xref: /freebsd/sys/cam/cam_periph.c (revision 6ab38b8e25f31df8140b99c09160d0207f912ef3)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/bio.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/buf.h>
42 #include <sys/proc.h>
43 #include <sys/devicestat.h>
44 #include <sys/bus.h>
45 #include <sys/sbuf.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_queue.h>
52 #include <cam/cam_xpt_periph.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_debug.h>
55 #include <cam/cam_sim.h>
56 
57 #include <cam/scsi/scsi_all.h>
58 #include <cam/scsi/scsi_message.h>
59 #include <cam/scsi/scsi_pass.h>
60 
61 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
62 					  u_int newunit, int wired,
63 					  path_id_t pathid, target_id_t target,
64 					  lun_id_t lun);
65 static	u_int		camperiphunit(struct periph_driver *p_drv,
66 				      path_id_t pathid, target_id_t target,
67 				      lun_id_t lun);
68 static	void		camperiphdone(struct cam_periph *periph,
69 					union ccb *done_ccb);
70 static  void		camperiphfree(struct cam_periph *periph);
71 static int		camperiphscsistatuserror(union ccb *ccb,
72 					        union ccb **orig_ccb,
73 						 cam_flags camflags,
74 						 u_int32_t sense_flags,
75 						 int *openings,
76 						 u_int32_t *relsim_flags,
77 						 u_int32_t *timeout,
78 						 u_int32_t  *action,
79 						 const char **action_string);
80 static	int		camperiphscsisenseerror(union ccb *ccb,
81 					        union ccb **orig_ccb,
82 					        cam_flags camflags,
83 					        u_int32_t sense_flags,
84 					        int *openings,
85 					        u_int32_t *relsim_flags,
86 					        u_int32_t *timeout,
87 					        u_int32_t *action,
88 					        const char **action_string);
89 
90 static int nperiph_drivers;
91 static int initialized = 0;
92 struct periph_driver **periph_drivers;
93 
94 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
95 
96 static int periph_selto_delay = 1000;
97 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
98 static int periph_noresrc_delay = 500;
99 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
100 static int periph_busy_delay = 500;
101 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
102 
103 
104 void
105 periphdriver_register(void *data)
106 {
107 	struct periph_driver *drv = (struct periph_driver *)data;
108 	struct periph_driver **newdrivers, **old;
109 	int ndrivers;
110 
111 	ndrivers = nperiph_drivers + 2;
112 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
113 			    M_WAITOK);
114 	if (periph_drivers)
115 		bcopy(periph_drivers, newdrivers,
116 		      sizeof(*newdrivers) * nperiph_drivers);
117 	newdrivers[nperiph_drivers] = drv;
118 	newdrivers[nperiph_drivers + 1] = NULL;
119 	old = periph_drivers;
120 	periph_drivers = newdrivers;
121 	if (old)
122 		free(old, M_CAMPERIPH);
123 	nperiph_drivers++;
124 	/* If driver marked as early or it is late now, initialize it. */
125 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
126 	    initialized > 1)
127 		(*drv->init)();
128 }
129 
130 void
131 periphdriver_init(int level)
132 {
133 	int	i, early;
134 
135 	initialized = max(initialized, level);
136 	for (i = 0; periph_drivers[i] != NULL; i++) {
137 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
138 		if (early == initialized)
139 			(*periph_drivers[i]->init)();
140 	}
141 }
142 
143 cam_status
144 cam_periph_alloc(periph_ctor_t *periph_ctor,
145 		 periph_oninv_t *periph_oninvalidate,
146 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
147 		 char *name, cam_periph_type type, struct cam_path *path,
148 		 ac_callback_t *ac_callback, ac_code code, void *arg)
149 {
150 	struct		periph_driver **p_drv;
151 	struct		cam_sim *sim;
152 	struct		cam_periph *periph;
153 	struct		cam_periph *cur_periph;
154 	path_id_t	path_id;
155 	target_id_t	target_id;
156 	lun_id_t	lun_id;
157 	cam_status	status;
158 	u_int		init_level;
159 
160 	init_level = 0;
161 	/*
162 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
163 	 * of our type assigned to this path, we are likely waiting for
164 	 * final close on an old, invalidated, peripheral.  If this is
165 	 * the case, queue up a deferred call to the peripheral's async
166 	 * handler.  If it looks like a mistaken re-allocation, complain.
167 	 */
168 	if ((periph = cam_periph_find(path, name)) != NULL) {
169 
170 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
171 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
172 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
173 			periph->deferred_callback = ac_callback;
174 			periph->deferred_ac = code;
175 			return (CAM_REQ_INPROG);
176 		} else {
177 			printf("cam_periph_alloc: attempt to re-allocate "
178 			       "valid device %s%d rejected flags %#x "
179 			       "refcount %d\n", periph->periph_name,
180 			       periph->unit_number, periph->flags,
181 			       periph->refcount);
182 		}
183 		return (CAM_REQ_INVALID);
184 	}
185 
186 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
187 					     M_NOWAIT|M_ZERO);
188 
189 	if (periph == NULL)
190 		return (CAM_RESRC_UNAVAIL);
191 
192 	init_level++;
193 
194 
195 	sim = xpt_path_sim(path);
196 	path_id = xpt_path_path_id(path);
197 	target_id = xpt_path_target_id(path);
198 	lun_id = xpt_path_lun_id(path);
199 	cam_init_pinfo(&periph->pinfo);
200 	periph->periph_start = periph_start;
201 	periph->periph_dtor = periph_dtor;
202 	periph->periph_oninval = periph_oninvalidate;
203 	periph->type = type;
204 	periph->periph_name = name;
205 	periph->immediate_priority = CAM_PRIORITY_NONE;
206 	periph->refcount = 1;		/* Dropped by invalidation. */
207 	periph->sim = sim;
208 	SLIST_INIT(&periph->ccb_list);
209 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
210 	if (status != CAM_REQ_CMP)
211 		goto failure;
212 	periph->path = path;
213 
214 	xpt_lock_buses();
215 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
216 		if (strcmp((*p_drv)->driver_name, name) == 0)
217 			break;
218 	}
219 	if (*p_drv == NULL) {
220 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
221 		xpt_unlock_buses();
222 		xpt_free_path(periph->path);
223 		free(periph, M_CAMPERIPH);
224 		return (CAM_REQ_INVALID);
225 	}
226 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
227 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
228 	while (cur_periph != NULL
229 	    && cur_periph->unit_number < periph->unit_number)
230 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
231 	if (cur_periph != NULL) {
232 		KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
233 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
234 	} else {
235 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
236 		(*p_drv)->generation++;
237 	}
238 	xpt_unlock_buses();
239 
240 	init_level++;
241 
242 	status = xpt_add_periph(periph);
243 	if (status != CAM_REQ_CMP)
244 		goto failure;
245 
246 	init_level++;
247 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
248 
249 	status = periph_ctor(periph, arg);
250 
251 	if (status == CAM_REQ_CMP)
252 		init_level++;
253 
254 failure:
255 	switch (init_level) {
256 	case 4:
257 		/* Initialized successfully */
258 		break;
259 	case 3:
260 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
261 		xpt_remove_periph(periph);
262 		/* FALLTHROUGH */
263 	case 2:
264 		xpt_lock_buses();
265 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
266 		xpt_unlock_buses();
267 		xpt_free_path(periph->path);
268 		/* FALLTHROUGH */
269 	case 1:
270 		free(periph, M_CAMPERIPH);
271 		/* FALLTHROUGH */
272 	case 0:
273 		/* No cleanup to perform. */
274 		break;
275 	default:
276 		panic("%s: Unknown init level", __func__);
277 	}
278 	return(status);
279 }
280 
281 /*
282  * Find a peripheral structure with the specified path, target, lun,
283  * and (optionally) type.  If the name is NULL, this function will return
284  * the first peripheral driver that matches the specified path.
