1 /*- 2 * Common functions for CAM "type" (peripheral) drivers. 3 * 4 * Copyright (c) 1997, 1998 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bio.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/buf.h> 42 #include <sys/proc.h> 43 #include <sys/devicestat.h> 44 #include <sys/bus.h> 45 #include <sys/sbuf.h> 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_debug.h> 55 #include <cam/cam_sim.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 61 static u_int camperiphnextunit(struct periph_driver *p_drv, 62 u_int newunit, int wired, 63 path_id_t pathid, target_id_t target, 64 lun_id_t lun); 65 static u_int camperiphunit(struct periph_driver *p_drv, 66 path_id_t pathid, target_id_t target, 67 lun_id_t lun); 68 static void camperiphdone(struct cam_periph *periph, 69 union ccb *done_ccb); 70 static void camperiphfree(struct cam_periph *periph); 71 static int camperiphscsistatuserror(union ccb *ccb, 72 union ccb **orig_ccb, 73 cam_flags camflags, 74 u_int32_t sense_flags, 75 int *openings, 76 u_int32_t *relsim_flags, 77 u_int32_t *timeout, 78 u_int32_t *action, 79 const char **action_string); 80 static int camperiphscsisenseerror(union ccb *ccb, 81 union ccb **orig_ccb, 82 cam_flags camflags, 83 u_int32_t sense_flags, 84 int *openings, 85 u_int32_t *relsim_flags, 86 u_int32_t *timeout, 87 u_int32_t *action, 88 const char **action_string); 89 static void cam_periph_devctl_notify(union ccb *ccb); 90 91 static int nperiph_drivers; 92 static int initialized = 0; 93 struct periph_driver **periph_drivers; 94 95 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); 96 97 static int periph_selto_delay = 1000; 98 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); 99 static int periph_noresrc_delay = 500; 100 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); 101 static int periph_busy_delay = 500; 102 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); 103 104 105 void 106 periphdriver_register(void *data) 107 { 108 struct periph_driver *drv = (struct periph_driver *)data; 109 struct periph_driver **newdrivers, **old; 110 int ndrivers; 111 112 again: 113 ndrivers = nperiph_drivers + 2; 114 newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, 115 M_WAITOK); 116 xpt_lock_buses(); 117 if (ndrivers != nperiph_drivers + 2) { 118 /* 119 * Lost race against itself; go around. 120 */ 121 xpt_unlock_buses(); 122 free(newdrivers, M_CAMPERIPH); 123 goto again; 124 } 125 if (periph_drivers) 126 bcopy(periph_drivers, newdrivers, 127 sizeof(*newdrivers) * nperiph_drivers); 128 newdrivers[nperiph_drivers] = drv; 129 newdrivers[nperiph_drivers + 1] = NULL; 130 old = periph_drivers; 131 periph_drivers = newdrivers; 132 nperiph_drivers++; 133 xpt_unlock_buses(); 134 if (old) 135 free(old, M_CAMPERIPH); 136 /* If driver marked as early or it is late now, initialize it. */ 137 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 138 initialized > 1) 139 (*drv->init)(); 140 } 141 142 int 143 periphdriver_unregister(void *data) 144 { 145 struct periph_driver *drv = (struct periph_driver *)data; 146 int error, n; 147 148 /* If driver marked as early or it is late now, deinitialize it. */ 149 if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || 150 initialized > 1) { 151 if (drv->deinit == NULL) { 152 printf("CAM periph driver '%s' doesn't have deinit.\n", 153 drv->driver_name); 154 return (EOPNOTSUPP); 155 } 156 error = drv->deinit(); 157 if (error != 0) 158 return (error); 159 } 160 161 xpt_lock_buses(); 162 for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) 163 ; 164 KASSERT(n < nperiph_drivers, 165 ("Periph driver '%s' was not registered", drv->driver_name)); 166 for (; n + 1 < nperiph_drivers; n++) 167 periph_drivers[n] = periph_drivers[n + 1]; 168 periph_drivers[n + 1] = NULL; 169 nperiph_drivers--; 170 xpt_unlock_buses(); 171 return (0); 172 } 173 174 void 175 periphdriver_init(int level) 176 { 177 int i, early; 178 179 initialized = max(initialized, level); 180 for (i = 0; periph_drivers[i] != NULL; i++) { 181 early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; 182 if (early == initialized) 183 (*periph_drivers[i]->init)(); 184 } 185 } 186 187 cam_status 188 cam_periph_alloc(periph_ctor_t *periph_ctor, 189 periph_oninv_t *periph_oninvalidate, 190 periph_dtor_t *periph_dtor, periph_start_t *periph_start, 191 char *name, cam_periph_type type, struct cam_path *path, 192 ac_callback_t *ac_callback, ac_code code, void *arg) 193 { 194 struct periph_driver **p_drv; 195 struct cam_sim *sim; 196 struct cam_periph *periph; 197 struct cam_periph *cur_periph; 198 path_id_t path_id; 199 target_id_t target_id; 200 lun_id_t lun_id; 201 cam_status status; 202 u_int init_level; 203 204 init_level = 0; 205 /* 206 * Handle Hot-Plug scenarios. If there is already a peripheral 207 * of our type assigned to this path, we are likely waiting for 208 * final close on an old, invalidated, peripheral. If this is 209 * the case, queue up a deferred call to the peripheral's async 210 * handler. If it looks like a mistaken re-allocation, complain. 211 */ 212 if ((periph = cam_periph_find(path, name)) != NULL) { 213 214 if ((periph->flags & CAM_PERIPH_INVALID) != 0 215 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { 216 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; 217 periph->deferred_callback = ac_callback; 218 periph->deferred_ac = code; 219 return (CAM_REQ_INPROG); 220 } else { 221 printf("cam_periph_alloc: attempt to re-allocate " 222 "valid device %s%d rejected flags %#x " 223 "refcount %d\n", periph->periph_name, 224 periph->unit_number, periph->flags, 225 periph->refcount); 226 } 227 return (CAM_REQ_INVALID); 228 } 229 230 periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, 231 M_NOWAIT|M_ZERO); 232 233 if (periph == NULL) 234 return (CAM_RESRC_UNAVAIL); 235 236 init_level++; 237 238 239 sim = xpt_path_sim(path); 240 path_id = xpt_path_path_id(path); 241 target_id = xpt_path_target_id(path); 242 lun_id = xpt_path_lun_id(path); 243 periph->periph_start = periph_start; 244 periph->periph_dtor = periph_dtor; 245 periph->periph_oninval = periph_oninvalidate; 246 periph->type = type; 247 periph->periph_name = name; 248 periph->scheduled_priority = CAM_PRIORITY_NONE; 249 periph->immediate_priority = CAM_PRIORITY_NONE; 250 periph->refcount = 1; /* Dropped by invalidation. */ 251 periph->sim = sim; 252 SLIST_INIT(&periph->ccb_list); 253 status = xpt_create_path(&path, periph, path_id, target_id, lun_id); 254 if (status != CAM_REQ_CMP) 255 goto failure; 256 periph->path = path; 257 258 xpt_lock_buses(); 259 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 260 if (strcmp((*p_drv)->driver_name, name) == 0) 261 break; 262 } 263 if (*p_drv == NULL) { 264 printf("cam_periph_alloc: invalid periph name '%s'\n", name); 265 xpt_unlock_buses(); 266 xpt_free_path(periph->path); 267 free(periph, M_CAMPERIPH); 268 return (CAM_REQ_INVALID); 269 } 270 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); 271 cur_periph = TAILQ_FIRST(&(*p_drv)->units); 272 while (cur_periph != NULL 273 && cur_periph->unit_number < periph->unit_number) 274 cur_periph = TAILQ_NEXT(cur_periph, unit_links); 275 if (cur_periph != NULL) { 276 KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); 