xref: /freebsd/sys/cam/cam_periph.c (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1997, 1998 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/bio.h>
39 #include <sys/conf.h>
40 #include <sys/devctl.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/buf.h>
44 #include <sys/proc.h>
45 #include <sys/devicestat.h>
46 #include <sys/sbuf.h>
47 #include <sys/sysctl.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_compat.h>
54 #include <cam/cam_queue.h>
55 #include <cam/cam_xpt_periph.h>
56 #include <cam/cam_xpt_internal.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_debug.h>
59 #include <cam/cam_sim.h>
60 
61 #include <cam/scsi/scsi_all.h>
62 #include <cam/scsi/scsi_message.h>
63 #include <cam/scsi/scsi_pass.h>
64 
65 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
66 					  u_int newunit, bool wired,
67 					  path_id_t pathid, target_id_t target,
68 					  lun_id_t lun);
69 static	u_int		camperiphunit(struct periph_driver *p_drv,
70 				      path_id_t pathid, target_id_t target,
71 				      lun_id_t lun,
72 				      const char *sn);
73 static	void		camperiphdone(struct cam_periph *periph,
74 					union ccb *done_ccb);
75 static  void		camperiphfree(struct cam_periph *periph);
76 static int		camperiphscsistatuserror(union ccb *ccb,
77 					        union ccb **orig_ccb,
78 						 cam_flags camflags,
79 						 uint32_t sense_flags,
80 						 int *openings,
81 						 uint32_t *relsim_flags,
82 						 uint32_t *timeout,
83 						 uint32_t  *action,
84 						 const char **action_string);
85 static	int		camperiphscsisenseerror(union ccb *ccb,
86 					        union ccb **orig_ccb,
87 					        cam_flags camflags,
88 					        uint32_t sense_flags,
89 					        int *openings,
90 					        uint32_t *relsim_flags,
91 					        uint32_t *timeout,
92 					        uint32_t *action,
93 					        const char **action_string);
94 static void		cam_periph_devctl_notify(union ccb *ccb);
95 
96 static int nperiph_drivers;
97 static int initialized = 0;
98 struct periph_driver **periph_drivers;
99 
100 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
101 
102 static int periph_selto_delay = 1000;
103 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
104 static int periph_noresrc_delay = 500;
105 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
106 static int periph_busy_delay = 500;
107 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
108 
109 static u_int periph_mapmem_thresh = 65536;
110 SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN,
111     &periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping");
112 
113 void
114 periphdriver_register(void *data)
115 {
116 	struct periph_driver *drv = (struct periph_driver *)data;
117 	struct periph_driver **newdrivers, **old;
118 	int ndrivers;
119 
120 again:
121 	ndrivers = nperiph_drivers + 2;
122 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
123 			    M_WAITOK);
124 	xpt_lock_buses();
125 	if (ndrivers != nperiph_drivers + 2) {
126 		/*
127 		 * Lost race against itself; go around.
128 		 */
129 		xpt_unlock_buses();
130 		free(newdrivers, M_CAMPERIPH);
131 		goto again;
132 	}
133 	if (periph_drivers)
134 		bcopy(periph_drivers, newdrivers,
135 		      sizeof(*newdrivers) * nperiph_drivers);
136 	newdrivers[nperiph_drivers] = drv;
137 	newdrivers[nperiph_drivers + 1] = NULL;
138 	old = periph_drivers;
139 	periph_drivers = newdrivers;
140 	nperiph_drivers++;
141 	xpt_unlock_buses();
142 	if (old)
143 		free(old, M_CAMPERIPH);
144 	/* If driver marked as early or it is late now, initialize it. */
145 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
146 	    initialized > 1)
147 		(*drv->init)();
148 }
149 
150 int
151 periphdriver_unregister(void *data)
152 {
153 	struct periph_driver *drv = (struct periph_driver *)data;
154 	int error, n;
155 
156 	/* If driver marked as early or it is late now, deinitialize it. */
157 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
158 	    initialized > 1) {
159 		if (drv->deinit == NULL) {
160 			printf("CAM periph driver '%s' doesn't have deinit.\n",
161 			    drv->driver_name);
162 			return (EOPNOTSUPP);
163 		}
164 		error = drv->deinit();
165 		if (error != 0)
166 			return (error);
167 	}
168 
169 	xpt_lock_buses();
170 	for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++)
171 		;
172 	KASSERT(n < nperiph_drivers,
173 	    ("Periph driver '%s' was not registered", drv->driver_name));
174 	for (; n + 1 < nperiph_drivers; n++)
175 		periph_drivers[n] = periph_drivers[n + 1];
176 	periph_drivers[n + 1] = NULL;
177 	nperiph_drivers--;
178 	xpt_unlock_buses();
179 	return (0);
180 }
181 
182 void
183 periphdriver_init(int level)
184 {
185 	int	i, early;
186 
187 	initialized = max(initialized, level);
188 	for (i = 0; periph_drivers[i] != NULL; i++) {
189 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
190 		if (early == initialized)
191 			(*periph_drivers[i]->init)();
192 	}
193 }
194 
195 cam_status
196 cam_periph_alloc(periph_ctor_t *periph_ctor,
197 		 periph_oninv_t *periph_oninvalidate,
198 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
199 		 char *name, cam_periph_type type, struct cam_path *path,
200 		 ac_callback_t *ac_callback, ac_code code, void *arg)
201 {
202 	struct		periph_driver **p_drv;
203 	struct		cam_sim *sim;
204 	struct		cam_periph *periph;
205 	struct		cam_periph *cur_periph;
206 	path_id_t	path_id;
207 	target_id_t	target_id;
208 	lun_id_t	lun_id;
209 	cam_status	status;
210 	u_int		init_level;
211 
212 	init_level = 0;
213 	/*
214 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
215 	 * of our type assigned to this path, we are likely waiting for
216 	 * final close on an old, invalidated, peripheral.  If this is
217 	 * the case, queue up a deferred call to the peripheral's async
218 	 * handler.  If it looks like a mistaken re-allocation, complain.
219 	 */
220 	if ((periph = cam_periph_find(path, name)) != NULL) {
221 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
222 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
223 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
224 			periph->deferred_callback = ac_callback;
225 			periph->deferred_ac = code;
226 			return (CAM_REQ_INPROG);
227 		} else {
228 			printf("cam_periph_alloc: attempt to re-allocate "
229 			       "valid device %s%d rejected flags %#x "
230 			       "refcount %d\n", periph->periph_name,
231 			       periph->unit_number, periph->flags,
232 			       periph->refcount);
233 		}
234 		return (CAM_REQ_INVALID);
235 	}
236 
237 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
238 					     M_NOWAIT|M_ZERO);
239 
240 	if (periph == NULL)
241 		return (CAM_RESRC_UNAVAIL);
242 
243 	init_level++;
244 
245 	sim = xpt_path_sim(path);
246 	path_id = xpt_path_path_id(path);
247 	target_id = xpt_path_target_id(path);
248 	lun_id = xpt_path_lun_id(path);
249 	periph->periph_start = periph_start;
250 	periph->periph_dtor = periph_dtor;
251 	periph->periph_oninval = periph_oninvalidate;
252 	periph->type = type;
253 	periph->periph_name = name;
254 	periph->scheduled_priority = CAM_PRIORITY_NONE;
255 	periph->immediate_priority = CAM_PRIORITY_NONE;
256 	periph->refcount = 1;		/* Dropped by invalidation. */
257 	periph->sim = sim;
258 	SLIST_INIT(&periph->ccb_list);
259 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
260 	if (status != CAM_REQ_CMP)
261 		goto failure;
262 	periph->path = path;
263 
264 	xpt_lock_buses();
265 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
266 		if (strcmp((*p_drv)->driver_name, name) == 0)
267 			break;
268 	}
269 	if (*p_drv == NULL) {
270 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
271 		xpt_unlock_buses();
272 		xpt_free_path(periph->path);
273 		free(periph, M_CAMPERIPH);
274 		return (CAM_REQ_INVALID);
275 	}
276 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id,
277 	    path->device->serial_num);
278 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
279 	while (cur_periph != NULL
280 	    && cur_periph->unit_number < periph->unit_number)
281 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
282 	if (cur_periph != NULL) {
283 		KASSERT(cur_periph->unit_number != periph->unit_number,
284 		    ("duplicate units on periph list"));
285 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
286 	} else {
287 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
288 		(*p_drv)->generation++;
289 	}
290 	xpt_unlock_buses();
291 
292 	init_level++;
293 
294 	status = xpt_add_periph(periph);
295 	if (status != CAM_REQ_CMP)
296 		goto failure;
297 
298 	init_level++;
299 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
300 
301 	status = periph_ctor(periph, arg);
302 
303 	if (status == CAM_REQ_CMP)
304 		init_level++;
305 
306 failure:
307 	switch (init_level) {
308 	case 4:
309 		/* Initialized successfully */
310 		break;
311 	case 3:
312 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
313 		xpt_remove_periph(periph);
314 		/* FALLTHROUGH */
315 	case 2:
316 		xpt_lock_buses();
317 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
318 		xpt_unlock_buses();
319 		xpt_free_path(periph->path);
320 		/* FALLTHROUGH */
321 	case 1:
322 		free(periph, M_CAMPERIPH);
323 		/* FALLTHROUGH */
324 	case 0:
325 		/* No cleanup to perform. */
326 		break;
327 	default:
328 		panic("%s: Unknown init level", __func__);
329 	}
330 	return(status);
331 }
332 
333 /*
334  * Find a peripheral structure with the specified path, target, lun,
335  * and (optionally) type.  If the name is NULL, this function will return
336  * the first peripheral driver that matches the specified path.
