xref: /freebsd/sys/cam/cam_periph.c (revision 6580f5c38dd5b01aeeaed16b370f1a12423437f0)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1997, 1998 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/bio.h>
38 #include <sys/conf.h>
39 #include <sys/devctl.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/buf.h>
43 #include <sys/proc.h>
44 #include <sys/devicestat.h>
45 #include <sys/sbuf.h>
46 #include <sys/sysctl.h>
47 #include <vm/vm.h>
48 #include <vm/vm_extern.h>
49 
50 #include <cam/cam.h>
51 #include <cam/cam_ccb.h>
52 #include <cam/cam_compat.h>
53 #include <cam/cam_queue.h>
54 #include <cam/cam_xpt_periph.h>
55 #include <cam/cam_xpt_internal.h>
56 #include <cam/cam_periph.h>
57 #include <cam/cam_debug.h>
58 #include <cam/cam_sim.h>
59 
60 #include <cam/scsi/scsi_all.h>
61 #include <cam/scsi/scsi_message.h>
62 #include <cam/scsi/scsi_pass.h>
63 
64 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
65 					  u_int newunit, bool wired,
66 					  path_id_t pathid, target_id_t target,
67 					  lun_id_t lun);
68 static	u_int		camperiphunit(struct periph_driver *p_drv,
69 				      path_id_t pathid, target_id_t target,
70 				      lun_id_t lun,
71 				      const char *sn);
72 static	void		camperiphdone(struct cam_periph *periph,
73 					union ccb *done_ccb);
74 static  void		camperiphfree(struct cam_periph *periph);
75 static int		camperiphscsistatuserror(union ccb *ccb,
76 					        union ccb **orig_ccb,
77 						 cam_flags camflags,
78 						 uint32_t sense_flags,
79 						 int *openings,
80 						 uint32_t *relsim_flags,
81 						 uint32_t *timeout,
82 						 uint32_t  *action,
83 						 const char **action_string);
84 static	int		camperiphscsisenseerror(union ccb *ccb,
85 					        union ccb **orig_ccb,
86 					        cam_flags camflags,
87 					        uint32_t sense_flags,
88 					        int *openings,
89 					        uint32_t *relsim_flags,
90 					        uint32_t *timeout,
91 					        uint32_t *action,
92 					        const char **action_string);
93 static void		cam_periph_devctl_notify(union ccb *ccb);
94 
95 static int nperiph_drivers;
96 static int initialized = 0;
97 struct periph_driver **periph_drivers;
98 
99 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
100 
101 static int periph_selto_delay = 1000;
102 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
103 static int periph_noresrc_delay = 500;
104 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
105 static int periph_busy_delay = 500;
106 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
107 
108 static u_int periph_mapmem_thresh = 65536;
109 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN,
110     &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping");
111 
112 void
113 periphdriver_register(void *data)
114 {
115 	struct periph_driver *drv = (struct periph_driver *)data;
116 	struct periph_driver **newdrivers, **old;
117 	int ndrivers;
118 
119 again:
120 	ndrivers = nperiph_drivers + 2;
121 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
122 			    M_WAITOK);
123 	xpt_lock_buses();
124 	if (ndrivers != nperiph_drivers + 2) {
125 		/*
126 		 * Lost race against itself; go around.
127 		 */
128 		xpt_unlock_buses();
129 		free(newdrivers, M_CAMPERIPH);
130 		goto again;
131 	}
132 	if (periph_drivers)
133 		bcopy(periph_drivers, newdrivers,
134 		      sizeof(*newdrivers) * nperiph_drivers);
135 	newdrivers[nperiph_drivers] = drv;
136 	newdrivers[nperiph_drivers + 1] = NULL;
137 	old = periph_drivers;
138 	periph_drivers = newdrivers;
139 	nperiph_drivers++;
140 	xpt_unlock_buses();
141 	if (old)
142 		free(old, M_CAMPERIPH);
143 	/* If driver marked as early or it is late now, initialize it. */
144 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
145 	    initialized > 1)
146 		(*drv->init)();
147 }
148 
149 int
150 periphdriver_unregister(void *data)
151 {
152 	struct periph_driver *drv = (struct periph_driver *)data;
153 	int error, n;
154 
155 	/* If driver marked as early or it is late now, deinitialize it. */
156 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
157 	    initialized > 1) {
158 		if (drv->deinit == NULL) {
159 			printf("CAM periph driver '%s' doesn't have deinit.\n",
160 			    drv->driver_name);
161 			return (EOPNOTSUPP);
162 		}
163 		error = drv->deinit();
164 		if (error != 0)
165 			return (error);
166 	}
167 
168 	xpt_lock_buses();
169 	for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++)
170 		;
171 	KASSERT(n < nperiph_drivers,
172 	    ("Periph driver '%s' was not registered", drv->driver_name));
173 	for (; n + 1 < nperiph_drivers; n++)
174 		periph_drivers[n] = periph_drivers[n + 1];
175 	periph_drivers[n + 1] = NULL;
176 	nperiph_drivers--;
177 	xpt_unlock_buses();
178 	return (0);
179 }
180 
181 void
182 periphdriver_init(int level)
183 {
184 	int	i, early;
185 
186 	initialized = max(initialized, level);
187 	for (i = 0; periph_drivers[i] != NULL; i++) {
188 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
189 		if (early == initialized)
190 			(*periph_drivers[i]->init)();
191 	}
192 }
193 
194 cam_status
195 cam_periph_alloc(periph_ctor_t *periph_ctor,
196 		 periph_oninv_t *periph_oninvalidate,
197 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
198 		 char *name, cam_periph_type type, struct cam_path *path,
199 		 ac_callback_t *ac_callback, ac_code code, void *arg)
200 {
201 	struct		periph_driver **p_drv;
202 	struct		cam_sim *sim;
203 	struct		cam_periph *periph;
204 	struct		cam_periph *cur_periph;
205 	path_id_t	path_id;
206 	target_id_t	target_id;
207 	lun_id_t	lun_id;
208 	cam_status	status;
209 	u_int		init_level;
210 
211 	init_level = 0;
212 	/*
213 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
214 	 * of our type assigned to this path, we are likely waiting for
215 	 * final close on an old, invalidated, peripheral.  If this is
216 	 * the case, queue up a deferred call to the peripheral's async
217 	 * handler.  If it looks like a mistaken re-allocation, complain.
218 	 */
219 	if ((periph = cam_periph_find(path, name)) != NULL) {
220 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
221 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
222 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
223 			periph->deferred_callback = ac_callback;
224 			periph->deferred_ac = code;
225 			return (CAM_REQ_INPROG);
226 		} else {
227 			printf("cam_periph_alloc: attempt to re-allocate "
228 			       "valid device %s%d rejected flags %#x "
229 			       "refcount %d\n", periph->periph_name,
230 			       periph->unit_number, periph->flags,
231 			       periph->refcount);
232 		}
233 		return (CAM_REQ_INVALID);
234 	}
235 
236 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
237 					     M_NOWAIT|M_ZERO);
238 
239 	if (periph == NULL)
240 		return (CAM_RESRC_UNAVAIL);
241 
242 	init_level++;
243 
244 	sim = xpt_path_sim(path);
245 	path_id = xpt_path_path_id(path);
246 	target_id = xpt_path_target_id(path);
247 	lun_id = xpt_path_lun_id(path);
248 	periph->periph_start = periph_start;
249 	periph->periph_dtor = periph_dtor;
250 	periph->periph_oninval = periph_oninvalidate;
251 	periph->type = type;
252 	periph->periph_name = name;
253 	periph->scheduled_priority = CAM_PRIORITY_NONE;
254 	periph->immediate_priority = CAM_PRIORITY_NONE;
255 	periph->refcount = 1;		/* Dropped by invalidation. */
256 	periph->sim = sim;
257 	SLIST_INIT(&periph->ccb_list);
258 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
259 	if (status != CAM_REQ_CMP)
260 		goto failure;
261 	periph->path = path;
262 
263 	xpt_lock_buses();
264 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
265 		if (strcmp((*p_drv)->driver_name, name) == 0)
266 			break;
267 	}
268 	if (*p_drv == NULL) {
269 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
270 		xpt_unlock_buses();
271 		xpt_free_path(periph->path);
272 		free(periph, M_CAMPERIPH);
273 		return (CAM_REQ_INVALID);
274 	}
275 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id,
276 	    path->device->serial_num);
277 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
278 	while (cur_periph != NULL
279 	    && cur_periph->unit_number < periph->unit_number)
280 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
281 	if (cur_periph != NULL) {
282 		KASSERT(cur_periph->unit_number != periph->unit_number,
283 		    ("duplicate units on periph list"));
284 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
285 	} else {
286 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
287 		(*p_drv)->generation++;
288 	}
289 	xpt_unlock_buses();
290 
291 	init_level++;
292 
293 	status = xpt_add_periph(periph);
294 	if (status != CAM_REQ_CMP)
295 		goto failure;
296 
297 	init_level++;
298 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
299 
300 	status = periph_ctor(periph, arg);
301 
302 	if (status == CAM_REQ_CMP)
303 		init_level++;
304 
305 failure:
306 	switch (init_level) {
307 	case 4:
308 		/* Initialized successfully */
309 		break;
310 	case 3:
311 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
312 		xpt_remove_periph(periph);
313 		/* FALLTHROUGH */
314 	case 2:
315 		xpt_lock_buses();
316 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
317 		xpt_unlock_buses();
318 		xpt_free_path(periph->path);
319 		/* FALLTHROUGH */
320 	case 1:
321 		free(periph, M_CAMPERIPH);
322 		/* FALLTHROUGH */
323 	case 0:
324 		/* No cleanup to perform. */
325 		break;
326 	default:
327 		panic("%s: Unknown init level", __func__);
328 	}
329 	return(status);
330 }
331 
332 /*
333  * Find a peripheral structure with the specified path, target, lun,
334  * and (optionally) type.  If the name is NULL, this function will return
335  * the first peripheral driver that matches the specified path.
