xref: /freebsd/sys/cam/cam_periph.c (revision 9a14aa017b21c292740c00ee098195cd46642730)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/bio.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/buf.h>
42 #include <sys/proc.h>
43 #include <sys/devicestat.h>
44 #include <sys/bus.h>
45 #include <sys/sbuf.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_queue.h>
52 #include <cam/cam_xpt_periph.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_debug.h>
55 #include <cam/cam_sim.h>
56 
57 #include <cam/scsi/scsi_all.h>
58 #include <cam/scsi/scsi_message.h>
59 #include <cam/scsi/scsi_pass.h>
60 
61 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
62 					  u_int newunit, int wired,
63 					  path_id_t pathid, target_id_t target,
64 					  lun_id_t lun);
65 static	u_int		camperiphunit(struct periph_driver *p_drv,
66 				      path_id_t pathid, target_id_t target,
67 				      lun_id_t lun);
68 static	void		camperiphdone(struct cam_periph *periph,
69 					union ccb *done_ccb);
70 static  void		camperiphfree(struct cam_periph *periph);
71 static int		camperiphscsistatuserror(union ccb *ccb,
72 						 cam_flags camflags,
73 						 u_int32_t sense_flags,
74 						 int *openings,
75 						 u_int32_t *relsim_flags,
76 						 u_int32_t *timeout,
77 						 const char **action_string);
78 static	int		camperiphscsisenseerror(union ccb *ccb,
79 					        cam_flags camflags,
80 					        u_int32_t sense_flags,
81 					        int *openings,
82 					        u_int32_t *relsim_flags,
83 					        u_int32_t *timeout,
84 					        const char **action_string);
85 
86 static int nperiph_drivers;
87 static int initialized = 0;
88 struct periph_driver **periph_drivers;
89 
90 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
91 
92 static int periph_selto_delay = 1000;
93 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
94 static int periph_noresrc_delay = 500;
95 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
96 static int periph_busy_delay = 500;
97 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
98 
99 
100 void
101 periphdriver_register(void *data)
102 {
103 	struct periph_driver *drv = (struct periph_driver *)data;
104 	struct periph_driver **newdrivers, **old;
105 	int ndrivers;
106 
107 	ndrivers = nperiph_drivers + 2;
108 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
109 			    M_WAITOK);
110 	if (periph_drivers)
111 		bcopy(periph_drivers, newdrivers,
112 		      sizeof(*newdrivers) * nperiph_drivers);
113 	newdrivers[nperiph_drivers] = drv;
114 	newdrivers[nperiph_drivers + 1] = NULL;
115 	old = periph_drivers;
116 	periph_drivers = newdrivers;
117 	if (old)
118 		free(old, M_CAMPERIPH);
119 	nperiph_drivers++;
120 	/* If driver marked as early or it is late now, initialize it. */
121 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
122 	    initialized > 1)
123 		(*drv->init)();
124 }
125 
126 void
127 periphdriver_init(int level)
128 {
129 	int	i, early;
130 
131 	initialized = max(initialized, level);
132 	for (i = 0; periph_drivers[i] != NULL; i++) {
133 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
134 		if (early == initialized)
135 			(*periph_drivers[i]->init)();
136 	}
137 }
138 
139 cam_status
140 cam_periph_alloc(periph_ctor_t *periph_ctor,
141 		 periph_oninv_t *periph_oninvalidate,
142 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
143 		 char *name, cam_periph_type type, struct cam_path *path,
144 		 ac_callback_t *ac_callback, ac_code code, void *arg)
145 {
146 	struct		periph_driver **p_drv;
147 	struct		cam_sim *sim;
148 	struct		cam_periph *periph;
149 	struct		cam_periph *cur_periph;
150 	path_id_t	path_id;
151 	target_id_t	target_id;
152 	lun_id_t	lun_id;
153 	cam_status	status;
154 	u_int		init_level;
155 
156 	init_level = 0;
157 	/*
158 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
159 	 * of our type assigned to this path, we are likely waiting for
160 	 * final close on an old, invalidated, peripheral.  If this is
161 	 * the case, queue up a deferred call to the peripheral's async
162 	 * handler.  If it looks like a mistaken re-allocation, complain.
163 	 */
164 	if ((periph = cam_periph_find(path, name)) != NULL) {
165 
166 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
167 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
168 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
169 			periph->deferred_callback = ac_callback;
170 			periph->deferred_ac = code;
171 			return (CAM_REQ_INPROG);
172 		} else {
173 			printf("cam_periph_alloc: attempt to re-allocate "
174 			       "valid device %s%d rejected flags %#x "
175 			       "refcount %d\n", periph->periph_name,
176 			       periph->unit_number, periph->flags,
177 			       periph->refcount);
178 		}
179 		return (CAM_REQ_INVALID);
180 	}
181 
182 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
183 					     M_NOWAIT|M_ZERO);
184 
185 	if (periph == NULL)
186 		return (CAM_RESRC_UNAVAIL);
187 
188 	init_level++;
189 
190 
191 	sim = xpt_path_sim(path);
192 	path_id = xpt_path_path_id(path);
193 	target_id = xpt_path_target_id(path);
194 	lun_id = xpt_path_lun_id(path);
195 	cam_init_pinfo(&periph->pinfo);
196 	periph->periph_start = periph_start;
197 	periph->periph_dtor = periph_dtor;
198 	periph->periph_oninval = periph_oninvalidate;
199 	periph->type = type;
200 	periph->periph_name = name;
201 	periph->immediate_priority = CAM_PRIORITY_NONE;
202 	periph->refcount = 0;
203 	periph->sim = sim;
204 	SLIST_INIT(&periph->ccb_list);
205 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
206 	if (status != CAM_REQ_CMP)
207 		goto failure;
208 	periph->path = path;
209 
210 	xpt_lock_buses();
211 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
212 		if (strcmp((*p_drv)->driver_name, name) == 0)
213 			break;
214 	}
215 	if (*p_drv == NULL) {
216 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
217 		xpt_free_path(periph->path);
218 		free(periph, M_CAMPERIPH);
219 		xpt_unlock_buses();
220 		return (CAM_REQ_INVALID);
221 	}
222 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
223 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
224 	while (cur_periph != NULL
225 	    && cur_periph->unit_number < periph->unit_number)
226 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
227 	if (cur_periph != NULL) {
228 		KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
229 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
230 	} else {
231 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
232 		(*p_drv)->generation++;
233 	}
234 	xpt_unlock_buses();
235 
236 	init_level++;
237 
238 	status = xpt_add_periph(periph);
239 	if (status != CAM_REQ_CMP)
240 		goto failure;
241 
242 	init_level++;
243 
244 	status = periph_ctor(periph, arg);
245 
246 	if (status == CAM_REQ_CMP)
247 		init_level++;
248 
249 failure:
250 	switch (init_level) {
251 	case 4:
252 		/* Initialized successfully */
253 		break;
254 	case 3:
255 		xpt_remove_periph(periph);
256 		/* FALLTHROUGH */
257 	case 2:
258 		xpt_lock_buses();
259 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
260 		xpt_unlock_buses();
261 		xpt_free_path(periph->path);
262 		/* FALLTHROUGH */
263 	case 1:
264 		free(periph, M_CAMPERIPH);
265 		/* FALLTHROUGH */
266 	case 0:
267 		/* No cleanup to perform. */
268 		break;
269 	default:
270 		panic("cam_periph_alloc: Unkown init level");
271 	}
272 	return(status);
273 }
274 
275 /*
276  * Find a peripheral structure with the specified path, target, lun,
277  * and (optionally) type.  If the name is NULL, this function will return
278  * the first peripheral driver that matches the specified path.
