1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/bio.h> 41 #include <sys/conf.h> 42 #include <sys/devctl.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/devicestat.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_queue.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_debug.h> 59 #include <cam/cam_sim.h> 60 61 #include <cam/scsi/scsi_all.h> 62 #include <cam/scsi/scsi_message.h> 63 #include <cam/scsi/scsi_pass.h> 64 65 static u_int camperiphnextunit(struct periph_driver *p_drv, 66 u_int newunit, int wired, 67 path_id_t pathid, target_id_t target, 68 lun_id_t lun); 69 static u_int camperiphunit(struct periph_driver *p_drv, 70 path_id_t pathid, target_id_t target, 71 lun_id_t lun); 72 static void camperiphdone(struct cam_periph *periph, 73 union ccb *done_ccb); 74 static void camperiphfree(struct cam_periph *periph); 75 static int camperiphscsistatuserror(union ccb *ccb, 76 union ccb **orig_ccb, 77 cam_flags camflags, 78 u_int32_t sense_flags, 79 int *openings, 80 u_int32_t *relsim_flags, 81 u_int32_t *timeout, 82 u_int32_t *action, 83 const char **action_string); 84 static int camperiphscsisenseerror(union ccb *ccb, 85 union ccb **orig_ccb, 86 cam_flags camflags, 87 u_int32_t sense_flags, 88 int *openings, 89 u_int32_t *relsim_flags, 90 u_int32_t *timeout, 91 u_int32_t *action, 92 const char **action_string); 93 static void cam_periph_devctl_notify(union ccb *ccb); 94 95 static int nperiph_drivers; 96 static int initialized = 0; 97 struct periph_driver **periph_drivers; 98 99 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 100 101 static int periph_selto_delay = 1000; 102 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 103 static int periph_noresrc_delay = 500; 104 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 105 static int periph_busy_delay = 500; 106 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 107 108 static u_int periph_mapmem_thresh = 65536; 109 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN, 110 &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping"); 111 112 void 113 periphdriver_register(void *data) 114 { 115 struct periph_driver *drv = (struct periph_driver *)data; 116 struct periph_driver **newdrivers, **old; 117 int ndrivers; 118 119 again: 120 ndrivers = nperiph_drivers + 2; 121 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 122 M_WAITOK); 123 xpt_lock_buses(); 124 if (ndrivers != nperiph_drivers + 2) { 125 /* 126 * Lost race against itself; go around. 127 */ 128 xpt_unlock_buses(); 129 free(newdrivers, M_CAMPERIPH); 130 goto again; 131 } 132 if (periph_drivers) 133 bcopy(periph_drivers, newdrivers, 134 sizeof(*newdrivers) * nperiph_drivers); 135 newdrivers[nperiph_drivers] = drv; 136 newdrivers[nperiph_drivers + 1] = NULL; 137 old = periph_drivers; 138 periph_drivers = newdrivers; 139 nperiph_drivers++; 140 xpt_unlock_buses(); 141 if (old) 142 free(old, M_CAMPERIPH); 143 /* If driver marked as early or it is late now, initialize it. */ 144 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 145 initialized > 1) 146 (*drv->init)(); 147 } 148 149 int 150 periphdriver_unregister(void *data) 151 { 152 struct periph_driver *drv = (struct periph_driver *)data; 153 int error, n; 154 155 /* If driver marked as early or it is late now, deinitialize it. */ 156 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 157 initialized > 1) { 158 if (drv->deinit == NULL) { 159 printf("CAM periph driver '%s' doesn't have deinit.\n", 160 drv->driver_name); 161 return (EOPNOTSUPP); 162 } 163 error = drv->deinit(); 164 if (error != 0) 165 return (error); 166 } 167 168 xpt_lock_buses(); 169 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 170 ; 171 KASSERT(n < nperiph_drivers, 172 ("Periph driver '%s' was not registered", drv->driver_name)); 173 for (; n + 1 < nperiph_drivers; n++) 174 periph_drivers[n] = periph_drivers[n + 1]; 175 periph_drivers[n + 1] = NULL; 176 nperiph_drivers--; 177 xpt_unlock_buses(); 178 return (0); 179 } 180 181 void 182 periphdriver_init(int level) 183 { 184 int i, early; 185 186 initialized = max(initialized, level); 187 for (i = 0; periph_drivers[i] != NULL; i++) { 188 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 189 if (early == initialized) 190 (*periph_drivers[i]->init)(); 191 } 192 } 193 194 cam_status 195 cam_periph_alloc(periph_ctor_t *periph_ctor, 196 periph_oninv_t *periph_oninvalidate, 197 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 198 char *name, cam_periph_type type, struct cam_path *path, 199 ac_callback_t *ac_callback, ac_code code, void *arg) 200 { 201 struct periph_driver **p_drv; 202 struct cam_sim *sim; 203 struct cam_periph *periph; 204 struct cam_periph *cur_periph; 205 path_id_t path_id; 206 target_id_t target_id; 207 lun_id_t lun_id; 208 cam_status status; 209 u_int init_level; 210 211 init_level = 0; 212 /* 213 * Handle Hot-Plug scenarios. If there is already a peripheral 214 * of our type assigned to this path, we are likely waiting for 215 * final close on an old, invalidated, peripheral. If this is 216 * the case, queue up a deferred call to the peripheral's async 217 * handler. If it looks like a mistaken re-allocation, complain. 218 */ 219 if ((periph = cam_periph_find(path, name)) != NULL) { 220 221 if ((periph->flags & CAM_PERIPH_INVALID) != 0 222 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 223 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 224 periph->deferred_callback = ac_callback; 225 periph->deferred_ac = code; 226 return (CAM_REQ_INPROG); 227 } else { 228 printf("cam_periph_alloc: attempt to re-allocate " 229 "valid device %s%d rejected flags %#x " 230 "refcount %d\n", periph->periph_name, 231 periph->unit_number, periph->flags, 232 periph->refcount); 233 } 234 return (CAM_REQ_INVALID); 235 } 236 237 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 238 M_NOWAIT|M_ZERO); 239 240 if (periph == NULL) 241 return (CAM_RESRC_UNAVAIL); 242 243 init_level++; 244 245 246 sim = xpt_path_sim(path); 247 path_id = xpt_path_path_id(path); 248 target_id = xpt_path_target_id(path); 249 lun_id = xpt_path_lun_id(path); 250 periph->periph_start = periph_start; 251 periph->periph_dtor = periph_dtor; 252 periph->periph_oninval = periph_oninvalidate; 253 periph->type = type; 254 periph->periph_name = name; 255 periph->scheduled_priority = CAM_PRIORITY_NONE; 256 periph->immediate_priority = CAM_PRIORITY_NONE; 257 periph->refcount = 1; /* Dropped by invalidation. */ 258 periph->sim = sim; 259 SLIST_INIT(&periph->ccb_list); 260 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 261 if (status != CAM_REQ_CMP) 262 goto failure; 263 periph->path = path; 264 265 xpt_lock_buses(); 266 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 267 if (strcmp((*p_drv)->driver_name, name) == 0) 268 break; 269 } 270 if (*p_drv == NULL) { 271 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 272 xpt_unlock_buses(); 273 xpt_free_path(periph->path); 274 free(periph, M_CAMPERIPH); 275 return (CAM_REQ_INVALID); 276 } 277 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 278 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 279 while (cur_periph != NULL 280 && cur_periph->unit_number < periph->unit_number) 281 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 282 if (cur_periph != NULL) { 283 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 284 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 285 } else { 286 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 287 (*p_drv)->generation++; 288 } 289 xpt_unlock_buses(); 290 291 init_level++; 292 293 status = xpt_add_periph(periph); 294 if (status != CAM_REQ_CMP) 295 goto failure; 296 297 init_level++; 298 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 299 300 status = periph_ctor(periph, arg); 301 302 if (status == CAM_REQ_CMP) 303 init_level++; 304 305 failure: 306 switch (init_level) { 307 case 4: 308 /* Initialized successfully */ 309 break; 310 case 3: 311 