285  */
286 struct cam_periph *
287 cam_periph_find(struct cam_path *path, char *name)
288 {
289 	struct periph_driver **p_drv;
290 	struct cam_periph *periph;
291 
292 	xpt_lock_buses();
293 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
294 
295 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
296 			continue;
297 
298 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
299 			if (xpt_path_comp(periph->path, path) == 0) {
300 				xpt_unlock_buses();
301 				mtx_assert(periph->sim->mtx, MA_OWNED);
302 				return(periph);
303 			}
304 		}
305 		if (name != NULL) {
306 			xpt_unlock_buses();
307 			return(NULL);
308 		}
309 	}
310 	xpt_unlock_buses();
311 	return(NULL);
312 }
313 
314 /*
315  * Find peripheral driver instances attached to the specified path.
316  */
317 int
318 cam_periph_list(struct cam_path *path, struct sbuf *sb)
319 {
320 	struct sbuf local_sb;
321 	struct periph_driver **p_drv;
322 	struct cam_periph *periph;
323 	int count;
324 	int sbuf_alloc_len;
325 
326 	sbuf_alloc_len = 16;
327 retry:
328 	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
329 	count = 0;
330 	xpt_lock_buses();
331 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
332 
333 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
334 			if (xpt_path_comp(periph->path, path) != 0)
335 				continue;
336 
337 			if (sbuf_len(&local_sb) != 0)
338 				sbuf_cat(&local_sb, ",");
339 
340 			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
341 				    periph->unit_number);
342 
343 			if (sbuf_error(&local_sb) == ENOMEM) {
344 				sbuf_alloc_len *= 2;
345 				xpt_unlock_buses();
346 				sbuf_delete(&local_sb);
347 				goto retry;
348 			}
349 			count++;
350 		}
351 	}
352 	xpt_unlock_buses();
353 	sbuf_finish(&local_sb);
354 	sbuf_cpy(sb, sbuf_data(&local_sb));
355 	sbuf_delete(&local_sb);
356 	return (count);
357 }
358 
359 cam_status
360 cam_periph_acquire(struct cam_periph *periph)
361 {
362 	cam_status status;
363 
364 	status = CAM_REQ_CMP_ERR;
365 	if (periph == NULL)
366 		return (status);
367 
368 	xpt_lock_buses();
369 	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
370 		periph->refcount++;
371 		status = CAM_REQ_CMP;
372 	}
373 	xpt_unlock_buses();
374 
375 	return (status);
376 }
377 
378 void
379 cam_periph_release_locked_buses(struct cam_periph *periph)
380 {
381 
382 	mtx_assert(periph->sim->mtx, MA_OWNED);
383 	KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
384 	if (--periph->refcount == 0)
385 		camperiphfree(periph);
386 }
387 
388 void
389 cam_periph_release_locked(struct cam_periph *periph)
390 {
391 
392 	if (periph == NULL)
393 		return;
394 
395 	xpt_lock_buses();
396 	cam_periph_release_locked_buses(periph);
397 	xpt_unlock_buses();
398 }
399 
400 void
401 cam_periph_release(struct cam_periph *periph)
402 {
403 	struct cam_sim *sim;
404 
405 	if (periph == NULL)
406 		return;
407 
408 	sim = periph->sim;
409 	mtx_assert(sim->mtx, MA_NOTOWNED);
410 	mtx_lock(sim->mtx);
411 	cam_periph_release_locked(periph);
412 	mtx_unlock(sim->mtx);
413 }
414 
415 int
416 cam_periph_hold(struct cam_periph *periph, int priority)
417 {
418 	int error;
419 
420 	/*
421 	 * Increment the reference count on the peripheral
422 	 * while we wait for our lock attempt to succeed
423 	 * to ensure the peripheral doesn't disappear out
424 	 * from user us while we sleep.
425 	 */
426 
427 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
428 		return (ENXIO);
429 
430 	mtx_assert(periph->sim->mtx, MA_OWNED);
431 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
432 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
433 		if ((error = mtx_sleep(periph, periph->sim->mtx, priority,
434 		    "caplck", 0)) != 0) {
435 			cam_periph_release_locked(periph);
436 			return (error);
437 		}
438 		if (periph->flags & CAM_PERIPH_INVALID) {
439 			cam_periph_release_locked(periph);
440 			return (ENXIO);
441 		}
442 	}
443 
444 	periph->flags |= CAM_PERIPH_LOCKED;
445 	return (0);
446 }
447 
448 void
449 cam_periph_unhold(struct cam_periph *periph)
450 {
451 
452 	mtx_assert(periph->sim->mtx, MA_OWNED);
453 
454 	periph->flags &= ~CAM_PERIPH_LOCKED;
455 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
456 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
457 		wakeup(periph);
458 	}
459 
460 	cam_periph_release_locked(periph);
461 }
462 
463 /*
464  * Look for the next unit number that is not currently in use for this
465  * peripheral type starting at "newunit".  Also exclude unit numbers that
466  * are reserved by for future "hardwiring" unless we already know that this
467  * is a potential wired device.  Only assume that the device is "wired" the
468  * first time through the loop since after that we'll be looking at unit
469  * numbers that did not match a wiring entry.
470  */
471 static u_int
472 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
473 		  path_id_t pathid, target_id_t target, lun_id_t lun)
474 {
475 	struct	cam_periph *periph;
476 	char	*periph_name;
477 	int	i, val, dunit, r;
478 	const char *dname, *strval;
479 
480 	periph_name = p_drv->driver_name;
481 	for (;;newunit++) {
482 
483 		for (periph = TAILQ_FIRST(&p_drv->units);
484 		     periph != NULL && periph->unit_number != newunit;
485 		     periph = TAILQ_NEXT(periph, unit_links))
486 			;
487 
488 		if (periph != NULL && periph->unit_number == newunit) {
489 			if (wired != 0) {
490 				xpt_print(periph->path, "Duplicate Wired "
491 				    "Device entry!\n");
492 				xpt_print(periph->path, "Second device (%s "
493 				    "device at scbus%d target %d lun %d) will "
494 				    "not be wired\n", periph_name, pathid,
495 				    target, lun);
496 				wired = 0;
497 			}
498 			continue;
499 		}
500 		if (wired)
501 			break;
502 
503 		/*
504 		 * Don't match entries like "da 4" as a wired down
505 		 * device, but do match entries like "da 4 target 5"
506 		 * or even "da 4 scbus 1".