337  */
338 struct cam_periph *
339 cam_periph_find(struct cam_path *path, char *name)
340 {
341 	struct periph_driver **p_drv;
342 	struct cam_periph *periph;
343 
344 	xpt_lock_buses();
345 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
346 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
347 			continue;
348 
349 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
350 			if (xpt_path_comp(periph->path, path) == 0) {
351 				xpt_unlock_buses();
352 				cam_periph_assert(periph, MA_OWNED);
353 				return(periph);
354 			}
355 		}
356 		if (name != NULL) {
357 			xpt_unlock_buses();
358 			return(NULL);
359 		}
360 	}
361 	xpt_unlock_buses();
362 	return(NULL);
363 }
364 
365 /*
366  * Find peripheral driver instances attached to the specified path.
367  */
368 int
369 cam_periph_list(struct cam_path *path, struct sbuf *sb)
370 {
371 	struct sbuf local_sb;
372 	struct periph_driver **p_drv;
373 	struct cam_periph *periph;
374 	int count;
375 	int sbuf_alloc_len;
376 
377 	sbuf_alloc_len = 16;
378 retry:
379 	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
380 	count = 0;
381 	xpt_lock_buses();
382 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
383 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
384 			if (xpt_path_comp(periph->path, path) != 0)
385 				continue;
386 
387 			if (sbuf_len(&local_sb) != 0)
388 				sbuf_cat(&local_sb, ",");
389 
390 			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
391 				    periph->unit_number);
392 
393 			if (sbuf_error(&local_sb) == ENOMEM) {
394 				sbuf_alloc_len *= 2;
395 				xpt_unlock_buses();
396 				sbuf_delete(&local_sb);
397 				goto retry;
398 			}
399 			count++;
400 		}
401 	}
402 	xpt_unlock_buses();
403 	sbuf_finish(&local_sb);
404 	if (sbuf_len(sb) != 0)
405 		sbuf_cat(sb, ",");
406 	sbuf_cat(sb, sbuf_data(&local_sb));
407 	sbuf_delete(&local_sb);
408 	return (count);
409 }
410 
411 int
412 cam_periph_acquire(struct cam_periph *periph)
413 {
414 	int status;
415 
416 	if (periph == NULL)
417 		return (EINVAL);
418 
419 	status = ENOENT;
420 	xpt_lock_buses();
421 	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
422 		periph->refcount++;
423 		status = 0;
424 	}
425 	xpt_unlock_buses();
426 
427 	return (status);
428 }
429 
430 void
431 cam_periph_doacquire(struct cam_periph *periph)
432 {
433 
434 	xpt_lock_buses();
435 	KASSERT(periph->refcount >= 1,
436 	    ("cam_periph_doacquire() with refcount == %d", periph->refcount));
437 	periph->refcount++;
438 	xpt_unlock_buses();
439 }
440 
441 void
442 cam_periph_release_locked_buses(struct cam_periph *periph)
443 {
444 
445 	cam_periph_assert(periph, MA_OWNED);
446 	KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
447 	if (--periph->refcount == 0)
448 		camperiphfree(periph);
449 }
450 
451 void
452 cam_periph_release_locked(struct cam_periph *periph)
453 {
454 
455 	if (periph == NULL)
456 		return;
457 
458 	xpt_lock_buses();
459 	cam_periph_release_locked_buses(periph);
460 	xpt_unlock_buses();
461 }
462 
463 void
464 cam_periph_release(struct cam_periph *periph)
465 {
466 	struct mtx *mtx;
467 
468 	if (periph == NULL)
469 		return;
470 
471 	cam_periph_assert(periph, MA_NOTOWNED);
472 	mtx = cam_periph_mtx(periph);
473 	mtx_lock(mtx);
474 	cam_periph_release_locked(periph);
475 	mtx_unlock(mtx);
476 }
477 
478 /*
479  * hold/unhold act as mutual exclusion for sections of the code that
480  * need to sleep and want to make sure that other sections that
481  * will interfere are held off. This only protects exclusive sections
482  * from each other.
483  */
484 int
485 cam_periph_hold(struct cam_periph *periph, int priority)
486 {
487 	int error;
488 
489 	/*
490 	 * Increment the reference count on the peripheral
491 	 * while we wait for our lock attempt to succeed
492 	 * to ensure the peripheral doesn't disappear out
493 	 * from user us while we sleep.
494 	 */
495 
496 	if (cam_periph_acquire(periph) != 0)
497 		return (ENXIO);
498 
499 	cam_periph_assert(periph, MA_OWNED);
500 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
501 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
502 		if ((error = cam_periph_sleep(periph, periph, priority,
503 		    "caplck", 0)) != 0) {
504 			cam_periph_release_locked(periph);
505 			return (error);
506 		}
507 		if (periph->flags & CAM_PERIPH_INVALID) {
508 			cam_periph_release_locked(periph);
509 			return (ENXIO);
510 		}
511 	}
512 
513 	periph->flags |= CAM_PERIPH_LOCKED;
514 	return (0);
515 }
516 
517 void
518 cam_periph_unhold(struct cam_periph *periph)
519 {
520 
521 	cam_periph_assert(periph, MA_OWNED);
522 
523 	periph->flags &= ~CAM_PERIPH_LOCKED;
524 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
525 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
526 		wakeup(periph);
527 	}
528 
529 	cam_periph_release_locked(periph);
530 }
531 
532 void
533 cam_periph_hold_boot(struct cam_periph *periph)
534 {
535 
536 	root_mount_hold_token(periph->periph_name, &periph->periph_rootmount);
537 }
538 
539 void
540 cam_periph_release_boot(struct cam_periph *periph)
541 {
542 
543 	root_mount_rel(&periph->periph_rootmount);
544 }
545 
546 /*
547  * Look for the next unit number that is not currently in use for this
548  * peripheral type starting at "newunit".  Also exclude unit numbers that
549  * are reserved by for future "hardwiring" unless we already know that this
550  * is a potential wired device.  Only assume that the device is "wired" the
551  * first time through the loop since after that we'll be looking at unit
552  * numbers that did not match a wiring entry.
553  */
554 static u_int
555 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired,
556 		  path_id_t pathid, target_id_t target, lun_id_t lun)
557 {
558 	struct	cam_periph *periph;
559 	char	*periph_name;
560 	int	i, val, dunit, r;
561 	const char *dname, *strval;
562 
563 	periph_name = p_drv->driver_name;
564 	for (;;newunit++) {
565 		for (periph = TAILQ_FIRST(&p_drv->units);
566 		     periph != NULL && periph->unit_number != newunit;
567 		     periph = TAILQ_NEXT(periph, unit_links))
568 			;
569 
570 		if (periph != NULL && periph->unit_number == newunit) {
571 			if (wired) {
572 				xpt_print(periph->path, "Duplicate Wired "
573 				    "Device entry!\n");
574 				xpt_print(periph->path, "Second device (%s "
575 				    "device at scbus%d target %d lun %d) will "
576 				    "not be wired\n", periph_name, pathid,
577 				    target, lun);
578 				wired = false;
579 			}
580 			continue;
581 		}
582 		if (wired)
583 			break;
584 
585 		/*
586 		 * Don't allow the mere presence of any attributes of a device
587 		 * means that it is for a wired down entry. Instead, insist that
588 		 * one of the matching criteria from camperiphunit be present
589 		 * for the device.
590 		 */
591 		i = 0;
592 		dname = periph_name;
593 		for (;;) {
594 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
595 			if (r != 0)
596 				break;
597 
598 			if (newunit != dunit)
599 				continue;
600 			if (resource_string_value(dname, dunit, "sn", &strval) == 0 ||
601 			    resource_int_value(dname, dunit, "lun", &val) == 0 ||
602 			    resource_int_value(dname, dunit, "target", &val) == 0 ||
603 			    resource_string_value(dname, dunit, "at", &strval) == 0)
604 				break;
605 		}
606 		if (r != 0)
607 			break;
608 	}
609 	return (newunit);
610 }
611 
612 static u_int
613 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
614     target_id_t target, lun_id_t lun, const char *sn)
615 {
616 	bool	wired = false;
617 	u_int	unit;
618 	int	i, val, dunit;
619 	const char *dname, *strval;
620 	char	pathbuf[32], *periph_name;
621 
622 	periph_name = p_drv->driver_name;
623 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
624 	unit = 0;
625 	i = 0;
626 	dname = periph_name;
627 
628 	for (wired = false; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
629 	     wired = false) {
630 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
631 			if (strcmp(strval, pathbuf) != 0)
632 				continue;
633 			wired = true;
634 		}
635 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
636 			if (val != target)
637 				continue;
638 			wired = true;
639 		}
640 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
641 			if (val != lun)
642 				continue;
643 			wired = true;
644 		}
645 		if (resource_string_value(dname, dunit, "sn", &strval) == 0) {
646 			if (sn == NULL || strcmp(strval, sn) != 0)
647 				continue;
648 			wired = true;
649 		}
650 		if (wired) {
651 			unit = dunit;
652 			break;
653 		}
654 	}
655 
656 	/*
657 	 * Either start from 0 looking for the next unit or from
658 	 * the unit number given in the resource config.  This way,
659 	 * if we have wildcard matches, we don't return the same
660 	 * unit number twice.
