 */ 1367 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1368 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1369 (asc == 0x24) && (ascq == 0x00)) { 1370 scsi_cmd->how &= ~SSS_LOEJ; 1371 if (status & CAM_DEV_QFRZN) { 1372 cam_release_devq(done_ccb->ccb_h.path, 1373 0, 0, 0, 0); 1374 done_ccb->ccb_h.status &= 1375 ~CAM_DEV_QFRZN; 1376 } 1377 xpt_action(done_ccb); 1378 goto out; 1379 } 1380 } 1381 error = cam_periph_error(done_ccb, 0, 1382 SF_RETRY_UA | SF_NO_PRINT); 1383 if (error == ERESTART) 1384 goto out; 1385 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1386 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1387 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1388 } 1389 } else { 1390 /* 1391 * If we have successfully taken a device from the not 1392 * ready to ready state, re-scan the device and re-get 1393 * the inquiry information. Many devices (mostly disks) 1394 * don't properly report their inquiry information unless 1395 * they are spun up. 1396 */ 1397 if (scsi_cmd->opcode == START_STOP_UNIT) 1398 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1399 } 1400 1401 /* If we tried long wait and still failed, remember that. */ 1402 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1403 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1404 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1405 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1406 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1407 } 1408 1409 /* 1410 * After recovery action(s) completed, return to the original CCB. 1411 * If the recovery CCB has failed, considering its own possible 1412 * retries and recovery, assume we are back in state where we have 1413 * been originally, but without recovery hopes left. In such case, 1414 * after the final attempt below, we cancel any further retries, 1415 * blocking by that also any new recovery attempts for this CCB, 1416 * and the result will be the final one returned to the CCB owher. 1417 */ 1418 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1419 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1420 xpt_free_ccb(saved_ccb); 1421 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1422 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1423 if (error != 0) 1424 done_ccb->ccb_h.retry_count = 0; 1425 xpt_action(done_ccb); 1426 1427 out: 1428 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1429 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1430 } 1431 1432 /* 1433 * Generic Async Event handler. Peripheral drivers usually 1434 * filter out the events that require personal attention, 1435 * and leave the rest to this function. 1436 */ 1437 void 1438 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1439 struct cam_path *path, void *arg) 1440 { 1441 switch (code) { 1442 case AC_LOST_DEVICE: 1443 cam_periph_invalidate(periph); 1444 break; 1445 default: 1446 break; 1447 } 1448 } 1449 1450 void 1451 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1452 { 1453 struct ccb_getdevstats cgds; 1454 1455 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1456 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1457 xpt_action((union ccb *)&cgds); 1458 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1459 } 1460 1461 void 1462 cam_periph_freeze_after_event(struct cam_periph *periph, 1463 struct timeval* event_time, u_int duration_ms) 1464 { 1465 struct timeval delta; 1466 struct timeval duration_tv; 1467 1468 if (!timevalisset(event_time)) 1469 return; 1470 1471 microtime(&delta); 1472 timevalsub(&delta, event_time); 1473 duration_tv.tv_sec = duration_ms / 1000; 1474 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1475 if (timevalcmp(&delta, &duration_tv, <)) { 1476 timevalsub(&duration_tv, &delta); 1477 1478 duration_ms = duration_tv.tv_sec * 1000; 1479 duration_ms += duration_tv.tv_usec / 1000; 1480 cam_freeze_devq(periph->path); 1481 cam_release_devq(periph->path, 1482 RELSIM_RELEASE_AFTER_TIMEOUT, 1483 /*reduction*/0, 