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 312 xpt_remove_periph(periph); 313 /* FALLTHROUGH */ 314 case 2: 315 xpt_lock_buses(); 316 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 317 xpt_unlock_buses(); 318 xpt_free_path(periph->path); 319 /* FALLTHROUGH */ 320 case 1: 321 free(periph, M_CAMPERIPH); 322 /* FALLTHROUGH */ 323 case 0: 324 /* No cleanup to perform. */ 325 break; 326 default: 327 panic("%s: Unknown init level", __func__); 328 } 329 return(status); 330 } 331 332 /* 333 * Find a peripheral structure with the specified path, target, lun, 334 * and (optionally) type. If the name is NULL, this function will return 335 * the first peripheral driver that matches the specified path. 336 */ 337 struct cam_periph * 338 cam_periph_find(struct cam_path *path, char *name) 339 { 340 struct periph_driver **p_drv; 341 struct cam_periph *periph; 342 343 xpt_lock_buses(); 344 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 345 346 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 347 continue; 348 349 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 350 if (xpt_path_comp(periph->path, path) == 0) { 351 xpt_unlock_buses(); 352 cam_periph_assert(periph, MA_OWNED); 353 return(periph); 354 } 355 } 356 if (name != NULL) { 357 xpt_unlock_buses(); 358 return(NULL); 359 } 360 } 361 xpt_unlock_buses(); 362 return(NULL); 363 } 364 365 /* 366 * Find peripheral driver instances attached to the specified path. 367 */ 368 int 369 cam_periph_list(struct cam_path *path, struct sbuf *sb) 370 { 371 struct sbuf local_sb; 372 struct periph_driver **p_drv; 373 struct cam_periph *periph; 374 int count; 375 int sbuf_alloc_len; 376 377 sbuf_alloc_len = 16; 378 retry: 379 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 380 count = 0; 381 xpt_lock_buses(); 382 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 383 384 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 385 if (xpt_path_comp(periph->path, path) != 0) 386 continue; 387 388 if (sbuf_len(&local_sb) != 0) 389 sbuf_cat(&local_sb, ","); 390 391 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 392 periph->unit_number); 393 394 if (sbuf_error(&local_sb) == ENOMEM) { 395 sbuf_alloc_len *= 2; 396 xpt_unlock_buses(); 397 sbuf_delete(&local_sb); 398 goto retry; 399 } 400 count++; 401 } 402 } 403 xpt_unlock_buses(); 404 sbuf_finish(&local_sb); 405 if (sbuf_len(sb) != 0) 406 sbuf_cat(sb, ","); 407 sbuf_cat(sb, sbuf_data(&local_sb)); 408 sbuf_delete(&local_sb); 409 return (count); 410 } 411 412 int 413 cam_periph_acquire(struct cam_periph *periph) 414 { 415 int status; 416 417 if (periph == NULL) 418 return (EINVAL); 419 420 status = ENOENT; 421 xpt_lock_buses(); 422 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 423 periph->refcount++; 424 status = 0; 425 } 426 xpt_unlock_buses(); 427 428 return (status); 429 } 430 431 void 432 cam_periph_doacquire(struct cam_periph *periph) 433 { 434 435 xpt_lock_buses(); 436 KASSERT(periph->refcount >= 1, 437 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 438 periph->refcount++; 439 xpt_unlock_buses(); 440 } 441 442 void 443 cam_periph_release_locked_buses(struct cam_periph *periph) 444 { 445 446 cam_periph_assert(periph, MA_OWNED); 447 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 448 if (--periph->refcount == 0) 449 camperiphfree(periph); 450 } 451 452 void 453 cam_periph_release_locked(struct cam_periph *periph) 454 { 455 456 if (periph == NULL) 457 return; 458 459 xpt_lock_buses(); 460 cam_periph_release_locked_buses(periph); 461 xpt_unlock_buses(); 462 } 463 464 void 465 cam_periph_release(struct cam_periph *periph) 466 { 467 struct mtx *mtx; 468 469 if (periph == NULL) 470 return; 471 472 cam_periph_assert(periph, MA_NOTOWNED); 473 mtx = cam_periph_mtx(periph); 474 mtx_lock(mtx); 475 cam_periph_release_locked(periph); 476 mtx_unlock(mtx); 477 } 478 479 /* 480 * hold/unhold act as mutual exclusion for sections of the code that 481 * need to sleep and want to make sure that other sections that 482 * will interfere are held off. This only protects exclusive sections 483 * from each other. 484 */ 485 int 486 cam_periph_hold(struct cam_periph *periph, int priority) 487 { 488 int error; 489 490 /* 491 * Increment the reference count on the peripheral 492 * while we wait for our lock attempt to succeed 493 * to ensure the peripheral doesn't disappear out 494 * from user us while we sleep. 495 */ 496 497 if (cam_periph_acquire(periph) != 0) 498 return (ENXIO); 499 500 cam_periph_assert(periph, MA_OWNED); 501 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 502 periph->flags |= CAM_PERIPH_LOCK_WANTED; 503 if ((error = cam_periph_sleep(periph, periph, priority, 504 "caplck", 0)) != 0) { 505 cam_periph_release_locked(periph); 506 return (error); 507 } 508 if (periph->flags & CAM_PERIPH_INVALID) { 509 cam_periph_release_locked(periph); 510 return (ENXIO); 511 } 512 } 513 514 periph->flags |= CAM_PERIPH_LOCKED; 515 return (0); 516 } 517 518 void 519 cam_periph_unhold(struct cam_periph *periph) 520 { 521 522 cam_periph_assert(periph, MA_OWNED); 523 524 periph->flags &= ~CAM_PERIPH_LOCKED; 525 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 526 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 527 wakeup(periph); 528 } 529 530 cam_periph_release_locked(periph); 531 } 532 533 /* 534 * Look for the next unit number that is not currently in use for this 535 * peripheral type starting at "newunit". Also exclude unit numbers that 536 * are reserved by for future "hardwiring" unless we already know that this 537 * is a potential wired device. Only assume that the device is "wired" the 538 * first time through the loop since after that we'll be looking at unit 539 * numbers that did not match a wiring entry. 540 */ 541 static u_int 542 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 543 path_id_t pathid, target_id_t target, lun_id_t lun) 544 { 545 struct cam_periph *periph; 546 char *periph_name; 547 int i, val, dunit, r; 548 const char *dname, *strval; 549 550 periph_name = p_drv->driver_name; 551 for (;;newunit++) { 552 553 for (periph = TAILQ_FIRST(&p_drv->units); 554 periph != NULL && periph->unit_number != newunit; 555 periph = TAILQ_NEXT(periph, unit_links)) 556 ; 557 558 if (periph != NULL && periph->unit_number == newunit) { 559 if (wired != 0) { 560 xpt_print(periph->path, "Duplicate Wired " 561 "Device entry!\n"); 562 xpt_print(periph->path, "Second device (%s " 563 "device at scbus%d target %d lun %d) will " 564 "not be wired\n", periph_name, pathid, 565 target, lun); 566 wired = 0; 567 } 568 continue; 569 } 570 if (wired) 571 break; 572 573 /* 574 * Don't match entries like "da 4" as a wired down 575 * device, but do match entries like "da 4 target 5" 576 * or even "da 4 scbus 1". 577 */ 578 i = 0; 579 dname = periph_name; 580 for (;;) { 581 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 582 if (r != 0) 583 break; 584 /* if no "target" and no specific scbus, skip */ 585 if (resource_int_value(dname, dunit, "target", &val) && 586 (resource_string_value(dname, dunit, "at",&strval)|| 587 strcmp(strval, "scbus") == 0)) 588 continue; 589 if (newunit == dunit) 590 break; 591 } 592 if (r != 0) 593 break; 594 } 595 return (newunit); 596 } 597 598 static u_int 599 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 600 target_id_t target, lun_id_t lun) 601 { 602 u_int unit; 603 int wired, i, val, dunit; 604 const char *dname, *strval; 605 char pathbuf[32], *periph_name; 606 607 periph_name = p_drv->driver_name; 608 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 609 unit = 0; 610 i = 0; 611 dname = periph_name; 612 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 613 wired = 0) { 614 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 615 if (strcmp(strval, pathbuf) != 0) 616 continue; 617 wired++; 618 } 619 if (resource_int_value(dname, dunit, "target", &val) == 0) { 620 if (val != target) 621 continue; 622 wired++; 623 } 624 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 625 if (val != lun) 626 continue; 627 wired++; 628 } 629 if (wired != 0) { 630 unit = dunit; 631 break; 632 } 633 } 634 635 /* 636 * Either start from 0 looking for the next unit or from 637 * the unit number given in the resource config. This way, 638 * if we have wildcard matches, we don't return the same 639 * unit number twice. 