279  */
280 struct cam_periph *
281 cam_periph_find(struct cam_path *path, char *name)
282 {
283 	struct periph_driver **p_drv;
284 	struct cam_periph *periph;
285 
286 	xpt_lock_buses();
287 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
288 
289 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
290 			continue;
291 
292 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
293 			if (xpt_path_comp(periph->path, path) == 0) {
294 				xpt_unlock_buses();
295 				mtx_assert(periph->sim->mtx, MA_OWNED);
296 				return(periph);
297 			}
298 		}
299 		if (name != NULL) {
300 			xpt_unlock_buses();
301 			return(NULL);
302 		}
303 	}
304 	xpt_unlock_buses();
305 	return(NULL);
306 }
307 
308 /*
309  * Find peripheral driver instances attached to the specified path.
310  */
311 int
312 cam_periph_list(struct cam_path *path, struct sbuf *sb)
313 {
314 	struct sbuf local_sb;
315 	struct periph_driver **p_drv;
316 	struct cam_periph *periph;
317 	int count;
318 	int sbuf_alloc_len;
319 
320 	sbuf_alloc_len = 16;
321 retry:
322 	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
323 	count = 0;
324 	xpt_lock_buses();
325 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
326 
327 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
328 			if (xpt_path_comp(periph->path, path) != 0)
329 				continue;
330 
331 			if (sbuf_len(&local_sb) != 0)
332 				sbuf_cat(&local_sb, ",");
333 
334 			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
335 				    periph->unit_number);
336 
337 			if (sbuf_error(&local_sb) == ENOMEM) {
338 				sbuf_alloc_len *= 2;
339 				xpt_unlock_buses();
340 				sbuf_delete(&local_sb);
341 				goto retry;
342 			}
343 			count++;
344 		}
345 	}
346 	xpt_unlock_buses();
347 	sbuf_finish(&local_sb);
348 	sbuf_cpy(sb, sbuf_data(&local_sb));
349 	sbuf_delete(&local_sb);
350 	return (count);
351 }
352 
353 cam_status
354 cam_periph_acquire(struct cam_periph *periph)
355 {
356 	cam_status status;
357 
358 	status = CAM_REQ_CMP_ERR;
359 	if (periph == NULL)
360 		return (status);
361 
362 	xpt_lock_buses();
363 	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
364 		periph->refcount++;
365 		status = CAM_REQ_CMP;
366 	}
367 	xpt_unlock_buses();
368 
369 	return (status);
370 }
371 
372 void
373 cam_periph_release_locked_buses(struct cam_periph *periph)
374 {
375 	if (periph->refcount != 0) {
376 		periph->refcount--;
377 	} else {
378 		panic("%s: release of %p when refcount is zero\n ", __func__,
379 		      periph);
380 	}
381 	if (periph->refcount == 0
382 	    && (periph->flags & CAM_PERIPH_INVALID)) {
383 		camperiphfree(periph);
384 	}
385 }
386 
387 void
388 cam_periph_release_locked(struct cam_periph *periph)
389 {
390 
391 	if (periph == NULL)
392 		return;
393 
394 	xpt_lock_buses();
395 	cam_periph_release_locked_buses(periph);
396 	xpt_unlock_buses();
397 }
398 
399 void
400 cam_periph_release(struct cam_periph *periph)
401 {
402 	struct cam_sim *sim;
403 
404 	if (periph == NULL)
405 		return;
406 
407 	sim = periph->sim;
408 	mtx_assert(sim->mtx, MA_NOTOWNED);
409 	mtx_lock(sim->mtx);
410 	cam_periph_release_locked(periph);
411 	mtx_unlock(sim->mtx);
412 }
413 
414 int
415 cam_periph_hold(struct cam_periph *periph, int priority)
416 {
417 	int error;
418 
419 	/*
420 	 * Increment the reference count on the peripheral
421 	 * while we wait for our lock attempt to succeed
422 	 * to ensure the peripheral doesn't disappear out
423 	 * from user us while we sleep.
424 	 */
425 
426 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
427 		return (ENXIO);
428 
429 	mtx_assert(periph->sim->mtx, MA_OWNED);
430 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
431 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
432 		if ((error = mtx_sleep(periph, periph->sim->mtx, priority,
433 		    "caplck", 0)) != 0) {
434 			cam_periph_release_locked(periph);
435 			return (error);
436 		}
437 	}
438 
439 	periph->flags |= CAM_PERIPH_LOCKED;
440 	return (0);
441 }
442 
443 void
444 cam_periph_unhold(struct cam_periph *periph)
445 {
446 
447 	mtx_assert(periph->sim->mtx, MA_OWNED);
448 
449 	periph->flags &= ~CAM_PERIPH_LOCKED;
450 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
451 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
452 		wakeup(periph);
453 	}
454 
455 	cam_periph_release_locked(periph);
456 }
457 
458 /*
459  * Look for the next unit number that is not currently in use for this
460  * peripheral type starting at "newunit".  Also exclude unit numbers that
461  * are reserved by for future "hardwiring" unless we already know that this
462  * is a potential wired device.  Only assume that the device is "wired" the
463  * first time through the loop since after that we'll be looking at unit
464  * numbers that did not match a wiring entry.
465  */
466 static u_int
467 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
468 		  path_id_t pathid, target_id_t target, lun_id_t lun)
469 {
470 	struct	cam_periph *periph;
471 	char	*periph_name;
472 	int	i, val, dunit, r;
473 	const char *dname, *strval;
474 
475 	periph_name = p_drv->driver_name;
476 	for (;;newunit++) {
477 
478 		for (periph = TAILQ_FIRST(&p_drv->units);
479 		     periph != NULL && periph->unit_number != newunit;
480 		     periph = TAILQ_NEXT(periph, unit_links))
481 			;
482 
483 		if (periph != NULL && periph->unit_number == newunit) {
484 			if (wired != 0) {
485 				xpt_print(periph->path, "Duplicate Wired "
486 				    "Device entry!\n");
487 				xpt_print(periph->path, "Second device (%s "
488 				    "device at scbus%d target %d lun %d) will "
489 				    "not be wired\n", periph_name, pathid,
490 				    target, lun);
491 				wired = 0;
492 			}
493 			continue;
494 		}
495 		if (wired)
496 			break;
497 
498 		/*
499 		 * Don't match entries like "da 4" as a wired down
500 		 * device, but do match entries like "da 4 target 5"
501 		 * or even "da 4 scbus 1".
502 		 */
503 		i = 0;
504 		dname = periph_name;
505 		for (;;) {
506 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
507 			if (r != 0)
508 				break;
509 			/* if no "target" and no specific scbus, skip */
510 			if (resource_int_value(dname, dunit, "target", &val) &&
511 			    (resource_string_value(dname, dunit, "at",&strval)||
512 			     strcmp(strval, "scbus") == 0))
513 				continue;
514 			if (newunit == dunit)
515 				break;
516 		}
517 		if (r != 0)
518 			break;
519 	}
520 	return (newunit);
521 }
522 
523 static u_int
524 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
525 	      target_id_t target, lun_id_t lun)
526 {
527 	u_int	unit;
528 	int	wired, i, val, dunit;
529 	const char *dname, *strval;
530 	char	pathbuf[32], *periph_name;
531 
532 	periph_name = p_drv->driver_name;
533 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
534 	unit = 0;
535 	i = 0;
536 	dname = periph_name;
537 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
538 	     wired = 0) {
539 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
540 			if (strcmp(strval, pathbuf) != 0)
541 				continue;
542 			wired++;
543 		}
544 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
545 			if (val != target)
546 				continue;
547 			wired++;
548 		}
549 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
550 			if (val != lun)
551 				continue;
552 			wired++;
553 		}
554 		if (wired != 0) {
555 			unit = dunit;
556 			break;
557 		}
558 	}
559 
560 	/*
561 	 * Either start from 0 looking for the next unit or from
562 	 * the unit number given in the resource config.  This way,
563 	 * if we have wildcard matches, we don't return the same
564 	 * unit number twice.
565 	 */
566 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
567 
568 	return (unit);
569 }
570 
571 void
572 cam_periph_invalidate(struct cam_periph *periph)
573 {
574 
575 	/*
576 	 * We only call this routine the first time a peripheral is
577 	 * invalidated.