661 	 */
662 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
663 
664 	return (unit);
665 }
666 
667 void
668 cam_periph_invalidate(struct cam_periph *periph)
669 {
670 
671 	cam_periph_assert(periph, MA_OWNED);
672 	/*
673 	 * We only tear down the device the first time a peripheral is
674 	 * invalidated.
675 	 */
676 	if ((periph->flags & CAM_PERIPH_INVALID) != 0)
677 		return;
678 
679 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
680 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) {
681 		struct sbuf sb;
682 		char buffer[160];
683 
684 		sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN);
685 		xpt_denounce_periph_sbuf(periph, &sb);
686 		sbuf_finish(&sb);
687 		sbuf_putbuf(&sb);
688 	}
689 	periph->flags |= CAM_PERIPH_INVALID;
690 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
691 	if (periph->periph_oninval != NULL)
692 		periph->periph_oninval(periph);
693 	cam_periph_release_locked(periph);
694 }
695 
696 static void
697 camperiphfree(struct cam_periph *periph)
698 {
699 	struct periph_driver **p_drv;
700 	struct periph_driver *drv;
701 
702 	cam_periph_assert(periph, MA_OWNED);
703 	KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating",
704 	    periph->periph_name, periph->unit_number));
705 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
706 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
707 			break;
708 	}
709 	if (*p_drv == NULL) {
710 		printf("camperiphfree: attempt to free non-existant periph\n");
711 		return;
712 	}
713 	/*
714 	 * Cache a pointer to the periph_driver structure.  If a
715 	 * periph_driver is added or removed from the array (see
716 	 * periphdriver_register()) while we drop the toplogy lock
717 	 * below, p_drv may change.  This doesn't protect against this
718 	 * particular periph_driver going away.  That will require full
719 	 * reference counting in the periph_driver infrastructure.
720 	 */
721 	drv = *p_drv;
722 
723 	/*
724 	 * We need to set this flag before dropping the topology lock, to
725 	 * let anyone who is traversing the list that this peripheral is
726 	 * about to be freed, and there will be no more reference count
727 	 * checks.
728 	 */
729 	periph->flags |= CAM_PERIPH_FREE;
730 
731 	/*
732 	 * The peripheral destructor semantics dictate calling with only the
733 	 * SIM mutex held.  Since it might sleep, it should not be called
734 	 * with the topology lock held.
735 	 */
736 	xpt_unlock_buses();
737 
738 	/*
739 	 * We need to call the peripheral destructor prior to removing the
740 	 * peripheral from the list.  Otherwise, we risk running into a
741 	 * scenario where the peripheral unit number may get reused
742 	 * (because it has been removed from the list), but some resources
743 	 * used by the peripheral are still hanging around.  In particular,
744 	 * the devfs nodes used by some peripherals like the pass(4) driver
745 	 * aren't fully cleaned up until the destructor is run.  If the
746 	 * unit number is reused before the devfs instance is fully gone,
747 	 * devfs will panic.
748 	 */
749 	if (periph->periph_dtor != NULL)
750 		periph->periph_dtor(periph);
751 
752 	/*
753 	 * The peripheral list is protected by the topology lock. We have to
754 	 * remove the periph from the drv list before we call deferred_ac. The
755 	 * AC_FOUND_DEVICE callback won't create a new periph if it's still there.
756 	 */
757 	xpt_lock_buses();
758 
759 	TAILQ_REMOVE(&drv->units, periph, unit_links);
760 	drv->generation++;
761 
762 	xpt_remove_periph(periph);
763 
764 	xpt_unlock_buses();
765 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
766 		xpt_print(periph->path, "Periph destroyed\n");
767 	else
768 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
769 
770 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
771 		union ccb ccb;
772 		void *arg;
773 
774 		memset(&ccb, 0, sizeof(ccb));
775 		switch (periph->deferred_ac) {
776 		case AC_FOUND_DEVICE:
777 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
778 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
779 			xpt_action(&ccb);
780 			arg = &ccb;
781 			break;
782 		case AC_PATH_REGISTERED:
783 			xpt_path_inq(&ccb.cpi, periph->path);
784 			arg = &ccb;
785 			break;
786 		default:
787 			arg = NULL;
788 			break;
789 		}
790 		periph->deferred_callback(NULL, periph->deferred_ac,
791 					  periph->path, arg);
792 	}
793 	xpt_free_path(periph->path);
794 	free(periph, M_CAMPERIPH);
795 	xpt_lock_buses();
796 }
797 
798 /*
799  * Map user virtual pointers into kernel virtual address space, so we can
800  * access the memory.  This is now a generic function that centralizes most
801  * of the sanity checks on the data flags, if any.
802  * This also only works for up to maxphys memory.  Since we use
803  * buffers to map stuff in and out, we're limited to the buffer size.
804  */
805 int
806 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo,
807     u_int maxmap)
808 {
809 	int numbufs, i;
810 	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
811 	uint32_t lengths[CAM_PERIPH_MAXMAPS];
812 	uint32_t dirs[CAM_PERIPH_MAXMAPS];
813 
814 	bzero(mapinfo, sizeof(*mapinfo));
815 	if (maxmap == 0)
816 		maxmap = DFLTPHYS;	/* traditional default */
817 	else if (maxmap > maxphys)
818 		maxmap = maxphys;	/* for safety */
819 	switch(ccb->ccb_h.func_code) {
820 	case XPT_DEV_MATCH:
821 		if (ccb->cdm.match_buf_len == 0) {
822 			printf("cam_periph_mapmem: invalid match buffer "
823 			       "length 0\n");
824 			return(EINVAL);
825 		}
826 		if (ccb->cdm.pattern_buf_len > 0) {
827 			data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
828 			lengths[0] = ccb->cdm.pattern_buf_len;
829 			dirs[0] = CAM_DIR_OUT;
830 			data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
831 			lengths[1] = ccb->cdm.match_buf_len;
832 			dirs[1] = CAM_DIR_IN;
833 			numbufs = 2;
834 		} else {
835 			data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
836 			lengths[0] = ccb->cdm.match_buf_len;
837 			dirs[0] = CAM_DIR_IN;
838 			numbufs = 1;
839 		}
840 		/*
841 		 * This request will not go to the hardware, no reason
842 		 * to be so strict. vmapbuf() is able to map up to maxphys.
843 		 */
844 		maxmap = maxphys;
845 		break;
846 	case XPT_SCSI_IO:
847 	case XPT_CONT_TARGET_IO:
848 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
849 			return(0);
850 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
851 			return (EINVAL);
852 		data_ptrs[0] = &ccb->csio.data_ptr;
853 		lengths[0] = ccb->csio.dxfer_len;
854 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
855 		numbufs = 1;
856 		break;
857 	case XPT_ATA_IO:
858 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
859 			return(0);
860 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
861 			return (EINVAL);
862 		data_ptrs[0] = &ccb->ataio.data_ptr;
863 		lengths[0] = ccb->ataio.dxfer_len;
864 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
865 		numbufs = 1;
866 		break;
867 	case XPT_MMC_IO:
868 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
869 			return(0);
870 		/* Two mappings: one for cmd->data and one for cmd->data->data */
871 		data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data;
872 		lengths[0] = sizeof(struct mmc_data *);
873 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
874 		data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data;
875 		lengths[1] = ccb->mmcio.cmd.data->len;
876 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
877 		numbufs = 2;
878 		break;
879 	case XPT_SMP_IO:
880 		data_ptrs[0] = &ccb->smpio.smp_request;
881 		lengths[0] = ccb->smpio.smp_request_len;
882 		dirs[0] = CAM_DIR_OUT;
883 		data_ptrs[1] = &ccb->smpio.smp_response;
884 		lengths[1] = ccb->smpio.smp_response_len;
885 		dirs[1] = CAM_DIR_IN;
886 		numbufs = 2;
887 		break;
888 	case XPT_NVME_IO:
889 	case XPT_NVME_ADMIN:
890 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
891 			return (0);
892 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
893 			return (EINVAL);
894 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
895 		lengths[0] = ccb->nvmeio.dxfer_len;
896 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
897 		numbufs = 1;
898 		break;
899 	case XPT_DEV_ADVINFO:
900 		if (ccb->cdai.bufsiz == 0)
901 			return (0);
902 
903 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
904 		lengths[0] = ccb->cdai.bufsiz;
905 		dirs[0] = CAM_DIR_IN;
906 		numbufs = 1;
907 
908 		/*
909 		 * This request will not go to the hardware, no reason
910 		 * to be so strict. vmapbuf() is able to map up to maxphys.
911 		 */
912 		maxmap = maxphys;
913 		break;
914 	default:
915 		return(EINVAL);
916 		break; /* NOTREACHED */
917 	}
918 
919 	/*
920 	 * Check the transfer length and permissions first, so we don't
921 	 * have to unmap any previously mapped buffers.