277 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); 278 } else { 279 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); 280 (*p_drv)->generation++; 281 } 282 xpt_unlock_buses(); 283 284 init_level++; 285 286 status = xpt_add_periph(periph); 287 if (status != CAM_REQ_CMP) 288 goto failure; 289 290 init_level++; 291 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); 292 293 status = periph_ctor(periph, arg); 294 295 if (status == CAM_REQ_CMP) 296 init_level++; 297 298 failure: 299 switch (init_level) { 300 case 4: 301 /* Initialized successfully */ 302 break; 303 case 3: 304 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 305 xpt_remove_periph(periph); 306 /* FALLTHROUGH */ 307 case 2: 308 xpt_lock_buses(); 309 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); 310 xpt_unlock_buses(); 311 xpt_free_path(periph->path); 312 /* FALLTHROUGH */ 313 case 1: 314 free(periph, M_CAMPERIPH); 315 /* FALLTHROUGH */ 316 case 0: 317 /* No cleanup to perform. */ 318 break; 319 default: 320 panic("%s: Unknown init level", __func__); 321 } 322 return(status); 323 } 324 325 /* 326 * Find a peripheral structure with the specified path, target, lun, 327 * and (optionally) type. If the name is NULL, this function will return 328 * the first peripheral driver that matches the specified path. 329 */ 330 struct cam_periph * 331 cam_periph_find(struct cam_path *path, char *name) 332 { 333 struct periph_driver **p_drv; 334 struct cam_periph *periph; 335 336 xpt_lock_buses(); 337 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 338 339 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) 340 continue; 341 342 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 343 if (xpt_path_comp(periph->path, path) == 0) { 344 xpt_unlock_buses(); 345 cam_periph_assert(periph, MA_OWNED); 346 return(periph); 347 } 348 } 349 if (name != NULL) { 350 xpt_unlock_buses(); 351 return(NULL); 352 } 353 } 354 xpt_unlock_buses(); 355 return(NULL); 356 } 357 358 /* 359 * Find peripheral driver instances attached to the specified path. 360 */ 361 int 362 cam_periph_list(struct cam_path *path, struct sbuf *sb) 363 { 364 struct sbuf local_sb; 365 struct periph_driver **p_drv; 366 struct cam_periph *periph; 367 int count; 368 int sbuf_alloc_len; 369 370 sbuf_alloc_len = 16; 371 retry: 372 sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); 373 count = 0; 374 xpt_lock_buses(); 375 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 376 377 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 378 if (xpt_path_comp(periph->path, path) != 0) 379 continue; 380 381 if (sbuf_len(&local_sb) != 0) 382 sbuf_cat(&local_sb, ","); 383 384 sbuf_printf(&local_sb, "%s%d", periph->periph_name, 385 periph->unit_number); 386 387 if (sbuf_error(&local_sb) == ENOMEM) { 388 sbuf_alloc_len *= 2; 389 xpt_unlock_buses(); 390 sbuf_delete(&local_sb); 391 goto retry; 392 } 393 count++; 394 } 395 } 396 xpt_unlock_buses(); 397 sbuf_finish(&local_sb); 398 sbuf_cpy(sb, sbuf_data(&local_sb)); 399 sbuf_delete(&local_sb); 400 return (count); 401 } 402 403 cam_status 404 cam_periph_acquire(struct cam_periph *periph) 405 { 406 cam_status status; 407 408 status = CAM_REQ_CMP_ERR; 409 if (periph == NULL) 410 return (status); 411 412 xpt_lock_buses(); 413 if ((periph->flags & CAM_PERIPH_INVALID) == 0) { 414 periph->refcount++; 415 status = CAM_REQ_CMP; 416 } 417 xpt_unlock_buses(); 418 419 return (status); 420 } 421 422 void 423 cam_periph_doacquire(struct cam_periph *periph) 424 { 425 426 xpt_lock_buses(); 427 KASSERT(periph->refcount >= 1, 428 ("cam_periph_doacquire() with refcount == %d", periph->refcount)); 429 periph->refcount++; 430 xpt_unlock_buses(); 431 } 432 433 void 434 cam_periph_release_locked_buses(struct cam_periph *periph) 435 { 436 437 cam_periph_assert(periph, MA_OWNED); 438 KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); 439 if (--periph->refcount == 0) 440 camperiphfree(periph); 441 } 442 443 void 444 cam_periph_release_locked(struct cam_periph *periph) 445 { 446 447 if (periph == NULL) 448 return; 449 450 xpt_lock_buses(); 451 cam_periph_release_locked_buses(periph); 452 xpt_unlock_buses(); 453 } 454 455 void 456 cam_periph_release(struct cam_periph *periph) 457 { 458 struct mtx *mtx; 459 460 if (periph == NULL) 461 return; 462 463 cam_periph_assert(periph, MA_NOTOWNED); 464 mtx = cam_periph_mtx(periph); 465 mtx_lock(mtx); 466 cam_periph_release_locked(periph); 467 mtx_unlock(mtx); 468 } 469 470 int 471 cam_periph_hold(struct cam_periph *periph, int priority) 472 { 473 int error; 474 475 /* 476 * Increment the reference count on the peripheral 477 * while we wait for our lock attempt to succeed 478 * to ensure the peripheral doesn't disappear out 479 * from user us while we sleep. 480 */ 481 482 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 483 return (ENXIO); 484 485 cam_periph_assert(periph, MA_OWNED); 486 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { 487 periph->flags |= CAM_PERIPH_LOCK_WANTED; 488 if ((error = cam_periph_sleep(periph, periph, priority, 489 "caplck", 0)) != 0) { 490 cam_periph_release_locked(periph); 491 return (error); 492 } 493 if (periph->flags & CAM_PERIPH_INVALID) { 494 cam_periph_release_locked(periph); 495 return (ENXIO); 496 } 497 } 498 499 periph->flags |= CAM_PERIPH_LOCKED; 500 return (0); 501 } 502 503 void 504 cam_periph_unhold(struct cam_periph *periph) 505 { 506 507 cam_periph_assert(periph, MA_OWNED); 508 509 periph->flags &= ~CAM_PERIPH_LOCKED; 510 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { 511 periph->flags &= ~CAM_PERIPH_LOCK_WANTED; 512 wakeup(periph); 513 } 514 515 cam_periph_release_locked(periph); 516 } 517 518 /* 519 * Look for the next unit number that is not currently in use for this 520 * peripheral type starting at "newunit". Also exclude unit numbers that 521 * are reserved by for future "hardwiring" unless we already know that this 522 * is a potential wired device. Only assume that the device is "wired" the 523 * first time through the loop since after that we'll be looking at unit 524 * numbers that did not match a wiring entry. 525 */ 526 static u_int 527 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, 528 path_id_t pathid, target_id_t target, lun_id_t lun) 529 { 530 struct cam_periph *periph; 531 char *periph_name; 532 int i, val, dunit, r; 533 const char *dname, *strval; 534 535 periph_name = p_drv->driver_name; 536 for (;;newunit++) { 537 538 for (periph = TAILQ_FIRST(&p_drv->units); 539 periph != NULL && periph->unit_number != newunit; 540 periph = TAILQ_NEXT(periph, unit_links)) 541 ; 542 543 if (periph != NULL && periph->unit_number == newunit) { 544 if (wired != 0) { 545 xpt_print(periph->path, "Duplicate Wired " 546 "Device entry!\n"); 547 xpt_print(periph->path, "Second device (%s " 548 "device at scbus%d target %d lun %d) will " 549 "not be wired\n", periph_name, pathid, 550 target, lun); 551 wired = 0; 552 } 553 continue; 554 } 555 if (wired) 556 break; 557 558 /* 559 * Don't match entries like "da 4" as a wired down 560 * device, but do match entries like "da 4 target 5" 561 * or even "da 4 scbus 1". 