578 	 */
579 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
580 	 && (periph->periph_oninval != NULL))
581 		periph->periph_oninval(periph);
582 
583 	periph->flags |= CAM_PERIPH_INVALID;
584 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
585 
586 	xpt_lock_buses();
587 	if (periph->refcount == 0)
588 		camperiphfree(periph);
589 	xpt_unlock_buses();
590 }
591 
592 static void
593 camperiphfree(struct cam_periph *periph)
594 {
595 	struct periph_driver **p_drv;
596 
597 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
598 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
599 			break;
600 	}
601 	if (*p_drv == NULL) {
602 		printf("camperiphfree: attempt to free non-existant periph\n");
603 		return;
604 	}
605 
606 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
607 	(*p_drv)->generation++;
608 	xpt_unlock_buses();
609 
610 	if (periph->periph_dtor != NULL)
611 		periph->periph_dtor(periph);
612 	xpt_remove_periph(periph);
613 
614 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
615 		union ccb ccb;
616 		void *arg;
617 
618 		switch (periph->deferred_ac) {
619 		case AC_FOUND_DEVICE:
620 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
621 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
622 			xpt_action(&ccb);
623 			arg = &ccb;
624 			break;
625 		case AC_PATH_REGISTERED:
626 			ccb.ccb_h.func_code = XPT_PATH_INQ;
627 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
628 			xpt_action(&ccb);
629 			arg = &ccb;
630 			break;
631 		default:
632 			arg = NULL;
633 			break;
634 		}
635 		periph->deferred_callback(NULL, periph->deferred_ac,
636 					  periph->path, arg);
637 	}
638 	xpt_free_path(periph->path);
639 	free(periph, M_CAMPERIPH);
640 	xpt_lock_buses();
641 }
642 
643 /*
644  * Map user virtual pointers into kernel virtual address space, so we can
645  * access the memory.  This won't work on physical pointers, for now it's
646  * up to the caller to check for that.  (XXX KDM -- should we do that here
647  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
648  * buffers to map stuff in and out, we're limited to the buffer size.
649  */
650 int
651 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
652 {
653 	int numbufs, i, j;
654 	int flags[CAM_PERIPH_MAXMAPS];
655 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
656 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
657 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
658 	/* Some controllers may not be able to handle more data. */
659 	size_t maxmap = DFLTPHYS;
660 
661 	switch(ccb->ccb_h.func_code) {
662 	case XPT_DEV_MATCH:
663 		if (ccb->cdm.match_buf_len == 0) {
664 			printf("cam_periph_mapmem: invalid match buffer "
665 			       "length 0\n");
666 			return(EINVAL);
667 		}
668 		if (ccb->cdm.pattern_buf_len > 0) {
669 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
670 			lengths[0] = ccb->cdm.pattern_buf_len;
671 			dirs[0] = CAM_DIR_OUT;
672 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
673 			lengths[1] = ccb->cdm.match_buf_len;
674 			dirs[1] = CAM_DIR_IN;
675 			numbufs = 2;
676 		} else {
677 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
678 			lengths[0] = ccb->cdm.match_buf_len;
679 			dirs[0] = CAM_DIR_IN;
680 			numbufs = 1;
681 		}
682 		/*
683 		 * This request will not go to the hardware, no reason
684 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
685 		 */
686 		maxmap = MAXPHYS;
687 		break;
688 	case XPT_SCSI_IO:
689 	case XPT_CONT_TARGET_IO:
690 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
691 			return(0);
692 
693 		data_ptrs[0] = &ccb->csio.data_ptr;
694 		lengths[0] = ccb->csio.dxfer_len;
695 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
696 		numbufs = 1;
697 		break;
698 	case XPT_ATA_IO:
699 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
700 			return(0);
701 
702 		data_ptrs[0] = &ccb->ataio.data_ptr;
703 		lengths[0] = ccb->ataio.dxfer_len;
704 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
705 		numbufs = 1;
706 		break;
707 	case XPT_SMP_IO:
708 		data_ptrs[0] = &ccb->smpio.smp_request;
709 		lengths[0] = ccb->smpio.smp_request_len;
710 		dirs[0] = CAM_DIR_OUT;
711 		data_ptrs[1] = &ccb->smpio.smp_response;
712 		lengths[1] = ccb->smpio.smp_response_len;
713 		dirs[1] = CAM_DIR_IN;
714 		numbufs = 2;
715 		break;
716 	case XPT_DEV_ADVINFO:
717 		if (ccb->cdai.bufsiz == 0)
718 			return (0);
719 
720 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
721 		lengths[0] = ccb->cdai.bufsiz;
722 		dirs[0] = CAM_DIR_IN;
723 		numbufs = 1;
724 
725 		/*
726 		 * This request will not go to the hardware, no reason
727 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
728 		 */
729 		maxmap = MAXPHYS;
730 		break;
731 	default:
732 		return(EINVAL);
733 		break; /* NOTREACHED */
734 	}
735 
736 	/*
737 	 * Check the transfer length and permissions first, so we don't
738 	 * have to unmap any previously mapped buffers.
739 	 */
740 	for (i = 0; i < numbufs; i++) {
741 
742 		flags[i] = 0;
743 
744 		/*
745 		 * The userland data pointer passed in may not be page
746 		 * aligned.  vmapbuf() truncates the address to a page
747 		 * boundary, so if the address isn't page aligned, we'll
748 		 * need enough space for the given transfer length, plus
749 		 * whatever extra space is necessary to make it to the page
750 		 * boundary.
751 		 */
752 		if ((lengths[i] +
753 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
754 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
755 			       "which is greater than %lu\n",
756 			       (long)(lengths[i] +
757 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
758 			       (u_long)maxmap);
759 			return(E2BIG);
760 		}
761 
762 		if (dirs[i] & CAM_DIR_OUT) {
763 			flags[i] = BIO_WRITE;
764 		}
765 
766 		if (dirs[i] & CAM_DIR_IN) {
767 			flags[i] = BIO_READ;
768 		}
769 
770 	}
771 
772 	/* this keeps the current process from getting swapped */
773 	/*
774 	 * XXX KDM should I use P_NOSWAP instead?
775 	 */
776 	PHOLD(curproc);
777 
778 	for (i = 0; i < numbufs; i++) {
779 		/*
780 		 * Get the buffer.
781 		 */
782 		mapinfo->bp[i] = getpbuf(NULL);
783 
784 		/* save the buffer's data address */
785 		mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
786 
787 		/* put our pointer in the data slot */
788 		mapinfo->bp[i]->b_data = *data_ptrs[i];
789 
790 		/* set the transfer length, we know it's < MAXPHYS */
791 		mapinfo->bp[i]->b_bufsize = lengths[i];
792 
793 		/* set the direction */
794 		mapinfo->bp[i]->b_iocmd = flags[i];
795 
796 		/*
797 		 * Map the buffer into kernel memory.
798 		 *
799 		 * Note that useracc() alone is not a  sufficient test.
800 		 * vmapbuf() can still fail due to a smaller file mapped
801 		 * into a larger area of VM, or if userland races against
802 		 * vmapbuf() after the useracc() check.
803 		 */
804 		if (vmapbuf(mapinfo->bp[i]) < 0) {
805 			for (j = 0; j < i; ++j) {
806 				*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
807 				vunmapbuf(mapinfo->bp[j]);
808 				relpbuf(mapinfo->bp[j], NULL);
809 			}
810 			relpbuf(mapinfo->bp[i], NULL);
811 			PRELE(curproc);
812 			return(EACCES);
813 		}
814 
815 		/* set our pointer to the new mapped area */
816 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
817 
818 		mapinfo->num_bufs_used++;
819 	}
820 
821 	/*
822 	 * Now that we've gotten this far, change ownership to the kernel
823 	 * of the buffers so that we don't run afoul of returning to user
824 	 * space with locks (on the buffer) held.
825 	 */
826 	for (i = 0; i < numbufs; i++) {
827 		BUF_KERNPROC(mapinfo->bp[i]);
828 	}
829 
830 
831 	return(0);
832 }
833 
834 /*
835  * Unmap memory segments mapped into kernel virtual address space by
836  * cam_periph_mapmem().