640 */ 641 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 642 643 return (unit); 644 } 645 646 void 647 cam_periph_invalidate(struct cam_periph *periph) 648 { 649 650 cam_periph_assert(periph, MA_OWNED); 651 /* 652 * We only tear down the device the first time a peripheral is 653 * invalidated. 654 */ 655 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 656 return; 657 658 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 659 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 660 struct sbuf sb; 661 char buffer[160]; 662 663 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 664 xpt_denounce_periph_sbuf(periph, &sb); 665 sbuf_finish(&sb); 666 sbuf_putbuf(&sb); 667 } 668 periph->flags |= CAM_PERIPH_INVALID; 669 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 670 if (periph->periph_oninval != NULL) 671 periph->periph_oninval(periph); 672 cam_periph_release_locked(periph); 673 } 674 675 static void 676 camperiphfree(struct cam_periph *periph) 677 { 678 struct periph_driver **p_drv; 679 struct periph_driver *drv; 680 681 cam_periph_assert(periph, MA_OWNED); 682 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 683 periph->periph_name, periph->unit_number)); 684 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 685 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 686 break; 687 } 688 if (*p_drv == NULL) { 689 printf("camperiphfree: attempt to free non-existant periph\n"); 690 return; 691 } 692 /* 693 * Cache a pointer to the periph_driver structure. If a 694 * periph_driver is added or removed from the array (see 695 * periphdriver_register()) while we drop the toplogy lock 696 * below, p_drv may change. This doesn't protect against this 697 * particular periph_driver going away. That will require full 698 * reference counting in the periph_driver infrastructure. 699 */ 700 drv = *p_drv; 701 702 /* 703 * We need to set this flag before dropping the topology lock, to 704 * let anyone who is traversing the list that this peripheral is 705 * about to be freed, and there will be no more reference count 706 * checks. 707 */ 708 periph->flags |= CAM_PERIPH_FREE; 709 710 /* 711 * The peripheral destructor semantics dictate calling with only the 712 * SIM mutex held. Since it might sleep, it should not be called 713 * with the topology lock held. 714 */ 715 xpt_unlock_buses(); 716 717 /* 718 * We need to call the peripheral destructor prior to removing the 719 * peripheral from the list. Otherwise, we risk running into a 720 * scenario where the peripheral unit number may get reused 721 * (because it has been removed from the list), but some resources 722 * used by the peripheral are still hanging around. In particular, 723 * the devfs nodes used by some peripherals like the pass(4) driver 724 * aren't fully cleaned up until the destructor is run. If the 725 * unit number is reused before the devfs instance is fully gone, 726 * devfs will panic. 727 */ 728 if (periph->periph_dtor != NULL) 729 periph->periph_dtor(periph); 730 731 /* 732 * The peripheral list is protected by the topology lock. We have to 733 * remove the periph from the drv list before we call deferred_ac. The 734 * AC_FOUND_DEVICE callback won't create a new periph if it's still there. 735 */ 736 xpt_lock_buses(); 737 738 TAILQ_REMOVE(&drv->units, periph, unit_links); 739 drv->generation++; 740 741 xpt_remove_periph(periph); 742 743 xpt_unlock_buses(); 744 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 745 xpt_print(periph->path, "Periph destroyed\n"); 746 else 747 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 748 749 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 750 union ccb ccb; 751 void *arg; 752 753 switch (periph->deferred_ac) { 754 case AC_FOUND_DEVICE: 755 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 756 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 757 xpt_action(&ccb); 758 arg = &ccb; 759 break; 760 case AC_PATH_REGISTERED: 761 xpt_path_inq(&ccb.cpi, periph->path); 762 arg = &ccb; 763 break; 764 default: 765 arg = NULL; 766 break; 767 } 768 periph->deferred_callback(NULL, periph->deferred_ac, 769 periph->path, arg); 770 } 771 xpt_free_path(periph->path); 772 free(periph, M_CAMPERIPH); 773 xpt_lock_buses(); 774 } 775 776 /* 777 * Map user virtual pointers into kernel virtual address space, so we can 778 * access the memory. This is now a generic function that centralizes most 779 * of the sanity checks on the data flags, if any. 780 * This also only works for up to MAXPHYS memory. Since we use 781 * buffers to map stuff in and out, we're limited to the buffer size. 782 */ 783 int 784 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 785 u_int maxmap) 786 { 787 int numbufs, i; 788 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 789 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 790 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 791 bool misaligned[CAM_PERIPH_MAXMAPS]; 792 793 bzero(mapinfo, sizeof(*mapinfo)); 794 if (maxmap == 0) 795 maxmap = DFLTPHYS; /* traditional default */ 796 else if (maxmap > MAXPHYS) 797 maxmap = MAXPHYS; /* for safety */ 798 switch(ccb->ccb_h.func_code) { 799 case XPT_DEV_MATCH: 800 if (ccb->cdm.match_buf_len == 0) { 801 printf("cam_periph_mapmem: invalid match buffer " 802 "length 0\n"); 803 return(EINVAL); 804 } 805 if (ccb->cdm.pattern_buf_len > 0) { 806 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 807 lengths[0] = ccb->cdm.pattern_buf_len; 808 dirs[0] = CAM_DIR_OUT; 809 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 810 lengths[1] = ccb->cdm.match_buf_len; 811 dirs[1] = CAM_DIR_IN; 812 numbufs = 2; 813 } else { 814 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 815 lengths[0] = ccb->cdm.match_buf_len; 816 dirs[0] = CAM_DIR_IN; 817 numbufs = 1; 818 } 819 /* 820 * This request will not go to the hardware, no reason 821 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 822 */ 823 maxmap = MAXPHYS; 824 break; 825 case XPT_SCSI_IO: 826 case XPT_CONT_TARGET_IO: 827 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 828 return(0); 829 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 830 return (EINVAL); 831 data_ptrs[0] = &ccb->csio.data_ptr; 832 lengths[0] = ccb->csio.dxfer_len; 833 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 834 numbufs = 1; 835 break; 836 case XPT_ATA_IO: 837 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 838 return(0); 839 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 840 return (EINVAL); 841 data_ptrs[0] = &ccb->ataio.data_ptr; 842 lengths[0] = ccb->ataio.dxfer_len; 843 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 844 numbufs = 1; 845 break; 846 case XPT_MMC_IO: 847 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 848 return(0); 849 /* Two mappings: one for cmd->data and one for cmd->data->data */ 850 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 851 lengths[0] = sizeof(struct mmc_data *); 852 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 853 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 854 lengths[1] = ccb->mmcio.cmd.data->len; 855 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 856 numbufs = 2; 857 break; 858 case XPT_SMP_IO: 859 data_ptrs[0] = &ccb->smpio.smp_request; 860 lengths[0] = ccb->smpio.smp_request_len; 861 dirs[0] = CAM_DIR_OUT; 862 data_ptrs[1] = &ccb->smpio.smp_response; 863 lengths[1] = ccb->smpio.smp_response_len; 864 dirs[1] = CAM_DIR_IN; 865 numbufs = 2; 866 break; 867 case XPT_NVME_IO: 868 case XPT_NVME_ADMIN: 869 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 870 return (0); 871 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 872 return (EINVAL); 873 data_ptrs[0] = &ccb->nvmeio.data_ptr; 874 lengths[0] = ccb->nvmeio.dxfer_len; 875 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 876 numbufs = 1; 877 break; 878 case XPT_DEV_ADVINFO: 879 if (ccb->cdai.bufsiz == 0) 880 return (0); 881 882 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 883 lengths[0] = ccb->cdai.bufsiz; 884 dirs[0] = CAM_DIR_IN; 885 numbufs = 1; 886 887 /* 888 * This request will not go to the hardware, no reason 889 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 890 */ 891 maxmap = MAXPHYS; 892 break; 893 default: 894 return(EINVAL); 895 break; /* NOTREACHED */ 896 } 897 898 /* 899 * Check the transfer length and permissions first, so we don't 900 * have to unmap any previously mapped buffers. 