922 	 */
923 	for (i = 0; i < numbufs; i++) {
924 		if (lengths[i] > maxmap) {
925 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
926 			       "which is greater than %lu\n",
927 			       (long)(lengths[i]), (u_long)maxmap);
928 			return (E2BIG);
929 		}
930 	}
931 
932 	/*
933 	 * This keeps the kernel stack of current thread from getting
934 	 * swapped.  In low-memory situations where the kernel stack might
935 	 * otherwise get swapped out, this holds it and allows the thread
936 	 * to make progress and release the kernel mapped pages sooner.
937 	 *
938 	 * XXX KDM should I use P_NOSWAP instead?
939 	 */
940 	PHOLD(curproc);
941 
942 	for (i = 0; i < numbufs; i++) {
943 		/* Save the user's data address. */
944 		mapinfo->orig[i] = *data_ptrs[i];
945 
946 		/*
947 		 * For small buffers use malloc+copyin/copyout instead of
948 		 * mapping to KVA to avoid expensive TLB shootdowns.  For
949 		 * small allocations malloc is backed by UMA, and so much
950 		 * cheaper on SMP systems.
951 		 */
952 		if (lengths[i] <= periph_mapmem_thresh &&
953 		    ccb->ccb_h.func_code != XPT_MMC_IO) {
954 			*data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH,
955 			    M_WAITOK);
956 			if (dirs[i] != CAM_DIR_IN) {
957 				if (copyin(mapinfo->orig[i], *data_ptrs[i],
958 				    lengths[i]) != 0) {
959 					free(*data_ptrs[i], M_CAMPERIPH);
960 					*data_ptrs[i] = mapinfo->orig[i];
961 					goto fail;
962 				}
963 			} else
964 				bzero(*data_ptrs[i], lengths[i]);
965 			continue;
966 		}
967 
968 		/*
969 		 * Get the buffer.
970 		 */
971 		mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK);
972 
973 		/* set the direction */
974 		mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ?
975 		    BIO_WRITE : BIO_READ;
976 
977 		/* Map the buffer into kernel memory. */
978 		if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) {
979 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
980 			goto fail;
981 		}
982 
983 		/* set our pointer to the new mapped area */
984 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
985 	}
986 
987 	/*
988 	 * Now that we've gotten this far, change ownership to the kernel
989 	 * of the buffers so that we don't run afoul of returning to user
990 	 * space with locks (on the buffer) held.
991 	 */
992 	for (i = 0; i < numbufs; i++) {
993 		if (mapinfo->bp[i])
994 			BUF_KERNPROC(mapinfo->bp[i]);
995 	}
996 
997 	mapinfo->num_bufs_used = numbufs;
998 	return(0);
999 
1000 fail:
1001 	for (i--; i >= 0; i--) {
1002 		if (mapinfo->bp[i]) {
1003 			vunmapbuf(mapinfo->bp[i]);
1004 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
1005 		} else
1006 			free(*data_ptrs[i], M_CAMPERIPH);
1007 		*data_ptrs[i] = mapinfo->orig[i];
1008 	}
1009 	PRELE(curproc);
1010 	return(EACCES);
1011 }
1012 
1013 /*
1014  * Unmap memory segments mapped into kernel virtual address space by
1015  * cam_periph_mapmem().
1016  */
1017 void
1018 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
1019 {
1020 	int numbufs, i;
1021 	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1022 	uint32_t lengths[CAM_PERIPH_MAXMAPS];
1023 	uint32_t dirs[CAM_PERIPH_MAXMAPS];
1024 
1025 	if (mapinfo->num_bufs_used <= 0) {
1026 		/* nothing to free and the process wasn't held. */
1027 		return;
1028 	}
1029 
1030 	switch (ccb->ccb_h.func_code) {
1031 	case XPT_DEV_MATCH:
1032 		if (ccb->cdm.pattern_buf_len > 0) {
1033 			data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1034 			lengths[0] = ccb->cdm.pattern_buf_len;
1035 			dirs[0] = CAM_DIR_OUT;
1036 			data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1037 			lengths[1] = ccb->cdm.match_buf_len;
1038 			dirs[1] = CAM_DIR_IN;
1039 			numbufs = 2;
1040 		} else {
1041 			data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1042 			lengths[0] = ccb->cdm.match_buf_len;
1043 			dirs[0] = CAM_DIR_IN;
1044 			numbufs = 1;
1045 		}
1046 		break;
1047 	case XPT_SCSI_IO:
1048 	case XPT_CONT_TARGET_IO:
1049 		data_ptrs[0] = &ccb->csio.data_ptr;
1050 		lengths[0] = ccb->csio.dxfer_len;
1051 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1052 		numbufs = 1;
1053 		break;
1054 	case XPT_ATA_IO:
1055 		data_ptrs[0] = &ccb->ataio.data_ptr;
1056 		lengths[0] = ccb->ataio.dxfer_len;
1057 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1058 		numbufs = 1;
1059 		break;
1060 	case XPT_MMC_IO:
1061 		data_ptrs[0] = (uint8_t **)&ccb->mmcio.cmd.data;
1062 		lengths[0] = sizeof(struct mmc_data *);
1063 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1064 		data_ptrs[1] = (uint8_t **)&ccb->mmcio.cmd.data->data;
1065 		lengths[1] = ccb->mmcio.cmd.data->len;
1066 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
1067 		numbufs = 2;
1068 		break;
1069 	case XPT_SMP_IO:
1070 		data_ptrs[0] = &ccb->smpio.smp_request;
1071 		lengths[0] = ccb->smpio.smp_request_len;
1072 		dirs[0] = CAM_DIR_OUT;
1073 		data_ptrs[1] = &ccb->smpio.smp_response;
1074 		lengths[1] = ccb->smpio.smp_response_len;
1075 		dirs[1] = CAM_DIR_IN;
1076 		numbufs = 2;
1077 		break;
1078 	case XPT_NVME_IO:
1079 	case XPT_NVME_ADMIN:
1080 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1081 		lengths[0] = ccb->nvmeio.dxfer_len;
1082 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1083 		numbufs = 1;
1084 		break;
1085 	case XPT_DEV_ADVINFO:
1086 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1087 		lengths[0] = ccb->cdai.bufsiz;
1088 		dirs[0] = CAM_DIR_IN;
1089 		numbufs = 1;
1090 		break;
1091 	default:
1092 		/* allow ourselves to be swapped once again */
1093 		PRELE(curproc);
1094 		return;
1095 		break; /* NOTREACHED */
1096 	}
1097 
1098 	for (i = 0; i < numbufs; i++) {
1099 		if (mapinfo->bp[i]) {
1100 			/* unmap the buffer */
1101 			vunmapbuf(mapinfo->bp[i]);
1102 
1103 			/* release the buffer */
1104 			uma_zfree(pbuf_zone, mapinfo->bp[i]);
1105 		} else {
1106 			if (dirs[i] != CAM_DIR_OUT) {
1107 				copyout(*data_ptrs[i], mapinfo->orig[i],
1108 				    lengths[i]);
1109 			}
1110 			free(*data_ptrs[i], M_CAMPERIPH);
1111 		}
1112 
1113 		/* Set the user's pointer back to the original value */
1114 		*data_ptrs[i] = mapinfo->orig[i];
1115 	}
1116 
1117 	/* allow ourselves to be swapped once again */
1118 	PRELE(curproc);
1119 }
1120 
1121 int
1122 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
1123 		 int (*error_routine)(union ccb *ccb,
1124 				      cam_flags camflags,
1125 				      uint32_t sense_flags))
1126 {
1127 	union ccb 	     *ccb;
1128 	int 		     error;
1129 	int		     found;
1130 
1131 	error = found = 0;
1132 
1133 	switch(cmd){
1134 	case CAMGETPASSTHRU_0x19:
1135 	case CAMGETPASSTHRU:
1136 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
1137 		xpt_setup_ccb(&ccb->ccb_h,
1138 			      ccb->ccb_h.path,
1139 			      CAM_PRIORITY_NORMAL);
1140 		ccb->ccb_h.func_code = XPT_GDEVLIST;
1141 
1142 		/*
1143 		 * Basically, the point of this is that we go through
1144 		 * getting the list of devices, until we find a passthrough
1145 		 * device.  In the current version of the CAM code, the
1146 		 * only way to determine what type of device we're dealing
1147 		 * with is by its name.
1148 		 */
1149 		while (found == 0) {
1150 			ccb->cgdl.index = 0;
1151 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
1152 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
1153 				/* we want the next device in the list */
1154 				xpt_action(ccb);
1155 				if (strncmp(ccb->cgdl.periph_name,
1156 				    "pass", 4) == 0){
1157 					found = 1;
1158 					break;
1159 				}
1160 			}
1161 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
1162 			    (found == 0)) {
1163 				ccb->cgdl.periph_name[0] = '\0';
1164 				ccb->cgdl.unit_number = 0;
1165 				break;
1166 			}
1167 		}
1168 
1169 		/* copy the result back out */
1170 		bcopy(ccb, addr, sizeof(union ccb));
1171 
1172 		/* and release the ccb */
1173 		xpt_release_ccb(ccb);
1174 
1175 		break;
1176 	default:
1177 		error = ENOTTY;
1178 		break;
1179 	}
1180 	return(error);
1181 }
1182 
1183 static void
1184 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb)
1185 {
1186 
1187 	panic("%s: already done with ccb %p", __func__, done_ccb);
1188 }
1189 
1190 static void
1191 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb)
1192 {
1193 
1194 	/* Caller will release the CCB */
1195 	xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED);
1196 	done_ccb->ccb_h.cbfcnp = cam_periph_done_panic;
1197 	wakeup(&done_ccb->ccb_h.cbfcnp);
1198 }
1199 
1200 static void
1201 cam_periph_ccbwait(union ccb *ccb)
1202 {
1203 
1204 	if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
1205 		while (ccb->ccb_h.cbfcnp != cam_periph_done_panic)
1206 			xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp,
1207 			    PRIBIO, "cbwait", 0);
1208 	}
1209 	KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX &&
1210 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG,
1211 	    ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, "
1212 	     "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code,
1213 	     ccb->ccb_h.status, ccb->ccb_h.pinfo.index));
1214 }
1215 
1216 /*
1217  * Dispatch a CCB and wait for it to complete.  If the CCB has set a
1218  * callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost.