837  */
838 void
839 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
840 {
841 	int numbufs, i;
842 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
843 
844 	if (mapinfo->num_bufs_used <= 0) {
845 		/* allow ourselves to be swapped once again */
846 		PRELE(curproc);
847 		return;
848 	}
849 
850 	switch (ccb->ccb_h.func_code) {
851 	case XPT_DEV_MATCH:
852 		numbufs = min(mapinfo->num_bufs_used, 2);
853 
854 		if (numbufs == 1) {
855 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
856 		} else {
857 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
858 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
859 		}
860 		break;
861 	case XPT_SCSI_IO:
862 	case XPT_CONT_TARGET_IO:
863 		data_ptrs[0] = &ccb->csio.data_ptr;
864 		numbufs = min(mapinfo->num_bufs_used, 1);
865 		break;
866 	case XPT_ATA_IO:
867 		data_ptrs[0] = &ccb->ataio.data_ptr;
868 		numbufs = min(mapinfo->num_bufs_used, 1);
869 		break;
870 	case XPT_SMP_IO:
871 		numbufs = min(mapinfo->num_bufs_used, 2);
872 		data_ptrs[0] = &ccb->smpio.smp_request;
873 		data_ptrs[1] = &ccb->smpio.smp_response;
874 		break;
875 	case XPT_DEV_ADVINFO:
876 		numbufs = min(mapinfo->num_bufs_used, 1);
877 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
878 		break;
879 	default:
880 		/* allow ourselves to be swapped once again */
881 		PRELE(curproc);
882 		return;
883 		break; /* NOTREACHED */
884 	}
885 
886 	for (i = 0; i < numbufs; i++) {
887 		/* Set the user's pointer back to the original value */
888 		*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
889 
890 		/* unmap the buffer */
891 		vunmapbuf(mapinfo->bp[i]);
892 
893 		/* release the buffer */
894 		relpbuf(mapinfo->bp[i], NULL);
895 	}
896 
897 	/* allow ourselves to be swapped once again */
898 	PRELE(curproc);
899 }
900 
901 union ccb *
902 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
903 {
904 	struct ccb_hdr *ccb_h;
905 
906 	mtx_assert(periph->sim->mtx, MA_OWNED);
907 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
908 
909 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
910 		if (periph->immediate_priority > priority)
911 			periph->immediate_priority = priority;
912 		xpt_schedule(periph, priority);
913 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
914 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
915 			break;
916 		mtx_assert(periph->sim->mtx, MA_OWNED);
917 		mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb",
918 		    0);
919 	}
920 
921 	ccb_h = SLIST_FIRST(&periph->ccb_list);
922 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
923 	return ((union ccb *)ccb_h);
924 }
925 
926 void
927 cam_periph_ccbwait(union ccb *ccb)
928 {
929 	struct cam_sim *sim;
930 
931 	sim = xpt_path_sim(ccb->ccb_h.path);
932 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
933 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
934 		mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0);
935 }
936 
937 int
938 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
939 		 int (*error_routine)(union ccb *ccb,
940 				      cam_flags camflags,
941 				      u_int32_t sense_flags))
942 {
943 	union ccb 	     *ccb;
944 	int 		     error;
945 	int		     found;
946 
947 	error = found = 0;
948 
949 	switch(cmd){
950 	case CAMGETPASSTHRU:
951 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
952 		xpt_setup_ccb(&ccb->ccb_h,
953 			      ccb->ccb_h.path,
954 			      CAM_PRIORITY_NORMAL);
955 		ccb->ccb_h.func_code = XPT_GDEVLIST;
956 
957 		/*
958 		 * Basically, the point of this is that we go through
959 		 * getting the list of devices, until we find a passthrough
960 		 * device.  In the current version of the CAM code, the
961 		 * only way to determine what type of device we're dealing
962 		 * with is by its name.
963 		 */
964 		while (found == 0) {
965 			ccb->cgdl.index = 0;
966 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
967 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
968 
969 				/* we want the next device in the list */
970 				xpt_action(ccb);
971 				if (strncmp(ccb->cgdl.periph_name,
972 				    "pass", 4) == 0){
973 					found = 1;
974 					break;
975 				}
976 			}
977 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
978 			    (found == 0)) {
979 				ccb->cgdl.periph_name[0] = '\0';
980 				ccb->cgdl.unit_number = 0;
981 				break;
982 			}
983 		}
984 
985 		/* copy the result back out */
986 		bcopy(ccb, addr, sizeof(union ccb));
987 
988 		/* and release the ccb */
989 		xpt_release_ccb(ccb);
990 
991 		break;
992 	default:
993 		error = ENOTTY;
994 		break;
995 	}
996 	return(error);
997 }
998 
999 int
1000 cam_periph_runccb(union ccb *ccb,
1001 		  int (*error_routine)(union ccb *ccb,
1002 				       cam_flags camflags,
1003 				       u_int32_t sense_flags),
1004 		  cam_flags camflags, u_int32_t sense_flags,
1005 		  struct devstat *ds)
1006 {
1007 	struct cam_sim *sim;
1008 	int error;
1009 
1010 	error = 0;
1011 	sim = xpt_path_sim(ccb->ccb_h.path);
1012 	mtx_assert(sim->mtx, MA_OWNED);
1013 
1014 	/*
1015 	 * If the user has supplied a stats structure, and if we understand
1016 	 * this particular type of ccb, record the transaction start.
1017 	 */
1018 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1019 	    ccb->ccb_h.func_code == XPT_ATA_IO))
1020 		devstat_start_transaction(ds, NULL);
1021 
1022 	xpt_action(ccb);
1023 
1024 	do {
1025 		cam_periph_ccbwait(ccb);
1026 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1027 			error = 0;
1028 		else if (error_routine != NULL)
1029 			error = (*error_routine)(ccb, camflags, sense_flags);
1030 		else
1031 			error = 0;
1032 
1033 	} while (error == ERESTART);
1034 
1035 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1036 		cam_release_devq(ccb->ccb_h.path,
1037 				 /* relsim_flags */0,
1038 				 /* openings */0,
1039 				 /* timeout */0,
1040 				 /* getcount_only */ FALSE);
1041 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1042 	}
1043 
1044 	if (ds != NULL) {
1045 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1046 			devstat_end_transaction(ds,
1047 					ccb->csio.dxfer_len,
1048 					ccb->csio.tag_action & 0x3,
1049 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1050 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1051 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1052 					DEVSTAT_WRITE :
1053 					DEVSTAT_READ, NULL, NULL);
1054 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1055 			devstat_end_transaction(ds,
1056 					ccb->ataio.dxfer_len,
1057 					ccb->ataio.tag_action & 0x3,
1058 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1059 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1060 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1061 					DEVSTAT_WRITE :
1062 					DEVSTAT_READ, NULL, NULL);
1063 		}
1064 	}
1065 
1066 	return(error);
1067 }
1068 
1069 void
1070 cam_freeze_devq(struct cam_path *path)
1071 {
1072 
1073 	cam_freeze_devq_arg(path, 0, 0);
1074 }
1075 
1076 void
1077 cam_freeze_devq_arg(struct cam_path *path, uint32_t flags, uint32_t arg)
1078 {
1079 	struct ccb_relsim crs;
1080 
1081 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NONE);
1082 	crs.ccb_h.func_code = XPT_FREEZE_QUEUE;
1083 	crs.release_flags = flags;
1084 	crs.openings = arg;
1085 	crs.release_timeout = arg;
1086 	xpt_action((union ccb *)&crs);
1087 }
1088 
1089 u_int32_t
1090 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1091 		 u_int32_t openings, u_int32_t arg,
1092 		 int getcount_only)
1093 {
1094 	struct ccb_relsim crs;
1095 
1096 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1097 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1098 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1099 	crs.release_flags = relsim_flags;
1100 	crs.openings = openings;
1101 	crs.release_timeout = arg;
1102 	xpt_action((union ccb *)&crs);
1103 	return (crs.qfrozen_cnt);
1104 }
1105 
1106 #define saved_ccb_ptr ppriv_ptr0
1107 #define recovery_depth ppriv_field1
1108 static void
1109 camperiphsensedone(struct cam_periph *periph, union ccb *done_ccb)
1110 {
1111 	union ccb      *saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1112 	cam_status	status;
1113 	int		frozen = 0;
1114 	int		depth = done_ccb->ccb_h.recovery_depth;
1115 
1116 	status = done_ccb->ccb_h.status;
1117 	if (status & CAM_DEV_QFRZN) {
1118 		frozen = 1;
1119 		/*
1120 		 * Clear freeze flag now for case of retry,
1121 		 * freeze will be dropped later.
