1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_compat.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_xpt_periph.h> 58 #include <cam/cam_xpt_internal.h> 59 #include <cam/cam_periph.h> 60 #include <cam/cam_debug.h> 61 #include <cam/cam_sim.h> 62 63 #include <cam/scsi/scsi_all.h> 64 #include <cam/scsi/scsi_message.h> 65 #include <cam/scsi/scsi_pass.h> 66 67 static u_int camperiphnextunit(struct periph_driver *p_drv, 68 u_int newunit, bool wired, 69 path_id_t pathid, target_id_t target, 70 lun_id_t lun); 71 static u_int camperiphunit(struct periph_driver *p_drv, 72 path_id_t pathid, target_id_t target, 73 lun_id_t lun, 74 const char *sn); 75 static void camperiphdone(struct cam_periph *periph, 76 union ccb *done_ccb); 77 static void camperiphfree(struct cam_periph *periph); 78 static int camperiphscsistatuserror(union ccb *ccb, 79 union ccb **orig_ccb, 80 cam_flags camflags, 81 u_int32_t sense_flags, 82 int *openings, 83 u_int32_t *relsim_flags, 84 u_int32_t *timeout, 85 u_int32_t *action, 86 const char **action_string); 87 static int camperiphscsisenseerror(union ccb *ccb, 88 union ccb **orig_ccb, 89 cam_flags camflags, 90 u_int32_t sense_flags, 91 int *openings, 92 u_int32_t *relsim_flags, 93 u_int32_t *timeout, 94 u_int32_t *action, 95 const char **action_string); 96 static void cam_periph_devctl_notify(union ccb *ccb); 97 98 static int nperiph_drivers; 99 static int initialized = 0; 100 struct periph_driver **periph_drivers; 101 102 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 103 104 static int periph_selto_delay = 1000; 105 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 106 static int periph_noresrc_delay = 500; 107 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 108 static int periph_busy_delay = 500; 109 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 110 111 static u_int periph_mapmem_thresh = 65536; 112 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 113 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 114 115 void 116 periphdriver_register(void *data) 117 { 118 struct periph_driver *drv = (struct periph_driver *)data; 119 struct periph_driver **newdrivers, **old; 120 int ndrivers; 121 122 again: 123 ndrivers = nperiph_drivers + 2; 124 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 125 M_WAITOK); 126 xpt_lock_buses(); 127 if (ndrivers != nperiph_drivers + 2) { 128 /* 129 * Lost race against itself; go around. 130 */ 131 xpt_unlock_buses(); 132 free(newdrivers, M_CAMPERIPH); 133 goto again; 134 } 135 if (periph_drivers) 136 bcopy(periph_drivers, newdrivers, 137 sizeof(*newdrivers) * nperiph_drivers); 138 newdrivers[nperiph_drivers] = drv; 139 newdrivers[nperiph_drivers + 1] = NULL; 140 old = periph_drivers; 141 periph_drivers = newdrivers; 142 nperiph_drivers++; 143 xpt_unlock_buses(); 144 if (old) 145 free(old, M_CAMPERIPH); 146 /* If driver marked as early or it is late now, initialize it. */ 147 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 148 initialized > 1) 149 (*drv->init)(); 150 } 151 152 int 153 periphdriver_unregister(void *data) 154 { 155 struct periph_driver *drv = (struct periph_driver *)data; 156 int error, n; 157 158 /* If driver marked as early or it is late now, deinitialize it. */ 159 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 160 initialized > 1) { 161 if (drv->deinit == NULL) { 162 printf("CAM periph driver '%s' doesn't have deinit.\n", 163 drv->driver_name); 164 return (EOPNOTSUPP); 165 } 166 error = drv->deinit(); 167 if (error != 0) 168 return (error); 169 } 170 171 xpt_lock_buses(); 172 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 173 ; 174 KASSERT(n < nperiph_drivers, 175 ("Periph driver '%s' was not registered", drv->driver_name)); 176 for (; n + 1 < nperiph_drivers; n++) 177 periph_drivers[n] = periph_drivers[n + 1]; 178 periph_drivers[n + 1] = NULL; 179 nperiph_drivers--; 180 xpt_unlock_buses(); 181 return (0); 182 } 183 184 void 185 periphdriver_init(int level) 186 { 187 int i, early; 188 189 initialized = max(initialized, level); 190 for (i = 0; periph_drivers[i] != NULL; i++) { 191 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 192 if (early == initialized) 193 (*periph_drivers[i]->init)(); 194 } 195 } 196 197 cam_status 198 cam_periph_alloc(periph_ctor_t *periph_ctor, 199 periph_oninv_t *periph_oninvalidate, 200 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 201 char *name, cam_periph_type type, struct cam_path *path, 202 ac_callback_t *ac_callback, ac_code code, void *arg) 203 { 204 struct periph_driver **p_drv; 205 struct cam_sim *sim; 206 struct cam_periph *periph; 207 struct cam_periph *cur_periph; 208 path_id_t path_id; 209 target_id_t target_id; 210 lun_id_t lun_id; 211 cam_status status; 212 u_int init_level; 213 214 init_level = 0; 215 /* 216 * Handle Hot-Plug scenarios. If there is already a peripheral 217 * of our type assigned to this path, we are likely waiting for 218 * final close on an old, invalidated, peripheral. If this is 219 * the case, queue up a deferred call to the peripheral's async 220 * handler. If it looks like a mistaken re-allocation, complain. 221 */ 222 if ((periph = cam_periph_find(path, name)) != NULL) { 223 if ((periph->flags & CAM_PERIPH_INVALID) != 0 224 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 225 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 226 periph->deferred_callback = ac_callback; 227 periph->deferred_ac = code; 228 return (CAM_REQ_INPROG); 229 } else { 230 printf("cam_periph_alloc: attempt to re-allocate " 231 "valid device %s%d rejected flags %#x " 232 "refcount %d\n", periph->periph_name, 233 periph->unit_number, periph->flags, 234 periph->refcount); 235 } 236 return (CAM_REQ_INVALID); 237 } 238 239 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 240 M_NOWAIT|M_ZERO); 241 242 if (periph == NULL) 243 return (CAM_RESRC_UNAVAIL); 244 245 init_level++; 246 247 sim = xpt_path_sim(path); 248 path_id = xpt_path_path_id(path); 249 target_id = xpt_path_target_id(path); 250 lun_id = xpt_path_lun_id(path); 251 periph->periph_start = periph_start; 252 periph->periph_dtor = periph_dtor; 253 periph->periph_oninval = periph_oninvalidate; 254 periph->type = type; 255 periph->periph_name = name; 256 periph->scheduled_priority = CAM_PRIORITY_NONE; 257 periph->immediate_priority = CAM_PRIORITY_NONE; 258 periph->refcount = 1; /* Dropped by invalidation. */ 259 periph->sim = sim; 260 SLIST_INIT(&periph->ccb_list); 261 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 262 if (status != CAM_REQ_CMP) 263 goto failure; 264 periph->path = path; 265 266 xpt_lock_buses(); 267 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 268 if (strcmp((*p_drv)->driver_name, name) == 0) 269 break; 270 } 271 if (*p_drv == NULL) { 272 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 273 xpt_unlock_buses(); 274 xpt_free_path(periph->path); 275 free(periph, M_CAMPERIPH); 276 return (CAM_REQ_INVALID); 277 } 278 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id, 279 path->device->serial_num); 280 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 281 while (cur_periph != NULL 282 && cur_periph->unit_number < periph->unit_number) 283 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 284 if (cur_periph != NULL) { 285 KASSERT(cur_periph->unit_number != periph->unit_number, 286 ("duplicate units on periph list")); 287 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 288 } else { 289 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 290 (*p_drv)->generation++; 291 } 292 xpt_unlock_buses(); 293 294 init_level++; 295 296 status = xpt_add_periph(periph); 297 if (status != CAM_REQ_CMP) 298 goto failure; 299 300 init_level++; 301 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 302 303 status = periph_ctor(periph, arg); 304 305 if (status == CAM_REQ_CMP) 306 init_level++; 307 308 failure: 309 switch (init_level) { 310 case 4: 311 /* Initialized successfully */ 312 break; 313 case 3: 314 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 315 xpt_remove_periph(periph); 316 /* FALLTHROUGH */ 317 case 2: 318 xpt_lock_buses(); 319 