336  */
337 struct cam_periph *
338 cam_periph_find(struct cam_path *path, char *name)
339 {
340 	struct periph_driver **p_drv;
341 	struct cam_periph *periph;
342 
343 	xpt_lock_buses();
344 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
345 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
346 			continue;
347 
348 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
349 			if (xpt_path_comp(periph->path, path) == 0) {
350 				xpt_unlock_buses();
351 				cam_periph_assert(periph, MA_OWNED);
352 				return(periph);
353 			}
354 		}
355 		if (name != NULL) {
356 			xpt_unlock_buses();
357 			return(NULL);
358 		}
359 	}
360 	xpt_unlock_buses();
361 	return(NULL);
362 }
363 
364 /*
365  * Find peripheral driver instances attached to the specified path.
366  */
367 int
368 cam_periph_list(struct cam_path *path, struct sbuf *sb)
369 {
370 	struct sbuf local_sb;
371 	struct periph_driver **p_drv;
372 	struct cam_periph *periph;
373 	int count;
374 	int sbuf_alloc_len;
375 
376 	sbuf_alloc_len = 16;
377 retry:
378 	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
379 	count = 0;
380 	xpt_lock_buses();
381 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
382 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
383 			if (xpt_path_comp(periph->path, path) != 0)
384 				continue;
385 
386 			if (sbuf_len(&local_sb) != 0)
387 				sbuf_cat(&local_sb, ",");
388 
389 			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
390 				    periph->unit_number);
391 
392 			if (sbuf_error(&local_sb) == ENOMEM) {
393 				sbuf_alloc_len *= 2;
394 				xpt_unlock_buses();
395 				sbuf_delete(&local_sb);
396 				goto retry;
397 			}
398 			count++;
399 		}
400 	}
401 	xpt_unlock_buses();
402 	sbuf_finish(&local_sb);
403 	if (sbuf_len(sb) != 0)
404 		sbuf_cat(sb, ",");
405 	sbuf_cat(sb, sbuf_data(&local_sb));
406 	sbuf_delete(&local_sb);
407 	return (count);
408 }
409 
410 int
411 cam_periph_acquire(struct cam_periph *periph)
412 {
413 	int status;
414 
415 	if (periph == NULL)
416 		return (EINVAL);
417 
418 	status = ENOENT;
419 	xpt_lock_buses();
420 	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
421 		periph->refcount++;
422 		status = 0;
423 	}
424 	xpt_unlock_buses();
425 
426 	return (status);
427 }
428 
429 void
430 cam_periph_doacquire(struct cam_periph *periph)
431 {
432 
433 	xpt_lock_buses();
434 	KASSERT(periph->refcount >= 1,
435 	    ("cam_periph_doacquire() with refcount == %d", periph->refcount));
436 	periph->refcount++;
437 	xpt_unlock_buses();
438 }
439 
440 void
441 cam_periph_release_locked_buses(struct cam_periph *periph)
442 {
443 
444 	cam_periph_assert(periph, MA_OWNED);
445 	KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
446 	if (--periph->refcount == 0)
447 		camperiphfree(periph);
448 }
449 
450 void
451 cam_periph_release_locked(struct cam_periph *periph)
452 {
453 
454 	if (periph == NULL)
455 		return;
456 
457 	xpt_lock_buses();
458 	cam_periph_release_locked_buses(periph);
459 	xpt_unlock_buses();
460 }
461 
462 void
463 cam_periph_release(struct cam_periph *periph)
464 {
465 	struct mtx *mtx;
466 
467 	if (periph == NULL)
468 		return;
469 
470 	cam_periph_assert(periph, MA_NOTOWNED);
471 	mtx = cam_periph_mtx(periph);
472 	mtx_lock(mtx);
473 	cam_periph_release_locked(periph);
474 	mtx_unlock(mtx);
475 }
476 
477 /*
478  * hold/unhold act as mutual exclusion for sections of the code that
479  * need to sleep and want to make sure that other sections that
480  * will interfere are held off. This only protects exclusive sections
481  * from each other.
482  */
483 int
484 cam_periph_hold(struct cam_periph *periph, int priority)
485 {
486 	int error;
487 
488 	/*
489 	 * Increment the reference count on the peripheral
490 	 * while we wait for our lock attempt to succeed
491 	 * to ensure the peripheral doesn't disappear out
492 	 * from user us while we sleep.
493 	 */
494 
495 	if (cam_periph_acquire(periph) != 0)
496 		return (ENXIO);
497 
498 	cam_periph_assert(periph, MA_OWNED);
499 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
500 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
501 		if ((error = cam_periph_sleep(periph, periph, priority,
502 		    "caplck", 0)) != 0) {
503 			cam_periph_release_locked(periph);
504 			return (error);
505 		}
506 		if (periph->flags & CAM_PERIPH_INVALID) {
507 			cam_periph_release_locked(periph);
508 			return (ENXIO);
509 		}
510 	}
511 
512 	periph->flags |= CAM_PERIPH_LOCKED;
513 	return (0);
514 }
515 
516 void
517 cam_periph_unhold(struct cam_periph *periph)
518 {
519 
520 	cam_periph_assert(periph, MA_OWNED);
521 
522 	periph->flags &= ~CAM_PERIPH_LOCKED;
523 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
524 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
525 		wakeup(periph);
526 	}
527 
528 	cam_periph_release_locked(periph);
529 }
530 
531 void
532 cam_periph_hold_boot(struct cam_periph *periph)
533 {
534 
535 	root_mount_hold_token(periph->periph_name, &periph->periph_rootmount);
536 }
537 
538 void
539 cam_periph_release_boot(struct cam_periph *periph)
540 {
541 
542 	root_mount_rel(&periph->periph_rootmount);
543 }
544 
545 /*
546  * Look for the next unit number that is not currently in use for this
547  * peripheral type starting at "newunit".  Also exclude unit numbers that
548  * are reserved by for future "hardwiring" unless we already know that this
549  * is a potential wired device.  Only assume that the device is "wired" the
550  * first time through the loop since after that we'll be looking at unit
551  * numbers that did not match a wiring entry.
552  */
553 static u_int
554 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired,
555 		  path_id_t pathid, target_id_t target, lun_id_t lun)
556 {
557 	struct	cam_periph *periph;
558 	char	*periph_name;
559 	int	i, val, dunit, r;
560 	const char *dname, *strval;
561 
562 	periph_name = p_drv->driver_name;
563 	for (;;newunit++) {
564 		for (periph = TAILQ_FIRST(&p_drv->units);
565 		     periph != NULL && periph->unit_number != newunit;
566 		     periph = TAILQ_NEXT(periph, unit_links))
567 			;
568 
569 		if (periph != NULL && periph->unit_number == newunit) {
570 			if (wired) {
571 				xpt_print(periph->path, "Duplicate Wired "
572 				    "Device entry!\n");
573 				xpt_print(periph->path, "Second device (%s "
574 				    "device at scbus%d target %d lun %d) will "
575 				    "not be wired\n", periph_name, pathid,
576 				    target, lun);
577 				wired = false;
578 			}
579 			continue;
580 		}
581 		if (wired)
582 			break;
583 
584 		/*
585 		 * Don't allow the mere presence of any attributes of a device
586 		 * means that it is for a wired down entry. Instead, insist that
587 		 * one of the matching criteria from camperiphunit be present
588 		 * for the device.
589 		 */
590 		i = 0;
591 		dname = periph_name;
592 		for (;;) {
593 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
594 			if (r != 0)
595 				break;
596 
597 			if (newunit != dunit)
598 				continue;
599 			if (resource_string_value(dname, dunit, "sn", &strval) == 0 ||
600 			    resource_int_value(dname, dunit, "lun", &val) == 0 ||
601 			    resource_int_value(dname, dunit, "target", &val) == 0 ||
602 			    resource_string_value(dname, dunit, "at", &strval) == 0)
603 				break;
604 		}
605 		if (r != 0)
606 			break;
607 	}
608 	return (newunit);
609 }
610 
611 static u_int
612 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
613     target_id_t target, lun_id_t lun, const char *sn)
614 {
615 	bool	wired = false;
616 	u_int	unit;
617 	int	i, val, dunit;
618 	const char *dname, *strval;
619 	char	pathbuf[32], *periph_name;
620 
621 	periph_name = p_drv->driver_name;
622 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
623 	unit = 0;
624 	i = 0;
625 	dname = periph_name;
626 
627 	for (wired = false; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
628 	     wired = false) {
629 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
630 			if (strcmp(strval, pathbuf) != 0)
631 				continue;
632 			wired = true;
633 		}
634 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
635 			if (val != target)
636 				continue;
637 			wired = true;
638 		}
639 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
640 			if (val != lun)
641 				continue;
642 			wired = true;
643 		}
644 		if (resource_string_value(dname, dunit, "sn", &strval) == 0) {
645 			if (sn == NULL || strcmp(strval, sn) != 0)
646 				continue;
647 			wired = true;
648 		}
649 		if (wired) {
650 			unit = dunit;
651 			break;
652 		}
653 	}
654 
655 	/*
656 	 * Either start from 0 looking for the next unit or from
657 	 * the unit number given in the resource config.  This way,
658 	 * if we have wildcard matches, we don't return the same
659 	 * unit number twice.