1122 		 */
1123 		done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1124 	}
1125 	status &= CAM_STATUS_MASK;
1126 	switch (status) {
1127 	case CAM_REQ_CMP:
1128 	{
1129 		int error_code, sense_key, asc, ascq;
1130 
1131 		scsi_extract_sense_len(&saved_ccb->csio.sense_data,
1132 				       saved_ccb->csio.sense_len -
1133 				       saved_ccb->csio.sense_resid,
1134 				       &error_code, &sense_key, &asc, &ascq,
1135 				       /*show_errors*/ 1);
1136 		/*
1137 		 * If we manually retrieved sense into a CCB and got
1138 		 * something other than "NO SENSE" send the updated CCB
1139 		 * back to the client via xpt_done() to be processed via
1140 		 * the error recovery code again.
1141 		 */
1142 		if ((sense_key != -1)
1143 		 && (sense_key != SSD_KEY_NO_SENSE)) {
1144 			saved_ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
1145 		} else {
1146 			saved_ccb->ccb_h.status &= ~CAM_STATUS_MASK;
1147 			saved_ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL;
1148 		}
1149 		saved_ccb->csio.sense_resid = done_ccb->csio.resid;
1150 		bcopy(saved_ccb, done_ccb, sizeof(union ccb));
1151 		xpt_free_ccb(saved_ccb);
1152 		break;
1153 	}
1154 	default:
1155 		bcopy(saved_ccb, done_ccb, sizeof(union ccb));
1156 		xpt_free_ccb(saved_ccb);
1157 		done_ccb->ccb_h.status &= ~CAM_STATUS_MASK;
1158 		done_ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL;
1159 		break;
1160 	}
1161 	periph->flags &= ~CAM_PERIPH_SENSE_INPROG;
1162 	/*
1163 	 * If it is the end of recovery, drop freeze, taken due to
1164 	 * CAM_DEV_QFREEZE flag, set on recovery request.
1165 	 */
1166 	if (depth == 0) {
1167 		cam_release_devq(done_ccb->ccb_h.path,
1168 			 /*relsim_flags*/0,
1169 			 /*openings*/0,
1170 			 /*timeout*/0,
1171 			 /*getcount_only*/0);
1172 	}
1173 	/*
1174 	 * Copy frozen flag from recovery request if it is set there
1175 	 * for some reason.
1176 	 */
1177 	if (frozen != 0)
1178 		done_ccb->ccb_h.status |= CAM_DEV_QFRZN;
1179 	(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1180 }
1181 
1182 static void
1183 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1184 {
1185 	union ccb      *saved_ccb, *save_ccb;
1186 	cam_status	status;
1187 	int		frozen = 0;
1188 	struct scsi_start_stop_unit *scsi_cmd;
1189 	u_int32_t	relsim_flags, timeout;
1190 
1191 	status = done_ccb->ccb_h.status;
1192 	if (status & CAM_DEV_QFRZN) {
1193 		frozen = 1;
1194 		/*
1195 		 * Clear freeze flag now for case of retry,
1196 		 * freeze will be dropped later.
1197 		 */
1198 		done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1199 	}
1200 
1201 	timeout = 0;
1202 	relsim_flags = 0;
1203 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1204 
1205 	switch (status & CAM_STATUS_MASK) {
1206 	case CAM_REQ_CMP:
1207 	{
1208 		/*
1209 		 * If we have successfully taken a device from the not
1210 		 * ready to ready state, re-scan the device and re-get
1211 		 * the inquiry information.  Many devices (mostly disks)
1212 		 * don't properly report their inquiry information unless
1213 		 * they are spun up.
1214 		 */
1215 		scsi_cmd = (struct scsi_start_stop_unit *)
1216 				&done_ccb->csio.cdb_io.cdb_bytes;
1217 
1218 	 	if (scsi_cmd->opcode == START_STOP_UNIT)
1219 			xpt_async(AC_INQ_CHANGED,
1220 				  done_ccb->ccb_h.path, NULL);
1221 		goto final;
1222 	}
1223 	case CAM_SCSI_STATUS_ERROR:
1224 		scsi_cmd = (struct scsi_start_stop_unit *)
1225 				&done_ccb->csio.cdb_io.cdb_bytes;
1226 		if (status & CAM_AUTOSNS_VALID) {
1227 			struct ccb_getdev cgd;
1228 			struct scsi_sense_data *sense;
1229 			int    error_code, sense_key, asc, ascq, sense_len;
1230 			scsi_sense_action err_action;
1231 
1232 			sense = &done_ccb->csio.sense_data;
1233 			sense_len = done_ccb->csio.sense_len -
1234 				    done_ccb->csio.sense_resid;
1235 			scsi_extract_sense_len(sense, sense_len, &error_code,
1236 					       &sense_key, &asc, &ascq,
1237 					       /*show_errors*/ 1);
1238 			/*
1239 			 * Grab the inquiry data for this device.
1240 			 */
1241 			xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1242 			    CAM_PRIORITY_NORMAL);
1243 			cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1244 			xpt_action((union ccb *)&cgd);
1245 			err_action = scsi_error_action(&done_ccb->csio,
1246 						       &cgd.inq_data, 0);
1247 			/*
1248 	 		 * If the error is "invalid field in CDB",
1249 			 * and the load/eject flag is set, turn the
1250 			 * flag off and try again.  This is just in
1251 			 * case the drive in question barfs on the
1252 			 * load eject flag.  The CAM code should set
1253 			 * the load/eject flag by default for
1254 			 * removable media.
1255 			 */
1256 			/* XXX KDM
1257 			 * Should we check to see what the specific
1258 			 * scsi status is??  Or does it not matter
1259 			 * since we already know that there was an
1260 			 * error, and we know what the specific
1261 			 * error code was, and we know what the
1262 			 * opcode is..
1263 			 */
1264 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1265 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1266 			     (asc == 0x24) && (ascq == 0x00) &&
1267 			     (done_ccb->ccb_h.retry_count > 0)) {
1268 
1269 				scsi_cmd->how &= ~SSS_LOEJ;
1270 				xpt_action(done_ccb);
1271 			} else if ((done_ccb->ccb_h.retry_count > 1)
1272 				&& ((err_action & SS_MASK) != SS_FAIL)) {
1273 
1274 				/*
1275 				 * In this case, the error recovery
1276 				 * command failed, but we've got
1277 				 * some retries left on it.  Give
1278 				 * it another try unless this is an
1279 				 * unretryable error.
1280 				 */
1281 				/* set the timeout to .5 sec */
1282 				relsim_flags =
1283 					RELSIM_RELEASE_AFTER_TIMEOUT;
1284 				timeout = 500;
1285 				xpt_action(done_ccb);
1286 				break;
1287 			} else {
1288 				/*
1289 				 * Perform the final retry with the original
1290 				 * CCB so that final error processing is
1291 				 * performed by the owner of the CCB.
1292 				 */
1293 				goto final;
1294 			}
1295 		} else {
1296 			save_ccb = xpt_alloc_ccb_nowait();
1297 			if (save_ccb == NULL)
1298 				goto final;
1299 			bcopy(done_ccb, save_ccb, sizeof(*save_ccb));
1300 			periph->flags |= CAM_PERIPH_SENSE_INPROG;
1301 			/*
1302 			 * Send a Request Sense to the device.  We
1303 			 * assume that we are in a contingent allegiance
1304 			 * condition so we do not tag this request.