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 320 xpt_unlock_buses(); 321 xpt_free_path(periph->path); 322 /* FALLTHROUGH */ 323 case 1: 324 free(periph, M_CAMPERIPH); 325 /* FALLTHROUGH */ 326 case 0: 327 /* No cleanup to perform. */ 328 break; 329 default: 330 panic("%s: Unknown init level", __func__); 331 } 332 return(status); 333 } 334 335 /* 336 * Find a peripheral structure with the specified path, target, lun, 337 * and (optionally) type. If the name is NULL, this function will return 338 * the first peripheral driver that matches the specified path. 339 */ 340 struct cam_periph * 341 cam_periph_find(struct cam_path *path, char *name) 342 { 343 struct periph_driver **p_drv; 344 struct cam_periph *periph; 345 346 xpt_lock_buses(); 347 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 348 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 349 continue; 350 351 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 352 if (xpt_path_comp(periph->path, path) == 0) { 353 xpt_unlock_buses(); 354 cam_periph_assert(periph, MA_OWNED); 355 return(periph); 356 } 357 } 358 if (name != NULL) { 359 xpt_unlock_buses(); 360 return(NULL); 361 } 362 } 363 xpt_unlock_buses(); 364 return(NULL); 365 } 366 367 /* 368 * Find peripheral driver instances attached to the specified path. 369 */ 370 int 371 cam_periph_list(struct cam_path *path, struct sbuf *sb) 372 { 373 struct sbuf local_sb; 374 struct periph_driver **p_drv; 375 struct cam_periph *periph; 376 int count; 377 int sbuf_alloc_len; 378 379 sbuf_alloc_len = 16; 380 retry: 381 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 382 count = 0; 383 xpt_lock_buses(); 384 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 385 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 386 if (xpt_path_comp(periph->path, path) != 0) 387 continue; 388 389 if (sbuf_len(&local_sb) != 0) 390 sbuf_cat(&local_sb, ","); 391 392 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 393 periph->unit_number); 394 395 if (sbuf_error(&local_sb) == ENOMEM) { 396 sbuf_alloc_len *= 2; 397 xpt_unlock_buses(); 398 sbuf_delete(&local_sb); 399 goto retry; 400 } 401 count++; 402 } 403 } 404 xpt_unlock_buses(); 405 sbuf_finish(&local_sb); 406 if (sbuf_len(sb) != 0) 407 sbuf_cat(sb, ","); 408 sbuf_cat(sb, sbuf_data(&local_sb)); 409 sbuf_delete(&local_sb); 410 return (count); 411 } 412 413 int 414 cam_periph_acquire(struct cam_periph *periph) 415 { 416 int status; 417 418 if (periph == NULL) 419 return (EINVAL); 420 421 status = ENOENT; 422 xpt_lock_buses(); 423 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 424 periph->refcount++; 425 status = 0; 426 } 427 xpt_unlock_buses(); 428 429 return (status); 430 } 431 432 void 433 cam_periph_doacquire(struct cam_periph *periph) 434 { 435 436 xpt_lock_buses(); 437 KASSERT(periph->refcount >= 1, 438 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 439 periph->refcount++; 440 xpt_unlock_buses(); 441 } 442 443 void 444 cam_periph_release_locked_buses(struct cam_periph *periph) 445 { 446 447 cam_periph_assert(periph, MA_OWNED); 448 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 449 if (--periph->refcount == 0) 450 camperiphfree(periph); 451 } 452 453 void 454 cam_periph_release_locked(struct cam_periph *periph) 455 { 456 457 if (periph == NULL) 458 return; 459 460 xpt_lock_buses(); 461 cam_periph_release_locked_buses(periph); 462 xpt_unlock_buses(); 463 } 464 465 void 466 cam_periph_release(struct cam_periph *periph) 467 { 468 struct mtx *mtx; 469 470 if (periph == NULL) 471 return; 472 473 cam_periph_assert(periph, MA_NOTOWNED); 474 mtx = cam_periph_mtx(periph); 475 mtx_lock(mtx); 476 cam_periph_release_locked(periph); 477 mtx_unlock(mtx); 478 } 479 480 /* 481 * hold/unhold act as mutual exclusion for sections of the code that 482 * need to sleep and want to make sure that other sections that 483 * will interfere are held off. This only protects exclusive sections 484 * from each other. 485 */ 486 int 487 cam_periph_hold(struct cam_periph *periph, int priority) 488 { 489 int error; 490 491 /* 492 * Increment the reference count on the peripheral 493 * while we wait for our lock attempt to succeed 494 * to ensure the peripheral doesn't disappear out 495 * from user us while we sleep. 496 */ 497 498 if (cam_periph_acquire(periph) != 0) 499 return (ENXIO); 500 501 cam_periph_assert(periph, MA_OWNED); 502 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 503 periph->flags |= CAM_PERIPH_LOCK_WANTED; 504 if ((error = cam_periph_sleep(periph, periph, priority, 505 "caplck", 0)) != 0) { 506 cam_periph_release_locked(periph); 507 return (error); 508 } 509 if (periph->flags & CAM_PERIPH_INVALID) { 510 cam_periph_release_locked(periph); 511 return (ENXIO); 512 } 513 } 514 515 periph->flags |= CAM_PERIPH_LOCKED; 516 return (0); 517 } 518 519 void 520 cam_periph_unhold(struct cam_periph *periph) 521 { 522 523 cam_periph_assert(periph, MA_OWNED); 524 525 periph->flags &= ~CAM_PERIPH_LOCKED; 526 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 527 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 528 wakeup(periph); 529 } 530 531 cam_periph_release_locked(periph); 532 } 533 534 void 535 cam_periph_hold_boot(struct cam_periph *periph) 536 { 537 538 root_mount_hold_token(periph->periph_name, &periph->periph_rootmount); 539 } 540 541 void 542 cam_periph_release_boot(struct cam_periph *periph) 543 { 544 545 root_mount_rel(&periph->periph_rootmount); 546 } 547 548 /* 549 * Look for the next unit number that is not currently in use for this 550 * peripheral type starting at "newunit". Also exclude unit numbers that 551 * are reserved by for future "hardwiring" unless we already know that this 552 * is a potential wired device. Only assume that the device is "wired" the 553 * first time through the loop since after that we'll be looking at unit 554 * numbers that did not match a wiring entry. 555 */ 556 static u_int 557 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired, 558 path_id_t pathid, target_id_t target, lun_id_t lun) 559 { 560 struct cam_periph *periph; 561 char *periph_name; 562 int i, val, dunit, r; 563 const char *dname, *strval; 564 565 periph_name = p_drv->driver_name; 566 for (;;newunit++) { 567 for (periph = TAILQ_FIRST(&p_drv->units); 568 periph != NULL && periph->unit_number != newunit; 569 periph = TAILQ_NEXT(periph, unit_links)) 570 ; 571 572 if (periph != NULL && periph->unit_number == newunit) { 573 if (wired) { 574 xpt_print(periph->path, "Duplicate Wired " 575 "Device entry!\n"); 576 xpt_print(periph->path, "Second device (%s " 577 "device at scbus%d target %d lun %d) will " 578 "not be wired\n", periph_name, pathid, 579 target, lun); 580 wired = false; 581 } 582 continue; 583 } 584 if (wired) 585 break; 586 587 /* 588 * Don't allow the mere presence of any attributes of a device 589 * means that it is for a wired down entry. Instead, insist that 590 * one of the matching criteria from camperiphunit be present 591 * for the device. 592 */ 593 i = 0; 594 dname = periph_name; 595 for (;;) { 596 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 597 if (r != 0) 598 break; 599 600 if (newunit != dunit) 601 continue; 602 if (resource_string_value(dname, dunit, "sn", &strval) == 0 || 603 resource_int_value(dname, dunit, "lun", &val) == 0 || 604 resource_int_value(dname, dunit, "target", &val) == 0 || 605 resource_string_value(dname, dunit, "at", &strval) == 0) 606 break; 607 } 608 if (r != 0) 609 break; 610 } 611 return (newunit); 612 } 613 614 static u_int 615 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 616 target_id_t target, lun_id_t lun, const char *sn) 617 { 618 bool wired = false; 619 u_int unit; 620 int i, val, dunit; 621 const char *dname, *strval; 622 char pathbuf[32], *periph_name; 623 624 periph_name = p_drv->driver_name; 625 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 626 unit = 0; 627 i = 0; 628 dname = periph_name; 629 630 for (wired = false; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 631 wired = false) { 632 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 633 if (strcmp(strval, pathbuf) != 0) 634 continue; 635 wired = true; 636 } 637 if (resource_int_value(dname, dunit, "target", &val) == 0) { 638 if (val != target) 639 continue; 640 wired = true; 641 } 642 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 643 if (val != lun) 644 continue; 645 wired = true; 646 } 647 if (resource_string_value(dname, dunit, "sn", &strval) == 0) { 648 if (sn == NULL || strcmp(strval, sn) != 0) 649 continue; 650 wired = true; 651 } 652 if (wired) { 653 unit = dunit; 654 break; 655 } 656 } 657 658 /* 659 * Either start from 0 looking for the next unit or from 660 * the unit number given in the resource config. This way, 661 * if we have wildcard matches, we don't return the same 662 * unit number twice. 