507 		 */
508 		i = 0;
509 		dname = periph_name;
510 		for (;;) {
511 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
512 			if (r != 0)
513 				break;
514 			/* if no "target" and no specific scbus, skip */
515 			if (resource_int_value(dname, dunit, "target", &val) &&
516 			    (resource_string_value(dname, dunit, "at",&strval)||
517 			     strcmp(strval, "scbus") == 0))
518 				continue;
519 			if (newunit == dunit)
520 				break;
521 		}
522 		if (r != 0)
523 			break;
524 	}
525 	return (newunit);
526 }
527 
528 static u_int
529 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
530 	      target_id_t target, lun_id_t lun)
531 {
532 	u_int	unit;
533 	int	wired, i, val, dunit;
534 	const char *dname, *strval;
535 	char	pathbuf[32], *periph_name;
536 
537 	periph_name = p_drv->driver_name;
538 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
539 	unit = 0;
540 	i = 0;
541 	dname = periph_name;
542 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
543 	     wired = 0) {
544 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
545 			if (strcmp(strval, pathbuf) != 0)
546 				continue;
547 			wired++;
548 		}
549 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
550 			if (val != target)
551 				continue;
552 			wired++;
553 		}
554 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
555 			if (val != lun)
556 				continue;
557 			wired++;
558 		}
559 		if (wired != 0) {
560 			unit = dunit;
561 			break;
562 		}
563 	}
564 
565 	/*
566 	 * Either start from 0 looking for the next unit or from
567 	 * the unit number given in the resource config.  This way,
568 	 * if we have wildcard matches, we don't return the same
569 	 * unit number twice.
570 	 */
571 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
572 
573 	return (unit);
574 }
575 
576 void
577 cam_periph_invalidate(struct cam_periph *periph)
578 {
579 
580 	mtx_assert(periph->sim->mtx, MA_OWNED);
581 	/*
582 	 * We only call this routine the first time a peripheral is
583 	 * invalidated.
584 	 */
585 	if ((periph->flags & CAM_PERIPH_INVALID) != 0)
586 		return;
587 
588 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
589 	if (periph->flags & CAM_PERIPH_ANNOUNCED)
590 		xpt_denounce_periph(periph);
591 	periph->flags |= CAM_PERIPH_INVALID;
592 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
593 	if (periph->periph_oninval != NULL)
594 		periph->periph_oninval(periph);
595 	cam_periph_release_locked(periph);
596 }
597 
598 static void
599 camperiphfree(struct cam_periph *periph)
600 {
601 	struct periph_driver **p_drv;
602 
603 	mtx_assert(periph->sim->mtx, MA_OWNED);
604 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
605 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
606 			break;
607 	}
608 	if (*p_drv == NULL) {
609 		printf("camperiphfree: attempt to free non-existant periph\n");
610 		return;
611 	}
612 
613 	/*
614 	 * We need to set this flag before dropping the topology lock, to
615 	 * let anyone who is traversing the list that this peripheral is
616 	 * about to be freed, and there will be no more reference count
617 	 * checks.
618 	 */
619 	periph->flags |= CAM_PERIPH_FREE;
620 
621 	/*
622 	 * The peripheral destructor semantics dictate calling with only the
623 	 * SIM mutex held.  Since it might sleep, it should not be called
624 	 * with the topology lock held.
625 	 */
626 	xpt_unlock_buses();
627 
628 	/*
629 	 * We need to call the peripheral destructor prior to removing the
630 	 * peripheral from the list.  Otherwise, we risk running into a
631 	 * scenario where the peripheral unit number may get reused
632 	 * (because it has been removed from the list), but some resources
633 	 * used by the peripheral are still hanging around.  In particular,
634 	 * the devfs nodes used by some peripherals like the pass(4) driver
635 	 * aren't fully cleaned up until the destructor is run.  If the
636 	 * unit number is reused before the devfs instance is fully gone,
637 	 * devfs will panic.
638 	 */
639 	if (periph->periph_dtor != NULL)
640 		periph->periph_dtor(periph);
641 
642 	/*
643 	 * The peripheral list is protected by the topology lock.
644 	 */
645 	xpt_lock_buses();
646 
647 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
648 	(*p_drv)->generation++;
649 
650 	xpt_remove_periph(periph);
651 
652 	xpt_unlock_buses();
653 	if (periph->flags & CAM_PERIPH_ANNOUNCED) {
654 		xpt_print(periph->path, "Periph destroyed\n");
655 	} else
656 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
657 
658 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
659 		union ccb ccb;
660 		void *arg;
661 
662 		switch (periph->deferred_ac) {
663 		case AC_FOUND_DEVICE:
664 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
665 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
666 			xpt_action(&ccb);
667 			arg = &ccb;
668 			break;
669 		case AC_PATH_REGISTERED:
670 			ccb.ccb_h.func_code = XPT_PATH_INQ;
671 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
672 			xpt_action(&ccb);
673 			arg = &ccb;
674 			break;
675 		default:
676 			arg = NULL;
677 			break;
678 		}
679 		periph->deferred_callback(NULL, periph->deferred_ac,
680 					  periph->path, arg);
681 	}
682 	xpt_free_path(periph->path);
683 	free(periph, M_CAMPERIPH);
684 	xpt_lock_buses();
685 }
686 
687 /*
688  * Map user virtual pointers into kernel virtual address space, so we can
689  * access the memory.  This is now a generic function that centralizes most
690  * of the sanity checks on the data flags, if any.
691  * This also only works for up to MAXPHYS memory.  Since we use
692  * buffers to map stuff in and out, we're limited to the buffer size.
693  */
694 int
695 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
696 {
697 	int numbufs, i, j;
698 	int flags[CAM_PERIPH_MAXMAPS];
699 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
700 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
701 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
702 	/* Some controllers may not be able to handle more data. */
703 	size_t maxmap = DFLTPHYS;
704 
705 	switch(ccb->ccb_h.func_code) {
706 	case XPT_DEV_MATCH:
707 		if (ccb->cdm.match_buf_len == 0) {
708 			printf("cam_periph_mapmem: invalid match buffer "
709 			       "length 0\n");
710 			return(EINVAL);
711 		}
712 		if (ccb->cdm.pattern_buf_len > 0) {
713 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
714 			lengths[0] = ccb->cdm.pattern_buf_len;
715 			dirs[0] = CAM_DIR_OUT;
716 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
717 			lengths[1] = ccb->cdm.match_buf_len;
718 			dirs[1] = CAM_DIR_IN;
719 			numbufs = 2;
720 		} else {
721 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
722 			lengths[0] = ccb->cdm.match_buf_len;
723 			dirs[0] = CAM_DIR_IN;
724 			numbufs = 1;
725 		}
726 		/*
727 		 * This request will not go to the hardware, no reason
728 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
729 		 */
730 		maxmap = MAXPHYS;
731 		break;
732 	case XPT_SCSI_IO:
733 	case XPT_CONT_TARGET_IO:
734 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
735 			return(0);
736 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
737 			return (EINVAL);
738 		data_ptrs[0] = &ccb->csio.data_ptr;
739 		lengths[0] = ccb->csio.dxfer_len;
740 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
741 		numbufs = 1;
742 		break;
743 	case XPT_ATA_IO:
744 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
745 			return(0);
746 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
747 			return (EINVAL);
748 		data_ptrs[0] = &ccb->ataio.data_ptr;
749 		lengths[0] = ccb->ataio.dxfer_len;
750 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
751 		numbufs = 1;
752 		break;
753 	case XPT_SMP_IO:
754 		data_ptrs[0] = &ccb->smpio.smp_request;
755 		lengths[0] = ccb->smpio.smp_request_len;
756 		dirs[0] = CAM_DIR_OUT;
757 		data_ptrs[1] = &ccb->smpio.smp_response;
758 		lengths[1] = ccb->smpio.smp_response_len;
759 		dirs[1] = CAM_DIR_IN;
760 		numbufs = 2;
761 		break;
762 	case XPT_DEV_ADVINFO:
763 		if (ccb->cdai.bufsiz == 0)
764 			return (0);
765 
766 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
767 		lengths[0] = ccb->cdai.bufsiz;
768 		dirs[0] = CAM_DIR_IN;
769 		numbufs = 1;
770 
771 		/*
772 		 * This request will not go to the hardware, no reason
773 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
774 		 */
775 		maxmap = MAXPHYS;
776 		break;
777 	default:
778 		return(EINVAL);
779 		break; /* NOTREACHED */
780 	}
781 
782 	/*
783 	 * Check the transfer length and permissions first, so we don't
784 	 * have to unmap any previously mapped buffers.