901 */ 902 for (i = 0; i < numbufs; i++) { 903 if (lengths[i] > maxmap) { 904 printf("cam_periph_mapmem: attempt to map %lu bytes, " 905 "which is greater than %lu\n", 906 (long)(lengths[i]), (u_long)maxmap); 907 return (E2BIG); 908 } 909 910 /* 911 * The userland data pointer passed in may not be page 912 * aligned. vmapbuf() truncates the address to a page 913 * boundary, so if the address isn't page aligned, we'll 914 * need enough space for the given transfer length, plus 915 * whatever extra space is necessary to make it to the page 916 * boundary. 917 */ 918 misaligned[i] = (lengths[i] + 919 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK) > MAXPHYS); 920 } 921 922 /* 923 * This keeps the kernel stack of current thread from getting 924 * swapped. In low-memory situations where the kernel stack might 925 * otherwise get swapped out, this holds it and allows the thread 926 * to make progress and release the kernel mapped pages sooner. 927 * 928 * XXX KDM should I use P_NOSWAP instead? 929 */ 930 PHOLD(curproc); 931 932 for (i = 0; i < numbufs; i++) { 933 934 /* Save the user's data address. */ 935 mapinfo->orig[i] = *data_ptrs[i]; 936 937 /* 938 * For small buffers use malloc+copyin/copyout instead of 939 * mapping to KVA to avoid expensive TLB shootdowns. For 940 * small allocations malloc is backed by UMA, and so much 941 * cheaper on SMP systems. 942 */ 943 if ((lengths[i] <= periph_mapmem_thresh || misaligned[i]) && 944 ccb->ccb_h.func_code != XPT_MMC_IO) { 945 *data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH, 946 M_WAITOK); 947 if (dirs[i] != CAM_DIR_IN) { 948 if (copyin(mapinfo->orig[i], *data_ptrs[i], 949 lengths[i]) != 0) { 950 free(*data_ptrs[i], M_CAMPERIPH); 951 *data_ptrs[i] = mapinfo->orig[i]; 952 goto fail; 953 } 954 } else 955 bzero(*data_ptrs[i], lengths[i]); 956 continue; 957 } 958 959 /* 960 * Get the buffer. 961 */ 962 mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK); 963 964 /* put our pointer in the data slot */ 965 mapinfo->bp[i]->b_data = *data_ptrs[i]; 966 967 /* set the transfer length, we know it's < MAXPHYS */ 968 mapinfo->bp[i]->b_bufsize = lengths[i]; 969 970 /* set the direction */ 971 mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ? 972 BIO_WRITE : BIO_READ; 973 974 /* Map the buffer into kernel memory. */ 975 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 976 uma_zfree(pbuf_zone, mapinfo->bp[i]); 977 goto fail; 978 } 979 980 /* set our pointer to the new mapped area */ 981 *data_ptrs[i] = mapinfo->bp[i]->b_data; 982 } 983 984 /* 985 * Now that we've gotten this far, change ownership to the kernel 986 * of the buffers so that we don't run afoul of returning to user 987 * space with locks (on the buffer) held. 988 */ 989 for (i = 0; i < numbufs; i++) { 990 if (mapinfo->bp[i]) 991 BUF_KERNPROC(mapinfo->bp[i]); 992 } 993 994 mapinfo->num_bufs_used = numbufs; 995 return(0); 996 997 fail: 998 for (i--; i >= 0; i--) { 999 if (mapinfo->bp[i]) { 1000 vunmapbuf(mapinfo->bp[i]); 1001 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1002 } else 1003 free(*data_ptrs[i], M_CAMPERIPH); 1004 *data_ptrs[i] = mapinfo->orig[i]; 1005 } 1006 PRELE(curproc); 1007 return(EACCES); 1008 } 1009 1010 /* 1011 * Unmap memory segments mapped into kernel virtual address space by 1012 * cam_periph_mapmem(). 1013 */ 1014 void 1015 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 1016 { 1017 int numbufs, i; 1018 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1019 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 1020 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 1021 1022 if (mapinfo->num_bufs_used <= 0) { 1023 /* nothing to free and the process wasn't held. */ 1024 return; 1025 } 1026 1027 switch (ccb->ccb_h.func_code) { 1028 case XPT_DEV_MATCH: 1029 if (ccb->cdm.pattern_buf_len > 0) { 1030 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1031 lengths[0] = ccb->cdm.pattern_buf_len; 1032 dirs[0] = CAM_DIR_OUT; 1033 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1034 lengths[1] = ccb->cdm.match_buf_len; 1035 dirs[1] = CAM_DIR_IN; 1036 numbufs = 2; 1037 } else { 1038 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1039 lengths[0] = ccb->cdm.match_buf_len; 1040 dirs[0] = CAM_DIR_IN; 1041 numbufs = 1; 1042 } 1043 break; 1044 case XPT_SCSI_IO: 1045 case XPT_CONT_TARGET_IO: 1046 data_ptrs[0] = &ccb->csio.data_ptr; 1047 lengths[0] = ccb->csio.dxfer_len; 1048 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1049 numbufs = 1; 1050 break; 1051 case XPT_ATA_IO: 1052 data_ptrs[0] = &ccb->ataio.data_ptr; 1053 lengths[0] = ccb->ataio.dxfer_len; 1054 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1055 numbufs = 1; 1056 break; 1057 case XPT_MMC_IO: 1058 data_ptrs[0] = (u_int8_t **)&ccb->mmcio.cmd.data; 1059 lengths[0] = sizeof(struct mmc_data *); 1060 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1061 data_ptrs[1] = (u_int8_t **)&ccb->mmcio.cmd.data->data; 1062 lengths[1] = ccb->mmcio.cmd.data->len; 1063 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 1064 numbufs = 2; 1065 break; 1066 case XPT_SMP_IO: 1067 data_ptrs[0] = &ccb->smpio.smp_request; 1068 lengths[0] = ccb->smpio.smp_request_len; 1069 dirs[0] = CAM_DIR_OUT; 1070 data_ptrs[1] = &ccb->smpio.smp_response; 1071 lengths[1] = ccb->smpio.smp_response_len; 1072 dirs[1] = CAM_DIR_IN; 1073 numbufs = 2; 1074 break; 1075 case XPT_NVME_IO: 1076 case XPT_NVME_ADMIN: 1077 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1078 lengths[0] = ccb->nvmeio.dxfer_len; 1079 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1080 numbufs = 1; 1081 break; 1082 case XPT_DEV_ADVINFO: 1083 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1084 lengths[0] = ccb->cdai.bufsiz; 1085 dirs[0] = CAM_DIR_IN; 1086 numbufs = 1; 1087 break; 1088 default: 1089 /* allow ourselves to be swapped once again */ 1090 PRELE(curproc); 1091 return; 1092 break; /* NOTREACHED */ 1093 } 1094 1095 for (i = 0; i < numbufs; i++) { 1096 if (mapinfo->bp[i]) { 1097 /* unmap the buffer */ 1098 vunmapbuf(mapinfo->bp[i]); 1099 1100 /* release the buffer */ 1101 uma_zfree(pbuf_zone, mapinfo->bp[i]); 1102 } else { 1103 if (dirs[i] != CAM_DIR_OUT) { 1104 copyout(*data_ptrs[i], mapinfo->orig[i], 1105 lengths[i]); 1106 } 1107 free(*data_ptrs[i], M_CAMPERIPH); 1108 } 1109 1110 /* Set the user's pointer back to the original value */ 1111 *data_ptrs[i] = mapinfo->orig[i]; 1112 } 1113 1114 /* allow ourselves to be swapped once again */ 1115 PRELE(curproc); 1116 } 1117 1118 int 1119 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1120 int (*error_routine)(union ccb *ccb, 1121 cam_flags camflags, 1122 u_int32_t sense_flags)) 1123 { 1124 union ccb *ccb; 1125 int error; 1126 int found; 1127 1128 error = found = 0; 1129 1130 switch(cmd){ 1131 case CAMGETPASSTHRU: 1132 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1133 xpt_setup_ccb(&ccb->ccb_h, 1134 ccb->ccb_h.path, 1135 CAM_PRIORITY_NORMAL); 1136 ccb->ccb_h.func_code = XPT_GDEVLIST; 1137 1138 /* 1139 * Basically, the point of this is that we go through 1140 * getting the list of devices, until we find a passthrough 1141 * device. In the current version of the CAM code, the 