1484 /*timeout*/duration_ms, 1485 /*getcount_only*/0); 1486 } 1487 1488 } 1489 1490 static int 1491 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1492 cam_flags camflags, u_int32_t sense_flags, 1493 int *openings, u_int32_t *relsim_flags, 1494 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1495 { 1496 struct cam_periph *periph; 1497 int error; 1498 1499 switch (ccb->csio.scsi_status) { 1500 case SCSI_STATUS_OK: 1501 case SCSI_STATUS_COND_MET: 1502 case SCSI_STATUS_INTERMED: 1503 case SCSI_STATUS_INTERMED_COND_MET: 1504 error = 0; 1505 break; 1506 case SCSI_STATUS_CMD_TERMINATED: 1507 case SCSI_STATUS_CHECK_COND: 1508 error = camperiphscsisenseerror(ccb, orig_ccb, 1509 camflags, 1510 sense_flags, 1511 openings, 1512 relsim_flags, 1513 timeout, 1514 action, 1515 action_string); 1516 break; 1517 case SCSI_STATUS_QUEUE_FULL: 1518 { 1519 /* no decrement */ 1520 struct ccb_getdevstats cgds; 1521 1522 /* 1523 * First off, find out what the current 1524 * transaction counts are. 1525 */ 1526 xpt_setup_ccb(&cgds.ccb_h, 1527 ccb->ccb_h.path, 1528 CAM_PRIORITY_NORMAL); 1529 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1530 xpt_action((union ccb *)&cgds); 1531 1532 /* 1533 * If we were the only transaction active, treat 1534 * the QUEUE FULL as if it were a BUSY condition. 1535 */ 1536 if (cgds.dev_active != 0) { 1537 int total_openings; 1538 1539 /* 1540 * Reduce the number of openings to 1541 * be 1 less than the amount it took 1542 * to get a queue full bounded by the 1543 * minimum allowed tag count for this 1544 * device. 1545 */ 1546 total_openings = cgds.dev_active + cgds.dev_openings; 1547 *openings = cgds.dev_active; 1548 if (*openings < cgds.mintags) 1549 *openings = cgds.mintags; 1550 if (*openings < total_openings) 1551 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1552 else { 1553 /* 1554 * Some devices report queue full for 1555 * temporary resource shortages. For 1556 * this reason, we allow a minimum 1557 * tag count to be entered via a 1558 * quirk entry to prevent the queue 1559 * count on these devices from falling 1560 * to a pessimisticly low value. We 1561 * still wait for the next successful 1562 * completion, however, before queueing 1563 * more transactions to the device. 1564 */ 1565 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1566 } 1567 *timeout = 0; 1568 error = ERESTART; 1569 *action &= ~SSQ_PRINT_SENSE; 1570 break; 1571 } 1572 /* FALLTHROUGH */ 1573 } 1574 case SCSI_STATUS_BUSY: 1575 /* 1576 * Restart the queue after either another 1577 * command completes or a 1 second timeout. 1578 */ 1579 periph = xpt_path_periph(ccb->ccb_h.path); 1580 if (periph->flags & CAM_PERIPH_INVALID) { 1581 error = EIO; 1582 *action_string = "Periph was invalidated"; 1583 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1584 ccb->ccb_h.retry_count > 0) { 1585 if ((sense_flags & SF_RETRY_BUSY) == 0) 1586 ccb->ccb_h.retry_count--; 1587 error = ERESTART; 1588 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1589 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1590 *timeout = 1000; 1591 } else { 1592 error = EIO; 1593 *action_string = "Retries exhausted"; 1594 } 1595 break; 1596 case SCSI_STATUS_RESERV_CONFLICT: 1597 default: 1598 error = EIO; 1599 break; 1600 } 1601 return (error); 1602 } 1603 1604 static int 1605 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1606 cam_flags camflags, u_int32_t sense_flags, 1607 int *openings, u_int32_t *relsim_flags, 1608 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1609 { 1610 struct cam_periph *periph; 1611 union ccb *orig_ccb = ccb; 1612 int error, recoveryccb; 1613 1614 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1615 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1616 biotrack(ccb->csio.bio, __func__); 1617 #endif 1618 1619 periph = xpt_path_periph(ccb->ccb_h.path); 1620 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1621 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1622 /* 1623 * If