660 	 */
661 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
662 
663 	return (unit);
664 }
665 
666 void
667 cam_periph_invalidate(struct cam_periph *periph)
668 {
669 
670 	cam_periph_assert(periph, MA_OWNED);
671 	/*
672 	 * We only tear down the device the first time a peripheral is
673 	 * invalidated.
674 	 */
675 	if ((periph->flags & CAM_PERIPH_INVALID) != 0)
676 		return;
677 
678 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
679 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) {
680 		struct sbuf sb;
681 		char buffer[160];
682 
683 		sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN);
684 		xpt_denounce_periph_sbuf(periph, &sb);
685 		sbuf_finish(&sb);
686 		sbuf_putbuf(&sb);
687 	}
688 	periph->flags |= CAM_PERIPH_INVALID;
689 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
690 	if (periph->periph_oninval != NULL)
691 		periph->periph_oninval(periph);
692 	cam_periph_release_locked(periph);
693 }
694 
695 static void
696 camperiphfree(struct cam_periph *periph)
697 {
698 	struct periph_driver **p_drv;
699 	struct periph_driver *drv;
700 
701 	cam_periph_assert(periph, MA_OWNED);
702 	KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating",
703 	    periph->periph_name, periph->unit_number));
704 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
705 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
706 			break;
707 	}
708 	if (*p_drv == NULL) {
709 		printf("camperiphfree: attempt to free non-existant periph\n");
710 		return;
711 	}
712 	/*
713 	 * Cache a pointer to the periph_driver structure.  If a
714 	 * periph_driver is added or removed from the array (see
715 	 * periphdriver_register()) while we drop the toplogy lock
716 	 * below, p_drv may change.  This doesn't protect against this
717 	 * particular periph_driver going away.  That will require full
718 	 * reference counting in the periph_driver infrastructure.
719 	 */
720 	drv = *p_drv;
721 
722 	/*
723 	 * We need to set this flag before dropping the topology lock, to
724 	 * let anyone who is traversing the list that this peripheral is
725 	 * about to be freed, and there will be no more reference count
726 	 * checks.
727 	 */
728 	periph->flags |= CAM_PERIPH_FREE;
729 
730 	/*
731 	 * The peripheral destructor semantics dictate calling with only the
732 	 * SIM mutex held.  Since it might sleep, it should not be called
733 	 * with the topology lock held.
734 	 */
735 	xpt_unlock_buses();
736 
737 	/*
738 	 * We need to call the peripheral destructor prior to removing the
739 	 * peripheral from the list.  Otherwise, we risk running into a
740 	 * scenario where the peripheral unit number may get reused
741 	 * (because it has been removed from the list), but some resources
742 	 * used by the peripheral are still hanging around.  In particular,
743 	 * the devfs nodes used by some peripherals like the pass(4) driver
744 	 * aren't fully cleaned up until the destructor is run.  If the
745 	 * unit number is reused before the devfs instance is fully gone,
746 	 * devfs will panic.
747 	 */
748 	if (periph->periph_dtor != NULL)
749 		periph->periph_dtor(periph);
750 
751 	/*
752 	 * The peripheral list is protected by the topology lock. We have to
753 	 * remove the periph from the drv list before we call deferred_ac. The
754 	 * AC_FOUND_DEVICE callback won't create a new periph if it's still there.
755 	 */
756 	xpt_lock_buses();
757 
758 	TAILQ_REMOVE(&drv->units, periph, unit_links);
759 	drv->generation++;
760 
761 	xpt_remove_periph(periph);
762 
763 	xpt_unlock_buses();
764 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
765 		xpt_print(periph->path, "Periph destroyed\n");
766 	else
767 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
768 
769 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
770 		union ccb ccb;
771 		void *arg;
772 
773 		memset(&ccb, 0, sizeof(ccb));
774 		switch (periph->deferred_ac) {
775 		case AC_FOUND_DEVICE:
776 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
777 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
778 			xpt_action(&ccb);
779 			arg = &ccb;
780 			break;
781 		case AC_PATH_REGISTERED:
782 			xpt_path_inq(&ccb.cpi, periph->path);
783 			arg = &ccb;
784 			break;
785 		default:
786 			arg = NULL;
787 			break;
788 		}
789 		periph->deferred_callback(NULL, periph->deferred_ac,
790 					  periph->path, arg);
791 	}
792 	xpt_free_path(periph->path);
793 	free(periph, M_CAMPERIPH);
794 	xpt_lock_buses();
795 }
796 
797 /*
798  * Map user virtual pointers into kernel virtual address space, so we can
799  * access the memory.  This is now a generic function that centralizes most
800  * of the sanity checks on the data flags, if any.
801  * This also only works for up to maxphys memory.  Since we use
802  * buffers to map stuff in and out, we're limited to the buffer size.
803  */
804 int
805 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo,
806     u_int maxmap)
807 {
808 	int numbufs, i;
809 	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
810 	uint32_t lengths[CAM_PERIPH_MAXMAPS];
811 	uint32_t dirs[CAM_PERIPH_MAXMAPS];
812 
813 	bzero(mapinfo, sizeof(*mapinfo));
814 	if (maxmap == 0)
815 		maxmap = DFLTPHYS;	/* traditional default */
816 	else if (maxmap > maxphys)
817 		maxmap = maxphys;	/* for safety */
818 	switch(ccb->ccb_h.func_code) {
819 	case XPT_DEV_MATCH:
820 		if (ccb->cdm.match_buf_len == 0) {
821 			printf("cam_periph_mapmem: invalid match buffer "
822 			       "length 0\n");
823 			return(EINVAL);
824 		}
825 		if (ccb->cdm.pattern_buf_len > 0) {
826 			data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
827 			lengths[0] = ccb->cdm.pattern_buf_len;
828 			dirs[0] = CAM_DIR_OUT;
829 			data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
830 			lengths[1] = ccb->cdm.match_buf_len;
831 			dirs[1] = CAM_DIR_IN;
832 			numbufs = 2;
833 		} else {
834 			data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
835 			lengths[0] = ccb->cdm.match_buf_len;
836 			dirs[0] = CAM_DIR_IN;
837 			numbufs = 1;
838 		}
839 		/*
840 		 * This request will not go to the hardware, no reason
841 		 * to be so strict. vmapbuf() is able to map up to maxphys.
842 		 */
843 		maxmap = maxphys;
844 		break;
845 	case XPT_SCSI_IO:
846 	case XPT_CONT_TARGET_IO:
847 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
848 			return(0);
849 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
850 			return (EINVAL);
851 		data_ptrs[0] = &ccb->csio.data_ptr;
852 		lengths[0] = ccb->csio.dxfer_len;
853 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
854 		numbufs = 1;
855 		break;
856 	case XPT_ATA_IO:
857 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
858 			return(0);
859 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
860 			return (EINVAL);
861 		data_ptrs[0] = &ccb->ataio.data_ptr;
862 		lengths[0] = ccb->ataio.dxfer_len;
863 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
864 		numbufs = 1;
865 		break;
866 	case XPT_MMC_IO:
867 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
868 			return(0);
869 		/* Two mappings: one for cmd->data and one for cmd->data->data */
870 		data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data;
871 		lengths[0] = sizeof(struct mmc_data *);
872 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
873 		data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data;
874 		lengths[1] = ccb->mmcio.cmd.data->len;
875 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
876 		numbufs = 2;
877 		break;
878 	case XPT_SMP_IO:
879 		data_ptrs[0] = &ccb->smpio.smp_request;
880 		lengths[0] = ccb->smpio.smp_request_len;
881 		dirs[0] = CAM_DIR_OUT;
882 		data_ptrs[1] = &ccb->smpio.smp_response;
883 		lengths[1] = ccb->smpio.smp_response_len;
884 		dirs[1] = CAM_DIR_IN;
885 		numbufs = 2;
886 		break;
887 	case XPT_NVME_IO:
888 	case XPT_NVME_ADMIN:
889 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
890 			return (0);
891 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
892 			return (EINVAL);
893 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
894 		lengths[0] = ccb->nvmeio.dxfer_len;
895 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
896 		numbufs = 1;
897 		break;
898 	case XPT_DEV_ADVINFO:
899 		if (ccb->cdai.bufsiz == 0)
900 			return (0);
901 
902 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
903 		lengths[0] = ccb->cdai.bufsiz;
904 		dirs[0] = CAM_DIR_IN;
905 		numbufs = 1;
906 
907 		/*
908 		 * This request will not go to the hardware, no reason
909 		 * to be so strict. vmapbuf() is able to map up to maxphys.
910 		 */
911 		maxmap = maxphys;
912 		break;
913 	default:
914 		return(EINVAL);
915 		break; /* NOTREACHED */
916 	}
917 
918 	/*
919 	 * Check the transfer length and permissions first, so we don't
920 	 * have to unmap any previously mapped buffers.
921 	 */
922 	for (i = 0; i < numbufs; i++) {
923 		if (lengths[i] > maxmap) {
924 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
925 			       "which is greater than %lu\n",
926 			       (long)(lengths[i]), (u_long)maxmap);
927 			return (E2BIG);
928 		}
929 	}
930 
931 	/*
932 	 * This keeps the kernel stack of current thread from getting
933 	 * swapped.  In low-memory situations where the kernel stack might
934 	 * otherwise get swapped out, this holds it and allows the thread
935 	 * to make progress and release the kernel mapped pages sooner.