785 	 */
786 	for (i = 0; i < numbufs; i++) {
787 
788 		flags[i] = 0;
789 
790 		/*
791 		 * The userland data pointer passed in may not be page
792 		 * aligned.  vmapbuf() truncates the address to a page
793 		 * boundary, so if the address isn't page aligned, we'll
794 		 * need enough space for the given transfer length, plus
795 		 * whatever extra space is necessary to make it to the page
796 		 * boundary.
797 		 */
798 		if ((lengths[i] +
799 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
800 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
801 			       "which is greater than %lu\n",
802 			       (long)(lengths[i] +
803 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
804 			       (u_long)maxmap);
805 			return(E2BIG);
806 		}
807 
808 		if (dirs[i] & CAM_DIR_OUT) {
809 			flags[i] = BIO_WRITE;
810 		}
811 
812 		if (dirs[i] & CAM_DIR_IN) {
813 			flags[i] = BIO_READ;
814 		}
815 
816 	}
817 
818 	/*
819 	 * This keeps the the kernel stack of current thread from getting
820 	 * swapped.  In low-memory situations where the kernel stack might
821 	 * otherwise get swapped out, this holds it and allows the thread
822 	 * to make progress and release the kernel mapped pages sooner.
823 	 *
824 	 * XXX KDM should I use P_NOSWAP instead?
825 	 */
826 	PHOLD(curproc);
827 
828 	for (i = 0; i < numbufs; i++) {
829 		/*
830 		 * Get the buffer.
831 		 */
832 		mapinfo->bp[i] = getpbuf(NULL);
833 
834 		/* save the buffer's data address */
835 		mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
836 
837 		/* put our pointer in the data slot */
838 		mapinfo->bp[i]->b_data = *data_ptrs[i];
839 
840 		/* set the transfer length, we know it's < MAXPHYS */
841 		mapinfo->bp[i]->b_bufsize = lengths[i];
842 
843 		/* set the direction */
844 		mapinfo->bp[i]->b_iocmd = flags[i];
845 
846 		/*
847 		 * Map the buffer into kernel memory.
848 		 *
849 		 * Note that useracc() alone is not a  sufficient test.
850 		 * vmapbuf() can still fail due to a smaller file mapped
851 		 * into a larger area of VM, or if userland races against
852 		 * vmapbuf() after the useracc() check.
853 		 */
854 		if (vmapbuf(mapinfo->bp[i], 1) < 0) {
855 			for (j = 0; j < i; ++j) {
856 				*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
857 				vunmapbuf(mapinfo->bp[j]);
858 				relpbuf(mapinfo->bp[j], NULL);
859 			}
860 			relpbuf(mapinfo->bp[i], NULL);
861 			PRELE(curproc);
862 			return(EACCES);
863 		}
864 
865 		/* set our pointer to the new mapped area */
866 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
867 
868 		mapinfo->num_bufs_used++;
869 	}
870 
871 	/*
872 	 * Now that we've gotten this far, change ownership to the kernel
873 	 * of the buffers so that we don't run afoul of returning to user
874 	 * space with locks (on the buffer) held.
875 	 */
876 	for (i = 0; i < numbufs; i++) {
877 		BUF_KERNPROC(mapinfo->bp[i]);
878 	}
879 
880 
881 	return(0);
882 }
883 
884 /*
885  * Unmap memory segments mapped into kernel virtual address space by
886  * cam_periph_mapmem().
887  */
888 void
889 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
890 {
891 	int numbufs, i;
892 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
893 
894 	if (mapinfo->num_bufs_used <= 0) {
895 		/* nothing to free and the process wasn't held. */
896 		return;
897 	}
898 
899 	switch (ccb->ccb_h.func_code) {
900 	case XPT_DEV_MATCH:
901 		numbufs = min(mapinfo->num_bufs_used, 2);
902 
903 		if (numbufs == 1) {
904 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
905 		} else {
906 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
907 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
908 		}
909 		break;
910 	case XPT_SCSI_IO:
911 	case XPT_CONT_TARGET_IO:
912 		data_ptrs[0] = &ccb->csio.data_ptr;
913 		numbufs = min(mapinfo->num_bufs_used, 1);
914 		break;
915 	case XPT_ATA_IO:
916 		data_ptrs[0] = &ccb->ataio.data_ptr;
917 		numbufs = min(mapinfo->num_bufs_used, 1);
918 		break;
919 	case XPT_SMP_IO:
920 		numbufs = min(mapinfo->num_bufs_used, 2);
921 		data_ptrs[0] = &ccb->smpio.smp_request;
922 		data_ptrs[1] = &ccb->smpio.smp_response;
923 		break;
924 	case XPT_DEV_ADVINFO:
925 		numbufs = min(mapinfo->num_bufs_used, 1);
926 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
927 		break;
928 	default:
929 		/* allow ourselves to be swapped once again */
930 		PRELE(curproc);
931 		return;
932 		break; /* NOTREACHED */
933 	}
934 
935 	for (i = 0; i < numbufs; i++) {
936 		/* Set the user's pointer back to the original value */
937 		*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
938 
939 		/* unmap the buffer */
940 		vunmapbuf(mapinfo->bp[i]);
941 
942 		/* release the buffer */
943 		relpbuf(mapinfo->bp[i], NULL);
944 	}
945 
946 	/* allow ourselves to be swapped once again */
947 	PRELE(curproc);
948 }
949 
950 union ccb *
951 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
952 {
953 	struct ccb_hdr *ccb_h;
954 
955 	mtx_assert(periph->sim->mtx, MA_OWNED);
956 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
957 
958 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
959 		if (periph->immediate_priority > priority)
960 			periph->immediate_priority = priority;
961 		xpt_schedule(periph, priority);
962 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
963 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
964 			break;
965 		mtx_assert(periph->sim->mtx, MA_OWNED);
966 		mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb",
967 		    0);
968 	}
969 
970 	ccb_h = SLIST_FIRST(&periph->ccb_list);
971 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
972 	return ((union ccb *)ccb_h);
973 }
974 
975 void
976 cam_periph_ccbwait(union ccb *ccb)
977 {
978 	struct cam_sim *sim;
979 
980 	sim = xpt_path_sim(ccb->ccb_h.path);
981 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
982 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
983 		mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0);
984 }
985 
986 int
987 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
988 		 int (*error_routine)(union ccb *ccb,
989 				      cam_flags camflags,
990 				      u_int32_t sense_flags))
991 {
992 	union ccb 	     *ccb;
993 	int 		     error;
994 	int		     found;
995 
996 	error = found = 0;
997 
998 	switch(cmd){
999 	case CAMGETPASSTHRU:
1000 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
1001 		xpt_setup_ccb(&ccb->ccb_h,
1002 			      ccb->ccb_h.path,
1003 			      CAM_PRIORITY_NORMAL);
1004 		ccb->ccb_h.func_code = XPT_GDEVLIST;
1005 
1006 		/*
1007 		 * Basically, the point of this is that we go through
1008 		 * getting the list of devices, until we find a passthrough
1009 		 * device.  In the current version of the CAM code, the
1010 		 * only way to determine what type of device we're dealing
1011 		 * with is by its name.