562 */ 563 i = 0; 564 dname = periph_name; 565 for (;;) { 566 r = resource_find_dev(&i, dname, &dunit, NULL, NULL); 567 if (r != 0) 568 break; 569 /* if no "target" and no specific scbus, skip */ 570 if (resource_int_value(dname, dunit, "target", &val) && 571 (resource_string_value(dname, dunit, "at",&strval)|| 572 strcmp(strval, "scbus") == 0)) 573 continue; 574 if (newunit == dunit) 575 break; 576 } 577 if (r != 0) 578 break; 579 } 580 return (newunit); 581 } 582 583 static u_int 584 camperiphunit(struct periph_driver *p_drv, path_id_t pathid, 585 target_id_t target, lun_id_t lun) 586 { 587 u_int unit; 588 int wired, i, val, dunit; 589 const char *dname, *strval; 590 char pathbuf[32], *periph_name; 591 592 periph_name = p_drv->driver_name; 593 snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); 594 unit = 0; 595 i = 0; 596 dname = periph_name; 597 for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; 598 wired = 0) { 599 if (resource_string_value(dname, dunit, "at", &strval) == 0) { 600 if (strcmp(strval, pathbuf) != 0) 601 continue; 602 wired++; 603 } 604 if (resource_int_value(dname, dunit, "target", &val) == 0) { 605 if (val != target) 606 continue; 607 wired++; 608 } 609 if (resource_int_value(dname, dunit, "lun", &val) == 0) { 610 if (val != lun) 611 continue; 612 wired++; 613 } 614 if (wired != 0) { 615 unit = dunit; 616 break; 617 } 618 } 619 620 /* 621 * Either start from 0 looking for the next unit or from 622 * the unit number given in the resource config. This way, 623 * if we have wildcard matches, we don't return the same 624 * unit number twice. 625 */ 626 unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); 627 628 return (unit); 629 } 630 631 void 632 cam_periph_invalidate(struct cam_periph *periph) 633 { 634 635 cam_periph_assert(periph, MA_OWNED); 636 /* 637 * We only call this routine the first time a peripheral is 638 * invalidated. 639 */ 640 if ((periph->flags & CAM_PERIPH_INVALID) != 0) 641 return; 642 643 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); 644 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { 645 struct sbuf sb; 646 char buffer[160]; 647 648 sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); 649 xpt_denounce_periph_sbuf(periph, &sb); 650 sbuf_finish(&sb); 651 sbuf_putbuf(&sb); 652 } 653 periph->flags |= CAM_PERIPH_INVALID; 654 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; 655 if (periph->periph_oninval != NULL) 656 periph->periph_oninval(periph); 657 cam_periph_release_locked(periph); 658 } 659 660 static void 661 camperiphfree(struct cam_periph *periph) 662 { 663 struct periph_driver **p_drv; 664 struct periph_driver *drv; 665 666 cam_periph_assert(periph, MA_OWNED); 667 KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", 668 periph->periph_name, periph->unit_number)); 669 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 670 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) 671 break; 672 } 673 if (*p_drv == NULL) { 674 printf("camperiphfree: attempt to free non-existant periph\n"); 675 return; 676 } 677 /* 678 * Cache a pointer to the periph_driver structure. If a 679 * periph_driver is added or removed from the array (see 680 * periphdriver_register()) while we drop the toplogy lock 681 * below, p_drv may change. This doesn't protect against this 682 * particular periph_driver going away. That will require full 683 * reference counting in the periph_driver infrastructure. 684 */ 685 drv = *p_drv; 686 687 /* 688 * We need to set this flag before dropping the topology lock, to 689 * let anyone who is traversing the list that this peripheral is 690 * about to be freed, and there will be no more reference count 691 * checks. 692 */ 693 periph->flags |= CAM_PERIPH_FREE; 694 695 /* 696 * The peripheral destructor semantics dictate calling with only the 697 * SIM mutex held. Since it might sleep, it should not be called 698 * with the topology lock held. 699 */ 700 xpt_unlock_buses(); 701 702 /* 703 * We need to call the peripheral destructor prior to removing the 704 * peripheral from the list. Otherwise, we risk running into a 705 * scenario where the peripheral unit number may get reused 706 * (because it has been removed from the list), but some resources 707 * used by the peripheral are still hanging around. In particular, 708 * the devfs nodes used by some peripherals like the pass(4) driver 709 * aren't fully cleaned up until the destructor is run. If the 710 * unit number is reused before the devfs instance is fully gone, 711 * devfs will panic. 712 */ 713 if (periph->periph_dtor != NULL) 714 periph->periph_dtor(periph); 715 716 /* 717 * The peripheral list is protected by the topology lock. 718 */ 719 xpt_lock_buses(); 720 721 TAILQ_REMOVE(&drv->units, periph, unit_links); 722 drv->generation++; 723 724 xpt_remove_periph(periph); 725 726 xpt_unlock_buses(); 727 if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) 728 xpt_print(periph->path, "Periph destroyed\n"); 729 else 730 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); 731 732 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { 733 union ccb ccb; 734 void *arg; 735 736 switch (periph->deferred_ac) { 737 case AC_FOUND_DEVICE: 738 ccb.ccb_h.func_code = XPT_GDEV_TYPE; 739 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 740 xpt_action(&ccb); 741 arg = &ccb; 742 break; 743 case AC_PATH_REGISTERED: 744 ccb.ccb_h.func_code = XPT_PATH_INQ; 745 xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 746 xpt_action(&ccb); 747 arg = &ccb; 748 break; 749 default: 750 arg = NULL; 751 break; 752 } 753 periph->deferred_callback(NULL, periph->deferred_ac, 754 periph->path, arg); 755 } 756 xpt_free_path(periph->path); 757 free(periph, M_CAMPERIPH); 758 xpt_lock_buses(); 759 } 760 761 /* 762 * Map user virtual pointers into kernel virtual address space, so we can 763 * access the memory. This is now a generic function that centralizes most 764 * of the sanity checks on the data flags, if any. 765 * This also only works for up to MAXPHYS memory. Since we use 766 * buffers to map stuff in and out, we're limited to the buffer size. 767 */ 768 int 769 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, 770 u_int maxmap) 771 { 772 int numbufs, i, j; 773 int flags[CAM_PERIPH_MAXMAPS]; 774 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 775 u_int32_t lengths[CAM_PERIPH_MAXMAPS]; 776 u_int32_t dirs[CAM_PERIPH_MAXMAPS]; 777 778 if (maxmap == 0) 779 maxmap = DFLTPHYS; /* traditional default */ 780 else if (maxmap > MAXPHYS) 781 maxmap = MAXPHYS; /* for safety */ 782 switch(ccb->ccb_h.func_code) { 783 case XPT_DEV_MATCH: 784 if (ccb->cdm.match_buf_len == 0) { 785 printf("cam_periph_mapmem: invalid match buffer " 786 "length 0\n"); 787 return(EINVAL); 788 } 789 if (ccb->cdm.pattern_buf_len > 0) { 790 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 791 lengths[0] = ccb->cdm.pattern_buf_len; 792 dirs[0] = CAM_DIR_OUT; 793 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 794 lengths[1] = ccb->cdm.match_buf_len; 795 dirs[1] = CAM_DIR_IN; 796 numbufs = 2; 797 } else { 798 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 799 lengths[0] = ccb->cdm.match_buf_len; 800 dirs[0] = CAM_DIR_IN; 801 numbufs = 1; 802 } 803 /* 804 * This request will not go to the hardware, no reason 805 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 