936 	 *
937 	 * XXX KDM should I use P_NOSWAP instead?
938 	 */
939 	PHOLD(curproc);
940 
941 	for (i = 0; i < numbufs; i++) {
942 		/* Save the user's data address. */
943 		mapinfo->orig[i] = *data_ptrs[i];
944 
945 		/*
946 		 * For small buffers use malloc+copyin/copyout instead of
947 		 * mapping to KVA to avoid expensive TLB shootdowns.  For
948 		 * small allocations malloc is backed by UMA, and so much
949 		 * cheaper on SMP systems.
950 		 */
951 		if (lengths[i] <= periph_mapmem_thresh &&
952 		    ccb->ccb_h.func_code != XPT_MMC_IO) {
953 			*data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH,
954 			    M_WAITOK);
955 			if (dirs[i] != CAM_DIR_IN) {
956 				if (copyin(mapinfo->orig[i], *data_ptrs[i],
957 				    lengths[i]) != 0) {
958 					free(*data_ptrs[i], M_CAMPERIPH);
959 					*data_ptrs[i] = mapinfo->orig[i];
960 					goto fail;
961 				}
962 			} else
963 				bzero(*data_ptrs[i], lengths[i]);
964 			continue;
965 		}
966 
967 		/*
968 		 * Get the buffer.
969 		 */
970 		mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK);
971 
972 		/* set the direction */
973 		mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ?
974 		    BIO_WRITE : BIO_READ;
975 
976 		/* Map the buffer into kernel memory. */
977 		if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) {
978 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
979 			goto fail;
980 		}
981 
982 		/* set our pointer to the new mapped area */
983 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
984 	}
985 
986 	/*
987 	 * Now that we've gotten this far, change ownership to the kernel
988 	 * of the buffers so that we don't run afoul of returning to user
989 	 * space with locks (on the buffer) held.
990 	 */
991 	for (i = 0; i < numbufs; i++) {
992 		if (mapinfo->bp[i])
993 			BUF_KERNPROC(mapinfo->bp[i]);
994 	}
995 
996 	mapinfo->num_bufs_used = numbufs;
997 	return(0);
998 
999 fail:
1000 	for (i--; i >= 0; i--) {
1001 		if (mapinfo->bp[i]) {
1002 			vunmapbuf(mapinfo->bp[i]);
1003 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
1004 		} else
1005 			free(*data_ptrs[i], M_CAMPERIPH);
1006 		*data_ptrs[i] = mapinfo->orig[i];
1007 	}
1008 	PRELE(curproc);
1009 	return(EACCES);
1010 }
1011 
1012 /*
1013  * Unmap memory segments mapped into kernel virtual address space by
1014  * cam_periph_mapmem().
1015  */
1016 int
1017 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
1018 {
1019 	int error, numbufs, i;
1020 	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1021 	uint32_t lengths[CAM_PERIPH_MAXMAPS];
1022 	uint32_t dirs[CAM_PERIPH_MAXMAPS];
1023 
1024 	if (mapinfo->num_bufs_used <= 0) {
1025 		/* nothing to free and the process wasn't held. */
1026 		return (0);
1027 	}
1028 
1029 	switch (ccb->ccb_h.func_code) {
1030 	case XPT_DEV_MATCH:
1031 		if (ccb->cdm.pattern_buf_len > 0) {
1032 			data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1033 			lengths[0] = ccb->cdm.pattern_buf_len;
1034 			dirs[0] = CAM_DIR_OUT;
1035 			data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1036 			lengths[1] = ccb->cdm.match_buf_len;
1037 			dirs[1] = CAM_DIR_IN;
1038 			numbufs = 2;
1039 		} else {
1040 			data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1041 			lengths[0] = ccb->cdm.match_buf_len;
1042 			dirs[0] = CAM_DIR_IN;
1043 			numbufs = 1;
1044 		}
1045 		break;
1046 	case XPT_SCSI_IO:
1047 	case XPT_CONT_TARGET_IO:
1048 		data_ptrs[0] = &ccb->csio.data_ptr;
1049 		lengths[0] = ccb->csio.dxfer_len;
1050 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1051 		numbufs = 1;
1052 		break;
1053 	case XPT_ATA_IO:
1054 		data_ptrs[0] = &ccb->ataio.data_ptr;
1055 		lengths[0] = ccb->ataio.dxfer_len;
1056 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1057 		numbufs = 1;
1058 		break;
1059 	case XPT_MMC_IO:
1060 		data_ptrs[0] = (uint8_t **)&ccb->mmcio.cmd.data;
1061 		lengths[0] = sizeof(struct mmc_data *);
1062 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1063 		data_ptrs[1] = (uint8_t **)&ccb->mmcio.cmd.data->data;
1064 		lengths[1] = ccb->mmcio.cmd.data->len;
1065 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
1066 		numbufs = 2;
1067 		break;
1068 	case XPT_SMP_IO:
1069 		data_ptrs[0] = &ccb->smpio.smp_request;
1070 		lengths[0] = ccb->smpio.smp_request_len;
1071 		dirs[0] = CAM_DIR_OUT;
1072 		data_ptrs[1] = &ccb->smpio.smp_response;
1073 		lengths[1] = ccb->smpio.smp_response_len;
1074 		dirs[1] = CAM_DIR_IN;
1075 		numbufs = 2;
1076 		break;
1077 	case XPT_NVME_IO:
1078 	case XPT_NVME_ADMIN:
1079 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1080 		lengths[0] = ccb->nvmeio.dxfer_len;
1081 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1082 		numbufs = 1;
1083 		break;
1084 	case XPT_DEV_ADVINFO:
1085 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1086 		lengths[0] = ccb->cdai.bufsiz;
1087 		dirs[0] = CAM_DIR_IN;
1088 		numbufs = 1;
1089 		break;
1090 	default:
1091 		numbufs = 0;
1092 		break;
1093 	}
1094 
1095 	error = 0;
1096 	for (i = 0; i < numbufs; i++) {
1097 		if (mapinfo->bp[i]) {
1098 			/* unmap the buffer */
1099 			vunmapbuf(mapinfo->bp[i]);
1100 
1101 			/* release the buffer */
1102 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
1103 		} else {
1104 			if (dirs[i] != CAM_DIR_OUT) {
1105 				int error1;
1106 
1107 				error1 = copyout(*data_ptrs[i], mapinfo->orig[i],
1108 				    lengths[i]);
1109 				if (error == 0)
1110 					error = error1;
1111 			}
1112 			free(*data_ptrs[i], M_CAMPERIPH);
1113 		}
1114 
1115 		/* Set the user's pointer back to the original value */
1116 		*data_ptrs[i] = mapinfo->orig[i];
1117 	}
1118 
1119 	/* allow ourselves to be swapped once again */
1120 	PRELE(curproc);
1121 
1122 	return (error);
1123 }
1124 
1125 int
1126 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
1127 		 int (*error_routine)(union ccb *ccb,
1128 				      cam_flags camflags,
1129 				      uint32_t sense_flags))
1130 {
1131 	union ccb 	     *ccb;
1132 	int 		     error;
1133 	int		     found;
1134 
1135 	error = found = 0;
1136 
1137 	switch(cmd){
1138 	case CAMGETPASSTHRU_0x19:
1139 	case CAMGETPASSTHRU:
1140 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
1141 		xpt_setup_ccb(&ccb->ccb_h,
1142 			      ccb->ccb_h.path,
1143 			      CAM_PRIORITY_NORMAL);
1144 		ccb->ccb_h.func_code = XPT_GDEVLIST;
1145 
1146 		/*
1147 		 * Basically, the point of this is that we go through
1148 		 * getting the list of devices, until we find a passthrough
1149 		 * device.  In the current version of the CAM code, the
1150 		 * only way to determine what type of device we're dealing
1151 		 * with is by its name.
1152 		 */
1153 		while (found == 0) {
1154 			ccb->cgdl.index = 0;
1155 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
1156 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
1157 				/* we want the next device in the list */
1158 				xpt_action(ccb);
1159 				if (strncmp(ccb->cgdl.periph_name,
1160 				    "pass", 4) == 0){
1161 					found = 1;
1162 					break;
1163 				}
1164 			}
1165 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
1166 			    (found == 0)) {
1167 				ccb->cgdl.periph_name[0] = '\0';
1168 				ccb->cgdl.unit_number = 0;
1169 				break;
1170 			}
1171 		}
1172 
1173 		/* copy the result back out */
1174 		bcopy(ccb, addr, sizeof(union ccb));
1175 
1176 		/* and release the ccb */
1177 		xpt_release_ccb(ccb);
1178 
1179 		break;
1180 	default:
1181 		error = ENOTTY;
1182 		break;
1183 	}
1184 	return(error);
1185 }
1186 
1187 static void
1188 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb)
1189 {
1190 
1191 	panic("%s: already done with ccb %p", __func__, done_ccb);
1192 }
1193 
1194 static void
1195 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb)
1196 {
1197 
1198 	/* Caller will release the CCB */
1199 	xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED);
1200 	done_ccb->ccb_h.cbfcnp = cam_periph_done_panic;
1201 	wakeup(&done_ccb->ccb_h.cbfcnp);
1202 }
1203 
1204 static void
1205 cam_periph_ccbwait(union ccb *ccb)
1206 {
1207 
1208 	if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
1209 		while (ccb->ccb_h.cbfcnp != cam_periph_done_panic)
1210 			xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp,
1211 			    PRIBIO, "cbwait", 0);
1212 	}
1213 	KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX &&
1214 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG,
1215 	    ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, "
1216 	     "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code,
1217 	     ccb->ccb_h.status, ccb->ccb_h.pinfo.index));
1218 }
1219 
1220 /*
1221  * Dispatch a CCB and wait for it to complete.  If the CCB has set a
1222  * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost.