1142 * only way to determine what type of device we're dealing 1143 * with is by its name. 1144 */ 1145 while (found == 0) { 1146 ccb->cgdl.index = 0; 1147 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1148 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1149 1150 /* we want the next device in the list */ 1151 xpt_action(ccb); 1152 if (strncmp(ccb->cgdl.periph_name, 1153 "pass", 4) == 0){ 1154 found = 1; 1155 break; 1156 } 1157 } 1158 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1159 (found == 0)) { 1160 ccb->cgdl.periph_name[0] = '\0'; 1161 ccb->cgdl.unit_number = 0; 1162 break; 1163 } 1164 } 1165 1166 /* copy the result back out */ 1167 bcopy(ccb, addr, sizeof(union ccb)); 1168 1169 /* and release the ccb */ 1170 xpt_release_ccb(ccb); 1171 1172 break; 1173 default: 1174 error = ENOTTY; 1175 break; 1176 } 1177 return(error); 1178 } 1179 1180 static void 1181 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1182 { 1183 1184 panic("%s: already done with ccb %p", __func__, done_ccb); 1185 } 1186 1187 static void 1188 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1189 { 1190 1191 /* Caller will release the CCB */ 1192 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1193 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1194 wakeup(&done_ccb->ccb_h.cbfcnp); 1195 } 1196 1197 static void 1198 cam_periph_ccbwait(union ccb *ccb) 1199 { 1200 1201 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1202 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1203 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1204 PRIBIO, "cbwait", 0); 1205 } 1206 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1207 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1208 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1209 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1210 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1211 } 1212 1213 /* 1214 * Dispatch a CCB and wait for it to complete. If the CCB has set a 1215 * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost. 1216 */ 1217 int 1218 cam_periph_runccb(union ccb *ccb, 1219 int (*error_routine)(union ccb *ccb, 1220 cam_flags camflags, 1221 u_int32_t sense_flags), 1222 cam_flags camflags, u_int32_t sense_flags, 1223 struct devstat *ds) 1224 { 1225 struct bintime *starttime; 1226 struct bintime ltime; 1227 int error; 1228 bool must_poll; 1229 uint32_t timeout = 1; 1230 1231 starttime = NULL; 1232 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1233 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1234 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1235 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1236 1237 /* 1238 * If the user has supplied a stats structure, and if we understand 1239 * this particular type of ccb, record the transaction start. 1240 */ 1241 if (ds != NULL && 1242 (ccb->ccb_h.func_code == XPT_SCSI_IO || 1243 ccb->ccb_h.func_code == XPT_ATA_IO || 1244 ccb->ccb_h.func_code == XPT_NVME_IO)) { 1245 starttime = <ime; 1246 binuptime(starttime); 1247 devstat_start_transaction(ds, starttime); 1248 } 1249 1250 /* 1251 * We must poll the I/O while we're dumping. The scheduler is normally 1252 * stopped for dumping, except when we call doadump from ddb. While the 1253 * scheduler is running in this case, we still need to poll the I/O to 1254 * avoid sleeping waiting for the ccb to complete. 1255 * 1256 * A panic triggered dump stops the scheduler, any callback from the 1257 * shutdown_post_sync event will run with the scheduler stopped, but 1258 * before we're officially dumping. To avoid hanging in adashutdown 1259 * initiated commands (or other similar situations), we have to test for 1260 * either SCHEDULER_STOPPED() here as well. 1261 * 1262 * To avoid locking problems, dumping/polling callers must call 1263 * without a periph lock held. 1264 */ 1265 must_poll = dumping || SCHEDULER_STOPPED(); 1266 ccb->ccb_h.cbfcnp = cam_periph_done; 1267 1268 /* 1269 * If we're polling, then we need to ensure that we have ample resources 1270 * in the periph. cam_periph_error can reschedule the ccb by calling 1271 * xpt_action and returning ERESTART, so we have to effect the polling 1272 * in the do loop below. 1273 */ 1274 if (must_poll) { 1275 timeout = xpt_poll_setup(ccb); 1276 } 1277 1278 if (timeout == 0) { 1279 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 1280 error = EBUSY; 1281 } else { 1282 xpt_action(ccb); 1283 do { 1284 if (must_poll) { 1285 xpt_pollwait(ccb, timeout); 1286 timeout = ccb->ccb_h.timeout * 10; 1287 } else { 1288 cam_periph_ccbwait(ccb); 1289 } 1290 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1291 error = 0; 1292 else if (error_routine != NULL) { 1293 ccb->ccb_h.cbfcnp = cam_periph_done; 1294 error = (*error_routine)(ccb, camflags, sense_flags); 1295 } else 1296 error = 0; 1297 } while (error == ERESTART); 1298 } 1299 1300 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1301 cam_release_devq(ccb->ccb_h.path, 1302 /* relsim_flags */0, 1303 /* openings */0, 1304 /* timeout */0, 1305 /* getcount_only */ FALSE); 1306 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1307 } 1308 1309 if (ds != NULL) { 1310 uint32_t bytes; 1311 devstat_tag_type tag; 1312 bool valid = true; 1313 1314 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1315 bytes = ccb->csio.dxfer_len - ccb->csio.resid; 1316 tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3); 1317 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1318 bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; 1319 tag = (devstat_tag_type)0; 1320 } else if (ccb->ccb_h.func_code == XPT_NVME_IO) { 1321 bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */ 1322 tag = (devstat_tag_type)0; 1323 } else { 1324 valid = false; 1325 } 1326 if (valid) 1327 devstat_end_transaction(ds, bytes, tag, 1328 ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? 1329 DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1330 DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); 1331 } 1332 1333 return(error); 1334 } 1335 1336 void 1337 cam_freeze_devq(struct cam_path *path) 1338 { 1339 struct ccb_hdr ccb_h; 1340 1341 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1342 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1343 ccb_h.func_code = XPT_NOOP; 1344 ccb_h.flags = CAM_DEV_QFREEZE; 1345 xpt_action((union ccb *)&ccb_h); 1346 } 1347 1348 u_int32_t 1349 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1350 u_int32_t openings, u_int32_t arg, 1351 int getcount_only) 1352 { 1353 struct ccb_relsim crs; 1354 1355 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1356 relsim_flags, openings, arg, getcount_only)); 1357 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1358 crs.ccb_h.func_code = XPT_REL_SIMQ; 1359 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1360 crs.release_flags = relsim_flags; 1361 crs.openings = openings; 1362 crs.release_timeout = arg; 1363 xpt_action((union ccb *)&crs); 1364 return (crs.qfrozen_cnt); 1365 } 1366 1367 #define saved_ccb_ptr ppriv_ptr0 1368 static void 1369 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1370 { 1371 union ccb *saved_ccb; 1372 cam_status status; 1373 struct scsi_start_stop_unit *scsi_cmd; 1374 int error = 0, error_code, sense_key, asc, ascq; 1375 1376 scsi_cmd = (struct scsi_start_stop_unit *) 1377 &done_ccb->csio.cdb_io.cdb_bytes; 1378 status = done_ccb->ccb_h.status; 1379 1380 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1381 if (scsi_extract_sense_ccb(done_ccb, 1382 &error_code, &sense_key, &asc, &ascq)) { 1383 /* 1384 * If the error is "invalid field in CDB", 1385 * and the load/eject flag is set, turn the 1386 * flag off and try again. This is just in 1387 * case the drive in question barfs on the 1388 * load eject flag. The CAM code should set 1389 * the load/eject flag by default for 1390 * removable media. 