806 */ 807 maxmap = MAXPHYS; 808 break; 809 case XPT_SCSI_IO: 810 case XPT_CONT_TARGET_IO: 811 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 812 return(0); 813 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 814 return (EINVAL); 815 data_ptrs[0] = &ccb->csio.data_ptr; 816 lengths[0] = ccb->csio.dxfer_len; 817 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 818 numbufs = 1; 819 break; 820 case XPT_ATA_IO: 821 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 822 return(0); 823 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 824 return (EINVAL); 825 data_ptrs[0] = &ccb->ataio.data_ptr; 826 lengths[0] = ccb->ataio.dxfer_len; 827 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 828 numbufs = 1; 829 break; 830 case XPT_MMC_IO: 831 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 832 return(0); 833 /* Two mappings: one for cmd->data and one for cmd->data->data */ 834 data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; 835 lengths[0] = sizeof(struct mmc_data *); 836 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 837 data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; 838 lengths[1] = ccb->mmcio.cmd.data->len; 839 dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; 840 numbufs = 2; 841 break; 842 case XPT_SMP_IO: 843 data_ptrs[0] = &ccb->smpio.smp_request; 844 lengths[0] = ccb->smpio.smp_request_len; 845 dirs[0] = CAM_DIR_OUT; 846 data_ptrs[1] = &ccb->smpio.smp_response; 847 lengths[1] = ccb->smpio.smp_response_len; 848 dirs[1] = CAM_DIR_IN; 849 numbufs = 2; 850 break; 851 case XPT_NVME_IO: 852 case XPT_NVME_ADMIN: 853 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 854 return (0); 855 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 856 return (EINVAL); 857 data_ptrs[0] = &ccb->nvmeio.data_ptr; 858 lengths[0] = ccb->nvmeio.dxfer_len; 859 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 860 numbufs = 1; 861 break; 862 case XPT_DEV_ADVINFO: 863 if (ccb->cdai.bufsiz == 0) 864 return (0); 865 866 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 867 lengths[0] = ccb->cdai.bufsiz; 868 dirs[0] = CAM_DIR_IN; 869 numbufs = 1; 870 871 /* 872 * This request will not go to the hardware, no reason 873 * to be so strict. vmapbuf() is able to map up to MAXPHYS. 874 */ 875 maxmap = MAXPHYS; 876 break; 877 default: 878 return(EINVAL); 879 break; /* NOTREACHED */ 880 } 881 882 /* 883 * Check the transfer length and permissions first, so we don't 884 * have to unmap any previously mapped buffers. 885 */ 886 for (i = 0; i < numbufs; i++) { 887 888 flags[i] = 0; 889 890 /* 891 * The userland data pointer passed in may not be page 892 * aligned. vmapbuf() truncates the address to a page 893 * boundary, so if the address isn't page aligned, we'll 894 * need enough space for the given transfer length, plus 895 * whatever extra space is necessary to make it to the page 896 * boundary. 897 */ 898 if ((lengths[i] + 899 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ 900 printf("cam_periph_mapmem: attempt to map %lu bytes, " 901 "which is greater than %lu\n", 902 (long)(lengths[i] + 903 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), 904 (u_long)maxmap); 905 return(E2BIG); 906 } 907 908 if (dirs[i] & CAM_DIR_OUT) { 909 flags[i] = BIO_WRITE; 910 } 911 912 if (dirs[i] & CAM_DIR_IN) { 913 flags[i] = BIO_READ; 914 } 915 916 } 917 918 /* 919 * This keeps the kernel stack of current thread from getting 920 * swapped. In low-memory situations where the kernel stack might 921 * otherwise get swapped out, this holds it and allows the thread 922 * to make progress and release the kernel mapped pages sooner. 923 * 924 * XXX KDM should I use P_NOSWAP instead? 925 */ 926 PHOLD(curproc); 927 928 for (i = 0; i < numbufs; i++) { 929 /* 930 * Get the buffer. 931 */ 932 mapinfo->bp[i] = getpbuf(NULL); 933 934 /* put our pointer in the data slot */ 935 mapinfo->bp[i]->b_data = *data_ptrs[i]; 936 937 /* save the user's data address */ 938 mapinfo->bp[i]->b_caller1 = *data_ptrs[i]; 939 940 /* set the transfer length, we know it's < MAXPHYS */ 941 mapinfo->bp[i]->b_bufsize = lengths[i]; 942 943 /* set the direction */ 944 mapinfo->bp[i]->b_iocmd = flags[i]; 945 946 /* 947 * Map the buffer into kernel memory. 948 * 949 * Note that useracc() alone is not a sufficient test. 950 * vmapbuf() can still fail due to a smaller file mapped 951 * into a larger area of VM, or if userland races against 952 * vmapbuf() after the useracc() check. 953 */ 954 if (vmapbuf(mapinfo->bp[i], 1) < 0) { 955 for (j = 0; j < i; ++j) { 956 *data_ptrs[j] = mapinfo->bp[j]->b_caller1; 957 vunmapbuf(mapinfo->bp[j]); 958 relpbuf(mapinfo->bp[j], NULL); 959 } 960 relpbuf(mapinfo->bp[i], NULL); 961 PRELE(curproc); 962 return(EACCES); 963 } 964 965 /* set our pointer to the new mapped area */ 966 *data_ptrs[i] = mapinfo->bp[i]->b_data; 967 968 mapinfo->num_bufs_used++; 969 } 970 971 /* 972 * Now that we've gotten this far, change ownership to the kernel 973 * of the buffers so that we don't run afoul of returning to user 974 * space with locks (on the buffer) held. 975 */ 976 for (i = 0; i < numbufs; i++) { 977 BUF_KERNPROC(mapinfo->bp[i]); 978 } 979 980 981 return(0); 982 } 983 984 /* 985 * Unmap memory segments mapped into kernel virtual address space by 986 * cam_periph_mapmem(). 987 */ 988 void 989 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) 990 { 991 int numbufs, i; 992 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 993 994 if (mapinfo->num_bufs_used <= 0) { 995 /* nothing to free and the process wasn't held. */ 996 return; 997 } 998 999 switch (ccb->ccb_h.func_code) { 1000 case XPT_DEV_MATCH: 1001 numbufs = min(mapinfo->num_bufs_used, 2); 1002 1003 if (numbufs == 1) { 1004 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1005 } else { 1006 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1007 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1008 } 1009 break; 1010 case XPT_SCSI_IO: 1011 case XPT_CONT_TARGET_IO: 1012 data_ptrs[0] = &ccb->csio.data_ptr; 1013 numbufs = min(mapinfo->num_bufs_used, 1); 1014 break; 1015 case XPT_ATA_IO: 1016 data_ptrs[0] = &ccb->ataio.data_ptr; 1017 numbufs = min(mapinfo->num_bufs_used, 1); 1018 break; 1019 case XPT_SMP_IO: 1020 numbufs = min(mapinfo->num_bufs_used, 2); 1021 data_ptrs[0] = &ccb->smpio.smp_request; 1022 data_ptrs[1] = &ccb->smpio.smp_response; 1023 break; 1024 case XPT_DEV_ADVINFO: 1025 numbufs = min(mapinfo->num_bufs_used, 1); 1026 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1027 break; 1028 case XPT_NVME_IO: 1029 case XPT_NVME_ADMIN: 1030 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1031 numbufs = min(mapinfo->num_bufs_used, 1); 1032 break; 1033 default: 1034 /* allow ourselves to be swapped once again */ 1035 PRELE(curproc); 1036 return; 1037 break; /* NOTREACHED */ 1038 } 1039 1040 for (i = 0; i < numbufs; i++) { 1041 /* Set the user's pointer back to the original value */ 1042 *data_ptrs[i] = mapinfo->bp[i]->b_caller1; 1043 1044 /* unmap the buffer */ 1045 vunmapbuf(mapinfo->bp[i]); 1046 1047 /* release the buffer */ 1048 relpbuf(mapinfo->bp[i], NULL); 1049 } 1050 1051 /* allow ourselves to be swapped once again */ 1052 PRELE(curproc); 1053 } 1054 1055 int 