663 */ 664 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 665 666 return (unit); 667 } 668 669 void 670 cam_periph_invalidate(struct cam_periph *periph) 671 { 672 673 cam_periph_assert(periph, MA_OWNED); 674 /* 675 * We only tear down the device the first time a peripheral is 676 * invalidated. 677 */ 678 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 679 return; 680 681 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 682 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 683 struct sbuf sb; 684 char buffer[160]; 685 686 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 687 xpt_denounce_periph_sbuf(periph, &sb); 688 sbuf_finish(&sb); 689 sbuf_putbuf(&sb); 690 } 691 periph->flags |= CAM_PERIPH_INVALID; 692 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 693 if (periph->periph_oninval != NULL) 694 periph->periph_oninval(periph); 695 cam_periph_release_locked(periph); 696 } 697 698 static void 699 camperiphfree(struct cam_periph *periph) 700 { 701 struct periph_driver **p_drv; 702 struct periph_driver *drv; 703 704 cam_periph_assert(periph, MA_OWNED); 705 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 706 periph->periph_name, periph->unit_number)); 707 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 708 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 709 break; 710 } 711 if (*p_drv == NULL) { 712 printf("camperiphfree: attempt to free non-existant periph\n"); 713 return; 714 } 715 /* 716 * Cache a pointer to the periph_driver structure. If a 717 * periph_driver is added or removed from the array (see 718 * periphdriver_register()) while we drop the toplogy lock 719 * below, p_drv may change. This doesn't protect against this 720 * particular periph_driver going away. That will require full 721 * reference counting in the periph_driver infrastructure. 722 */ 723 drv = *p_drv; 724 725 /* 726 * We need to set this flag before dropping the topology lock, to 727 * let anyone who is traversing the list that this peripheral is 728 * about to be freed, and there will be no more reference count 729 * checks. 730 */ 731 periph->flags |= CAM_PERIPH_FREE; 732 733 /* 734 * The peripheral destructor semantics dictate calling with only the 735 * SIM mutex held. Since it might sleep, it should not be called 736 * with the topology lock held. 737 */ 738 xpt_unlock_buses(); 739 740 /* 741 * We need to call the peripheral destructor prior to removing the 742 * peripheral from the list. Otherwise, we risk running into a 743 * scenario where the peripheral unit number may get reused 744 * (because it has been removed from the list), but some resources 745 * used by the peripheral are still hanging around. In particular, 746 * the devfs nodes used by some peripherals like the pass(4) driver 747 * aren't fully cleaned up until the destructor is run. If the 748 * unit number is reused before the devfs instance is fully gone, 749 * devfs will panic. 750 */ 751 if (periph->periph_dtor != NULL) 752 periph->periph_dtor(periph); 753 754 /* 755 * The peripheral list is protected by the topology lock. We have to 756 * remove the periph from the drv list before we call deferred_ac. The 757 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 758 */ 759 xpt_lock_buses(); 760 761 TAILQ_REMOVE(&drv->units, periph, unit_links); 762 drv->generation++; 763 764 xpt_remove_periph(periph); 765 766 xpt_unlock_buses(); 767 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 768 xpt_print(periph->path, "Periph destroyed\n"); 769 else 770 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 771 772 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 773 union ccb ccb; 774 void *arg; 775 776 memset(&ccb, 0, sizeof(ccb)); 777 switch (periph->deferred_ac) { 778 case AC_FOUND_DEVICE: 779 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 780 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 781 xpt_action(&ccb); 782 arg = &ccb; 783 break; 784 case AC_PATH_REGISTERED: 785 xpt_path_inq(&ccb.cpi, periph->path); 786 arg = &ccb; 787 break; 788 default: 789 arg = NULL; 790 break; 791 } 792 periph->deferred_callback(NULL, periph->deferred_ac, 793 periph->path, arg); 794 } 795 xpt_free_path(periph->path); 796 free(periph, M_CAMPERIPH); 797 xpt_lock_buses(); 798 } 799 800 /* 801 * Map user virtual pointers into kernel virtual address space, so we can 802 * access the memory. This is now a generic function that centralizes most 803 * of the sanity checks on the data flags, if any. 804 * This also only works for up to maxphys memory. Since we use 805 * buffers to map stuff in and out, we're limited to the buffer size. 806 */ 807 int 808 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 809 u_int maxmap) 810 { 811 int numbufs, i; 812 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 813 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 814 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 815 816 bzero(mapinfo, sizeof(*mapinfo)); 817 if (maxmap == 0) 818 maxmap = DFLTPHYS; /* traditional default */ 819 else if (maxmap > maxphys) 820 maxmap = maxphys; /* for safety */ 821 switch(ccb->ccb_h.func_code) { 822 case XPT_DEV_MATCH: 823 if (ccb->cdm.match_buf_len == 0) { 824 printf("cam_periph_mapmem: invalid match buffer " 825 "length 0\n"); 826 return(EINVAL); 827 } 828 if (ccb->cdm.pattern_buf_len > 0) { 829 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 830 lengths[0] = ccb->cdm.pattern_buf_len; 831 dirs[0] = CAM_DIR_OUT; 832 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 833 lengths[1] = ccb->cdm.match_buf_len; 834 dirs[1] = CAM_DIR_IN; 835 numbufs = 2; 836 } else { 837 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 838 lengths[0] = ccb->cdm.match_buf_len; 839 dirs[0] = CAM_DIR_IN; 840 numbufs = 1; 841 } 842 /* 843 * This request will not go to the hardware, no reason 844 * to be so strict. vmapbuf() is able to map up to maxphys. 845 */ 846 maxmap = maxphys; 847 break; 848 case XPT_SCSI_IO: 849 case XPT_CONT_TARGET_IO: 850 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 851 return(0); 852 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 853 return (EINVAL); 854 data_ptrs[0] = &ccb->csio.data_ptr; 855 lengths[0] = ccb->csio.dxfer_len; 856 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 857 numbufs = 1; 858 break; 859 case XPT_ATA_IO: 860 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 861 return(0); 862 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 863 return (EINVAL); 864 data_ptrs[0] = &ccb->ataio.data_ptr; 865 lengths[0] = ccb->ataio.dxfer_len; 866 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 867 numbufs = 1; 868 break; 869 case XPT_MMC_IO: 870 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 871 return(0); 872 /* Two mappings: one for cmd->data and one for cmd->data->data */ 873 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 874 lengths[0] = sizeof(struct mmc_data *); 875 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 876 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 877 lengths[1] = ccb->mmcio.cmd.data->len; 878 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 879 numbufs = 2; 880 break; 881 case XPT_SMP_IO: 882 data_ptrs[0] = &ccb->smpio.smp_request; 883 lengths[0] = ccb->smpio.smp_request_len; 884 dirs[0] = CAM_DIR_OUT; 885 data_ptrs[1] = &ccb->smpio.smp_response; 886 lengths[1] = ccb->smpio.smp_response_len; 887 dirs[1] = CAM_DIR_IN; 888 numbufs = 2; 889 break; 890 case XPT_NVME_IO: 891 case XPT_NVME_ADMIN: 892 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 893 return (0); 894 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 895 return (EINVAL); 896 data_ptrs[0] = &ccb->nvmeio.data_ptr; 897 lengths[0] = ccb->nvmeio.dxfer_len; 898 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 899 numbufs = 1; 900 break; 901 case XPT_DEV_ADVINFO: 902 if (ccb->cdai.bufsiz == 0) 903 return (0); 904 905 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 906 lengths[0] = ccb->cdai.bufsiz; 907 dirs[0] = CAM_DIR_IN; 908 numbufs = 1; 909 910 /* 911 * This request will not go to the hardware, no reason 912 * to be so strict. vmapbuf() is able to map up to maxphys. 