1223  */
1224 int
1225 cam_periph_runccb(union ccb *ccb,
1226 		  int (*error_routine)(union ccb *ccb,
1227 				       cam_flags camflags,
1228 				       uint32_t sense_flags),
1229 		  cam_flags camflags, uint32_t sense_flags,
1230 		  struct devstat *ds)
1231 {
1232 	struct bintime *starttime;
1233 	struct bintime ltime;
1234 	int error;
1235 	bool must_poll;
1236 	uint32_t timeout = 1;
1237 
1238 	starttime = NULL;
1239 	xpt_path_assert(ccb->ccb_h.path, MA_OWNED);
1240 	KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0,
1241 	    ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb,
1242 	     ccb->ccb_h.func_code, ccb->ccb_h.flags));
1243 
1244 	/*
1245 	 * If the user has supplied a stats structure, and if we understand
1246 	 * this particular type of ccb, record the transaction start.
1247 	 */
1248 	if (ds != NULL &&
1249 	    (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1250 	    ccb->ccb_h.func_code == XPT_ATA_IO ||
1251 	    ccb->ccb_h.func_code == XPT_NVME_IO)) {
1252 		starttime = &ltime;
1253 		binuptime(starttime);
1254 		devstat_start_transaction(ds, starttime);
1255 	}
1256 
1257 	/*
1258 	 * We must poll the I/O while we're dumping. The scheduler is normally
1259 	 * stopped for dumping, except when we call doadump from ddb. While the
1260 	 * scheduler is running in this case, we still need to poll the I/O to
1261 	 * avoid sleeping waiting for the ccb to complete.
1262 	 *
1263 	 * A panic triggered dump stops the scheduler, any callback from the
1264 	 * shutdown_post_sync event will run with the scheduler stopped, but
1265 	 * before we're officially dumping. To avoid hanging in adashutdown
1266 	 * initiated commands (or other similar situations), we have to test for
1267 	 * either dumping or SCHEDULER_STOPPED() here.
1268 	 *
1269 	 * To avoid locking problems, dumping/polling callers must call
1270 	 * without a periph lock held.
1271 	 */
1272 	must_poll = dumping || SCHEDULER_STOPPED();
1273 	ccb->ccb_h.cbfcnp = cam_periph_done;
1274 
1275 	/*
1276 	 * If we're polling, then we need to ensure that we have ample resources
1277 	 * in the periph.  cam_periph_error can reschedule the ccb by calling
1278 	 * xpt_action and returning ERESTART, so we have to effect the polling
1279 	 * in the do loop below.
1280 	 */
1281 	if (must_poll) {
1282 		if (cam_sim_pollable(ccb->ccb_h.path->bus->sim))
1283 			timeout = xpt_poll_setup(ccb);
1284 		else
1285 			timeout = 0;
1286 	}
1287 
1288 	if (timeout == 0) {
1289 		ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
1290 		error = EBUSY;
1291 	} else {
1292 		xpt_action(ccb);
1293 		do {
1294 			if (must_poll) {
1295 				xpt_pollwait(ccb, timeout);
1296 				timeout = ccb->ccb_h.timeout * 10;
1297 			} else {
1298 				cam_periph_ccbwait(ccb);
1299 			}
1300 			if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1301 				error = 0;
1302 			else if (error_routine != NULL) {
1303 				/*
1304 				 * cbfcnp is modified by cam_periph_ccbwait so
1305 				 * reset it before we call the error routine
1306 				 * which may call xpt_done.
1307 				 */
1308 				ccb->ccb_h.cbfcnp = cam_periph_done;
1309 				error = (*error_routine)(ccb, camflags, sense_flags);
1310 			} else
1311 				error = 0;
1312 		} while (error == ERESTART);
1313 	}
1314 
1315 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1316 		cam_release_devq(ccb->ccb_h.path,
1317 				 /* relsim_flags */0,
1318 				 /* openings */0,
1319 				 /* timeout */0,
1320 				 /* getcount_only */ FALSE);
1321 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1322 	}
1323 
1324 	if (ds != NULL) {
1325 		uint32_t bytes;
1326 		devstat_tag_type tag;
1327 		bool valid = true;
1328 
1329 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1330 			bytes = ccb->csio.dxfer_len - ccb->csio.resid;
1331 			tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3);
1332 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1333 			bytes = ccb->ataio.dxfer_len - ccb->ataio.resid;
1334 			tag = (devstat_tag_type)0;
1335 		} else if (ccb->ccb_h.func_code == XPT_NVME_IO) {
1336 			bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */
1337 			tag = (devstat_tag_type)0;
1338 		} else {
1339 			valid = false;
1340 		}
1341 		if (valid)
1342 			devstat_end_transaction(ds, bytes, tag,
1343 			    ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ?
1344 			    DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ?
1345 			    DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime);
1346 	}
1347 
1348 	return(error);
1349 }
1350 
1351 void
1352 cam_freeze_devq(struct cam_path *path)
1353 {
1354 	struct ccb_hdr ccb_h;
1355 
1356 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
1357 	memset(&ccb_h, 0, sizeof(ccb_h));
1358 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
1359 	ccb_h.func_code = XPT_NOOP;
1360 	ccb_h.flags = CAM_DEV_QFREEZE;
1361 	xpt_action((union ccb *)&ccb_h);
1362 }
1363 
1364 uint32_t
1365 cam_release_devq(struct cam_path *path, uint32_t relsim_flags,
1366 		 uint32_t openings, uint32_t arg,
1367 		 int getcount_only)
1368 {
1369 	struct ccb_relsim crs;
1370 
1371 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
1372 	    relsim_flags, openings, arg, getcount_only));
1373 	memset(&crs, 0, sizeof(crs));
1374 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1375 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1376 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1377 	crs.release_flags = relsim_flags;
1378 	crs.openings = openings;
1379 	crs.release_timeout = arg;
1380 	xpt_action((union ccb *)&crs);
1381 	return (crs.qfrozen_cnt);
1382 }
1383 
1384 #define saved_ccb_ptr ppriv_ptr0
1385 static void
1386 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1387 {
1388 	union ccb      *saved_ccb;
1389 	cam_status	status;
1390 	struct scsi_start_stop_unit *scsi_cmd;
1391 	int		error = 0, error_code, sense_key, asc, ascq;
1392 	uint16_t	done_flags;
1393 
1394 	scsi_cmd = (struct scsi_start_stop_unit *)
1395 	    &done_ccb->csio.cdb_io.cdb_bytes;
1396 	status = done_ccb->ccb_h.status;
1397 
1398 	if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1399 		if (scsi_extract_sense_ccb(done_ccb,
1400 		    &error_code, &sense_key, &asc, &ascq)) {
1401 			/*
1402 			 * If the error is "invalid field in CDB",
1403 			 * and the load/eject flag is set, turn the
1404 			 * flag off and try again.  This is just in
1405 			 * case the drive in question barfs on the
1406 			 * load eject flag.  The CAM code should set
1407 			 * the load/eject flag by default for
1408 			 * removable media.
1409 			 */
1410 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1411 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1412 			     (asc == 0x24) && (ascq == 0x00)) {
1413 				scsi_cmd->how &= ~SSS_LOEJ;
1414 				if (status & CAM_DEV_QFRZN) {
1415 					cam_release_devq(done_ccb->ccb_h.path,
1416 					    0, 0, 0, 0);
1417 					done_ccb->ccb_h.status &=
1418 					    ~CAM_DEV_QFRZN;
1419 				}
1420 				xpt_action(done_ccb);
1421 				goto out;
1422 			}
1423 		}
1424 		error = cam_periph_error(done_ccb, 0,
1425 		    SF_RETRY_UA | SF_NO_PRINT);
1426 		if (error == ERESTART)
1427 			goto out;
1428 		if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
1429 			cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1430 			done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1431 		}
1432 	} else {
1433 		/*
1434 		 * If we have successfully taken a device from the not
1435 		 * ready to ready state, re-scan the device and re-get
1436 		 * the inquiry information.  Many devices (mostly disks)
1437 		 * don't properly report their inquiry information unless
1438 		 * they are spun up.
1439 		 */
1440 		if (scsi_cmd->opcode == START_STOP_UNIT)
1441 			xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
1442 	}
1443 
1444 	/* If we tried long wait and still failed, remember that. */
1445 	if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) &&
1446 	    (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) {
1447 		periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT;
1448 		if (error != 0 && done_ccb->ccb_h.retry_count == 0)
1449 			periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED;
1450 	}
1451 
1452 	/*
1453 	 * After recovery action(s) completed, return to the original CCB.
1454 	 * If the recovery CCB has failed, considering its own possible
1455 	 * retries and recovery, assume we are back in state where we have
1456 	 * been originally, but without recovery hopes left.  In such case,
1457 	 * after the final attempt below, we cancel any further retries,
1458 	 * blocking by that also any new recovery attempts for this CCB,
1459 	 * and the result will be the final one returned to the CCB owher.