1219  */
1220 int
1221 cam_periph_runccb(union ccb *ccb,
1222 		  int (*error_routine)(union ccb *ccb,
1223 				       cam_flags camflags,
1224 				       uint32_t sense_flags),
1225 		  cam_flags camflags, uint32_t sense_flags,
1226 		  struct devstat *ds)
1227 {
1228 	struct bintime *starttime;
1229 	struct bintime ltime;
1230 	int error;
1231 	bool must_poll;
1232 	uint32_t timeout = 1;
1233 
1234 	starttime = NULL;
1235 	xpt_path_assert(ccb->ccb_h.path, MA_OWNED);
1236 	KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0,
1237 	    ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb,
1238 	     ccb->ccb_h.func_code, ccb->ccb_h.flags));
1239 
1240 	/*
1241 	 * If the user has supplied a stats structure, and if we understand
1242 	 * this particular type of ccb, record the transaction start.
1243 	 */
1244 	if (ds != NULL &&
1245 	    (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1246 	    ccb->ccb_h.func_code == XPT_ATA_IO ||
1247 	    ccb->ccb_h.func_code == XPT_NVME_IO)) {
1248 		starttime = &ltime;
1249 		binuptime(starttime);
1250 		devstat_start_transaction(ds, starttime);
1251 	}
1252 
1253 	/*
1254 	 * We must poll the I/O while we're dumping. The scheduler is normally
1255 	 * stopped for dumping, except when we call doadump from ddb. While the
1256 	 * scheduler is running in this case, we still need to poll the I/O to
1257 	 * avoid sleeping waiting for the ccb to complete.
1258 	 *
1259 	 * A panic triggered dump stops the scheduler, any callback from the
1260 	 * shutdown_post_sync event will run with the scheduler stopped, but
1261 	 * before we're officially dumping. To avoid hanging in adashutdown
1262 	 * initiated commands (or other similar situations), we have to test for
1263 	 * either dumping or SCHEDULER_STOPPED() here.
1264 	 *
1265 	 * To avoid locking problems, dumping/polling callers must call
1266 	 * without a periph lock held.
1267 	 */
1268 	must_poll = dumping || SCHEDULER_STOPPED();
1269 	ccb->ccb_h.cbfcnp = cam_periph_done;
1270 
1271 	/*
1272 	 * If we're polling, then we need to ensure that we have ample resources
1273 	 * in the periph.  cam_periph_error can reschedule the ccb by calling
1274 	 * xpt_action and returning ERESTART, so we have to effect the polling
1275 	 * in the do loop below.
1276 	 */
1277 	if (must_poll) {
1278 		if (cam_sim_pollable(ccb->ccb_h.path->bus->sim))
1279 			timeout = xpt_poll_setup(ccb);
1280 		else
1281 			timeout = 0;
1282 	}
1283 
1284 	if (timeout == 0) {
1285 		ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
1286 		error = EBUSY;
1287 	} else {
1288 		xpt_action(ccb);
1289 		do {
1290 			if (must_poll) {
1291 				xpt_pollwait(ccb, timeout);
1292 				timeout = ccb->ccb_h.timeout * 10;
1293 			} else {
1294 				cam_periph_ccbwait(ccb);
1295 			}
1296 			if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1297 				error = 0;
1298 			else if (error_routine != NULL) {
1299 				/*
1300 				 * cbfcnp is modified by cam_periph_ccbwait so
1301 				 * reset it before we call the error routine
1302 				 * which may call xpt_done.
1303 				 */
1304 				ccb->ccb_h.cbfcnp = cam_periph_done;
1305 				error = (*error_routine)(ccb, camflags, sense_flags);
1306 			} else
1307 				error = 0;
1308 		} while (error == ERESTART);
1309 	}
1310 
1311 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1312 		cam_release_devq(ccb->ccb_h.path,
1313 				 /* relsim_flags */0,
1314 				 /* openings */0,
1315 				 /* timeout */0,
1316 				 /* getcount_only */ FALSE);
1317 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1318 	}
1319 
1320 	if (ds != NULL) {
1321 		uint32_t bytes;
1322 		devstat_tag_type tag;
1323 		bool valid = true;
1324 
1325 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1326 			bytes = ccb->csio.dxfer_len - ccb->csio.resid;
1327 			tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3);
1328 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1329 			bytes = ccb->ataio.dxfer_len - ccb->ataio.resid;
1330 			tag = (devstat_tag_type)0;
1331 		} else if (ccb->ccb_h.func_code == XPT_NVME_IO) {
1332 			bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */
1333 			tag = (devstat_tag_type)0;
1334 		} else {
1335 			valid = false;
1336 		}
1337 		if (valid)
1338 			devstat_end_transaction(ds, bytes, tag,
1339 			    ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ?
1340 			    DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ?
1341 			    DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime);
1342 	}
1343 
1344 	return(error);
1345 }
1346 
1347 void
1348 cam_freeze_devq(struct cam_path *path)
1349 {
1350 	struct ccb_hdr ccb_h;
1351 
1352 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
1353 	memset(&ccb_h, 0, sizeof(ccb_h));
1354 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
1355 	ccb_h.func_code = XPT_NOOP;
1356 	ccb_h.flags = CAM_DEV_QFREEZE;
1357 	xpt_action((union ccb *)&ccb_h);
1358 }
1359 
1360 uint32_t
1361 cam_release_devq(struct cam_path *path, uint32_t relsim_flags,
1362 		 uint32_t openings, uint32_t arg,
1363 		 int getcount_only)
1364 {
1365 	struct ccb_relsim crs;
1366 
1367 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
1368 	    relsim_flags, openings, arg, getcount_only));
1369 	memset(&crs, 0, sizeof(crs));
1370 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1371 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1372 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1373 	crs.release_flags = relsim_flags;
1374 	crs.openings = openings;
1375 	crs.release_timeout = arg;
1376 	xpt_action((union ccb *)&crs);
1377 	return (crs.qfrozen_cnt);
1378 }
1379 
1380 #define saved_ccb_ptr ppriv_ptr0
1381 static void
1382 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1383 {
1384 	union ccb      *saved_ccb;
1385 	cam_status	status;
1386 	struct scsi_start_stop_unit *scsi_cmd;
1387 	int		error = 0, error_code, sense_key, asc, ascq;
1388 	uint16_t	done_flags;
1389 
1390 	scsi_cmd = (struct scsi_start_stop_unit *)
1391 	    &done_ccb->csio.cdb_io.cdb_bytes;
1392 	status = done_ccb->ccb_h.status;
1393 
1394 	if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1395 		if (scsi_extract_sense_ccb(done_ccb,
1396 		    &error_code, &sense_key, &asc, &ascq)) {
1397 			/*
1398 			 * If the error is "invalid field in CDB",
1399 			 * and the load/eject flag is set, turn the
1400 			 * flag off and try again.  This is just in
1401 			 * case the drive in question barfs on the
1402 			 * load eject flag.  The CAM code should set
1403 			 * the load/eject flag by default for
1404 			 * removable media.
1405 			 */
1406 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1407 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1408 			     (asc == 0x24) && (ascq == 0x00)) {
1409 				scsi_cmd->how &= ~SSS_LOEJ;
1410 				if (status & CAM_DEV_QFRZN) {
1411 					cam_release_devq(done_ccb->ccb_h.path,
1412 					    0, 0, 0, 0);
1413 					done_ccb->ccb_h.status &=
1414 					    ~CAM_DEV_QFRZN;
1415 				}
1416 				xpt_action(done_ccb);
1417 				goto out;
1418 			}
1419 		}
1420 		error = cam_periph_error(done_ccb, 0,
1421 		    SF_RETRY_UA | SF_NO_PRINT);
1422 		if (error == ERESTART)
1423 			goto out;
1424 		if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
1425 			cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1426 			done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1427 		}
1428 	} else {
1429 		/*
1430 		 * If we have successfully taken a device from the not
1431 		 * ready to ready state, re-scan the device and re-get
1432 		 * the inquiry information.  Many devices (mostly disks)
1433 		 * don't properly report their inquiry information unless
1434 		 * they are spun up.
1435 		 */
1436 		if (scsi_cmd->opcode == START_STOP_UNIT)
1437 			xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
1438 	}
1439 
1440 	/* If we tried long wait and still failed, remember that. */
1441 	if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) &&
1442 	    (done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) {
1443 		periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT;
1444 		if (error != 0 && done_ccb->ccb_h.retry_count == 0)
1445 			periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED;
1446 	}
1447 
1448 	/*
1449 	 * After recovery action(s) completed, return to the original CCB.