1012 		 */
1013 		while (found == 0) {
1014 			ccb->cgdl.index = 0;
1015 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
1016 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
1017 
1018 				/* we want the next device in the list */
1019 				xpt_action(ccb);
1020 				if (strncmp(ccb->cgdl.periph_name,
1021 				    "pass", 4) == 0){
1022 					found = 1;
1023 					break;
1024 				}
1025 			}
1026 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
1027 			    (found == 0)) {
1028 				ccb->cgdl.periph_name[0] = '\0';
1029 				ccb->cgdl.unit_number = 0;
1030 				break;
1031 			}
1032 		}
1033 
1034 		/* copy the result back out */
1035 		bcopy(ccb, addr, sizeof(union ccb));
1036 
1037 		/* and release the ccb */
1038 		xpt_release_ccb(ccb);
1039 
1040 		break;
1041 	default:
1042 		error = ENOTTY;
1043 		break;
1044 	}
1045 	return(error);
1046 }
1047 
1048 int
1049 cam_periph_runccb(union ccb *ccb,
1050 		  int (*error_routine)(union ccb *ccb,
1051 				       cam_flags camflags,
1052 				       u_int32_t sense_flags),
1053 		  cam_flags camflags, u_int32_t sense_flags,
1054 		  struct devstat *ds)
1055 {
1056 	struct cam_sim *sim;
1057 	int error;
1058 
1059 	error = 0;
1060 	sim = xpt_path_sim(ccb->ccb_h.path);
1061 	mtx_assert(sim->mtx, MA_OWNED);
1062 
1063 	/*
1064 	 * If the user has supplied a stats structure, and if we understand
1065 	 * this particular type of ccb, record the transaction start.
1066 	 */
1067 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1068 	    ccb->ccb_h.func_code == XPT_ATA_IO))
1069 		devstat_start_transaction(ds, NULL);
1070 
1071 	xpt_action(ccb);
1072 
1073 	do {
1074 		cam_periph_ccbwait(ccb);
1075 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1076 			error = 0;
1077 		else if (error_routine != NULL)
1078 			error = (*error_routine)(ccb, camflags, sense_flags);
1079 		else
1080 			error = 0;
1081 
1082 	} while (error == ERESTART);
1083 
1084 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1085 		cam_release_devq(ccb->ccb_h.path,
1086 				 /* relsim_flags */0,
1087 				 /* openings */0,
1088 				 /* timeout */0,
1089 				 /* getcount_only */ FALSE);
1090 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1091 	}
1092 
1093 	if (ds != NULL) {
1094 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1095 			devstat_end_transaction(ds,
1096 					ccb->csio.dxfer_len,
1097 					ccb->csio.tag_action & 0x3,
1098 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1099 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1100 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1101 					DEVSTAT_WRITE :
1102 					DEVSTAT_READ, NULL, NULL);
1103 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1104 			devstat_end_transaction(ds,
1105 					ccb->ataio.dxfer_len,
1106 					ccb->ataio.tag_action & 0x3,
1107 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1108 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1109 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1110 					DEVSTAT_WRITE :
1111 					DEVSTAT_READ, NULL, NULL);
1112 		}
1113 	}
1114 
1115 	return(error);
1116 }
1117 
1118 void
1119 cam_freeze_devq(struct cam_path *path)
1120 {
1121 	struct ccb_hdr ccb_h;
1122 
1123 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
1124 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
1125 	ccb_h.func_code = XPT_NOOP;
1126 	ccb_h.flags = CAM_DEV_QFREEZE;
1127 	xpt_action((union ccb *)&ccb_h);
1128 }
1129 
1130 u_int32_t
1131 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1132 		 u_int32_t openings, u_int32_t arg,
1133 		 int getcount_only)
1134 {
1135 	struct ccb_relsim crs;
1136 
1137 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
1138 	    relsim_flags, openings, arg, getcount_only));
1139 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1140 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1141 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1142 	crs.release_flags = relsim_flags;
1143 	crs.openings = openings;
1144 	crs.release_timeout = arg;
1145 	xpt_action((union ccb *)&crs);
1146 	return (crs.qfrozen_cnt);
1147 }
1148 
1149 #define saved_ccb_ptr ppriv_ptr0
1150 static void
1151 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1152 {
1153 	union ccb      *saved_ccb;
1154 	cam_status	status;
1155 	struct scsi_start_stop_unit *scsi_cmd;
1156 	int    error_code, sense_key, asc, ascq;
1157 
1158 	scsi_cmd = (struct scsi_start_stop_unit *)
1159 	    &done_ccb->csio.cdb_io.cdb_bytes;
1160 	status = done_ccb->ccb_h.status;
1161 
1162 	if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1163 		if (scsi_extract_sense_ccb(done_ccb,
1164 		    &error_code, &sense_key, &asc, &ascq)) {
1165 			/*
1166 			 * If the error is "invalid field in CDB",
1167 			 * and the load/eject flag is set, turn the
1168 			 * flag off and try again.  This is just in
1169 			 * case the drive in question barfs on the
1170 			 * load eject flag.  The CAM code should set
1171 			 * the load/eject flag by default for
1172 			 * removable media.
1173 			 */
1174 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1175 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1176 			     (asc == 0x24) && (ascq == 0x00)) {
1177 				scsi_cmd->how &= ~SSS_LOEJ;
1178 				if (status & CAM_DEV_QFRZN) {
1179 					cam_release_devq(done_ccb->ccb_h.path,
1180 					    0, 0, 0, 0);
1181 					done_ccb->ccb_h.status &=
1182 					    ~CAM_DEV_QFRZN;
1183 				}
1184 				xpt_action(done_ccb);
1185 				goto out;
1186 			}
1187 		}
1188 		if (cam_periph_error(done_ccb,
1189 		    0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART)
1190 			goto out;
1191 		if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
1192 			cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1193 			done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1194 		}
1195 	} else {
1196 		/*
1197 		 * If we have successfully taken a device from the not
1198 		 * ready to ready state, re-scan the device and re-get
1199 		 * the inquiry information.  Many devices (mostly disks)
1200 		 * don't properly report their inquiry information unless
1201 		 * they are spun up.