1460 	 */
1461 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1462 	KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO,
1463 	    ("%s: saved_ccb func_code %#x != XPT_SCSI_IO",
1464 	     __func__, saved_ccb->ccb_h.func_code));
1465 	KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO,
1466 	    ("%s: done_ccb func_code %#x != XPT_SCSI_IO",
1467 	     __func__, done_ccb->ccb_h.func_code));
1468 	saved_ccb->ccb_h.periph_links = done_ccb->ccb_h.periph_links;
1469 	done_flags = done_ccb->ccb_h.alloc_flags;
1470 	bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio));
1471 	done_ccb->ccb_h.alloc_flags = done_flags;
1472 	xpt_free_ccb(saved_ccb);
1473 	if (done_ccb->ccb_h.cbfcnp != camperiphdone)
1474 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1475 	if (error != 0)
1476 		done_ccb->ccb_h.retry_count = 0;
1477 	xpt_action(done_ccb);
1478 
1479 out:
1480 	/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
1481 	cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1482 }
1483 
1484 /*
1485  * Generic Async Event handler.  Peripheral drivers usually
1486  * filter out the events that require personal attention,
1487  * and leave the rest to this function.
1488  */
1489 void
1490 cam_periph_async(struct cam_periph *periph, uint32_t code,
1491 		 struct cam_path *path, void *arg)
1492 {
1493 	switch (code) {
1494 	case AC_LOST_DEVICE:
1495 		cam_periph_invalidate(periph);
1496 		break;
1497 	default:
1498 		break;
1499 	}
1500 }
1501 
1502 void
1503 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1504 {
1505 	struct ccb_getdevstats cgds;
1506 
1507 	memset(&cgds, 0, sizeof(cgds));
1508 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1509 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1510 	xpt_action((union ccb *)&cgds);
1511 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1512 }
1513 
1514 void
1515 cam_periph_freeze_after_event(struct cam_periph *periph,
1516 			      struct timeval* event_time, u_int duration_ms)
1517 {
1518 	struct timeval delta;
1519 	struct timeval duration_tv;
1520 
1521 	if (!timevalisset(event_time))
1522 		return;
1523 
1524 	microtime(&delta);
1525 	timevalsub(&delta, event_time);
1526 	duration_tv.tv_sec = duration_ms / 1000;
1527 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1528 	if (timevalcmp(&delta, &duration_tv, <)) {
1529 		timevalsub(&duration_tv, &delta);
1530 
1531 		duration_ms = duration_tv.tv_sec * 1000;
1532 		duration_ms += duration_tv.tv_usec / 1000;
1533 		cam_freeze_devq(periph->path);
1534 		cam_release_devq(periph->path,
1535 				RELSIM_RELEASE_AFTER_TIMEOUT,
1536 				/*reduction*/0,
1537 				/*timeout*/duration_ms,
1538 				/*getcount_only*/0);
1539 	}
1540 
1541 }
1542 
1543 static int
1544 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
1545     cam_flags camflags, uint32_t sense_flags,
1546     int *openings, uint32_t *relsim_flags,
1547     uint32_t *timeout, uint32_t *action, const char **action_string)
1548 {
1549 	struct cam_periph *periph;
1550 	int error;
1551 
1552 	switch (ccb->csio.scsi_status) {
1553 	case SCSI_STATUS_OK:
1554 	case SCSI_STATUS_COND_MET:
1555 	case SCSI_STATUS_INTERMED:
1556 	case SCSI_STATUS_INTERMED_COND_MET:
1557 		error = 0;
1558 		break;
1559 	case SCSI_STATUS_CMD_TERMINATED:
1560 	case SCSI_STATUS_CHECK_COND:
1561 		error = camperiphscsisenseerror(ccb, orig_ccb,
1562 					        camflags,
1563 					        sense_flags,
1564 					        openings,
1565 					        relsim_flags,
1566 					        timeout,
1567 					        action,
1568 					        action_string);
1569 		break;
1570 	case SCSI_STATUS_QUEUE_FULL:
1571 	{
1572 		/* no decrement */
1573 		struct ccb_getdevstats cgds;
1574 
1575 		/*
1576 		 * First off, find out what the current
1577 		 * transaction counts are.
1578 		 */
1579 		memset(&cgds, 0, sizeof(cgds));
1580 		xpt_setup_ccb(&cgds.ccb_h,
1581 			      ccb->ccb_h.path,
1582 			      CAM_PRIORITY_NORMAL);
1583 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1584 		xpt_action((union ccb *)&cgds);
1585 
1586 		/*
1587 		 * If we were the only transaction active, treat
1588 		 * the QUEUE FULL as if it were a BUSY condition.
1589 		 */
1590 		if (cgds.dev_active != 0) {
1591 			int total_openings;
1592 
1593 			/*
1594 		 	 * Reduce the number of openings to
1595 			 * be 1 less than the amount it took
1596 			 * to get a queue full bounded by the
1597 			 * minimum allowed tag count for this
1598 			 * device.
1599 		 	 */
1600 			total_openings = cgds.dev_active + cgds.dev_openings;
1601 			*openings = cgds.dev_active;
1602 			if (*openings < cgds.mintags)
1603 				*openings = cgds.mintags;
1604 			if (*openings < total_openings)
1605 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1606 			else {
1607 				/*
1608 				 * Some devices report queue full for
1609 				 * temporary resource shortages.  For
1610 				 * this reason, we allow a minimum
1611 				 * tag count to be entered via a
1612 				 * quirk entry to prevent the queue
1613 				 * count on these devices from falling
1614 				 * to a pessimisticly low value.  We
1615 				 * still wait for the next successful
1616 				 * completion, however, before queueing
1617 				 * more transactions to the device.
1618 				 */
1619 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1620 			}
1621 			*timeout = 0;
1622 			error = ERESTART;
1623 			*action &= ~SSQ_PRINT_SENSE;
1624 			break;
1625 		}
1626 		/* FALLTHROUGH */
1627 	}
1628 	case SCSI_STATUS_BUSY:
1629 		/*
1630 		 * Restart the queue after either another
1631 		 * command completes or a 1 second timeout.
1632 		 */
1633 		periph = xpt_path_periph(ccb->ccb_h.path);
1634 		if (periph->flags & CAM_PERIPH_INVALID) {
1635 			error = ENXIO;
1636 			*action_string = "Periph was invalidated";
1637 		} else if ((sense_flags & SF_RETRY_BUSY) != 0 ||
1638 		    ccb->ccb_h.retry_count > 0) {
1639 			if ((sense_flags & SF_RETRY_BUSY) == 0)
1640 				ccb->ccb_h.retry_count--;
1641 			error = ERESTART;
1642 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1643 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1644 			*timeout = 1000;
1645 		} else {
1646 			error = EIO;
1647 			*action_string = "Retries exhausted";
1648 		}
1649 		break;
1650 	case SCSI_STATUS_RESERV_CONFLICT:
1651 	default:
1652 		error = EIO;
1653 		break;
1654 	}
1655 	return (error);
1656 }
1657 
1658 static int
1659 camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
1660     cam_flags camflags, uint32_t sense_flags,
1661     int *openings, uint32_t *relsim_flags,
1662     uint32_t *timeout, uint32_t *action, const char **action_string)
1663 {
1664 	struct cam_periph *periph;
1665 	union ccb *orig_ccb = ccb;
1666 	int error, recoveryccb;
1667 	uint16_t flags;
1668 
1669 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1670 	if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL)
1671 		biotrack(ccb->csio.bio, __func__);
1672 #endif
1673 
1674 	periph = xpt_path_periph(ccb->ccb_h.path);
1675 	recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
1676 	if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
1677 		/*
1678 		 * If error recovery is already in progress, don't attempt
1679 		 * to process this error, but requeue it unconditionally
1680 		 * and attempt to process it once error recovery has
1681 		 * completed.  This failed command is probably related to
1682 		 * the error that caused the currently active error recovery
1683 		 * action so our  current recovery efforts should also
1684 		 * address this command.  Be aware that the error recovery
1685 		 * code assumes that only one recovery action is in progress
1686 		 * on a particular peripheral instance at any given time
1687 		 * (e.g. only one saved CCB for error recovery) so it is
1688 		 * imperitive that we don't violate this assumption.
1689 		 */
1690 		error = ERESTART;
1691 		*action &= ~SSQ_PRINT_SENSE;
1692 	} else {
1693 		scsi_sense_action err_action;
1694 		struct ccb_getdev cgd;
1695 
1696 		/*
1697 		 * Grab the inquiry data for this device.
1698 		 */
1699 		memset(&cgd, 0, sizeof(cgd));
1700 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1701 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1702 		xpt_action((union ccb *)&cgd);
1703 
1704 		err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
1705 		    sense_flags);
1706 		error = err_action & SS_ERRMASK;
1707 
1708 		/*
1709 		 * Do not autostart sequential access devices
1710 		 * to avoid unexpected tape loading.
1711 		 */
1712 		if ((err_action & SS_MASK) == SS_START &&
1713 		    SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1714 			*action_string = "Will not autostart a "
1715 			    "sequential access device";
1716 			goto sense_error_done;
1717 		}
1718 
1719 		/*
1720 		 * Avoid recovery recursion if recovery action is the same.
1721 		 */
1722 		if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
1723 			if (((err_action & SS_MASK) == SS_START &&
1724 			     ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
1725 			    ((err_action & SS_MASK) == SS_TUR &&
1726 			     (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
1727 				err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1728 				*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1729 				*timeout = 500;
1730 			}
1731 		}
1732 
1733 		/*
1734 		 * If the recovery action will consume a retry,
1735 		 * make sure we actually have retries available.
1736 		 */
1737 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1738 		 	if (ccb->ccb_h.retry_count > 0 &&
1739 			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1740 		 		ccb->ccb_h.retry_count--;
1741 			else {
1742 				*action_string = "Retries exhausted";
1743 				goto sense_error_done;
1744 			}
1745 		}
1746 
1747 		if ((err_action & SS_MASK) >= SS_START) {
1748 			/*
1749 			 * Do common portions of commands that
1750 			 * use recovery CCBs.