1056 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, 1057 int (*error_routine)(union ccb *ccb, 1058 cam_flags camflags, 1059 u_int32_t sense_flags)) 1060 { 1061 union ccb *ccb; 1062 int error; 1063 int found; 1064 1065 error = found = 0; 1066 1067 switch(cmd){ 1068 case CAMGETPASSTHRU: 1069 ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); 1070 xpt_setup_ccb(&ccb->ccb_h, 1071 ccb->ccb_h.path, 1072 CAM_PRIORITY_NORMAL); 1073 ccb->ccb_h.func_code = XPT_GDEVLIST; 1074 1075 /* 1076 * Basically, the point of this is that we go through 1077 * getting the list of devices, until we find a passthrough 1078 * device. In the current version of the CAM code, the 1079 * only way to determine what type of device we're dealing 1080 * with is by its name. 1081 */ 1082 while (found == 0) { 1083 ccb->cgdl.index = 0; 1084 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; 1085 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { 1086 1087 /* we want the next device in the list */ 1088 xpt_action(ccb); 1089 if (strncmp(ccb->cgdl.periph_name, 1090 "pass", 4) == 0){ 1091 found = 1; 1092 break; 1093 } 1094 } 1095 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && 1096 (found == 0)) { 1097 ccb->cgdl.periph_name[0] = '\0'; 1098 ccb->cgdl.unit_number = 0; 1099 break; 1100 } 1101 } 1102 1103 /* copy the result back out */ 1104 bcopy(ccb, addr, sizeof(union ccb)); 1105 1106 /* and release the ccb */ 1107 xpt_release_ccb(ccb); 1108 1109 break; 1110 default: 1111 error = ENOTTY; 1112 break; 1113 } 1114 return(error); 1115 } 1116 1117 static void 1118 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) 1119 { 1120 1121 panic("%s: already done with ccb %p", __func__, done_ccb); 1122 } 1123 1124 static void 1125 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) 1126 { 1127 1128 /* Caller will release the CCB */ 1129 xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); 1130 done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; 1131 wakeup(&done_ccb->ccb_h.cbfcnp); 1132 } 1133 1134 static void 1135 cam_periph_ccbwait(union ccb *ccb) 1136 { 1137 1138 if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 1139 while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) 1140 xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, 1141 PRIBIO, "cbwait", 0); 1142 } 1143 KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && 1144 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, 1145 ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " 1146 "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, 1147 ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); 1148 } 1149 1150 int 1151 cam_periph_runccb(union ccb *ccb, 1152 int (*error_routine)(union ccb *ccb, 1153 cam_flags camflags, 1154 u_int32_t sense_flags), 1155 cam_flags camflags, u_int32_t sense_flags, 1156 struct devstat *ds) 1157 { 1158 struct bintime *starttime; 1159 struct bintime ltime; 1160 int error; 1161 1162 starttime = NULL; 1163 xpt_path_assert(ccb->ccb_h.path, MA_OWNED); 1164 KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, 1165 ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, 1166 ccb->ccb_h.func_code, ccb->ccb_h.flags)); 1167 1168 /* 1169 * If the user has supplied a stats structure, and if we understand 1170 * this particular type of ccb, record the transaction start. 1171 */ 1172 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || 1173 ccb->ccb_h.func_code == XPT_ATA_IO)) { 1174 starttime = <ime; 1175 binuptime(starttime); 1176 devstat_start_transaction(ds, starttime); 1177 } 1178 1179 ccb->ccb_h.cbfcnp = cam_periph_done; 1180 xpt_action(ccb); 1181 1182 do { 1183 cam_periph_ccbwait(ccb); 1184 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) 1185 error = 0; 1186 else if (error_routine != NULL) { 1187 ccb->ccb_h.cbfcnp = cam_periph_done; 1188 error = (*error_routine)(ccb, camflags, sense_flags); 1189 } else 1190 error = 0; 1191 1192 } while (error == ERESTART); 1193 1194 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 1195 cam_release_devq(ccb->ccb_h.path, 1196 /* relsim_flags */0, 1197 /* openings */0, 1198 /* timeout */0, 1199 /* getcount_only */ FALSE); 1200 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1201 } 1202 1203 if (ds != NULL) { 1204 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 1205 devstat_end_transaction(ds, 1206 ccb->csio.dxfer_len - ccb->csio.resid, 1207 ccb->csio.tag_action & 0x3, 1208 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1209 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1210 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1211 DEVSTAT_WRITE : 1212 DEVSTAT_READ, NULL, starttime); 1213 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 1214 devstat_end_transaction(ds, 1215 ccb->ataio.dxfer_len - ccb->ataio.resid, 1216 0, /* Not used in ATA */ 1217 ((ccb->ccb_h.flags & CAM_DIR_MASK) == 1218 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 1219 (ccb->ccb_h.flags & CAM_DIR_OUT) ? 1220 DEVSTAT_WRITE : 1221 DEVSTAT_READ, NULL, starttime); 1222 } 1223 } 1224 1225 return(error); 1226 } 1227 1228 void 1229 cam_freeze_devq(struct cam_path *path) 1230 { 1231 struct ccb_hdr ccb_h; 1232 1233 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); 1234 xpt_setup_ccb(&ccb_h, path, /*priority*/1); 1235 ccb_h.func_code = XPT_NOOP; 1236 ccb_h.flags = CAM_DEV_QFREEZE; 1237 xpt_action((union ccb *)&ccb_h); 1238 } 1239 1240 u_int32_t 1241 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, 1242 u_int32_t openings, u_int32_t arg, 1243 int getcount_only) 1244 { 1245 struct ccb_relsim crs; 1246 1247 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", 1248 relsim_flags, openings, arg, getcount_only)); 1249 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 1250 crs.ccb_h.func_code = XPT_REL_SIMQ; 1251 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; 1252 crs.release_flags = relsim_flags; 1253 crs.openings = openings; 1254 crs.release_timeout = arg; 1255 xpt_action((union ccb *)&crs); 1256 return (crs.qfrozen_cnt); 1257 } 1258 1259 #define saved_ccb_ptr ppriv_ptr0 1260 static void 1261 camperiphdone(struct cam_periph *periph, union ccb *done_ccb) 1262 { 1263 union ccb *saved_ccb; 1264 cam_status status; 1265 struct scsi_start_stop_unit *scsi_cmd; 1266 int error_code, sense_key, asc, ascq; 1267 1268 scsi_cmd = (struct scsi_start_stop_unit *) 1269 &done_ccb->csio.cdb_io.cdb_bytes; 1270 status = done_ccb->ccb_h.status; 1271 1272 if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1273 if (scsi_extract_sense_ccb(done_ccb, 1274 &error_code, &sense_key, &asc, &ascq)) { 1275 /* 1276 * If the error is "invalid field in CDB", 1277 * and the load/eject flag is set, turn the 1278 * flag off and try again. This is just in 1279 * case the drive in question barfs on the 1280 * load eject flag. The CAM code should set 1281 * the load/eject flag by default for 1282 * removable media. 