error recovery is already in progress, don't attempt 1624 * to process this error, but requeue it unconditionally 1625 * and attempt to process it once error recovery has 1626 * completed. This failed command is probably related to 1627 * the error that caused the currently active error recovery 1628 * action so our current recovery efforts should also 1629 * address this command. Be aware that the error recovery 1630 * code assumes that only one recovery action is in progress 1631 * on a particular peripheral instance at any given time 1632 * (e.g. only one saved CCB for error recovery) so it is 1633 * imperitive that we don't violate this assumption. 1634 */ 1635 error = ERESTART; 1636 *action &= ~SSQ_PRINT_SENSE; 1637 } else { 1638 scsi_sense_action err_action; 1639 struct ccb_getdev cgd; 1640 1641 /* 1642 * Grab the inquiry data for this device. 1643 */ 1644 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1645 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1646 xpt_action((union ccb *)&cgd); 1647 1648 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1649 sense_flags); 1650 error = err_action & SS_ERRMASK; 1651 1652 /* 1653 * Do not autostart sequential access devices 1654 * to avoid unexpected tape loading. 1655 */ 1656 if ((err_action & SS_MASK) == SS_START && 1657 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1658 *action_string = "Will not autostart a " 1659 "sequential access device"; 1660 goto sense_error_done; 1661 } 1662 1663 /* 1664 * Avoid recovery recursion if recovery action is the same. 1665 */ 1666 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1667 if (((err_action & SS_MASK) == SS_START && 1668 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1669 ((err_action & SS_MASK) == SS_TUR && 1670 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1671 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1672 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1673 *timeout = 500; 1674 } 1675 } 1676 1677 /* 1678 * If the recovery action will consume a retry, 1679 * make sure we actually have retries available. 1680 */ 1681 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1682 if (ccb->ccb_h.retry_count > 0 && 1683 (periph->flags & CAM_PERIPH_INVALID) == 0) 1684 ccb->ccb_h.retry_count--; 1685 else { 1686 *action_string = "Retries exhausted"; 1687 goto sense_error_done; 1688 } 1689 } 1690 1691 if ((err_action & SS_MASK) >= SS_START) { 1692 /* 1693 * Do common portions of commands that 1694 * use recovery CCBs. 1695 */ 1696 orig_ccb = xpt_alloc_ccb_nowait(); 1697 if (orig_ccb == NULL) { 1698 *action_string = "Can't allocate recovery CCB"; 1699 goto sense_error_done; 1700 } 1701 /* 1702 * Clear freeze flag for original request here, as 1703 * this freeze will be dropped as part of ERESTART. 1704 */ 1705 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1706 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1707 } 1708 1709 switch (err_action & SS_MASK) { 1710 case SS_NOP: 1711 *action_string = "No recovery action needed"; 1712 error = 0; 1713 break; 1714 case SS_RETRY: 1715 *action_string = "Retrying command (per sense data)"; 1716 error = ERESTART; 1717 break; 1718 case SS_FAIL: 1719 *action_string = "Unretryable error"; 1720 break; 1721 case SS_START: 1722 { 1723 int le; 1724 1725 /* 1726 * Send a start unit command to the device, and 1727 * then retry the command. 1728 */ 1729 *action_string = "Attempting to start unit"; 1730 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1731 1732 /* 1733 * Check for removable media and set 1734 * load/eject flag appropriately. 1735 */ 1736 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1737 le = TRUE; 1738 else 1739 le = FALSE; 1740 1741 scsi_start_stop(&ccb->csio, 1742 /*retries*/1, 1743 camperiphdone, 1744 MSG_SIMPLE_Q_TAG, 1745 /*start*/TRUE, 1746 /*load/eject*/le, 1747 /*immediate*/FALSE, 1748 SSD_FULL_SIZE, 1749 /*timeout*/50000); 1750 break; 1751 } 1752 case SS_TUR: 1753 { 1754 /* 1755 * Send a Test Unit Ready to the device. 