913 */ 914 maxmap = maxphys; 915 break; 916 default: 917 return(EINVAL); 918 break; /* NOTREACHED */ 919 } 920 921 /* 922 * Check the transfer length and permissions first, so we don't 923 * have to unmap any previously mapped buffers. 924 */ 925 for (i = 0; i < numbufs; i++) { 926 if (lengths[i] > maxmap) { 927 printf("cam_periph_mapmem: attempt to map %lu bytes, " 928 "which is greater than %lu\n", 929 (long)(lengths[i]), (u_long)maxmap); 930 return (E2BIG); 931 } 932 } 933 934 /* 935 * This keeps the kernel stack of current thread from getting 936 * swapped. In low-memory situations where the kernel stack might 937 * otherwise get swapped out, this holds it and allows the thread 938 * to make progress and release the kernel mapped pages sooner. 939 * 940 * XXX KDM should I use P_NOSWAP instead? 941 */ 942 PHOLD(curproc); 943 944 for (i = 0; i < numbufs; i++) { 945 /* Save the user's data address. */ 946 mapinfo->orig[i] = *data_ptrs[i]; 947 948 /* 949 * For small buffers use malloc+copyin/copyout instead of 950 * mapping to KVA to avoid expensive TLB shootdowns. For 951 * small allocations malloc is backed by UMA, and so much 952 * cheaper on SMP systems. 953 */ 954 if (lengths[i] <= periph_mapmem_thresh && 955 ccb->ccb_h.func_code != XPT_MMC_IO) { 956 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 957 M_WAITOK); 958 if (dirs[i] != CAM_DIR_IN) { 959 if (copyin(mapinfo->orig[i], *data_ptrs[i], 960 lengths[i]) != 0) { 961 free(*data_ptrs[i], M_CAMPERIPH); 962 *data_ptrs[i] = mapinfo->orig[i]; 963 goto fail; 964 } 965 } else 966 bzero(*data_ptrs[i], lengths[i]); 967 continue; 968 } 969 970 /* 971 * Get the buffer. 972 */ 973 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 974 975 /* set the direction */ 976 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 977 BIO_WRITE : BIO_READ; 978 979 /* Map the buffer into kernel memory. */ 980 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) { 981 uma_zfree(pbuf_zone, mapinfo->bp[i]); 982 goto fail; 983 } 984 985 /* set our pointer to the new mapped area */ 986 *data_ptrs[i] = mapinfo->bp[i]->b_data; 987 } 988 989 /* 990 * Now that we've gotten this far, change ownership to the kernel 991 * of the buffers so that we don't run afoul of returning to user 992 * space with locks (on the buffer) held. 993 */ 994 for (i = 0; i < numbufs; i++) { 995 if (mapinfo->bp[i]) 996 BUF_KERNPROC(mapinfo->bp[i]); 997 } 998 999 mapinfo->num_bufs_used = numbufs; 1000 return(0); 1001 1002 fail: 1003 for (i--; i >= 0; i--) { 1004 if (mapinfo->bp[i]) { 1005 vunmapbuf(mapinfo->bp[i]); 1006 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1007 } else 1008 free(*data_ptrs[i], M_CAMPERIPH); 1009 *data_ptrs[i] = mapinfo->orig[i]; 1010 } 1011 PRELE(curproc); 1012 return(EACCES); 1013 } 1014 1015 /* 1016 * Unmap memory segments mapped into kernel virtual address space by 1017 * cam_periph_mapmem(). 1018 */ 1019 void 1020 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1021 { 1022 int numbufs, i; 1023 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1024 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 1025 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1026 1027 if (mapinfo->num_bufs_used <= 0) { 1028 /* nothing to free and the process wasn't held. */ 1029 return; 1030 } 1031 1032 switch (ccb->ccb_h.func_code) { 1033 case XPT_DEV_MATCH: 1034 if (ccb->cdm.pattern_buf_len > 0) { 1035 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1036 lengths[0] = ccb->cdm.pattern_buf_len; 1037 dirs[0] = CAM_DIR_OUT; 1038 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1039 lengths[1] = ccb->cdm.match_buf_len; 1040 dirs[1] = CAM_DIR_IN; 1041 numbufs = 2; 1042 } else { 1043 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1044 lengths[0] = ccb->cdm.match_buf_len; 1045 dirs[0] = CAM_DIR_IN; 1046 numbufs = 1; 1047 } 1048 break; 1049 case XPT_SCSI_IO: 1050 case XPT_CONT_TARGET_IO: 1051 data_ptrs[0] = &ccb->csio.data_ptr; 1052 lengths[0] = ccb->csio.dxfer_len; 1053 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1054 numbufs = 1; 1055 break; 1056 case XPT_ATA_IO: 1057 data_ptrs[0] = &ccb->ataio.data_ptr; 1058 lengths[0] = ccb->ataio.dxfer_len; 1059 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1060 numbufs = 1; 1061 break; 1062 case XPT_MMC_IO: 1063 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1064 lengths[0] = sizeof(struct mmc_data *); 1065 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1066 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1067 lengths[1] = ccb->mmcio.cmd.data->len; 1068 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1069 numbufs = 2; 1070 break; 1071 case XPT_SMP_IO: 1072 data_ptrs[0] = &ccb->smpio.smp_request; 1073 lengths[0] = ccb->smpio.smp_request_len; 1074 dirs[0] = CAM_DIR_OUT; 1075 data_ptrs[1] = &ccb->smpio.smp_response; 1076 lengths[1] = ccb->smpio.smp_response_len; 1077 dirs[1] = CAM_DIR_IN; 1078 numbufs = 2; 1079 break; 1080 case XPT_NVME_IO: 1081 case XPT_NVME_ADMIN: 1082 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1083 lengths[0] = ccb->nvmeio.dxfer_len; 1084 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1085 numbufs = 1; 1086 break; 1087 case XPT_DEV_ADVINFO: 1088 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1089 lengths[0] = ccb->cdai.bufsiz; 1090 dirs[0] = CAM_DIR_IN; 1091 numbufs = 1; 1092 break; 1093 default: 1094 /* allow ourselves to be swapped once again */ 1095 PRELE(curproc); 1096 return; 1097 break; /* NOTREACHED */ 1098 } 1099 1100 for (i = 0; i < numbufs; i++) { 1101 if (mapinfo->bp[i]) { 1102 /* unmap the buffer */ 1103 vunmapbuf(mapinfo->bp[i]); 1104 1105 /* release the buffer */ 1106 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1107 } else { 1108 if (dirs[i] != CAM_DIR_OUT) { 1109 copyout(*data_ptrs[i], mapinfo->orig[i], 1110 lengths[i]); 1111 } 1112 free(*data_ptrs[i], M_CAMPERIPH); 1113 } 1114 1115 /* Set the user's pointer back to the original value */ 1116 *data_ptrs[i] = mapinfo->orig[i]; 1117 } 1118 1119 /* allow ourselves to be swapped once again */ 1120 PRELE(curproc); 1121 } 1122 1123 int 1124 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1125 int (*error_routine)(union ccb *ccb, 1126 cam_flags camflags, 1127 u_int32_t sense_flags)) 1128 { 1129 union ccb *ccb; 1130 int error; 1131 int found; 1132 1133 error = found = 0; 1134 1135 switch(cmd){ 1136 case CAMGETPASSTHRU_0x19: 1137 case CAMGETPASSTHRU: 1138 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1139 xpt_setup_ccb(&ccb->ccb_h, 1140 ccb->ccb_h.path, 1141 CAM_PRIORITY_NORMAL); 1142 ccb->ccb_h.func_code = XPT_GDEVLIST; 1143 1144 /* 1145 * Basically, the point of this is that we go through 1146 * getting the list of devices, until we find a passthrough 1147 * device. In the current version of the CAM code, the 1148 * only way to determine what type of device we're dealing 1149 * with is by its name. 1150 */ 1151 while (found == 0) { 1152 ccb->cgdl.index = 0; 1153 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1154 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1155 /* we want the next device in the list */ 1156 xpt_action(ccb); 1157 if (strncmp(ccb->cgdl.periph_name, 1158 "pass", 4) == 0){ 1159 found = 1; 1160 break; 1161 } 1162 } 1163 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1164 (found == 0)) { 1165 