1283 */ 1284 if ((scsi_cmd->opcode == START_STOP_UNIT) && 1285 ((scsi_cmd->how & SSS_LOEJ) != 0) && 1286 (asc == 0x24) && (ascq == 0x00)) { 1287 scsi_cmd->how &= ~SSS_LOEJ; 1288 if (status & CAM_DEV_QFRZN) { 1289 cam_release_devq(done_ccb->ccb_h.path, 1290 0, 0, 0, 0); 1291 done_ccb->ccb_h.status &= 1292 ~CAM_DEV_QFRZN; 1293 } 1294 xpt_action(done_ccb); 1295 goto out; 1296 } 1297 } 1298 if (cam_periph_error(done_ccb, 1299 0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART) 1300 goto out; 1301 if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { 1302 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1303 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1304 } 1305 } else { 1306 /* 1307 * If we have successfully taken a device from the not 1308 * ready to ready state, re-scan the device and re-get 1309 * the inquiry information. Many devices (mostly disks) 1310 * don't properly report their inquiry information unless 1311 * they are spun up. 1312 */ 1313 if (scsi_cmd->opcode == START_STOP_UNIT) 1314 xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); 1315 } 1316 1317 /* 1318 * Perform the final retry with the original CCB so that final 1319 * error processing is performed by the owner of the CCB. 1320 */ 1321 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; 1322 bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); 1323 xpt_free_ccb(saved_ccb); 1324 if (done_ccb->ccb_h.cbfcnp != camperiphdone) 1325 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; 1326 xpt_action(done_ccb); 1327 1328 out: 1329 /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ 1330 cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); 1331 } 1332 1333 /* 1334 * Generic Async Event handler. Peripheral drivers usually 1335 * filter out the events that require personal attention, 1336 * and leave the rest to this function. 1337 */ 1338 void 1339 cam_periph_async(struct cam_periph *periph, u_int32_t code, 1340 struct cam_path *path, void *arg) 1341 { 1342 switch (code) { 1343 case AC_LOST_DEVICE: 1344 cam_periph_invalidate(periph); 1345 break; 1346 default: 1347 break; 1348 } 1349 } 1350 1351 void 1352 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) 1353 { 1354 struct ccb_getdevstats cgds; 1355 1356 xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 1357 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1358 xpt_action((union ccb *)&cgds); 1359 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); 1360 } 1361 1362 void 1363 cam_periph_freeze_after_event(struct cam_periph *periph, 1364 struct timeval* event_time, u_int duration_ms) 1365 { 1366 struct timeval delta; 1367 struct timeval duration_tv; 1368 1369 if (!timevalisset(event_time)) 1370 return; 1371 1372 microtime(&delta); 1373 timevalsub(&delta, event_time); 1374 duration_tv.tv_sec = duration_ms / 1000; 1375 duration_tv.tv_usec = (duration_ms % 1000) * 1000; 1376 if (timevalcmp(&delta, &duration_tv, <)) { 1377 timevalsub(&duration_tv, &delta); 1378 1379 duration_ms = duration_tv.tv_sec * 1000; 1380 duration_ms += duration_tv.tv_usec / 1000; 1381 cam_freeze_devq(periph->path); 1382 cam_release_devq(periph->path, 1383 RELSIM_RELEASE_AFTER_TIMEOUT, 1384 /*reduction*/0, 1385 /*timeout*/duration_ms, 1386 /*getcount_only*/0); 1387 } 1388 1389 } 1390 1391 static int 1392 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, 1393 cam_flags camflags, u_int32_t sense_flags, 1394 int *openings, u_int32_t *relsim_flags, 1395 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1396 { 1397 int error; 1398 1399 switch (ccb->csio.scsi_status) { 1400 case SCSI_STATUS_OK: 1401 case SCSI_STATUS_COND_MET: 1402 case SCSI_STATUS_INTERMED: 1403 case SCSI_STATUS_INTERMED_COND_MET: 1404 error = 0; 1405 break; 1406 case SCSI_STATUS_CMD_TERMINATED: 1407 case SCSI_STATUS_CHECK_COND: 1408 error = camperiphscsisenseerror(ccb, orig_ccb, 1409 camflags, 1410 sense_flags, 1411 openings, 1412 relsim_flags, 1413 timeout, 1414 action, 1415 action_string); 1416 break; 1417 case SCSI_STATUS_QUEUE_FULL: 1418 { 1419 /* no decrement */ 1420 struct ccb_getdevstats cgds; 1421 1422 /* 1423 * First off, find out what the current 1424 * transaction counts are. 1425 */ 1426 xpt_setup_ccb(&cgds.ccb_h, 1427 ccb->ccb_h.path, 1428 CAM_PRIORITY_NORMAL); 1429 cgds.ccb_h.func_code = XPT_GDEV_STATS; 1430 xpt_action((union ccb *)&cgds); 1431 1432 /* 1433 * If we were the only transaction active, treat 1434 * the QUEUE FULL as if it were a BUSY condition. 1435 */ 1436 if (cgds.dev_active != 0) { 1437 int total_openings; 1438 1439 /* 1440 * Reduce the number of openings to 1441 * be 1 less than the amount it took 1442 * to get a queue full bounded by the 1443 * minimum allowed tag count for this 1444 * device. 1445 */ 1446 total_openings = cgds.dev_active + cgds.dev_openings; 1447 *openings = cgds.dev_active; 1448 if (*openings < cgds.mintags) 1449 *openings = cgds.mintags; 1450 if (*openings < total_openings) 1451 *relsim_flags = RELSIM_ADJUST_OPENINGS; 1452 else { 1453 /* 1454 * Some devices report queue full for 1455 * temporary resource shortages. For 1456 * this reason, we allow a minimum 1457 * tag count to be entered via a 1458 * quirk entry to prevent the queue 1459 * count on these devices from falling 1460 * to a pessimisticly low value. We 1461 * still wait for the next successful 1462 * completion, however, before queueing 1463 * more transactions to the device. 1464 */ 1465 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; 1466 } 1467 *timeout = 0; 1468 error = ERESTART; 1469 *action &= ~SSQ_PRINT_SENSE; 1470 break; 1471 } 1472 /* FALLTHROUGH */ 1473 } 1474 case SCSI_STATUS_BUSY: 1475 /* 1476 * Restart the queue after either another 1477 * command completes or a 1 second timeout. 1478 */ 1479 if ((sense_flags & SF_RETRY_BUSY) != 0 || 1480 (ccb->ccb_h.retry_count--) > 0) { 1481 error = ERESTART; 1482 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT 1483 | RELSIM_RELEASE_AFTER_CMDCMPLT; 1484 *timeout = 1000; 1485 } else { 1486 error = EIO; 1487 } 1488 break; 1489 case SCSI_STATUS_RESERV_CONFLICT: 1490 default: 1491 error = EIO; 1492 break; 1493 } 1494 return (error); 1495 } 1496 1497 static int 1498 camperiphscsisenseerror(union ccb *ccb, union ccb **orig, 1499 cam_flags camflags, u_int32_t sense_flags, 1500 int *openings, u_int32_t *relsim_flags, 1501 u_int32_t *timeout, u_int32_t *action, const char **action_string) 1502 { 1503 struct cam_periph *periph; 1504 union ccb *orig_ccb = ccb; 1505 int error, recoveryccb; 1506 1507 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1508 if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) 1509 biotrack(ccb->csio.bio, __func__); 1510 #endif 1511 1512 periph = xpt_path_periph(ccb->ccb_h.path); 1513 recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); 1514 if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { 1515 /* 1516 * If error recovery is already in progress, don't attempt 1517 * to process this error, but requeue it unconditionally 1518 * and attempt to process it once error recovery has 1519 * completed. This failed command is probably related to 1520 * the error that caused the currently active error recovery 1521 * action so our current recovery efforts should also 1522 * address this command. Be aware that the error recovery 1523 * code assumes that only one recovery action is in progress 1524 * on a particular peripheral instance at any given time 1525 * (e.g. only one saved CCB for error recovery) so it is 1526 * imperitive that we don't violate this assumption. 