1751 			 */
1752 			orig_ccb = xpt_alloc_ccb_nowait();
1753 			if (orig_ccb == NULL) {
1754 				*action_string = "Can't allocate recovery CCB";
1755 				goto sense_error_done;
1756 			}
1757 			/*
1758 			 * Clear freeze flag for original request here, as
1759 			 * this freeze will be dropped as part of ERESTART.
1760 			 */
1761 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1762 
1763 			KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO,
1764 			    ("%s: ccb func_code %#x != XPT_SCSI_IO",
1765 			     __func__, ccb->ccb_h.func_code));
1766 			flags = orig_ccb->ccb_h.alloc_flags;
1767 			bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio));
1768 			orig_ccb->ccb_h.alloc_flags = flags;
1769 		}
1770 
1771 		switch (err_action & SS_MASK) {
1772 		case SS_NOP:
1773 			*action_string = "No recovery action needed";
1774 			error = 0;
1775 			break;
1776 		case SS_RETRY:
1777 			*action_string = "Retrying command (per sense data)";
1778 			error = ERESTART;
1779 			break;
1780 		case SS_FAIL:
1781 			*action_string = "Unretryable error";
1782 			break;
1783 		case SS_START:
1784 		{
1785 			int le;
1786 
1787 			/*
1788 			 * Send a start unit command to the device, and
1789 			 * then retry the command.
1790 			 */
1791 			*action_string = "Attempting to start unit";
1792 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1793 
1794 			/*
1795 			 * Check for removable media and set
1796 			 * load/eject flag appropriately.
1797 			 */
1798 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1799 				le = TRUE;
1800 			else
1801 				le = FALSE;
1802 
1803 			scsi_start_stop(&ccb->csio,
1804 					/*retries*/1,
1805 					camperiphdone,
1806 					MSG_SIMPLE_Q_TAG,
1807 					/*start*/TRUE,
1808 					/*load/eject*/le,
1809 					/*immediate*/FALSE,
1810 					SSD_FULL_SIZE,
1811 					/*timeout*/50000);
1812 			break;
1813 		}
1814 		case SS_TUR:
1815 		{
1816 			/*
1817 			 * Send a Test Unit Ready to the device.
1818 			 * If the 'many' flag is set, we send 120
1819 			 * test unit ready commands, one every half
1820 			 * second.  Otherwise, we just send one TUR.
1821 			 * We only want to do this if the retry
1822 			 * count has not been exhausted.
1823 			 */
1824 			int retries;
1825 
1826 			if ((err_action & SSQ_MANY) != 0 && (periph->flags &
1827 			     CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) {
1828 				periph->flags |= CAM_PERIPH_RECOVERY_WAIT;
1829 				*action_string = "Polling device for readiness";
1830 				retries = 120;
1831 			} else {
1832 				*action_string = "Testing device for readiness";
1833 				retries = 1;
1834 			}
1835 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1836 			scsi_test_unit_ready(&ccb->csio,
1837 					     retries,
1838 					     camperiphdone,
1839 					     MSG_SIMPLE_Q_TAG,
1840 					     SSD_FULL_SIZE,
1841 					     /*timeout*/5000);
1842 
1843 			/*
1844 			 * Accomplish our 500ms delay by deferring
1845 			 * the release of our device queue appropriately.
1846 			 */
1847 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1848 			*timeout = 500;
1849 			break;
1850 		}
1851 		default:
1852 			panic("Unhandled error action %x", err_action);
1853 		}
1854 
1855 		if ((err_action & SS_MASK) >= SS_START) {
1856 			/*
1857 			 * Drop the priority, so that the recovery
1858 			 * CCB is the first to execute.  Freeze the queue
1859 			 * after this command is sent so that we can
1860 			 * restore the old csio and have it queued in
1861 			 * the proper order before we release normal
1862 			 * transactions to the device.
1863 			 */
1864 			ccb->ccb_h.pinfo.priority--;
1865 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1866 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1867 			error = ERESTART;
1868 			*orig = orig_ccb;
1869 		}
1870 
1871 sense_error_done:
1872 		*action = err_action;
1873 	}
1874 	return (error);
1875 }
1876 
1877 /*
1878  * Generic error handler.  Peripheral drivers usually filter
1879  * out the errors that they handle in a unique manner, then
1880  * call this function.
1881  */
1882 int
1883 cam_periph_error(union ccb *ccb, cam_flags camflags,
1884 		 uint32_t sense_flags)
1885 {
1886 	struct cam_path *newpath;
1887 	union ccb  *orig_ccb, *scan_ccb;
1888 	struct cam_periph *periph;
1889 	const char *action_string;
1890 	cam_status  status;
1891 	int	    frozen, error, openings, devctl_err;
1892 	uint32_t   action, relsim_flags, timeout;
1893 
1894 	action = SSQ_PRINT_SENSE;
1895 	periph = xpt_path_periph(ccb->ccb_h.path);
1896 	action_string = NULL;
1897 	status = ccb->ccb_h.status;
1898 	frozen = (status & CAM_DEV_QFRZN) != 0;
1899 	status &= CAM_STATUS_MASK;
1900 	devctl_err = openings = relsim_flags = timeout = 0;
1901 	orig_ccb = ccb;
1902 
1903 	/* Filter the errors that should be reported via devctl */
1904 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
1905 	case CAM_CMD_TIMEOUT:
1906 	case CAM_REQ_ABORTED:
1907 	case CAM_REQ_CMP_ERR:
1908 	case CAM_REQ_TERMIO:
1909 	case CAM_UNREC_HBA_ERROR:
1910 	case CAM_DATA_RUN_ERR:
1911 	case CAM_SCSI_STATUS_ERROR:
1912 	case CAM_ATA_STATUS_ERROR:
1913 	case CAM_SMP_STATUS_ERROR:
1914 	case CAM_DEV_NOT_THERE:
1915 	case CAM_NVME_STATUS_ERROR:
1916 		devctl_err++;
1917 		break;
1918 	default:
1919 		break;
1920 	}
1921 
1922 	switch (status) {
1923 	case CAM_REQ_CMP:
1924 		error = 0;
1925 		action &= ~SSQ_PRINT_SENSE;
1926 		break;
1927 	case CAM_SCSI_STATUS_ERROR:
1928 		error = camperiphscsistatuserror(ccb, &orig_ccb,
1929 		    camflags, sense_flags, &openings, &relsim_flags,
1930 		    &timeout, &action, &action_string);
1931 		break;
1932 	case CAM_AUTOSENSE_FAIL:
1933 		error = EIO;	/* we have to kill the command */
1934 		break;
1935 	case CAM_UA_ABORT:
1936 	case CAM_UA_TERMIO:
1937 	case CAM_MSG_REJECT_REC:
1938 		/* XXX Don't know that these are correct */
1939 		error = EIO;
1940 		break;
1941 	case CAM_SEL_TIMEOUT:
1942 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1943 			if (ccb->ccb_h.retry_count > 0 &&
1944 			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1945 				ccb->ccb_h.retry_count--;
1946 				error = ERESTART;
1947 
1948 				/*
1949 				 * Wait a bit to give the device
1950 				 * time to recover before we try again.
1951 				 */
1952 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1953 				timeout = periph_selto_delay;
1954 				break;
1955 			}
1956 			action_string = "Retries exhausted";
1957 		}
1958 		/* FALLTHROUGH */
1959 	case CAM_DEV_NOT_THERE:
1960 		error = ENXIO;
1961 		action = SSQ_LOST;
1962 		break;
1963 	case CAM_REQ_INVALID:
1964 	case CAM_PATH_INVALID:
1965 	case CAM_NO_HBA:
1966 	case CAM_PROVIDE_FAIL:
1967 	case CAM_REQ_TOO_BIG:
1968 	case CAM_LUN_INVALID:
1969 	case CAM_TID_INVALID:
1970 	case CAM_FUNC_NOTAVAIL:
1971 		error = EINVAL;
1972 		break;
1973 	case CAM_SCSI_BUS_RESET:
1974 	case CAM_BDR_SENT:
1975 		/*
1976 		 * Commands that repeatedly timeout and cause these
1977 		 * kinds of error recovery actions, should return
1978 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1979 		 * that this command was an innocent bystander to
1980 		 * these events and should be unconditionally
1981 		 * retried.