1202 		 */
1203 		if (scsi_cmd->opcode == START_STOP_UNIT)
1204 			xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
1205 	}
1206 
1207 	/*
1208 	 * Perform the final retry with the original CCB so that final
1209 	 * error processing is performed by the owner of the CCB.
1210 	 */
1211 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1212 	bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
1213 	xpt_free_ccb(saved_ccb);
1214 	if (done_ccb->ccb_h.cbfcnp != camperiphdone)
1215 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1216 	xpt_action(done_ccb);
1217 
1218 out:
1219 	/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
1220 	cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1221 }
1222 
1223 /*
1224  * Generic Async Event handler.  Peripheral drivers usually
1225  * filter out the events that require personal attention,
1226  * and leave the rest to this function.
1227  */
1228 void
1229 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1230 		 struct cam_path *path, void *arg)
1231 {
1232 	switch (code) {
1233 	case AC_LOST_DEVICE:
1234 		cam_periph_invalidate(periph);
1235 		break;
1236 	default:
1237 		break;
1238 	}
1239 }
1240 
1241 void
1242 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1243 {
1244 	struct ccb_getdevstats cgds;
1245 
1246 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1247 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1248 	xpt_action((union ccb *)&cgds);
1249 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1250 }
1251 
1252 void
1253 cam_periph_freeze_after_event(struct cam_periph *periph,
1254 			      struct timeval* event_time, u_int duration_ms)
1255 {
1256 	struct timeval delta;
1257 	struct timeval duration_tv;
1258 
1259 	if (!timevalisset(event_time))
1260 		return;
1261 
1262 	microtime(&delta);
1263 	timevalsub(&delta, event_time);
1264 	duration_tv.tv_sec = duration_ms / 1000;
1265 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1266 	if (timevalcmp(&delta, &duration_tv, <)) {
1267 		timevalsub(&duration_tv, &delta);
1268 
1269 		duration_ms = duration_tv.tv_sec * 1000;
1270 		duration_ms += duration_tv.tv_usec / 1000;
1271 		cam_freeze_devq(periph->path);
1272 		cam_release_devq(periph->path,
1273 				RELSIM_RELEASE_AFTER_TIMEOUT,
1274 				/*reduction*/0,
1275 				/*timeout*/duration_ms,
1276 				/*getcount_only*/0);
1277 	}
1278 
1279 }
1280 
1281 static int
1282 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
1283     cam_flags camflags, u_int32_t sense_flags,
1284     int *openings, u_int32_t *relsim_flags,
1285     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1286 {
1287 	int error;
1288 
1289 	switch (ccb->csio.scsi_status) {
1290 	case SCSI_STATUS_OK:
1291 	case SCSI_STATUS_COND_MET:
1292 	case SCSI_STATUS_INTERMED:
1293 	case SCSI_STATUS_INTERMED_COND_MET:
1294 		error = 0;
1295 		break;
1296 	case SCSI_STATUS_CMD_TERMINATED:
1297 	case SCSI_STATUS_CHECK_COND:
1298 		error = camperiphscsisenseerror(ccb, orig_ccb,
1299 					        camflags,
1300 					        sense_flags,
1301 					        openings,
1302 					        relsim_flags,
1303 					        timeout,
1304 					        action,
1305 					        action_string);
1306 		break;
1307 	case SCSI_STATUS_QUEUE_FULL:
1308 	{
1309 		/* no decrement */
1310 		struct ccb_getdevstats cgds;
1311 
1312 		/*
1313 		 * First off, find out what the current
1314 		 * transaction counts are.
1315 		 */
1316 		xpt_setup_ccb(&cgds.ccb_h,
1317 			      ccb->ccb_h.path,
1318 			      CAM_PRIORITY_NORMAL);
1319 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1320 		xpt_action((union ccb *)&cgds);
1321 
1322 		/*
1323 		 * If we were the only transaction active, treat
1324 		 * the QUEUE FULL as if it were a BUSY condition.
1325 		 */
1326 		if (cgds.dev_active != 0) {
1327 			int total_openings;
1328 
1329 			/*
1330 		 	 * Reduce the number of openings to
1331 			 * be 1 less than the amount it took
1332 			 * to get a queue full bounded by the
1333 			 * minimum allowed tag count for this
1334 			 * device.
1335 		 	 */
1336 			total_openings = cgds.dev_active + cgds.dev_openings;
1337 			*openings = cgds.dev_active;
1338 			if (*openings < cgds.mintags)
1339 				*openings = cgds.mintags;
1340 			if (*openings < total_openings)
1341 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1342 			else {
1343 				/*
1344 				 * Some devices report queue full for
1345 				 * temporary resource shortages.  For
1346 				 * this reason, we allow a minimum
1347 				 * tag count to be entered via a
1348 				 * quirk entry to prevent the queue
1349 				 * count on these devices from falling
1350 				 * to a pessimisticly low value.  We
1351 				 * still wait for the next successful
1352 				 * completion, however, before queueing
1353 				 * more transactions to the device.
1354 				 */
1355 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1356 			}
1357 			*timeout = 0;
1358 			error = ERESTART;
1359 			*action &= ~SSQ_PRINT_SENSE;
1360 			break;
1361 		}
1362 		/* FALLTHROUGH */
1363 	}
1364 	case SCSI_STATUS_BUSY:
1365 		/*
1366 		 * Restart the queue after either another
1367 		 * command completes or a 1 second timeout.
1368 		 */
1369 	 	if (ccb->ccb_h.retry_count > 0) {
1370 	 		ccb->ccb_h.retry_count--;
1371 			error = ERESTART;
1372 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1373 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1374 			*timeout = 1000;
1375 		} else {
1376 			error = EIO;
1377 		}
1378 		break;
1379 	case SCSI_STATUS_RESERV_CONFLICT:
1380 	default:
1381 		error = EIO;
1382 		break;
1383 	}
1384 	return (error);
1385 }
1386 
1387 static int
1388 camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
1389     cam_flags camflags, u_int32_t sense_flags,
1390     int *openings, u_int32_t *relsim_flags,
1391     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1392 {
1393 	struct cam_periph *periph;
1394 	union ccb *orig_ccb = ccb;
1395 	int error, recoveryccb;
1396 
1397 	periph = xpt_path_periph(ccb->ccb_h.path);
1398 	recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
1399 	if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
1400 		/*
1401 		 * If error recovery is already in progress, don't attempt
1402 		 * to process this error, but requeue it unconditionally
1403 		 * and attempt to process it once error recovery has
1404 		 * completed.  This failed command is probably related to
1405 		 * the error that caused the currently active error recovery
1406 		 * action so our  current recovery efforts should also
1407 		 * address this command.  Be aware that the error recovery
1408 		 * code assumes that only one recovery action is in progress
1409 		 * on a particular peripheral instance at any given time
1410 		 * (e.g. only one saved CCB for error recovery) so it is
1411 		 * imperitive that we don't violate this assumption.