ccb->cgdl.periph_name[0] = '\0'; 1166 ccb->cgdl.unit_number = 0; 1167 break; 1168 } 1169 } 1170 1171 /* copy the result back out */ 1172 bcopy(ccb, addr, sizeof(union ccb)); 1173 1174 /* and release the ccb */ 1175 xpt_release_ccb(ccb); 1176 1177 break; 1178 default: 1179 error = ENOTTY; 1180 break; 1181 } 1182 return(error); 1183 } 1184 1185 static void 1186 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1187 { 1188 1189 panic("%s: already done with ccb %p", __func__, done_ccb); 1190 } 1191 1192 static void 1193 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1194 { 1195 1196 /* Caller will release the CCB */ 1197 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1198 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1199 wakeup(&done_ccb->ccb_h.cbfcnp); 1200 } 1201 1202 static void 1203 cam_periph_ccbwait(union ccb *ccb) 1204 { 1205 1206 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1207 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1208 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1209 PRIBIO, "cbwait", 0); 1210 } 1211 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1212 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1213 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1214 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1215 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1216 } 1217 1218 /* 1219 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1220 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1221 */ 1222 int 1223 cam_periph_runccb(union ccb *ccb, 1224 int (*error_routine)(union ccb *ccb, 1225 cam_flags camflags, 1226 u_int32_t sense_flags), 1227 cam_flags camflags, u_int32_t sense_flags, 1228 struct devstat *ds) 1229 { 1230 struct bintime *starttime; 1231 struct bintime ltime; 1232 int error; 1233 bool must_poll; 1234 uint32_t timeout = 1; 1235 1236 starttime = NULL; 1237 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1238 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1239 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1240 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1241 1242 /* 1243 * If the user has supplied a stats structure, and if we understand 1244 * this particular type of ccb, record the transaction start. 1245 */ 1246 if (ds != NULL && 1247 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1248 ccb->ccb_h.func_code == XPT_ATA_IO || 1249 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1250 starttime = <ime; 1251 binuptime(starttime); 1252 devstat_start_transaction(ds, starttime); 1253 } 1254 1255 /* 1256 * We must poll the I/O while we're dumping. The scheduler is normally 1257 * stopped for dumping, except when we call doadump from ddb. While the 1258 * scheduler is running in this case, we still need to poll the I/O to 1259 * avoid sleeping waiting for the ccb to complete. 1260 * 1261 * A panic triggered dump stops the scheduler, any callback from the 1262 * shutdown_post_sync event will run with the scheduler stopped, but 1263 * before we're officially dumping. To avoid hanging in adashutdown 1264 * initiated commands (or other similar situations), we have to test for 1265 * either SCHEDULER_STOPPED() here as well. 1266 * 1267 * To avoid locking problems, dumping/polling callers must call 1268 * without a periph lock held. 1269 */ 1270 must_poll = dumping || SCHEDULER_STOPPED(); 1271 ccb->ccb_h.cbfcnp = cam_periph_done; 1272 1273 /* 1274 * If we're polling, then we need to ensure that we have ample resources 1275 * in the periph. cam_periph_error can reschedule the ccb by calling 1276 * xpt_action and returning ERESTART, so we have to effect the polling 1277 * in the do loop below. 1278 */ 1279 if (must_poll) { 1280 if (cam_sim_pollable(ccb->ccb_h.path->bus->sim)) 1281 timeout = xpt_poll_setup(ccb); 1282 else 1283 timeout = 0; 1284 } 1285 1286 if (timeout == 0) { 1287 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1288 error = EBUSY; 1289 } else { 1290 xpt_action(ccb); 1291 do { 1292 if (must_poll) { 1293 xpt_pollwait(ccb, timeout); 1294 timeout = ccb->ccb_h.timeout * 10; 1295 } else { 1296 cam_periph_ccbwait(ccb); 1297 } 1298 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1299 error = 0; 1300 else if (error_routine != NULL) { 1301 ccb->ccb_h.cbfcnp = cam_periph_done; 1302 error = (*error_routine)(ccb, camflags, sense_flags); 1303 } else 1304 error = 0; 1305 } while (error == ERESTART); 1306 } 1307 1308 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1309 cam_release_devq(ccb->ccb_h.path, 1310 /* relsim_flags */0, 1311 /* openings */0, 1312 /* timeout */0, 1313 /* getcount_only */ FALSE); 1314 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1315 } 1316 1317 if (ds != NULL) { 1318 uint32_t bytes; 1319 devstat_tag_type tag; 1320 bool valid = true; 1321 1322 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1323 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1324 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1325 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1326 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1327 tag = (devstat_tag_type)0; 1328 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1329 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1330 tag = (devstat_tag_type)0; 1331 } else { 1332 valid = false; 1333 } 1334 if (valid) 1335 devstat_end_transaction(ds, bytes, tag, 1336 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1337 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1338 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1339 } 1340 1341 return(error); 1342 } 1343 1344 void 1345 cam_freeze_devq(struct cam_path *path) 1346 { 1347 struct ccb_hdr ccb_h; 1348 1349 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1350 memset(&ccb_h, 0, sizeof(ccb_h)); 1351 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1352 ccb_h.func_code = XPT_NOOP; 1353 ccb_h.flags = CAM_DEV_QFREEZE; 1354 xpt_action((union ccb *)&ccb_h); 1355 } 1356 1357 u_int32_t 1358 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1359 u_int32_t openings, u_int32_t arg, 1360 int getcount_only) 1361 { 1362 struct ccb_relsim crs; 1363 1364 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1365 relsim_flags, openings, arg, getcount_only)); 1366 memset(&crs, 0, sizeof(crs)); 1367 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1368 crs.ccb_h.func_code = XPT_REL_SIMQ; 1369 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1370 crs.release_flags = relsim_flags; 1371 crs.openings = openings; 1372 crs.release_timeout = arg; 1373 xpt_action((union ccb *)&crs); 1374 return (crs.qfrozen_cnt); 1375 } 1376 1377 #define saved_ccb_ptr ppriv_ptr0 1378 static void 1379 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1380 { 1381 union ccb *saved_ccb; 1382 cam_status status; 1383 struct scsi_start_stop_unit *scsi_cmd; 1384 int error = 0, error_code, sense_key, asc, ascq; 1385 u_int16_t done_flags; 1386 1387 scsi_cmd = (struct scsi_start_stop_unit *) 1388 &done_ccb->csio.cdb_io.cdb_bytes; 1389 status = done_ccb->ccb_h.status; 1390 1391 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1392 if (scsi_extract_sense_ccb(done_ccb, 1393 &error_code, &sense_key, &asc, &ascq)) { 1394 /* 1395 * If the error is "invalid field in CDB", 1396 * and the load/eject flag is set, turn the 1397 * flag off and try again. This is just in 1398 * case the drive in question barfs on the 1399 * load eject flag. The CAM code should set 1400 * the load/eject flag by default for 1401 * removable media. 