1982 		 */
1983 	case CAM_REQUEUE_REQ:
1984 		/* Unconditional requeue if device is still there */
1985 		if (periph->flags & CAM_PERIPH_INVALID) {
1986 			action_string = "Periph was invalidated";
1987 			error = ENXIO;
1988 		} else if (sense_flags & SF_NO_RETRY) {
1989 			error = EIO;
1990 			action_string = "Retry was blocked";
1991 		} else {
1992 			error = ERESTART;
1993 			action &= ~SSQ_PRINT_SENSE;
1994 		}
1995 		break;
1996 	case CAM_RESRC_UNAVAIL:
1997 		/* Wait a bit for the resource shortage to abate. */
1998 		timeout = periph_noresrc_delay;
1999 		/* FALLTHROUGH */
2000 	case CAM_BUSY:
2001 		if (timeout == 0) {
2002 			/* Wait a bit for the busy condition to abate. */
2003 			timeout = periph_busy_delay;
2004 		}
2005 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
2006 		/* FALLTHROUGH */
2007 	case CAM_ATA_STATUS_ERROR:
2008 	case CAM_NVME_STATUS_ERROR:
2009 	case CAM_SMP_STATUS_ERROR:
2010 	case CAM_REQ_CMP_ERR:
2011 	case CAM_CMD_TIMEOUT:
2012 	case CAM_UNEXP_BUSFREE:
2013 	case CAM_UNCOR_PARITY:
2014 	case CAM_DATA_RUN_ERR:
2015 	default:
2016 		if (periph->flags & CAM_PERIPH_INVALID) {
2017 			error = ENXIO;
2018 			action_string = "Periph was invalidated";
2019 		} else if (ccb->ccb_h.retry_count == 0) {
2020 			error = EIO;
2021 			action_string = "Retries exhausted";
2022 		} else if (sense_flags & SF_NO_RETRY) {
2023 			error = EIO;
2024 			action_string = "Retry was blocked";
2025 		} else {
2026 			ccb->ccb_h.retry_count--;
2027 			error = ERESTART;
2028 		}
2029 		break;
2030 	}
2031 
2032 	if ((sense_flags & SF_PRINT_ALWAYS) ||
2033 	    CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
2034 		action |= SSQ_PRINT_SENSE;
2035 	else if (sense_flags & SF_NO_PRINT)
2036 		action &= ~SSQ_PRINT_SENSE;
2037 	if ((action & SSQ_PRINT_SENSE) != 0)
2038 		cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
2039 	if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
2040 		if (error != ERESTART) {
2041 			if (action_string == NULL)
2042 				action_string = "Unretryable error";
2043 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
2044 			    error, action_string);
2045 		} else if (action_string != NULL)
2046 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
2047 		else {
2048 			xpt_print(ccb->ccb_h.path,
2049 			    "Retrying command, %d more tries remain\n",
2050 			    ccb->ccb_h.retry_count);
2051 		}
2052 	}
2053 
2054 	if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0))
2055 		cam_periph_devctl_notify(orig_ccb);
2056 
2057 	if ((action & SSQ_LOST) != 0) {
2058 		lun_id_t lun_id;
2059 
2060 		/*
2061 		 * For a selection timeout, we consider all of the LUNs on
2062 		 * the target to be gone.  If the status is CAM_DEV_NOT_THERE,
2063 		 * then we only get rid of the device(s) specified by the
2064 		 * path in the original CCB.
2065 		 */
2066 		if (status == CAM_SEL_TIMEOUT)
2067 			lun_id = CAM_LUN_WILDCARD;
2068 		else
2069 			lun_id = xpt_path_lun_id(ccb->ccb_h.path);
2070 
2071 		/* Should we do more if we can't create the path?? */
2072 		if (xpt_create_path(&newpath, periph,
2073 				    xpt_path_path_id(ccb->ccb_h.path),
2074 				    xpt_path_target_id(ccb->ccb_h.path),
2075 				    lun_id) == CAM_REQ_CMP) {
2076 			/*
2077 			 * Let peripheral drivers know that this
2078 			 * device has gone away.
2079 			 */
2080 			xpt_async(AC_LOST_DEVICE, newpath, NULL);
2081 			xpt_free_path(newpath);
2082 		}
2083 	}
2084 
2085 	/* Broadcast UNIT ATTENTIONs to all periphs. */
2086 	if ((action & SSQ_UA) != 0)
2087 		xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
2088 
2089 	/* Rescan target on "Reported LUNs data has changed" */
2090 	if ((action & SSQ_RESCAN) != 0) {
2091 		if (xpt_create_path(&newpath, NULL,
2092 				    xpt_path_path_id(ccb->ccb_h.path),
2093 				    xpt_path_target_id(ccb->ccb_h.path),
2094 				    CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
2095 			scan_ccb = xpt_alloc_ccb_nowait();
2096 			if (scan_ccb != NULL) {
2097 				scan_ccb->ccb_h.path = newpath;
2098 				scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
2099 				scan_ccb->crcn.flags = 0;
2100 				xpt_rescan(scan_ccb);
2101 			} else {
2102 				xpt_print(newpath,
2103 				    "Can't allocate CCB to rescan target\n");
2104 				xpt_free_path(newpath);
2105 			}
2106 		}
2107 	}
2108 
2109 	/* Attempt a retry */
2110 	if (error == ERESTART || error == 0) {
2111 		if (frozen != 0)
2112 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
2113 		if (error == ERESTART)
2114 			xpt_action(ccb);
2115 		if (frozen != 0)
2116 			cam_release_devq(ccb->ccb_h.path,
2117 					 relsim_flags,
2118 					 openings,
2119 					 timeout,
2120 					 /*getcount_only*/0);
2121 	}
2122 
2123 	return (error);
2124 }
2125 
2126 #define CAM_PERIPH_DEVD_MSG_SIZE	256
2127 
2128 static void
2129 cam_periph_devctl_notify(union ccb *ccb)
2130 {
2131 	struct cam_periph *periph;
2132 	struct ccb_getdev *cgd;
2133 	struct sbuf sb;
2134 	int serr, sk, asc, ascq;
2135 	char *sbmsg, *type;
2136 
2137 	sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT);
2138 	if (sbmsg == NULL)
2139 		return;
2140 
2141 	sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN);
2142 
2143 	periph = xpt_path_periph(ccb->ccb_h.path);
2144 	sbuf_printf(&sb, "device=%s%d ", periph->periph_name,
2145 	    periph->unit_number);
2146 
2147 	sbuf_cat(&sb, "serial=\"");
2148 	if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) {
2149 		xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path,
2150 		    CAM_PRIORITY_NORMAL);
2151 		cgd->ccb_h.func_code = XPT_GDEV_TYPE;
2152 		xpt_action((union ccb *)cgd);
2153 
2154 		if (cgd->ccb_h.status == CAM_REQ_CMP)
2155 			sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len);
2156 		xpt_free_ccb((union ccb *)cgd);
2157 	}
2158 	sbuf_cat(&sb, "\" ");
2159 	sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status);
2160 
2161 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
2162 	case CAM_CMD_TIMEOUT:
2163 		sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout);
2164 		type = "timeout";
2165 		break;
2166 	case CAM_SCSI_STATUS_ERROR:
2167 		sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status);
2168 		if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq))
2169 			sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ",
2170 			    serr, sk, asc, ascq);
2171 		type = "error";
2172 		break;
2173 	case CAM_ATA_STATUS_ERROR:
2174 		sbuf_cat(&sb, "RES=\"");
2175 		ata_res_sbuf(&ccb->ataio.res, &sb);
2176 		sbuf_cat(&sb, "\" ");
2177 		type = "error";
2178 		break;
2179 	case CAM_NVME_STATUS_ERROR:
2180 	{
2181 		struct ccb_nvmeio *n = &ccb->nvmeio;
2182 
2183 		sbuf_printf(&sb, "sc=\"%02x\" sct=\"%02x\" cdw0=\"%08x\" ",
2184 		    NVME_STATUS_GET_SC(n->cpl.status),
2185 		    NVME_STATUS_GET_SCT(n->cpl.status), n->cpl.cdw0);
2186 		type = "error";
2187 		break;
2188 	}
2189 	default:
2190 		type = "error";
2191 		break;
2192 	}
2193 
2194 
2195 	switch (ccb->ccb_h.func_code) {
2196 	case XPT_SCSI_IO:
2197 		sbuf_cat(&sb, "CDB=\"");
2198 		scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb);
2199 		sbuf_cat(&sb, "\" ");
2200 		break;
2201 	case XPT_ATA_IO:
2202 		sbuf_cat(&sb, "ACB=\"");
2203 		ata_cmd_sbuf(&ccb->ataio.cmd, &sb);
2204 		sbuf_cat(&sb, "\" ");
2205 		break;
2206 	case XPT_NVME_IO:
2207 	case XPT_NVME_ADMIN:
2208 	{
2209 		struct ccb_nvmeio *n = &ccb->nvmeio;
2210 		struct nvme_command *cmd = &n->cmd;
2211 
2212 		// XXX Likely should be nvme_cmd_sbuf
2213 		sbuf_printf(&sb, "opc=\"%02x\" fuse=\"%02x\" cid=\"%04x\" "
2214 		    "nsid=\"%08x\" cdw10=\"%08x\" cdw11=\"%08x\" cdw12=\"%08x\" "
2215 		    "cdw13=\"%08x\" cdw14=\"%08x\" cdw15=\"%08x\" ",
2216 		    cmd->opc, cmd->fuse, cmd->cid, cmd->nsid, cmd->cdw10,
2217 		    cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14, cmd->cdw15);
2218 		break;
2219 	}
2220 	default:
2221 		break;
2222 	}
2223 
2224 	if (sbuf_finish(&sb) == 0)
2225 		devctl_notify("CAM", "periph", type, sbuf_data(&sb));
2226 	sbuf_delete(&sb);
2227 	free(sbmsg, M_CAMPERIPH);
2228 }
2229 
2230 /*
2231  * Sysctl to force an invalidation of the drive right now. Can be
2232  * called with CTLFLAG_MPSAFE since we take periph lock.
2233  */
2234 int
2235 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS)
2236 {
2237 	struct cam_periph *periph;
2238 	int error, value;
2239 
2240 	periph = arg1;
2241 	value = 0;
2242 	error = sysctl_handle_int(oidp, &value, 0, req);
2243 	if (error != 0 || req->newptr == NULL || value != 1)
2244 		return (error);
2245 
2246 	cam_periph_lock(periph);
2247 	cam_periph_invalidate(periph);
2248 	cam_periph_unlock(periph);
2249 
2250 	return (0);
2251 }
2252