1391 */ 1392 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1393 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1394 (asc == 0x24) && (ascq == 0x00)) { 1395 scsi_cmd->how &= ~SSS_LOEJ; 1396 if (status & CAM_DEV_QFRZN) { 1397 cam_release_devq(done_ccb->ccb_h.path, 1398 0, 0, 0, 0); 1399 done_ccb->ccb_h.status &= 1400 ~CAM_DEV_QFRZN; 1401 } 1402 xpt_action(done_ccb); 1403 goto out; 1404 } 1405 } 1406 error = cam_periph_error(done_ccb, 0, 1407 SF_RETRY_UA | SF_NO_PRINT); 1408 if (error == ERESTART) 1409 goto out; 1410 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1411 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1412 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1413 } 1414 } else { 1415 /* 1416 * If we have successfully taken a device from the not 1417 * ready to ready state, re-scan the device and re-get 1418 * the inquiry information. Many devices (mostly disks) 1419 * don't properly report their inquiry information unless 1420 * they are spun up. 1421 */ 1422 if (scsi_cmd->opcode == START_STOP_UNIT) 1423 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1424 } 1425 1426 /* If we tried long wait and still failed, remember that. */ 1427 if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) && 1428 (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) { 1429 periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT; 1430 if (error != 0 && done_ccb->ccb_h.retry_count == 0) 1431 periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED; 1432 } 1433 1434 /* 1435 * After recovery action(s) completed, return to the original CCB. 1436 * If the recovery CCB has failed, considering its own possible 1437 * retries and recovery, assume we are back in state where we have 1438 * been originally, but without recovery hopes left. In such case, 1439 * after the final attempt below, we cancel any further retries, 1440 * blocking by that also any new recovery attempts for this CCB, 1441 * and the result will be the final one returned to the CCB owher. 1442 */ 1443 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1444 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1445 xpt_free_ccb(saved_ccb); 1446 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1447 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1448 if (error != 0) 1449 done_ccb->ccb_h.retry_count = 0; 1450 xpt_action(done_ccb); 1451 1452 out: 1453 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1454 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1455 } 1456 1457 /* 1458 * Generic Async Event handler. Peripheral drivers usually 1459 * filter out the events that require personal attention, 1460 * and leave the rest to this function. 1461 */ 1462 void 1463 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1464 struct cam_path *path, void *arg) 1465 { 1466 switch (code) { 1467 case AC_LOST_DEVICE: 1468 cam_periph_invalidate(periph); 1469 break; 1470 default: 1471 break; 1472 } 1473 } 1474 1475 void 1476 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1477 { 1478 struct ccb_getdevstats cgds; 1479 1480 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1481 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1482 xpt_action((union ccb *)&cgds); 1483 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1484 } 1485 1486 void 1487 cam_periph_freeze_after_event(struct cam_periph *periph, 1488 struct timeval* event_time, u_int duration_ms) 1489 { 1490 struct timeval delta; 1491 struct timeval duration_tv; 1492 1493 if (!timevalisset(event_time)) 1494 return; 1495 1496 microtime(&delta); 1497 timevalsub(&delta, event_time); 1498 duration_tv.tv_sec = duration_ms / 1000; 1499 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1500 if (timevalcmp(&delta, &duration_tv, <)) { 1501 timevalsub(&duration_tv, &delta); 1502 1503 duration_ms = duration_tv.tv_sec * 1000; 1504 duration_ms += duration_tv.tv_usec / 1000; 1505 cam_freeze_devq(periph->path); 1506 cam_release_devq(periph->path, 1507 RELSIM_RELEASE_AFTER_TIMEOUT, 1508 /*reduction*/0, 1509 /*timeout*/duration_ms, 1510 /*getcount_only*/0); 1511 } 1512 1513 } 1514 1515 static int 1516 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1517 cam_flags camflags, u_int32_t sense_flags, 1518 int *openings, u_int32_t *relsim_flags, 1519 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1520 { 1521 struct cam_periph *periph; 1522 int error; 1523 1524 switch (ccb->csio.scsi_status) { 1525 case SCSI_STATUS_OK: 1526 case SCSI_STATUS_COND_MET: 1527 case SCSI_STATUS_INTERMED: 1528 case SCSI_STATUS_INTERMED_COND_MET: 1529 error = 0; 1530 break; 1531 case SCSI_STATUS_CMD_TERMINATED: 1532 case SCSI_STATUS_CHECK_COND: 1533 error = camperiphscsisenseerror(ccb, orig_ccb, 1534 camflags, 1535 sense_flags, 1536 openings, 1537 relsim_flags, 1538 timeout, 1539 action, 1540 action_string); 1541 break; 1542 case SCSI_STATUS_QUEUE_FULL: 1543 { 1544 /* no decrement */ 1545 struct ccb_getdevstats cgds; 1546 1547 /* 1548 * First off, find out what the current 1549 * transaction counts are. 1550 */ 1551 xpt_setup_ccb(&cgds.ccb_h, 1552 ccb->ccb_h.path, 1553 CAM_PRIORITY_NORMAL); 1554 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1555 xpt_action((union ccb *)&cgds); 1556 1557 /* 1558 * If we were the only transaction active, treat 1559 * the QUEUE FULL as if it were a BUSY condition. 1560 */ 1561 if (cgds.dev_active != 0) { 1562 int total_openings; 1563 1564 /* 1565 * Reduce the number of openings to 1566 * be 1 less than the amount it took 1567 * to get a queue full bounded by the 1568 * minimum allowed tag count for this 1569 * device. 1570 */ 1571 total_openings = cgds.dev_active + cgds.dev_openings; 1572 *openings = cgds.dev_active; 1573 if (*openings < cgds.mintags) 1574 *openings = cgds.mintags; 1575 if (*openings < total_openings) 1576 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1577 else { 1578 /* 1579 * Some devices report queue full for 1580 * temporary resource shortages. For 1581 * this reason, we allow a minimum 1582 * tag count to be entered via a 1583 * quirk entry to prevent the queue 1584 * count on these devices from falling 1585 * to a pessimisticly low value. We 1586 * still wait for the next successful 1587 * completion, however, before queueing 1588 * more transactions to the device. 1589 */ 1590 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1591 } 1592 *timeout = 0; 1593 error = ERESTART; 1594 *action &= ~SSQ_PRINT_SENSE; 1595 break; 1596 } 1597 /* FALLTHROUGH */ 1598 } 1599 case SCSI_STATUS_BUSY: 1600 /* 1601 * Restart the queue after either another 1602 * command completes or a 1 second timeout. 1603 */ 1604 periph = xpt_path_periph(ccb->ccb_h.path); 1605 if (periph->flags & CAM_PERIPH_INVALID) { 1606 error = EIO; 1607 *action_string = "Periph was invalidated"; 1608 } else if ((sense_flags & SF_RETRY_BUSY) != 0 || 1609 ccb->ccb_h.retry_count > 0) { 1610 if ((sense_flags & SF_RETRY_BUSY) == 0) 1611 ccb->ccb_h.retry_count--; 1612 error = ERESTART; 1613 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1614 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1615 *timeout = 1000; 1616 } else { 1617 error = EIO; 1618 *action_string = "Retries exhausted"; 1619 } 1620 break; 1621 case SCSI_STATUS_RESERV_CONFLICT: 1622 default: 1623 error = EIO; 1624 break; 1625 } 1626 return (error); 1627 } 1628 1629 static int 1630 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1631 cam_flags camflags, u_int32_t sense_flags, 1632 int *openings, u_int32_t *relsim_flags, 1633 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1634 { 1635 struct cam_periph *periph; 1636 union ccb *orig_ccb = ccb; 1637 int error, recoveryccb; 1638 1639 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1640 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1641 biotrack(ccb->csio.bio, __func__); 1642 #endif 1643 1644 periph = xpt_path_periph(ccb->ccb_h.path); 1645 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1646 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1647 /* 1648 * If error recovery is already in progress, don't attempt 1649 * to process this error, but requeue it unconditionally 1650 * and attempt to process it once error recovery has 1651 * completed. This failed command is probably related to 1652 * the error that caused the currently active error recovery 1653 * action so our current recovery efforts should also 1654 * address this command. Be aware that the error recovery 1655 * code assumes that only one recovery action is in progress 1656 * on a particular peripheral instance at any given time 1657 * (e.g. only one saved CCB for error recovery) so it is 1658 * imperitive that we don't violate this assumption. 