1402 */ 1403 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1404 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1405 (asc == 0x24) && (ascq == 0x00)) { 1406 scsi_cmd->how &= ~SSS_LOEJ; 1407 if (status & CAM_DEV_QFRZN) { 1408 cam_release_devq(done_ccb->ccb_h.path, 1409 0, 0, 0, 0); 1410 done_ccb->ccb_h.status &= 1411 ~CAM_DEV_QFRZN; 1412 } 1413 xpt_action(done_ccb); 1414 goto out; 1415 } 1416 } 1417 error = cam_periph_error(done_ccb, 0, 1418 SF_RETRY_UA | SF_NO_PRINT); 1419 if (error == ERESTART) 1420 goto out; 1421 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1422 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1423 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1424 } 1425 } else { 1426 /* 1427 * If we have successfully taken a device from the not 1428 * ready to ready state, re-scan the device and re-get 1429 * the inquiry information. Many devices (mostly disks) 1430 * don't properly report their inquiry information unless 1431 * they are spun up. 1432 */ 1433 if (scsi_cmd->opcode == START_STOP_UNIT) 1434 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1435 } 1436 1437 /* If we tried long wait and still failed, remember that. */ 1438 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1439 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1440 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1441 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1442 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1443 } 1444 1445 /* 1446 * After recovery action(s) completed, return to the original CCB. 1447 * If the recovery CCB has failed, considering its own possible 1448 * retries and recovery, assume we are back in state where we have 1449 * been originally, but without recovery hopes left. In such case, 1450 * after the final attempt below, we cancel any further retries, 1451 * blocking by that also any new recovery attempts for this CCB, 1452 * and the result will be the final one returned to the CCB owher. 1453 */ 1454 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1455 KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO, 1456 ("%s: saved_ccb func_code %#x != XPT_SCSI_IO", 1457 __func__, saved_ccb->ccb_h.func_code)); 1458 KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO, 1459 ("%s: done_ccb func_code %#x != XPT_SCSI_IO", 1460 __func__, done_ccb->ccb_h.func_code)); 1461 saved_ccb->ccb_h.periph_links = done_ccb->ccb_h.periph_links; 1462 done_flags = done_ccb->ccb_h.alloc_flags; 1463 bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio)); 1464 done_ccb->ccb_h.alloc_flags = done_flags; 1465 xpt_free_ccb(saved_ccb); 1466 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1467 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1468 if (error != 0) 1469 done_ccb->ccb_h.retry_count = 0; 1470 xpt_action(done_ccb); 1471 1472 out: 1473 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1474 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1475 } 1476 1477 /* 1478 * Generic Async Event handler. Peripheral drivers usually 1479 * filter out the events that require personal attention, 1480 * and leave the rest to this function. 1481 */ 1482 void 1483 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1484 struct cam_path *path, void *arg) 1485 { 1486 switch (code) { 1487 case AC_LOST_DEVICE: 1488 cam_periph_invalidate(periph); 1489 break; 1490 default: 1491 break; 1492 } 1493 } 1494 1495 void 1496 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1497 { 1498 struct ccb_getdevstats cgds; 1499 1500 memset(&cgds, 0, sizeof(cgds)); 1501 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1502 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1503 xpt_action((union ccb *)&cgds); 1504 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1505 } 1506 1507 void 1508 cam_periph_freeze_after_event(struct cam_periph *periph, 1509 struct timeval* event_time, u_int duration_ms) 1510 { 1511 struct timeval delta; 1512 struct timeval duration_tv; 1513 1514 if (!timevalisset(event_time)) 1515 return; 1516 1517 microtime(&delta); 1518 timevalsub(&delta, event_time); 1519 duration_tv.tv_sec = duration_ms / 1000; 1520 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1521 if (timevalcmp(&delta, &duration_tv, <)) { 1522 timevalsub(&duration_tv, &delta); 1523 1524 duration_ms = duration_tv.tv_sec * 1000; 1525 duration_ms += duration_tv.tv_usec / 1000; 1526 cam_freeze_devq(periph->path); 1527 cam_release_devq(periph->path, 1528 RELSIM_RELEASE_AFTER_TIMEOUT, 1529 /*reduction*/0, 1530 /*timeout*/duration_ms, 1531 /*getcount_only*/0); 1532 } 1533 1534 } 1535 1536 static int 1537 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1538 cam_flags camflags, u_int32_t sense_flags, 1539 int *openings, u_int32_t *relsim_flags, 1540 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1541 { 1542 struct cam_periph *periph; 1543 int error; 1544 1545 switch (ccb->csio.scsi_status) { 1546 case SCSI_STATUS_OK: 1547 case SCSI_STATUS_COND_MET: 1548 case SCSI_STATUS_INTERMED: 1549 case SCSI_STATUS_INTERMED_COND_MET: 1550 error = 0; 1551 break; 1552 case SCSI_STATUS_CMD_TERMINATED: 1553 case SCSI_STATUS_CHECK_COND: 1554 error = camperiphscsisenseerror(ccb, orig_ccb, 1555 camflags, 1556 sense_flags, 1557 openings, 1558 relsim_flags, 1559 timeout, 1560 action, 1561 action_string); 1562 break; 1563 case SCSI_STATUS_QUEUE_FULL: 1564 { 1565 /* no decrement */ 1566 struct ccb_getdevstats cgds; 1567 1568 /* 1569 * First off, find out what the current 1570 * transaction counts are. 1571 */ 1572 memset(&cgds, 0, sizeof(cgds)); 1573 xpt_setup_ccb(&cgds.ccb_h, 1574 ccb->ccb_h.path, 1575 CAM_PRIORITY_NORMAL); 1576 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1577 xpt_action((union ccb *)&cgds); 1578 1579 /* 1580 * If we were the only transaction active, treat 1581 * the QUEUE FULL as if it were a BUSY condition. 1582 */ 1583 if (cgds.dev_active != 0) { 1584 int total_openings; 1585 1586 /* 1587 * Reduce the number of openings to 1588 * be 1 less than the amount it took 1589 * to get a queue full bounded by the 1590 * minimum allowed tag count for this 1591 * device. 1592 */ 1593 total_openings = cgds.dev_active + cgds.dev_openings; 1594 *openings = cgds.dev_active; 1595 if (*openings < cgds.mintags) 1596 *openings = cgds.mintags; 1597 if (*openings < total_openings) 1598 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1599 else { 1600 /* 1601 * Some devices report queue full for 1602 * temporary resource shortages. For 1603 * this reason, we allow a minimum 1604 * tag count to be entered via a 1605 * quirk entry to prevent the queue 1606 * count on these devices from falling 1607 * to a pessimisticly low value. We 1608 * still wait for the next successful 1609 * completion, however, before queueing 1610 * more transactions to the device. 1611 */ 1612 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1613 } 1614 *timeout = 0; 1615 error = ERESTART; 1616 *action &= ~SSQ_PRINT_SENSE; 1617 break; 1618 } 1619 /* FALLTHROUGH */ 1620 } 1621 case SCSI_STATUS_BUSY: 1622 /* 1623 * Restart the queue after either another 1624 * command completes or a 1 second timeout. 1625 */ 1626 periph = xpt_path_periph(ccb->ccb_h.path); 1627 if (periph->flags & CAM_PERIPH_INVALID) { 1628 error = ENXIO; 1629 *action_string = "Periph was invalidated"; 1630 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1631 ccb->ccb_h.retry_count > 0) { 1632 if ((sense_flags & SF_RETRY_BUSY) == 0) 1633 ccb->ccb_h.retry_count--; 1634 error = ERESTART; 1635 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1636 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1637 *timeout = 1000; 1638 } else { 1639 error = EIO; 1640 *action_string = "Retries exhausted"; 1641 } 1642 break; 1643 case SCSI_STATUS_RESERV_CONFLICT: 1644 default: 1645 error = EIO; 1646 break; 1647 } 1648 return (error); 1649 } 1650 1651 static int 1652 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1653 cam_flags camflags, u_int32_t sense_flags, 1654 int *openings, u_int32_t *relsim_flags, 1655 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1656 { 1657 struct cam_periph *periph; 1658 union ccb *orig_ccb = ccb; 1659 int error, recoveryccb; 1660 u_int16_t flags; 1661 1662 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1663 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1664 biotrack(ccb->csio.bio, __func__); 1665 #endif 1666 1667 periph = xpt_path_periph(ccb->ccb_h.path); 1668 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1669 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1670 /* 1671 * If error recovery is already in progress, don't attempt 1672 * to process this error, but requeue it unconditionally 1673 * and attempt to process it once error recovery has 1674 * completed. This failed command is probably related to 1675 * the error that caused the currently active error recovery 1676 * action so our current recovery efforts should also 1677 * address this command. Be aware that the error recovery 1678 * code assumes that only one recovery action is in progress 1679 * on a particular peripheral instance at any given time 1680 * (e.g. only one saved CCB for error recovery) so it is 1681 * imperitive that we don't violate this assumption. 