1756 * If the 'many' flag is set, we send 120 1757 * test unit ready commands, one every half 1758 * second. Otherwise, we just send one TUR. 1759 * We only want to do this if the retry 1760 * count has not been exhausted. 1761 */ 1762 int retries; 1763 1764 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1765 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1766 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1767 *action_string = "Polling device for readiness"; 1768 retries = 120; 1769 } else { 1770 *action_string = "Testing device for readiness"; 1771 retries = 1; 1772 } 1773 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1774 scsi_test_unit_ready(&ccb->csio, 1775 retries, 1776 camperiphdone, 1777 MSG_SIMPLE_Q_TAG, 1778 SSD_FULL_SIZE, 1779 /*timeout*/5000); 1780 1781 /* 1782 * Accomplish our 500ms delay by deferring 1783 * the release of our device queue appropriately. 1784 */ 1785 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1786 *timeout = 500; 1787 break; 1788 } 1789 default: 1790 panic("Unhandled error action %x", err_action); 1791 } 1792 1793 if ((err_action & SS_MASK) >= SS_START) { 1794 /* 1795 * Drop the priority, so that the recovery 1796 * CCB is the first to execute. Freeze the queue 1797 * after this command is sent so that we can 1798 * restore the old csio and have it queued in 1799 * the proper order before we release normal 1800 * transactions to the device. 1801 */ 1802 ccb->ccb_h.pinfo.priority--; 1803 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1804 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1805 error = ERESTART; 1806 *orig = orig_ccb; 1807 } 1808 1809 sense_error_done: 1810 *action = err_action; 1811 } 1812 return (error); 1813 } 1814 1815 /* 1816 * Generic error handler. Peripheral drivers usually filter 1817 * out the errors that they handle in a unique manner, then 1818 * call this function. 1819 */ 1820 int 1821 cam_periph_error(union ccb *ccb, cam_flags camflags, 1822 u_int32_t sense_flags) 1823 { 1824 struct cam_path *newpath; 1825 union ccb *orig_ccb, *scan_ccb; 1826 struct cam_periph *periph; 1827 const char *action_string; 1828 cam_status status; 1829 int frozen, error, openings, devctl_err; 1830 u_int32_t action, relsim_flags, timeout; 1831 1832 action = SSQ_PRINT_SENSE; 1833 periph = xpt_path_periph(ccb->ccb_h.path); 1834 action_string = NULL; 1835 status = ccb->ccb_h.status; 1836 frozen = (status & CAM_DEV_QFRZN) != 0; 1837 status &= CAM_STATUS_MASK; 1838 devctl_err = openings = relsim_flags = timeout = 0; 1839 orig_ccb = ccb; 1840 1841 /* Filter the errors that should be reported via devctl */ 1842 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1843 case CAM_CMD_TIMEOUT: 1844 case CAM_REQ_ABORTED: 1845 case CAM_REQ_CMP_ERR: 1846 case CAM_REQ_TERMIO: 1847 case CAM_UNREC_HBA_ERROR: 1848 case CAM_DATA_RUN_ERR: 1849 case CAM_SCSI_STATUS_ERROR: 1850 case CAM_ATA_STATUS_ERROR: 1851 case CAM_SMP_STATUS_ERROR: 1852 devctl_err++; 1853 break; 1854 default: 1855 break; 1856 } 1857 1858 switch (status) { 1859 case CAM_REQ_CMP: 1860 error = 0; 1861 action &= ~SSQ_PRINT_SENSE; 1862 break; 1863 case CAM_SCSI_STATUS_ERROR: 1864 error = camperiphscsistatuserror(ccb, &orig_ccb, 1865 camflags, sense_flags, &openings, &relsim_flags, 1866 &timeout, &action, &action_string); 1867 break; 1868 case CAM_AUTOSENSE_FAIL: 1869 error = EIO; /* we have to kill the command */ 1870 break; 1871 case CAM_UA_ABORT: 1872 case CAM_UA_TERMIO: 1873 case CAM_MSG_REJECT_REC: 1874 /* XXX Don't know that these are correct */ 1875 error = EIO; 1876 break; 1877 case CAM_SEL_TIMEOUT: 1878 if ((camflags & CAM_RETRY_SELTO) != 0) { 1879 if (ccb->ccb_h.retry_count > 0 && 1880 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1881 ccb->ccb_h.retry_count--; 1882 error = ERESTART; 1883 1884 /* 1885 * Wait a bit to give the device 1886 * time to recover before we try again. 