1450 	 * If the recovery CCB has failed, considering its own possible
1451 	 * retries and recovery, assume we are back in state where we have
1452 	 * been originally, but without recovery hopes left.  In such case,
1453 	 * after the final attempt below, we cancel any further retries,
1454 	 * blocking by that also any new recovery attempts for this CCB,
1455 	 * and the result will be the final one returned to the CCB owher.
1456 	 */
1457 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1458 	KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO,
1459 	    ("%s: saved_ccb func_code %#x != XPT_SCSI_IO",
1460 	     __func__, saved_ccb->ccb_h.func_code));
1461 	KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO,
1462 	    ("%s: done_ccb func_code %#x != XPT_SCSI_IO",
1463 	     __func__, done_ccb->ccb_h.func_code));
1464 	saved_ccb->ccb_h.periph_links = done_ccb->ccb_h.periph_links;
1465 	done_flags = done_ccb->ccb_h.alloc_flags;
1466 	bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio));
1467 	done_ccb->ccb_h.alloc_flags = done_flags;
1468 	xpt_free_ccb(saved_ccb);
1469 	if (done_ccb->ccb_h.cbfcnp != camperiphdone)
1470 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1471 	if (error != 0)
1472 		done_ccb->ccb_h.retry_count = 0;
1473 	xpt_action(done_ccb);
1474 
1475 out:
1476 	/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
1477 	cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1478 }
1479 
1480 /*
1481  * Generic Async Event handler.  Peripheral drivers usually
1482  * filter out the events that require personal attention,
1483  * and leave the rest to this function.
1484  */
1485 void
1486 cam_periph_async(struct cam_periph *periph, uint32_t code,
1487 		 struct cam_path *path, void *arg)
1488 {
1489 	switch (code) {
1490 	case AC_LOST_DEVICE:
1491 		cam_periph_invalidate(periph);
1492 		break;
1493 	default:
1494 		break;
1495 	}
1496 }
1497 
1498 void
1499 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1500 {
1501 	struct ccb_getdevstats cgds;
1502 
1503 	memset(&cgds, 0, sizeof(cgds));
1504 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1505 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1506 	xpt_action((union ccb *)&cgds);
1507 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1508 }
1509 
1510 void
1511 cam_periph_freeze_after_event(struct cam_periph *periph,
1512 			      struct timeval* event_time, u_int duration_ms)
1513 {
1514 	struct timeval delta;
1515 	struct timeval duration_tv;
1516 
1517 	if (!timevalisset(event_time))
1518 		return;
1519 
1520 	microtime(&delta);
1521 	timevalsub(&delta, event_time);
1522 	duration_tv.tv_sec = duration_ms / 1000;
1523 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1524 	if (timevalcmp(&delta, &duration_tv, <)) {
1525 		timevalsub(&duration_tv, &delta);
1526 
1527 		duration_ms = duration_tv.tv_sec * 1000;
1528 		duration_ms += duration_tv.tv_usec / 1000;
1529 		cam_freeze_devq(periph->path);
1530 		cam_release_devq(periph->path,
1531 				RELSIM_RELEASE_AFTER_TIMEOUT,
1532 				/*reduction*/0,
1533 				/*timeout*/duration_ms,
1534 				/*getcount_only*/0);
1535 	}
1536 
1537 }
1538 
1539 static int
1540 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
1541     cam_flags camflags, uint32_t sense_flags,
1542     int *openings, uint32_t *relsim_flags,
1543     uint32_t *timeout, uint32_t *action, const char **action_string)
1544 {
1545 	struct cam_periph *periph;
1546 	int error;
1547 
1548 	switch (ccb->csio.scsi_status) {
1549 	case SCSI_STATUS_OK:
1550 	case SCSI_STATUS_COND_MET:
1551 	case SCSI_STATUS_INTERMED:
1552 	case SCSI_STATUS_INTERMED_COND_MET:
1553 		error = 0;
1554 		break;
1555 	case SCSI_STATUS_CMD_TERMINATED:
1556 	case SCSI_STATUS_CHECK_COND:
1557 		error = camperiphscsisenseerror(ccb, orig_ccb,
1558 					        camflags,
1559 					        sense_flags,
1560 					        openings,
1561 					        relsim_flags,
1562 					        timeout,
1563 					        action,
1564 					        action_string);
1565 		break;
1566 	case SCSI_STATUS_QUEUE_FULL:
1567 	{
1568 		/* no decrement */
1569 		struct ccb_getdevstats cgds;
1570 
1571 		/*
1572 		 * First off, find out what the current
1573 		 * transaction counts are.
1574 		 */
1575 		memset(&cgds, 0, sizeof(cgds));
1576 		xpt_setup_ccb(&cgds.ccb_h,
1577 			      ccb->ccb_h.path,
1578 			      CAM_PRIORITY_NORMAL);
1579 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1580 		xpt_action((union ccb *)&cgds);
1581 
1582 		/*
1583 		 * If we were the only transaction active, treat
1584 		 * the QUEUE FULL as if it were a BUSY condition.
1585 		 */
1586 		if (cgds.dev_active != 0) {
1587 			int total_openings;
1588 
1589 			/*
1590 		 	 * Reduce the number of openings to
1591 			 * be 1 less than the amount it took
1592 			 * to get a queue full bounded by the
1593 			 * minimum allowed tag count for this
1594 			 * device.
1595 		 	 */
1596 			total_openings = cgds.dev_active + cgds.dev_openings;
1597 			*openings = cgds.dev_active;
1598 			if (*openings < cgds.mintags)
1599 				*openings = cgds.mintags;
1600 			if (*openings < total_openings)
1601 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1602 			else {
1603 				/*
1604 				 * Some devices report queue full for
1605 				 * temporary resource shortages.  For
1606 				 * this reason, we allow a minimum
1607 				 * tag count to be entered via a
1608 				 * quirk entry to prevent the queue
1609 				 * count on these devices from falling
1610 				 * to a pessimisticly low value.  We
1611 				 * still wait for the next successful
1612 				 * completion, however, before queueing
1613 				 * more transactions to the device.
1614 				 */
1615 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1616 			}
1617 			*timeout = 0;
1618 			error = ERESTART;
1619 			*action &= ~SSQ_PRINT_SENSE;
1620 			break;
1621 		}
1622 		/* FALLTHROUGH */
1623 	}
1624 	case SCSI_STATUS_BUSY:
1625 		/*
1626 		 * Restart the queue after either another
1627 		 * command completes or a 1 second timeout.
1628 		 */
1629 		periph = xpt_path_periph(ccb->ccb_h.path);
1630 		if (periph->flags & CAM_PERIPH_INVALID) {
1631 			error = ENXIO;
1632 			*action_string = "Periph was invalidated";
1633 		} else if ((sense_flags & SF_RETRY_BUSY) != 0 ||
1634 		    ccb->ccb_h.retry_count > 0) {
1635 			if ((sense_flags & SF_RETRY_BUSY) == 0)
1636 				ccb->ccb_h.retry_count--;
1637 			error = ERESTART;
1638 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1639 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1640 			*timeout = 1000;
1641 		} else {
1642 			error = EIO;
1643 			*action_string = "Retries exhausted";
1644 		}
1645 		break;
1646 	case SCSI_STATUS_RESERV_CONFLICT:
1647 	default:
1648 		error = EIO;
1649 		break;
1650 	}
1651 	return (error);
1652 }
1653 
1654 static int
1655 camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
1656     cam_flags camflags, uint32_t sense_flags,
1657     int *openings, uint32_t *relsim_flags,
1658     uint32_t *timeout, uint32_t *action, const char **action_string)
1659 {
1660 	struct cam_periph *periph;
1661 	union ccb *orig_ccb = ccb;
1662 	int error, recoveryccb;
1663 	uint16_t flags;
1664 
1665 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1666 	if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL)
1667 		biotrack(ccb->csio.bio, __func__);
1668 #endif
1669 
1670 	periph = xpt_path_periph(ccb->ccb_h.path);
1671 	recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
1672 	if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
1673 		/*
1674 		 * If error recovery is already in progress, don't attempt
1675 		 * to process this error, but requeue it unconditionally
1676 		 * and attempt to process it once error recovery has
1677 		 * completed.  This failed command is probably related to
1678 		 * the error that caused the currently active error recovery
1679 		 * action so our  current recovery efforts should also
1680 		 * address this command.  Be aware that the error recovery
1681 		 * code assumes that only one recovery action is in progress
1682 		 * on a particular peripheral instance at any given time
1683 		 * (e.g. only one saved CCB for error recovery) so it is
1684 		 * imperitive that we don't violate this assumption.
1685 		 */
1686 		error = ERESTART;
1687 		*action &= ~SSQ_PRINT_SENSE;
1688 	} else {
1689 		scsi_sense_action err_action;
1690 		struct ccb_getdev cgd;
1691 
1692 		/*
1693 		 * Grab the inquiry data for this device.
1694 		 */
1695 		memset(&cgd, 0, sizeof(cgd));
1696 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1697 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1698 		xpt_action((union ccb *)&cgd);
1699 
1700 		err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
1701 		    sense_flags);
1702 		error = err_action & SS_ERRMASK;
1703 
1704 		/*
1705 		 * Do not autostart sequential access devices
1706 		 * to avoid unexpected tape loading.