1305 			 */
1306 			scsi_request_sense(&done_ccb->csio, /*retries*/1,
1307 					   camperiphsensedone,
1308 					   &save_ccb->csio.sense_data,
1309 					   save_ccb->csio.sense_len,
1310 					   CAM_TAG_ACTION_NONE,
1311 					   /*sense_len*/SSD_FULL_SIZE,
1312 					   /*timeout*/5000);
1313 			done_ccb->ccb_h.pinfo.priority--;
1314 			done_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1315 			done_ccb->ccb_h.saved_ccb_ptr = save_ccb;
1316 			done_ccb->ccb_h.recovery_depth++;
1317 			xpt_action(done_ccb);
1318 		}
1319 		break;
1320 	default:
1321 final:
1322 		bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
1323 		xpt_free_ccb(saved_ccb);
1324 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1325 		xpt_action(done_ccb);
1326 		break;
1327 	}
1328 
1329 	/* decrement the retry count */
1330 	/*
1331 	 * XXX This isn't appropriate in all cases.  Restructure,
1332 	 *     so that the retry count is only decremented on an
1333 	 *     actual retry.  Remeber that the orignal ccb had its
1334 	 *     retry count dropped before entering recovery, so
1335 	 *     doing it again is a bug.
1336 	 */
1337 	if (done_ccb->ccb_h.retry_count > 0)
1338 		done_ccb->ccb_h.retry_count--;
1339 	/*
1340 	 * Drop freeze taken due to CAM_DEV_QFREEZE flag set on recovery
1341 	 * request.
1342 	 */
1343 	cam_release_devq(done_ccb->ccb_h.path,
1344 			 /*relsim_flags*/relsim_flags,
1345 			 /*openings*/0,
1346 			 /*timeout*/timeout,
1347 			 /*getcount_only*/0);
1348 	/* Drop freeze taken, if this recovery request got error. */
1349 	if (frozen != 0) {
1350 		cam_release_devq(done_ccb->ccb_h.path,
1351 			 /*relsim_flags*/0,
1352 			 /*openings*/0,
1353 			 /*timeout*/0,
1354 			 /*getcount_only*/0);
1355 	}
1356 }
1357 
1358 /*
1359  * Generic Async Event handler.  Peripheral drivers usually
1360  * filter out the events that require personal attention,
1361  * and leave the rest to this function.
1362  */
1363 void
1364 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1365 		 struct cam_path *path, void *arg)
1366 {
1367 	switch (code) {
1368 	case AC_LOST_DEVICE:
1369 		cam_periph_invalidate(periph);
1370 		break;
1371 	default:
1372 		break;
1373 	}
1374 }
1375 
1376 void
1377 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1378 {
1379 	struct ccb_getdevstats cgds;
1380 
1381 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1382 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1383 	xpt_action((union ccb *)&cgds);
1384 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1385 }
1386 
1387 void
1388 cam_periph_freeze_after_event(struct cam_periph *periph,
1389 			      struct timeval* event_time, u_int duration_ms)
1390 {
1391 	struct timeval delta;
1392 	struct timeval duration_tv;
1393 
1394 	microtime(&delta);
1395 	timevalsub(&delta, event_time);
1396 	duration_tv.tv_sec = duration_ms / 1000;
1397 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1398 	if (timevalcmp(&delta, &duration_tv, <)) {
1399 		timevalsub(&duration_tv, &delta);
1400 
1401 		duration_ms = duration_tv.tv_sec * 1000;
1402 		duration_ms += duration_tv.tv_usec / 1000;
1403 		cam_freeze_devq(periph->path);
1404 		cam_release_devq(periph->path,
1405 				RELSIM_RELEASE_AFTER_TIMEOUT,
1406 				/*reduction*/0,
1407 				/*timeout*/duration_ms,
1408 				/*getcount_only*/0);
1409 	}
1410 
1411 }
1412 
1413 static int
1414 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1415 			 u_int32_t sense_flags,
1416 			 int *openings, u_int32_t *relsim_flags,
1417 			 u_int32_t *timeout, const char **action_string)
1418 {
1419 	int error;
1420 
1421 	switch (ccb->csio.scsi_status) {
1422 	case SCSI_STATUS_OK:
1423 	case SCSI_STATUS_COND_MET:
1424 	case SCSI_STATUS_INTERMED:
1425 	case SCSI_STATUS_INTERMED_COND_MET:
1426 		error = 0;
1427 		break;
1428 	case SCSI_STATUS_CMD_TERMINATED:
1429 	case SCSI_STATUS_CHECK_COND:
1430 		if (bootverbose)
1431 			xpt_print(ccb->ccb_h.path, "SCSI status error\n");
1432 		error = camperiphscsisenseerror(ccb,
1433 					        camflags,
1434 					        sense_flags,
1435 					        openings,
1436 					        relsim_flags,
1437 					        timeout,
1438 					        action_string);
1439 		break;
1440 	case SCSI_STATUS_QUEUE_FULL:
1441 	{
1442 		/* no decrement */
1443 		struct ccb_getdevstats cgds;
1444 
1445 		/*
1446 		 * First off, find out what the current
1447 		 * transaction counts are.
1448 		 */
1449 		xpt_setup_ccb(&cgds.ccb_h,
1450 			      ccb->ccb_h.path,
1451 			      CAM_PRIORITY_NORMAL);
1452 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1453 		xpt_action((union ccb *)&cgds);
1454 
1455 		/*
1456 		 * If we were the only transaction active, treat
1457 		 * the QUEUE FULL as if it were a BUSY condition.
1458 		 */
1459 		if (cgds.dev_active != 0) {
1460 			int total_openings;
1461 
1462 			/*
1463 		 	 * Reduce the number of openings to
1464 			 * be 1 less than the amount it took
1465 			 * to get a queue full bounded by the
1466 			 * minimum allowed tag count for this
1467 			 * device.
1468 		 	 */
1469 			total_openings = cgds.dev_active + cgds.dev_openings;
1470 			*openings = cgds.dev_active;
1471 			if (*openings < cgds.mintags)
1472 				*openings = cgds.mintags;
1473 			if (*openings < total_openings)
1474 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1475 			else {
1476 				/*
1477 				 * Some devices report queue full for
1478 				 * temporary resource shortages.  For
1479 				 * this reason, we allow a minimum
1480 				 * tag count to be entered via a
1481 				 * quirk entry to prevent the queue
1482 				 * count on these devices from falling
1483 				 * to a pessimisticly low value.  We
1484 				 * still wait for the next successful
1485 				 * completion, however, before queueing
1486 				 * more transactions to the device.
1487 				 */
1488 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1489 			}
1490 			*timeout = 0;
1491 			error = ERESTART;
1492 			if (bootverbose) {
1493 				xpt_print(ccb->ccb_h.path, "Queue full\n");
1494 			}
1495 			break;
1496 		}
1497 		/* FALLTHROUGH */
1498 	}
1499 	case SCSI_STATUS_BUSY:
1500 		/*
1501 		 * Restart the queue after either another
1502 		 * command completes or a 1 second timeout.