1659 */ 1660 error = ERESTART; 1661 *action &= ~SSQ_PRINT_SENSE; 1662 } else { 1663 scsi_sense_action err_action; 1664 struct ccb_getdev cgd; 1665 1666 /* 1667 * Grab the inquiry data for this device. 1668 */ 1669 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1670 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1671 xpt_action((union ccb *)&cgd); 1672 1673 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1674 sense_flags); 1675 error = err_action & SS_ERRMASK; 1676 1677 /* 1678 * Do not autostart sequential access devices 1679 * to avoid unexpected tape loading. 1680 */ 1681 if ((err_action & SS_MASK) == SS_START && 1682 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1683 *action_string = "Will not autostart a " 1684 "sequential access device"; 1685 goto sense_error_done; 1686 } 1687 1688 /* 1689 * Avoid recovery recursion if recovery action is the same. 1690 */ 1691 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1692 if (((err_action & SS_MASK) == SS_START && 1693 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1694 ((err_action & SS_MASK) == SS_TUR && 1695 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1696 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1697 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1698 *timeout = 500; 1699 } 1700 } 1701 1702 /* 1703 * If the recovery action will consume a retry, 1704 * make sure we actually have retries available. 1705 */ 1706 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1707 if (ccb->ccb_h.retry_count > 0 && 1708 (periph->flags & CAM_PERIPH_INVALID) == 0) 1709 ccb->ccb_h.retry_count--; 1710 else { 1711 *action_string = "Retries exhausted"; 1712 goto sense_error_done; 1713 } 1714 } 1715 1716 if ((err_action & SS_MASK) >= SS_START) { 1717 /* 1718 * Do common portions of commands that 1719 * use recovery CCBs. 1720 */ 1721 orig_ccb = xpt_alloc_ccb_nowait(); 1722 if (orig_ccb == NULL) { 1723 *action_string = "Can't allocate recovery CCB"; 1724 goto sense_error_done; 1725 } 1726 /* 1727 * Clear freeze flag for original request here, as 1728 * this freeze will be dropped as part of ERESTART. 1729 */ 1730 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1731 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1732 } 1733 1734 switch (err_action & SS_MASK) { 1735 case SS_NOP: 1736 *action_string = "No recovery action needed"; 1737 error = 0; 1738 break; 1739 case SS_RETRY: 1740 *action_string = "Retrying command (per sense data)"; 1741 error = ERESTART; 1742 break; 1743 case SS_FAIL: 1744 *action_string = "Unretryable error"; 1745 break; 1746 case SS_START: 1747 { 1748 int le; 1749 1750 /* 1751 * Send a start unit command to the device, and 1752 * then retry the command. 1753 */ 1754 *action_string = "Attempting to start unit"; 1755 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1756 1757 /* 1758 * Check for removable media and set 1759 * load/eject flag appropriately. 1760 */ 1761 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1762 le = TRUE; 1763 else 1764 le = FALSE; 1765 1766 scsi_start_stop(&ccb->csio, 1767 /*retries*/1, 1768 camperiphdone, 1769 MSG_SIMPLE_Q_TAG, 1770 /*start*/TRUE, 1771 /*load/eject*/le, 1772 /*immediate*/FALSE, 1773 SSD_FULL_SIZE, 1774 /*timeout*/50000); 1775 break; 1776 } 1777 case SS_TUR: 1778 { 1779 /* 1780 * Send a Test Unit Ready to the device. 1781 * If the 'many' flag is set, we send 120 1782 * test unit ready commands, one every half 1783 * second. Otherwise, we just send one TUR. 1784 * We only want to do this if the retry 1785 * count has not been exhausted. 1786 */ 1787 int retries; 1788 1789 if ((err_action & SSQ_MANY) != 0 && (periph->flags & 1790 CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) { 1791 periph->flags |= CAM_PERIPH_RECOVERY_WAIT; 1792 *action_string = "Polling device for readiness"; 1793 retries = 120; 1794 } else { 1795 *action_string = "Testing device for readiness"; 1796 retries = 1; 1797 } 1798 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1799 scsi_test_unit_ready(&ccb->csio, 1800 retries, 1801 camperiphdone, 1802 MSG_SIMPLE_Q_TAG, 1803 SSD_FULL_SIZE, 1804 /*timeout*/5000); 1805 1806 /* 1807 * Accomplish our 500ms delay by deferring 1808 * the release of our device queue appropriately. 1809 */ 1810 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1811 *timeout = 500; 1812 break; 1813 } 1814 default: 1815 panic("Unhandled error action %x", err_action); 1816 } 1817 1818 if ((err_action & SS_MASK) >= SS_START) { 1819 /* 1820 * Drop the priority, so that the recovery 1821 * CCB is the first to execute. Freeze the queue 1822 * after this command is sent so that we can 1823 * restore the old csio and have it queued in 1824 * the proper order before we release normal 1825 * transactions to the device. 1826 */ 1827 ccb->ccb_h.pinfo.priority--; 1828 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1829 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1830 error = ERESTART; 1831 *orig = orig_ccb; 1832 } 1833 1834 sense_error_done: 1835 *action = err_action; 1836 } 1837 return (error); 1838 } 1839 1840 /* 1841 * Generic error handler. Peripheral drivers usually filter 1842 * out the errors that they handle in a unique manner, then 1843 * call this function. 1844 */ 1845 int 1846 cam_periph_error(union ccb *ccb, cam_flags camflags, 1847 u_int32_t sense_flags) 1848 { 1849 struct cam_path *newpath; 1850 union ccb *orig_ccb, *scan_ccb; 1851 struct cam_periph *periph; 1852 const char *action_string; 1853 cam_status status; 1854 int frozen, error, openings, devctl_err; 1855 u_int32_t action, relsim_flags, timeout; 1856 1857 action = SSQ_PRINT_SENSE; 1858 periph = xpt_path_periph(ccb->ccb_h.path); 1859 action_string = NULL; 1860 status = ccb->ccb_h.status; 1861 frozen = (status & CAM_DEV_QFRZN) != 0; 1862 status &= CAM_STATUS_MASK; 1863 devctl_err = openings = relsim_flags = timeout = 0; 1864 orig_ccb = ccb; 1865 1866 /* Filter the errors that should be reported via devctl */ 1867 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1868 case CAM_CMD_TIMEOUT: 1869 case CAM_REQ_ABORTED: 1870 case CAM_REQ_CMP_ERR: 1871 case CAM_REQ_TERMIO: 1872 case CAM_UNREC_HBA_ERROR: 1873 case CAM_DATA_RUN_ERR: 1874 case CAM_SCSI_STATUS_ERROR: 1875 case CAM_ATA_STATUS_ERROR: 1876 case CAM_SMP_STATUS_ERROR: 1877 devctl_err++; 1878 break; 1879 default: 1880 break; 1881 } 1882 1883 switch (status) { 1884 case CAM_REQ_CMP: 1885 error = 0; 1886 action &= ~SSQ_PRINT_SENSE; 1887 break; 1888 case CAM_SCSI_STATUS_ERROR: 1889 error = camperiphscsistatuserror(ccb, &orig_ccb, 1890 camflags, sense_flags, &openings, &relsim_flags, 1891 &timeout, &action, &action_string); 1892 break; 1893 case CAM_AUTOSENSE_FAIL: 1894 error = EIO; /* we have to kill the command */ 1895 break; 1896 case CAM_UA_ABORT: 1897 case CAM_UA_TERMIO: 1898 case CAM_MSG_REJECT_REC: 1899 /* XXX Don't know that these are correct */ 1900 error = EIO; 1901 break; 1902 case CAM_SEL_TIMEOUT: 1903 if ((camflags & CAM_RETRY_SELTO) != 0) { 1904 if (ccb->ccb_h.retry_count > 0 && 1905 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1906 ccb->ccb_h.retry_count--; 1907 error = ERESTART; 1908 1909 /* 1910 * Wait a bit to give the device 1911 * time to recover before we try again. 