1707 		 */
1708 		if ((err_action & SS_MASK) == SS_START &&
1709 		    SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1710 			*action_string = "Will not autostart a "
1711 			    "sequential access device";
1712 			goto sense_error_done;
1713 		}
1714 
1715 		/*
1716 		 * Avoid recovery recursion if recovery action is the same.
1717 		 */
1718 		if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
1719 			if (((err_action & SS_MASK) == SS_START &&
1720 			     ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
1721 			    ((err_action & SS_MASK) == SS_TUR &&
1722 			     (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
1723 				err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1724 				*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1725 				*timeout = 500;
1726 			}
1727 		}
1728 
1729 		/*
1730 		 * If the recovery action will consume a retry,
1731 		 * make sure we actually have retries available.
1732 		 */
1733 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1734 		 	if (ccb->ccb_h.retry_count > 0 &&
1735 			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1736 		 		ccb->ccb_h.retry_count--;
1737 			else {
1738 				*action_string = "Retries exhausted";
1739 				goto sense_error_done;
1740 			}
1741 		}
1742 
1743 		if ((err_action & SS_MASK) >= SS_START) {
1744 			/*
1745 			 * Do common portions of commands that
1746 			 * use recovery CCBs.
1747 			 */
1748 			orig_ccb = xpt_alloc_ccb_nowait();
1749 			if (orig_ccb == NULL) {
1750 				*action_string = "Can't allocate recovery CCB";
1751 				goto sense_error_done;
1752 			}
1753 			/*
1754 			 * Clear freeze flag for original request here, as
1755 			 * this freeze will be dropped as part of ERESTART.
1756 			 */
1757 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1758 
1759 			KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO,
1760 			    ("%s: ccb func_code %#x != XPT_SCSI_IO",
1761 			     __func__, ccb->ccb_h.func_code));
1762 			flags = orig_ccb->ccb_h.alloc_flags;
1763 			bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio));
1764 			orig_ccb->ccb_h.alloc_flags = flags;
1765 		}
1766 
1767 		switch (err_action & SS_MASK) {
1768 		case SS_NOP:
1769 			*action_string = "No recovery action needed";
1770 			error = 0;
1771 			break;
1772 		case SS_RETRY:
1773 			*action_string = "Retrying command (per sense data)";
1774 			error = ERESTART;
1775 			break;
1776 		case SS_FAIL:
1777 			*action_string = "Unretryable error";
1778 			break;
1779 		case SS_START:
1780 		{
1781 			int le;
1782 
1783 			/*
1784 			 * Send a start unit command to the device, and
1785 			 * then retry the command.
1786 			 */
1787 			*action_string = "Attempting to start unit";
1788 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1789 
1790 			/*
1791 			 * Check for removable media and set
1792 			 * load/eject flag appropriately.
1793 			 */
1794 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1795 				le = TRUE;
1796 			else
1797 				le = FALSE;
1798 
1799 			scsi_start_stop(&ccb->csio,
1800 					/*retries*/1,
1801 					camperiphdone,
1802 					MSG_SIMPLE_Q_TAG,
1803 					/*start*/TRUE,
1804 					/*load/eject*/le,
1805 					/*immediate*/FALSE,
1806 					SSD_FULL_SIZE,
1807 					/*timeout*/50000);
1808 			break;
1809 		}
1810 		case SS_TUR:
1811 		{
1812 			/*
1813 			 * Send a Test Unit Ready to the device.
1814 			 * If the 'many' flag is set, we send 120
1815 			 * test unit ready commands, one every half
1816 			 * second.  Otherwise, we just send one TUR.
1817 			 * We only want to do this if the retry
1818 			 * count has not been exhausted.
1819 			 */
1820 			int retries;
1821 
1822 			if ((err_action & SSQ_MANY) != 0 && (periph->flags &
1823 			     CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) {
1824 				periph->flags |= CAM_PERIPH_RECOVERY_WAIT;
1825 				*action_string = "Polling device for readiness";
1826 				retries = 120;
1827 			} else {
1828 				*action_string = "Testing device for readiness";
1829 				retries = 1;
1830 			}
1831 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1832 			scsi_test_unit_ready(&ccb->csio,
1833 					     retries,
1834 					     camperiphdone,
1835 					     MSG_SIMPLE_Q_TAG,
1836 					     SSD_FULL_SIZE,
1837 					     /*timeout*/5000);
1838 
1839 			/*
1840 			 * Accomplish our 500ms delay by deferring
1841 			 * the release of our device queue appropriately.
1842 			 */
1843 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1844 			*timeout = 500;
1845 			break;
1846 		}
1847 		default:
1848 			panic("Unhandled error action %x", err_action);
1849 		}
1850 
1851 		if ((err_action & SS_MASK) >= SS_START) {
1852 			/*
1853 			 * Drop the priority, so that the recovery
1854 			 * CCB is the first to execute.  Freeze the queue
1855 			 * after this command is sent so that we can
1856 			 * restore the old csio and have it queued in
1857 			 * the proper order before we release normal
1858 			 * transactions to the device.
1859 			 */
1860 			ccb->ccb_h.pinfo.priority--;
1861 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1862 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1863 			error = ERESTART;
1864 			*orig = orig_ccb;
1865 		}
1866 
1867 sense_error_done:
1868 		*action = err_action;
1869 	}
1870 	return (error);
1871 }
1872 
1873 /*
1874  * Generic error handler.  Peripheral drivers usually filter
1875  * out the errors that they handle in a unique manner, then
1876  * call this function.
1877  */
1878 int
1879 cam_periph_error(union ccb *ccb, cam_flags camflags,
1880 		 uint32_t sense_flags)
1881 {
1882 	struct cam_path *newpath;
1883 	union ccb  *orig_ccb, *scan_ccb;
1884 	struct cam_periph *periph;
1885 	const char *action_string;
1886 	cam_status  status;
1887 	int	    frozen, error, openings, devctl_err;
1888 	uint32_t   action, relsim_flags, timeout;
1889 
1890 	action = SSQ_PRINT_SENSE;
1891 	periph = xpt_path_periph(ccb->ccb_h.path);
1892 	action_string = NULL;
1893 	status = ccb->ccb_h.status;
1894 	frozen = (status & CAM_DEV_QFRZN) != 0;
1895 	status &= CAM_STATUS_MASK;
1896 	devctl_err = openings = relsim_flags = timeout = 0;
1897 	orig_ccb = ccb;
1898 
1899 	/* Filter the errors that should be reported via devctl */
1900 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
1901 	case CAM_CMD_TIMEOUT:
1902 	case CAM_REQ_ABORTED:
1903 	case CAM_REQ_CMP_ERR:
1904 	case CAM_REQ_TERMIO:
1905 	case CAM_UNREC_HBA_ERROR:
1906 	case CAM_DATA_RUN_ERR:
1907 	case CAM_SCSI_STATUS_ERROR:
1908 	case CAM_ATA_STATUS_ERROR:
1909 	case CAM_SMP_STATUS_ERROR:
1910 	case CAM_DEV_NOT_THERE:
1911 	case CAM_NVME_STATUS_ERROR:
1912 		devctl_err++;
1913 		break;
1914 	default:
1915 		break;
1916 	}
1917 
1918 	switch (status) {
1919 	case CAM_REQ_CMP:
1920 		error = 0;
1921 		action &= ~SSQ_PRINT_SENSE;
1922 		break;
1923 	case CAM_SCSI_STATUS_ERROR:
1924 		error = camperiphscsistatuserror(ccb, &orig_ccb,
1925 		    camflags, sense_flags, &openings, &relsim_flags,
1926 		    &timeout, &action, &action_string);
1927 		break;
1928 	case CAM_AUTOSENSE_FAIL:
1929 		error = EIO;	/* we have to kill the command */
1930 		break;
1931 	case CAM_UA_ABORT:
1932 	case CAM_UA_TERMIO:
1933 	case CAM_MSG_REJECT_REC:
1934 		/* XXX Don't know that these are correct */
1935 		error = EIO;
1936 		break;
1937 	case CAM_SEL_TIMEOUT:
1938 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1939 			if (ccb->ccb_h.retry_count > 0 &&
1940 			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1941 				ccb->ccb_h.retry_count--;
1942 				error = ERESTART;
1943 
1944 				/*
1945 				 * Wait a bit to give the device
1946 				 * time to recover before we try again.
1947 				 */
1948 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1949 				timeout = periph_selto_delay;
1950 				break;
1951 			}
1952 			action_string = "Retries exhausted";
1953 		}
1954 		/* FALLTHROUGH */
1955 	case CAM_DEV_NOT_THERE:
1956 		error = ENXIO;
1957 		action = SSQ_LOST;
1958 		break;
1959 	case CAM_REQ_INVALID:
1960 	case CAM_PATH_INVALID:
1961 	case CAM_NO_HBA:
1962 	case CAM_PROVIDE_FAIL:
1963 	case CAM_REQ_TOO_BIG:
1964 	case CAM_LUN_INVALID:
1965 	case CAM_TID_INVALID:
1966 	case CAM_FUNC_NOTAVAIL:
1967 		error = EINVAL;
1968 		break;
1969 	case CAM_SCSI_BUS_RESET:
1970 	case CAM_BDR_SENT:
1971 		/*
1972 		 * Commands that repeatedly timeout and cause these
1973 		 * kinds of error recovery actions, should return
1974 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1975 		 * that this command was an innocent bystander to
1976 		 * these events and should be unconditionally
1977 		 * retried.