1412 		 */
1413 		error = ERESTART;
1414 		*action &= ~SSQ_PRINT_SENSE;
1415 	} else {
1416 		scsi_sense_action err_action;
1417 		struct ccb_getdev cgd;
1418 
1419 		/*
1420 		 * Grab the inquiry data for this device.
1421 		 */
1422 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1423 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1424 		xpt_action((union ccb *)&cgd);
1425 
1426 		err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
1427 		    sense_flags);
1428 		error = err_action & SS_ERRMASK;
1429 
1430 		/*
1431 		 * Do not autostart sequential access devices
1432 		 * to avoid unexpected tape loading.
1433 		 */
1434 		if ((err_action & SS_MASK) == SS_START &&
1435 		    SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1436 			*action_string = "Will not autostart a "
1437 			    "sequential access device";
1438 			goto sense_error_done;
1439 		}
1440 
1441 		/*
1442 		 * Avoid recovery recursion if recovery action is the same.
1443 		 */
1444 		if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
1445 			if (((err_action & SS_MASK) == SS_START &&
1446 			     ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
1447 			    ((err_action & SS_MASK) == SS_TUR &&
1448 			     (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
1449 				err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1450 				*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1451 				*timeout = 500;
1452 			}
1453 		}
1454 
1455 		/*
1456 		 * If the recovery action will consume a retry,
1457 		 * make sure we actually have retries available.
1458 		 */
1459 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1460 		 	if (ccb->ccb_h.retry_count > 0 &&
1461 			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1462 		 		ccb->ccb_h.retry_count--;
1463 			else {
1464 				*action_string = "Retries exhausted";
1465 				goto sense_error_done;
1466 			}
1467 		}
1468 
1469 		if ((err_action & SS_MASK) >= SS_START) {
1470 			/*
1471 			 * Do common portions of commands that
1472 			 * use recovery CCBs.
1473 			 */
1474 			orig_ccb = xpt_alloc_ccb_nowait();
1475 			if (orig_ccb == NULL) {
1476 				*action_string = "Can't allocate recovery CCB";
1477 				goto sense_error_done;
1478 			}
1479 			/*
1480 			 * Clear freeze flag for original request here, as
1481 			 * this freeze will be dropped as part of ERESTART.
1482 			 */
1483 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1484 			bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
1485 		}
1486 
1487 		switch (err_action & SS_MASK) {
1488 		case SS_NOP:
1489 			*action_string = "No recovery action needed";
1490 			error = 0;
1491 			break;
1492 		case SS_RETRY:
1493 			*action_string = "Retrying command (per sense data)";
1494 			error = ERESTART;
1495 			break;
1496 		case SS_FAIL:
1497 			*action_string = "Unretryable error";
1498 			break;
1499 		case SS_START:
1500 		{
1501 			int le;
1502 
1503 			/*
1504 			 * Send a start unit command to the device, and
1505 			 * then retry the command.
1506 			 */
1507 			*action_string = "Attempting to start unit";
1508 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1509 
1510 			/*
1511 			 * Check for removable media and set
1512 			 * load/eject flag appropriately.
1513 			 */
1514 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1515 				le = TRUE;
1516 			else
1517 				le = FALSE;
1518 
1519 			scsi_start_stop(&ccb->csio,
1520 					/*retries*/1,
1521 					camperiphdone,
1522 					MSG_SIMPLE_Q_TAG,
1523 					/*start*/TRUE,
1524 					/*load/eject*/le,
1525 					/*immediate*/FALSE,
1526 					SSD_FULL_SIZE,
1527 					/*timeout*/50000);
1528 			break;
1529 		}
1530 		case SS_TUR:
1531 		{
1532 			/*
1533 			 * Send a Test Unit Ready to the device.
1534 			 * If the 'many' flag is set, we send 120
1535 			 * test unit ready commands, one every half
1536 			 * second.  Otherwise, we just send one TUR.
1537 			 * We only want to do this if the retry
1538 			 * count has not been exhausted.
1539 			 */
1540 			int retries;
1541 
1542 			if ((err_action & SSQ_MANY) != 0) {
1543 				*action_string = "Polling device for readiness";
1544 				retries = 120;
1545 			} else {
1546 				*action_string = "Testing device for readiness";
1547 				retries = 1;
1548 			}
1549 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1550 			scsi_test_unit_ready(&ccb->csio,
1551 					     retries,
1552 					     camperiphdone,
1553 					     MSG_SIMPLE_Q_TAG,
1554 					     SSD_FULL_SIZE,
1555 					     /*timeout*/5000);
1556 
1557 			/*
1558 			 * Accomplish our 500ms delay by deferring
1559 			 * the release of our device queue appropriately.
1560 			 */
1561 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1562 			*timeout = 500;
1563 			break;
1564 		}
1565 		default:
1566 			panic("Unhandled error action %x", err_action);
1567 		}
1568 
1569 		if ((err_action & SS_MASK) >= SS_START) {
1570 			/*
1571 			 * Drop the priority, so that the recovery
1572 			 * CCB is the first to execute.  Freeze the queue
1573 			 * after this command is sent so that we can
1574 			 * restore the old csio and have it queued in
1575 			 * the proper order before we release normal
1576 			 * transactions to the device.
1577 			 */
1578 			ccb->ccb_h.pinfo.priority--;
1579 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1580 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1581 			error = ERESTART;
1582 			*orig = orig_ccb;
1583 		}
1584 
1585 sense_error_done:
1586 		*action = err_action;
1587 	}
1588 	return (error);
1589 }
1590 
1591 /*
1592  * Generic error handler.  Peripheral drivers usually filter
1593  * out the errors that they handle in a unique mannor, then
1594  * call this function.
1595  */
1596 int
1597 cam_periph_error(union ccb *ccb, cam_flags camflags,
1598 		 u_int32_t sense_flags, union ccb *save_ccb)
1599 {
1600 	struct cam_path *newpath;
1601 	union ccb  *orig_ccb, *scan_ccb;
1602 	struct cam_periph *periph;
1603 	const char *action_string;
1604 	cam_status  status;
1605 	int	    frozen, error, openings;
1606 	u_int32_t   action, relsim_flags, timeout;
1607 
1608 	action = SSQ_PRINT_SENSE;
1609 	periph = xpt_path_periph(ccb->ccb_h.path);
1610 	action_string = NULL;
1611 	status = ccb->ccb_h.status;
1612 	frozen = (status & CAM_DEV_QFRZN) != 0;
1613 	status &= CAM_STATUS_MASK;
1614 	openings = relsim_flags = timeout = 0;
1615 	orig_ccb = ccb;
1616 
1617 	switch (status) {
1618 	case CAM_REQ_CMP:
1619 		error = 0;
1620 		action &= ~SSQ_PRINT_SENSE;
1621 		break;
1622 	case CAM_SCSI_STATUS_ERROR:
1623 		error = camperiphscsistatuserror(ccb, &orig_ccb,
1624 		    camflags, sense_flags, &openings, &relsim_flags,
1625 		    &timeout, &action, &action_string);
1626 		break;
1627 	case CAM_AUTOSENSE_FAIL:
1628 		error = EIO;	/* we have to kill the command */
1629 		break;
1630 	case CAM_UA_ABORT:
1631 	case CAM_UA_TERMIO:
1632 	case CAM_MSG_REJECT_REC:
1633 		/* XXX Don't know that these are correct */
1634 		error = EIO;
1635 		break;
1636 	case CAM_SEL_TIMEOUT:
1637 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1638 			if (ccb->ccb_h.retry_count > 0 &&
1639 			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1640 				ccb->ccb_h.retry_count--;
1641 				error = ERESTART;
1642 
1643 				/*
1644 				 * Wait a bit to give the device
1645 				 * time to recover before we try again.