1682 */ 1683 error = ERESTART; 1684 *action &= ~SSQ_PRINT_SENSE; 1685 } else { 1686 scsi_sense_action err_action; 1687 struct ccb_getdev cgd; 1688 1689 /* 1690 * Grab the inquiry data for this device. 1691 */ 1692 memset(&cgd, 0, sizeof(cgd)); 1693 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1694 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1695 xpt_action((union ccb *)&cgd); 1696 1697 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1698 sense_flags); 1699 error = err_action & SS_ERRMASK; 1700 1701 /* 1702 * Do not autostart sequential access devices 1703 * to avoid unexpected tape loading. 1704 */ 1705 if ((err_action & SS_MASK) == SS_START && 1706 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1707 *action_string = "Will not autostart a " 1708 "sequential access device"; 1709 goto sense_error_done; 1710 } 1711 1712 /* 1713 * Avoid recovery recursion if recovery action is the same. 1714 */ 1715 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1716 if (((err_action & SS_MASK) == SS_START && 1717 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1718 ((err_action & SS_MASK) == SS_TUR && 1719 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1720 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1721 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1722 *timeout = 500; 1723 } 1724 } 1725 1726 /* 1727 * If the recovery action will consume a retry, 1728 * make sure we actually have retries available. 1729 */ 1730 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1731 if (ccb->ccb_h.retry_count > 0 && 1732 (periph->flags & CAM_PERIPH_INVALID) == 0) 1733 ccb->ccb_h.retry_count--; 1734 else { 1735 *action_string = "Retries exhausted"; 1736 goto sense_error_done; 1737 } 1738 } 1739 1740 if ((err_action & SS_MASK) >= SS_START) { 1741 /* 1742 * Do common portions of commands that 1743 * use recovery CCBs. 1744 */ 1745 orig_ccb = xpt_alloc_ccb_nowait(); 1746 if (orig_ccb == NULL) { 1747 *action_string = "Can't allocate recovery CCB"; 1748 goto sense_error_done; 1749 } 1750 /* 1751 * Clear freeze flag for original request here, as 1752 * this freeze will be dropped as part of ERESTART. 1753 */ 1754 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1755 1756 KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO, 1757 ("%s: ccb func_code %#x != XPT_SCSI_IO", 1758 __func__, ccb->ccb_h.func_code)); 1759 flags = orig_ccb->ccb_h.alloc_flags; 1760 bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio)); 1761 orig_ccb->ccb_h.alloc_flags = flags; 1762 } 1763 1764 switch (err_action & SS_MASK) { 1765 case SS_NOP: 1766 *action_string = "No recovery action needed"; 1767 error = 0; 1768 break; 1769 case SS_RETRY: 1770 *action_string = "Retrying command (per sense data)"; 1771 error = ERESTART; 1772 break; 1773 case SS_FAIL: 1774 *action_string = "Unretryable error"; 1775 break; 1776 case SS_START: 1777 { 1778 int le; 1779 1780 /* 1781 * Send a start unit command to the device, and 1782 * then retry the command. 1783 */ 1784 *action_string = "Attempting to start unit"; 1785 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1786 1787 /* 1788 * Check for removable media and set 1789 * load/eject flag appropriately. 1790 */ 1791 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1792 le = TRUE; 1793 else 1794 le = FALSE; 1795 1796 scsi_start_stop(&ccb->csio, 1797 /*retries*/1, 1798 camperiphdone, 1799 MSG_SIMPLE_Q_TAG, 1800 /*start*/TRUE, 1801 /*load/eject*/le, 1802 /*immediate*/FALSE, 1803 SSD_FULL_SIZE, 1804 /*timeout*/50000); 1805 break; 1806 } 1807 case SS_TUR: 1808 { 1809 /* 1810 * Send a Test Unit Ready to the device. 1811 * If the 'many' flag is set, we send 120 1812 * test unit ready commands, one every half 1813 * second. Otherwise, we just send one TUR. 1814 * We only want to do this if the retry 1815 * count has not been exhausted. 1816 */ 1817 int retries; 1818 1819 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1820 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1821 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1822 *action_string = "Polling device for readiness"; 1823 retries = 120; 1824 } else { 1825 *action_string = "Testing device for readiness"; 1826 retries = 1; 1827 } 1828 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1829 scsi_test_unit_ready(&ccb->csio, 1830 retries, 1831 camperiphdone, 1832 MSG_SIMPLE_Q_TAG, 1833 SSD_FULL_SIZE, 1834 /*timeout*/5000); 1835 1836 /* 1837 * Accomplish our 500ms delay by deferring 1838 * the release of our device queue appropriately. 1839 */ 1840 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1841 *timeout = 500; 1842 break; 1843 } 1844 default: 1845 panic("Unhandled error action %x", err_action); 1846 } 1847 1848 if ((err_action & SS_MASK) >= SS_START) { 1849 /* 1850 * Drop the priority, so that the recovery 1851 * CCB is the first to execute. Freeze the queue 1852 * after this command is sent so that we can 1853 * restore the old csio and have it queued in 1854 * the proper order before we release normal 1855 * transactions to the device. 1856 */ 1857 ccb->ccb_h.pinfo.priority--; 1858 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1859 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1860 error = ERESTART; 1861 *orig = orig_ccb; 1862 } 1863 1864 sense_error_done: 1865 *action = err_action; 1866 } 1867 return (error); 1868 } 1869 1870 /* 1871 * Generic error handler. Peripheral drivers usually filter 1872 * out the errors that they handle in a unique manner, then 1873 * call this function. 1874 */ 1875 int 1876 cam_periph_error(union ccb *ccb, cam_flags camflags, 1877 u_int32_t sense_flags) 1878 { 1879 struct cam_path *newpath; 1880 union ccb *orig_ccb, *scan_ccb; 1881 struct cam_periph *periph; 1882 const char *action_string; 1883 cam_status status; 1884 int frozen, error, openings, devctl_err; 1885 u_int32_t action, relsim_flags, timeout; 1886 1887 action = SSQ_PRINT_SENSE; 1888 periph = xpt_path_periph(ccb->ccb_h.path); 1889 action_string = NULL; 1890 status = ccb->ccb_h.status; 1891 frozen = (status & CAM_DEV_QFRZN) != 0; 1892 status &= CAM_STATUS_MASK; 1893 devctl_err = openings = relsim_flags = timeout = 0; 1894 orig_ccb = ccb; 1895 1896 /* Filter the errors that should be reported via devctl */ 1897 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1898 case CAM_CMD_TIMEOUT: 1899 case CAM_REQ_ABORTED: 1900 case CAM_REQ_CMP_ERR: 1901 case CAM_REQ_TERMIO: 1902 case CAM_UNREC_HBA_ERROR: 1903 case CAM_DATA_RUN_ERR: 1904 case CAM_SCSI_STATUS_ERROR: 1905 case CAM_ATA_STATUS_ERROR: 1906 case CAM_SMP_STATUS_ERROR: 1907 devctl_err++; 1908 break; 1909 default: 1910 break; 1911 } 1912 1913 switch (status) { 1914 case CAM_REQ_CMP: 1915 error = 0; 1916 action &= ~SSQ_PRINT_SENSE; 1917 break; 1918 case CAM_SCSI_STATUS_ERROR: 1919 error = camperiphscsistatuserror(ccb, &orig_ccb, 1920 camflags, sense_flags, &openings, &relsim_flags, 1921 &timeout, &action, &action_string); 1922 break; 1923 case CAM_AUTOSENSE_FAIL: 1924 error = EIO; /* we have to kill the command */ 1925 break; 1926 case CAM_UA_ABORT: 1927 case CAM_UA_TERMIO: 1928 case CAM_MSG_REJECT_REC: 1929 /* XXX Don't know that these are correct */ 1930 error = EIO; 1931 break; 1932 case CAM_SEL_TIMEOUT: 1933 if ((camflags & CAM_RETRY_SELTO) != 0) { 1934 if (ccb->ccb_h.retry_count > 0 && 1935 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1936 ccb->ccb_h.retry_count--; 1937 error = ERESTART; 1938 1939 /* 1940 * Wait a bit to give the device 1941 * time to recover before we try again. 