1527 */ 1528 error = ERESTART; 1529 *action &= ~SSQ_PRINT_SENSE; 1530 } else { 1531 scsi_sense_action err_action; 1532 struct ccb_getdev cgd; 1533 1534 /* 1535 * Grab the inquiry data for this device. 1536 */ 1537 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); 1538 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 1539 xpt_action((union ccb *)&cgd); 1540 1541 err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, 1542 sense_flags); 1543 error = err_action & SS_ERRMASK; 1544 1545 /* 1546 * Do not autostart sequential access devices 1547 * to avoid unexpected tape loading. 1548 */ 1549 if ((err_action & SS_MASK) == SS_START && 1550 SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { 1551 *action_string = "Will not autostart a " 1552 "sequential access device"; 1553 goto sense_error_done; 1554 } 1555 1556 /* 1557 * Avoid recovery recursion if recovery action is the same. 1558 */ 1559 if ((err_action & SS_MASK) >= SS_START && recoveryccb) { 1560 if (((err_action & SS_MASK) == SS_START && 1561 ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || 1562 ((err_action & SS_MASK) == SS_TUR && 1563 (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { 1564 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; 1565 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1566 *timeout = 500; 1567 } 1568 } 1569 1570 /* 1571 * If the recovery action will consume a retry, 1572 * make sure we actually have retries available. 1573 */ 1574 if ((err_action & SSQ_DECREMENT_COUNT) != 0) { 1575 if (ccb->ccb_h.retry_count > 0 && 1576 (periph->flags & CAM_PERIPH_INVALID) == 0) 1577 ccb->ccb_h.retry_count--; 1578 else { 1579 *action_string = "Retries exhausted"; 1580 goto sense_error_done; 1581 } 1582 } 1583 1584 if ((err_action & SS_MASK) >= SS_START) { 1585 /* 1586 * Do common portions of commands that 1587 * use recovery CCBs. 1588 */ 1589 orig_ccb = xpt_alloc_ccb_nowait(); 1590 if (orig_ccb == NULL) { 1591 *action_string = "Can't allocate recovery CCB"; 1592 goto sense_error_done; 1593 } 1594 /* 1595 * Clear freeze flag for original request here, as 1596 * this freeze will be dropped as part of ERESTART. 1597 */ 1598 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1599 bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); 1600 } 1601 1602 switch (err_action & SS_MASK) { 1603 case SS_NOP: 1604 *action_string = "No recovery action needed"; 1605 error = 0; 1606 break; 1607 case SS_RETRY: 1608 *action_string = "Retrying command (per sense data)"; 1609 error = ERESTART; 1610 break; 1611 case SS_FAIL: 1612 *action_string = "Unretryable error"; 1613 break; 1614 case SS_START: 1615 { 1616 int le; 1617 1618 /* 1619 * Send a start unit command to the device, and 1620 * then retry the command. 1621 */ 1622 *action_string = "Attempting to start unit"; 1623 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1624 1625 /* 1626 * Check for removable media and set 1627 * load/eject flag appropriately. 1628 */ 1629 if (SID_IS_REMOVABLE(&cgd.inq_data)) 1630 le = TRUE; 1631 else 1632 le = FALSE; 1633 1634 scsi_start_stop(&ccb->csio, 1635 /*retries*/1, 1636 camperiphdone, 1637 MSG_SIMPLE_Q_TAG, 1638 /*start*/TRUE, 1639 /*load/eject*/le, 1640 /*immediate*/FALSE, 1641 SSD_FULL_SIZE, 1642 /*timeout*/50000); 1643 break; 1644 } 1645 case SS_TUR: 1646 { 1647 /* 1648 * Send a Test Unit Ready to the device. 1649 * If the 'many' flag is set, we send 120 1650 * test unit ready commands, one every half 1651 * second. Otherwise, we just send one TUR. 1652 * We only want to do this if the retry 1653 * count has not been exhausted. 1654 */ 1655 int retries; 1656 1657 if ((err_action & SSQ_MANY) != 0) { 1658 *action_string = "Polling device for readiness"; 1659 retries = 120; 1660 } else { 1661 *action_string = "Testing device for readiness"; 1662 retries = 1; 1663 } 1664 periph->flags |= CAM_PERIPH_RECOVERY_INPROG; 1665 scsi_test_unit_ready(&ccb->csio, 1666 retries, 1667 camperiphdone, 1668 MSG_SIMPLE_Q_TAG, 1669 SSD_FULL_SIZE, 1670 /*timeout*/5000); 1671 1672 /* 1673 * Accomplish our 500ms delay by deferring 1674 * the release of our device queue appropriately. 1675 */ 1676 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1677 *timeout = 500; 1678 break; 1679 } 1680 default: 1681 panic("Unhandled error action %x", err_action); 1682 } 1683 1684 if ((err_action & SS_MASK) >= SS_START) { 1685 /* 1686 * Drop the priority, so that the recovery 1687 * CCB is the first to execute. Freeze the queue 1688 * after this command is sent so that we can 1689 * restore the old csio and have it queued in 1690 * the proper order before we release normal 1691 * transactions to the device. 1692 */ 1693 ccb->ccb_h.pinfo.priority--; 1694 ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 1695 ccb->ccb_h.saved_ccb_ptr = orig_ccb; 1696 error = ERESTART; 1697 *orig = orig_ccb; 1698 } 1699 1700 sense_error_done: 1701 *action = err_action; 1702 } 1703 return (error); 1704 } 1705 1706 /* 1707 * Generic error handler. Peripheral drivers usually filter 1708 * out the errors that they handle in a unique manner, then 1709 * call this function. 1710 */ 1711 int 1712 cam_periph_error(union ccb *ccb, cam_flags camflags, 1713 u_int32_t sense_flags, union ccb *save_ccb) 1714 { 1715 struct cam_path *newpath; 1716 union ccb *orig_ccb, *scan_ccb; 1717 struct cam_periph *periph; 1718 const char *action_string; 1719 cam_status status; 1720 int frozen, error, openings, devctl_err; 1721 u_int32_t action, relsim_flags, timeout; 1722 1723 action = SSQ_PRINT_SENSE; 1724 periph = xpt_path_periph(ccb->ccb_h.path); 1725 action_string = NULL; 1726 status = ccb->ccb_h.status; 1727 frozen = (status & CAM_DEV_QFRZN) != 0; 1728 status &= CAM_STATUS_MASK; 1729 devctl_err = openings = relsim_flags = timeout = 0; 1730 orig_ccb = ccb; 1731 1732 /* Filter the errors that should be reported via devctl */ 1733 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1734 case CAM_CMD_TIMEOUT: 1735 case CAM_REQ_ABORTED: 1736 case CAM_REQ_CMP_ERR: 1737 case CAM_REQ_TERMIO: 1738 case CAM_UNREC_HBA_ERROR: 1739 case CAM_DATA_RUN_ERR: 1740 case CAM_SCSI_STATUS_ERROR: 1741 case CAM_ATA_STATUS_ERROR: 1742 case CAM_SMP_STATUS_ERROR: 1743 devctl_err++; 1744 break; 1745 default: 1746 break; 1747 } 1748 1749 switch (status) { 1750 case CAM_REQ_CMP: 1751 error = 0; 1752 action &= ~SSQ_PRINT_SENSE; 1753 break; 1754 case CAM_SCSI_STATUS_ERROR: 1755 error = camperiphscsistatuserror(ccb, &orig_ccb, 1756 camflags, sense_flags, &openings, &relsim_flags, 1757 &timeout, &action, &action_string); 1758 break; 1759 case CAM_AUTOSENSE_FAIL: 1760 error = EIO; /* we have to kill the command */ 1761 break; 1762 case CAM_UA_ABORT: 1763 case CAM_UA_TERMIO: 1764 case CAM_MSG_REJECT_REC: 1765 /* XXX Don't know that these are correct */ 1766 error = EIO; 1767 break; 1768 case CAM_SEL_TIMEOUT: 1769 if ((camflags & CAM_RETRY_SELTO) != 0) { 1770 if (ccb->ccb_h.retry_count > 0 && 1771 (periph->flags & CAM_PERIPH_INVALID) == 0) { 1772 ccb->ccb_h.retry_count--; 1773 error = ERESTART; 1774 1775 /* 1776 * Wait a bit to give the device 1777 * time to recover before we try again. 