1646 				 */
1647 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1648 				timeout = periph_selto_delay;
1649 				break;
1650 			}
1651 			action_string = "Retries exhausted";
1652 		}
1653 		/* FALLTHROUGH */
1654 	case CAM_DEV_NOT_THERE:
1655 		error = ENXIO;
1656 		action = SSQ_LOST;
1657 		break;
1658 	case CAM_REQ_INVALID:
1659 	case CAM_PATH_INVALID:
1660 	case CAM_NO_HBA:
1661 	case CAM_PROVIDE_FAIL:
1662 	case CAM_REQ_TOO_BIG:
1663 	case CAM_LUN_INVALID:
1664 	case CAM_TID_INVALID:
1665 		error = EINVAL;
1666 		break;
1667 	case CAM_SCSI_BUS_RESET:
1668 	case CAM_BDR_SENT:
1669 		/*
1670 		 * Commands that repeatedly timeout and cause these
1671 		 * kinds of error recovery actions, should return
1672 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1673 		 * that this command was an innocent bystander to
1674 		 * these events and should be unconditionally
1675 		 * retried.
1676 		 */
1677 	case CAM_REQUEUE_REQ:
1678 		/* Unconditional requeue if device is still there */
1679 		if (periph->flags & CAM_PERIPH_INVALID) {
1680 			action_string = "Periph was invalidated";
1681 			error = EIO;
1682 		} else if (sense_flags & SF_NO_RETRY) {
1683 			error = EIO;
1684 			action_string = "Retry was blocked";
1685 		} else {
1686 			error = ERESTART;
1687 			action &= ~SSQ_PRINT_SENSE;
1688 		}
1689 		break;
1690 	case CAM_RESRC_UNAVAIL:
1691 		/* Wait a bit for the resource shortage to abate. */
1692 		timeout = periph_noresrc_delay;
1693 		/* FALLTHROUGH */
1694 	case CAM_BUSY:
1695 		if (timeout == 0) {
1696 			/* Wait a bit for the busy condition to abate. */
1697 			timeout = periph_busy_delay;
1698 		}
1699 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1700 		/* FALLTHROUGH */
1701 	case CAM_ATA_STATUS_ERROR:
1702 	case CAM_REQ_CMP_ERR:
1703 	case CAM_CMD_TIMEOUT:
1704 	case CAM_UNEXP_BUSFREE:
1705 	case CAM_UNCOR_PARITY:
1706 	case CAM_DATA_RUN_ERR:
1707 	default:
1708 		if (periph->flags & CAM_PERIPH_INVALID) {
1709 			error = EIO;
1710 			action_string = "Periph was invalidated";
1711 		} else if (ccb->ccb_h.retry_count == 0) {
1712 			error = EIO;
1713 			action_string = "Retries exhausted";
1714 		} else if (sense_flags & SF_NO_RETRY) {
1715 			error = EIO;
1716 			action_string = "Retry was blocked";
1717 		} else {
1718 			ccb->ccb_h.retry_count--;
1719 			error = ERESTART;
1720 		}
1721 		break;
1722 	}
1723 
1724 	if ((sense_flags & SF_PRINT_ALWAYS) ||
1725 	    CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
1726 		action |= SSQ_PRINT_SENSE;
1727 	else if (sense_flags & SF_NO_PRINT)
1728 		action &= ~SSQ_PRINT_SENSE;
1729 	if ((action & SSQ_PRINT_SENSE) != 0)
1730 		cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1731 	if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
1732 		if (error != ERESTART) {
1733 			if (action_string == NULL)
1734 				action_string = "Unretryable error";
1735 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
1736 			    error, action_string);
1737 		} else if (action_string != NULL)
1738 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1739 		else
1740 			xpt_print(ccb->ccb_h.path, "Retrying command\n");
1741 	}
1742 
1743 	if ((action & SSQ_LOST) != 0) {
1744 		lun_id_t lun_id;
1745 
1746 		/*
1747 		 * For a selection timeout, we consider all of the LUNs on
1748 		 * the target to be gone.  If the status is CAM_DEV_NOT_THERE,
1749 		 * then we only get rid of the device(s) specified by the
1750 		 * path in the original CCB.
1751 		 */
1752 		if (status == CAM_SEL_TIMEOUT)
1753 			lun_id = CAM_LUN_WILDCARD;
1754 		else
1755 			lun_id = xpt_path_lun_id(ccb->ccb_h.path);
1756 
1757 		/* Should we do more if we can't create the path?? */
1758 		if (xpt_create_path(&newpath, periph,
1759 				    xpt_path_path_id(ccb->ccb_h.path),
1760 				    xpt_path_target_id(ccb->ccb_h.path),
1761 				    lun_id) == CAM_REQ_CMP) {
1762 
1763 			/*
1764 			 * Let peripheral drivers know that this
1765 			 * device has gone away.
1766 			 */
1767 			xpt_async(AC_LOST_DEVICE, newpath, NULL);
1768 			xpt_free_path(newpath);
1769 		}
1770 	}
1771 
1772 	/* Broadcast UNIT ATTENTIONs to all periphs. */
1773 	if ((action & SSQ_UA) != 0)
1774 		xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
1775 
1776 	/* Rescan target on "Reported LUNs data has changed" */
1777 	if ((action & SSQ_RESCAN) != 0) {
1778 		if (xpt_create_path(&newpath, NULL,
1779 				    xpt_path_path_id(ccb->ccb_h.path),
1780 				    xpt_path_target_id(ccb->ccb_h.path),
1781 				    CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
1782 
1783 			scan_ccb = xpt_alloc_ccb_nowait();
1784 			if (scan_ccb != NULL) {
1785 				scan_ccb->ccb_h.path = newpath;
1786 				scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
1787 				scan_ccb->crcn.flags = 0;
1788 				xpt_rescan(scan_ccb);
1789 			} else
1790 				xpt_print(newpath,
1791 				    "Can't allocate CCB to rescan target\n");
1792 		}
1793 	}
1794 
1795 	/* Attempt a retry */
1796 	if (error == ERESTART || error == 0) {
1797 		if (frozen != 0)
1798 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1799 		if (error == ERESTART)
1800 			xpt_action(ccb);
1801 		if (frozen != 0)
1802 			cam_release_devq(ccb->ccb_h.path,
1803 					 relsim_flags,
1804 					 openings,
1805 					 timeout,
1806 					 /*getcount_only*/0);
1807 	}
1808 
1809 	return (error);
1810 }
1811