1942 */ 1943 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1944 timeout = periph_selto_delay; 1945 break; 1946 } 1947 action_string = "Retries exhausted"; 1948 } 1949 /* FALLTHROUGH */ 1950 case CAM_DEV_NOT_THERE: 1951 error = ENXIO; 1952 action = SSQ_LOST; 1953 break; 1954 case CAM_REQ_INVALID: 1955 case CAM_PATH_INVALID: 1956 case CAM_NO_HBA: 1957 case CAM_PROVIDE_FAIL: 1958 case CAM_REQ_TOO_BIG: 1959 case CAM_LUN_INVALID: 1960 case CAM_TID_INVALID: 1961 case CAM_FUNC_NOTAVAIL: 1962 error = EINVAL; 1963 break; 1964 case CAM_SCSI_BUS_RESET: 1965 case CAM_BDR_SENT: 1966 /* 1967 * Commands that repeatedly timeout and cause these 1968 * kinds of error recovery actions, should return 1969 * CAM_CMD_TIMEOUT, which allows us to safely assume 1970 * that this command was an innocent bystander to 1971 * these events and should be unconditionally 1972 * retried. 1973 */ 1974 case CAM_REQUEUE_REQ: 1975 /* Unconditional requeue if device is still there */ 1976 if (periph->flags & CAM_PERIPH_INVALID) { 1977 action_string = "Periph was invalidated"; 1978 error = ENXIO; 1979 } else if (sense_flags & SF_NO_RETRY) { 1980 error = EIO; 1981 action_string = "Retry was blocked"; 1982 } else { 1983 error = ERESTART; 1984 action &= ~SSQ_PRINT_SENSE; 1985 } 1986 break; 1987 case CAM_RESRC_UNAVAIL: 1988 /* Wait a bit for the resource shortage to abate. */ 1989 timeout = periph_noresrc_delay; 1990 /* FALLTHROUGH */ 1991 case CAM_BUSY: 1992 if (timeout == 0) { 1993 /* Wait a bit for the busy condition to abate. */ 1994 timeout = periph_busy_delay; 1995 } 1996 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1997 /* FALLTHROUGH */ 1998 case CAM_ATA_STATUS_ERROR: 1999 case CAM_NVME_STATUS_ERROR: 2000 case CAM_SMP_STATUS_ERROR: 2001 case CAM_REQ_CMP_ERR: 2002 case CAM_CMD_TIMEOUT: 2003 case CAM_UNEXP_BUSFREE: 2004 case CAM_UNCOR_PARITY: 2005 case CAM_DATA_RUN_ERR: 2006 default: 2007 if (periph->flags & CAM_PERIPH_INVALID) { 2008 error = ENXIO; 2009 action_string = "Periph was invalidated"; 2010 } else if (ccb->ccb_h.retry_count == 0) { 2011 error = EIO; 2012 action_string = "Retries exhausted"; 2013 } else if (sense_flags & SF_NO_RETRY) { 2014 error = EIO; 2015 action_string = "Retry was blocked"; 2016 } else { 2017 ccb->ccb_h.retry_count--; 2018 error = ERESTART; 2019 } 2020 break; 2021 } 2022 2023 if ((sense_flags & SF_PRINT_ALWAYS) || 2024 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 2025 action |= SSQ_PRINT_SENSE; 2026 else if (sense_flags & SF_NO_PRINT) 2027 action &= ~SSQ_PRINT_SENSE; 2028 if ((action & SSQ_PRINT_SENSE) != 0) 2029 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 2030 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 2031 if (error != ERESTART) { 2032 if (action_string == NULL) 2033 action_string = "Unretryable error"; 2034 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2035 error, action_string); 2036 } else if (action_string != NULL) 2037 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2038 else { 2039 xpt_print(ccb->ccb_h.path, 2040 "Retrying command, %d more tries remain\n", 2041 ccb->ccb_h.retry_count); 2042 } 2043 } 2044 2045 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2046 cam_periph_devctl_notify(orig_ccb); 2047 2048 if ((action & SSQ_LOST) != 0) { 2049 lun_id_t lun_id; 2050 2051 /* 2052 * For a selection timeout, we consider all of the LUNs on 2053 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2054 * then we only get rid of the device(s) specified by the 2055 * path in the original CCB. 2056 */ 2057 if (status == CAM_SEL_TIMEOUT) 2058 lun_id = CAM_LUN_WILDCARD; 2059 else 2060 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2061 2062 /* Should we do more if we can't create the path?? */ 2063 if (xpt_create_path(&newpath, periph, 2064 xpt_path_path_id(ccb->ccb_h.path), 2065 xpt_path_target_id(ccb->ccb_h.path), 2066 lun_id) == CAM_REQ_CMP) { 2067 /* 2068 * Let peripheral drivers know that this 2069 * device has gone away. 2070 */ 2071 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2072 xpt_free_path(newpath); 2073 } 2074 } 2075 2076 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2077 if ((action & SSQ_UA) != 0) 2078 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2079 2080 /* Rescan target on "Reported LUNs data has changed" */ 2081 if ((action & SSQ_RESCAN) != 0) { 2082 if (xpt_create_path(&newpath, NULL, 2083 xpt_path_path_id(ccb->ccb_h.path), 2084 xpt_path_target_id(ccb->ccb_h.path), 2085 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2086 scan_ccb = xpt_alloc_ccb_nowait(); 2087 if (scan_ccb != NULL) { 2088 scan_ccb->ccb_h.path = newpath; 2089 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2090 scan_ccb->crcn.flags = 0; 2091 xpt_rescan(scan_ccb); 2092 } else { 2093 xpt_print(newpath, 2094 "Can't allocate CCB to rescan target\n"); 2095 xpt_free_path(newpath); 2096 } 2097 } 2098 } 2099 2100 /* Attempt a retry */ 2101 if (error == ERESTART || error == 0) { 2102 if (frozen != 0) 2103 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2104 if (error == ERESTART) 2105 xpt_action(ccb); 2106 if (frozen != 0) 2107 cam_release_devq(ccb->ccb_h.path, 2108 relsim_flags, 2109 openings, 2110 timeout, 2111 /*getcount_only*/0); 2112 } 2113 2114 return (error); 2115 } 2116 2117 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2118 2119 static void 2120 cam_periph_devctl_notify(union ccb *ccb) 2121 { 2122 struct cam_periph *periph; 2123 struct ccb_getdev *cgd; 2124 struct sbuf sb; 2125 int serr, sk, asc, ascq; 2126 char *sbmsg, *type; 2127 2128 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2129 if (sbmsg == NULL) 2130 return; 2131 2132 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2133 2134 periph = xpt_path_periph(ccb->ccb_h.path); 2135 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2136 periph->unit_number); 2137 2138 sbuf_printf(&sb, "serial=\""); 2139 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2140 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2141 CAM_PRIORITY_NORMAL); 2142 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2143 xpt_action((union ccb *)cgd); 2144 2145 if (cgd->ccb_h.status == CAM_REQ_CMP) 2146 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2147 xpt_free_ccb((union ccb *)cgd); 2148 } 2149 sbuf_printf(&sb, "\" "); 2150 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2151 2152 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2153 case CAM_CMD_TIMEOUT: 2154 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2155 type = "timeout"; 2156 break; 2157 case CAM_SCSI_STATUS_ERROR: 2158 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2159 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2160 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2161 serr, sk, asc, ascq); 2162 type = "error"; 2163 break; 2164 case CAM_ATA_STATUS_ERROR: 2165 sbuf_printf(&sb, "RES=\""); 2166 ata_res_sbuf(&ccb->ataio.res, &sb); 2167 sbuf_printf(&sb, "\" "); 2168 type = "error"; 2169 break; 2170 default: 2171 type = "error"; 2172 break; 2173 } 2174 2175 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2176 sbuf_printf(&sb, "CDB=\""); 2177 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2178 sbuf_printf(&sb, "\" "); 2179 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2180 sbuf_printf(&sb, "ACB=\""); 2181 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2182 sbuf_printf(&sb, "\" "); 2183 } 2184 2185 if (sbuf_finish(&sb) == 0) 2186 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2187 sbuf_delete(&sb); 2188 free(sbmsg, M_CAMPERIPH); 2189 } 2190 2191 /* 2192 * Sysctl to force an invalidation of the drive right now. Can be 2193 * called with CTLFLAG_MPSAFE since we take periph lock. 2194 */ 2195 int 2196 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2197 { 2198 struct cam_periph *periph; 2199 int error, value; 2200 2201 periph = arg1; 2202 value = 0; 2203 error = sysctl_handle_int(oidp, &value, 0, req); 2204 if (error != 0 || req->newptr == NULL || value != 1) 2205 return (error); 2206 2207 cam_periph_lock(periph); 2208 cam_periph_invalidate(periph); 2209 cam_periph_unlock(periph); 2210 2211 return (0); 2212 } 2213