1912 */ 1913 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1914 timeout = periph_selto_delay; 1915 break; 1916 } 1917 action_string = "Retries exhausted"; 1918 } 1919 /* FALLTHROUGH */ 1920 case CAM_DEV_NOT_THERE: 1921 error = ENXIO; 1922 action = SSQ_LOST; 1923 break; 1924 case CAM_REQ_INVALID: 1925 case CAM_PATH_INVALID: 1926 case CAM_NO_HBA: 1927 case CAM_PROVIDE_FAIL: 1928 case CAM_REQ_TOO_BIG: 1929 case CAM_LUN_INVALID: 1930 case CAM_TID_INVALID: 1931 case CAM_FUNC_NOTAVAIL: 1932 error = EINVAL; 1933 break; 1934 case CAM_SCSI_BUS_RESET: 1935 case CAM_BDR_SENT: 1936 /* 1937 * Commands that repeatedly timeout and cause these 1938 * kinds of error recovery actions, should return 1939 * CAM_CMD_TIMEOUT, which allows us to safely assume 1940 * that this command was an innocent bystander to 1941 * these events and should be unconditionally 1942 * retried. 1943 */ 1944 case CAM_REQUEUE_REQ: 1945 /* Unconditional requeue if device is still there */ 1946 if (periph->flags & CAM_PERIPH_INVALID) { 1947 action_string = "Periph was invalidated"; 1948 error = EIO; 1949 } else if (sense_flags & SF_NO_RETRY) { 1950 error = EIO; 1951 action_string = "Retry was blocked"; 1952 } else { 1953 error = ERESTART; 1954 action &= ~SSQ_PRINT_SENSE; 1955 } 1956 break; 1957 case CAM_RESRC_UNAVAIL: 1958 /* Wait a bit for the resource shortage to abate. */ 1959 timeout = periph_noresrc_delay; 1960 /* FALLTHROUGH */ 1961 case CAM_BUSY: 1962 if (timeout == 0) { 1963 /* Wait a bit for the busy condition to abate. */ 1964 timeout = periph_busy_delay; 1965 } 1966 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1967 /* FALLTHROUGH */ 1968 case CAM_ATA_STATUS_ERROR: 1969 case CAM_REQ_CMP_ERR: 1970 case CAM_CMD_TIMEOUT: 1971 case CAM_UNEXP_BUSFREE: 1972 case CAM_UNCOR_PARITY: 1973 case CAM_DATA_RUN_ERR: 1974 default: 1975 if (periph->flags & CAM_PERIPH_INVALID) { 1976 error = EIO; 1977 action_string = "Periph was invalidated"; 1978 } else if (ccb->ccb_h.retry_count == 0) { 1979 error = EIO; 1980 action_string = "Retries exhausted"; 1981 } else if (sense_flags & SF_NO_RETRY) { 1982 error = EIO; 1983 action_string = "Retry was blocked"; 1984 } else { 1985 ccb->ccb_h.retry_count--; 1986 error = ERESTART; 1987 } 1988 break; 1989 } 1990 1991 if ((sense_flags & SF_PRINT_ALWAYS) || 1992 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1993 action |= SSQ_PRINT_SENSE; 1994 else if (sense_flags & SF_NO_PRINT) 1995 action &= ~SSQ_PRINT_SENSE; 1996 if ((action & SSQ_PRINT_SENSE) != 0) 1997 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1998 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1999 if (error != ERESTART) { 2000 if (action_string == NULL) 2001 action_string = "Unretryable error"; 2002 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 2003 error, action_string); 2004 } else if (action_string != NULL) 2005 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 2006 else { 2007 xpt_print(ccb->ccb_h.path, 2008 "Retrying command, %d more tries remain\n", 2009 ccb->ccb_h.retry_count); 2010 } 2011 } 2012 2013 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 2014 cam_periph_devctl_notify(orig_ccb); 2015 2016 if ((action & SSQ_LOST) != 0) { 2017 lun_id_t lun_id; 2018 2019 /* 2020 * For a selection timeout, we consider all of the LUNs on 2021 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 2022 * then we only get rid of the device(s) specified by the 2023 * path in the original CCB. 2024 */ 2025 if (status == CAM_SEL_TIMEOUT) 2026 lun_id = CAM_LUN_WILDCARD; 2027 else 2028 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 2029 2030 /* Should we do more if we can't create the path?? */ 2031 if (xpt_create_path(&newpath, periph, 2032 xpt_path_path_id(ccb->ccb_h.path), 2033 xpt_path_target_id(ccb->ccb_h.path), 2034 lun_id) == CAM_REQ_CMP) { 2035 2036 /* 2037 * Let peripheral drivers know that this 2038 * device has gone away. 2039 */ 2040 xpt_async(AC_LOST_DEVICE, newpath, NULL); 2041 xpt_free_path(newpath); 2042 } 2043 } 2044 2045 /* Broadcast UNIT ATTENTIONs to all periphs. */ 2046 if ((action & SSQ_UA) != 0) 2047 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 2048 2049 /* Rescan target on "Reported LUNs data has changed" */ 2050 if ((action & SSQ_RESCAN) != 0) { 2051 if (xpt_create_path(&newpath, NULL, 2052 xpt_path_path_id(ccb->ccb_h.path), 2053 xpt_path_target_id(ccb->ccb_h.path), 2054 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 2055 2056 scan_ccb = xpt_alloc_ccb_nowait(); 2057 if (scan_ccb != NULL) { 2058 scan_ccb->ccb_h.path = newpath; 2059 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 2060 scan_ccb->crcn.flags = 0; 2061 xpt_rescan(scan_ccb); 2062 } else { 2063 xpt_print(newpath, 2064 "Can't allocate CCB to rescan target\n"); 2065 xpt_free_path(newpath); 2066 } 2067 } 2068 } 2069 2070 /* Attempt a retry */ 2071 if (error == ERESTART || error == 0) { 2072 if (frozen != 0) 2073 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 2074 if (error == ERESTART) 2075 xpt_action(ccb); 2076 if (frozen != 0) 2077 cam_release_devq(ccb->ccb_h.path, 2078 relsim_flags, 2079 openings, 2080 timeout, 2081 /*getcount_only*/0); 2082 } 2083 2084 return (error); 2085 } 2086 2087 #define CAM_PERIPH_DEVD_MSG_SIZE 256 2088 2089 static void 2090 cam_periph_devctl_notify(union ccb *ccb) 2091 { 2092 struct cam_periph *periph; 2093 struct ccb_getdev *cgd; 2094 struct sbuf sb; 2095 int serr, sk, asc, ascq; 2096 char *sbmsg, *type; 2097 2098 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 2099 if (sbmsg == NULL) 2100 return; 2101 2102 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 2103 2104 periph = xpt_path_periph(ccb->ccb_h.path); 2105 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 2106 periph->unit_number); 2107 2108 sbuf_printf(&sb, "serial=\""); 2109 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 2110 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 2111 CAM_PRIORITY_NORMAL); 2112 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 2113 xpt_action((union ccb *)cgd); 2114 2115 if (cgd->ccb_h.status == CAM_REQ_CMP) 2116 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 2117 xpt_free_ccb((union ccb *)cgd); 2118 } 2119 sbuf_printf(&sb, "\" "); 2120 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 2121 2122 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 2123 case CAM_CMD_TIMEOUT: 2124 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 2125 type = "timeout"; 2126 break; 2127 case CAM_SCSI_STATUS_ERROR: 2128 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 2129 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 2130 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 2131 serr, sk, asc, ascq); 2132 type = "error"; 2133 break; 2134 case CAM_ATA_STATUS_ERROR: 2135 sbuf_printf(&sb, "RES=\""); 2136 ata_res_sbuf(&ccb->ataio.res, &sb); 2137 sbuf_printf(&sb, "\" "); 2138 type = "error"; 2139 break; 2140 default: 2141 type = "error"; 2142 break; 2143 } 2144 2145 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2146 sbuf_printf(&sb, "CDB=\""); 2147 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2148 sbuf_printf(&sb, "\" "); 2149 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2150 sbuf_printf(&sb, "ACB=\""); 2151 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2152 sbuf_printf(&sb, "\" "); 2153 } 2154 2155 if (sbuf_finish(&sb) == 0) 2156 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2157 sbuf_delete(&sb); 2158 free(sbmsg, M_CAMPERIPH); 2159 } 2160 2161 /* 2162 * Sysctl to force an invalidation of the drive right now. Can be 2163 * called with CTLFLAG_MPSAFE since we take periph lock. 2164 */ 2165 int 2166 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS) 2167 { 2168 struct cam_periph *periph; 2169 int error, value; 2170 2171 periph = arg1; 2172 value = 0; 2173 error = sysctl_handle_int(oidp, &value, 0, req); 2174 if (error != 0 || req->newptr == NULL || value != 1) 2175 return (error); 2176 2177 cam_periph_lock(periph); 2178 cam_periph_invalidate(periph); 2179 cam_periph_unlock(periph); 2180 2181 return (0); 2182 } 2183