1503 		 */
1504 		if (bootverbose) {
1505 			xpt_print(ccb->ccb_h.path, "Device busy\n");
1506 		}
1507 	 	if (ccb->ccb_h.retry_count > 0) {
1508 	 		ccb->ccb_h.retry_count--;
1509 			error = ERESTART;
1510 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1511 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1512 			*timeout = 1000;
1513 		} else {
1514 			error = EIO;
1515 		}
1516 		break;
1517 	case SCSI_STATUS_RESERV_CONFLICT:
1518 		xpt_print(ccb->ccb_h.path, "Reservation conflict\n");
1519 		error = EIO;
1520 		break;
1521 	default:
1522 		xpt_print(ccb->ccb_h.path, "SCSI status 0x%x\n",
1523 		    ccb->csio.scsi_status);
1524 		error = EIO;
1525 		break;
1526 	}
1527 	return (error);
1528 }
1529 
1530 static int
1531 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1532 			u_int32_t sense_flags,
1533 		       int *openings, u_int32_t *relsim_flags,
1534 		       u_int32_t *timeout, const char **action_string)
1535 {
1536 	struct cam_periph *periph;
1537 	union ccb *orig_ccb = ccb;
1538 	int error;
1539 
1540 	periph = xpt_path_periph(ccb->ccb_h.path);
1541 	if (periph->flags &
1542 	    (CAM_PERIPH_RECOVERY_INPROG | CAM_PERIPH_SENSE_INPROG)) {
1543 		/*
1544 		 * If error recovery is already in progress, don't attempt
1545 		 * to process this error, but requeue it unconditionally
1546 		 * and attempt to process it once error recovery has
1547 		 * completed.  This failed command is probably related to
1548 		 * the error that caused the currently active error recovery
1549 		 * action so our  current recovery efforts should also
1550 		 * address this command.  Be aware that the error recovery
1551 		 * code assumes that only one recovery action is in progress
1552 		 * on a particular peripheral instance at any given time
1553 		 * (e.g. only one saved CCB for error recovery) so it is
1554 		 * imperitive that we don't violate this assumption.
1555 		 */
1556 		error = ERESTART;
1557 	} else {
1558 		scsi_sense_action err_action;
1559 		struct ccb_getdev cgd;
1560 
1561 		/*
1562 		 * Grab the inquiry data for this device.
1563 		 */
1564 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1565 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1566 		xpt_action((union ccb *)&cgd);
1567 
1568 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1569 			err_action = scsi_error_action(&ccb->csio,
1570 						       &cgd.inq_data,
1571 						       sense_flags);
1572 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1573 			err_action = SS_REQSENSE;
1574 		else
1575 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1576 
1577 		error = err_action & SS_ERRMASK;
1578 
1579 		/*
1580 		 * If the recovery action will consume a retry,
1581 		 * make sure we actually have retries available.
1582 		 */
1583 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1584 		 	if (ccb->ccb_h.retry_count > 0 &&
1585 			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1586 		 		ccb->ccb_h.retry_count--;
1587 			else {
1588 				*action_string = "Retries exhausted";
1589 				goto sense_error_done;
1590 			}
1591 		}
1592 
1593 		if ((err_action & SS_MASK) >= SS_START) {
1594 			/*
1595 			 * Do common portions of commands that
1596 			 * use recovery CCBs.
1597 			 */
1598 			orig_ccb = xpt_alloc_ccb_nowait();
1599 			if (orig_ccb == NULL) {
1600 				*action_string = "Can't allocate recovery CCB";
1601 				goto sense_error_done;
1602 			}
1603 			/*
1604 			 * Clear freeze flag for original request here, as
1605 			 * this freeze will be dropped as part of ERESTART.
1606 			 */
1607 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1608 			bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
1609 		}
1610 
1611 		switch (err_action & SS_MASK) {
1612 		case SS_NOP:
1613 			*action_string = "No recovery action needed";
1614 			error = 0;
1615 			break;
1616 		case SS_RETRY:
1617 			*action_string = "Retrying command (per sense data)";
1618 			error = ERESTART;
1619 			break;
1620 		case SS_FAIL:
1621 			*action_string = "Unretryable error";
1622 			break;
1623 		case SS_START:
1624 		{
1625 			int le;
1626 			if (SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1627 				xpt_free_ccb(orig_ccb);
1628 				ccb->ccb_h.status |= CAM_DEV_QFRZN;
1629 				*action_string = "Will not autostart a "
1630 				    "sequential access device";
1631 				err_action = SS_FAIL;
1632 				error = EIO;
1633 				break;
1634 			}
1635 
1636 			/*
1637 			 * Send a start unit command to the device, and
1638 			 * then retry the command.
1639 			 */
1640 			*action_string = "Attempting to start unit";
1641 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1642 
1643 			/*
1644 			 * Check for removable media and set
1645 			 * load/eject flag appropriately.
1646 			 */
1647 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1648 				le = TRUE;
1649 			else
1650 				le = FALSE;
1651 
1652 			scsi_start_stop(&ccb->csio,
1653 					/*retries*/1,
1654 					camperiphdone,
1655 					MSG_SIMPLE_Q_TAG,
1656 					/*start*/TRUE,
1657 					/*load/eject*/le,
1658 					/*immediate*/FALSE,
1659 					SSD_FULL_SIZE,
1660 					/*timeout*/50000);
1661 			break;
1662 		}
1663 		case SS_TUR:
1664 		{
1665 			/*
1666 			 * Send a Test Unit Ready to the device.
1667 			 * If the 'many' flag is set, we send 120
1668 			 * test unit ready commands, one every half
1669 			 * second.  Otherwise, we just send one TUR.
1670 			 * We only want to do this if the retry
1671 			 * count has not been exhausted.
1672 			 */
1673 			int retries;
1674 
1675 			if ((err_action & SSQ_MANY) != 0) {
1676 				*action_string = "Polling device for readiness";
1677 				retries = 120;
1678 			} else {
1679 				*action_string = "Testing device for readiness";
1680 				retries = 1;
1681 			}
1682 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1683 			scsi_test_unit_ready(&ccb->csio,
1684 					     retries,
1685 					     camperiphdone,
1686 					     MSG_SIMPLE_Q_TAG,
1687 					     SSD_FULL_SIZE,
1688 					     /*timeout*/5000);
1689 
1690 			/*
1691 			 * Accomplish our 500ms delay by deferring
1692 			 * the release of our device queue appropriately.
1693 			 */
1694 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1695 			*timeout = 500;
1696 			break;
1697 		}
1698 		case SS_REQSENSE:
1699 		{
1700 			*action_string = "Requesting SCSI sense data";
1701 			periph->flags |= CAM_PERIPH_SENSE_INPROG;
1702 			/*
1703 			 * Send a Request Sense to the device.  We
1704 			 * assume that we are in a contingent allegiance
1705 			 * condition so we do not tag this request.
1706 			 */
1707 			scsi_request_sense(&ccb->csio, /*retries*/1,
1708 					   camperiphsensedone,
1709 					   &orig_ccb->csio.sense_data,
1710 					   orig_ccb->csio.sense_len,
1711 					   CAM_TAG_ACTION_NONE,
1712 					   /*sense_len*/SSD_FULL_SIZE,
1713 					   /*timeout*/5000);
1714 			break;
1715 		}
1716 		default:
1717 			panic("Unhandled error action %x", err_action);
1718 		}
1719 
1720 		if ((err_action & SS_MASK) >= SS_START) {
1721 			/*
1722 			 * Drop the priority, so that the recovery
1723 			 * CCB is the first to execute.  Freeze the queue
1724 			 * after this command is sent so that we can
1725 			 * restore the old csio and have it queued in
1726 			 * the proper order before we release normal
1727 			 * transactions to the device.
1728 			 */
1729 			ccb->ccb_h.pinfo.priority--;
1730 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1731 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1732 			ccb->ccb_h.recovery_depth = 0;
1733 			error = ERESTART;
1734 		}
1735 
1736 sense_error_done:
1737 		if ((err_action & SSQ_PRINT_SENSE) != 0
1738 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1739 			cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1740 	}
1741 	return (error);
1742 }
1743 
1744 /*
1745  * Generic error handler.  Peripheral drivers usually filter
1746  * out the errors that they handle in a unique mannor, then
1747  * call this function.