1778 */ 1779 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1780 timeout = periph_selto_delay; 1781 break; 1782 } 1783 action_string = "Retries exhausted"; 1784 } 1785 /* FALLTHROUGH */ 1786 case CAM_DEV_NOT_THERE: 1787 error = ENXIO; 1788 action = SSQ_LOST; 1789 break; 1790 case CAM_REQ_INVALID: 1791 case CAM_PATH_INVALID: 1792 case CAM_NO_HBA: 1793 case CAM_PROVIDE_FAIL: 1794 case CAM_REQ_TOO_BIG: 1795 case CAM_LUN_INVALID: 1796 case CAM_TID_INVALID: 1797 case CAM_FUNC_NOTAVAIL: 1798 error = EINVAL; 1799 break; 1800 case CAM_SCSI_BUS_RESET: 1801 case CAM_BDR_SENT: 1802 /* 1803 * Commands that repeatedly timeout and cause these 1804 * kinds of error recovery actions, should return 1805 * CAM_CMD_TIMEOUT, which allows us to safely assume 1806 * that this command was an innocent bystander to 1807 * these events and should be unconditionally 1808 * retried. 1809 */ 1810 case CAM_REQUEUE_REQ: 1811 /* Unconditional requeue if device is still there */ 1812 if (periph->flags & CAM_PERIPH_INVALID) { 1813 action_string = "Periph was invalidated"; 1814 error = EIO; 1815 } else if (sense_flags & SF_NO_RETRY) { 1816 error = EIO; 1817 action_string = "Retry was blocked"; 1818 } else { 1819 error = ERESTART; 1820 action &= ~SSQ_PRINT_SENSE; 1821 } 1822 break; 1823 case CAM_RESRC_UNAVAIL: 1824 /* Wait a bit for the resource shortage to abate. */ 1825 timeout = periph_noresrc_delay; 1826 /* FALLTHROUGH */ 1827 case CAM_BUSY: 1828 if (timeout == 0) { 1829 /* Wait a bit for the busy condition to abate. */ 1830 timeout = periph_busy_delay; 1831 } 1832 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; 1833 /* FALLTHROUGH */ 1834 case CAM_ATA_STATUS_ERROR: 1835 case CAM_REQ_CMP_ERR: 1836 case CAM_CMD_TIMEOUT: 1837 case CAM_UNEXP_BUSFREE: 1838 case CAM_UNCOR_PARITY: 1839 case CAM_DATA_RUN_ERR: 1840 default: 1841 if (periph->flags & CAM_PERIPH_INVALID) { 1842 error = EIO; 1843 action_string = "Periph was invalidated"; 1844 } else if (ccb->ccb_h.retry_count == 0) { 1845 error = EIO; 1846 action_string = "Retries exhausted"; 1847 } else if (sense_flags & SF_NO_RETRY) { 1848 error = EIO; 1849 action_string = "Retry was blocked"; 1850 } else { 1851 ccb->ccb_h.retry_count--; 1852 error = ERESTART; 1853 } 1854 break; 1855 } 1856 1857 if ((sense_flags & SF_PRINT_ALWAYS) || 1858 CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) 1859 action |= SSQ_PRINT_SENSE; 1860 else if (sense_flags & SF_NO_PRINT) 1861 action &= ~SSQ_PRINT_SENSE; 1862 if ((action & SSQ_PRINT_SENSE) != 0) 1863 cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); 1864 if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { 1865 if (error != ERESTART) { 1866 if (action_string == NULL) 1867 action_string = "Unretryable error"; 1868 xpt_print(ccb->ccb_h.path, "Error %d, %s\n", 1869 error, action_string); 1870 } else if (action_string != NULL) 1871 xpt_print(ccb->ccb_h.path, "%s\n", action_string); 1872 else 1873 xpt_print(ccb->ccb_h.path, "Retrying command\n"); 1874 } 1875 1876 if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) 1877 cam_periph_devctl_notify(orig_ccb); 1878 1879 if ((action & SSQ_LOST) != 0) { 1880 lun_id_t lun_id; 1881 1882 /* 1883 * For a selection timeout, we consider all of the LUNs on 1884 * the target to be gone. If the status is CAM_DEV_NOT_THERE, 1885 * then we only get rid of the device(s) specified by the 1886 * path in the original CCB. 1887 */ 1888 if (status == CAM_SEL_TIMEOUT) 1889 lun_id = CAM_LUN_WILDCARD; 1890 else 1891 lun_id = xpt_path_lun_id(ccb->ccb_h.path); 1892 1893 /* Should we do more if we can't create the path?? */ 1894 if (xpt_create_path(&newpath, periph, 1895 xpt_path_path_id(ccb->ccb_h.path), 1896 xpt_path_target_id(ccb->ccb_h.path), 1897 lun_id) == CAM_REQ_CMP) { 1898 1899 /* 1900 * Let peripheral drivers know that this 1901 * device has gone away. 1902 */ 1903 xpt_async(AC_LOST_DEVICE, newpath, NULL); 1904 xpt_free_path(newpath); 1905 } 1906 } 1907 1908 /* Broadcast UNIT ATTENTIONs to all periphs. */ 1909 if ((action & SSQ_UA) != 0) 1910 xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); 1911 1912 /* Rescan target on "Reported LUNs data has changed" */ 1913 if ((action & SSQ_RESCAN) != 0) { 1914 if (xpt_create_path(&newpath, NULL, 1915 xpt_path_path_id(ccb->ccb_h.path), 1916 xpt_path_target_id(ccb->ccb_h.path), 1917 CAM_LUN_WILDCARD) == CAM_REQ_CMP) { 1918 1919 scan_ccb = xpt_alloc_ccb_nowait(); 1920 if (scan_ccb != NULL) { 1921 scan_ccb->ccb_h.path = newpath; 1922 scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; 1923 scan_ccb->crcn.flags = 0; 1924 xpt_rescan(scan_ccb); 1925 } else { 1926 xpt_print(newpath, 1927 "Can't allocate CCB to rescan target\n"); 1928 xpt_free_path(newpath); 1929 } 1930 } 1931 } 1932 1933 /* Attempt a retry */ 1934 if (error == ERESTART || error == 0) { 1935 if (frozen != 0) 1936 ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 1937 if (error == ERESTART) 1938 xpt_action(ccb); 1939 if (frozen != 0) 1940 cam_release_devq(ccb->ccb_h.path, 1941 relsim_flags, 1942 openings, 1943 timeout, 1944 /*getcount_only*/0); 1945 } 1946 1947 return (error); 1948 } 1949 1950 #define CAM_PERIPH_DEVD_MSG_SIZE 256 1951 1952 static void 1953 cam_periph_devctl_notify(union ccb *ccb) 1954 { 1955 struct cam_periph *periph; 1956 struct ccb_getdev *cgd; 1957 struct sbuf sb; 1958 int serr, sk, asc, ascq; 1959 char *sbmsg, *type; 1960 1961 sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); 1962 if (sbmsg == NULL) 1963 return; 1964 1965 sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); 1966 1967 periph = xpt_path_periph(ccb->ccb_h.path); 1968 sbuf_printf(&sb, "device=%s%d ", periph->periph_name, 1969 periph->unit_number); 1970 1971 sbuf_printf(&sb, "serial=\""); 1972 if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { 1973 xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, 1974 CAM_PRIORITY_NORMAL); 1975 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 1976 xpt_action((union ccb *)cgd); 1977 1978 if (cgd->ccb_h.status == CAM_REQ_CMP) 1979 sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); 1980 xpt_free_ccb((union ccb *)cgd); 1981 } 1982 sbuf_printf(&sb, "\" "); 1983 sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); 1984 1985 switch (ccb->ccb_h.status & CAM_STATUS_MASK) { 1986 case CAM_CMD_TIMEOUT: 1987 sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); 1988 type = "timeout"; 1989 break; 1990 case CAM_SCSI_STATUS_ERROR: 1991 sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); 1992 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) 1993 sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", 1994 serr, sk, asc, ascq); 1995 type = "error"; 1996 break; 1997 case CAM_ATA_STATUS_ERROR: 1998 sbuf_printf(&sb, "RES=\""); 1999 ata_res_sbuf(&ccb->ataio.res, &sb); 2000 sbuf_printf(&sb, "\" "); 2001 type = "error"; 2002 break; 2003 default: 2004 type = "error"; 2005 break; 2006 } 2007 2008 if (ccb->ccb_h.func_code == XPT_SCSI_IO) { 2009 sbuf_printf(&sb, "CDB=\""); 2010 scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); 2011 sbuf_printf(&sb, "\" "); 2012 } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { 2013 sbuf_printf(&sb, "ACB=\""); 2014 ata_cmd_sbuf(&ccb->ataio.cmd, &sb); 2015 sbuf_printf(&sb, "\" "); 2016 } 2017 2018 if (sbuf_finish(&sb) == 0) 2019 devctl_notify("CAM", "periph", type, sbuf_data(&sb)); 2020 sbuf_delete(&sb); 2021 free(sbmsg, M_CAMPERIPH); 2022 } 2023 2024