1978 		 */
1979 	case CAM_REQUEUE_REQ:
1980 		/* Unconditional requeue if device is still there */
1981 		if (periph->flags & CAM_PERIPH_INVALID) {
1982 			action_string = "Periph was invalidated";
1983 			error = ENXIO;
1984 		} else if (sense_flags & SF_NO_RETRY) {
1985 			error = EIO;
1986 			action_string = "Retry was blocked";
1987 		} else {
1988 			error = ERESTART;
1989 			action &= ~SSQ_PRINT_SENSE;
1990 		}
1991 		break;
1992 	case CAM_RESRC_UNAVAIL:
1993 		/* Wait a bit for the resource shortage to abate. */
1994 		timeout = periph_noresrc_delay;
1995 		/* FALLTHROUGH */
1996 	case CAM_BUSY:
1997 		if (timeout == 0) {
1998 			/* Wait a bit for the busy condition to abate. */
1999 			timeout = periph_busy_delay;
2000 		}
2001 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
2002 		/* FALLTHROUGH */
2003 	case CAM_ATA_STATUS_ERROR:
2004 	case CAM_NVME_STATUS_ERROR:
2005 	case CAM_SMP_STATUS_ERROR:
2006 	case CAM_REQ_CMP_ERR:
2007 	case CAM_CMD_TIMEOUT:
2008 	case CAM_UNEXP_BUSFREE:
2009 	case CAM_UNCOR_PARITY:
2010 	case CAM_DATA_RUN_ERR:
2011 	default:
2012 		if (periph->flags & CAM_PERIPH_INVALID) {
2013 			error = ENXIO;
2014 			action_string = "Periph was invalidated";
2015 		} else if (ccb->ccb_h.retry_count == 0) {
2016 			error = EIO;
2017 			action_string = "Retries exhausted";
2018 		} else if (sense_flags & SF_NO_RETRY) {
2019 			error = EIO;
2020 			action_string = "Retry was blocked";
2021 		} else {
2022 			ccb->ccb_h.retry_count--;
2023 			error = ERESTART;
2024 		}
2025 		break;
2026 	}
2027 
2028 	if ((sense_flags & SF_PRINT_ALWAYS) ||
2029 	    CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
2030 		action |= SSQ_PRINT_SENSE;
2031 	else if (sense_flags & SF_NO_PRINT)
2032 		action &= ~SSQ_PRINT_SENSE;
2033 	if ((action & SSQ_PRINT_SENSE) != 0)
2034 		cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
2035 	if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
2036 		if (error != ERESTART) {
2037 			if (action_string == NULL)
2038 				action_string = "Unretryable error";
2039 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
2040 			    error, action_string);
2041 		} else if (action_string != NULL)
2042 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
2043 		else {
2044 			xpt_print(ccb->ccb_h.path,
2045 			    "Retrying command, %d more tries remain\n",
2046 			    ccb->ccb_h.retry_count);
2047 		}
2048 	}
2049 
2050 	if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0))
2051 		cam_periph_devctl_notify(orig_ccb);
2052 
2053 	if ((action & SSQ_LOST) != 0) {
2054 		lun_id_t lun_id;
2055 
2056 		/*
2057 		 * For a selection timeout, we consider all of the LUNs on
2058 		 * the target to be gone.  If the status is CAM_DEV_NOT_THERE,
2059 		 * then we only get rid of the device(s) specified by the
2060 		 * path in the original CCB.
2061 		 */
2062 		if (status == CAM_SEL_TIMEOUT)
2063 			lun_id = CAM_LUN_WILDCARD;
2064 		else
2065 			lun_id = xpt_path_lun_id(ccb->ccb_h.path);
2066 
2067 		/* Should we do more if we can't create the path?? */
2068 		if (xpt_create_path(&newpath, periph,
2069 				    xpt_path_path_id(ccb->ccb_h.path),
2070 				    xpt_path_target_id(ccb->ccb_h.path),
2071 				    lun_id) == CAM_REQ_CMP) {
2072 			/*
2073 			 * Let peripheral drivers know that this
2074 			 * device has gone away.
2075 			 */
2076 			xpt_async(AC_LOST_DEVICE, newpath, NULL);
2077 			xpt_free_path(newpath);
2078 		}
2079 	}
2080 
2081 	/* Broadcast UNIT ATTENTIONs to all periphs. */
2082 	if ((action & SSQ_UA) != 0)
2083 		xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
2084 
2085 	/* Rescan target on "Reported LUNs data has changed" */
2086 	if ((action & SSQ_RESCAN) != 0) {
2087 		if (xpt_create_path(&newpath, NULL,
2088 				    xpt_path_path_id(ccb->ccb_h.path),
2089 				    xpt_path_target_id(ccb->ccb_h.path),
2090 				    CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
2091 			scan_ccb = xpt_alloc_ccb_nowait();
2092 			if (scan_ccb != NULL) {
2093 				scan_ccb->ccb_h.path = newpath;
2094 				scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
2095 				scan_ccb->crcn.flags = 0;
2096 				xpt_rescan(scan_ccb);
2097 			} else {
2098 				xpt_print(newpath,
2099 				    "Can't allocate CCB to rescan target\n");
2100 				xpt_free_path(newpath);
2101 			}
2102 		}
2103 	}
2104 
2105 	/* Attempt a retry */
2106 	if (error == ERESTART || error == 0) {
2107 		if (frozen != 0)
2108 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
2109 		if (error == ERESTART)
2110 			xpt_action(ccb);
2111 		if (frozen != 0)
2112 			cam_release_devq(ccb->ccb_h.path,
2113 					 relsim_flags,
2114 					 openings,
2115 					 timeout,
2116 					 /*getcount_only*/0);
2117 	}
2118 
2119 	return (error);
2120 }
2121 
2122 #define CAM_PERIPH_DEVD_MSG_SIZE	256
2123 
2124 static void
2125 cam_periph_devctl_notify(union ccb *ccb)
2126 {
2127 	struct cam_periph *periph;
2128 	struct ccb_getdev *cgd;
2129 	struct sbuf sb;
2130 	int serr, sk, asc, ascq;
2131 	char *sbmsg, *type;
2132 
2133 	sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT);
2134 	if (sbmsg == NULL)
2135 		return;
2136 
2137 	sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN);
2138 
2139 	periph = xpt_path_periph(ccb->ccb_h.path);
2140 	sbuf_printf(&sb, "device=%s%d ", periph->periph_name,
2141 	    periph->unit_number);
2142 
2143 	sbuf_printf(&sb, "serial=\"");
2144 	if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) {
2145 		xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path,
2146 		    CAM_PRIORITY_NORMAL);
2147 		cgd->ccb_h.func_code = XPT_GDEV_TYPE;
2148 		xpt_action((union ccb *)cgd);
2149 
2150 		if (cgd->ccb_h.status == CAM_REQ_CMP)
2151 			sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len);
2152 		xpt_free_ccb((union ccb *)cgd);
2153 	}
2154 	sbuf_printf(&sb, "\" ");
2155 	sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status);
2156 
2157 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
2158 	case CAM_CMD_TIMEOUT:
2159 		sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout);
2160 		type = "timeout";
2161 		break;
2162 	case CAM_SCSI_STATUS_ERROR:
2163 		sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status);
2164 		if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq))
2165 			sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ",
2166 			    serr, sk, asc, ascq);
2167 		type = "error";
2168 		break;
2169 	case CAM_ATA_STATUS_ERROR:
2170 		sbuf_printf(&sb, "RES=\"");
2171 		ata_res_sbuf(&ccb->ataio.res, &sb);
2172 		sbuf_printf(&sb, "\" ");
2173 		type = "error";
2174 		break;
2175 	default:
2176 		type = "error";
2177 		break;
2178 	}
2179 
2180 	if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
2181 		sbuf_printf(&sb, "CDB=\"");
2182 		scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb);
2183 		sbuf_printf(&sb, "\" ");
2184 	} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
2185 		sbuf_printf(&sb, "ACB=\"");
2186 		ata_cmd_sbuf(&ccb->ataio.cmd, &sb);
2187 		sbuf_printf(&sb, "\" ");
2188 	}
2189 
2190 	if (sbuf_finish(&sb) == 0)
2191 		devctl_notify("CAM", "periph", type, sbuf_data(&sb));
2192 	sbuf_delete(&sb);
2193 	free(sbmsg, M_CAMPERIPH);
2194 }
2195 
2196 /*
2197  * Sysctl to force an invalidation of the drive right now. Can be
2198  * called with CTLFLAG_MPSAFE since we take periph lock.
2199  */
2200 int
2201 cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS)
2202 {
2203 	struct cam_periph *periph;
2204 	int error, value;
2205 
2206 	periph = arg1;
2207 	value = 0;
2208 	error = sysctl_handle_int(oidp, &value, 0, req);
2209 	if (error != 0 || req->newptr == NULL || value != 1)
2210 		return (error);
2211 
2212 	cam_periph_lock(periph);
2213 	cam_periph_invalidate(periph);
2214 	cam_periph_unlock(periph);
2215 
2216 	return (0);
2217 }
2218