1748  */
1749 int
1750 cam_periph_error(union ccb *ccb, cam_flags camflags,
1751 		 u_int32_t sense_flags, union ccb *save_ccb)
1752 {
1753 	struct cam_periph *periph;
1754 	const char *action_string;
1755 	cam_status  status;
1756 	int	    frozen;
1757 	int	    error, printed = 0;
1758 	int         openings;
1759 	u_int32_t   relsim_flags;
1760 	u_int32_t   timeout = 0;
1761 
1762 	periph = xpt_path_periph(ccb->ccb_h.path);
1763 	action_string = NULL;
1764 	status = ccb->ccb_h.status;
1765 	frozen = (status & CAM_DEV_QFRZN) != 0;
1766 	status &= CAM_STATUS_MASK;
1767 	openings = relsim_flags = 0;
1768 
1769 	switch (status) {
1770 	case CAM_REQ_CMP:
1771 		error = 0;
1772 		break;
1773 	case CAM_SCSI_STATUS_ERROR:
1774 		error = camperiphscsistatuserror(ccb,
1775 						 camflags,
1776 						 sense_flags,
1777 						 &openings,
1778 						 &relsim_flags,
1779 						 &timeout,
1780 						 &action_string);
1781 		break;
1782 	case CAM_AUTOSENSE_FAIL:
1783 		xpt_print(ccb->ccb_h.path, "AutoSense failed\n");
1784 		error = EIO;	/* we have to kill the command */
1785 		break;
1786 	case CAM_ATA_STATUS_ERROR:
1787 		if (bootverbose && printed == 0) {
1788 			xpt_print(ccb->ccb_h.path, "ATA status error\n");
1789 			cam_error_print(ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1790 			printed++;
1791 		}
1792 		/* FALLTHROUGH */
1793 	case CAM_REQ_CMP_ERR:
1794 		if (bootverbose && printed == 0) {
1795 			xpt_print(ccb->ccb_h.path,
1796 			    "Request completed with CAM_REQ_CMP_ERR\n");
1797 			printed++;
1798 		}
1799 		/* FALLTHROUGH */
1800 	case CAM_CMD_TIMEOUT:
1801 		if (bootverbose && printed == 0) {
1802 			xpt_print(ccb->ccb_h.path, "Command timed out\n");
1803 			printed++;
1804 		}
1805 		/* FALLTHROUGH */
1806 	case CAM_UNEXP_BUSFREE:
1807 		if (bootverbose && printed == 0) {
1808 			xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1809 			printed++;
1810 		}
1811 		/* FALLTHROUGH */
1812 	case CAM_UNCOR_PARITY:
1813 		if (bootverbose && printed == 0) {
1814 			xpt_print(ccb->ccb_h.path,
1815 			    "Uncorrected parity error\n");
1816 			printed++;
1817 		}
1818 		/* FALLTHROUGH */
1819 	case CAM_DATA_RUN_ERR:
1820 		if (bootverbose && printed == 0) {
1821 			xpt_print(ccb->ccb_h.path, "Data overrun\n");
1822 			printed++;
1823 		}
1824 		/* decrement the number of retries */
1825 		if (ccb->ccb_h.retry_count > 0 &&
1826 		    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1827 			ccb->ccb_h.retry_count--;
1828 			error = ERESTART;
1829 		} else {
1830 			action_string = "Retries exhausted";
1831 			error = EIO;
1832 		}
1833 		break;
1834 	case CAM_UA_ABORT:
1835 	case CAM_UA_TERMIO:
1836 	case CAM_MSG_REJECT_REC:
1837 		/* XXX Don't know that these are correct */
1838 		error = EIO;
1839 		break;
1840 	case CAM_SEL_TIMEOUT:
1841 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1842 			if (ccb->ccb_h.retry_count > 0 &&
1843 			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1844 
1845 				ccb->ccb_h.retry_count--;
1846 				error = ERESTART;
1847 				if (bootverbose && printed == 0) {
1848 					xpt_print(ccb->ccb_h.path,
1849 					    "Selection timeout\n");
1850 					printed++;
1851 				}
1852 
1853 				/*
1854 				 * Wait a bit to give the device
1855 				 * time to recover before we try again.
1856 				 */
1857 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1858 				timeout = periph_selto_delay;
1859 				break;
1860 			}
1861 			action_string = "Retries exhausted";
1862 		}
1863 		/* FALLTHROUGH */
1864 	case CAM_DEV_NOT_THERE:
1865 	{
1866 		struct cam_path *newpath;
1867 
1868 		error = ENXIO;
1869 		/* Should we do more if we can't create the path?? */
1870 		if (xpt_create_path(&newpath, periph,
1871 				    xpt_path_path_id(ccb->ccb_h.path),
1872 				    xpt_path_target_id(ccb->ccb_h.path),
1873 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1874 			break;
1875 
1876 		/*
1877 		 * Let peripheral drivers know that this device has gone
1878 		 * away.
1879 		 */
1880 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1881 		xpt_free_path(newpath);
1882 		break;
1883 	}
1884 	case CAM_REQ_INVALID:
1885 	case CAM_PATH_INVALID:
1886 	case CAM_NO_HBA:
1887 	case CAM_PROVIDE_FAIL:
1888 	case CAM_REQ_TOO_BIG:
1889 	case CAM_LUN_INVALID:
1890 	case CAM_TID_INVALID:
1891 		error = EINVAL;
1892 		break;
1893 	case CAM_SCSI_BUS_RESET:
1894 	case CAM_BDR_SENT:
1895 		/*
1896 		 * Commands that repeatedly timeout and cause these
1897 		 * kinds of error recovery actions, should return
1898 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1899 		 * that this command was an innocent bystander to
1900 		 * these events and should be unconditionally
1901 		 * retried.
1902 		 */
1903 		if (bootverbose && printed == 0) {
1904 			xpt_print_path(ccb->ccb_h.path);
1905 			if (status == CAM_BDR_SENT)
1906 				printf("Bus Device Reset sent\n");
1907 			else
1908 				printf("Bus Reset issued\n");
1909 			printed++;
1910 		}
1911 		/* FALLTHROUGH */
1912 	case CAM_REQUEUE_REQ:
1913 		/* Unconditional requeue */
1914 		if (bootverbose && printed == 0) {
1915 			xpt_print(ccb->ccb_h.path, "Request requeued\n");
1916 			printed++;
1917 		}
1918 		if ((periph->flags & CAM_PERIPH_INVALID) == 0)
1919 			error = ERESTART;
1920 		else {
1921 			action_string = "Retries exhausted";
1922 			error = EIO;
1923 		}
1924 		break;
1925 	case CAM_RESRC_UNAVAIL:
1926 		/* Wait a bit for the resource shortage to abate. */
1927 		timeout = periph_noresrc_delay;
1928 		/* FALLTHROUGH */
1929 	case CAM_BUSY:
1930 		if (timeout == 0) {
1931 			/* Wait a bit for the busy condition to abate. */
1932 			timeout = periph_busy_delay;
1933 		}
1934 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1935 		/* FALLTHROUGH */
1936 	default:
1937 		/* decrement the number of retries */
1938 		if (ccb->ccb_h.retry_count > 0 &&
1939 		    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1940 			ccb->ccb_h.retry_count--;
1941 			error = ERESTART;
1942 			if (bootverbose && printed == 0) {
1943 				xpt_print(ccb->ccb_h.path, "CAM status 0x%x\n",
1944 				    status);
1945 				printed++;
1946 			}
1947 		} else {
1948 			error = EIO;
1949 			action_string = "Retries exhausted";
1950 		}
1951 		break;
1952 	}
1953 
1954 	/*
1955 	 * If we have and error and are booting verbosely, whine
1956 	 * *unless* this was a non-retryable selection timeout.
1957 	 */
1958 	if (error != 0 && bootverbose &&
1959 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1960 		if (error != ERESTART) {
1961 			if (action_string == NULL)
1962 				action_string = "Unretryable error";
1963 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
1964 			    error, action_string);
1965 		} else if (action_string != NULL)
1966 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1967 		else
1968 			xpt_print(ccb->ccb_h.path, "Retrying command\n");
1969 	}
1970 
1971 	/* Attempt a retry */
1972 	if (error == ERESTART || error == 0) {
1973 		if (frozen != 0)
1974 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1975 		if (error == ERESTART)
1976 			xpt_action(ccb);
1977 		if (frozen != 0)
1978 			cam_release_devq(ccb->ccb_h.path,
1979 					 relsim_flags,
1980 					 openings,
1981 					 timeout,
1982 					 /*getcount_only*/0);
1983 	}
1984 
1985 	return (error);
1986 }
1987