1887 */ 1888 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1889 timeout = periph_selto_delay; 1890 break; 1891 } 1892 action_string = "Retries exhausted"; 1893 } 1894 /* FALLTHROUGH */ 1895 case CAM_DEV_NOT_THERE: 1896 error = ENXIO; 1897 action = SSQ_LOST; 1898 break; 1899 case CAM_REQ_INVALID: 1900 case CAM_PATH_INVALID: 1901 case CAM_NO_HBA: 1902 case CAM_PROVIDE_FAIL: 1903 case CAM_REQ_TOO_BIG: 1904 case CAM_LUN_INVALID: 1905 case CAM_TID_INVALID: 1906 case CAM_FUNC_NOTAVAIL: 1907 error = EINVAL; 1908 break; 1909 case CAM_SCSI_BUS_RESET: 1910 case CAM_BDR_SENT: 1911 /* 1912 * Commands that repeatedly timeout and cause these 1913 * kinds of error recovery actions, should return 1914 * CAM_CMD_TIMEOUT, which allows us to safely assume 1915 * that this command was an innocent bystander to 1916 * these events and should be unconditionally 1917 * retried. 1918 */ 1919 case CAM_REQUEUE_REQ: 1920 /* Unconditional requeue if device is still there */ 1921 if (periph->flags & CAM_PERIPH_INVALID) { 1922 action_string = "Periph was invalidated"; 1923 error = EIO; 1924 } else if (sense_flags & SF_NO_RETRY) { 1925 error = EIO; 1926 action_string = "Retry was blocked"; 1927 } else { 1928 error = ERESTART; 1929 action &= ~SSQ_PRINT_SENSE; 1930 } 1931 break; 1932 case CAM_RESRC_UNAVAIL: 1933 /* Wait a bit for the resource shortage to abate. */ 1934 timeout = periph_noresrc_delay; 1935 /* FALLTHROUGH */ 1936 case CAM_BUSY: 1937 if (timeout == 0) { 1938 /* Wait a bit for the busy condition to abate. */ 1939 timeout = periph_busy_delay; 1940 } 1941 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1942 /* FALLTHROUGH */ 1943 case CAM_ATA_STATUS_ERROR: 1944 case CAM_REQ_CMP_ERR: 1945 case CAM_CMD_TIMEOUT: 1946 case CAM_UNEXP_BUSFREE: 1947 case CAM_UNCOR_PARITY: 1948 case CAM_DATA_RUN_ERR: 1949 default: 1950 if (periph->flags & CAM_PERIPH_INVALID) { 1951 error = EIO; 1952 action_string = "Periph was invalidated"; 1953 } else if (ccb->ccb_h.retry_count == 0) { 1954 error = EIO; 1955 action_string = "Retries exhausted"; 1956 } else if (sense_flags & SF_NO_RETRY) { 1957 error = EIO; 1958 action_string = "Retry was blocked"; 1959 } else { 1960 ccb->ccb_h.retry_count--; 1961 error = ERESTART; 1962 } 1963 break; 1964 } 1965 1966 if ((sense_flags & SF_PRINT_ALWAYS) || 1967 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1968 action |= SSQ_PRINT_SENSE; 1969 else if (sense_flags & SF_NO_PRINT) 1970 action &= ~SSQ_PRINT_SENSE; 1971 if ((action & SSQ_PRINT_SENSE) != 0) 1972 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1973 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1974 if (error != ERESTART) { 1975 if (action_string == NULL) 1976 action_string = "Unretryable error"; 1977 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1978 error, action_string); 1979 } else if (action_string != NULL) 1980 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1981 else { 1982 xpt_print(ccb->ccb_h.path, 1983 "Retrying command, %d more tries remain\n", 1984 ccb->ccb_h.retry_count); 1985 } 1986 } 1987 1988 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 1989 cam_periph_devctl_notify(orig_ccb); 1990 1991 if ((action & SSQ_LOST) != 0) { 1992 lun_id_t lun_id; 1993 1994 /* 1995 * For a selection timeout, we consider all of the LUNs on 1996 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1997 * then we only get rid of the device(s) specified by the 1998 * path in the original CCB. 1999 */ 2000 if (status == CAM_SEL_TIMEOUT) 2001 lun_id = CAM_LUN_WILDCARD; 2002 else 2003 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2004 2005 /* Should we do more if we can't create the path?? */ 2006 if (xpt_create_path(&newpath, periph, 2007 xpt_path_path_id(ccb->ccb_h.path), 2008 xpt_path_target_id(ccb->ccb_h.path), 2009 lun_id) == CAM_REQ_CMP) { 2010 /* 2011 * Let peripheral drivers know that this 2012 * device has gone away. 2013 */ 2014 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2015 xpt_free_path(newpath); 2016 } 2017 } 2018 2019 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2020 if ((action & SSQ_UA) != 0) 2021 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2022 2023 /* Rescan target on "Reported LUNs data has changed" */ 2024 if ((action & SSQ_RESCAN) != 0) { 2025 if (xpt_create_path(&newpath, NULL, 2026 xpt_path_path_id(ccb->ccb_h.path), 2027 xpt_path_target_id(ccb->ccb_h.path), 2028 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2029 scan_ccb = xpt_alloc_ccb_nowait(); 2030 if (scan_ccb != NULL) { 2031 scan_ccb->ccb_h.path = newpath; 2032 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2033 scan_ccb->crcn.flags = 0; 2034 xpt_rescan(scan_ccb); 2035 } else { 2036 xpt_print(newpath, 2037 "Can't allocate CCB to rescan target\n"); 2038 xpt_free_path(newpath); 2039 } 2040 } 2041 } 2042 2043 /* Attempt a retry */ 2044 if (error == ERESTART || error == 0) { 2045 if (frozen != 0) 2046 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2047 if (error == ERESTART) 2048 xpt_action(ccb); 2049 if (frozen != 0) 2050 cam_release_devq(ccb->ccb_h.path, 2051 relsim_flags, 2052 openings, 2053 timeout, 2054 /*getcount_only*/0); 2055 } 2056 2057 return (error); 2058 } 2059 2060 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2061 2062 static void 2063 cam_periph_devctl_notify(union ccb *ccb) 2064 { 2065 struct cam_periph *periph; 2066 struct ccb_getdev *cgd; 2067 struct sbuf sb; 2068 int serr, sk, asc, ascq; 2069 char *sbmsg, *type; 2070 2071 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2072 if (sbmsg == NULL) 2073 return; 2074 2075 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2076 2077 periph = xpt_path_periph(ccb->ccb_h.path); 2078 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2079 periph->unit_number); 2080 2081 sbuf_printf(&sb, "serial=\""); 2082 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2083 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2084 CAM_PRIORITY_NORMAL); 2085 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2086 xpt_action((union ccb *)cgd); 2087 2088 if (cgd->ccb_h.status == CAM_REQ_CMP) 2089 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2090 xpt_free_ccb((union ccb *)cgd); 2091 } 2092 sbuf_printf(&sb, "\" "); 2093 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2094 2095 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2096 case CAM_CMD_TIMEOUT: 2097 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2098 type = "timeout"; 2099 break; 2100 case CAM_SCSI_STATUS_ERROR: 2101 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2102 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2103 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2104 serr, sk, asc, ascq); 2105 type = "error"; 2106 break; 2107 case CAM_ATA_STATUS_ERROR: 2108 sbuf_printf(&sb, "RES=\""); 2109 ata_res_sbuf(&ccb->ataio.res, &sb); 2110 sbuf_printf(&sb, "\" "); 2111 type = "error"; 2112 break; 2113 default: 2114 type = "error"; 2115 break; 2116 } 2117 2118 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2119 sbuf_printf(&sb, "CDB=\""); 2120 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2121 sbuf_printf(&sb, "\" "); 2122 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2123 sbuf_printf(&sb, "ACB=\""); 2124 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2125 sbuf_printf(&sb, "\" "); 2126 } 2127 2128 if (sbuf_finish(&sb) == 0) 2129 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2130 sbuf_delete(&sb); 2131 free(sbmsg, M_CAMPERIPH); 2132 } 2133 2134 /* 2135 * Sysctl to force an invalidation of the drive right now. Can be 2136 * called with CTLFLAG_MPSAFE since we take periph lock. 2137 */ 2138 int 2139 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2140 { 2141 struct cam_periph *periph; 2142 int error, value; 2143 2144 periph = arg1; 2145 value = 0; 2146 error = sysctl_handle_int(oidp, &value, 0, req); 2147 if (error != 0 || req->newptr == NULL || value != 1) 2148 return (error); 2149 2150 cam_periph_lock(periph); 2151 cam_periph_invalidate(periph); 2152 cam_periph_unlock(periph); 2153 2154 return (0); 2155 } 2156